Science.gov

Sample records for absolute energy distributions

  1. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXI - Absolute energy distribution of stars in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Code, A. D.; Fairchild, E. T.

    1976-01-01

    The absolute energy distribution in the ultraviolet is given for the stars alpha Vir, eta UMa, and alpha Leo. The calibration is based on absolute heterochromatic photometry between 2920 and 1370 A carried out with an Aerobee sounding rocket. The fundamental radiation standard is the synchrotron radiation from 240-MeV electrons in a certain synchrotron storage ring. On the basis of the sounding-rocket calibration, the preliminary OAO-2 spectrometer calibration has been revised; the fluxes for the three program stars are tabulated in energy per second per square centimeter per unit wavelength interval.

  2. Redetermining CEBAF's Absolute Energy

    NASA Astrophysics Data System (ADS)

    Su, Tong; Jlab Marathon Collaboration

    2015-04-01

    With the upgrade of the Jefferson Lab accelerator (CEBAF) from 6 GeV max energy to 12 GeV, all the dipole magnets in the machine were refurbished. Most of them were switched from open c-shaped to closed h-shaped by adding extra iron. With these upgraded magnets, the energy calibration of the accelerator needed to be redetermined. We will show how an extra external dipole, which is run in series with those in the machine, helps us cross check the current in the magnets as well as precisely map out the integral field for any machine setting. Using knowledge of the relative performance of the dipoles as well as the bend angle into the Hall, has allowed us to already determine a 4th pass 7 GeV beam to better than 7 MeV. In the future, we will use g-2 spin precession as a second independent energy determination. This work is supported by Kent State University, NSF Grant PHY-1405814, and DOE Contract DE-AC05-06OR23177 (JLab).

  3. Absolute energy distribution of hard x rays produced in the interaction of a kilohertz femtosecond laser with tantalum targets

    SciTech Connect

    Gobet, F.; Hannachi, F.; Aleonard, M. M.; Chemin, J. F.; Claverie, G.; Gerbaux, M.; Malka, G.; Scheurer, J. N.; Tarisien, M.; Blasco, F.; Descamps, D.; Dorchies, F.; Fedosejevs, R.; Fourment, C.; Petit, S.; Meot, V.; Morel, P.; Hanvey, S.; Robson, L.; Liesfeld, B.

    2006-09-15

    Previous reports have indicated the anomalous excitation rate for the 6.2 keV nuclear level of {sup 181}Ta in a plasma produced with a femtosecond laser. A detailed characterization of the electrons and x-ray sources produced in such a plasma is required to interpret these results. In a preliminary work, the continuous energy distribution of hard x rays (10-500 keV) produced in the interaction of a kilohertz femtosecond laser beam with a tantalum solid target is investigated in the 3x10{sup 15}-6x10{sup 16} W/cm{sup 2} range of intensity. A sodium iodide detector with appropriate shielding is used. Strong collimation and absorption filters are used to avoid the pileup of photons in the detector. The response function of this setup is calculated with the GEANT3 simulation code. We demonstrate the necessity to quantify the Compton scattered events in the raw spectra in order to restore the absolute x-ray energy distribution.

  4. New Measurements of the Absolute Spectral Energy Distribution of Solar Radiation in the Range Double Lambda 650-1070 NM

    NASA Astrophysics Data System (ADS)

    Burlov-Vasilev, K. A.; Vasileva, I. E.; Matveev, Yu. B.

    1996-01-01

    Spectral measurements of the solar disk centre intensity for the near-IR region have been made at he Terskol High-Altitude Station in 1992. These measurements are the continuation of the program for the solar absolute spectral energy distribution investigation. Data published earlier are extended to the longwave spectral region up to 1070 nm. The special-purpose solar telescope SEF-1 was used. We compared the disk centre brightness with brightness of the calibrated region of the standard ribbon tungsten lamp. The atmospheric extinction was taken into account by the Bouguer method with simultaneous control of the atmosphere stability. The 1-nm integrals of the disk centre intensity in the range double lamda 650-1070 nm based on 5-day measurements in March-October 1992 are given. The uncertainty of these values is 2%. In regions with strong telluric absorption by oxygen and water-vapour bands, the reductions are made, using synthetic atmospheric absorption spectra computed on the basis of molecular parameter atlas HITRAN and the standard model atmosphere. By the use of the solar limb darkening coefficients the values of the solar flux at 1 A.U. were derived. Our measurements show the best agreement with the data of Makarova, Kharitonov, and Kazachevskaya as well as with the common data from Shaw and Frohlich. For lambda greater than 850 nm our data are systematically lower than the data by Neckel and Labs.

  5. Comparison of high energy gamma rays from absolute value of b greater than 30 deg with the galactic neutral hydrogen distribution

    NASA Technical Reports Server (NTRS)

    Ozel, M. E.; Ogelman, H.; Tumer, T.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, F. J.

    1978-01-01

    High-energy gamma-ray (energy above 35 MeV) data from the SAS 2 satellite have been used to compare the intensity distribution of gamma rays with that of neutral hydrogen (H I) density along the line of sight, at high galactic latitudes (absolute values greater than 30 deg). A model has been constructed for the case where the observed gamma-ray intensity has been assumed to be the sum of a galactic component proportional to the H I distribution plus an isotropic extragalactic emission. A chi-squared test of the model parameters indicates that about 30% of the total high-latitude emission may originate within the Galaxy.

  6. Absolute nonlocality via distributed computing without communication

    NASA Astrophysics Data System (ADS)

    Czekaj, Ł.; Pawłowski, M.; Vértesi, T.; Grudka, A.; Horodecki, M.; Horodecki, R.

    2015-09-01

    Understanding the role that quantum entanglement plays as a resource in various information processing tasks is one of the crucial goals of quantum information theory. Here we propose an alternative perspective for studying quantum entanglement: distributed computation of functions without communication between nodes. To formalize this approach, we propose identity games. Surprisingly, despite no signaling, we obtain that nonlocal quantum strategies beat classical ones in terms of winning probability for identity games originating from certain bipartite and multipartite functions. Moreover we show that, for a majority of functions, access to general nonsignaling resources boosts success probability two times in comparison to classical ones for a number of large enough outputs. Because there are no constraints on the inputs and no processing of the outputs in the identity games, they detect very strong types of correlations: absolute nonlocality.

  7. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  8. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  9. The absolute magnitude distribution of Kuiper Belt objects

    SciTech Connect

    Fraser, Wesley C.; Brown, Michael E.; Morbidelli, Alessandro; Parker, Alex; Batygin, Konstantin

    2014-02-20

    Here we measure the absolute magnitude distributions (H-distribution) of the dynamically excited and quiescent (hot and cold) Kuiper Belt objects (KBOs), and test if they share the same H-distribution as the Jupiter Trojans. From a compilation of all useable ecliptic surveys, we find that the KBO H-distributions are well described by broken power laws. The cold population has a bright-end slope, α{sub 1}=1.5{sub −0.2}{sup +0.4}, and break magnitude, H{sub B}=6.9{sub −0.2}{sup +0.1} (r'-band). The hot population has a shallower bright-end slope of, α{sub 1}=0.87{sub −0.2}{sup +0.07}, and break magnitude H{sub B}=7.7{sub −0.5}{sup +1.0}. Both populations share similar faint-end slopes of α{sub 2} ∼ 0.2. We estimate the masses of the hot and cold populations are ∼0.01 and ∼3 × 10{sup –4} M {sub ⊕}. The broken power-law fit to the Trojan H-distribution has α{sub 1} = 1.0 ± 0.2, α{sub 2} = 0.36 ± 0.01, and H {sub B} = 8.3. The Kolmogorov-Smirnov test reveals that the probability that the Trojans and cold KBOs share the same parent H-distribution is less than 1 in 1000. When the bimodal albedo distribution of the hot objects is accounted for, there is no evidence that the H-distributions of the Trojans and hot KBOs differ. Our findings are in agreement with the predictions of the Nice model in terms of both mass and H-distribution of the hot and Trojan populations. Wide-field survey data suggest that the brightest few hot objects, with H{sub r{sup ′}}≲3, do not fall on the steep power-law slope of fainter hot objects. Under the standard hierarchical model of planetesimal formation, it is difficult to account for the similar break diameters of the hot and cold populations given the low mass of the cold belt.

  10. The absolute magnitude distribution of cold classical Kuiper belt objects

    NASA Astrophysics Data System (ADS)

    Petit, Jean-Marc; Bannister, Michele T.; Alexandersen, Mike; Chen, Ying-Tung; Gladman, Brett; Gwyn, Stephen; Kavelaars, JJ; Volk, Kathryn

    2016-10-01

    We report measurements of the low inclination component of the main Kuiper Belt showing a size freqency distribution very steep for sizes larger than H_r ~ 6.5-7.0 and then a flattening to shallower slope that is still steeper than the collisional equilibrium slope.The Outer Solar System Origins Survey (OSSOS) is ongoing and is expected to detect over 500 TNOs in a precisely calibrated and characterized survey. Combining our current sample with CFEPS and the Alexandersen et al. (2015) survey, we analyse a sample of ~180 low inclination main classical (cold) TNOs, with absolute magnitude H_r (SDSS r' like flter) in the range 5 to 8.8. We confirm that the H_r distribution can be approximated by an exponential with a very steep slope (>1) at the bright end of the distribution, as has been recognized long ago. A transition to a shallower slope occurs around H_r ~ 6.5 - 7.0, an H_r mag identified by Fraster et al (2014). Faintward of this transition, we find a second exponential to be a good approximation at least until H_r ~ 8.5, but with a slope significantly steeper than the one proposed by Fraser et al. (2014) or even the collisional equilibrium value of 0.5.The transition in the cold TNO H_r distribution thus appears to occur at larger sizes than is observed in the high inclination main classical (hot) belt, an important indicator of a different cosmogony for these two sub-components of the main classical Kuiper belt. Given the largish slope faintward of the transition, the cold population with ~100 km diameter may dominate the mass of the Kuiper belt in the 40 AU < a < 47 au region.

  11. The absolute energy flux envelopes of B type stars.

    NASA Technical Reports Server (NTRS)

    Underhill, A. B.

    1972-01-01

    Absolute energy flux envelopes covering the region of 1100 to 6000 A for main-sequence stars of types B3, B7 and A0 derived from published, ground-based observations and from spectrum scans with OAO-II are presented. These flux envelopes are compared with the predicted flux envelopes from lightly line-blanketed model atmospheres. The line blanketing at wavelengths shorter than 3000 A is severe, about one-half the predicted light being observed at 1600 A. These results demonstrate that a model which represents well the observed visible spectrum of a star may fail seriously for representing the ultraviolet spectrum.

  12. Absolute calorimetric calibration of low energy brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Stump, Kurt E.

    In the past decade there has been a dramatic increase in the use of permanent radioactive source implants in the treatment of prostate cancer. A small radioactive source encapsulated in a titanium shell is used in this type of treatment. The radioisotopes used are generally 125I or 103Pd. Both of these isotopes have relatively short half-lives, 59.4 days and 16.99 days, respectively, and have low-energy emissions and a low dose rate. These factors make these sources well suited for this application, but the calibration of these sources poses significant metrological challenges. The current standard calibration technique involves the measurement of ionization in air to determine the source air-kerma strength. While this has proved to be an improvement over previous techniques, the method has been shown to be metrologically impure and may not be the ideal means of calbrating these sources. Calorimetric methods have long been viewed to be the most fundamental means of determining source strength for a radiation source. This is because calorimetry provides a direct measurement of source energy. However, due to the low energy and low power of the sources described above, current calorimetric methods are inadequate. This thesis presents work oriented toward developing novel methods to provide direct and absolute measurements of source power for low-energy low dose rate brachytherapy sources. The method is the first use of an actively temperature-controlled radiation absorber using the electrical substitution method to determine total contained source power of these sources. The instrument described operates at cryogenic temperatures. The method employed provides a direct measurement of source power. The work presented here is focused upon building a metrological foundation upon which to establish power-based calibrations of clinical-strength sources. To that end instrument performance has been assessed for these source strengths. The intent is to establish the limits of

  13. Predictions of Ligand Selectivity from Absolute Binding Free Energy Calculations

    PubMed Central

    2016-01-01

    Binding selectivity is a requirement for the development of a safe drug, and it is a critical property for chemical probes used in preclinical target validation. Engineering selectivity adds considerable complexity to the rational design of new drugs, as it involves the optimization of multiple binding affinities. Computationally, the prediction of binding selectivity is a challenge, and generally applicable methodologies are still not available to the computational and medicinal chemistry communities. Absolute binding free energy calculations based on alchemical pathways provide a rigorous framework for affinity predictions and could thus offer a general approach to the problem. We evaluated the performance of free energy calculations based on molecular dynamics for the prediction of selectivity by estimating the affinity profile of three bromodomain inhibitors across multiple bromodomain families, and by comparing the results to isothermal titration calorimetry data. Two case studies were considered. In the first one, the affinities of two similar ligands for seven bromodomains were calculated and returned excellent agreement with experiment (mean unsigned error of 0.81 kcal/mol and Pearson correlation of 0.75). In this test case, we also show how the preferred binding orientation of a ligand for different proteins can be estimated via free energy calculations. In the second case, the affinities of a broad-spectrum inhibitor for 22 bromodomains were calculated and returned a more modest accuracy (mean unsigned error of 1.76 kcal/mol and Pearson correlation of 0.48); however, the reparametrization of a sulfonamide moiety improved the agreement with experiment. PMID:28009512

  14. On the calculation of absolute macromolecular binding free energies

    PubMed Central

    Luo, Hengbin; Sharp, Kim

    2002-01-01

    The standard framework for calculating the absolute binding free energy of a macromolecular association reaction A + B → AB with an association constant KAB is to equate chemical potentials of the species on the left- and right-hand sides of this reaction and evaluate the chemical potentials from theory. This theory involves (usually hidden) assumptions about what constitutes the bound species, AB, and where the contribution of the solvent appears. We present here an alternative derivation that can be traced back to Bjerrum, in which the expectation value of KAB is obtained directly through the statistical mechanical method of evaluating its ensemble (Boltzmann-weighted) average. The generalized Bjerrum approach more clearly delineates: (i) the different contributions to binding; (ii) the origin of the much-discussed and somewhat controversial association entropy term; and (iii) where the solvent contribution appears. This approach also allows approximations required for practical evaluation of the binding constant in complex macromolecular systems, to be introduced in a well defined way. We provide an example, with application to test cases that illustrate a range of binding behavior. PMID:12149474

  15. Massively parallel computation of absolute binding free energy with well-equilibrated states

    NASA Astrophysics Data System (ADS)

    Fujitani, Hideaki; Tanida, Yoshiaki; Matsuura, Azuma

    2009-02-01

    A force field formulator for organic molecules (FF-FOM) was developed to assign bond, angle, and dihedral parameters to arbitrary organic molecules in a unified manner including proteins and nucleic acids. With the unified force field parametrization we performed massively parallel computations of absolute binding free energies for pharmaceutical target proteins and ligands. Compared with the previous calculation with the ff99 force field in the Amber simulation package (Amber99) and the ligand charges produced by the Austin Model 1 bond charge correction (AM1-BCC), the unified parametrization gave better absolute binding energies for the FK506 binding protein (FKBP) and ligand system. Our method is based on extensive work measurement between thermodynamic states to calculate the free energy difference and it is also the same as the traditional free energy perturbation. There are important requirements for accurate calculations. The first is a well-equilibrated bound structure including the conformational change of the protein induced by the binding of the ligand. The second requirement is the convergence of the work distribution with a sufficient number of trajectories and dense spacing of the coupling constant between the ligand and the rest of the system. Finally, the most important requirement is the force field parametrization.

  16. Absolute energy curves from late B-type supergiants

    NASA Technical Reports Server (NTRS)

    Underhill, A. B.

    1981-01-01

    Energy curves were determined for six late B and early A type supergiants using IUE data and other ultraviolet and ground based photometry. Effective temperatures and angular diameters are presented as well as estimates of the outflow velocity of the wind. All six stars show a strong Balmer continuum in emission; the Ia supergiants also show an infrared excess which reaches into the visible range. Evidence is found for the presence of a warm mantle as well as for wind from the Ia stars.

  17. Fully distributed absolute blood flow velocity measurement for middle cerebral arteries using Doppler optical coherence tomography

    PubMed Central

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping

    2016-01-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement. PMID:26977365

  18. Absolute instability from linear conversion of counter-propagating positive and negative energy waves

    SciTech Connect

    Kaufman, A.N.; Brizard, A.J.; Morehead, J.J.; Tracy, E.R.

    1997-12-31

    The resonant interaction of a negative-energy wave with a positive-energy wave gives rise to a linear instability. Whereas a single crossing of rays in a nonuniform medium leads to a convectively saturated instability, we show that a double crossing can yield an absolute instability.

  19. Pretreatment verification of IMRT absolute dose distributions using a commercial a-Si EPID

    SciTech Connect

    Talamonti, C.; Casati, M.; Bucciolini, M.

    2006-11-15

    A commercial amorphous silicon electronic portal imaging device (EPID) has been studied to investigate its potential in the field of pretreatment verifications of step and shoot, intensity modulated radiation therapy (IMRT), 6 MV photon beams. The EPID was calibrated to measure absolute exit dose in a water-equivalent phantom at patient level, following an experimental approach, which does not require sophisticated calculation algorithms. The procedure presented was specifically intended to replace the time-consuming in-phantom film dosimetry. The dosimetric response was characterized on the central axis in terms of stability, linearity, and pulse repetition frequency dependence. The a-Si EPID demonstrated a good linearity with dose (within 2% from 1 monitor unit), which represent a prerequisite for the application in IMRT. A series of measurements, in which phantom thickness, air gap between the phantom and the EPID, field size and position of measurement of dose in the phantom (entrance or exit) varied, was performed to find the optimal calibration conditions, for which the field size dependence is minimized. In these conditions (20 cm phantom thickness, 56 cm air gap, exit dose measured at the isocenter), the introduction of a filter for the low-energy scattered radiation allowed us to define a universal calibration factor, independent of field size. The off-axis extension of the dose calibration was performed by applying a radial correction for the beam profile, distorted due to the standard flood field calibration of the device. For the acquisition of IMRT fields, it was necessary to employ home-made software and a specific procedure. This method was applied for the measurement of the dose distributions for 15 clinical IMRT fields. The agreement between the dose distributions, quantified by the gamma index, was found, on average, in 97.6% and 98.3% of the analyzed points for EPID versus TPS and for EPID versus FILM, respectively, thus suggesting a great

  20. Absolute x-ray energy calibration over a wide energy range using a diffraction-based iterative method.

    PubMed

    Hong, Xinguo; Chen, Zhiqiang; Duffy, Thomas S

    2012-06-01

    In this paper, we report a method of precise and fast absolute x-ray energy calibration over a wide energy range using an iterative x-ray diffraction based method. Although accurate x-ray energy calibration is indispensable for x-ray energy-sensitive scattering and diffraction experiments, there is still a lack of effective methods to precisely calibrate energy over a wide range, especially when normal transmission monitoring is not an option and complicated micro-focusing optics are fixed in place. It is found that by using an iterative algorithm the x-ray energy is only tied to the relative offset of sample-to-detector distance, which can be readily varied with high precision of the order of 10(-5) -10(-6) spatial resolution using gauge blocks. Even starting with arbitrary initial values of 0.1 Å, 0.3 Å, and 0.4 Å, the iteration process converges to a value within 3.5 eV for 31.122 keV x-rays after three iterations. Different common diffraction standards CeO(2), Au, and Si show an energy deviation of 14 eV. As an application, the proposed method has been applied to determine the energy-sensitive first sharp diffraction peak of network forming GeO(2) glass at high pressure, exhibiting a distinct behavior in the pressure range of 2-4 GPa. Another application presented is pair distribution function measurement using calibrated high-energy x-rays at 82.273 keV. Unlike the traditional x-ray absorption-based calibration method, the proposed approach does not rely on any edges of specific elements, and is applicable to the hard x-ray region where no appropriate absorption edge is available.

  1. Superharp: A wire scanner with absolute position readout for beam energy measurement at CEBAF

    SciTech Connect

    Yan, C.

    1994-09-07

    Superharp is an upgrade CEBAF wire scanner with absolute position readout from shaft encoder. As high precision absolute beam position probe ({Delta}x {approximately} 10{mu}m), three pairs of superharps are installed at the entrance, the mid-point, and the exit of Hall C arc beamline in beam switch yard, which will be tuned in dispersive mode as energy spectrometer performing 10{sup {minus}3} beam energy measurement. With dual sensor system: the direct current pickup and the bremsstrahlung detection electronics, beam profile can be obtained by superharp at wide beam current range from 1 {mu}A to 100 {mu}A.

  2. Absolute Binding Energies of Core Levels in Solids from First Principles

    NASA Astrophysics Data System (ADS)

    Ozaki, Taisuke; Lee, Chi-Cheng

    2017-01-01

    A general method is presented to calculate absolute binding energies of core levels in metals and insulators, based on a penalty functional and an exact Coulomb cutoff method in the framework of density functional theory. The spurious interaction of core holes between supercells is avoided by the exact Coulomb cutoff method, while the variational penalty functional enables us to treat multiple splittings due to chemical shift, spin-orbit coupling, and exchange interaction on equal footing, both of which are not accessible by previous methods. It is demonstrated that the absolute binding energies of core levels for both metals and insulators are calculated by the proposed method in a mean absolute (relative) error of 0.4 eV (0.16%) for eight cases compared to experimental values measured with x-ray photoemission spectroscopy within a generalized gradient approximation to the exchange-correlation functional.

  3. CHARMM-GUI Ligand Binder for absolute binding free energy calculations and its application.

    PubMed

    Jo, Sunhwan; Jiang, Wei; Lee, Hui Sun; Roux, Benoît; Im, Wonpil

    2013-01-28

    Advanced free energy perturbation molecular dynamics (FEP/MD) simulation methods are available to accurately calculate absolute binding free energies of protein-ligand complexes. However, these methods rely on several sophisticated command scripts implementing various biasing energy restraints to enhance the convergence of the FEP/MD calculations, which must all be handled properly to yield correct results. Here, we present a user-friendly Web interface, CHARMM-GUI Ligand Binder ( http://www.charmm-gui.org/input/gbinding ), to provide standardized CHARMM input files for calculations of absolute binding free energies using the FEP/MD simulations. A number of features are implemented to conveniently set up the FEP/MD simulations in highly customizable manners, thereby permitting an accelerated throughput of this important class of computations while decreasing the possibility of human errors. The interface and a series of input files generated by the interface are tested with illustrative calculations of absolute binding free energies of three nonpolar aromatic ligands to the L99A mutant of T4 lysozyme and three FK506-related ligands to FKBP12. Statistical errors within individual calculations are found to be small (~1 kcal/mol), and the calculated binding free energies generally agree well with the experimental measurements and the previous computational studies (within ~2 kcal/mol). Therefore, CHARMM-GUI Ligand Binder provides a convenient and reliable way to set up the ligand binding free energy calculations and can be applicable to pharmaceutically important protein-ligand systems.

  4. CHARMM-GUI Ligand Binder for Absolute Binding Free Energy Calculations and Its Application

    PubMed Central

    Jo, Sunhwan; Jiang, Wei; Lee, Hui Sun; Roux, Benoît; Im, Wonpil

    2013-01-01

    Advanced free energy perturbation molecular dynamics (FEP/MD) simulation methods are available to accurately calculate absolute binding free energies of protein-ligand complexes. However, these methods rely on several sophisticated command scripts implementing various biasing energy restraints to enhance the convergence of the FEP/MD calculations, which must all be handled properly to yield correct results. Here, we present a user-friendly web interface, CHARMM-GUI Ligand Binder (http://www.charmm-gui.org/input/gbinding), to provide standardized CHARMM input files for calculations of absolute binding free energies using the FEP/MD simulations. A number of features are implemented to conveniently setup the FEP/MD simulations in highly customizable manners, thereby permitting an accelerated throughput of this important class of computations while decreasing the possibility of human errors. The interface and a series of input files generated by the interface are tested with illustrative calculations of absolute binding free energies of three non-polar aromatic ligands to the L99A mutant of T4 lysozyme and three FK506-related ligands to FKBP12. Statistical errors within individual calculations are found to be small (~1 kcal/mol), and the calculated binding free energies generally agree well with the experimental measurements and the previous computational studies (within ~2 kcal/mol). CHARMM-GUI Ligand Binder provides a convenient and reliable way to setup the ligand binding free energy calculations and can be applicable to pharmaceutically important protein-ligand systems. PMID:23205773

  5. Accurate determination of pyridine-poly(amidoamine) dendrimer absolute binding constants with the OPLS-AA force field and direct integration of radial distribution functions.

    PubMed

    Peng, Yong; Kaminski, George A

    2005-08-11

    OPLS-AA force field and direct integration of intermolecular radial distribution functions (RDF) were employed to calculate absolute binding constants of pyridine molecules to amino group (NH2) and amide group hydrogen atoms in and first generation poly(amidoamine) dendrimers in chloroform. The average errors in the absolute and relative association constants, as predicted with the calculations, are 14.1% and 10.8%, respectively, which translate into ca. 0.08 and 0.06 kcal/mol errors in the absolute and relative binding free energies. We believe that this level of accuracy proves the applicability of the OPLS-AA, force field, in combination with the direct RDF integration, to reproducing and predicting absolute intermolecular association constants of low magnitudes (ca. 0.2-2.0 range).

  6. Accurate Determination of Pyridine -- Poly (Amidoamine) Dendrimer Absolute Binding Constants with the OPLS-AA Force Field and Direct Integration of Radial Distribution Functions

    NASA Astrophysics Data System (ADS)

    Peng, Yong; Kaminski, George

    2006-03-01

    OPLS-AA force field and direct integration of intermolecular radial distribution functions (RDF) were employed to calculate absolute binding constants of pyridine molecules to NH2 and amide group hydrogen atoms in 0th and 1st generation poly (amidoamine) dendrimers in chloroform. The average errors in the absolute and relative association constants, as predicted with the calculations, are 14.1% and 10.8%, respectively, which translate into ca. 0.08 kcal/mol and 0.06 kcal/mol errors in the absolute and relative binding free energies. We believe that this level of accuracy proves the applicability of the OPLS-AA, force field, in combination with the direct RDF integration, to reproducing and predicting absolute intermolecular association constants of low magnitudes (ca. 0.2 -- 2.0 range).

  7. Absolute Binding Free Energy Calculations: On the Accuracy of Computational Scoring of Protein-ligand Interactions

    PubMed Central

    Singh, Nidhi; Warshel, Arieh

    2010-01-01

    Calculating the absolute binding free energies is a challenging task. Reliable estimates of binding free energies should provide a guide for rational drug design. It should also provide us with deeper understanding of the correlation between protein structure and its function. Further applications may include identifying novel molecular scaffolds and optimizing lead compounds in computer-aided drug design. Available options to evaluate the absolute binding free energies range from the rigorous but expensive free energy perturbation to the microscopic Linear Response Approximation (LRA/β version) and its variants including the Linear Interaction Energy (LIE) to the more approximated and considerably faster scaled Protein Dipoles Langevin Dipoles (PDLD/S-LRA version), as well as the less rigorous Molecular Mechanics Poisson–Boltzmann/Surface Area (MM/PBSA) and Generalized Born/Surface Area (MM/GBSA) to the less accurate scoring functions. There is a need for an assessment of the performance of different approaches in terms of computer time and reliability. We present a comparative study of the LRA/β, the LIE, the PDLD/S-LRA/β and the more widely used MM/PBSA and assess their abilities to estimate the absolute binding energies. The LRA and LIE methods perform reasonably well but require specialized parameterization for the non-electrostatic term. On the average, the PDLD/S-LRA/β performs effectively. Our assessment of the MM/PBSA is less optimistic. This approach appears to provide erroneous estimates of the absolute binding energies due to its incorrect entropies and the problematic treatment of electrostatic energies. Overall, the PDLD/S-LRA/β appears to offer an appealing option for the final stages of massive screening approaches. PMID:20186976

  8. Age-specific absolute and relative organ weight distributions for Fischer 344 rats.

    PubMed

    Marino, Dale J

    2012-01-01

    The Fischer 344 (F344) rat has been the standard rat strain used in toxicology studies conducted by the National Cancer Institute (NCI) and the National Toxicology Program (NTP). However, the numerous reports published to date on growth, survival, and tumor incidence have not included an overall compilation of organ weight data. Notably, dose-related organ weight effects are endpoints used by regulatory agencies to develop toxicity reference values (TRVs) for use in human health risk assessments. In addition, physiologically-based pharmacokinetic (PBPK) models, which utilize relative organ weights, are increasingly being used to develop TRVs. Because a compilation of organ weights for F344 rats could prove beneficial for TRV development and PBPK modeling, all available absolute and relative organ weight data for untreated control F344 rats were collected from NCI/NTP feed, drinking-water, and inhalation studies in order to develop age-specific distributions. Results showed that organ weights were collected more frequently at 2-wk (59 studies), 3-mo (148 studies), and 15-mo (38 studies) intervals than at other intervals and more frequently from feeding and inhalation than from drinking-water studies. Liver, right kidney, lung, heart, thymus, and brain weights were most frequently collected. From the collected data, the mean and standard deviation for absolute and relative organ weights were calculated. Findings showed age-related increases in absolute weights and decreases in relative weights for brain, liver, right kidney, lung, heart, thyroid, and right testis. The results suggest a general variability trend in absolute organ weights of brain < right testis < heart < right kidney < liver < lung < thymus < thyroid.

  9. Distributed Wind Energy in Idaho

    SciTech Connect

    Gardner, John; Johnson, Kathryn; Haynes, Todd; Seifert, Gary

    2009-01-31

    This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho.

  10. Energy dispersive X-ray analysis on an absolute scale in scanning transmission electron microscopy.

    PubMed

    Chen, Z; D'Alfonso, A J; Weyland, M; Taplin, D J; Allen, L J; Findlay, S D

    2015-10-01

    We demonstrate absolute scale agreement between the number of X-ray counts in energy dispersive X-ray spectroscopy using an atomic-scale coherent electron probe and first-principles simulations. Scan-averaged spectra were collected across a range of thicknesses with precisely determined and controlled microscope parameters. Ionization cross-sections were calculated using the quantum excitation of phonons model, incorporating dynamical (multiple) electron scattering, which is seen to be important even for very thin specimens.

  11. Absolute cross-sections for DNA strand breaks and crosslinks induced by low energy electrons.

    PubMed

    Chen, Wenzhuang; Chen, Shiliang; Dong, Yanfang; Cloutier, Pierre; Zheng, Yi; Sanche, Léon

    2016-12-07

    Absolute cross sections (CSs) for the interaction of low energy electrons with condensed macromolecules are essential parameters to accurately model ionizing radiation induced reactions. To determine CSs for various conformational DNA damage induced by 2-20 eV electrons, we investigated the influence of the attenuation length (AL) and penetration factor (f) using a mathematical model. Solid films of supercoiled plasmid DNA with thicknesses of 10, 15 and 20 nm were irradiated with 4.6, 5.6, 9.6 and 14.6 eV electrons. DNA conformational changes were quantified by gel electrophoresis, and the respective yields were extrapolated from exposure-response curves. The absolute CS, AL and f values were generated by applying the model developed by Rezaee et al. The values of AL were found to lie between 11 and 16 nm with the maximum at 14.6 eV. The absolute CSs for the loss of the supercoiled (LS) configuration and production of crosslinks (CL), single strand breaks (SSB) and double strand breaks (DSB) induced by 4.6, 5.6, 9.6 and 14.6 eV electrons are obtained. The CSs for SSB are smaller, but similar to those for LS, indicating that SSB are the main conformational damage. The CSs for DSB and CL are about one order of magnitude smaller than those of LS and SSB. The value of f is found to be independent of electron energy, which allows extending the absolute CSs for these types of damage within the range 2-20 eV, from previous measurements of effective CSs. When comparison is possible, the absolute CSs are found to be in good agreement with those obtained from previous similar studies with double-stranded DNA. The high values of the absolute CSs of 4.6 and 9.6 eV provide quantitative evidence for the high efficiency of low energy electrons to induce DNA damage via the formation of transient anions.

  12. Improving the Prediction of Absolute Solvation Free Energies Using the Next Generation OPLS Force Field.

    PubMed

    Shivakumar, Devleena; Harder, Edward; Damm, Wolfgang; Friesner, Richard A; Sherman, Woody

    2012-08-14

    Explicit solvent molecular dynamics free energy perturbation simulations were performed to predict absolute solvation free energies of 239 diverse small molecules. We use OPLS2.0, the next generation OPLS force field, and compare the results with popular small molecule force fields-OPLS_2005, GAFF, and CHARMm-MSI. OPLS2.0 produces the best correlation with experimental data (R(2) = 0.95, slope = 0.96) and the lowest average unsigned errors (0.7 kcal/mol). Important classes of compounds that performed suboptimally with OPLS_2005 show significant improvements.

  13. Absolute Helmholtz free energy of highly anharmonic crystals: theory vs Monte Carlo.

    PubMed

    Yakub, Lydia; Yakub, Eugene

    2012-04-14

    We discuss the problem of the quantitative theoretical prediction of the absolute free energy for classical highly anharmonic solids. Helmholtz free energy of the Lennard-Jones (LJ) crystal is calculated accurately while accounting for both the anharmonicity of atomic vibrations and the pair and triple correlations in displacements of the atoms from their lattice sites. The comparison with most precise computer simulation data on sublimation and melting lines revealed that theoretical predictions are in excellent agreement with Monte Carlo simulation data in the whole range of temperatures and densities studied.

  14. Absolute pulse energy measurements of soft x-rays at the Linac Coherent Light Source.

    PubMed

    Tiedtke, K; Sorokin, A A; Jastrow, U; Juranić, P; Kreis, S; Gerken, N; Richter, M; Arp, U; Feng, Y; Nordlund, D; Soufli, R; Fernández-Perea, M; Juha, L; Heimann, P; Nagler, B; Lee, H J; Mack, S; Cammarata, M; Krupin, O; Messerschmidt, M; Holmes, M; Rowen, M; Schlotter, W; Moeller, S; Turner, J J

    2014-09-08

    This paper reports novel measurements of x-ray optical radiation on an absolute scale from the intense and ultra-short radiation generated in the soft x-ray regime of a free electron laser. We give a brief description of the detection principle for radiation measurements which was specifically adapted for this photon energy range. We present data characterizing the soft x-ray instrument at the Linac Coherent Light Source (LCLS) with respect to the radiant power output and transmission by using an absolute detector temporarily placed at the downstream end of the instrument. This provides an estimation of the reflectivity of all x-ray optical elements in the beamline and provides the absolute photon number per bandwidth per pulse. This parameter is important for many experiments that need to understand the trade-offs between high energy resolution and high flux, such as experiments focused on studying materials via resonant processes. Furthermore, the results are compared with the LCLS diagnostic gas detectors to test the limits of linearity, and observations are reported on radiation contamination from spontaneous undulator radiation and higher harmonic content.

  15. Blocking and transmission of traveling flow-distributed-oscillation waves in an absolutely unstable flowing medium.

    PubMed

    McGraw, Patrick N; Menzinger, Michael

    2012-08-01

    For a flowing, self-oscillating medium, we study the competition between traveling flow-distributed-oscillation waves excited by periodic driving at the upstream boundary and bulk oscillations originating downstream from the boundary. As previously observed in the case of stationary driving, we find that there is a region in parameter space where boundary-driven traveling waves of sufficiently high amplitude can impose themselves on the entire medium despite the presence of an absolute instability, which otherwise tends to block information from upstream. For sufficiently low flow rates, however, the imposed waves are arrested at a nonlinear blocking transition. Unlike the stationary case, we find that the region of imposed waves extends well into regions where, according to the linear approximation, there should be no traveling waves at all. This suggests that the extinction of the traveling waves is analogous to a subcritical Hopf bifurcation.

  16. Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Bottke, William F.; Morbidelli, Alessandro; Jedicke, Robert; Petit, Jean-Marc; Levison, Harold F.; Michel, Patrick; Metcalfe, Travis S.

    2002-04-01

    The orbital and absolute magnitude distribution of the near-Earth objects (NEOs) is difficult to compute, partly because only a modest fraction of the entire NEO population has been discovered so far, but also because the known NEOs are biased by complicated observational selection effects. To circumvent these problems, we created a model NEO population which was fit to known NEOs discovered or accidentally rediscovered by Spacewatch. Our method was to numerically integrate thousands of test particles from five source regions that we believe provide most NEOs to the inner Solar System. Four of these source regions are in or adjacent to the main asteroid belt, while the fifth one is associated with the transneptunian disk. The nearly isotropic comets, which include the Halley-type comets and the long-period comets, were not included in our model. Test bodies from our source regions that passed into the NEO region (perihelia q<1.3 AU and aphelia Q≥0.983 AU) were tracked until they were eliminated by striking the Sun or a planet or were ejected out of the inner Solar System. These integrations were used to create five residence time probability distributions in semimajor axis, eccentricity, and inclination space (one for each source). These distributions show where NEOs from a given source are statistically most likely to be located. Combining these five residence time probability distributions with an NEO absolute magnitude distribution computed from previous work and a probability function representing the observational biases associated with the Spacewatch NEO survey, we produced an NEO model population that could be fit to 138 NEOs discovered or accidentally rediscovered by Spacewatch. By testing a range of possible source combinations, a best-fit NEO model was computed which (i) provided the debiased orbital and absolute magnitude distributions for the NEO population and (ii) indicated the relative importance of each NEO source region. Our best-fit model is

  17. Absolute polarimeter for the proton-beam energy of 200 MeV

    SciTech Connect

    Zelenski, A. N.; Atoian, G.; Bogdanov, A. A.; Nurushev, S. B.; Pylaev, F. S.; Raparia, D.; Runtso, M. F.; Stephenson, E.

    2013-12-15

    A polarimeter is upgraded and tested in a 200-MeV polarized-proton beam at the accelerator-collider facility of the Brookhaven National Laboratory. The polarimeter is based on the elastic polarizedproton scattering on a carbon target at an angle of 16.2°, in which case the analyzing power is close to unity and was measured to a very high degree of precision. It is shown that, in the energy range of 190–205 MeV, the absolute polarization can be measured to a precision better than ±0.5%.

  18. Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications.

    PubMed

    Cardona, Claudia M; Li, Wei; Kaifer, Angel E; Stockdale, David; Bazan, Guillermo C

    2011-05-24

    Narrow bandgap conjugated polymers in combination with fullerene acceptors are under intense investigation in the field of organic photovoltaics (OPVs). The open circuit voltage, and thereby the power conversion efficiency, of the devices is related to the offset of the frontier orbital energy levels of the donor and acceptor components, which are widely determined by cyclic voltammetry. Inconsistencies have appeared in the use of the ferrocenium/ferrocene (Fc + /Fc) redox couple, as well as the values used for the absolute potentials of standard electrodes, which can complicate the comparison of materials properties and determination of structure/property relationships.

  19. Measurement of the lithium 10p fine structure interval and absolute energy

    SciTech Connect

    Oxley, Paul; Collins, Patrick

    2010-02-15

    We report a measurement of the fine structure interval of the {sup 7}Li 10p atomic state with a precision significantly better than previous measurements of fine structure intervals of Rydberg {sup 7}Li p states. Our result of 74.97(74) MHz provides an experimental value for the only n=10 fine structure interval which is yet to be calculated. We also report a measurement of the absolute energy of the 10p state and its quantum defect, which are, respectively, 42379.498(23)cm{sup -1} and 0.04694(10). These results are in good agreement with recent calculations.

  20. Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field.

    PubMed

    Shivakumar, Devleena; Williams, Joshua; Wu, Yujie; Damm, Wolfgang; Shelley, John; Sherman, Woody

    2010-05-11

    The accurate prediction of protein-ligand binding free energies is a primary objective in computer-aided drug design. The solvation free energy of a small molecule provides a surrogate to the desolvation of the ligand in the thermodynamic process of protein-ligand binding. Here, we use explicit solvent molecular dynamics free energy perturbation to predict the absolute solvation free energies of a set of 239 small molecules, spanning diverse chemical functional groups commonly found in drugs and drug-like molecules. We also compare the performance of absolute solvation free energies obtained using the OPLS_2005 force field with two other commonly used small molecule force fields-general AMBER force field (GAFF) with AM1-BCC charges and CHARMm-MSI with CHelpG charges. Using the OPLS_2005 force field, we obtain high correlation with experimental solvation free energies (R(2) = 0.94) and low average unsigned errors for a majority of the functional groups compared to AM1-BCC/GAFF or CHelpG/CHARMm-MSI. However, OPLS_2005 has errors of over 1.3 kcal/mol for certain classes of polar compounds. We show that predictions on these compound classes can be improved by using a semiempirical charge assignment method with an implicit bond charge correction.

  1. ABSOLUTE MEASUREMENT OF THE POLARIZATION OF HIGH ENERGY PROTON BEAMS AT RHIC

    SciTech Connect

    MAKDISI,Y.; BRAVAR, A. BUNCE, G. GILL, R.; HUANG, H.; ET AL.

    2007-06-25

    The spin physics program at the Relativistic Heavy Ion Collider (RHIC) requires knowledge of the beam polarization to better than 5%. Such a goal is made the more difficult by the lack of knowledge of the analyzing power of high energy nuclear physics processes. To overcome this, a polarized hydrogen jet target was constructed and installed at one intersection region in RHIC where it intersects both beams and utilizes the precise knowledge of the jet atomic hydrogen beam polarization to measure the analyzing power in proton-proton elastic scattering in the Nuclear Coulomb Interference (CNI) region at the prescribed RHIC proton beam energy. The reverse reaction is used to assess the absolute beam polarization. Simultaneous measurements taken with fast high statistics polarimeters that measure the p-Carbon elastic scattering process also in the CNI region use the jet results to calibrate the latter.

  2. Fast GPU-based absolute intensity determination for energy-dispersive X-ray Laue diffraction

    NASA Astrophysics Data System (ADS)

    Alghabi, F.; Send, S.; Schipper, U.; Abboud, A.; Pietsch, U.; Kolb, A.

    2016-01-01

    This paper presents a novel method for fast determination of absolute intensities in the sites of Laue spots generated by a tetragonal hen egg-white lysozyme crystal after exposure to white synchrotron radiation during an energy-dispersive X-ray Laue diffraction experiment. The Laue spots are taken by means of an energy-dispersive X-ray 2D pnCCD detector. Current pnCCD detectors have a spatial resolution of 384 × 384 pixels of size 75 × 75 μm2 each and operate at a maximum of 400 Hz. Future devices are going to have higher spatial resolution and frame rates. The proposed method runs on a computer equipped with multiple Graphics Processing Units (GPUs) which provide fast and parallel processing capabilities. Accordingly, our GPU-based algorithm exploits these capabilities to further analyse the Laue spots of the sample. The main contribution of the paper is therefore an alternative algorithm for determining absolute intensities of Laue spots which are themselves computed from a sequence of pnCCD frames. Moreover, a new method for integrating spectral peak intensities and improved background correction, a different way of calculating mean count rate of the background signal and also a new method for n-dimensional Poisson fitting are presented.We present a comparison of the quality of results from the GPU-based algorithm with the quality of results from a prior (base) algorithm running on CPU. This comparison shows that our algorithm is able to produce results with at least the same quality as the base algorithm. Furthermore, the GPU-based algorithm is able to speed up one of the most time-consuming parts of the base algorithm, which is n-dimensional Poisson fitting, by a factor of more than 3. Also, the entire procedure of extracting Laue spots' positions, energies and absolute intensities from a raw dataset of pnCCD frames is accelerated by a factor of more than 3.

  3. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    SciTech Connect

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; /more authors..

    2012-09-20

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  4. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbielini, G; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B,; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E. J.

    2012-01-01

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron- plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between approx. 6 and approx. 13 GeV with an estimated uncertainty of approx. 2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  5. Superharp — A wire scanner with absolute position readout for beam energy measurement at CEBAF

    NASA Astrophysics Data System (ADS)

    Yan, C.; Adderley, P.; Barker, D.; Beaufait, J.; Capek, K.; Carlini, R.; Dahlberg, J.; Feldl, E.; Jordan, K.; Kross, B.; Oren, W.; Wojcik, R.; VanDyke, J.

    1995-02-01

    The CEBAF superharp is an upgraded beam wire scanner which provides absolute beam position readout using a shaft encoder. Superharps allow for high precision measurements of the beam's profile and position ( Δx ˜ 10 μm). The Hall C endstation at CEBAF will use three pairs of superharps to perform beam energy measurements with 10 -3 accuracy. The three pairs are installed at the beginning, the mid-point and the end of the Hall C arc beamline. Using superharps in conjunction with a dual sensor system: the direct current pick-up and the bremsstrahlung detectors, beam profile measurements can be obtained over a wide beam current range of 1 ˜ 200 μA.

  6. Absolutely continuous energy bands in the electronic spectrum of quasiperiodic ladder networks

    NASA Astrophysics Data System (ADS)

    Pal, Biplab; Chakrabarti, Arunava

    2014-06-01

    The energy spectra of quasi-one-dimensional quasiperiodic ladder networks are analyzed within a tight binding description. In particular, we show that if a selected set of sites in each strand of a ladder is tunnel-coupled to quantum dots attached from a side, absolutely continuous subbands can be generated in the spectrum if one tunes the dot potential and the dot-strand coupling appropriately. Typical cases with two and three strand Fibonacci ladders in the off-diagonal model are discussed in details. We also discuss the possibility of re-entrant insulator-metal transition for a general n-strand ladder network when n becomes large. The observations remain valid even in the case of a disordered ladder network with the same constituents. The results are analytically exact.

  7. Absolute measurement of the relativistic magnetic dipole transition energy in heliumlike argon.

    PubMed

    Amaro, Pedro; Schlesser, Sophie; Guerra, Mauro; Le Bigot, Eric-Olivier; Isac, Jean-Michel; Travers, Pascal; Santos, José Paulo; Szabo, Csilla I; Gumberidze, Alexandre; Indelicato, Paul

    2012-07-27

    The 1s2s (3)S(1)→1s(2) (1)S(0) relativistic magnetic dipole transition in heliumlike argon, emitted by the plasma of an electron-cyclotron resonance ion source, has been measured using a double-flat crystal x-ray spectrometer. Such a spectrometer, used for the first time on a highly charged ion transition, provides absolute (reference-free) measurements in the x-ray domain. We find a transition energy of 3104.1605(77) eV (2.5 ppm accuracy). This value is the most accurate, reference-free measurement done for such a transition and is in good agreement with recent QED predictions.

  8. Assessing the quality of absolute hydration free energies among CHARMM-compatible ligand parameterization schemes.

    PubMed

    Knight, Jennifer L; Yesselman, Joseph D; Brooks, Charles L

    2013-04-30

    Multipurpose atom-typer for CHARMM (MATCH), an atom-typing toolset for molecular mechanics force fields, was recently developed in our laboratory. Here, we assess the ability of MATCH-generated parameters and partial atomic charges to reproduce experimental absolute hydration free energies for a series of 457 small neutral molecules in GBMV2, Generalized Born with a smooth SWitching (GBSW), and fast analytical continuum treatment of solvation (FACTS) implicit solvent models. The quality of hydration free energies associated with small molecule parameters obtained from ParamChem, SwissParam, and Antechamber are compared. Given optimized surface tension coefficients for scaling the surface area term in the nonpolar contribution, these automated parameterization schemes with GBMV2 and GBSW demonstrate reasonable agreement with experimental hydration free energies (average unsigned errors of 0.9-1.5 kcal/mol and R(2) of 0.63-0.87). GBMV2 and GBSW consistently provide slightly more accurate estimates than FACTS, whereas Antechamber parameters yield marginally more accurate estimates than the current generation of MATCH, ParamChem, and SwissParam parameterization strategies. Modeling with MATCH libraries that are derived from different CHARMM topology and parameter files highlights the importance of having sufficient coverage of chemical space within the underlying databases of these automated schemes and the benefit of targeting specific functional groups for parameterization efforts to maximize both the breadth and the depth of the parameterized space.

  9. Setting Whole-Building Absolute Energy Use Targets for the K-12 School, Retail, and Healthcare Sectors: Preprint

    SciTech Connect

    Leach, M.; Bonnema, E.; Pless, S.; Torcellini, P.

    2012-08-01

    This paper helps owners' efficiency representatives to inform executive management, contract development, and project management staff as to how specifying and applying whole-building absolute energy use targets for new construction or renovation projects can improve the operational energy performance of commercial buildings.

  10. OSSOS. II. A Sharp Transition in the Absolute Magnitude Distribution of the Kuiper Belt’s Scattering Population

    NASA Astrophysics Data System (ADS)

    Shankman, C.; Kavelaars, JJ.; Gladman, B. J.; Alexandersen, M.; Kaib, N.; Petit, J.-M.; Bannister, M. T.; Chen, Y.-T.; Gwyn, S.; Jakubik, M.; Volk, K.

    2016-02-01

    We measure the absolute magnitude, H, distribution, dN(H) ∝ 10αH, of the scattering Trans-Neptunian Objects (TNOs) as a proxy for their size-frequency distribution. We show that the H-distribution of the scattering TNOs is not consistent with a single-slope distribution, but must transition around Hg ˜ 9 to either a knee with a shallow slope or to a divot, which is a differential drop followed by second exponential distribution. Our analysis is based on a sample of 22 scattering TNOs drawn from three different TNO surveys—the Canada-France Ecliptic Plane Survey, Alexandersen et al., and the Outer Solar System Origins Survey, all of which provide well-characterized detection thresholds—combined with a cosmogonic model for the formation of the scattering TNO population. Our measured absolute magnitude distribution result is independent of the choice of cosmogonic model. Based on our analysis, we estimate that the number of scattering TNOs is (2.4-8.3) × 105 for Hr < 12. A divot H-distribution is seen in a variety of formation scenarios and may explain several puzzles in Kuiper Belt science. We find that a divot H-distribution simultaneously explains the observed scattering TNO, Neptune Trojan, Plutino, and Centaur H-distributions while simultaneously predicting a large enough scattering TNO population to act as the sole supply of the Jupiter-Family Comets.

  11. Enhanced distributed energy resource system

    DOEpatents

    Atcitty, Stanley; Clark, Nancy H.; Boyes, John D.; Ranade, Satishkumar J.

    2007-07-03

    A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

  12. Energy conservation in electric distribution

    SciTech Connect

    Lee, Chong-Jin

    1994-12-31

    This paper discusses the potential for energy and power savings that exist in electric power delivery systems. These savings translate into significant financial and environmental benefits for electricity producers and consumers as well as for society in general. AlliedSignal`s knowledge and perspectives on this topic are the result of discussions with hundreds of utility executives, government officials and other industry experts over the past decade in conjunction with marketing our Amorphous Metal technology for electric distribution transformers. Amorphous metal is a technology developed by AlliedSignal that significantly reduces the energy lost in electric distribution transformers at an incremental cost of just a few cents per kilo-Watt-hour. The purpose of this paper is to discuss: Amorphous Metal Alloy Technology; Energy Savings Opportunity; The Industrial Barriers and Remedies; Worldwide Demand; and A Low Risk Strategy. I wish this presentation will help KEPCO achieve their stated aims of ensuring sound development of the national economy and enhancement of public life through the economic and stable supply of electric power. AlliedSignal Korea Ltd. in conjunction with AlliedSignal Amorphous Metals in the U.S. are here to work with KEPCO, transformer manufacturers, industry, and government agencies to achieve greater efficiency in power distribution.

  13. Effects of Biomolecular Flexibility on Alchemical Calculations of Absolute Binding Free Energies.

    PubMed

    Lawrenz, Morgan; Baron, Riccardo; Wang, Yi; McCammon, J Andrew

    2011-06-02

    The independent trajectory thermodynamic integration (IT-TI) approach (Lawrenz et. al J. Chem. Theory. Comput. 2009, 5:1106-1116(1)) for free energy calculations with distributed computing is employed to study two distinct cases of protein-ligand binding: first, the influenza surface protein N1 neuraminidase bound to the inhibitor oseltamivir, and second, the M. tuberculosis enzyme RmlC complexed with the molecule CID 77074. For both systems, finite molecular dynamics (MD) sampling and varied molecular flexibility give rise to IT-TI free energy distributions that are remarkably centered on the target experimental values, with a spread directly related to protein, ligand, and solvent dynamics. Using over 2 μs of total MD simulation, alternative protocols for the practical, general implementation of IT-TI are investigated, including the optimal use of distributed computing, the total number of alchemical intermediates, and the procedure to perturb electrostatics and van der Waals interactions. A protocol that maximizes predictive power and computational efficiency is proposed. IT-TI outperforms traditional TI predictions and allows a straightforward evaluation of the reliability of free energy estimates. Our study has broad implications for the use of distributed computing in free energy calculations of macromolecular systems.

  14. ELENA MCP detector: absolute detection efficiency for low-energy neutral atoms

    NASA Astrophysics Data System (ADS)

    Rispoli, R.; De Angelis, E.; Colasanti, L.; Vertolli, N.; Orsini, S.; Scheer, J. A.; Mura, A.; Milillo, A.; Wurz, P.; Selci, S.; Di Lellis, A. M.; Leoni, R.; D'Alessandro, M.; Mattioli, F.; Cibella, S.

    2012-09-01

    Microchannel Plates (MCP) detectors are frequently used in space instrumentation for detecting a wide range of radiation and particles. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission of ESA to Mercury to be launched in 2015. ELENA is a Time of Flight (TOF) sensor, based on a novel concept using an ultra-sonic oscillating shutter (Start section), which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop detector. The scientific objective of ELENA is to detect energetic neutral atoms in the range 10 eV - 5 keV, within 76° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the plasma environment and the planet’s surface, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles released from the surface, via solar wind-induced ion sputtering (< 1eV - < 100 eV) as well as Hydrogen back-scattered at hundreds eV. MCP absolute detection efficiency for very low energy neutral atoms (E < 30 eV) is a crucial point for this investigation. At the MEFISTO facility of the Physical Institute of the University of Bern (CH), measurements on three different types of MCP (with and without coating) have been performed providing the detection efficiencies in the energy range 10eV - 1keV. Outcomes from such measurements are discussed here.

  15. ELENA MCP detector: absolute efficiency measurement for low energy neutral atoms

    NASA Astrophysics Data System (ADS)

    Rispoli, R.; De Angelis, E.; Colasanti, L.; Vertolli, N.; Orsini, S.; Scheer, J.; Mura, A.; Milillo, A.; Wurz, P.; Selci, S.; Di Lellis, A. M.; Leoni, R.; D'Alessandro, M.; Mattioli, F.; Cibella, S.

    2012-04-01

    MicroChannel plates (MCP) detectors are frequently used in space instrumentation for detecting a wide range of radiation and particles. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission to Mercury to be launched in 2014. ELENA is a TOF sensor, based on a novel concept ultra-sonic oscillating shutter (Start section)which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop section. It is aimed to detect neutral atoms in the range 10 eV - 5 keV, within 70° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the environment and the planet, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles release from the surface, via solar wind-induced ion sputtering (<1eV and >100 eV) as well as Hydrogen back-scattered at hundreds eV. MCP absolute detection efficiency for very low energy neutral atoms (E< 30eV) is a crucial point not yet investigated. At the MEFISTO facility of the Physical Institute of University of Bern (CH), measurements on three different type of MCPs coating have been performed providing the behaviors of MCP detection efficiency in the range 10eV-1keV. Outcomes from such measurements are here discussed.

  16. Absolute Entropy and Energy of Carbon Dioxide Using the Two-Phase Thermodynamic Model.

    PubMed

    Huang, Shao-Nung; Pascal, Tod A; Goddard, William A; Maiti, Prabal K; Lin, Shiang-Tai

    2011-06-14

    The two-phase thermodynamic (2PT) model is used to determine the absolute entropy and energy of carbon dioxide over a wide range of conditions from molecular dynamics trajectories. The 2PT method determines the thermodynamic properties by applying the proper statistical mechanical partition function to the normal modes of a fluid. The vibrational density of state (DoS), obtained from the Fourier transform of the velocity autocorrelation function, converges quickly, allowing the free energy, entropy, and other thermodynamic properties to be determined from short 20-ps MD trajectories. The anharmonic effects in the vibrations are accounted for by the broadening of the normal modes into bands from sampling the velocities over the trajectory. The low frequency diffusive modes, which lead to finite DoS at zero frequency, are accounted for by considering the DoS as a superposition of gas-phase and solid-phase components (two phases). The analytical decomposition of the DoS allows for an evaluation of properties contributed by different types of molecular motions. We show that this 2PT analysis leads to accurate predictions of entropy and energy of CO2 over a wide range of conditions (from the triple point to the critical point of both the vapor and the liquid phases along the saturation line). This allows the equation of state of CO2 to be determined, which is limited only by the accuracy of the force field. We also validated that the 2PT entropy agrees with that determined from thermodynamic integration, but 2PT requires only a fraction of the time. A complication for CO2 is that its equilibrium configuration is linear, which would have only two rotational modes, but during the dynamics it is never exactly linear, so that there is a third mode from rotational about the axis. In this work, we show how to treat such linear molecules in the 2PT framework.

  17. Atlas of quasar energy distributions

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Wilkes, Belinda J.; Mcdowell, Jonathan C.; Green, Richard F.; Bechtold, Jill; Willner, S. P.; Oey, M. S.; Polomski, Elisha; Cutri, Roc

    1994-01-01

    We present an atlas of the spectral energy distributions (SEDs) of normal, nonblazar, quasars over the whole available range (radio to 10 keV X-rays) of the electromagnetic spectrum. The primary (UVSX) sample includes 47 quasars for which the spectral energy distributions include X-ray spectral indices and UV data. Of these, 29 are radio quiet, and 18 are radio loud. The SEDs are presented both in figures and in tabular form, with additional tabular material published on CD-ROM. Previously unpublished observational data for a second set of quasars excluded from the primary sample are also tabulated. The effects of host galaxy starlight contamination and foreground extinction on the UVSX sample are considered and the sample is used to investigate the range of SED properties. Of course, the properties we derive are influenced strongly by the selection effects induced by quasar discovery techniques. We derive the mean energy distribution (MED) for radio-loud and radio-quiet objects and present the bolometric corrections derived from it. We note, however, that the dispersion about this mean is large (approximately one decade for both the infrared and ultraviolet components when the MED is normalized at the near-infrared inflection). At least part of the dispersion in the ultraviolet may be due to time variability, but this is unlikely to be important in the infrared. The existence of such a large dispersion indicates that the MED reflects only some of the properties of quasars and so should be used only with caution.

  18. Age-specific absolute and relative organ weight distributions for B6C3F1 mice.

    PubMed

    Marino, Dale J

    2012-01-01

    The B6C3F1 mouse is the standard mouse strain used in toxicology studies conducted by the National Cancer Institute (NCI) and the National Toxicology Program (NTP). While numerous reports have been published on growth, survival, and tumor incidence, no overall compilation of organ weight data is available. Importantly, organ weight change is an endpoint used by regulatory agencies to develop toxicity reference values (TRVs) for use in human health risk assessments. Furthermore, physiologically based pharmacokinetic (PBPK) models, which utilize relative organ weights, are increasingly being used to develop TRVs. Therefore, all available absolute and relative organ weight data for untreated control B6C3F1 mice were collected from NCI/NTP studies in order to develop age-specific distributions. Results show that organ weights were collected more frequently in NCI/NTP studies at 2-wk (60 studies), 3-mo (147 studies), and 15-mo (40 studies) intervals than at other intervals, and more frequently from feeding and inhalation than drinking water studies. Liver, right kidney, lung, heart, thymus, and brain weights were most frequently collected. From the collected data, the mean and standard deviation for absolute and relative organ weights were calculated. Results show age-related increases in absolute liver, right kidney, lung, and heart weights and relatively stable brain and right testis weights. The results suggest a general variability trend in absolute organ weights of brain < right testis < right kidney < heart < liver < lung < spleen < thymus. This report describes the results of this effort.

  19. Free volume hypothetical scanning molecular dynamics method for the absolute free energy of liquids

    PubMed Central

    White, Ronald P.; Meirovitch, Hagai

    2006-01-01

    The hypothetical scanning (HS) method is a general approach for calculating the absolute entropy, S, and free energy, F, by analyzing Boltzmann samples obtained by Monte Carlo (MC) or molecular dynamics (MD) techniques. With HS applied to a fluid, each configuration i of the sample is reconstructed by gradually placing the molecules in their positions at i using transition probabilities (TPs). With our recent version of HS, called HSMC-EV, each TP is calculated from MC simulations, where the simulated particles are excluded from the volume reconstructed in previous steps. In this paper we remove the excluded volume (EV) restriction, replacing it by a “free volume” (FV) approach. For liquid argon, HSMC-FV leads to an improvement in efficiency over HSMC-EV by a factor of 2–3. Importantly, the FV treatment greatly simplifies the HS implementation for liquids, allowing a much more natural application of the method for MD simulations. Given the success and popularity of MD, the present development of the HSMD method for liquids is an important advancement for HS methodology. Results for the HSMD-FV approach presented here agree well with our HSMC and thermodynamic integration results. The efficiency of HSMD-FV is equivalent to HSMC-EV. The potential use of HSMC(MD)-FV in protein systems with explicit water is discussed. PMID:16774320

  20. Absolute binding free energies for octa-acids and guests in SAMPL5

    NASA Astrophysics Data System (ADS)

    Tofoleanu, Florentina; Lee, Juyong; Pickard, Frank C., IV; König, Gerhard; Huang, Jing; Baek, Minkyung; Seok, Chaok; Brooks, Bernard R.

    2017-01-01

    As part of the SAMPL5 blind prediction challenge, we calculate the absolute binding free energies of six guest molecules to an octa-acid (OAH) and to a methylated octa-acid (OAMe). We use the double decoupling method via thermodynamic integration (TI) or Hamiltonian replica exchange in connection with the Bennett acceptance ratio (HREM-BAR). We produce the binding poses either through manual docking or by using GalaxyDock-HG, a docking software developed specifically for this study. The root mean square deviations for our most accurate predictions are 1.4 kcal mol-1 for OAH with TI and 1.9 kcal mol-1 for OAMe with HREM-BAR. Our best results for OAMe were obtained for systems with ionic concentrations corresponding to the ionic strength of the experimental solution. The most problematic system contains a halogenated guest. Our attempt to model the σ-hole of the bromine using a constrained off-site point charge, does not improve results. We use results from molecular dynamics simulations to argue that the distinct binding affinities of this guest to OAH and OAMe are due to a difference in the flexibility of the host. We believe that the results of this extensive analysis of host-guest complexes will help improve the protocol used in predicting binding affinities for larger systems, such as protein-substrate compounds.

  1. A rare gas optics-free absolute photon flux and energy analyzer to provide absolute photoionization rates of inflowing interstellar neutrals

    NASA Technical Reports Server (NTRS)

    Judge, Darrell L.

    1994-01-01

    A prototype spectrometer has been developed for space applications requiring long term absolute EUV photon flux measurements. The energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.

  2. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  3. Database applicaton for absolute spectrophotometry

    NASA Astrophysics Data System (ADS)

    Bochkov, Valery V.; Shumko, Sergiy

    2002-12-01

    32-bit database application with multidocument interface for Windows has been developed to calculate absolute energy distributions of observed spectra. The original database contains wavelength calibrated observed spectra which had been already passed through apparatus reductions such as flatfielding, background and apparatus noise subtracting. Absolute energy distributions of observed spectra are defined in unique scale by means of registering them simultaneously with artificial intensity standard. Observations of sequence of spectrophotometric standards are used to define absolute energy of the artificial standard. Observations of spectrophotometric standards are used to define optical extinction in selected moments. FFT algorithm implemented in the application allows performing convolution (deconvolution) spectra with user-defined PSF. The object-oriented interface has been created using facilities of C++ libraries. Client/server model with Windows Socket functionality based on TCP/IP protocol is used to develop the application. It supports Dynamic Data Exchange conversation in server mode and uses Microsoft Exchange communication facilities.

  4. Calculation of the absolute free energy of a smectic-A phase

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Cheng; Ramachandran, Sanoop; Ryckaert, Jean-Paul

    2014-12-01

    In this paper, we provide a scheme to compute the absolute free energy of a smectic-A phase via the "indirect method." The state of interest is connected through a three-step reversible path to a reference state. This state consists of a low-density layer of rods coupled to two external fields maintaining these rods close to the layer's plane and oriented preferably normal to the layer. The low-density free energy of the reference state can be computed on the basis of the relevant second virial coefficients between two rods coupled to the two external fields. We apply this technique to the Gay-Berne potential for calamitics with a parameter set leading to stable isotropic (I), nematic (N), smectic-A (SmA), and crystal (Cr) phases. We locate the I-SmA phase transition at low pressure and the sequence of phase transitions I-N-SmA along higher-pressure isobars and we establish the location of the I-N-SmA triple point. Close to this triple point, we show that the N-SmA transition is clearly first order. Our results are compared to the coexistence lines of the approximate phase diagram elucidated by de Miguel et al. [J. Chem. Phys. 121, 11183 (2004), 10.1063/1.1810472] established through the direct observation of the sequence of phase transitions occurring along isobars under heating or cooling sequences of runs. Finally, we discuss the potential of our technique in studying similar transitions observed on layered phases under confinement.

  5. Calculation of the absolute free energy of a smectic-A phase.

    PubMed

    Huang, Chien-Cheng; Ramachandran, Sanoop; Ryckaert, Jean-Paul

    2014-12-01

    In this paper, we provide a scheme to compute the absolute free energy of a smectic-A phase via the "indirect method." The state of interest is connected through a three-step reversible path to a reference state. This state consists of a low-density layer of rods coupled to two external fields maintaining these rods close to the layer's plane and oriented preferably normal to the layer. The low-density free energy of the reference state can be computed on the basis of the relevant second virial coefficients between two rods coupled to the two external fields. We apply this technique to the Gay-Berne potential for calamitics with a parameter set leading to stable isotropic (I), nematic (N), smectic-A (SmA), and crystal (Cr) phases. We locate the I-SmA phase transition at low pressure and the sequence of phase transitions I-N-SmA along higher-pressure isobars and we establish the location of the I-N-SmA triple point. Close to this triple point, we show that the N-SmA transition is clearly first order. Our results are compared to the coexistence lines of the approximate phase diagram elucidated by de Miguel et al. [J. Chem. Phys. 121, 11183 (2004)] established through the direct observation of the sequence of phase transitions occurring along isobars under heating or cooling sequences of runs. Finally, we discuss the potential of our technique in studying similar transitions observed on layered phases under confinement.

  6. OSSOS. II. A SHARP TRANSITION IN THE ABSOLUTE MAGNITUDE DISTRIBUTION OF THE KUIPER BELT’S SCATTERING POPULATION

    SciTech Connect

    Shankman, C.; Kavelaars, JJ.; Bannister, M. T.; Gwyn, S.; Gladman, B. J.; Alexandersen, M.; Kaib, N.; Petit, J.-M.; Chen, Y.-T.; Jakubik, M.; Volk, K.

    2016-02-15

    We measure the absolute magnitude, H, distribution, dN(H) ∝ 10{sup αH}, of the scattering Trans-Neptunian Objects (TNOs) as a proxy for their size-frequency distribution. We show that the H-distribution of the scattering TNOs is not consistent with a single-slope distribution, but must transition around H{sub g} ∼ 9 to either a knee with a shallow slope or to a divot, which is a differential drop followed by second exponential distribution. Our analysis is based on a sample of 22 scattering TNOs drawn from three different TNO surveys—the Canada–France Ecliptic Plane Survey, Alexandersen et al., and the Outer Solar System Origins Survey, all of which provide well-characterized detection thresholds—combined with a cosmogonic model for the formation of the scattering TNO population. Our measured absolute magnitude distribution result is independent of the choice of cosmogonic model. Based on our analysis, we estimate that the number of scattering TNOs is (2.4–8.3) × 10{sup 5} for H{sub r} < 12. A divot H-distribution is seen in a variety of formation scenarios and may explain several puzzles in Kuiper Belt science. We find that a divot H-distribution simultaneously explains the observed scattering TNO, Neptune Trojan, Plutino, and Centaur H-distributions while simultaneously predicting a large enough scattering TNO population to act as the sole supply of the Jupiter-Family Comets.

  7. Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV

    SciTech Connect

    Chen, H; Back, N L; Eder, D C; Ping, Y; Song, P M; Throop, A

    2007-12-10

    The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction of the absolute calibration to other spectrometer setting at this electron energy range.

  8. Ion energy distributions in silane-hydrogen plasmas

    SciTech Connect

    Hamers, E.A.G.; Sark, W.G.J.H.M. van; Bezemer, J.; Weg, W.F. van der; Goedheer, W.J.

    1996-12-31

    For the first time ion energy distributions (IED) of different ions from silane-hydrogen (SiH{sub 4}-H{sub 2}) RF plasmas are presented, i.e., the distributions of SiH{sub 3}{sup +}, SiH{sub 2}{sup +} and Si{sub 2}H{sub 4}{sup +}. The energy distributions of SiH{sub 3}{sup +} and SiH{sub 2}{sup +} ions show peaks, which are caused by a charge exchange process in the sheath. A method is presented by which the net charge density in the sheath is determined from the plasma potential and the energy positions of the charge exchange peaks. Knowing the net charge density in the sheath and the plasma potential, the sheath thickness can be determined and an estimation of the absolute ion fluxes can be made. The flux of ions can, at maximum, account for 10% of the observed deposition rate.

  9. Absolute cross sections for electronic excitations of cytosine by low energy electron impact

    PubMed Central

    Bazin, M.; Michaud, M.; Sanche, L.

    2013-01-01

    The absolute cross sections (CS) for electronic excitations of cytosine by electron impact between 5 and 18 eV were measured by electron-energy loss (EEL) spectroscopy of the molecule deposited at low coverage on an inert Ar substrate. The lowest EEL features found at 3.55 and 4.02 eV are ascribed to transitions from the ground state to the two lowest triplet 1 3A′(π→π*) and 2 3A′(π→π*) valence states of the molecule. Their energy dependent CS exhibit essentially a common maximum at about 6 eV with a value of 1.84 × 10−17 cm2 for the former and 4.94 × 10−17 cm2 for the latter. In contrast, the CS for the next EEL feature at 4.65 eV, which is ascribed to the optically allowed transition to the 2 1A′(π→π*) valence state, shows only a steep rise to about 1.04 × 10−16 cm2 followed by a monotonous decrease with the incident electron energy. The higher EEL features at 5.39, 6.18, 6.83, and 7.55 eV are assigned to the excitations of the 3 3, 1A′(π→π*), 4 1A′(π→π*), 5 1A′(π→π*), and 6 1A′(π→π*) valence states, respectively. The CS for the 3 3, 1A′ and 4 1A′ states exhibit a common enhancement at about 10 eV superimposed on a more or less a steep rise, reaching respectively a maximum of 1.27 and 1.79 × 10−16 cm2, followed by a monotonous decrease. This latter enhancement and the maximum seen at about 6 eV in the lowest triplet states correspond to the core-excited electron resonances that have been found by dissociative electron attachment experiments with cytosine in the gas phase. The weak EEL feature found at 5.01 eV with a maximum CS of 3.8 × 10−18 cm2 near its excitation threshold is attributed to transitions from the ground state to the 1 3, 1A″(n→π*) states. The monotonous rise of the EEL signal above 8 eV is attributed to the ionization of the molecule. It is partitioned into four excitation energy regions at about 8.55, 9.21, 9.83, and 11.53 eV, which correspond closely to the ionization energies of

  10. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  11. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  12. Distributed Coordination for Optimal Energy Generation and Distribution in Cyber-Physical Energy Networks.

    PubMed

    Ahn, Hyo-Sung; Kim, Byeong-Yeon; Lim, Young-Hun; Lee, Byung-Hun; Oh, Kwang-Kyo

    2017-02-23

    This paper proposes three coordination laws for optimal energy generation and distribution in energy network, which is composed of physical flow layer and cyber communication layer. The physical energy flows through the physical layer; but all the energies are coordinated to generate and flow by distributed coordination algorithms on the basis of communication information. First, distributed energy generation and energy distribution laws are proposed in a decoupled manner without considering the interactive characteristics between the energy generation and energy distribution. Second, a joint coordination law to treat the energy generation and energy distribution in a coupled manner taking account of the interactive characteristics is designed. Third, to handle over- or less-energy generation cases, an energy distribution law for networks with batteries is designed. The coordination laws proposed in this paper are fully distributed in the sense that they are decided optimally only using relative information among neighboring nodes. Through numerical simulations, the validity of the proposed distributed coordination laws is illustrated.

  13. Calculation of absolute free energy of binding for theophylline and its analogs to RNA aptamer using nonequilibrium work values

    NASA Astrophysics Data System (ADS)

    Tanida, Yoshiaki; Ito, Masakatsu; Fujitani, Hideaki

    2007-08-01

    The massively parallel computation of absolute binding free energy with a well-equilibrated system (MP-CAFEE) has been developed [H. Fujitani, Y. Tanida, M. Ito, G. Jayachandran, C.D. Snow, M.R. Shirts, E.J. Sorin, V.S. Pande, J. Chem. Phys. 123 (2005) 084108]. As an application, we perform the binding affinity calculations of six theophylline-related ligands with RNA aptamer. Basically, our method is applicable when using many compute nodes to accelerate simulations, thus a parallel computing system is also developed. To further reduce the computational cost, the adequate non-uniform intervals of coupling constant λ, connecting two equilibrium states, namely bound and unbound, are determined. The absolute binding energies Δ G thus obtained have effective linear relation between the computed and experimental values. If the results of two other different methods are compared, thermodynamic integration (TI) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) by the paper of Gouda et al. [H. Gouda, I.D. Kuntz, D.A. Case, P.A. Kollman, Biopolymers 68 (2003) 16], the predictive accuracy of the relative values ΔΔ G is almost comparable to that of TI: the correlation coefficients ( R) obtained are 0.99 (this work), 0.97 (TI), and 0.78 (MM-PBSA). On absolute binding energies meanwhile, a constant energy shift of ˜-7 kcal/mol against the experimental values is evident. To solve this problem, several presumable reasons are investigated.

  14. SU-E-T-89: Accuracy of Absolute Three-Dimensional Dose Distribution Measurement Using the Delta4

    SciTech Connect

    Uehara, R; Tachibana, H; Ohyoshi, H; Matsumoto, S; Baba, H; Tanaka, F; Ariji, T

    2015-06-15

    Purpose: In this study, we investigated the accuracy of the absolute dose distribution measurement using the Delta4 phantom compared to the measurements using a ionization chamber and EDR2 film Methods: Several conventional and intensity-modulated radiation therapy plans were used to compare the dose distribution measured using the Delta4 phantom to the absolute point dose using the chamber and the relative two-dimensional dose distribution using the EDR2 film. For the absolute dose distribution evaluation, the measurements using the Delta4, the chamber and the film were performed in similar measurement geometry. For point dose measurement using the chamber, an acrylic slab phantom with the PTW Semiflex chamber was inserted into the Delta4 phantom, alternative to the Delta4 main unit. Similarly, for dose distribution measurement using the film, the EDR2 film sandwiched with two acrylic slab phantoms were inserted to the phantom. Dose difference and gamma analysis were done for point dose and relative dose distribution comparisons, respectively. Results: The point dose measurements show slight negative systematic dose difference of −0.5 ± 0.1% and −1.0 ± 0.4% in the conventional and the IMRT plans, respectively. The additional measurement for direction dependency for Delta4 shows similar negative systematic dose difference even the phantom analysis software consider the directional dependency. The pass rate of the gamma evaluation was 77.7 ± 5.8% and 88.8±3.3% in the conventional and the IMRT plans, respectively. Conclusions: The Delta4 phantom shows a 1%-systematic dose difference derived from directional dependency and lower resolution compared to the film. Thus it is necessary to comprehensively evaluate the phantom to verify the IMRT/VMAT plans. Especially, the dosimetry tool is needed to have high resolution and high measurement accuracy in IMRT/VMAT-SBRT plan with small fields using intensity modulation in which the analysis area is limited and the

  15. Modeling and planning distributed energy systems online

    NASA Astrophysics Data System (ADS)

    Wieler, Susana

    Sustainable energy is a core concern worldwide for the foreseeable future. Technologically, its key trends are distributed and renewable energy resources and smart grid capabilities. At the same time, a global need for sustainable energy is meeting increasingly diverse energy policy and economics. To plan with such complex contexts and systems, a novel distributed energy software tool and its initial implementation is presented: the Energy Systems Evaluator Online (ESEO). Its contributions include: (1) A flexible model framework that can simulate current and expected distributed energy systems; (2) An architecture specifying the modular design needed for distributed energy planning software in general; (3) A working implementation as the first general energy planning tool deployed via the Internet with collaborative capabilities.

  16. ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY

    SciTech Connect

    LANDI, J.T.; PLIVELICH, R.F.

    2006-04-30

    Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

  17. A water-swap reaction coordinate for the calculation of absolute protein-ligand binding free energies.

    PubMed

    Woods, Christopher J; Malaisree, Maturos; Hannongbua, Supot; Mulholland, Adrian J

    2011-02-07

    The accurate prediction of absolute protein-ligand binding free energies is one of the grand challenge problems of computational science. Binding free energy measures the strength of binding between a ligand and a protein, and an algorithm that would allow its accurate prediction would be a powerful tool for rational drug design. Here we present the development of a new method that allows for the absolute binding free energy of a protein-ligand complex to be calculated from first principles, using a single simulation. Our method involves the use of a novel reaction coordinate that swaps a ligand bound to a protein with an equivalent volume of bulk water. This water-swap reaction coordinate is built using an identity constraint, which identifies a cluster of water molecules from bulk water that occupies the same volume as the ligand in the protein active site. A dual topology algorithm is then used to swap the ligand from the active site with the identified water cluster from bulk water. The free energy is then calculated using replica exchange thermodynamic integration. This returns the free energy change of simultaneously transferring the ligand to bulk water, as an equivalent volume of bulk water is transferred back to the protein active site. This, directly, is the absolute binding free energy. It should be noted that while this reaction coordinate models the binding process directly, an accurate force field and sufficient sampling are still required to allow for the binding free energy to be predicted correctly. In this paper we present the details and development of this method, and demonstrate how the potential of mean force along the water-swap coordinate can be improved by calibrating the soft-core Coulomb and Lennard-Jones parameters used for the dual topology calculation. The optimal parameters were applied to calculations of protein-ligand binding free energies of a neuraminidase inhibitor (oseltamivir), with these results compared to experiment. These

  18. Impact of Atomic Structure on Absolute Energy Levels of Methylammonium Lead Iodide Perovskite

    NASA Astrophysics Data System (ADS)

    Choi, Joshua

    2015-03-01

    There has been a staggeringly rapid increase in the photovoltaic performance of methylammonium lead iodide (MAPbI3) perovskite - greater than 19 percent solar cell power conversion efficiency has been reported in less than five years since the first report in 2009. Despite the progress in device performance, structure-property relationships in MAPbI3 are still poorly understood. I will present our recent findings on the impact of changing the Pb-I bond length and Pb-I-Pb bond angle on the electronic structure of MAPbI3. By using the combination of temperature dependent X-ray scattering, ultraviolet photoelectron spectroscopy, absorbance and PL spectroscopy, we show that the energy levels of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) shift in the same direction as MAPbI3 goes through tetragonal-to-cubic structural phase transition wherein the rotational angle of PbI6 octahedra is the order parameter of the transition. Our experimental results are corroborated by density functional theory calculations which show that the lattice expansion and bond angle distortion cause different degree of orbital overlap between the Pb and I atoms and the anti-bonding orbital nature of both HOMO and LUMO results in the same direction of their shift. Moreover, through pair distribution function analysis of X-ray scattering, we discovered that the majority of MAPbI3 in thin film solar cell layer has highly disordered structure with a coherence range of only 1.4 nm. The nanostructuring correlates with a blueshift of the absorption onset and increases the photoluminescence. Our results underscore the importance of understanding the structure-property relationships in order to improve the device performance of metal-organic perovskites.

  19. Probability distribution of the vacuum energy density

    SciTech Connect

    Duplancic, Goran; Stefancic, Hrvoje; Glavan, Drazen

    2010-12-15

    As the vacuum state of a quantum field is not an eigenstate of the Hamiltonian density, the vacuum energy density can be represented as a random variable. We present an analytical calculation of the probability distribution of the vacuum energy density for real and complex massless scalar fields in Minkowski space. The obtained probability distributions are broad and the vacuum expectation value of the Hamiltonian density is not fully representative of the vacuum energy density.

  20. Panchromatic spectral energy distributions of Herschel sources

    NASA Astrophysics Data System (ADS)

    Berta, S.; Lutz, D.; Santini, P.; Wuyts, S.; Rosario, D.; Brisbin, D.; Cooray, A.; Franceschini, A.; Gruppioni, C.; Hatziminaoglou, E.; Hwang, H. S.; Le Floc'h, E.; Magnelli, B.; Nordon, R.; Oliver, S.; Page, M. J.; Popesso, P.; Pozzetti, L.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Roseboom, I.; Scott, D.; Symeonidis, M.; Valtchanov, I.; Viero, M.; Wang, L.

    2013-03-01

    Combining far-infrared Herschel photometry from the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time programs with ancillary datasets in the GOODS-N, GOODS-S, and COSMOS fields, it is possible to sample the 8-500 μm spectral energy distributions (SEDs) of galaxies with at least 7-10 bands. Extending to the UV, optical, and near-infrared, the number of bands increases up to 43. We reproduce the distribution of galaxies in a carefully selected restframe ten colors space, based on this rich data-set, using a superposition of multivariate Gaussian modes. We use this model to classify galaxies and build median SEDs of each class, which are then fitted with a modified version of the magphys code that combines stellar light, emission from dust heated by stars and a possible warm dust contribution heated by an active galactic nucleus (AGN). The color distribution of galaxies in each of the considered fields can be well described with the combination of 6-9 classes, spanning a large range of far- to near-infrared luminosity ratios, as well as different strength of the AGN contribution to bolometric luminosities. The defined Gaussian grouping is used to identify rare or odd sources. The zoology of outliers includes Herschel-detected ellipticals, very blue z ~ 1 Ly-break galaxies, quiescent spirals, and torus-dominated AGN with star formation. Out of these groups and outliers, a new template library is assembled, consisting of 32 SEDs describing the intrinsic scatter in the restframe UV-to-submm colors of infrared galaxies. This library is tested against L(IR) estimates with and without Herschel data included, and compared to eightother popular methods often adopted in the literature. When implementing Herschel photometry, these approaches produce L(IR) values consistent with each other within a median absolute deviation of 10-20%, the scatter being dominated more by fine tuning of the codes, rather than by the choice of

  1. Resilient Core Networks for Energy Distribution

    SciTech Connect

    Kuntze, Nicolai; Rudolph, Carsten; Leivesley, Sally; Manz, David O.; Endicott-Popovsky, Barbara E.

    2014-07-28

    Abstract—Substations and their control are crucial for the availability of electricity in today’s energy distribution. Ad- vanced energy grids with Distributed Energy Resources require higher complexity in substations, distributed functionality and communication between devices inside substations and between substations. Also, substations include more and more intelligent devices and ICT based systems. All these devices are connected to other systems by different types of communication links or are situated in uncontrolled environments. Therefore, the risk of ICT based attacks on energy grids is growing. Consequently, security measures to counter these risks need to be an intrinsic part of energy grids. This paper introduces the concept of a Resilient Core Network to interconnected substations. This core network provides essen- tial security features, enables fast detection of attacks and allows for a distributed and autonomous mitigation of ICT based risks.

  2. Distributed Coordination of Energy Storage with Distributed Generators

    SciTech Connect

    Yang, Tao; Wu, Di; Stoorvogel, Antonie A.; Stoustrup, Jakob

    2016-07-18

    With a growing emphasis on energy efficiency and system flexibility, a great effort has been made recently in developing distributed energy resources (DER), including distributed generators and energy storage systems. This paper first formulates an optimal coordination problem considering constraints at both system and device levels, including power balance constraint, generator output limits, storage energy and power capacity and charging/discharging efficiencies. An algorithm is then proposed to dynamically and automatically coordinate DERs in a distributed manner. With the proposed algorithm, the agent at each DER only maintains a local incremental cost and updates it through information exchange with a few neighbors, without relying on any central decision maker. Simulation results are used to illustrate and validate the proposed algorithm.

  3. Absolute Beam Energy Measurement using Elastic ep Scattering at Thomas Jefferson National Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Deur, Alexandre

    1999-10-01

    The Jefferson Lab beam energy measurement in Hall A using the elastic ep scattering will be described. This new, non-magnetic, energy measurement method allows a ( triangle E/E=10-4 ) precision. First-order corrections are canceled by the measurements of the electron and proton scattering angles for two symmetric kinematics. The measurement principle will be presented as well as the device and measurement results. Comparison with independent magnetic energy measurements of the same accuracy will be shown. This project is the result of a collaboration between the LPC: université Blaise Pascal/in2p3), Saclay and Jefferson Lab.

  4. Absolute differential cross sections for the elastic scattering of electrons from atomic hydrogen at low incident energies

    NASA Astrophysics Data System (ADS)

    James, Kenneth; Leonard, Linda; Proctor, Stephanie; Childers, J. G.; Khakoo, Murtadha A.

    2003-05-01

    Absolute differential cross sections for electrons elastically scattered from atomic hydrogen have been measured at low incident energies. The measurements were facilitated by the moveable nozzle source recently developed in our lab. Data taken at the incident energies of 20 eV, 40 eV, and 100 eV, and spanning the angular range of 10^rc to 120^rc will be presented. The results will be compared to the earlier measurements of Williams(Joseph Callaway and J. F. Williams, Phys. Rev. A) 12, 2312 (1975), J. F. Williams, J. Phys. B 8, 2191 (1975) and Shyn(T. W. Shyn and S. Y. Cho, Phys. Rev. A) 40, 1315 (1989), T. W. Shyn and Alan Grafe, Phys. Rev. A 46, 2949 (1992), and the theoretical calculations of Bray(Igor Bray, Phys. Rev. A) 46, 6995 (1992). Funded by the National Science Foundation under Grant # NSF-RUI-PHY-0096808.

  5. Energy optimization of water distribution systems

    SciTech Connect

    1994-09-01

    Energy costs associated with pumping treated water into the distribution system and boosting water pressures where necessary is one of the largest expenditures in the operating budget of a municipality. Due to the size and complexity of Detroit`s water transmission system, an energy optimization project has been developed to better manage the flow of water in the distribution system in an attempt to reduce these costs.

  6. Absolute Magnetization Distribution on Back-arc Spreading Axis Hosting Hydrothermal Vents; Insight from Shinkai 6500 Magnetic Survey

    NASA Astrophysics Data System (ADS)

    Fujii, M.; Okino, K.; Honsho, C.; Mochizuki, N.; Szitkar, F.; Dyment, J.

    2013-12-01

    Near-bottom magnetic profiling using submersible, deep-tow, Remotely Operated Vehicle (ROV) and Autonomous Underwater Vehicle (AUV) make possible to conduct high-resolution surveys and depict detailed magnetic features reflecting, for instance, the presence of fresh lavas or hydrothermal alteration, or geomagnetic paleo-intensity variations. We conducted near-bottom three component magnetic measurements onboard submersible Shinkai 6500 in the Southern Mariana Trough, where five active hydrothermal vent fields (Snail, Yamanaka, Archean, Pica, and Urashima sites) have been found in both on- and off-axis areas of the active back-arc spreading center, to detect signals from hydrothermally altered rock and to distinguish old and new submarine lava flows. Fourteen dives were carried out at an altitude of 1-40 m during the R/V Yokosuka YK10-10 and YK10-11 cruises in 2010. We carefully corrected the effect of the induced and permanent magnetizations of the submersible by applying the correction method for the shipboard three-component magnetometer measurement modified for deep-sea measurement, and subtracted the IGRF values from the corrected data to obtain geomagnetic vector anomalies along the dive tracks. We then calculated the synthetic magnetic vector field produced by seafloor, assumed to be uniformly magnetized, using three dimensional forward modeling. Finally, values of the absolute magnetizations were estimated by using a linear transfer function in the Fourier domain from the observed and synthetic magnetic anomalies. The distribution of estimated absolute magnetization generally shows low values around the five hydrothermal vent sites. This result is consistent with the equivalent magnetization distribution obtained from previous AUV survey data. The areas of low magnetization are also consistent with hydrothermal deposits identified in video records. These results suggest that low magnetic signals are due to hydrothermal alteration zones where host rocks are

  7. A Technique to Measure Energy Partitioning and Absolute Gas Pressures of Strombolian Explosions Using Doppler Radar at Erebus Volcano

    NASA Astrophysics Data System (ADS)

    Gerst, A.; Hort, M.; Kyle, P. R.; Voege, M.

    2008-12-01

    In 2005/06 we deployed three 24GHz (K-Band) continuous wave Doppler radar instruments at the crater rim of Erebus volcano in Antarctica. At the time there was a ~40 m wide, ~1000°C hot convecting phonolite lava lake, which was the source of ~0-6 Strombolian gas bubble explosions per day. We measured the velocities of ~50 explosions using a sample rate of 1-15 Hz. Data were downloaded in real-time through a wireless network. The measurements provide new insights into the still largely unknown mechanism of Strombolian eruptions, and help improve existing eruption models. We present a technique for a quasi in-situ measurement of the absolute pressure inside an eruption gas bubble. Pressures were derived using a simple eruption model and measured high resolution bubble surface velocities during explosions. Additionally, this technique allows us to present a comprehensive energy budget of a volcanic explosion as a time series of all important energy terms (i.e. potential, kinetic, dissipative, infrasonic, surface, seismic and thermal energy output). The absolute gas pressure inside rising expanding gas bubbles rapidly drops from ~3-10 atm (at the time when the lake starts to bulge) to ~1 atm before the bubble bursts, which usually occurs at radii of ~15-20m. These pressures are significantly lower than previously assumed for such explosions. The according internal energy of the gas agrees well with the observed total energy output. The results show that large explosions released about 109 to 1010 J each (equivalent to about 200-2000 kg of TNT), at a peak discharge rate frequently exceeding 109 W (the power output of a typical nuclear power plant). This dynamic output is mainly controlled by the kinetic and potential energy of the exploding magma shell, while other energy types were found to be much smaller (with the exception of thermal energy). Remarkably, most explosions at Erebus show two distinct surface acceleration peaks separated by ~0.3 seconds. This suggests

  8. Electricity End Uses, Energy Efficiency, and Distributed Energy Resources Baseline

    SciTech Connect

    Schwartz, Lisa; Wei, Max; Morrow, William; Deason, Jeff; Schiller, Steven R.; Leventis, Greg; Smith, Sarah; Leow, Woei Ling; Levin, Todd; Plotkin, Steven; Zhou, Yan

    2017-01-01

    This report was developed by a team of analysts at Lawrence Berkeley National Laboratory, with Argonne National Laboratory contributing the transportation section, and is a DOE EPSA product and part of a series of “baseline” reports intended to inform the second installment of the Quadrennial Energy Review (QER 1.2). QER 1.2 provides a comprehensive review of the nation’s electricity system and cover the current state and key trends related to the electricity system, including generation, transmission, distribution, grid operations and planning, and end use. The baseline reports provide an overview of elements of the electricity system. This report focuses on end uses, electricity consumption, electric energy efficiency, distributed energy resources (DERs) (such as demand response, distributed generation, and distributed storage), and evaluation, measurement, and verification (EM&V) methods for energy efficiency and DERs.

  9. Spatial distribution of thermal energy in equilibrium.

    PubMed

    Bar-Sinai, Yohai; Bouchbinder, Eran

    2015-06-01

    The equipartition theorem states that in equilibrium, thermal energy is equally distributed among uncoupled degrees of freedom that appear quadratically in the system's Hamiltonian. However, for spatially coupled degrees of freedom, such as interacting particles, one may speculate that the spatial distribution of thermal energy may differ from the value predicted by equipartition, possibly quite substantially in strongly inhomogeneous or disordered systems. Here we show that for systems undergoing simple Gaussian fluctuations around an equilibrium state, the spatial distribution is universally bounded from above by 1/2k(B)T. We further show that in one-dimensional systems with short-range interactions, the thermal energy is equally partitioned even for coupled degrees of freedom in the thermodynamic limit and that in higher dimensions nontrivial spatial distributions emerge. Some implications are discussed.

  10. Distributed Wireless Power Transfer With Energy Feedback

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Zhang, Rui

    2017-04-01

    Energy beamforming (EB) is a key technique for achieving efficient radio-frequency (RF) transmission enabled wireless energy transfer (WET). By optimally designing the waveforms from multiple energy transmitters (ETs) over the wireless channels, they can be constructively combined at the energy receiver (ER) to achieve an EB gain that scales with the number of ETs. However, the optimal design of EB waveforms requires accurate channel state information (CSI) at the ETs, which is challenging to obtain practically, especially in a distributed system with ETs at separate locations. In this paper, we study practical and efficient channel training methods to achieve optimal EB in a distributed WET system. We propose two protocols with and without centralized coordination, respectively, where distributed ETs either sequentially or in parallel adapt their transmit phases based on a low-complexity energy feedback from the ER. The energy feedback only depends on the received power level at the ER, where each feedback indicates one particular transmit phase that results in the maximum harvested power over a set of previously used phases. Simulation results show that the two proposed training protocols converge very fast in practical WET systems even with a large number of distributed ETs, while the protocol with sequential ET phase adaptation is also analytically shown to converge to the optimal EB design with perfect CSI by increasing the training time. Numerical results are also provided to evaluate the performance of the proposed distributed EB and training designs as compared to other benchmark schemes.

  11. Distribution System Voltage Regulation by Distributed Energy Resources

    SciTech Connect

    Ceylan, Oguzhan; Liu, Guodong; Xu, Yan; Tomsovic, Kevin

    2014-01-01

    This paper proposes a control method to regulate voltages in 3 phase unbalanced electrical distribution systems. A constrained optimization problem to minimize voltage deviations and maximize distributed energy resource (DER) active power output is solved by harmony search algorithm. IEEE 13 Bus Distribution Test System was modified to test three different cases: a) only voltage regulator controlled system b) only DER controlled system and c) both voltage regulator and DER controlled system. The simulation results show that systems with both voltage regulators and DER control provide better voltage profile.

  12. Hawai‘i Distributed Energy Resource Technologies for Energy Security

    SciTech Connect

    None, None

    2012-09-30

    HNEI has conducted research to address a number of issues important to move Hawai‘i to greater use of intermittent renewable and distributed energy resource (DER) technologies in order to facilitate greater use of Hawai‘i's indigenous renewable energy resources. Efforts have been concentrated on the Islands of Hawai‘i, Maui, and O‘ahu, focusing in three areas of endeavor: 1) Energy Modeling and Scenario Analysis (previously called Energy Road mapping); 2) Research, Development, and Validation of Renewable DER and Microgrid Technologies; and 3) Analysis and Policy. These efforts focused on analysis of the island energy systems and development of specific candidate technologies for future insertion into an integrated energy system, which would lead to a more robust transmission and distribution system in the state of Hawai‘i and eventually elsewhere in the nation.

  13. Formal Estimation of Errors in Computed Absolute Interaction Energies of Protein-ligand Complexes

    PubMed Central

    Faver, John C.; Benson, Mark L.; He, Xiao; Roberts, Benjamin P.; Wang, Bing; Marshall, Michael S.; Kennedy, Matthew R.; Sherrill, C. David; Merz, Kenneth M.

    2011-01-01

    A largely unsolved problem in computational biochemistry is the accurate prediction of binding affinities of small ligands to protein receptors. We present a detailed analysis of the systematic and random errors present in computational methods through the use of error probability density functions, specifically for computed interaction energies between chemical fragments comprising a protein-ligand complex. An HIV-II protease crystal structure with a bound ligand (indinavir) was chosen as a model protein-ligand complex. The complex was decomposed into twenty-one (21) interacting fragment pairs, which were studied using a number of computational methods. The chemically accurate complete basis set coupled cluster theory (CCSD(T)/CBS) interaction energies were used as reference values to generate our error estimates. In our analysis we observed significant systematic and random errors in most methods, which was surprising especially for parameterized classical and semiempirical quantum mechanical calculations. After propagating these fragment-based error estimates over the entire protein-ligand complex, our total error estimates for many methods are large compared to the experimentally determined free energy of binding. Thus, we conclude that statistical error analysis is a necessary addition to any scoring function attempting to produce reliable binding affinity predictions. PMID:21666841

  14. 1-Octanol/Water Partition Coefficients of n-Alkanes from Molecular Simulations of Absolute Solvation Free Energies.

    PubMed

    Garrido, Nuno M; Queimada, António J; Jorge, Miguel; Macedo, Eugénia A; Economou, Ioannis G

    2009-09-08

    The 1-octanol/water partition coefficient is an important thermodynamic variable usually employed to understand and quantify the partitioning of solutes between aqueous and organic phases. It finds widespread use in many empirical correlations to evaluate the environmental fate of pollutants as well as in the design of pharmaceuticals. The experimental evaluation of 1-octanol/water partition coefficients is an expensive and time-consuming procedure, and thus, theoretical estimation methods are needed, particularly when a physical sample of the solute may not yet be available, such as in pharmaceutical screening. 1-Octanol/water partition coefficients can be obtained from Gibbs free energies of solvation of the solute in both the aqueous and the octanol phases. The accurate evaluation of free energy differences remains today a challenging problem in computational chemistry. In order to study the absolute solvation Gibbs free energies in 1-octanol, a solvent that can mimic many properties of important biological systems, free energy calculations for n-alkanes in the range C1-C8 were performed using molecular simulation techniques, following the thermodynamic integration approach. In the first part of this paper, we test different force fields by evaluating their performance in reproducing pure 1-octanol properties. It is concluded that all-atom force fields can provide good accuracy but at the cost of a higher computational time compared to that of the united-atom force fields. Recent versions of united-atom force fields, such as Gromos and TraPPE, provide satisfactory results and are, thus, useful alternatives to the more expensive all-atom models. In the second part of the paper, the Gibbs free energy of solvation in 1-octanol is calculated for several n-alkanes using three force fields to describe the solutes, namely Gromos, TraPPE, and OPLS-AA. Generally, the results obtained are in excellent agreement with the available experimental data and are of similar

  15. Absolute binding free energy calculations of CBClip host-guest systems in the SAMPL5 blind challenge

    NASA Astrophysics Data System (ADS)

    Lee, Juyong; Tofoleanu, Florentina; Pickard, Frank C.; König, Gerhard; Huang, Jing; Damjanović, Ana; Baek, Minkyung; Seok, Chaok; Brooks, Bernard R.

    2017-01-01

    Herein, we report the absolute binding free energy calculations of CBClip complexes in the SAMPL5 blind challenge. Initial conformations of CBClip complexes were obtained using docking and molecular dynamics simulations. Free energy calculations were performed using thermodynamic integration (TI) with soft-core potentials and Bennett's acceptance ratio (BAR) method based on a serial insertion scheme. We compared the results obtained with TI simulations with soft-core potentials and Hamiltonian replica exchange simulations with the serial insertion method combined with the BAR method. The results show that the difference between the two methods can be mainly attributed to the van der Waals free energies, suggesting that either the simulations used for TI or the simulations used for BAR, or both are not fully converged and the two sets of simulations may have sampled difference phase space regions. The penalty scores of force field parameters of the 10 guest molecules provided by CHARMM Generalized Force Field can be an indicator of the accuracy of binding free energy calculations. Among our submissions, the combination of docking and TI performed best, which yielded the root mean square deviation of 2.94 kcal/mol and an average unsigned error of 3.41 kcal/mol for the ten guest molecules. These values were best overall among all participants. However, our submissions had little correlation with experiments.

  16. Absolute binding free energy calculations of CBClip host-guest systems in the SAMPL5 blind challenge.

    PubMed

    Lee, Juyong; Tofoleanu, Florentina; Pickard, Frank C; König, Gerhard; Huang, Jing; Damjanović, Ana; Baek, Minkyung; Seok, Chaok; Brooks, Bernard R

    2017-01-01

    Herein, we report the absolute binding free energy calculations of CBClip complexes in the SAMPL5 blind challenge. Initial conformations of CBClip complexes were obtained using docking and molecular dynamics simulations. Free energy calculations were performed using thermodynamic integration (TI) with soft-core potentials and Bennett's acceptance ratio (BAR) method based on a serial insertion scheme. We compared the results obtained with TI simulations with soft-core potentials and Hamiltonian replica exchange simulations with the serial insertion method combined with the BAR method. The results show that the difference between the two methods can be mainly attributed to the van der Waals free energies, suggesting that either the simulations used for TI or the simulations used for BAR, or both are not fully converged and the two sets of simulations may have sampled difference phase space regions. The penalty scores of force field parameters of the 10 guest molecules provided by CHARMM Generalized Force Field can be an indicator of the accuracy of binding free energy calculations. Among our submissions, the combination of docking and TI performed best, which yielded the root mean square deviation of 2.94 kcal/mol and an average unsigned error of 3.41 kcal/mol for the ten guest molecules. These values were best overall among all participants. However, our submissions had little correlation with experiments.

  17. Absolute elastic differential electron scattering cross sections in the intermediate energy region. III - SF6 and UF6

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.; Trajmar, S.; Chutjian, A.; Williams, W.

    1976-01-01

    A recently developed technique has been used to measure the ratios of elastic differential electron scattering cross sections (DCS) for SF6 and UF6 to those of He at electron impact energies of 5, 10, 15, 20, 30, 40, 50, 60, and 75 eV and at scattering angles of 20 to 135 deg. In order to obtain the absolute values of DCS from these ratios, He DCS of McConkey and Preston have been employed in the 20 to 90 deg range. At angles in the 90 to 135 deg range the recently determined cross sections of Srivastava and Trajmar have been utilized. From these DCS, elastic integral and momentum transfer cross sections have been obtained.

  18. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  19. Evaluation of the field-adapted ADMA approach: absolute and relative energies of crambin and derivatives.

    PubMed

    Exner, Thomas E; Mezey, Paul G

    2005-12-21

    A large number of conformations and chemically modified variants of the protein crambin were used to extensively test the field-adapted adjustable density matrix assembler (FA-ADMA) method developed for ab initio quality quantum chemistry computations of proteins and other macromolecules, introduced in an earlier publication. In this method, the fuzzy density matrix fragmentation scheme of the original adjustable density matrix assembler (ADMA) method has been made more efficient by combining it with an approach of using point charges to approximate the effects of additional, distant parts of a given macromolecule in the quantum chemical calculation of each fragment. In this way, smaller parent molecules can be used for fragment generation, while achieving accuracy that can be obtained only with large parent molecules in the original ADMA method. Whereas in both methods the error relative to the Hartree-Fock result can be reduced below any threshold by choosing large enough parent molecules, this can be done more efficiently with the new method. In order to obtain reliable test results for the accuracy obtainable by the new method when compared to conventional Hartree-Fock calculations, we performed a large number of energy calculations for the protein crambin using various conformations available in the Protein Data Bank, various protonation states, and side chain mutations. Additionally, in order to test the performance of the method for protein-solvent interaction studies, the energy changes due to the formation of complexes with ethanol and single and multiple water molecules were investigated.

  20. Distribution network reconfiguration for energy loss reduction

    SciTech Connect

    Taleski, R.; Rajicic, D.

    1997-02-01

    A new method for energy loss reduction for distribution networks is presented. It is based on known techniques and algorithms for radial network analysis--oriented element ordering, power summation method for power flow, statistical representation of load variations, and a recently developed energy summation method for computation of energy losses. These methods, combined with the heuristic rules developed to lead the iterative process, make the energy loss minimization method effective, robust and fast. It presents an alternative to the power minimization methods for operation and planning purposes.

  1. Aftershock Energy Distribution by Statistical Mechanics Approach

    NASA Astrophysics Data System (ADS)

    Daminelli, R.; Marcellini, A.

    2015-12-01

    The aim of our work is to research the most probable distribution of the energy of aftershocks. We started by applying one of the fundamental principles of statistical mechanics that, in case of aftershock sequences, it could be expressed as: the greater the number of different ways in which the energy of aftershocks can be arranged among the energy cells in phase space the more probable the distribution. We assume that each cell in phase space has the same possibility to be occupied, and that more than one cell in the phase space can have the same energy. Seeing that seismic energy is proportional to products of different parameters, a number of different combinations of parameters can produce different energies (e.g., different combination of stress drop and fault area can release the same seismic energy). Let us assume that there are gi cells in the aftershock phase space characterised by the same energy released ɛi. Therefore we can assume that the Maxwell-Boltzmann statistics can be applied to aftershock sequences with the proviso that the judgment on the validity of this hypothesis is the agreement with the data. The aftershock energy distribution can therefore be written as follow: n(ɛ)=Ag(ɛ)exp(-βɛ)where n(ɛ) is the number of aftershocks with energy, ɛ, A and β are constants. Considering the above hypothesis, we can assume g(ɛ) is proportional to ɛ. We selected and analysed different aftershock sequences (data extracted from Earthquake Catalogs of SCEC, of INGV-CNT and other institutions) with a minimum magnitude retained ML=2 (in some cases ML=2.6) and a time window of 35 days. The results of our model are in agreement with the data, except in the very low energy band, where our model resulted in a moderate overestimation.

  2. A rare gas optics-free absolute photon flux and energy analyzer for solar and planetary observations

    NASA Technical Reports Server (NTRS)

    Judge, Darrell L.

    1994-01-01

    We have developed a prototype spectrometer for space applications requiring long term absolute EUV photon flux measurements. In this recently developed spectrometer, the energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.

  3. Measurement of Absolute Excitation Cross Sections in Highly-Charged Ions Using Electron Energy Loss and Merged Beams

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Smith, Steven J.; Lozano, J.

    2002-01-01

    There is increasing emphasis during this decade on understanding energy balance and phenomena observed in high electron temperature plasmas. The UV spectral return from FUSE, the X-ray spectral return from the HETG on Chandra and the LETGS 011 XMM-Newton are just beginning. Line emissions are almost entirely from highly-charged ions (HCIs) of C, N, 0, Ne, Mg, S, Si, Ca, and Fe. The Constellation-X mission will provide X-ray spectroscopy up to photon energies of 0.12 nm (10 keV) where primary line emitters will be HCIs. A variety of atomic parameters are required to model the stellar and solar plasma. These include cross sections for excitation, ionization, charge-exchange, X-ray emission, direct and indirect recombination, lifetimes and branching ratios, and dependences on l, m mixing by external E and B fields. In almost all cases the atomic quantities are calculated, and few comparisons to experiment have been carried out. Collision strengths and Einstein A-values are required to convert the observed spectral intensities to electron temperatures and densities in the stellar plasma. The JPL electron energy-loss and merged beam approach has been used to measure absolute collision strengths in a number of ions, with critical comparison made to the best available theories.

  4. Nonequilibrium effects in the energy distribution function

    NASA Astrophysics Data System (ADS)

    Burns, George; Cohen, L. Kenneth

    1983-03-01

    The relative nonequilibrium energy distribution function, in the steady state for the irreversibly reacting Br2 in an argon system at 3500 K, is calculated. It is based upon 44 400 classical 3D trajectories, and uses the single uniform ensemble method [H. D. Kutz and G. Burns, J. Chem. Phys. 72, 3562 (1980)]. Although the raw data display a considerable scatter, they clearly indicate a depletion from the equilibrium distribution function over a wide energy range. A careful statistical study of the data is performed. It is found that their histograms can be described over the entire possible energy range by a simple analytical function with only one adjustable parameter. The best fitting procedure yields a surprisingly narrow goodness of fit. However, an apparent deviation of the fit from the data is observed in the energy region where the reaction channel opens. To that extent, this work sheds a new light on the nature of the steady state in an irreversible reaction.

  5. A Fossilized Energy Distribution of Lightning.

    PubMed

    Pasek, Matthew A; Hurst, Marc

    2016-07-28

    When lightning strikes soil, it may generate a cylindrical tube of glass known as a fulgurite. The morphology of a fulgurite is ultimately a consequence of the energy of the lightning strike that formed it, and hence fulgurites may be useful in elucidating the energy distribution frequency of cloud-to-ground lightning. Fulgurites from sand mines in Polk County, Florida, USA were collected and analyzed to determine morphologic properties. Here we show that the energy per unit length of lightning strikes within quartz sand has a geometric mean of ~1.0 MJ/m, and that the distribution is lognormal with respect to energy per length and frequency. Energy per length is determined from fulgurites as a function of diameter, and frequency is determined both by cumulative number and by cumulative length. This distribution parallels those determined for a number of lightning parameters measured in actual atmospheric discharge events, such as charge transferred, voltage, and action integral. This methodology suggests a potential useful pathway for elucidating lightning energy and damage potential of strikes.

  6. A Fossilized Energy Distribution of Lightning

    PubMed Central

    Pasek, Matthew A.; Hurst, Marc

    2016-01-01

    When lightning strikes soil, it may generate a cylindrical tube of glass known as a fulgurite. The morphology of a fulgurite is ultimately a consequence of the energy of the lightning strike that formed it, and hence fulgurites may be useful in elucidating the energy distribution frequency of cloud-to-ground lightning. Fulgurites from sand mines in Polk County, Florida, USA were collected and analyzed to determine morphologic properties. Here we show that the energy per unit length of lightning strikes within quartz sand has a geometric mean of ~1.0 MJ/m, and that the distribution is lognormal with respect to energy per length and frequency. Energy per length is determined from fulgurites as a function of diameter, and frequency is determined both by cumulative number and by cumulative length. This distribution parallels those determined for a number of lightning parameters measured in actual atmospheric discharge events, such as charge transferred, voltage, and action integral. This methodology suggests a potential useful pathway for elucidating lightning energy and damage potential of strikes. PMID:27466230

  7. Probing the Crystal Structure, Composition-Dependent Absolute Energy Levels, and Electrocatalytic Properties of Silver Indium Sulfide Nanostructures.

    PubMed

    Saji, Pintu; Ganguli, Ashok K; Bhat, Mohsin A; Ingole, Pravin P

    2016-04-18

    The absolute electronic energy levels in silver indium sulfide (AIS) nanocrystals (NCs) with varying compositions and crystallographic phases have been determined by using cyclic voltammetry. Different crystallographic phases, that is, metastable cubic, orthorhombic, monoclinic, and a mixture of cubic and orthorhombic AIS NCs, were studied. The band gap values estimated from the cyclic voltammetry measurements match well with the band gap values calculated from the diffuse reflectance spectra measurements. The AIS nanostructures were found to show good electrocatalytic activity towards the hydrogen evolution reaction (HER). Our results clearly establish that the electronic and electrocatalytic properties of AIS NCs are strongly sensitive to the composition and crystal structure of AIS NCs. Monoclinic AIS was found to be the most active HER electrocatalyst, with electrocatalytic activity that is almost comparable to the MoS2 -based nanostructures reported in the literature, whereas cubic AIS was observed to be the least active of the studied crystallographic phases and compositions. In view of the HER activity and electronic band structure parameters observed herein, we hypothesize that the Fermi energy level of AIS NCs is an important factor that decides the electrocatalytic efficiency of these nanocomposites. The work presented herein, in addition to being the first of its kind regarding the composition and phase-dependence of electrochemical aspects of AIS NCs, also presents a simple solvothermal method for the synthesis of different crystallographic phases with various Ag/In molar ratios.

  8. Electron energy-distribution functions in gases

    SciTech Connect

    Pitchford, L.C.

    1981-01-01

    Numerical calculation of the electron energy distribution functions in the regime of drift tube experiments is discussed. The discussion is limited to constant applied fields and values of E/N (ratio of electric field strength to neutral density) low enough that electron growth due to ionization can be neglected. (GHT)

  9. Spectral unfolding of fast neutron energy distributions

    NASA Astrophysics Data System (ADS)

    Mosby, Michelle; Jackman, Kevin; Engle, Jonathan

    2015-10-01

    The characterization of the energy distribution of a neutron flux is difficult in experiments with constrained geometry where techniques such as time of flight cannot be used to resolve the distribution. The measurement of neutron fluxes in reactors, which often present similar challenges, has been accomplished using radioactivation foils as an indirect probe. Spectral unfolding codes use statistical methods to adjust MCNP predictions of neutron energy distributions using quantified radioactive residuals produced in these foils. We have applied a modification of this established neutron flux characterization technique to experimentally characterize the neutron flux in the critical assemblies at the Nevada National Security Site (NNSS) and the spallation neutron flux at the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL). Results of the unfolding procedure are presented and compared with a priori MCNP predictions, and the implications for measurements using the neutron fluxes at these facilities are discussed.

  10. Evaluations of the Absolute and Relative Free Energies for Antidepressant Binding to the Amino Acid Membrane Transporter LeuT with Free Energy Simulations.

    PubMed

    Zhao, Chunfeng; Caplan, David A; Noskov, Sergei Yu

    2010-06-08

    The binding of ligands to protein receptors with high affinity and specificity is central to many cellular processes. The quest for the development of computational models capable of accurately evaluating binding affinity remains one of the main goals of modern computational biophysics. In this work, free energy perturbation/molecular dynamics simulations were used to evaluate absolute and relative binding affinity for three different antidepressants to a sodium-dependent membrane transporter, LeuT, a bacterial homologue of human serotonin and dopamine transporters. Dysfunction of these membrane transporters in mammals has been implicated in multiple diseases of the nervous system, including bipolar disorder and depression. Furthermore, these proteins are key targets for antidepressants including fluoxetine (aka Prozac) and tricyclic antidepressants known to block transport activity. In addition to being clinically relevant, this system, where multiple crystal structures are readily available, represents an ideal testing ground for methods used to study the molecular mechanisms of ligand binding to membrane proteins. We discuss possible pitfalls and different levels of approximation required to evaluate binding affinity, such as the dependence of the computed affinities on the strength of constraints and the sensitivity of the computed affinities to the particular partial charges derived from restrained electrostatic potential fitting of quantum mechanics electrostatic potential. Finally, we compare the effects of different constraint schemes on the absolute and relative binding affinities obtained from free energy simulations.

  11. The analysis of space-time structure in QCD vacuum II: Dynamics of polarization and absolute X-distribution

    NASA Astrophysics Data System (ADS)

    Alexandru, Andrei; Draper, Terrence; Horváth, Ivan; Streuer, Thomas

    2011-08-01

    We propose a framework for quantitative evaluation of dynamical tendency for polarization in an arbitrary random variable that can be decomposed into a pair of orthogonal subspaces. The method uses measures based on comparisons of given dynamics to its counterpart with statistically independent components. The formalism of previously considered X-distributions is used to express the aforementioned comparisons, in effect putting the former approach on solid footing. Our analysis leads to the definition of a suitable correlation coefficient with clear statistical meaning. We apply the method to the dynamics induced by pure-glue lattice QCD in local left-right components of overlap Dirac eigenmodes. It is found that, in finite physical volume, there exists a non-zero physical scale in the spectrum of eigenvalues such that eigenmodes at smaller (fixed) eigenvalues exhibit convex X-distribution (positive correlation), while at larger eigenvalues the distribution is concave (negative correlation). This chiral polarization scale thus separates a regime where dynamics enhances chirality relative to statistical independence from a regime where it suppresses it, and gives an objective definition to the notion of "low" and "high" Dirac eigenmode. We propose to investigate whether the polarization scale remains non-zero in the infinite volume limit, in which case it would represent a new kind of low energy scale in QCD.

  12. Methods for calculating the absolute entropy and free energy of biological systems based on ideas from polymer physics.

    PubMed

    Meirovitch, Hagai

    2010-01-01

    The commonly used simulation techniques, Metropolis Monte Carlo (MC) and molecular dynamics (MD) are of a dynamical type which enables one to sample system configurations i correctly with the Boltzmann probability, P(i)(B), while the value of P(i)(B) is not provided directly; therefore, it is difficult to obtain the absolute entropy, S approximately -ln P(i)(B), and the Helmholtz free energy, F. With a different simulation approach developed in polymer physics, a chain is grown step-by-step with transition probabilities (TPs), and thus their product is the value of the construction probability; therefore, the entropy is known. Because all exact simulation methods are equivalent, i.e. they lead to the same averages and fluctuations of physical properties, one can treat an MC or MD sample as if its members have rather been generated step-by-step. Thus, each configuration i of the sample can be reconstructed (from nothing) by calculating the TPs with which it could have been constructed. This idea applies also to bulk systems such as fluids or magnets. This approach has led earlier to the "local states" (LS) and the "hypothetical scanning" (HS) methods, which are approximate in nature. A recent development is the hypothetical scanning Monte Carlo (HSMC) (or molecular dynamics, HSMD) method which is based on stochastic TPs where all interactions are taken into account. In this respect, HSMC(D) can be viewed as exact and the only approximation involved is due to insufficient MC(MD) sampling for calculating the TPs. The validity of HSMC has been established by applying it first to liquid argon, TIP3P water, self-avoiding walks (SAW), and polyglycine models, where the results for F were found to agree with those obtained by other methods. Subsequently, HSMD was applied to mobile loops of the enzymes porcine pancreatic alpha-amylase and acetylcholinesterase in explicit water, where the difference in F between the bound and free states of the loop was calculated. Currently

  13. Absolute measurements of the response function of an NE213 organic liquid scintillator for the neutron energy range up to 206 /MeV

    NASA Astrophysics Data System (ADS)

    Nakao, Noriaki; Kurosawa, Tadahiro; Nakamura, Takashi; Uwamino, Yoshitomo

    2001-05-01

    The absolute values of the neutron response functions of a 12.7 cm diameter by 12.7 cm long NE213 organic liquid scintillator were measured using a quasi-monoenergetic neutron field in the energy range of 66- 206 MeV via the 7Li(p,n) 7Be reaction in the ring cyclotron facility at RIKEN. The measured response functions were compared with calculations using a Monte Carlo code developed by Cecil et al. The measurements clarified that protons escaping through the scintillator wall induced by high-energy neutrons increase from 6% for 66 MeV neutrons to 35% for 206 MeV neutrons, and that this wall effect causes a difficult problem for n-γ discrimination. Measured response functions without the wall-effect events were also obtained by eliminating the escaping-proton events in the analysis, and compared with calculations using a modified Monte Carlo code. Comparisons between the measurements and calculations both with and without any wall-effect events gave a good agreement, but some discrepancy in the light output distribution could be found, mainly because the deuteron generation process was not taken into account in the calculation. The calculated efficiencies for 10 MeVee threshold, however, also gave good agreement within about 10% with the measurements.

  14. An energy decomposition analysis for second-order Møller-Plesset perturbation theory based on absolutely localized molecular orbitals.

    PubMed

    Thirman, Jonathan; Head-Gordon, Martin

    2015-08-28

    An energy decomposition analysis (EDA) of intermolecular interactions is proposed for second-order Møller-Plesset perturbation theory (MP2) based on absolutely localized molecular orbitals (ALMOs), as an extension to a previous ALMO-based EDA for self-consistent field methods. It decomposes the canonical MP2 binding energy by dividing the double excitations that contribute to the MP2 wave function into classes based on how the excitations involve different molecules. The MP2 contribution to the binding energy is decomposed into four components: frozen interaction, polarization, charge transfer, and dispersion. Charge transfer is defined by excitations that change the number of electrons on a molecule, dispersion by intermolecular excitations that do not transfer charge, and polarization and frozen interactions by intra-molecular excitations. The final two are separated by evaluations of the frozen, isolated wave functions in the presence of the other molecules, with adjustments for orbital response. Unlike previous EDAs for electron correlation methods, this one includes components for the electrostatics, which is vital as adjustment to the electrostatic behavior of the system is in some cases the dominant effect of the treatment of electron correlation. The proposed EDA is then applied to a variety of different systems to demonstrate that all proposed components behave correctly. This includes systems with one molecule and an external electric perturbation to test the separation between polarization and frozen interactions and various bimolecular systems in the equilibrium range and beyond to test the rest of the EDA. We find that it performs well on these tests. We then apply the EDA to a halogen bonded system to investigate the nature of the halogen bond.

  15. An energy decomposition analysis for second-order Møller–Plesset perturbation theory based on absolutely localized molecular orbitals

    SciTech Connect

    Thirman, Jonathan Head-Gordon, Martin

    2015-08-28

    An energy decomposition analysis (EDA) of intermolecular interactions is proposed for second-order Møller–Plesset perturbation theory (MP2) based on absolutely localized molecular orbitals (ALMOs), as an extension to a previous ALMO-based EDA for self-consistent field methods. It decomposes the canonical MP2 binding energy by dividing the double excitations that contribute to the MP2 wave function into classes based on how the excitations involve different molecules. The MP2 contribution to the binding energy is decomposed into four components: frozen interaction, polarization, charge transfer, and dispersion. Charge transfer is defined by excitations that change the number of electrons on a molecule, dispersion by intermolecular excitations that do not transfer charge, and polarization and frozen interactions by intra-molecular excitations. The final two are separated by evaluations of the frozen, isolated wave functions in the presence of the other molecules, with adjustments for orbital response. Unlike previous EDAs for electron correlation methods, this one includes components for the electrostatics, which is vital as adjustment to the electrostatic behavior of the system is in some cases the dominant effect of the treatment of electron correlation. The proposed EDA is then applied to a variety of different systems to demonstrate that all proposed components behave correctly. This includes systems with one molecule and an external electric perturbation to test the separation between polarization and frozen interactions and various bimolecular systems in the equilibrium range and beyond to test the rest of the EDA. We find that it performs well on these tests. We then apply the EDA to a halogen bonded system to investigate the nature of the halogen bond.

  16. An energy decomposition analysis for second-order Møller-Plesset perturbation theory based on absolutely localized molecular orbitals

    NASA Astrophysics Data System (ADS)

    Thirman, Jonathan; Head-Gordon, Martin

    2015-08-01

    An energy decomposition analysis (EDA) of intermolecular interactions is proposed for second-order Møller-Plesset perturbation theory (MP2) based on absolutely localized molecular orbitals (ALMOs), as an extension to a previous ALMO-based EDA for self-consistent field methods. It decomposes the canonical MP2 binding energy by dividing the double excitations that contribute to the MP2 wave function into classes based on how the excitations involve different molecules. The MP2 contribution to the binding energy is decomposed into four components: frozen interaction, polarization, charge transfer, and dispersion. Charge transfer is defined by excitations that change the number of electrons on a molecule, dispersion by intermolecular excitations that do not transfer charge, and polarization and frozen interactions by intra-molecular excitations. The final two are separated by evaluations of the frozen, isolated wave functions in the presence of the other molecules, with adjustments for orbital response. Unlike previous EDAs for electron correlation methods, this one includes components for the electrostatics, which is vital as adjustment to the electrostatic behavior of the system is in some cases the dominant effect of the treatment of electron correlation. The proposed EDA is then applied to a variety of different systems to demonstrate that all proposed components behave correctly. This includes systems with one molecule and an external electric perturbation to test the separation between polarization and frozen interactions and various bimolecular systems in the equilibrium range and beyond to test the rest of the EDA. We find that it performs well on these tests. We then apply the EDA to a halogen bonded system to investigate the nature of the halogen bond.

  17. The analysis of space-time structure in QCD vacuum II: Dynamics of polarization and absolute X-distribution

    SciTech Connect

    Alexandru, Andrei; Draper, Terrence; Horvath, Ivan; Streuer, Thomas

    2011-08-15

    Highlights: > We propose a method to compute the polarization for a multi-dimensional random distribution. > We apply the method to the eigenemodes of the Dirac operator in pure glue QCD. > We compute the chiral polarization for these modes and study its scale dependence. > We find that in a finite volume there is a scale where the polarization tendency changes. > We study the continuum limit of this chiral polarization scale. - Abstract: We propose a framework for quantitative evaluation of dynamical tendency for polarization in an arbitrary random variable that can be decomposed into a pair of orthogonal subspaces. The method uses measures based on comparisons of given dynamics to its counterpart with statistically independent components. The formalism of previously considered X-distributions is used to express the aforementioned comparisons, in effect putting the former approach on solid footing. Our analysis leads to the definition of a suitable correlation coefficient with clear statistical meaning. We apply the method to the dynamics induced by pure-glue lattice QCD in local left-right components of overlap Dirac eigenmodes. It is found that, in finite physical volume, there exists a non-zero physical scale in the spectrum of eigenvalues such that eigenmodes at smaller (fixed) eigenvalues exhibit convex X-distribution (positive correlation), while at larger eigenvalues the distribution is concave (negative correlation). This chiral polarization scale thus separates a regime where dynamics enhances chirality relative to statistical independence from a regime where it suppresses it, and gives an objective definition to the notion of 'low' and 'high' Dirac eigenmode. We propose to investigate whether the polarization scale remains non-zero in the infinite volume limit, in which case it would represent a new kind of low energy scale in QCD.

  18. Distributed energy tapestry for heating the landscape

    NASA Astrophysics Data System (ADS)

    Rocha, L. A. O.; Lorente, S.; Bejan, A.

    2010-12-01

    Here we show that the production and use of heating on an area must be distributed in clusters organized such that the losses associated with centers of production are balanced by the losses associated with distribution lines. The energy needs increase in time because the population density and the individual need increase. We consider only the increase in the individual need in time. We illustrate the "distributed energy systems" concept with the production and distribution of hot water on an area. Four classes of designs are analyzed and compared: (0) individual, i.e., one water heater for one user, (r) radial, i.e., N users supplied via radial pipes from a central heater, (2) dendritic network constructed by pairing N users around a central heating, and (4) dendritic network constructed by quadrupling the elemental areas occupied by the users. We show that there is an optimal cluster size (N) as a tradeoff between central losses and distributed losses. We also discover that several distinct (abrupt) design "transitions" must exist: the recommended design changes through designs 0, r, 2, and 4, as the amount of water used by each individual increases in time with the standard of living.

  19. Absolute binding-free energies between standard RNA/DNA nucleobases and amino-acid sidechain analogs in different environments.

    PubMed

    de Ruiter, Anita; Zagrovic, Bojan

    2015-01-01

    Despite the great importance of nucleic acid-protein interactions in the cell, our understanding of their physico-chemical basis remains incomplete. In order to address this challenge, we have for the first time determined potentials of mean force and the associated absolute binding free energies between all standard RNA/DNA nucleobases and amino-acid sidechain analogs in high- and low-dielectric environments using molecular dynamics simulations and umbrella sampling. A comparison against a limited set of available experimental values for analogous systems attests to the quality of the computational approach and the force field used. Overall, our analysis provides a microscopic picture behind nucleobase/sidechain interaction preferences and creates a unified framework for understanding and sculpting nucleic acid-protein interactions in different contexts. Here, we use this framework to demonstrate a strong relationship between nucleobase density profiles of mRNAs and nucleobase affinity profiles of their cognate proteins and critically analyze a recent hypothesis that the two may be capable of direct, complementary interactions.

  20. DAQ Software Contributions, Absolute Scale Energy Calibration and Background Evaluation for the NOvA Experiment at Fermilab

    SciTech Connect

    Flumerfelt, Eric Lewis

    2015-08-01

    The NOvA (NuMI Off-axis ve [nu_e] Appearance) Experiment is a long-baseline accelerator neutrino experiment currently in its second year of operations. NOvA uses the Neutrinos from the Main Injector (NuMI) beam at Fermilab, and there are two main off-axis detectors: a Near Detector at Fermilab and a Far Detector 810 km away at Ash River, MN. The work reported herein is in support of the NOvA Experiment, through contributions to the development of data acquisition software, providing an accurate, absolute-scale energy calibration for electromagnetic showers in NOvA detector elements, crucial to the primary electron neutrino search, and through an initial evaluation of the cosmic background rate in the NOvA Far Detector, which is situated on the surface without significant overburden. Additional support work for the NOvA Experiment is also detailed, including DAQ Server Administration duties and a study of NOvA’s sensitivity to neutrino oscillations into a “sterile” state.

  1. Energy distribution among reaction products. IV.

    NASA Technical Reports Server (NTRS)

    Maylotte, D. H.; Polanyi, J. C.; Woodall, K. B.

    1972-01-01

    Use of an infrared chemiluminescence technique, called 'Method II,' or the 'method of arrested relaxation' to measure the distribution of energy among products of the Cl + HI and Cl + DI reactions. Preliminary results are also given for the Br + HI and Cl + HBr reactions. Instead of measuring vibrational relaxation, Method II attempts to arrest vibrational and rotational relaxation by the rapid removal of excited products at a cold surface.

  2. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  3. Absolute-energy-scale calibration of ARGO-YBJ for light primaries in multi-TeV region with the Moon shadow observation

    NASA Astrophysics Data System (ADS)

    Bartoli, B.; Bernardini, P.; Bi, X. J.; Cao, Z.; Catalanotti, S.; Chen, S. Z.; Chen, T. L.; Cui, S. W.; Dai, B. Z.; D'Amone, A.; Danzengluobu; De Mitri, I.; D'Ettorre Piazzoli, B.; Di Girolamo, T.; Di Sciascio, G.; Feng, C. F.; Feng, Zhaoyang; Feng, Zhenyong; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, Haibing; Hu, Hongbo; Iacovacci, M.; Iuppa, R.; Jia, H. Y.; Labaciren; Li, H. J.; Liu, C.; Liu, J.; Liu, M. Y.; Lu, H.; Ma, L. L.; Ma, X. H.; Mancarella, G.; Mari, S. M.; Marsella, G.; Mastroianni, S.; Montini, P.; Ning, C. C.; Perrone, L.; Pistilli, P.; Salvini, P.; Santonico, R.; Shen, P. R.; Sheng, X. D.; Shi, F.; Surdo, A.; Tan, Y. H.; Vallania, P.; Vernetto, S.; Vigorito, C.; Wang, H.; Wu, C. Y.; Wu, H. R.; Xue, L.; Yang, Q. Y.; Yang, X. C.; Yao, Z. G.; Yuan, A. F.; Zha, M.; Zhang, H. M.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhao, J.; Zhaxiciren; Zhaxisangzhu; Zhou, X. X.; Zhu, F. R.; Zhu, Q. Q.; collaboration), (The ARGO-YBJ

    2017-04-01

    In 2011 ARGO-YBJ experiment has reported a work to study the absolute rigidity scale of the primary cosmic ray particles based on the Moon's shadow observation. Given the progress in high energy hadronic interaction models with LHC data, in cosmic ray chemical composition measurement and in experimental data accumulation, more updates can be researched. This paper aims to further disentangle the composition dependence in absolute-energy-scale calibration by using specific moon-shadow data which mainly is comprised of light component cosmic rays. Results show that, 17% energy scale error is estimated from 3 TeV to 50 TeV. To validate the performance of this technique, the light component cosmic ray spectrum in the same energy region is shown.

  4. Density distribution of high energy electrons in pulsed corona discharge of NO+N2 mixture.

    PubMed

    Wang, Wenchun; Liu, Feng; Zhang, Jialiang; Wang, Younian

    2003-12-01

    Emission spectroscopy of the high-voltage pulsed positive corona discharge in a line-cylinder reactor is used to investigate the high-energy electron density distribution in the discharge gap. The relative overall emission intensity spatial distribution profile of the A2Sigma+ --> X2Pi transition of NO is successfully recorded against a severe electromagnetic pulse interference coming from the corona discharge at one atmosphere. The spectroscopic investigation shows that the high-energy electron density in the discharge has a nonlinearly decline in the radial distribution. When varying the discharge voltage, the absolute emission intensity of NO is different but the radial distribution profile is similar. If an oxygen flow was introduced into the discharge reactor, the emission intensity of NO decreases tremendously and, therefore, the high-energy electron density decreases reasonably.

  5. Distributed Energy Communications & Controls, Lab Activities - Summary

    SciTech Connect

    Rizy, D Tom

    2010-01-01

    The purpose is to develop controls for inverter-based renewable and non-renewable distributed energy systems to provide local voltage, power and power quality support for loads and the power grid. The objectives are to (1) develop adaptive controls for inverter-based distributed energy (DE) systems when there are multiple inverters on the same feeder and (2) determine the impact of high penetration high seasonal energy efficiency ratio (SEER) air conditioning (A/C) units on power systems during sub-transmission faults which can result in an A/C compressor motor stall and assess how inverter-based DE can help to mitigate the stall event. The Distributed Energy Communications & Controls Laboratory (DECC) is a unique facility for studying dynamic voltage, active power (P), non-active power (Q) and power factor control from inverter-based renewable distributed energy (DE) resources. Conventionally, inverter-based DE systems have been designed to provide constant, close to unity power factor and thus not provide any voltage support. The DECC Lab interfaces with the ORNL campus distribution system to provide actual power system testing of the controls approach. Using mathematical software tools and the DECC Lab environment, we are developing and testing local, autonomous and adaptive controls for local voltage control and P & Q control for inverter-based DE. We successfully tested our active and non-active power (P,Q) controls at the DECC laboratory along with voltage regulation controls. The new PQ control along with current limiter controls has been tested on our existing inverter test system. We have tested both non-adaptive and adaptive control modes for the PQ control. We have completed several technical papers on the approaches and results. Electric power distribution systems are experiencing outages due to a phenomenon known as fault induced delayed voltage recovery (FIDVR) due to air conditioning (A/C) compressor motor stall. Local voltage collapse from FIDVR is

  6. Absolute neutrino mass scale

    NASA Astrophysics Data System (ADS)

    Capelli, Silvia; Di Bari, Pasquale

    2013-04-01

    Neutrino oscillation experiments firmly established non-vanishing neutrino masses, a result that can be regarded as a strong motivation to extend the Standard Model. In spite of being the lightest massive particles, neutrinos likely represent an important bridge to new physics at very high energies and offer new opportunities to address some of the current cosmological puzzles, such as the matter-antimatter asymmetry of the Universe and Dark Matter. In this context, the determination of the absolute neutrino mass scale is a key issue within modern High Energy Physics. The talks in this parallel session well describe the current exciting experimental activity aiming to determining the absolute neutrino mass scale and offer an overview of a few models beyond the Standard Model that have been proposed in order to explain the neutrino masses giving a prediction for the absolute neutrino mass scale and solving the cosmological puzzles.

  7. Smart Operations in Distributed Energy Resources System

    NASA Astrophysics Data System (ADS)

    Wei, Li; Jie, Shu; Zhang-XianYong; Qing, Zhou

    Smart grid capabilities are being proposed to help solve the challenges concerning system operations due to that the trade-offs between energy and environmental needs will be constantly negotiated while a reliable supply of electricity needs even greater assurance in case of that threats of disruption have risen. This paper mainly explores models for distributed energy resources system (DG, storage, and load),and also reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be solved as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.

  8. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  9. Distributed Energy Resources Market Diffusion Model

    SciTech Connect

    Maribu, Karl Magnus; Firestone, Ryan; Marnay, Chris; Siddiqui,Afzal S.

    2006-06-16

    Distributed generation (DG) technologies, such as gas-fired reciprocating engines and microturbines, have been found to be economically beneficial in meeting commercial-sector electrical, heating, and cooling loads. Even though the electric-only efficiency of DG is lower than that offered by traditional central stations, combined heat and power (CHP) applications using recovered heat can make the overall system energy efficiency of distributed energy resources (DER) greater. From a policy perspective, however, it would be useful to have good estimates of penetration rates of DER under various economic and regulatory scenarios. In order to examine the extent to which DER systems may be adopted at a national level, we model the diffusion of DER in the US commercial building sector under different technical research and technology outreach scenarios. In this context, technology market diffusion is assumed to depend on the system's economic attractiveness and the developer's knowledge about the technology. The latter can be spread both by word-of-mouth and by public outreach programs. To account for regional differences in energy markets and climates, as well as the economic potential for different building types, optimal DER systems are found for several building types and regions. Technology diffusion is then predicted via two scenarios: a baseline scenario and a program scenario, in which more research improves DER performance and stronger technology outreach programs increase DER knowledge. The results depict a large and diverse market where both optimal installed capacity and profitability vary significantly across regions and building types. According to the technology diffusion model, the West region will take the lead in DER installations mainly due to high electricity prices, followed by a later adoption in the Northeast and Midwest regions. Since the DER market is in an early stage, both technology research and outreach programs have the potential to increase

  10. A novel setup for the determination of absolute cross sections for low-energy electron induced strand breaks in oligonucleotides - The effect of the radiosensitizer 5-fluorouracil*

    NASA Astrophysics Data System (ADS)

    Rackwitz, Jenny; Ranković, Miloš Lj.; Milosavljević, Aleksandar R.; Bald, Ilko

    2017-02-01

    Low-energy electrons (LEEs) play an important role in DNA radiation damage. Here we present a method to quantify LEE induced strand breakage in well-defined oligonucleotide single strands in terms of absolute cross sections. An LEE irradiation setup covering electron energies <500 eV is constructed and optimized to irradiate DNA origami triangles carrying well-defined oligonucleotide target strands. Measurements are presented for 10.0 and 5.5 eV for different oligonucleotide targets. The determination of absolute strand break cross sections is performed by atomic force microscopy analysis. An accurate fluence determination ensures small margins of error of the determined absolute single strand break cross sections σ SSB . In this way, the influence of sequence modification with the radiosensitive 5-Fluorouracil (5FU) is studied using an absolute and relative data analysis. We demonstrate an increase in the strand break yields of 5FU containing oligonucleotides by a factor of 1.5 to 1.6 compared with non-modified oligonucleotide sequences when irradiated with 10 eV electrons.

  11. Coordinated Collaboration between Heterogeneous Distributed Energy Resources

    DOE PAGES

    Abdollahy, Shahin; Lavrova, Olga; Mammoli, Andrea

    2014-01-01

    A power distribution feeder, where a heterogeneous set of distributed energy resources is deployed, is examined by simulation. The energy resources include PV, battery storage, natural gas GenSet, fuel cells, and active thermal storage for commercial buildings. The resource scenario considered is one that may exist in a not too distant future. Two cases of interaction between different resources are examined. One interaction involves a GenSet used to partially offset the duty cycle of a smoothing battery connected to a large PV system. The other example involves the coordination of twenty thermal storage devices, each associated with a commercial building.more » Storage devices are intended to provide maximum benefit to the building, but it is shown that this can have a deleterious effect on the overall system, unless the action of the individual storage devices is coordinated. A network based approach is also introduced to calculate some type of effectiveness metric to all available resources which take part in coordinated operation. The main finding is that it is possible to achieve synergy between DERs on a system; however this required a unified strategy to coordinate the action of all devices in a decentralized way.« less

  12. Small Deflection Energy Analyzer for Energy and Angular Distributions

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A.

    2009-01-01

    The development of the Small Deflection Energy Analyzer (SDEA) charged-particle spectrometer for energy and angle distributions responds to a longstanding need to measure the wind velocity vector in Earth s thermosphere, and to obtain the ion-drift vector in the ionosphere. The air and ions above 120 km are endowed with bulk velocities and temperatures just like air near the ground, but with separate spatial and temporal variations. It is important to understand these not only for study of the physics and chemistry of the Sun-Earth connection, but also for spacecraft orbit predictions, and communications through the ionosphere. The SDEA consists of a pair of parallel conducting plates separated by a small distance, with an entrance slit on one end, and an exit slit on the other. A voltage applied to these plates develops an electric field between the plates, and this field deflects ions passing through it. If an ion has too little energy, it will strike one of the plates. If it has too much, it will strike the back wall. An ion with the amount of energy being searched for will have its trajectory bent just enough to exit the back slit. The SDEA units are compact, rectangular, and operate with low voltages. The units can be built up into small arrays. These arrays could be used either to widen the field of view or to sharpen an existing one. This approach can also be used to obtain angular distributions in two planes simultaneously, thus cutting down the ion source power requirements in half. This geometry has enabled a new mass-spectrometer concept that can provide miniaturized mass spectrometers for use in industrial plants, air-pollution monitoring, and noxious-gas detection.

  13. Energy Efficiency of Distributed Environmental Control Systems

    SciTech Connect

    Khalifa, H. Ezzat; Isik, Can; Dannenhoffer, John F. III

    2011-02-23

    In this report, we present an analytical evaluation of the potential of occupant-regulated distributed environmental control systems (DECS) to enhance individual occupant thermal comfort in an office building with no increase, and possibly even a decrease in annual energy consumption. To this end we developed and applied several analytical models that allowed us to optimize comfort and energy consumption in partitioned office buildings equipped with either conventional central HVAC systems or occupant-regulated DECS. Our approach involved the following interrelated components: 1. Development of a simplified lumped-parameter thermal circuit model to compute the annual energy consumption. This was necessitated by the need to perform tens of thousands of optimization calculations involving different US climatic regions, and different occupant thermal preferences of a population of ~50 office occupants. Yearly transient simulations using TRNSYS, a time-dependent building energy modeling program, were run to determine the robustness of the simplified approach against time-dependent simulations. The simplified model predicts yearly energy consumption within approximately 0.6% of an equivalent transient simulation. Simulations of building energy usage were run for a wide variety of climatic regions and control scenarios, including traditional “one-size-fits-all” (OSFA) control; providing a uniform temperature to the entire building, and occupant-selected “have-it-your-way” (HIYW) control with a thermostat at each workstation. The thermal model shows that, un-optimized, DECS would lead to an increase in building energy consumption between 3-16% compared to the conventional approach depending on the climate regional and personal preferences of building occupants. Variations in building shape had little impact in the relative energy usage. 2. Development of a gradient-based optimization method to minimize energy consumption of DECS while keeping each occupant

  14. Advanced Energy Storage Management in Distribution Network

    SciTech Connect

    Liu, Guodong; Ceylan, Oguzhan; Xiao, Bailu; Starke, Michael R; Ollis, T Ben; King, Daniel J; Irminger, Philip; Tomsovic, Kevin

    2016-01-01

    With increasing penetration of distributed generation (DG) in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. In this paper, an iterative mixed integer quadratic constrained quadratic programming model to optimize the operation of a three phase unbalanced distribution system with high penetration of Photovoltaic (PV) panels, DG and energy storage (ES) is developed. The proposed model minimizes not only the operating cost, including fuel cost and purchasing cost, but also voltage deviations and power loss. The optimization model is based on the linearized sensitivity coefficients between state variables (e.g., node voltages) and control variables (e.g., real and reactive power injections of DG and ES). To avoid slow convergence when close to the optimum, a golden search method is introduced to control the step size and accelerate the convergence. The proposed algorithm is demonstrated on modified IEEE 13 nodes test feeders with multiple PV panels, DG and ES. Numerical simulation results validate the proposed algorithm. Various scenarios of system configuration are studied and some critical findings are concluded.

  15. Absolute Photometry

    NASA Astrophysics Data System (ADS)

    Hartig, George

    1990-12-01

    The absolute sensitivity of the FOS will be determined in SV by observing 2 stars at 3 epochs, first in 3 apertures (1.0", 0.5", and 0.3" circular) and then in 1 aperture (1.0" circular). In cycle 1, one star, BD+28D4211 will be observed in the 1.0" aperture to establish the stability of the sensitivity and flat field characteristics and improve the accuracy obtained in SV. This star will also be observed through the paired apertures since these are not calibrated in SV. The stars will be observed in most detector/grating combinations. The data will be averaged to form the inverse sensitivity functions required by RSDP.

  16. Noninvasive imaging of absolute PpIX concentration distribution in nonmelanoma skin tumors at pre-PDT

    NASA Astrophysics Data System (ADS)

    Sunar, Ulas; Rohrbach, Daniel; Morgan, Janet; Zeitouni, Natalie

    2013-03-01

    Photodynamic Therapy (PDT) has proven to be an effective treatment option for nonmelanoma skin cancers. The ability to quantify the concentration of drug in the treated area is crucial for effective treatment planning as well as predicting outcomes. We utilized spatial frequency domain imaging for quantifying the accurate concentration of protoporphyrin IX (PpIX) in phantoms and in vivo. We correct fluorescence against the effects of native tissue absorption and scattering parameters. First we quantified the absorption and scattering of the tissue non-invasively. Then, we corrected raw fluorescence signal by compensating for optical properties to get the absolute drug concentration. After phantom experiments, we used basal cell carcinoma (BCC) model in Gli mice to determine optical properties and drug concentration in vivo at pre-PDT.

  17. Absolute cascade-free cross-sections for the 2S to 2P transition in Zn(+) using electron-energy-loss and merged-beams methods

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Man, K.-F.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.

    1991-01-01

    Absolute cascade-free excitation cross-sections in an ion have been measured for the resonance 2S to 2P transition in Zn(+) using electron-energy-loss and merged electron-ion beams methods. Measurements were carried out at electron energies of below threshold to 6 times threshold. Comparisons are made with 2-, 5-, and 15-state close-coupling and distorted-wave theories. There is good agreement between experiment and the 15-state close-coupling cross-sections over the energy range of the calculations.

  18. Absolute calibration of the Agfa Structurix series films at energies between 2.7 and 6.2 keVa)

    NASA Astrophysics Data System (ADS)

    Lanier, N. E.; Cowan, J. S.

    2014-11-01

    Although photo-emulsion technology is many decades old, x-ray film still remains a key asset for diagnosing hydrodynamic features in High-Energy Density (HED) experiments. For decades, the preferred option had been Kodak's direct exposure film. After its discontinuance in 2004, the push to find alternatives began. In many situations, the Agfa Structurix series offers the most favorable substitute, but being new to the HED community, its characterization was lacking. To remedy this, recent experiments, conducted at Brookhaven's National Synchrotron Light Source, provide absolute, monochromatic calibration data for the Agfa Structurix series films at K-shell backlighter energies between 2.7 and 6.2 keV. Absolute response curves are presented for Agfa D8, D7, D4, D4sc, D3, and D2. Moreover, the transmission of each film type is also measured.

  19. Absolute calibration of the Agfa Structurix series films at energies between 2.7 and 6.2 keV.

    PubMed

    Lanier, N E; Cowan, J S

    2014-11-01

    Although photo-emulsion technology is many decades old, x-ray film still remains a key asset for diagnosing hydrodynamic features in High-Energy Density (HED) experiments. For decades, the preferred option had been Kodak's direct exposure film. After its discontinuance in 2004, the push to find alternatives began. In many situations, the Agfa Structurix series offers the most favorable substitute, but being new to the HED community, its characterization was lacking. To remedy this, recent experiments, conducted at Brookhaven's National Synchrotron Light Source, provide absolute, monochromatic calibration data for the Agfa Structurix series films at K-shell backlighter energies between 2.7 and 6.2 keV. Absolute response curves are presented for Agfa D8, D7, D4, D4sc, D3, and D2. Moreover, the transmission of each film type is also measured.

  20. Spectral energy distributions of hot stars with circumstellar dust

    NASA Technical Reports Server (NTRS)

    Sitko, M. L.

    1981-01-01

    Combined spectral energy distribution curves of six Ae/Be stars (BD+61 deg 154, AB Aur, V380 Ori, HD 259431, ZCMa, and BD+40 deg 4124), five peculiar shell stars (HD 31648, HD 45677, HD 50138, HD 163296, and HD 190073), and the peculiar central object in the Red Rectangle nebula (HD 44179), obtained with the IUE and a variety of ground-based optical and infrared telescope systems, are presented, covering the wavelength range of approximately 1300 A to 12.5 microns. The observations are reviewed, and include ultraviolet observations, low-resolution absolute visual spectrophotometry, moderate-resolution relative visual spectrophotometry, and infrared photometry. For most of the objects the ratio of the flux deficiency for lambda equals less than 1 micron to the flux excess for lambda equals greater than 1 micron is approximately unity. Only two of the objects (AB Aur and HD 163296) possess a strong emission feature at 9.7 microns, while one other (HD 31648) may have a weak 9.7 micron emission feature. Most of the objects have a broad, smooth, infrared emission curve resembling those seen in some WC stars. It is concluded that the dust surrounding these stars may be different from that seen in the diffuse interstellar medium.

  1. SPECTRAL ENERGY DISTRIBUTIONS OF ACCRETING PROTOPLANETS

    SciTech Connect

    Eisner, J. A.

    2015-04-10

    Planets are often invoked as the cause of inferred gaps or inner clearings in transition disks. These putative planets would interact with the remnant circumstellar disk, accreting gas and generating substantial luminosity. Here I explore the expected appearance of accreting protoplanets at a range of evolutionary states. I compare synthetic spectral energy distributions with the handful of claimed detections of substellar-mass companions in transition disks. While observed fluxes of candidate companions are generally compatible with accreting protoplanets, challenges remain in reconciling the extended structure inferred in observed objects with the compact emission expected from protoplanets or circumplanetary disks. I argue that a large fraction of transition disks should harbor bright protoplanets, and that more may be detected as larger telescopes open up additional parameter space.

  2. Absolute measurements of short-pulse, long-pulse, and capsule-implosion backlighter sources at x-ray energies greater than 10 keV

    NASA Astrophysics Data System (ADS)

    Maddox, Brian

    2010-11-01

    Laser-generated x-ray backlighters with x-ray energies > 10 keV are becoming essential diagnostic tools for many high energy density experiments. Examples include studies of high areal density cores for ignition designs, mid- to high-Z capsule implosion experiments, absolute equation of state experiments, dynamic diffraction under extreme pressures, and the study of material strength. Significant progress has been made recently using short pulse lasers, coupled to metal foil targets [1], and imploding capsules for producing high energy backlighters. Measuring the absolute x-ray flux and spectra from these sources is required for quantitative analysis of experimental data and for the design and planning of future experiments. We have performed an extensive series of experiments to measure the absolute x-ray flux and spectra on the Titan, Omega, Omega-EP, and NIF laser systems, employing single-photon-counting detectors, crystal spectrometers, and multichannel differential filtering (Ross-pair) and filter stack bremsstrahlung spectrometers. Calibrations were performed on these instruments [2] enabling absolute measurements of backlighter spectra to be made from 10 keV to 1 MeV. Various backlighter techniques that generate either quasi-monochromatic sources or broadband continuum sources will be presented and compared. For Molybdenum Kα backlighters at x-ray energy of ˜17 keV we measure conversion efficiencies of 1.3x10-4 using 1 μm wavelength short-pulse lasers at an intensity of ˜1x10^17 W/cm^2. This is a factor of ˜2 high than using 0.3 μm wavelength long-pulse lasers at an intensity of ˜1x10^16 W/cm^2. Other types of backlighter targets include capsule implosion backlighters that can generate a very bright ``white-light'' continuum x-ray source and high-Z gas filled capsules that generate a quasi-line-source of x rays. We will present and compare the absolute laser energy to x-ray conversion efficiencies for these different backlighter techniques and give

  3. Suprathermal plasma analyzer for the measurement of low-energy electron distribution in the ionosphere

    NASA Astrophysics Data System (ADS)

    Shimoyama, M.; Oyama, K.-I.; Abe, T.; Yau, A. W.

    2011-07-01

    It is commonly believed that an energy transfer from thermal to suprathermal electrons (energy budget of the ionosphere. However, observation of electron energy spectrum in this energy range is quite limited because of technical difficulties of measurement. We have developed an instrument to measure electron energy distribution from thermal to suprathermal energy continuously with high-energy resolution of about 0.15 eV. The measurement principle is based on the combination of a retarding potential analyzer with a channel electron multiplier (CEM) and the Druyvesteyn method, which derives energy distribution from the current-voltage characteristics. The capability of detecting plasma space potential enables absolute calibration of electron energy. The instrument with a small vacuum pump, which is required for the CEM to work in low-vacuum region, was first successfully tested by a sounding rocket S-310-37 in the ionospheric E region. The instrument is expected to provide new opportunities to measure energy distribution of thermal and non-thermal electrons in low-density plasma, where a Langmuir probe cannot measure electron temperature because of low plasma density.

  4. Suprathermal plasma analyzer for the measurement of low-energy electron distribution in the ionosphere.

    PubMed

    Shimoyama, M; Oyama, K-I; Abe, T; Yau, A W

    2011-07-01

    It is commonly believed that an energy transfer from thermal to suprathermal electrons (energy budget of the ionosphere. However, observation of electron energy spectrum in this energy range is quite limited because of technical difficulties of measurement. We have developed an instrument to measure electron energy distribution from thermal to suprathermal energy continuously with high-energy resolution of about 0.15 eV. The measurement principle is based on the combination of a retarding potential analyzer with a channel electron multiplier (CEM) and the Druyvesteyn method, which derives energy distribution from the current-voltage characteristics. The capability of detecting plasma space potential enables absolute calibration of electron energy. The instrument with a small vacuum pump, which is required for the CEM to work in low-vacuum region, was first successfully tested by a sounding rocket S-310-37 in the ionospheric E region. The instrument is expected to provide new opportunities to measure energy distribution of thermal and non-thermal electrons in low-density plasma, where a Langmuir probe cannot measure electron temperature because of low plasma density.

  5. Suprathermal plasma analyzer for the measurement of low-energy electron distribution in the ionosphere

    SciTech Connect

    Shimoyama, M.; Yau, A. W.; Oyama, K.-I.; Abe, T.

    2011-07-15

    It is commonly believed that an energy transfer from thermal to suprathermal electrons (energy budget of the ionosphere. However, observation of electron energy spectrum in this energy range is quite limited because of technical difficulties of measurement. We have developed an instrument to measure electron energy distribution from thermal to suprathermal energy continuously with high-energy resolution of about 0.15 eV. The measurement principle is based on the combination of a retarding potential analyzer with a channel electron multiplier (CEM) and the Druyvesteyn method, which derives energy distribution from the current-voltage characteristics. The capability of detecting plasma space potential enables absolute calibration of electron energy. The instrument with a small vacuum pump, which is required for the CEM to work in low-vacuum region, was first successfully tested by a sounding rocket S-310-37 in the ionospheric E region. The instrument is expected to provide new opportunities to measure energy distribution of thermal and non-thermal electrons in low-density plasma, where a Langmuir probe cannot measure electron temperature because of low plasma density.

  6. Confined energy distribution for charged particle beams

    DOEpatents

    Jason, Andrew J.; Blind, Barbara

    1990-01-01

    A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.

  7. Low energy ion distribution around the Moon

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Yokota, S.; Tanaka, T.; Asamura, K.; Nishino, M. N.; Yamamoto, T.; Tsunakawa, H.

    2009-04-01

    More than a year has passed since MAP-PACE onboard KAGUYA (SELENE) started continuous observation of the low energy charged particles around the Moon from 100km-altitude polar orbit. MAP (MAgnetic field and Plasma experiment) was developed for the comprehensive measurement of the magnetic field and three-dimensional plasma around the Moon. MAP consists of MAP-LMAG (Lunar MAGnetometer) and MAP-PACE (Plasma energy Angle and Composition Experiment). MAP-PACE consists of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). Since each sensor has hemispherical field of view, two electron sensors and two ion sensors that are installed on the spacecraft panels opposite to each other can make full 3-dimensional measurements of low energy electrons and ions. One of the ion sensors IMA is an energy mass spectrometer. IMA measures mass identified ion energy spectra that have never been obtained at 100km altitude around the Moon. Low energy charged particles around the Moon were vigorously observed by Moon orbiting satellites and plasma instrumentation placed on the lunar surface in 1960s and 1970s. Though there were some satellites that explored the Moon afterwards, most of them were dedicated to the global mapping of the lunar surface. There has been almost no new information about the low energy charged particles around the Moon except the low energy electron measurement by Lunar Prospector, the lunar wake plasma data obtained by WIND during its Moon fly-by, and reports on remote detection of the lunar ions, lunar electrons and ULF waves generated by electron beams around the lunar wake. The newly observed data show characteristic ion distributions around the Moon. Besides the solar wind, MAP-PACE-IMA discovered four clearly distinguishable ion distributions: 1) Solar wind ions reflected/scattered at the lunar surface, 2) Solar wind ions reflected by magnetic anomalies on the lunar surface, 3) Ions that are

  8. Classical trajectory study of internal energy distributions in unimolecular processes

    NASA Technical Reports Server (NTRS)

    Mcdonald, J. D.; Marcus, R. A.

    1976-01-01

    Energy flow in a molecular system such as CD3Cl or CD3H representing a chemical activation experiment is studied by the method of classical trajectories. A correlation function method is used to obtain energy distributions before and after the breakup of the activated molecule. The energy distribution in the final product is found to be randomly distributed for a surface with no exit channel barrier or strong intermode couplings. Nonrandom energy distributions result when these special forces are present. Product channel barriers result in an excess of translational energy and exit channel intermode couplings result in nonrandom vibrational distributions.

  9. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    SciTech Connect

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L

    2006-10-15

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  10. Validation of absolute axial neutron flux distribution calculations with MCNP with 197Au(n,γ)198Au reaction rate distribution measurements at the JSI TRIGA Mark II reactor.

    PubMed

    Radulović, Vladimir; Štancar, Žiga; Snoj, Luka; Trkov, Andrej

    2014-02-01

    The calculation of axial neutron flux distributions with the MCNP code at the JSI TRIGA Mark II reactor has been validated with experimental measurements of the (197)Au(n,γ)(198)Au reaction rate. The calculated absolute reaction rate values, scaled according to the reactor power and corrected for the flux redistribution effect, are in good agreement with the experimental results. The effect of different cross-section libraries on the calculations has been investigated and shown to be minor.

  11. Negative absolute temperature for mobile particles

    NASA Astrophysics Data System (ADS)

    Braun, Simon; Ronzheimer, Philipp; Schreiber, Michael; Hodgman, Sean; Bloch, Immanuel; Schneider, Ulrich

    2013-05-01

    Absolute temperature is usually bound to be strictly positive. However, negative absolute temperature states, where the occupation probability of states increases with their energy, are possible in systems with an upper energy bound. So far, such states have only been demonstrated in localized spin systems with finite, discrete spectra. We realized a negative absolute temperature state for motional degrees of freedom with ultracold bosonic 39K atoms in an optical lattice, by implementing the attractive Bose-Hubbard Hamiltonian. This new state strikingly revealed itself by a quasimomentum distribution that is peaked at maximum kinetic energy. The measured kinetic energy distribution and the extracted negative temperature indicate that the ensemble is close to degeneracy, with coherence over several lattice sites. The state is as stable as a corresponding positive temperature state: The negative temperature stabilizes the system against mean-field collapse driven by negative pressure. Negative temperatures open up new parameter regimes for cold atoms, enabling fundamentally new many-body states. Additionally, they give rise to several counterintuitive effects such as heat engines with above unity efficiency.

  12. Spectral Energy Distributions of Red Quasars

    NASA Astrophysics Data System (ADS)

    Glikman, Eilat

    We propose to study the spectral energy distributions (SEDs) of a sample of dust-reddened quasars, which are transitional objects, triggered by and residing in recently-merged host galaxies, and are therefore ideal laboratories for addressing fundamental questions on the co-evolution of black holes and their host galaxies. We will obtain flux measurements at 89 and 154 microns - the expected peak of dust emission - with the HAWK+ instrument for a sample of these red quasars. We will combine these measurements with already-existing photometric data from SDSS, 2MASS and WISE to construct SEDs from the near-UV to the far-infrared. We will fit these SEDs to models of AGN and host galaxy emission as well as dust obscuration and re-radiation in the infrared using self-consistent Bayesian SED fitting codes to disentangle their underlying physical processes. Our current SEDs extend only to the WISE 22 micron band, resulting in model fits that underestimate the AGN contribution and overestimate the host galaxy's stellar mass and star formation rate. The proposed data will better constrain these properties, and when applied to the full sample, will produce a clearer picture of the complex processes of quasar/galaxy co-evolution. Furthermore, the SEDs for the targeted AGN can be leveraged to provide much-improved bolometric corrections for larger samples of AGN where no infrared data exist. This program utilizes the unique capabilities of SOFIA, the only facility able to observe at these long wavelengths.

  13. Examination of the hydrogen-bonding networks in small water clusters (n = 2-5, 13, 17) using absolutely localized molecular orbital energy decomposition analysis.

    PubMed

    Cobar, Erika A; Horn, Paul R; Bergman, Robert G; Head-Gordon, Martin

    2012-11-28

    Using the ωB97X-D and B3LYP density functionals, the absolutely localized molecular orbital energy decomposition method (ALMO-EDA) is applied to the water dimer through pentamer, 13-mer and 17-mer clusters. Two-body, three-body, and total interaction energies are decomposed into their component energy terms: frozen density interaction energy, polarization energy, and charge transfer energy. Charge transfer, polarization, and frozen orbital interaction energies are all found to be significant contributors to the two-body and total interaction energies; the three-body interaction energies are dominated by polarization. Each component energy term for the two-body interactions is highly dependent on the associated hydrogen bond distance. The favorability of the three-body terms associated with the 13- and 17-mer structures depends on the hydrogen-donor or hydrogen-acceptor roles played by each of the three component waters. Only small errors arise from neglect of three-body interactions without two adjacent water molecules, or beyond three-body interactions. Interesting linear correlations are identified between the contributions of charge-transfer and polarization terms to the two and three-body interactions, which permits elimination of explicit calculation of charge transfer to a good approximation.

  14. The Spectral Energy Distributions of Fermi Blazars

    NASA Astrophysics Data System (ADS)

    Fan, J. H.; Yang, J. H.; Liu, Y.; Luo, G. Y.; Lin, C.; Yuan, Y. H.; Xiao, H. B.; Zhou, A. Y.; Hua, T. X.; Pei, Z. Y.

    2016-10-01

    In this paper, multiwavelength data are compiled for a sample of 1425 Fermi blazars to calculate their spectral energy distributions (SEDs). A parabolic function, {{log}}{(ν {F}ν )={P}1({{log}}ν -{P}2)}2+{P}3, is used for SED fitting. Synchrotron peak frequency ({log}{ν }{{p}}), spectral curvature (P1), peak flux ({ν }{{p}}{F}{ν {{p}}}), and integrated flux (ν {F}ν ) are successfully obtained for 1392 blazars (461 flat-spectrum radio quasars [FSRQs], 620 BL Lacs [BLs], and 311 blazars of uncertain type [BCUs]; 999 sources have known redshifts). Monochromatic luminosity at radio 1.4 GHz, optical R band, X-ray at 1 keV and γ-ray at 1 GeV, peak luminosity, integrated luminosity, and effective spectral indices of radio to optical ({α }{{RO}}) and optical to X-ray ({α }{{OX}}) are calculated. The “Bayesian classification” is employed to log {ν }{{p}} in the rest frame for 999 blazars with available redshift, and the results show that three components are enough to fit the log {ν }{{p}} distribution; there is no ultra-high peaked subclass. Based on the three components, the subclasses of blazars using the acronyms of Abdo et al. are classified, and some mutual correlations are also studied. Conclusions are finally drawn as follows: (1) SEDs are successfully obtained for 1392 blazars. The fitted peak frequencies are compared with common sources from available samples. (2) Blazars are classified as low synchrotron peak sources if log {ν }{{p}}({Hz})≤slant 14.0, intermediate synchrotron peak sources if 14.0\\lt {log} {ν }{{p}}({Hz})≤slant 15.3, and high synchrotron peak sources if {log} {ν }{{p}}({Hz})\\gt 15.3. (3) Gamma-ray emissions are strongly correlated with radio emissions. Gamma-ray luminosity is also correlated with synchrotron peak luminosity and integrated luminosity. (4) There is an anticorrelation between peak frequency and peak luminosity within the whole blazar sample. However, there is a marginally positive correlation for high

  15. Determination analysis of energy conservation standards for distribution transformers

    SciTech Connect

    Barnes, P.R.; Van Dyke, J.W.; McConnell, B.W.; Das, S.

    1996-07-01

    This report contains information for US DOE to use in making a determination on proposing energy conservation standards for distribution transformers as required by the Energy Policy Act of 1992. Potential for saving energy with more efficient liquid-immersed and dry-type distribution transformers could be significant because these transformers account for an estimated 140 billion kWh of the annual energy lost in the delivery of electricity. Objective was to determine whether energy conservation standards for distribution transformers would have the potential for significant energy savings, be technically feasible, and be economically justified from a national perspective. It was found that energy conservation for distribution transformers would be technically and economically feasible. Based on the energy conservation options analyzed, 3.6-13.7 quads of energy could be saved from 2000 to 2030.

  16. Energy Inputs Uncertainty: Total Amount, Distribution and Correlation Between Different Forms of Energy

    NASA Technical Reports Server (NTRS)

    Deng, Yue

    2014-01-01

    Describes solar energy inputs contributing to ionospheric and thermospheric weather processes, including total energy amounts, distributions and the correlation between particle precipitation and Poynting flux.

  17. New approach for absolute fluence distribution calculations in Monte Carlo simulations of light propagation in turbid media

    SciTech Connect

    Böcklin, Christoph Baumann, Dirk; Fröhlich, Jürg

    2014-02-14

    A novel way to attain three dimensional fluence rate maps from Monte-Carlo simulations of photon propagation is presented in this work. The propagation of light in a turbid medium is described by the radiative transfer equation and formulated in terms of radiance. For many applications, particularly in biomedical optics, the fluence rate is a more useful quantity and directly derived from the radiance by integrating over all directions. Contrary to the usual way which calculates the fluence rate from absorbed photon power, the fluence rate in this work is directly calculated from the photon packet trajectory. The voxel based algorithm works in arbitrary geometries and material distributions. It is shown that the new algorithm is more efficient and also works in materials with a low or even zero absorption coefficient. The capabilities of the new algorithm are demonstrated on a curved layered structure, where a non-scattering, non-absorbing layer is sandwiched between two highly scattering layers.

  18. New approach for absolute fluence distribution calculations in Monte Carlo simulations of light propagation in turbid media

    NASA Astrophysics Data System (ADS)

    Böcklin, Christoph; Baumann, Dirk; Fröhlich, Jürg

    2014-02-01

    A novel way to attain three dimensional fluence rate maps from Monte-Carlo simulations of photon propagation is presented in this work. The propagation of light in a turbid medium is described by the radiative transfer equation and formulated in terms of radiance. For many applications, particularly in biomedical optics, the fluence rate is a more useful quantity and directly derived from the radiance by integrating over all directions. Contrary to the usual way which calculates the fluence rate from absorbed photon power, the fluence rate in this work is directly calculated from the photon packet trajectory. The voxel based algorithm works in arbitrary geometries and material distributions. It is shown that the new algorithm is more efficient and also works in materials with a low or even zero absorption coefficient. The capabilities of the new algorithm are demonstrated on a curved layered structure, where a non-scattering, non-absorbing layer is sandwiched between two highly scattering layers.

  19. Distributed Power Systems for Sustainable Energy

    DTIC Science & Technology

    2012-10-01

    all programming and optimization software that may be required in DOD installations to provide optimal microgrid energy management. Computers and...growth and innovation. Defining and implementing adequate safety provisions, including venting issues, for new batteries and microgrid ...solutions. 8.2 REQUIRED ACCESS TO INTERNET OR EXTERNAL COMMUNICATION NETWORKS AT DOD SITES Advanced energy systems, including energy microgrids

  20. Energy Systems Integration: Demonstrating Distributed Resource Communications

    SciTech Connect

    2017-01-01

    Overview fact sheet about the Electric Power Research Institute (EPRI) and Schneider Electric Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  1. Photoelectric spectrophotometry of OQ 172 and OH 471. [spectral energy distributions for red shift quasars

    NASA Technical Reports Server (NTRS)

    Oke, J. B.

    1974-01-01

    Absolute spectral energy distributions for the large redshift quasars OQ 172 and OH 471 are discussed along with similar data for two other quasars 4C05.34 and PHL 957. Assuming cosmological redshifts, OQ 172 and OH 471 are not as luminous as PHL 957. If these quasars are basically similar and if radiative processes dominate, the strength of Ly alpha and the behavior of the continuum at the Lyman limit strongly suggest that these objects consist of a central ionizing source surrounded by discrete clouds, filaments or a gaseous structure such as a disk. This gaseous matter does not cover the whole solid angle surrounding the source.

  2. Absolute entropy and free energy of fluids using the hypothetical scanning method. I. Calculation of transition probabilities from local grand canonical partition functions

    NASA Astrophysics Data System (ADS)

    Szarecka, Agnieszka; White, Ronald P.; Meirovitch, Hagai

    2003-12-01

    The hypothetical scanning (HS) method provides the absolute entropy and free energy from a Boltzmann sample generated by Monte Carlo, molecular dynamics or any other exact simulation procedure. Thus far HS has been applied successfully to magnetic and polymer chain models; in this paper and the following one it is extended to fluid systems by treating a Lennard-Jones model of argon. With HS a probability Pi approximating the Boltzmann probability of system configuration i is calculated with a stepwise reconstruction procedure, based on adding atoms gradually layer-by-layer to an initially empty volume, where they are replaced in their positions at i. At each step a transition probability (TP) is obtained from local grand canonical partition functions calculated over a limited space of the still unvisited (future) volume, the larger this space the better the approximation. Pi is the product of the step TPs, where ln Pi is an upper bound of the absolute entropy, which leads to upper and lower bounds for the free energy. We demonstrate that very good results for the entropy and the free energy can be obtained for a wide range of densities of the argon system by calculating TPs that are based on only a very limited future volume.

  3. Qualitative analysis of the helical electronic energy of inherently chiral calix[4]arenes: an approach to effectively assign their absolute configuration.

    PubMed

    Zheng, Shuang; Chang, Ming-Liang; Zhou, Jing; Fu, Jing-Wei; Zhang, Qing-Wei; Li, Shao-Yong; Qiao, Wei; Liu, Jun-Min

    2014-06-03

    For all microhelices on aromatic rings of inherently chiral calix[4]arene, an expression was derived from one approximation and one hypothesis on the basis of the electron-on-a-helix model of Tinoco and Woody as follows: 1/E = μ(H - KΔα2), where μ = 1 for the right-handed microhelix and μ = -1 for the left-handed microhelix; and H and K are constant and greater than zero. The expression correlates microhelical electronic energy (E) with the atom polarizability difference (Δα) on both microhelix ends, which intuitively and clearly shows the impact of helical substituent polarizability on helical electronic energy. The case analysis almost entirely proves that the qualitative analysis of the helical electronic energy of inherently chiral calix[4]arenes with the expression is scientific and can be used to effectively assign their absolute configuration.

  4. Energy and angular distributions of sputtered atoms at normal incidence

    NASA Astrophysics Data System (ADS)

    Yamamura, Y.; Takiguchi, T.; Ishida, M.

    1991-12-01

    The Monte Carlo simulation code ACAT has been applied to investigate the angular distribution and the energy distribution of atoms sputtered from Cu and Nb targets by normally incident Ar+ ions. It is found that there are two important effects which affect the angular distributions and the energy distributions of sputtered atoms, i.e., the anisotropic effect and the bulk recoil effect. The former effects means that the recoil flux keeps the memory of the incident ion-beam direction because of the incomplete cascade, while the latter one means the contributions of recoils generated at the deeper layer to the angular and the energy distributions of sputtered atoms. The anisotropic effect is important in the low energy region, and it makes the angular distribution under-cosine and the high energy tail of the energy distribution fall off faster than the Thompson distribution. The bulk recoil effect makes angular distribution be over-cosine and the peak position of the energy distribution be shifted to somewhat higher energies.

  5. The ultraviolet energy distributions of late A stars

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1981-01-01

    Observed late A star energy distributions for the wavelength range 1400-2500 A are compared. No difference is found between energy distributions of Am stars and those of normal slowly rotating A stars. The fluxes of rapidly rotating stars, however, appear to be increased for wavelengths smaller than 1530 A; this cannot be understood as an effect of pole heating or reduced gravity. In addition, the comparison of the UV energy distributions with model atmosphere energy distributions of Kurucz indicates some problems with the theoretical Si I absorption edges at 1530 A.

  6. Energy momentum distributions of monopole metric in teleparallel gravity

    NASA Astrophysics Data System (ADS)

    Aygün, Sezgin

    2017-02-01

    In this study, we investigate energy and momentum distributions of Monopole metric. For this purpose, we have used Einstein, Bergmann-Thomson and Landau-Lifshitz energy and momentum densities in Teleparallel Gravity (TG). We obtained that: (i) The solutions of Einstein and Bergmann-Thomson energy and momentum distributions give the same results but Landau-Lifshitz energy distribution does not provide same results in TG. (ii) The momentum densities of Einstein, Bergmann-Thomson and Landau-Lifshitz are vanish in TG for monopole metric. (iii) The obtained energy-momentum solutions are different from the earlier results in General Relativity (GR).

  7. Differential absorbed dose distributions in lineal energy for neutrons and gamma rays at the mono-energetic neutron calibration facility.

    PubMed

    Takada, M; Baba, M; Yamaguchi, H; Fujitaka, K

    2005-01-01

    Absorbed dose distributions in lineal energy for neutrons and gamma rays of mono-energetic neutron sources from 140 keV to 15 MeV were measured in the Fast Neutron Laboratory at Tohoku University. By using both a tissue-equivalent plastic walled counter and a graphite-walled low-pressure proportional counter, absorbed dose distributions in lineal energy for neutrons were obtained separately from those for gamma rays. This method needs no knowledge of energy spectra and dose distributions for gamma rays. The gamma-ray contribution in this neutron calibration field >1 MeV neutron was <3%, while for <550 keV it was >40%. The measured neutron absolute absorbed doses per unit neutron fluence agreed with the LA150 evaluated kerma factors. By using this method, absorbed dose distributions in lineal energy for neutrons and gamma rays in an unknown neutron field can be obtained separately.

  8. 77 FR 10997 - Energy Conservation Program: Energy Conservation Standards for Distribution Transformers; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR Part 431 RIN 1904-AC04 Energy Conservation Program: Energy Conservation Standards for Distribution Transformers; Correction AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy....

  9. Two jet energy and rapidity distributions

    SciTech Connect

    Blazey, G.C.; For the D {O} Collaboration

    1992-11-01

    The D0 detector has been recording data at the Tevatron {bar p}p Collider since May 1992. Because the D0 calorimeter is hermetic and has large acceptance it is well suited for semi-exclusive final state jet studies. We present a primary measurement of the distribution d{sup 3}N/dE{sub t1}/d{eta}{sub 1}/d{eta}{sub 2} at {radical}s TeV over a large range of {eta}. The sensitivity of this cross-section to parton momentum distributions and the ability of D0 to discriminate between possible parton distributions is discussed.

  10. Absolute dose measurements by means of a small cylindrical ionization chamber for very high dose per pulse high energy electron beams

    SciTech Connect

    Karaj, E.; Righi, S.; Di Martino, F.

    2007-03-15

    Very high dose per pulse (3-13 cGy/pulse) high energy electron beams are currently produced by special linear accelerators (linac) dedicated to Intra Operative Radiation Therapy (IORT). The electron beams produced by such linacs are collimated by special Perspex applicators of various size and cylindrically shaped. The biggest problems from the dosimetric point of view are caused by the high dose-per-pulse values and the use of inclined applicators. In this work measurements of absolute dose for the inclined applicators were done by using a small cylindrical ionization chamber, type CC01 (Wellhofer), a parallel plane ionization chamber type Markus (PTW 23343) and radiochromic films type EBT. We show a method which allows calculating the quality correction factors for CC01 chamber with an uncertainty of 1% and the absolute dose value for the inclined applicators using CC01 with an uncertainty of 3.1% for electron beams of energy of 6 and 7 MeV produced by the linac dedicated to IORT Novac7.

  11. Measurements of Ion Energy and Ion Flux Distributions in Inductively Coupled Plasmas in CF4/O2/Ar Mixtures

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Kim, J. S.; Cappelli, M. A.; Sharma, Surendra; Partridge, Harry (Technical Monitor)

    1999-01-01

    We report mass spectrometric studies of energy distributions and absolute concentrations of ions generated in CF4/O2/Ar inductively coupled rf plasmas. The ions were collected through a 100 mm orifice in the grounded and water cooled lower electrode in a GEC cell configuration. The measurements were made at gas pressures in the 10-50 mTorr range and rf coil power in the 100-300 W range. The observed ions are CF3(+), CF2(+), CF(+), C(+), F(+), COF(+), CO(+), O2(+), and O(+). The relative abundance of these ions varies with pressure and rf power. The energy distribution and absolute concentrations are correlated with electron number density and floating plasma potential measured by a compensated Langmuir probe.

  12. Energy distribution among reaction products. VII - H + F2.

    NASA Technical Reports Server (NTRS)

    Polanyi, J. C.; Sloan, J. J.

    1972-01-01

    The 'arrested relaxation' variant of the IR chemiluminescence technique is used in a study of the distribution of vibrational, rotational and translational energies between the products of the reaction by which H + F2 yields HF + F. Diagrams are plotted and numerical values are obtained for the energy distribution rate constants.

  13. Effects of Distributed Energy Resources on Conservation Voltage Reduction (CVR)

    SciTech Connect

    Singh, Ruchi; Tuffner, Francis K.; Fuller, Jason C.; Schneider, Kevin P.

    2011-10-10

    Conservation Voltage Reduction (CVR) is one of the cheapest technologies which can be intelligently leveraged to provide considerable energy savings. The addition of renewables in the form of distributed resources can affect the entire power system, but more importantly, affects the traditional substation control schemes at the distribution level. This paper looks at the effect on energy consumption, peak load reduction, and voltage profile changes due to the addition of distributed generation in a distribution feeder using combinations of volt var control. An IEEE 13-node system is used to simulate the various cases. Energy savings and peak load reduction for different simulation scenarios are compared.

  14. Role of Modeling When Designing for Absolute Energy Use Intensity Requirements in a Design-Build Framework: Preprint

    SciTech Connect

    Hirsch, A.; Pless, S.; Guglielmetti, R.; Torcellini, P. A.; Okada, D.; Antia, P.

    2011-03-01

    The Research Support Facility was designed to use half the energy of an equivalent minimally code-compliant building, and to produce as much renewable energy as it consumes on an annual basis. These energy goals and their substantiation through simulation were explicitly included in the project's fixed firm price design-build contract. The energy model had to be continuously updated during the design process and to match the final building as-built to the greatest degree possible. Computer modeling played a key role throughout the design process and in verifying that the contractual energy goals would be met within the specified budget. The main tool was a whole building energy simulation program. Other models were used to provide more detail or to complement the whole building simulation tool. Results from these specialized models were fed back into the main whole building simulation tool to provide the most accurate possible inputs for annual simulations. This paper will detail the models used in the design process and how they informed important program and design decisions on the path from preliminary design to the completed building.

  15. Trading strategies for distribution company with stochastic distributed energy resources

    SciTech Connect

    Zhang, Chunyu; Wang, Qi; Wang, Jianhui; Korpås, Magnus; Pinson, Pierre; Østergaard, Jacob; Khodayar, Mohammad E.

    2016-09-01

    This paper proposes a methodology to address the trading strategies of a proactive distribution company (PDISCO) engaged in the transmission-level (TL) markets. A one-leader multi-follower bilevel model is presented to formulate the gaming framework between the PDISCO and markets. The lower-level (LL) problems include the TL day-ahead market and scenario-based real-time markets, respectively with the objectives of maximizing social welfare and minimizing operation cost. The upper-level (UL) problem is to maximize the PDISCO’s profit across these markets. The PDISCO’s strategic offers/bids interactively influence the outcomes of each market. Since the LL problems are linear and convex, while the UL problem is non-linear and non-convex, an equivalent primal–dual approach is used to reformulate this bilevel model to a solvable mathematical program with equilibrium constraints (MPEC). The effectiveness of the proposed model is verified by case studies.

  16. Tailoring the energy distribution and loss of 2D plasmons

    NASA Astrophysics Data System (ADS)

    Lin, Xiao; Rivera, Nicholas; López, Josué J.; Kaminer, Ido; Chen, Hongsheng; Soljačić, Marin

    2016-10-01

    The ability to tailor the energy distribution of plasmons at the nanoscale has many applications in nanophotonics, such as designing plasmon lasers, spasers, and quantum emitters. To this end, we analytically study the energy distribution and the proper field quantization of 2D plasmons with specific examples for graphene plasmons. We find that the portion of the plasmon energy contained inside graphene (energy confinement factor) can exceed 50%, despite graphene being infinitely thin. In fact, this very high energy confinement can make it challenging to tailor the energy distribution of graphene plasmons just by modifying the surrounding dielectric environment or the geometry, such as changing the separation distance between two coupled graphene layers. However, by adopting concepts of parity-time symmetry breaking, we show that tuning the loss in one of the two coupled graphene layers can simultaneously tailor the energy confinement factor and propagation characteristics, causing the phenomenon of loss-induced plasmonic transparency.

  17. Energy and directional response for the Harshaw dosemeter holders 8814 and 8891, and its effect on the appropriate radiation qualities for absolute calibration.

    PubMed

    Børretzen, I; Wøhni, T

    2003-01-01

    The personal dosimetry laboratory at the Norwegian radiation protection authority utilises a two-element dosemeter card for measuring Hp(10) and Hp(0.07), in a Harshaw dosemeter holder type 8814. Energy and directional responses for photons and betas for this holder have been assessed, as well as for the new Harshaw holder type 8891. The energy response characteristics for the 12-1250 keV photon energy range, in terms of TL output per unit Hp(10) and Hp(0.07) have been evaluated. The maximum over-response to under-response ratio for the Hp(10) element was found to be 1.46 for the new type 8891 holder, as compared to 1.55 for the older type 8814. The new holder also displays a more favourable directional response for this element. For the Hp(0.07) element, no significant differences with regard to energy or directional responses were found. Selecting radiation energy for absolute calibration of the Hp(10) and Hp(0.07) elements are discussed.

  18. Absolute far-ultraviolet spectrophotometry of hot subluminous stars from Voyager

    NASA Technical Reports Server (NTRS)

    Holberg, J. B.; Ali, B.; Carone, T. E.; Polidan, R. S.

    1991-01-01

    Observations, obtained with the Voyager ultraviolet spectrometers, are presented of absolute fluxes for two well-known hot subluminous stars: BD + 28 deg 4211, an sdO, and G191 - B2B, a hot DA white dwarf. Complete absolute energy distributions for these two stars, from the Lyman limit at 912 A to 1 micron, are given. For BD + 28 deg 4211, a single power law closely represents the entire observed energy distribution. For G191 - B2B, a pure hydrogen model atmosphere provides an excellent match to the entire absolute energy distribution. Voyager absolute fluxes are discussed in relation to those reported from various sounding rocket experiments, including a recent rocket observation of BD + 28 deg 4211.

  19. The energy spectrum for stochastic eddies with gamma distribution

    NASA Astrophysics Data System (ADS)

    Kara, Rukiye; Caglar, Mine

    2012-09-01

    Lundgren (1982) showed that strained spiral vortex model for turbulent fine structure has exponential Kolmogorov energy spectrum form. Caglar (2007) has generalized Cinlar velocity field which defined a similar structure with Lundgren vortex and computed the energy spectrum. In this study, we investigate the energy spectrum of the stochastic velocity field using Gamma distribution for small scale eddies.

  20. Energy Distributions in Small Populations: Pascal versus Boltzmann

    ERIC Educational Resources Information Center

    Kugel, Roger W.; Weiner, Paul A.

    2010-01-01

    The theoretical distributions of a limited amount of energy among small numbers of particles with discrete, evenly-spaced quantum levels are examined systematically. The average populations of energy states reveal the pattern of Pascal's triangle. An exact formula for the probability that a particle will be in any given energy state is derived.…

  1. Absolute and relative dose measurements with Gafchromic trade mark sign EBT film for high energy electron beams with different doses per pulse

    SciTech Connect

    Fiandra, Christian; Ragona, Riccardo; Ricardi, Umberto; Anglesio, Silvia; Giglioli, Francesca Romana

    2008-12-15

    The authors have evaluated the accuracy, in absolute and relative dose measurements, of the Gafchromic trade mark sign EBT film in pulsed high-energy electron beams. Typically, the electron beams used in radiotherapy have a dose-per-pulse value of less than 0.1 mGy/pulse. However, very high dose-per-pulse electron beams are employed in certain linear accelerators dedicated to intraoperatory radiation therapy (IORT). In this study, the absorbed dose measurements with Gafchromic trade mark sign EBT in both low (less than 0.3 mGy per pulse) and high (30 and 70 mGy per pulse) dose-per-pulse electron beams were compared with ferrous sulfate chemical Fricke dosimetry (operated by the Italian Primary Standard Dosimetry Laboratory), a method independent of the dose per pulse. A summary of Gafchromic trade mark sign EBT in relative and absolute beam output determination is reported. This study demonstrates the independence of Gafchromic trade mark sign EBT absorption as a function of dose per pulse at different dose levels. A good agreement (within 3%) was found with Fricke dosimeters for plane-base IORT applicators. Comparison with a diode detector is presented for relative dose measurements, showing acceptable agreement both in the steep dose falloff zone and in the homogeneous dose region. This work also provides experimental values for recombination correction factor (K{sub sat}) of a Roos (plane parallel) ionization chamber calculated on the basis of theoretical models for charge recombination.

  2. Energy optimization of water distribution system

    SciTech Connect

    Not Available

    1993-02-01

    In order to analyze pump operating scenarios for the system with the computer model, information on existing pumping equipment and the distribution system was collected. The information includes the following: component description and design criteria for line booster stations, booster stations with reservoirs, and high lift pumps at the water treatment plants; daily operations data for 1988; annual reports from fiscal year 1987/1988 to fiscal year 1991/1992; and a 1985 calibrated KYPIPE computer model of DWSD`s water distribution system which included input data for the maximum hour and average day demands on the system for that year. This information has been used to produce the inventory database of the system and will be used to develop the computer program to analyze the system.

  3. Space density distribution of galaxies in the absolute magnitude - rotation velocity plane: a volume-complete Tully-Fisher relation from CALIFA stellar kinematics

    NASA Astrophysics Data System (ADS)

    Bekeraité, S.; Walcher, C. J.; Falcón-Barroso, J.; Garcia Lorenzo, B.; Lyubenova, M.; Sánchez, S. F.; Spekkens, K.; van de Ven, G.; Wisotzki, L.; Ziegler, B.; Aguerri, J. A. L.; Barrera-Ballesteros, J.; Bland-Hawthorn, J.; Catalán-Torrecilla, C.; García-Benito, R.

    2016-10-01

    We measured the distribution in absolute magnitude - circular velocity space for a well-defined sample of 199 rotating galaxies of the Calar Alto Legacy Integral Field Area Survey (CALIFA) using their stellar kinematics. Our aim in this analysis is to avoid subjective selection criteria and to take volume and large-scale structure factors into account. Using stellar velocity fields instead of gas emission line kinematics allows including rapidly rotating early-type galaxies. Our initial sample contains 277 galaxies with available stellar velocity fields and growth curve r-band photometry. After rejecting 51 velocity fields that could not be modelled because of the low number of bins, foreground contamination, or significant interaction, we performed Markov chain Monte Carlo modelling of the velocity fields, from which we obtained the rotation curve and kinematic parameters and their realistic uncertainties. We performed an extinction correction and calculated the circular velocity vcirc accounting for the pressure support of a given galaxy. The resulting galaxy distribution on the Mr-vcirc plane was then modelled as a mixture of two distinct populations, allowing robust and reproducible rejection of outliers, a significant fraction of which are slow rotators. The selection effects are understood well enough that we were able to correct for the incompleteness of the sample. The 199 galaxies were weighted by volume and large-scale structure factors, which enabled us to fit a volume-corrected Tully-Fisher relation (TFR). More importantly, we also provide the volume-corrected distribution of galaxies in the Mr-vcirc plane, which can be compared with cosmological simulations. The joint distribution of the luminosity and circular velocity space densities, representative over the range of -20 > Mr > -22 mag, can place more stringent constraints on the galaxy formation and evolution scenarios than linear TFR fit parameters or the luminosity function alone. Galaxies main

  4. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  5. Electron energy distributions in a metal-polymer-vacuum system

    SciTech Connect

    Yumaguzin, Yu. M.; Kornilov, V. M.; Lachinov, A. N.

    2006-08-15

    The energy distributions of electrons emitted from a metal coated with a polymer (polydiphenylene phthalide) is studied experimentally using field electron spectroscopy. A considerable decrease in the electron work function for the metal-polymer-vacuum system as compared to pure metal is observed. Analysis of the energy distributions of emitted electrons shows that the distribution in the case with the polymer is broader and displaced towards low energies, and its high-energy edge is slightly extended. The effect of emission voltage on the shape of the energy distribution of emitted electrons is studied. A model is proposed to explain the substantial decrease in the effective electron work function in the case when the metal electrode is coated with a polymer film.

  6. Distributed energy storage: Time-dependent tree flow design

    NASA Astrophysics Data System (ADS)

    Bejan, A.; Ziaei, S.; Lorente, S.

    2016-05-01

    This article proposes "distributed energy storage" as a basic design problem of distributing energy storage material on an area. The energy flows by fluid flow from a concentrated source to points (users) distributed equidistantly on the area. The flow is time-dependent. Several scenarios are analyzed: sensible-heat storage, latent-heat storage, exergy storage vs energy storage, and the distribution of a finite supply of heat transfer surface between the source fluid and the distributed storage material. The chief conclusion is that the finite amount of storage material should be distributed proportionally with the distribution of the flow rate of heating agent arriving on the area. The total time needed by the source stream to "invade" the area is cumulative (the sum of the storage times required at each storage site) and depends on the energy distribution paths and the sequence in which the users are served by the source stream. Directions for future designs of distributed storage and retrieval are outlined in the concluding section.

  7. Multi-wavelength UV-detection in capillary hydrodynamic fractionation. Data treatment for an absolute estimate of the particle size distribution

    NASA Astrophysics Data System (ADS)

    Clementi, Luis A.; Aguirre, Miren; Leiza, José R.; Gugliotta, Luis M.; Vega, Jorge R.

    2017-03-01

    A new approach is proposed for estimating the particle size distribution (PSD) of hydrophobic colloids by capillary hydrodynamic fractionation (CHDF) based on UV-detection at several wavelengths. At each elution time, the multi-wavelength UV signal is used to estimate the instantaneous PSD at the detector cell by solving the involved inverse problem through an artificial neural network. Then, the global PSD is obtained as a weighted sum of the estimated instantaneous PSDs along the entire elution time interval. With the current approach, the estimation procedure is absolute in the sense that no calibration of diameters is required and the instrumental broadening introduced by the fractionation capillary is automatically compensated for. The proposed method was evaluated on the basis of narrow polystyrene standards, as follows: i) a single standard, to emulate a narrow unimodal PSD; ii) a mixture of three standards of relatively close average diameters, to emulate a broad unimodal PSD; and iii) a mixture of two standards of quite different average diameters, to emulate a bimodal PSD. Experimental results indicate that the new approach is able to produce adequate PSD estimates provided that the particle refractive index is known with a relatively high accuracy.

  8. 77 FR 7281 - Energy Conservation Program: Energy Conservation Standards for Distribution Transformers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ...The Energy Policy and Conservation Act of 1975 (EPCA), as amended, prescribes energy conservation standards for various consumer products and certain commercial and industrial equipment, including low-voltage dry-type distribution transformers, and directs the U.S. Department of Energy (DOE) to prescribe standards for various other products and equipment, including other types of distribution......

  9. Charging of ionic liquid surfaces under X-ray irradiation: the measurement of absolute binding energies by XPS.

    PubMed

    Villar-Garcia, Ignacio J; Smith, Emily F; Taylor, Alasdair W; Qiu, Fulian; Lovelock, Kevin R J; Jones, Robert G; Licence, Peter

    2011-02-21

    Ionic liquid surfaces can become electrically charged during X-ray photoelectron spectroscopy experiments, due to the flux of photoelectrons leaving the surface. This causes a shift in the measured binding energies of X-ray photoelectron peaks that depends on the magnitude of the surface charging. Consequently, a charge correction method is required for ionic liquids. Here we demonstrate the nature and extent of surface charging in ionic liquids and model it using chronopotentiometry. We report the X-ray photoelectron spectra for a range of imidazolium based ionic liquids and investigate the use of long alkyl chains (C(n)H(2n+1), n ≥ 8) and the imidazolium nitrogen, both of which are part of the ionic liquid chemical structure, as internal references for charge correction. Accurate and reproducible binding energies are obtained which allow comparisons to be made across ionic liquid-based systems.

  10. Kappa distribution in the presence of a potential energy

    NASA Astrophysics Data System (ADS)

    Livadiotis, George

    2015-02-01

    The present paper develops the theory and formulations of the kappa distributions that describe particle systems characterized by a nonzero potential energy. As yet, kappa distributions were used for the statistical description of the velocity or kinetic energy of particles but not of the potential energy. With the results provided here, it is straightforward to use the developed kappa distributions to describe any particle population of space plasmas subject to a nonnegligible potential energy. Starting from the kappa distribution of the Hamiltonian function, we develop the distributions that describe either the complete phase space or the marginal spaces of positions and velocities. The study shows, among others: (a) The kappa distributions of velocities that describe space plasmas can be vastly different from the standard formulation of the kappa distribution, because of the presence of a potential energy; the correct formulation should be given by the marginal kappa distribution of velocities by integrating the distribution of the Hamiltonian over the potential energy. (b) The long-standing problem of the divergence of the Boltzmannian exponential distribution for bounded radial potentials is solved using kappa distributions of negative kappa index. (c) Anisotropic distributions of velocities can exist in the presence of a velocity-dependent potential. (d) A variety of applications, including derivations/verifications of the following: (i) the Jeans', the most frequent, and the maximum radii in spherical/linear gravitational potentials; (ii) the Virial theorem for power law potentials; (iii) the generalized barometric formula, (iv) the plasma density profiles in Saturnian magnetosphere, and (v) the average electron magnetic moment in Earth's magnetotail.

  11. Distributed Energy Communications & Controls, Lab Activities - Synopsis

    SciTech Connect

    Rizy, D Tom

    2010-01-01

    Electric power distribution systems are experiencing outages due to a phenomenon known as fault induced delayed voltage recovery (FIDVR) due to air conditioning (A/C) compressor motor stall. Local voltage collapse from FIDVR is occurring in part because modern air-conditioner and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip than older motors. These motors can stall in less than three cycles (0.05 s) when a fault, for example, on the sub-transmission system, causes voltage on the distribution system to sag to 70% or less of nominal. We completed a new test system for A/C compressor motor stall testing at the DECC Lab. The A/C Stall test system is being used to characterize when and how compressor motors stall under low voltage and high compressor pressure conditions. However, instead of using air conditioners, we are using high efficiency heat pumps. We have gathered A/C stall characterization data for both sustained and momentary voltage sags of the test heat pump. At low enough voltage, the heat pump stalls (compressor motor stops and draws 5-6 times normal current in trying to restart) due to low inertia and low torque of the motor. For the momentary sag, we are using a fast acting contactor/switch to quickly switch from nominal to the sagged voltage in cycles.

  12. Energy distribution among reaction products. V.

    NASA Technical Reports Server (NTRS)

    Anlauf, K. G.; Horne, D. S.; Macdonald, R. G.; Polanyi, J. C.; Woodall, K. B.

    1972-01-01

    Discussion of three reactions, one point of theoretical interest being the predicted correlation between barrier height and barrier location. The H + Br 2 reaction having a lower activation barrier than H + Cl 2, should have an earlier barrier, and hence a greater percentage attractive energy release and higher efficiency of vibrational excitation. Information is developed concerning the effect of isotopic substitution in the pair of reactions H + Cl 2 and D + Cl 2. The 'arrested relaxation' method was used. Essentially, the method involves reacting two diffuse reagent beams in a reaction vessel with background pressure less than 0.001 torr, and with walls cooled by liquid nitrogen or liquid helium.

  13. Deriving star formation histories from photometry using energy balance spectral energy distribution modelling

    NASA Astrophysics Data System (ADS)

    Smith, Daniel J. B.; Hayward, Christopher C.

    2015-10-01

    Panchromatic spectral energy distribution fitting is a critical tool for determining the physical properties of distant galaxies, such as their stellar mass and star formation rate. One widely used method is the publicly available MAGPHYS code. We build on our previous analysis by presenting some modifications which enable MAGPHYS to automatically estimate galaxy star formation histories (SFHs), including uncertainties, based on ultraviolet to far-infrared photometry. We use state-of-the art synthetic photometry derived by performing three-dimensional dust radiative transfer on hydrodynamic simulations of isolated disc and merging galaxies to test how well the modified MAGPHYS is able to recover SFHs under idealized conditions, where the true SFH is known. We find that while the SFH of the model with the best fit to the synthetic photometry is a poor representation of the true SFH (showing large variations with the line of sight to the galaxy and spurious bursts of star formation), median-likelihood SFHs generated by marginalizing over the default MAGPHYS libraries produce robust estimates of the smoothly varying isolated disc simulation SFHs. This preference for the median-likelihood SFH is quantitatively underlined by our estimates of χ ^2_SFH (analogous to the χ2 goodness-of-fit estimator) and Δ M / M (the integrated absolute mass discrepancy between the model and true SFH) that strongly prefer the median-likelihood SFHs over those that best fit the UV-to-far-IR photometry. In contrast, we are unable to derive a good estimate of the SFH for the merger simulations (either best fit or median likelihood) despite being able to obtain a reasonable fit to the simulated photometry, likely because the analytic SFHs with bursts superposed in the standard MAGPHYS library are insufficiently general/realistic.

  14. A database of frequency distributions of energy depositions in small-size targets by electrons and ions.

    PubMed

    Nikjoo, H; Uehara, S; Emfietzoglou, D; Pinsky, L

    2011-02-01

    Linear energy transfer (LET) is an average quantity, which cannot display the stochastics of the interactions of radiation tracks in the target volume. For this reason, microdosimetry distributions have been defined to overcome the LET shortcomings. In this paper, model calculations of frequency distributions for energy depositions in nanometre size targets, diameters 1-100 nm, and for a 1 μm diameter wall-less TEPC, for electrons, protons, alpha particles and carbon ions are reported. Frequency distributions for energy depositions in small-size targets with dimensions similar to those of biological molecules are useful for modelling and calculations of DNA damage. Monte Carlo track structure codes KURBUC and PITS99 were used to generate tracks of primary electrons 10 eV to 1 MeV, and ions 1 keV µm(-1) to 300 MeV µm(-1) energies. Distribution of absolute frequencies of energy depositions in volumes with diameters of 1-100 nm randomly positioned in unit density water irradiated with 1 Gy of the given radiation was obtained. Data are presented for frequency of energy depositions and microdosimetry quantities including mean lineal energy, dose mean lineal energy, frequency mean specific energy and dose mean specific energy. The modelling and calculations presented in this work are useful for characterisation of the quality of radiation beam in biophysical studies and in radiation therapy.

  15. Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale.

    PubMed

    Carvalho, Nathalia F; Pliego, Josefredo R

    2015-10-28

    Absolute single-ion solvation free energy is a very useful property for understanding solution phase chemistry. The real solvation free energy of an ion depends on its interaction with the solvent molecules and on the net potential inside the solute cavity. The tetraphenyl arsonium-tetraphenyl borate (TATB) assumption as well as the cluster-continuum quasichemical theory (CC-QCT) approach for Li(+) solvation allows access to a solvation scale excluding the net potential. We have determined this free energy scale investigating the solvation of the lithium ion in water (H2O), acetonitrile (CH3CN) and dimethyl sulfoxide (DMSO) solvents via the CC-QCT approach. Our calculations at the MP2 and MP4 levels with basis sets up to the QZVPP+diff quality, and including solvation of the clusters and solvent molecules by the dielectric continuum SMD method, predict the solvation free energy of Li(+) as -116.1, -120.6 and -123.6 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively (1 mol L(-1) standard state). These values are compatible with the solvation free energy of the proton of -253.4, -253.2 and -261.1 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively. Deviations from the experimental TATB scale are only 1.3 kcal mol(-1) in H2O and 1.8 kcal mol(-1) in DMSO solvents. However, in the case of CH3CN, the deviation reaches a value of 9.2 kcal mol(-1). The present study suggests that the experimental TATB scale is inconsistent for CH3CN. A total of 125 values of the solvation free energy of ions in these three solvents were obtained. These new data should be useful for the development of theoretical solvation models.

  16. Spectral Energy Distributions of Quasars and AGN

    NASA Astrophysics Data System (ADS)

    Wilkes, B.

    2004-06-01

    Active Galactic Nuclei (AGN) are multiwavelength emitters. To have any hope of understanding them, or even to determine their energy output, we must observe them in multiple wavebands using many telescopes. I will review what we have learned from broad-band observations of relatively bright, low-redshift AGN over the past ˜ 15 years. AGN can be found at all wavelengths but each provides a different view of the intrinsic population, often with little overlap between samples selected in different wavebands. I look forward to the full view of the intrinsic population which we will obtain over the next few years with surveys using today's new, sensitive observatories. These surveys are already finding enough new and different AGN candidates to pose the question ``What IS an AGN?".

  17. An energy decomposition analysis for intermolecular interactions from an absolutely localized molecular orbital reference at the coupled-cluster singles and doubles level

    SciTech Connect

    Azar, R. Julian; Head-Gordon, Martin

    2012-01-14

    We propose a wave function-based method for the decomposition of intermolecular interaction energies into chemically-intuitive components, isolating both mean-field- and explicit correlation-level contributions. We begin by solving the locally-projected self-consistent field for molecular interactions equations for a molecular complex, obtaining an intramolecularly polarized reference of self-consistently optimized, absolutely-localized molecular orbitals (ALMOs), determined with the constraint that each fragment MO be composed only of atomic basis functions belonging to its own fragment. As explicit inter-electronic correlation is integral to an accurate description of weak forces underlying intermolecular interaction potentials, namely, coordinated fluctuations in weakly interacting electronic densities, we add dynamical correlation to the ALMO polarized reference at the coupled-cluster singles and doubles level, accounting for explicit dispersion and charge-transfer effects, which map naturally onto the cluster operator. We demonstrate the stability of energy components with basis set extension, follow the hydrogen bond-breaking coordinate in the C{sub s}-symmetry water dimer, decompose the interaction energies of dispersion-bound rare gas dimers and other van der Waals complexes, and examine charge transfer-dominated donor-acceptor interactions in borane adducts. We compare our results with high-level calculations and experiment when possible.

  18. An energy decomposition analysis for intermolecular interactions from an absolutely localized molecular orbital reference at the coupled-cluster singles and doubles level.

    PubMed

    Azar, R Julian; Head-Gordon, Martin

    2012-01-14

    We propose a wave function-based method for the decomposition of intermolecular interaction energies into chemically-intuitive components, isolating both mean-field- and explicit correlation-level contributions. We begin by solving the locally-projected self-consistent field for molecular interactions equations for a molecular complex, obtaining an intramolecularly polarized reference of self-consistently optimized, absolutely-localized molecular orbitals (ALMOs), determined with the constraint that each fragment MO be composed only of atomic basis functions belonging to its own fragment. As explicit inter-electronic correlation is integral to an accurate description of weak forces underlying intermolecular interaction potentials, namely, coordinated fluctuations in weakly interacting electronic densities, we add dynamical correlation to the ALMO polarized reference at the coupled-cluster singles and doubles level, accounting for explicit dispersion and charge-transfer effects, which map naturally onto the cluster operator. We demonstrate the stability of energy components with basis set extension, follow the hydrogen bond-breaking coordinate in the C(s)-symmetry water dimer, decompose the interaction energies of dispersion-bound rare gas dimers and other van der Waals complexes, and examine charge transfer-dominated donor-acceptor interactions in borane adducts. We compare our results with high-level calculations and experiment when possible.

  19. An energy decomposition analysis for intermolecular interactions from an absolutely localized molecular orbital reference at the coupled-cluster singles and doubles level

    NASA Astrophysics Data System (ADS)

    Azar, R. Julian; Head-Gordon, Martin

    2012-01-01

    We propose a wave function-based method for the decomposition of intermolecular interaction energies into chemically-intuitive components, isolating both mean-field- and explicit correlation-level contributions. We begin by solving the locally-projected self-consistent field for molecular interactions equations for a molecular complex, obtaining an intramolecularly polarized reference of self-consistently optimized, absolutely-localized molecular orbitals (ALMOs), determined with the constraint that each fragment MO be composed only of atomic basis functions belonging to its own fragment. As explicit inter-electronic correlation is integral to an accurate description of weak forces underlying intermolecular interaction potentials, namely, coordinated fluctuations in weakly interacting electronic densities, we add dynamical correlation to the ALMO polarized reference at the coupled-cluster singles and doubles level, accounting for explicit dispersion and charge-transfer effects, which map naturally onto the cluster operator. We demonstrate the stability of energy components with basis set extension, follow the hydrogen bond-breaking coordinate in the Cs-symmetry water dimer, decompose the interaction energies of dispersion-bound rare gas dimers and other van der Waals complexes, and examine charge transfer-dominated donor-acceptor interactions in borane adducts. We compare our results with high-level calculations and experiment when possible.

  20. Absolute solvation free energy of Li{sup +} and Na{sup +} ions in dimethyl sulfoxide solution: A theoretical ab initio and cluster-continuum model study

    SciTech Connect

    Westphal, Eduard; Pliego, Josefredo R. Jr.

    2005-08-15

    The solvation of the lithium and sodium ions in dimethyl sulfoxide solution was theoretically investigated using ab initio calculations coupled with the hybrid cluster-continuum model, a quasichemical theory of solvation. We have investigated clusters of ions with up to five dimethyl sulfoxide (DMSO) molecules, and the bulk solvent was described by a dielectric continuum model. Our results show that the lithium and sodium ions have four and five DMSO molecules into the first coordination shell, and the calculated solvation free energies are -135.5 and -108.6 kcal mol{sup -1}, respectively. These data suggest a solvation free energy value of -273.2 kcal mol{sup -1} for the proton in dimethyl sulfoxide solution, a value that is more negative than the present uncertain experimental value. This and previous studies on the solvation of ions in water solution indicate that the tetraphenylarsonium tetraphenylborate assumption is flawed and the absolute value of the free energy of transfer of ions from water to DMSO solution is higher than the present experimental values.

  1. A whole-path importance-sampling scheme for Feynman path integral calculations of absolute partition functions and free energies.

    PubMed

    Mielke, Steven L; Truhlar, Donald G

    2016-01-21

    Using Feynman path integrals, a molecular partition function can be written as a double integral with the inner integral involving all closed paths centered at a given molecular configuration, and the outer integral involving all possible molecular configurations. In previous work employing Monte Carlo methods to evaluate such partition functions, we presented schemes for importance sampling and stratification in the molecular configurations that constitute the path centroids, but we relied on free-particle paths for sampling the path integrals. At low temperatures, the path sampling is expensive because the paths can travel far from the centroid configuration. We now present a scheme for importance sampling of whole Feynman paths based on harmonic information from an instantaneous normal mode calculation at the centroid configuration, which we refer to as harmonically guided whole-path importance sampling (WPIS). We obtain paths conforming to our chosen importance function by rejection sampling from a distribution of free-particle paths. Sample calculations on CH4 demonstrate that at a temperature of 200 K, about 99.9% of the free-particle paths can be rejected without integration, and at 300 K, about 98% can be rejected. We also show that it is typically possible to reduce the overhead associated with the WPIS scheme by sampling the paths using a significantly lower-order path discretization than that which is needed to converge the partition function.

  2. Distributed Sensor Coordination for Advanced Energy Systems

    SciTech Connect

    Tumer, Kagan

    2013-07-31

    The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control decisions to significantly improve both the quality/relevance of the collected data and the associating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as advanced energy systems, where crucial decisions may need to be reached quickly and locally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination routines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shifting the focus

  3. Distributed energy store powered railguns for hypervelocity launch

    NASA Astrophysics Data System (ADS)

    Maas, Brian L.; Bauer, David P.; Marshall, Richard A.

    1993-01-01

    Highly distributed power supplies are proposed as a basis for current difficulties with hypervelocity railgun power-supply compactness. This distributed power supply configuration reduces rail-to-rail voltage behind the main armature, thereby reducing the tendency for secondary armature current formation; secondary current elimination is essential for achieving the efficiencies associated with muzzle velocity above 6 km/sec. Attention is given to analytical and experimental results for two distributed energy storage schemes.

  4. Distributed sensor coordination for advanced energy systems

    SciTech Connect

    Tumer, Kagan

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor

  5. Recent Ion Energy Distribution Observations on MST RFP Plasmas

    NASA Astrophysics Data System (ADS)

    Clark, Jerry; Titus, J. B.; Mezonlin, E. D.; Johnson, J. A., III; Almagri, A. F.; Andeson, J. A.

    2015-11-01

    Ion energy distribution and temperature measurements have been made on the Madison Symmetric Torus (MST) using the Florida A&M University compact neutral particle analyzer (CNPA). The CNPA is a low energy (0.34-5.2 keV), high energy resolution (25 channels) neutral particle analyzer, with a radial view on MST. Recently, a retarding potential system was built to allow CNPA measurements to ensemble a complete ion energy distribution with high-energy resolution, providing insight into the dynamics of the bulk and fast ion populations. Recent work has also been done to improve the analysis techniques used to infer the ion temperature measurements, allowing us to understand temperature dynamics better during global magnetic reconnection events. Work supported in part by grants to FAMU and to UW from NSF and from Fusion Energy Sciences at DOE.

  6. Electric power processing, distribution, management and energy storage

    NASA Technical Reports Server (NTRS)

    Giudici, R. J.

    1980-01-01

    Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.

  7. Optimal Operation of Energy Storage in Power Transmission and Distribution

    NASA Astrophysics Data System (ADS)

    Akhavan Hejazi, Seyed Hossein

    In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider

  8. Independent-Trajectory Thermodynamic Integration: a practical guide to protein-drug binding free energy calculations using distributed computing.

    PubMed

    Lawrenz, Morgan; Baron, Riccardo; Wang, Yi; McCammon, J Andrew

    2012-01-01

    The Independent-Trajectory Thermodynamic Integration (IT-TI) approach for free energy calculation with distributed computing is described. IT-TI utilizes diverse conformational sampling obtained from multiple, independent simulations to obtain more reliable free energy estimates compared to single TI predictions. The latter may significantly under- or over-estimate the binding free energy due to finite sampling. We exemplify the advantages of the IT-TI approach using two distinct cases of protein-ligand binding. In both cases, IT-TI yields distributions of absolute binding free energy estimates that are remarkably centered on the target experimental values. Alternative protocols for the practical and general application of IT-TI calculations are investigated. We highlight a protocol that maximizes predictive power and computational efficiency.

  9. Parallel Harmony Search Based Distributed Energy Resource Optimization

    SciTech Connect

    Ceylan, Oguzhan; Liu, Guodong; Tomsovic, Kevin

    2015-01-01

    This paper presents a harmony search based parallel optimization algorithm to minimize voltage deviations in three phase unbalanced electrical distribution systems and to maximize active power outputs of distributed energy resources (DR). The main contribution is to reduce the adverse impacts on voltage profile during a day as photovoltaics (PVs) output or electrical vehicles (EVs) charging changes throughout a day. The IEEE 123- bus distribution test system is modified by adding DRs and EVs under different load profiles. The simulation results show that by using parallel computing techniques, heuristic methods may be used as an alternative optimization tool in electrical power distribution systems operation.

  10. Measurement of parallel ion energy distribution function in PISCES plasma

    SciTech Connect

    Tynan, G.R.; Goebel, D.M.; Conn, R.W.

    1987-08-01

    The PISCES facility is used to conduct controlled plasma-surface interaction experiments. Plasma parameters typical of those found in the edge plasmas of major fusion confinement experiments are produced. In this work, the energy distribution of the ion flux incident on a material surface is measured using a gridded energy analyzer in place of a material sample. The full width at half maximum energy distribution of the ion flux is found to vary from 10 eV to 30 eV both hydrogen and deuterium plasmas. Helium plasmas have a much lower FWHM energy spread than hydrogen and deuterium plasmas. The FWHM ion energy spread is found to be linearly related to the electron temperature. The most probable ion energy is found to be linearly related to the bias applied to the energy analyzer. Other plasma parameters have a weak influence upon the energy distribution of the ion flux. Two possible physical mechanisms for producing the observed results are introduced and suggestions for further work are made. The impact of the reported measurements on the materials experiments conducted in the PISCES facility are discussed and recommendations for future experiments are made. 11 refs., 13 figs.

  11. Absolutely classical spin states

    NASA Astrophysics Data System (ADS)

    Bohnet-Waldraff, F.; Giraud, O.; Braun, D.

    2017-01-01

    We introduce the concept of "absolutely classical" spin states, in analogy to absolutely separable states of bipartite quantum systems. Absolutely classical states are states that remain classical (i.e., a convex sum of projectors on coherent states of a spin j ) under any unitary transformation applied to them. We investigate the maximal size of the ball of absolutely classical states centered on the maximally mixed state and derive a lower bound for its radius as a function of the total spin quantum number. We also obtain a numerical estimate of this maximal radius and compare it to the case of absolutely separable states.

  12. Coordinated Optimization of Distributed Energy Resources and Smart Loads in Distribution Systems

    SciTech Connect

    Yang, Rui; Zhang, Yingchen

    2016-11-14

    Distributed energy resources (DERs) and smart loads have the potential to provide flexibility to the distribution system operation. A coordinated optimization approach is proposed in this paper to actively manage DERs and smart loads in distribution systems to achieve the optimal operation status. A three-phase unbalanced Optimal Power Flow (OPF) problem is developed to determine the output from DERs and smart loads with respect to the system operator's control objective. This paper focuses on coordinating PV systems and smart loads to improve the overall voltage profile in distribution systems. Simulations have been carried out in a 12-bus distribution feeder and results illustrate the superior control performance of the proposed approach.

  13. Coordinated Optimization of Distributed Energy Resources and Smart Loads in Distribution Systems: Preprint

    SciTech Connect

    Yang, Rui; Zhang, Yingchen

    2016-08-01

    Distributed energy resources (DERs) and smart loads have the potential to provide flexibility to the distribution system operation. A coordinated optimization approach is proposed in this paper to actively manage DERs and smart loads in distribution systems to achieve the optimal operation status. A three-phase unbalanced Optimal Power Flow (OPF) problem is developed to determine the output from DERs and smart loads with respect to the system operator's control objective. This paper focuses on coordinating PV systems and smart loads to improve the overall voltage profile in distribution systems. Simulations have been carried out in a 12-bus distribution feeder and results illustrate the superior control performance of the proposed approach.

  14. Lower and upper bounds for the absolute free energy by the hypothetical scanning Monte Carlo method: application to liquid argon and water.

    PubMed

    White, Ronald P; Meirovitch, Hagai

    2004-12-08

    The hypothetical scanning (HS) method is a general approach for calculating the absolute entropy S and free energy F by analyzing Boltzmann samples obtained by Monte Carlo or molecular dynamics techniques. With HS applied to a fluid, each configuration i of the sample is reconstructed by gradually placing the molecules in their positions at i using transition probabilities (TPs). At each step of the process the system is divided into two parts, the already treated molecules (the "past"), which are fixed, and the as yet unspecified (mobile) "future" molecules. Obtaining the TP exactly requires calculating partition functions over all positions of the future molecules in the presence of the frozen past, thus it is customary to invoke various approximations to best represent these quantities. In a recent publication [Proc. Natl. Acad. Sci. USA 101, 9235 (2004)] we developed a version of HS called complete HSMC, where each TP is calculated from an MC simulation involving all of the future molecules (the complete future); the method was applied very successfully to Lennard-Jones systems (liquid argon) and a box of TIP3P water molecules. In its basic implementation the method provides lower and upper bounds for F, where the latter can be evaluated only for relatively small systems. Here we introduce a new expression for an upper bound, which can be evaluated for larger systems. We also propose a new exact expression for F and verify its effectiveness. These free energy functionals lead to significantly improved accuracy (as applied to the liquid systems above) which is comparable to our thermodynamic integration results. We formalize and discuss theoretical aspects of HSMC that have not been addressed in previous studies. Additionally, several functionals are developed and shown to provide the free energy through the analysis of a single configuration.

  15. Energy distribution asymmetry of electron precipitation signatures at Mars

    NASA Astrophysics Data System (ADS)

    Soobiah, Y. I. J.; Barabash, S.; Nilsson, H.; Stenberg, G.; Lundin, R.; Coates, A. J.; Winningham, J. D.; Frahm, R. A.

    2013-02-01

    The different types of asymmetry observed in the energy distributions of electrons and heavy-ions (M/Q=16-44) during signatures of electron precipitation in the Martian ionosphere have been classified. This has been achieved using the space plasma instrumentation of MEX ASPERA-3 from peri-centre altitude to 2200 km. ASPERA-3 ELS observes signatures of electron precipitation on 43.0% of MEX orbits. Unaccelerated electrons in the form of sudden electron flux enhancements are the most common type of electron precipitation signature at Mars and account for ∼70% of the events observed in this study. Electrons that form unaccelerated electron precipitation signatures are either local ionospheric electrons with enhanced density, or electrons transported from another region of ionosphere, solar wind or tail, or a combination of local and transported electrons. The heating of electrons has a strong influence on the shape of most electron energy spectra from accelerated precipitation signatures. On most occasions the general flow of heavy-ions away from Mars is unchanged during the precipitation of electrons, which is thought to be the result of the finite gyroradius effect of the heavy-ions on crustal magnetic field lines. Only ∼17% of events show some form of heavy-ion acceleration that is either concurrent or at the periphery of an electron precipitation signature. The most common combination of electron and heavy-ion energy distributions for signatures of electron precipitation involves electrons that visually have very little asymmetry or are isotropic and heavy-ions that have a upward net flux, and suggest the upward current associated with aurora. Due to a lack of reliable measurements of electrons travelling towards Mars, it is likely we miss further evidence of upward currents. The second most common combination of electron and heavy-ion energy distributions for signatures of electron precipitation, are those distributions of electrons that are asymmetric and

  16. Energy distribution of nanoflares in the quiet solar corona

    NASA Astrophysics Data System (ADS)

    Ulyanov, Artyom

    2012-07-01

    We present a detailed statistical analysis of flare-like events in low layer of solar corona detected with TESIS instrument onboard CORONAS-PHOTON satellite in 171 {Å} during high-cadence (5 sec) time-series. The estimated thermal energies of these small events amount to 10^{23} - 10^{26} erg. According to modern classification flare-like events with such energies are usually referred to as nanoflares. The big number of registered events (above 2000) allowed us to obtain precise distributions of geometric and physical parameters of nanoflares, the most intriguing being energy distribution. Following Aschwanden et al. (2000) and other authors we approximated the calculated energy distribution with a single power law slope: N(E)dE ˜ N^{-α}dE. The power law index was derived to be α = 2.4 ± 0.2, which is very close to the value reported by Krucker & Benz (1998): α ≈ 2.3 - 2.4. The total energy input from registered events constitute about 10^4 erg \\cdot cm^{-2} \\cdot s^{-1}, which is well beyond net losses in quiet corona (3 \\cdot 10^5 erg \\cdot cm^{-2} \\cdot s^{-1}). However, the value of α > 2 indicates that nanoflares with lower energies dominate over nanoflares with bigger energies and could contribute considerably to quiet corona heating.

  17. Energy distributions of sputtered copper neutrals and ions

    NASA Technical Reports Server (NTRS)

    Lundquist, T. R.

    1978-01-01

    Direct quantitative analysis of surfaces by secondary ion mass spectrometry will depend on an understanding of the yield ratio of ions to neutrals. This ratio as a function of the energy of the sputtered particles has been obtained for a clean polycrystalline copper surface sputtered by 1000-3000 eV Ar(+). The energy distributions of both neutral and ionized copper were measured with a retarding potential analyzer using potential modulation differentiation and signal averaging. The maximum for both distributions is identical and occurs near 2.5 eV. The energy distributions of neutrals is more sharply peaked than that of the ions, presumably as a consequence of more efficient nutralization of slow escaping ions by the mobile electrons of copper. The ion-neutral ratio is compared with results from various ionization models.

  18. Radial Distribution of Electron Spectra from High-Energy Ions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.

    1998-01-01

    The average track model describes the response of physical and biological systems using radial dose distribution as the key physical descriptor. We report on an extension of this model to describe the average distribution of electron spectra as a function of radial distance from an ion. We present calculations of these spectra for ions of identical linear energy transfer (LET), but dissimilar charge and velocity to evaluate the differences in electron spectra from these ions. To illustrate the usefulness of the radial electron spectra for describing effects that are not described by electron dose, we consider the evaluation of the indirect events in microdosimetric distributions for ions. We show that folding our average electron spectra model with experimentally determined frequency distributions for photons or electrons provides a good representation of radial event spectra from high-energy ions in 0.5-2 micrometer sites.

  19. High-energy tail distributions and resonant wave particle interaction

    NASA Technical Reports Server (NTRS)

    Leubner, M. P.

    1983-01-01

    High-energy tail distributions (k distributions) are used as an alternative to a bi-Lorentzian distribution to study the influence of energetic protons on the right- and left-hand cyclotron modes in a hot two-temperature plasma. Although the parameters are chosen to be in a range appropriate to solar wind or magnetospheric configurations, the results apply not only to specific space plasmas. The presence of energetic particles significantly alters the behavior of the electromagnetic ion cyclotron modes, leading to a wide range of unstable frequencies and increased growth rates. From the strongly enhanced growth rates it can be concluded that high-energy tail distributions should not show major temperature anisotropies, which is consistent with observations.

  20. Energy Distributions and spectra of Orion B stars

    NASA Technical Reports Server (NTRS)

    Schild, R. E.; Chaffee, F.

    1972-01-01

    New MK spectral types and energy distributions are presented for B stars in Orion for which far ultraviolet flux excesses have recently been discovered. Significant differences between HD spectral energy distributions show the Orion late B stars to have smaller Balmer discontinuities than do field stars of the same spectral types. For the late B stars, these effects cause the 1500 A fluxes to be under-estimated by approximately 0.5 mag. No comparable systematic effects were found for the early B stars.

  1. A Petri Net model for distributed energy system

    NASA Astrophysics Data System (ADS)

    Konopko, Joanna

    2015-12-01

    Electrical networks need to evolve to become more intelligent, more flexible and less costly. The smart grid is the next generation power energy, uses two-way flows of electricity and information to create a distributed automated energy delivery network. Building a comprehensive smart grid is a challenge for system protection, optimization and energy efficient. Proper modeling and analysis is needed to build an extensive distributed energy system and intelligent electricity infrastructure. In this paper, the whole model of smart grid have been proposed using Generalized Stochastic Petri Nets (GSPN). The simulation of created model is also explored. The simulation of the model has allowed the analysis of how close the behavior of the model is to the usage of the real smart grid.

  2. A Petri Net model for distributed energy system

    SciTech Connect

    Konopko, Joanna

    2015-12-31

    Electrical networks need to evolve to become more intelligent, more flexible and less costly. The smart grid is the next generation power energy, uses two-way flows of electricity and information to create a distributed automated energy delivery network. Building a comprehensive smart grid is a challenge for system protection, optimization and energy efficient. Proper modeling and analysis is needed to build an extensive distributed energy system and intelligent electricity infrastructure. In this paper, the whole model of smart grid have been proposed using Generalized Stochastic Petri Nets (GSPN). The simulation of created model is also explored. The simulation of the model has allowed the analysis of how close the behavior of the model is to the usage of the real smart grid.

  3. Velocity and energy distributions in microcanonical ensembles of hard spheres

    NASA Astrophysics Data System (ADS)

    Scalas, Enrico; Gabriel, Adrian T.; Martin, Edgar; Germano, Guido

    2015-08-01

    In a microcanonical ensemble (constant N V E , hard reflecting walls) and in a molecular dynamics ensemble (constant N V E PG , periodic boundary conditions) with a number N of smooth elastic hard spheres in a d -dimensional volume V having a total energy E , a total momentum P , and an overall center of mass position G , the individual velocity components, velocity moduli, and energies have transformed beta distributions with different arguments and shape parameters depending on d , N , E , the boundary conditions, and possible symmetries in the initial conditions. This can be shown marginalizing the joint distribution of individual energies, which is a symmetric Dirichlet distribution. In the thermodynamic limit the beta distributions converge to gamma distributions with different arguments and shape or scale parameters, corresponding respectively to the Gaussian, i.e., Maxwell-Boltzmann, Maxwell, and Boltzmann or Boltzmann-Gibbs distribution. These analytical results agree with molecular dynamics and Monte Carlo simulations with different numbers of hard disks or spheres and hard reflecting walls or periodic boundary conditions. The agreement is perfect with our Monte Carlo algorithm, which acts only on velocities independently of positions with the collision versor sampled uniformly on a unit half sphere in d dimensions, while slight deviations appear with our molecular dynamics simulations for the smallest values of N .

  4. A Bio-Based Fuel Cell for Distributed Energy Generation

    SciTech Connect

    Anthony Terrinoni; Sean Gifford

    2008-06-30

    The technology we propose consists primarily of an improved design for increasing the energy density of a certain class of bio-fuel cell (BFC). The BFCs we consider are those which harvest electrons produced by microorganisms during their metabolism of organic substrates (e.g. glucose, acetate). We estimate that our technology will significantly enhance power production (per unit volume) of these BFCs, to the point where they could be employed as stand-alone systems for distributed energy generation.

  5. Thermal electron energy distribution measurements in the ionosphere.

    NASA Technical Reports Server (NTRS)

    Hays, P. B.; Nagy, A. F.

    1973-01-01

    A recoverable payload instrumented for twilight airglow studies was launched by an Aerobee 150 from the White Sands Test Range on Feb. 8, 1971 at 13.56 UT. The payload included a low energy electron spectrometer (HARP) and a cylindrical Langmuir probe. The HARP electron spectrometer is a new device designed to make high resolution differential electron flux measurements. Measurements of ionospheric electron energy distribution in the range from about 0.2 to 4.0 eV are presented.

  6. Studies of influence of energy distribution on the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Sheng, Cheng

    The energy inputs into the upper atmosphere including both solar irradiation and geomagnetic energy can significantly change the upper atmosphere such as the neutral and plasma densities, velocities and temperatures. Therefore, the precise specification of the energy inputs is critical to estimate the ionosphere/thermosphere variation during both quiet and storm times. In order to improve the understanding of the energy distribution and its influence at high latitudes, specifically, we have conducted the following studies. (1) Estimation of the altitudinal distribution of Joule heating from COSMIC observations. Joule heating is the most significant way to dissipate geomagnetic energy at high latitudes. But the altitudinal distribution of Joule heating has not been studied in detail. Based on the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations from 2008 to 2011, the height-integrated Pedersen conductivities in both E (100-150 km) and F (150-600 km) regions and their ratio lambdaP (sumPE/sumPF) have been calculated. The result from data analysis (˜5.5) shows a smaller value than that from model (˜9), which indicates that the energy inputs into the F region may be underestimated in the model. Dependences of the ratio and the conductance in both E and F regions on the solar and geomagnetic activities have been studied as well. (2) The influence of cusp energy on the thermospheric winds has also been studied, through simulating a real event. The Global Ionosphere Thermosphere Model (GITM) has been run in different cases and under different resolutions to investigate the neutral dynamics around the cusp region. The results indicate that the heating added in the cusp causes the change of pressure gradient around the cusp and changes the neutral wind dynamics there. (3) Correlation of Poynting flux and soft particle precipitation in the dayside polar cap boundary regions has been investigated using DMSP satellite measurements

  7. Absolute entropy and free energy of fluids using the hypothetical scanning method. II. Transition probabilities from canonical Monte Carlo simulations of partial systems

    NASA Astrophysics Data System (ADS)

    White, Ronald P.; Meirovitch, Hagai

    2003-12-01

    A variant of the hypothetical scanning (HS) method for calculating the absolute entropy and free energy of fluids is developed, as applied to systems of Lennard-Jones atoms (liquid argon). As in the preceding paper (Paper I), a probability Pi approximating the Boltzmann probability of system configuration i, is calculated with a reconstruction procedure based on adding the atoms gradually to an initially empty volume, where they are placed in their positions at i; in this process the volume is divided into cubic cells, which are visited layer-by-layer, line-by-line. At each step a transition probability (TP) is calculated and the product of all the TPs leads to Pi. At step k, k-1 cells have already been treated, where among them Nk are occupied by an atom. A canonical metropolis Monte Carlo (MC) simulation is carried out over a portion of the still unvisited (future) volume thus providing an approximate representation of the N-Nk as yet untreated (future) atoms. The TP of target cell k is determined from the number of visits of future atoms to this cell during the simulation. This MC version of HS, called HSMC, is based on a relatively small number of efficiency parameters; their number does not grow and their values are not changed as the number of the treated future atoms is increased (i.e., as the approximation improves); therefore, implementing HSMC for a relatively large number of future atoms (up to 40 in this study) is straightforward. Indeed, excellent results have been obtained for the free energy and the entropy.

  8. Energy and enthalpy distribution functions for a few physical systems.

    PubMed

    Wu, K L; Wei, J H; Lai, S K; Okabe, Y

    2007-08-02

    The present work is devoted to extracting the energy or enthalpy distribution function of a physical system from the moments of the distribution using the maximum entropy method. This distribution theory has the salient traits that it utilizes only the experimental thermodynamic data. The calculated distribution functions provide invaluable insight into the state or phase behavior of the physical systems under study. As concrete evidence, we demonstrate the elegance of the distribution theory by studying first a test case of a two-dimensional six-state Potts model for which simulation results are available for comparison, then the biphasic behavior of the binary alloy Na-K whose excess heat capacity, experimentally observed to fall in a narrow temperature range, has yet to be clarified theoretically, and finally, the thermally induced state behavior of a collection of 16 proteins.

  9. Exploring Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Souhern California Edison Service Territory

    SciTech Connect

    Stovall, Therese K; Kingston, Tim

    2005-12-01

    Distributed energy (DE) technologies have received much attention for the energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention have been the desires to globally reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and concerns with interconnection on the distribution system. This study assesses the costs and benefits of DE to both consumers and distribution utilities and expands upon a precursory study done with Detroit Edison (DTE)1, by evaluating the combined impact of DE, energy-efficiency, photovoltaics (a use of solar energy), and demand response that will shape the grid of the future. This study was funded by the U.S. Department of Energy (DOE), Gas Research Institute (GRI), American Electric Power (AEP), and Gas Technology Institute's (GTI) Distributed Energy Collaborative Program (DECP). It focuses on two real Southern California Edison (SCE) circuits, a 13 MW suburban circuit fictitiously named Justice on the Lincoln substation, and an 8 MW rural circuit fictitiously named Prosper on the Washington Substation. The primary objectives of the study were threefold: (1) Evaluate the potential for using advanced energy technologies, including DE, energy-efficiency (EE), demand response, electricity storage, and photovoltaics (PV), to reshape electric load curves by reducing peak demand, for real circuits. (2) Investigate the potential impact on guiding technology deployment and managing operation in a way that benefits both utilities and their customers by: (a) Improving grid load factor for utilities; (b) Reducing energy costs for customers; and (c) Optimizing electric demand growth. (3) Demonstrate benefits by reporting on a recently installed advanced energy system at a utility customer site. This

  10. Multi-objective optimal dispatch of distributed energy resources

    NASA Astrophysics Data System (ADS)

    Longe, Ayomide

    This thesis is composed of two papers which investigate the optimal dispatch for distributed energy resources. In the first paper, an economic dispatch problem for a community microgrid is studied. In this microgrid, each agent pursues an economic dispatch for its personal resources. In addition, each agent is capable of trading electricity with other agents through a local energy market. In this paper, a simple market structure is introduced as a framework for energy trades in a small community microgrid such as the Solar Village. It was found that both sellers and buyers benefited by participating in this market. In the second paper, Semidefinite Programming (SDP) for convex relaxation of power flow equations is used for optimal active and reactive dispatch for Distributed Energy Resources (DER). Various objective functions including voltage regulation, reduced transmission line power losses, and minimized reactive power charges for a microgrid are introduced. Combinations of these goals are attained by solving a multiobjective optimization for the proposed ORPD problem. Also, both centralized and distributed versions of this optimal dispatch are investigated. It was found that SDP made the optimal dispatch faster and distributed solution allowed for scalability.

  11. Automated Energy Distribution and Reliability System Status Report

    SciTech Connect

    Buche, D. L.; Perry, S.

    2007-10-01

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects.

  12. Review of Test Facilities for Distributed Energy Resources

    SciTech Connect

    AKHIL,ABBAS ALI; MARNAY,CHRIS; KIPMAN,TIMOTHY

    2003-05-01

    Since initiating research on integration of distributed energy resources (DER) in 1999, the Consortium for Electric Reliability Technology Solutions (CERTS) has been actively assessing and reviewing existing DER test facilities for possible demonstrations of advanced DER system integration concepts. This report is a compendium of information collected by the CERTS team on DER test facilities during this period.

  13. Automated Energy Distribution and Reliability System (AEDR): Final Report

    SciTech Connect

    Buche, D. L.

    2008-07-01

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects.

  14. Energy loss analysis of an integrated space power distribution system

    NASA Technical Reports Server (NTRS)

    Kankam, M. D.; Ribeiro, P. F.

    1992-01-01

    The results of studies related to conceptual topologies of an integrated utility-like space power system are described. The system topologies are comparatively analyzed by considering their transmission energy losses as functions of mainly distribution voltage level and load composition. The analysis is expedited by use of a Distribution System Analysis and Simulation (DSAS) software. This recently developed computer program by the Electric Power Research Institute (EPRI) uses improved load models to solve the power flow within the system. However, present shortcomings of the software with regard to space applications, and incompletely defined characteristics of a space power system make the results applicable to only the fundamental trends of energy losses of the topologies studied. Accountability, such as included, for the effects of the various parameters on the system performance can constitute part of a planning tool for a space power distribution system.

  15. Distributed Frequency Control of Prosumer-Based Electric Energy Systems

    SciTech Connect

    Nazari, MH; Costello, Z; Feizollahi, MJ; Grijalva, S; Egerstedt, M

    2014-11-01

    In this paper, we propose a distributed frequency regulation framework for prosumer-based electric energy systems, where a prosumer (producer-consumer) is defined as an intelligent agentwhich can produce, consume, and/or store electricity. Despite the frequency regulators being distributed, stability can be ensured while avoiding inter-area oscillations using a limited control effort. To achieve this, a fully distributed one-step model-predictive control protocol is proposed and analyzed, whereby each prosumer communicates solely with its neighbors in the network. The efficacy of the proposed frequency regulation framework is shown through simulations on two real-world electric energy systems of different scale and complexity. We show that prosumers can indeed bring frequency and power deviations to their desired values after small perturbations.

  16. Benefits of Power Electronic Interfaces for Distributed Energy Systems

    SciTech Connect

    Kroposki, B.; Pink, C.; DeBlasio, R.; Thomas, H.; Simoes, M.; Sen, P. K.

    2006-01-01

    Optimization of overall electrical system performance is important for the long-term economic viability of distributed energy (DE) systems. With the increasing use of DE systems in industry and its technological advancement, it is becoming more important to understand the integration of these systems with the electric power systems. New markets and benefits for distributed energy applications include the ability to provide ancillary services, improve energy efficiency, enhance power system reliability, and allow customer choice. Advanced power electronic (PE) interfaces will allow DE systems to provide increased functionality through improved power quality and voltage/VAR support, increase electrical system compatibility by reducing the fault contributions, and flexibility in operations with various other DE sources, while reducing overall interconnection costs. This paper examines the system integration and optimization issues associated with DE systems and show the benefits of using PE interfaces for such applications.

  17. Collisionless Plasma Modeling in an Arbitrary Potential Energy Distribution

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.

    1997-01-01

    A new technique for calculating a collisionless plasma along a field line is presented. The primary feature of the new model is that it can handle an arbitrary (including nonmonotonic) potential energy distribution. This was one of the limiting constraints on the existing models in this class, and these constraints are generalized for an arbitrary potential energy composition. The formulation for relating current density to the field-aligned potential as well as formulas for density, temperature and energy flux calculations are presented for several distribution functions, ranging from a bi-Lorentzian with a loss cone to an isotropic Maxwellian. A comparison of these results with previous models shows that the formulation reduces.to the earlier models under similar assumptions.

  18. Far-ultraviolet energy distributions of the metal-poor A stars HD 109995 and HD 161817

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1981-01-01

    Low-resolution IUE spectra at wavelengths between 1300 and 3400 A of the metal-poor stars HD 109995 (A1p) and HD 161817 (A4p) have been compared with model-atmosphere energy distributions computed by Kurucz (1979). Good overall agreement is found. Effective temperatures, metal abundances, and angular diameters could be determined. Assuming an absolute visual magnitude of 0.7, the previously determined gravity log = 3 yields masses of 0.5 solar masses for both stars. It is found that the theoretical UBV colors calculated earlier agree reaonably well with the ones observed for these stars.

  19. Intensity distribution analysis of cathodoluminescence using the energy loss distribution of electrons.

    PubMed

    Fukuta, Masahiro; Inami, Wataru; Ono, Atsushi; Kawata, Yoshimasa

    2016-01-01

    We present an intensity distribution analysis of cathodoluminescence (CL) excited with a focused electron beam in a luminescent thin film. The energy loss distribution is applied to the developed analysis method in order to determine the arrangement of the dipole locations along the path of the electron traveling in the film. Propagating light emitted from each dipole is analyzed with the finite-difference time-domain (FDTD) method. CL distribution near the film surface is evaluated as a nanometric light source. It is found that a light source with 30 nm widths is generated in the film by the focused electron beam. We also discuss the accuracy of the developed analysis method by comparison with experimental results. The analysis results are brought into good agreement with the experimental results by introducing the energy loss distribution.

  20. Energy distribution property and energy coding of a structural neural network

    PubMed Central

    Wang, Ziyin; Wang, Rubin

    2014-01-01

    Studying neural coding through neural energy is a novel view. In this paper, based on previously proposed single neuron model, the correlation between the energy consumption and the parameters of the cortex networks (amount of neurons, coupling strength, and transform delay) under an oscillational condition were researched. We found that energy distribution varies orderly as these parameters change, and it is closely related to the synchronous oscillation of the neural network. Besides, we compared this method with traditional method of relative coefficient, which shows energy method works equal to or better than the traditional one. It is novel that the synchronous activity and neural network parameters could be researched by assessing energy distribution and consumption. Therefore, the conclusion of this paper will refine the framework of neural coding theory and contribute to our understanding of the coding mechanism of the cerebral cortex. It provides a strong theoretical foundation of a novel neural coding theory—energy coding. PMID:24600382

  1. Energy distribution property and energy coding of a structural neural network.

    PubMed

    Wang, Ziyin; Wang, Rubin

    2014-01-01

    Studying neural coding through neural energy is a novel view. In this paper, based on previously proposed single neuron model, the correlation between the energy consumption and the parameters of the cortex networks (amount of neurons, coupling strength, and transform delay) under an oscillational condition were researched. We found that energy distribution varies orderly as these parameters change, and it is closely related to the synchronous oscillation of the neural network. Besides, we compared this method with traditional method of relative coefficient, which shows energy method works equal to or better than the traditional one. It is novel that the synchronous activity and neural network parameters could be researched by assessing energy distribution and consumption. Therefore, the conclusion of this paper will refine the framework of neural coding theory and contribute to our understanding of the coding mechanism of the cerebral cortex. It provides a strong theoretical foundation of a novel neural coding theory-energy coding.

  2. Effect of the electron energy distribution on total energy loss with argon in inductively coupled plasmas

    SciTech Connect

    Kim, June Young; Kim, Young-Cheol; Kim, Yu-Sin; Chung, Chin-Wook

    2015-01-15

    The total energy lost per electron-ion pair lost ε{sub T} is investigated with the electron energy distribution function (EEDF). The EEDFs are measured at various argon powers in RF inductively coupled plasma, and the EEDFs show a depleted distribution (a discontinuity occurring at the minimum argon excitation threshold energy level) with the bulk temperature and the tail temperature. The total energy loss per electron-ion pair lost ε{sub T} is calculated from a power balance model with the Maxwellian EEDFs and the depleted EEDFs and then compared with the measured ε{sub T} from the floating probe. It is concluded that the small population of the depleted high energy electrons dramatically increases the collisional energy loss, and the calculated ε{sub T} from the depleted EEDFs has a value that is similar to the measured ε{sub T}.

  3. Steam distribution and energy delivery optimization using wireless sensors

    SciTech Connect

    Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja; Sukumar, Sreenivas R; Djouadi, Seddik M; Lake, Joe E

    2011-01-01

    The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  4. Coastal zone wind energy. Part I. Synoptic and mesoscale controls and distributions of coastal wind energy

    SciTech Connect

    Garstang, M.; Nnaji, S.; Pielke, R.A.; Gusdorf, J.; Lindsey, C.; Snow, J.W.

    1980-03-01

    This report describes a method of determining coastal wind energy resources. Climatological data and a mesoscale numerical model are used to delineate the available wind energy along the Atlantic and Gulf coasts of the United States. It is found that the spatial distribution of this energy is dependent on the locations of the observing sites in relation to the major synoptic weather features as well as the particular orientation of the coastline with respect to the large-scale wind.

  5. Comparison of Measured Dark Current Distributions with Calculated Damage Energy Distributions in HgCdTe

    NASA Technical Reports Server (NTRS)

    Marshall, C. J.; Marshall, P. W.; Howe, C. L.; Reed, R. A.; Weller, R. A.; Mendenhall, M.; Waczynski, A.; Ladbury, R.; Jordan, T. M.

    2007-01-01

    This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distributions were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [1]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Carlo code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. While the nuclear elastic component (also calculated using the MCNPX) contributes only a small fraction of the total nonionizing damage energy, its inclusion in the shape of the damage across the array is significant. The Coulombic contribution was calculated using MRED [3-5], a Geant4 [4,6] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.

  6. Electron energy distribution produced by beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Anderson, H. R.; Gordeuk, J.; Jost, R. J.

    1982-01-01

    In an investigation of a beam-plasma discharge (BPD), the electron energy distribution of an electron beam moving through a partially ionized gas is analyzed. Among other results, it is found that the occurrence of BPD heats the initially cold electron beam from the accelerator. The directional intensity of electrons measured outside the beam core indicates that most particles suffer a single scattering in energy and pitch angle. At low currents this result is expected as beam particles collide with the neutral atmosphere, while in BPD the majority of particles is determined to still undergo a single scattering near the original beam core. The extended energy spectra at various beam currents show two rather distinct plasma populations, one centered at the initial beam energy (approximately 1500 eV) and the other at approximately 150 eV.

  7. On Measuring Cosmic Ray Energy Spectra with the Rapidity Distributions

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J.; Chilingarian, A.; Drury, L.; Egorov, N.; Golubkov, S.; Korotkova, N.; Panasyuk, M.; Podorozhnyi, D.; Procqureur, J.

    2000-01-01

    An important goal of cosmic ray research is to measure the elemental energy spectra of galactic cosmic rays up to 10(exp 16) eV. This goal cannot be achieved with an ionization calorimeter because the required instrument is too massive for space flight. An alternate method will be presented. This method is based on measuring the primary particle energy by determining the angular distribution of secondaries produced in a target layer. The proposed technique can be used over a wide range of energies (10 (exp 11) -10 (exp 16) eV) and gives an energy resolution of 60% or better. Based on this technique, a conceptual design for a new instrument (KLEM) will be presented. Due to its light weight, this instrument can have a large aperture enabling the direct measurement of cosmic rays to 1016 eV.

  8. Energy management and control of active distribution systems

    NASA Astrophysics Data System (ADS)

    Shariatzadeh, Farshid

    Advancements in the communication, control, computation and information technologies have driven the transition to the next generation active power distribution systems. Novel control techniques and management strategies are required to achieve the efficient, economic and reliable grid. The focus of this work is energy management and control of active distribution systems (ADS) with integrated renewable energy sources (RESs) and demand response (DR). Here, ADS mean automated distribution system with remotely operated controllers and distributed energy resources (DERs). DER as active part of the next generation future distribution system includes: distributed generations (DGs), RESs, energy storage system (ESS), plug-in hybrid electric vehicles (PHEV) and DR. Integration of DR and RESs into ADS is critical to realize the vision of sustainability. The objective of this dissertation is the development of management architecture to control and operate ADS in the presence of DR and RES. One of the most challenging issues for operating ADS is the inherent uncertainty of DR and RES as well as conflicting objective of DER and electric utilities. ADS can consist of different layers such as system layer and building layer and coordination between these layers is essential. In order to address these challenges, multi-layer energy management and control architecture is proposed with robust algorithms in this work. First layer of proposed multi-layer architecture have been implemented at the system layer. Developed AC optimal power flow (AC-OPF) generates fair price for all DR and non-DR loads which is used as a control signal for second layer. Second layer controls DR load at buildings using a developed look-ahead robust controller. Load aggregator collects information from all buildings and send aggregated load to the system optimizer. Due to the different time scale at these two management layers, time coordination scheme is developed. Robust and deterministic controllers

  9. Internal energy distributions from nitrogen dioxide fluorescence. 2. Collisional energy transfer from excited nitrogen dioxide

    SciTech Connect

    Patten, K.O. Jr.; Johnston, H.S. Lawrence Berkeley Lab., CA )

    1993-09-30

    We follow the collisional deactivation of laser-excited nitrogen dioxide through its dispersed fluorescence. The energy acceptor gases are NO[sub 2] at four excitation energies ranging from 18828 to 24989 cm[sup [minus]1] and five monatomic gases, four diatomic gases, and three polyatomic gases with 18828-cm[sup [minus]1] excitation energy. The nominal products are the shapes of the internal energy distributions, which are obtained and plotted for several representative cases. From these distributions, the first three moments of the internal energy distributions are derived as a function of molecular collisions and tabulated as (i) the average internal energy, (ii) energy spread, and (iii) skewness. These quantities are plotted against c(M)t, the product of buffer gas concentration c(M) and delay time after laser excitation t(0.5-2 [mu]s), which is a quantity proportional to number of collisions. The negative slope of average energy vs c(M)t is the macroscopic energy-transfer rate constant, k[sub [epsilon

  10. Initial energy and perihelion distributions of Oort-cloud comets

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.

    1977-01-01

    A Monte Carlo model of stellar perturbations of the Oort cloud is used to study the distributions in energy and perihelion of comets entering the planetary region for the first time. The model is run for a variety of initial states and a range of velocity perturbations. In all cases the resulting orbits are uniformly distributed in perihelion distance in the planetary region, q less than 20 AU. Most orbits are confined to a fairly narrow range in 1/a and hyperbolic orbits are rare.

  11. Comparison of Measured Leakage Current Distributions with Calculated Damage Energy Distributions in HgCdTe

    NASA Technical Reports Server (NTRS)

    Marshall, C. J.; Ladbury, R.; Marshall, P. W.; Reed, R. A.; Howe, C.; Weller, B.; Mendenhall, M.; Waczynski, A.; Jordan, T. M.; Fodness, B.

    2006-01-01

    This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distribution were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [I]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Car10 code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. The nuclear elastic component (also calculated using the MCNPX) has a negligible effect on the shape of the damage distribution. The Coulombic contribution was calculated using MRED [3,4], a Geant4 [4,5] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.

  12. Size and energy distributions of interplanetary magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Feng, H. Q.; Wu, D. J.; Chao, J. K.

    2007-02-01

    In observations from 1995 to 2001 from the Wind spacecraft, 144 interplanetary magnetic flux ropes were identified in the solar wind around 1 AU. Their durations vary from tens of minutes to tens of hours. These magnetic flux ropes include many small- and intermediate-sized structures and display a continuous distribution in size. Energies of these flux ropes are estimated and it is found that the distribution of their energies is a good power law spectrum with an index ~-0.87. The possible relationship between them and solar eruptions is discussed. It is suggested that like interplanetary magnetic clouds are interplanetary coronal mass ejections, the small- and intermediate-sized interplanetary magnetic flux ropes are the interplanetary manifestations of small coronal mass ejections produced in small solar eruptions. However, these small coronal mass ejections are too weak to appear clearly in the coronagraph observations as an ordinary coronal mass ejection.

  13. Detecting energy dependent neutron capture distributions in a liquid scintillator

    NASA Astrophysics Data System (ADS)

    Balmer, Matthew J. I.; Gamage, Kelum A. A.; Taylor, Graeme C.

    2015-03-01

    A novel technique is being developed to estimate the effective dose of a neutron field based on the distribution of neutron captures in a scintillator. Using Monte Carlo techniques, a number of monoenergetic neutron source energies and locations were modelled and their neutron capture response was recorded. Using back propagation Artificial Neural Networks (ANN) the energy and incident direction of the neutron field was predicted from the distribution of neutron captures within a 6Li-loaded liquid scintillator. Using this proposed technique, the effective dose of 252Cf, 241AmBe and 241AmLi neutron fields was estimated to within 30% for four perpendicular angles in the horizontal plane. Initial theoretical investigations show that this technique holds some promise for real-time estimation of the effective dose of a neutron field.

  14. Energy distribution monitoring of the T Tauri star RU LUPI

    NASA Astrophysics Data System (ADS)

    Giovannelli, F.; Vittone, A. A.; Errico, L.; Rossi, C.

    Simultaneous UV, optical and IR energy distributions of RU Lupi are presented for the period 1984-1986. The observations were obtained with the IUE satellite and optical and IR telescopes. Variations are detected in UV and optical regions. In addition, a large flare was observed on June 30, 1986. The results agree with those of Gahm et al. (1974) and suggest that the main cause of variability in RU Lupi is strong activity in the star's surface layers.

  15. Secondary emission effects on spacecraft charging: Energy distribution considerations

    NASA Technical Reports Server (NTRS)

    Sanders, N. L.; Inouye, G. T.

    1979-01-01

    The conditions under which multiple valued solutions occur by computing the floating potential of an isolated eclipses surface on a geosynchronous orbit spacecraft were examined. Different approximations for the electron spectra during a geomagnetic substorm were used. The result indicates that if the incident electron flux has a Maxwellian energy distribution, the ratio of the secondary emitted current to the incident electron current is independent of the spacecraft potential. In this case a single value solution to the current equation occurs.

  16. 10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... distribution transformers. 431.193 Section 431.193 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Test Procedures § 431.193 Test procedures for measuring energy consumption of distribution transformers. The...

  17. 10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... distribution transformers. 431.193 Section 431.193 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Test Procedures § 431.193 Test procedures for measuring energy consumption of distribution transformers. The...

  18. 10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... distribution transformers. 431.193 Section 431.193 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Test Procedures § 431.193 Test procedures for measuring energy consumption of distribution transformers. The...

  19. 10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... distribution transformers. 431.193 Section 431.193 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Test Procedures § 431.193 Test procedures for measuring energy consumption of distribution transformers. The...

  20. 10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... distribution transformers. 431.193 Section 431.193 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Test Procedures § 431.193 Test procedures for measuring energy consumption of distribution transformers. The...

  1. A Detailed Level Kinetics Model of NO Vibrational Energy Distributions

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Gilmore, John; Cavolowsky, John A. (Technical Monitor)

    1996-01-01

    Several contemporary problems have pointed to the desirability of a detailed level kinetics approach to modeling the distribution of vibrational energy in NO. Such a model is necessary when vibrational redistribution reactions are insufficient to maintain a Boltzmann distribution over the vibrational energy states. Recent calculations of the rate constant for the first reaction of the Zeldovich mechanism (N2 + O (goes to) NO + N) have suggested that the product NO is formed in high vibrational states. In shock layer flowfields, the product NO molecules may experience an insufficient number of collisions to establish a Boltzmann distribution over vibrational states, thus necessitating a level kinetics model. In other flows, such as expansions of high temperature air, fast, near-resonance vibrational energy exchanges with N2 and O2 may also require a level specific model for NO because of the relative rates of vibrational exchange and redistribution. The proposed report will integrate computational and experimental components to construct such a model for the NO molecule.

  2. On Energy Trading Decision Methods in Distributed Energy Management Systems with Multiple Customers

    NASA Astrophysics Data System (ADS)

    Miyamoto, Toshiyuki; Sugimoto, Yohei; Mori, Kazuyuki; Kitamura, Shoichi; Yamamoto, Takaya

    This paper addresses an operation and energy purchase planning problem under the CO2 emissions regulation for corporate entities. Considering energy trading, more efficient energy consumption may be possible. We have studied an agent-based planning system, called Distributed Energy Management Systems (DEMSs), which intends to reduce energy consumption. In the DEMSs, CO2 emissions regulation is imposed on each corporate entity, and electrical and thermal energy trading among the entities are allowed. We have proposed an energy trading decision method based on the Market Oriented Programming (MOP). In this paper, we propose trading decision methods for the group composed of several customers and several suppliers. Experimental results show effectiveness of the proposed method.

  3. Modeling Plasmas with a Kappa Electron Energy Distribution

    NASA Astrophysics Data System (ADS)

    Hahn, Michael; Savin, Daniel Wolf

    2016-06-01

    Nonthermal kappa electron energy distributions have been observed in the Earth's magnetosphere and the solar wind, and are likely also present in the solar corona and in solar flares. In order to model the spectra of these plasmas, it is necessary to obtain the appropriate collision rate coefficients. We show that this can be done simply by summing appropriately weighted Maxwellian rate coefficients. The resulting data have similar or better accuracies than are obtained with other approaches. Summing Maxwellians has the additional advantages of being easy to implement and extendable to many different collision processes. We apply this technique to modeling the charge state distribution (CSD) of kappa-distribution plasmas. In particular, we examine the influence of electron impact multiple ionization on the equilibrium CSD and calculate the time variation of the CSD during a solar flare.

  4. Modeling Plasmas with a Kappa Electron Energy Distribution

    NASA Astrophysics Data System (ADS)

    Hahn, Michael; Savin, Daniel Wolf

    2016-05-01

    Nonthermal kappa electron energy distributions have been observed in the Earth's magnetosphere and the solar wind, and are likely also present in the solar corona and in solar flares. In order to model the spectra of these plasmas, it is necessary to obtain the appropriate collision rate coefficients. We show that this can be done simply by summing appropriately weighted Maxwellian rate coefficients. The resulting data have similar or better accuracies than are obtained with other approaches. Summing Maxwellians has the additional advantages of being easy to implement and extendable to many different collision processes. We apply this technique to modeling the charge state distribution (CSD) of kappa-distribution plasmas. In particular, we examine the influence of electron impact multiple ionization on the equilibrium CSD and calculate the time variation of the CSD during a solar flare.

  5. Energy distribution of elastically scattered electrons from double layer samples

    NASA Astrophysics Data System (ADS)

    Tőkési, K.; Varga, D.

    2016-02-01

    We present a theoretical description of the spectra of electrons elastically scattered from thin double layered Au-C samples. The analysis is based on the Monte Carlo simulation of the recoil and Doppler effects in reflection and transmission geometries of the scattering at a fixed angle of 44.3 ° and a primary energy of 40 keV. The relativistic correction is taken into account. Besides the experimentally measurable energy distributions the simulations give many partial distributions separately, depending on the number of elastic scatterings (single, and multiple scatterings of different types). Furthermore, we present detailed analytical calculations for the main parameters of the single scattering, taking into account both the ideal scattering geometry, i.e. infinitesimally small angular range, and the effect of the real, finite angular range used in the measurements. We show our results for intensity ratios, peak shifts and broadenings for four cases of measurement geometries and layer thicknesses. While in the peak intensity ratios of gold and carbon for transmission geometries were found to be in good agreement with the results of the single scattering model, especially large deviations were obtained in reflection geometries. The separation of the peaks, depending on the geometry and the thickness, generally smaller, and the peak width generally larger than it can be expected from the nominal values of the primary energy, scattering angle, and mean kinetic energy of the atoms. We also show that the peaks are asymmetric even for the case of the single scattering due to the finite solid angle. Finally, we present a qualitative comparison with the experimental data. We find our resulting energy distribution of elastically scattered electrons to be in good agreement with recent measurements.

  6. Distribution of lateral acoustic energy in Mudejar Gothic churches

    NASA Astrophysics Data System (ADS)

    Girón, S.; Galindo, M.; Zamarreño, T.

    2008-09-01

    In this work, the physical measures of spatial impression are considered in 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. This study describes the spatial distribution of the early and late lateral acoustic energy, through monaural parameters derived from impulse response analysis using a maximum length sequence measurement system in each church. In the first time analysis, the two early lateral energy measures, early lateral fraction (LF) and early lateral fraction cosine (LFC) are taken in order to assess apparent source width (ASW), and the late lateral level (GLL) in the second to assess listener envelopment (LEV) are conducted. Parameters have been studied spectrally in each temple and were averaged at low- and mid-frequency values in their different naves in order to study how these two attributes of sound perception vary with source-receiver distance. Experimental results have been compared with the theoretical early lateral energy fractions and late lateral level, both of which are derived by assuming that reflected energy in these places of worship is solely dependent on source-receiver distance. This comparison is carried out in accordance with the μ-model proposed by the authors in an earlier paper in order to describe the dependence of acoustic monaural omnidirectional energy parameters on source-receiver distance. Thus, it is supposed that the directional distribution of reflections is similar to a diffuse distribution. To conclude, these spatially averaged monoaural parameters have been correlated with geometric variables by using linear regression and only weak correlations with the mean width of the churches and with the height/width ratio have been found.

  7. Topography, energy and the global distribution of bird species richness.

    PubMed

    Davies, Richard G; Orme, C David L; Storch, David; Olson, Valerie A; Thomas, Gavin H; Ross, Simon G; Ding, Tzung-Su; Rasmussen, Pamela C; Bennett, Peter M; Owens, Ian P F; Blackburn, Tim M; Gaston, Kevin J

    2007-05-07

    A major goal of ecology is to determine the causes of the latitudinal gradient in global distribution of species richness. Current evidence points to either energy availability or habitat heterogeneity as the most likely environmental drivers in terrestrial systems, but their relative importance is controversial in the absence of analyses of global (rather than continental or regional) extent. Here we use data on the global distribution of extant continental and continental island bird species to test the explanatory power of energy availability and habitat heterogeneity while simultaneously addressing issues of spatial resolution, spatial autocorrelation, geometric constraints upon species' range dynamics, and the impact of human populations and historical glacial ice-cover. At the finest resolution (1 degree), topographical variability and temperature are identified as the most important global predictors of avian species richness in multi-predictor models. Topographical variability is most important in single-predictor models, followed by productive energy. Adjusting for null expectations based on geometric constraints on species richness improves overall model fit but has negligible impact on tests of environmental predictors. Conclusions concerning the relative importance of environmental predictors of species richness cannot be extrapolated from one biogeographic realm to others or the globe. Rather a global perspective confirms the primary importance of mountain ranges in high-energy areas.

  8. Optimal Control of Distributed Energy Resources using Model Predictive Control

    SciTech Connect

    Mayhorn, Ebony T.; Kalsi, Karanjit; Elizondo, Marcelo A.; Zhang, Wei; Lu, Shuai; Samaan, Nader A.; Butler-Purry, Karen

    2012-07-22

    In an isolated power system (rural microgrid), Distributed Energy Resources (DERs) such as renewable energy resources (wind, solar), energy storage and demand response can be used to complement fossil fueled generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation. The problem is formulated as a multi-objective optimization problem with the goals of minimizing fuel costs and changes in power output of diesel generators, minimizing costs associated with low battery life of energy storage and maintaining system frequency at the nominal operating value. Two control modes are considered for controlling the energy storage to compensate either net load variability or wind variability. Model predictive control (MPC) is used to solve the aforementioned problem and the performance is compared to an open-loop look-ahead dispatch problem. Simulation studies using high and low wind profiles, as well as, different MPC prediction horizons demonstrate the efficacy of the closed-loop MPC in compensating for uncertainties in wind and demand.

  9. Conditions for transmission path analysis in energy distribution models

    NASA Astrophysics Data System (ADS)

    Aragonès, Àngels; Guasch, Oriol

    2016-02-01

    In this work, we explore under which conditions transmission path analysis (TPA) developed for statistical energy analysis (SEA) can be applied to the less restrictive energy distribution (ED) models. It is shown that TPA can be extended without problems to proper-SEA systems whereas the situation is not so clear for quasi-SEA systems. In the general case, it has been found that a TPA can always be performed on an ED model if its inverse influence energy coefficient (EIC) matrix turns to have negative off-diagonal entries. If this condition is satisfied, it can be shown that the inverse EIC matrix automatically becomes an M-matrix. An ED graph can then be defined for it and use can be made of graph theory ranking path algorithms, previously developed for SEA systems, to classify dominant paths in ED models. A small mechanical system consisting of connected plates has been used to illustrate some of the exposed theoretical results.

  10. Modeling the redshift and energy distributions of fast radio bursts

    NASA Astrophysics Data System (ADS)

    Cao, Xiao-Feng; Xiao, Ming; Xiao, Fei

    2017-02-01

    Fast radio bursts (FRBs) are one of the most mysterious astronomical phenomena nowadays. The identification of their origin requires more observations in the future and, importantly, deep understandings of the existing observational data. By fitting the redshift and energy distributions of 15 Parkes FRBs, we try to derive their intrinsic energy function and the cosmic evolution of their burst rates. Specifically, while the energy function is assumed as usual to have a single-power-law form, the burst rates are considered to be proportional to the cosmic star formation rates by a redshift-dependent coefficient. Some plausible fittings are obtained, which indicate the power-law assumptions are feasible and effective. The values of the power-law indices could be used to independently constrain candidate FRB models, although parameter degeneracies still exist.

  11. Optimal Voltage Regulation for Unbalanced Distribution Networks Considering Distributed Energy Resources

    SciTech Connect

    Xu, Yan; Tomsovic, Kevin

    2015-01-01

    With increasing penetration of distributed generation in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. In this paper, an iterative quadratic constrained quadratic programming model to minimize voltage deviations and maximize distributed energy resource (DER) active power output in a three phase unbalanced distribution system is developed. The optimization model is based on the linearized sensitivity coefficients between controlled variables (e.g., node voltages) and control variables (e.g., real and reactive power injections of DERs). To avoid the oscillation of solution when it is close to the optimum, a golden search method is introduced to control the step size. Numerical simulations on modified IEEE 13 nodes test feeders show the efficiency of the proposed model. Compared to the results solved by heuristic search (harmony algorithm), the proposed model converges quickly to the global optimum.

  12. Photo Field Emission and Field Emission Energy Distributions from Silicon.

    NASA Astrophysics Data System (ADS)

    Herman, Michael H.

    Electron field emission from semiconductors is investigated both theoretically and experimentally. The theoretical predictions of the general Stratton theory are calculated specifically for silicon, in the {100 }, {110}, and {111} directions. A method of simplifying the calculation of the energy distribution for arbitrary semiconductor bands is obtained, utilizing the effective mass approximation. Experimental field emission energy distributions (FEEDs) are reported for both n- and p-type samples of low resistivity. The experimental distributions are characterized by a high intensity single peak, of energy 0.4 eV or more below the Fermi level, with subsidiary peak of lower intensity, rising from just below the Fermi level. The larger peak drops in energy with increasing field. Presented data demonstrates that this peak lowering is not attributable to sample resistance. Observation of the subsidiary peak is linked to either low sample temperature or low doping, implying that the carrier concentration affects its presence. Experimental FEEDs are compared to those expected theoretically. It is concluded that they are not similar. Comparison with photoemission work indicates that the large peak is due to a band of surface acceptor states. The subsidiary peak is tentatively ascribed to conduction band electrons. Finally, a phenomenological model of photo-field emission (PFE) is proposed. Based upon both FEED and PFE experiments, this model assumes that emission occurs primarily from surface states. A second component of the current is due to tunnelling of photogenerated electrons. In addition to photoconductivity, a self-regulating breakdown mechanism is necessary for qualitative agreement with experimental data. One such mechanism, avalanche, is investigated for the dielectric emitter model. Qualitative agreement is obtained with the characteristic non-linear Fowler-Nordheim behavior observed experimentally.

  13. Effects of energy spectrum on dose distribution calculations for high energy electron beams.

    PubMed

    Toutaoui, Abdelkader; Khelassi-Toutaoui, Nadia; Brahimi, Zakia; Chami, Ahmed Chafik

    2009-01-01

    In an early work we have demonstrated the possibility of using Monte Carlo generated pencil beams for 3D electron beam dose calculations. However, in this model the electron beam was considered as monoenergetic and the effects of the energy spectrum were taken into account by correction factors, derived from measuring central-axis depth dose curves. In the present model, the electron beam is considered as polyenergetic and the pencil beam distribution of a clinical electron beam, of a given nominal energy, is represented as a linear combination of Monte Carlo monoenergetic pencil beams. The coefficients of the linear combination describe the energy spectrum of the clinical electron beam, and are chosen to provide the best-fit between the calculated and measured central axis depth dose, in water. The energy spectrum is determined by the constrained least square method. The angular distribution of the clinical electron beam is determined by in-air penumbra measurements. The predictions of this algorithm agree very well with the measurements in the region near the surface, and the discrepancies between the measured and calculated dose distributions, behind 3D heterogeneities, are reduced to less than 10%. We have demonstrated a new algorithm for 3D electron beam dose calculations, which takes into account the energy spectra. Results indicate that the use of this algorithm leads to a better modeling of dose distributions downstream, from complex heterogeneities.

  14. Effects of energy spectrum on dose distribution calculations for high energy electron beams

    PubMed Central

    Toutaoui, Abdelkader; Khelassi-Toutaoui, Nadia; Brahimi, Zakia; Chami, Ahmed Chafik

    2009-01-01

    In an early work we have demonstrated the possibility of using Monte Carlo generated pencil beams for 3D electron beam dose calculations. However, in this model the electron beam was considered as monoenergetic and the effects of the energy spectrum were taken into account by correction factors, derived from measuring central-axis depth dose curves. In the present model, the electron beam is considered as polyenergetic and the pencil beam distribution of a clinical electron beam, of a given nominal energy, is represented as a linear combination of Monte Carlo monoenergetic pencil beams. The coefficients of the linear combination describe the energy spectrum of the clinical electron beam, and are chosen to provide the best-fit between the calculated and measured central axis depth dose, in water. The energy spectrum is determined by the constrained least square method. The angular distribution of the clinical electron beam is determined by in-air penumbra measurements. The predictions of this algorithm agree very well with the measurements in the region near the surface, and the discrepancies between the measured and calculated dose distributions, behind 3D heterogeneities, are reduced to less than 10%. We have demonstrated a new algorithm for 3D electron beam dose calculations, which takes into account the energy spectra. Results indicate that the use of this algorithm leads to a better modeling of dose distributions downstream, from complex heterogeneities. PMID:20126560

  15. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  16. Estimating Absolute Site Effects

    SciTech Connect

    Malagnini, L; Mayeda, K M; Akinci, A; Bragato, P L

    2004-07-15

    The authors use previously determined direct-wave attenuation functions as well as stable, coda-derived source excitation spectra to isolate the absolute S-wave site effect for the horizontal and vertical components of weak ground motion. They used selected stations in the seismic network of the eastern Alps, and find the following: (1) all ''hard rock'' sites exhibited deamplification phenomena due to absorption at frequencies ranging between 0.5 and 12 Hz (the available bandwidth), on both the horizontal and vertical components; (2) ''hard rock'' site transfer functions showed large variability at high-frequency; (3) vertical-motion site transfer functions show strong frequency-dependence, and (4) H/V spectral ratios do not reproduce the characteristics of the true horizontal site transfer functions; (5) traditional, relative site terms obtained by using reference ''rock sites'' can be misleading in inferring the behaviors of true site transfer functions, since most rock sites have non-flat responses due to shallow heterogeneities resulting from varying degrees of weathering. They also use their stable source spectra to estimate total radiated seismic energy and compare against previous results. they find that the earthquakes in this region exhibit non-constant dynamic stress drop scaling which gives further support for a fundamental difference in rupture dynamics between small and large earthquakes. To correct the vertical and horizontal S-wave spectra for attenuation, they used detailed regional attenuation functions derived by Malagnini et al. (2002) who determined frequency-dependent geometrical spreading and Q for the region. These corrections account for the gross path effects (i.e., all distance-dependent effects), although the source and site effects are still present in the distance-corrected spectra. The main goal of this study is to isolate the absolute site effect (as a function of frequency) by removing the source spectrum (moment-rate spectrum) from

  17. Modeling of customer adoption of distributed energy resources

    SciTech Connect

    Marnay, Chris; Chard, Joseph S.; Hamachi, Kristina S.; Lipman, Timothy; Moezzi, Mithra M.; Ouaglal, Boubekeur; Siddiqui, Afzal S.

    2001-08-01

    This report describes work completed for the California Energy Commission (CEC) on the continued development and application of the Distributed Energy Resources Customer Adoption Model (DER-CAM). This work was performed at Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) between July 2000 and June 2001 under the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. Our research on distributed energy resources (DER) builds on the concept of the microgrid ({mu}Grid), a semiautonomous grouping of electricity-generating sources and end-use sinks that are placed and operated for the benefit of its members. Although a {mu}Grid can operate independent of the macrogrid (the utility power network), the {mu}Grid is usually interconnected, purchasing energy and ancillary services from the macrogrid. Groups of customers can be aggregated into {mu}Grids by pooling their electrical and other loads, and the most cost-effective combination of generation resources for a particular {mu}Grid can be found. In this study, DER-CAM, an economic model of customer DER adoption implemented in the General Algebraic Modeling System (GAMS) optimization software is used, to find the cost-minimizing combination of on-site generation customers (individual businesses and a {mu}Grid) in a specified test year. DER-CAM's objective is to minimize the cost of supplying electricity to a specific customer by optimizing the installation of distributed generation and the self-generation of part or all of its electricity. Currently, the model only considers electrical loads, but combined heat and power (CHP) analysis capability is being developed under the second year of CEC funding. The key accomplishments of this year's work were the acquisition of increasingly accurate data on DER technologies, including the development of methods for forecasting cost reductions for these technologies, and the creation of a credible

  18. Kinetic-Energy Distribution of D(2p) Atoms from Analysis of the D Lyman-Alpha Line Profile

    NASA Technical Reports Server (NTRS)

    Ciocca, M.; Ajello, Joseph M.; Liu, Xianming; Maki, Justin

    1997-01-01

    The kinetic-energy distribution of D(2p) atoms resulting from electron-impact dissociation of D2 has been measured. A high-resolution vacuum ultraviolet spectrometer was employed for the first measurement of the D Lyman-alpha (D L(alpha)) emission line profiles at 20- and 100-eV excitation energies. Analysis of the deconvoluted line profile of D L(alpha) at 100 eV reveals the existence of a narrow line central peak of 29+/-2 mA full width at half maximum and a broad pedestal wing structure about 190 mA wide. The wings of the line can be used to determine the fast atom distribution. The wings of D L(alpha) arise from dissociative excitation of a series of doubly excited states that cross the Franck-Condon region between 23 and 40 eV. The fast atom distribution at 100-eV electron impact energy spans the energy range from 1 to 10 eV with a peak value near 6 eV. Slow D(2p) atoms characterized by a distribution function with peak energy near 100 meV produce the central peak profile, which is nearly independent of the impact energy. The deconvoluted line profiles of the central peak at 20 eV for dissociative excitation of D2 and H2 are fitted with an analytical function for use in calibration of space flight instrumentation equipped with a D/H absorption cell. The kinetic-energy and line profile results are compared to similar measurements for H2. The absolute cross sections for the line center (slow atoms) and wings (fast atoms) and total emission line profile were measured from threshold to 400 eV. Analytical model coefficients are given for the energy dependence of the measured slow atom cross section.

  19. Product energy distributions and energy partitioning in O atom reactions on surfaces

    NASA Technical Reports Server (NTRS)

    Halpern, Bret; Kori, Moris

    1987-01-01

    Surface reactions involving O atoms are likely to be highly exoergic, with different consequences if energy is channeled mostly to product molecules or surface modes. Thus the surface may become a source of excited species which can react elsewhere, or a sink for localized heat deposition which may disrupt the surface. The vibrational energy distribution of the product molecule contains strong clues about the flow of released energy. Two instructive examples of energy partitioning at surfaces are the Pt catalyzed oxidations: (1) C(ads) + O(ads) yields CO* (T is greater than 1000 K); and (2) CO(ads) + O(gas) yields CO2* (T is approx. 300 K). The infrared emission spectra of the excited product molecules were recorded and the vibrational population distributions were determined. In reaction 1, energy appeared to be statistically partitioned between the product CO and several Pt atoms. In reaction 2, partitioning was non-statistical; the CO2 asymmetric stretch distribution was inverted. In gas reactions these results would indicate a long lived and short lived activated complex. The requirement that Pt be heated in O atoms to promote reaction of atomic O and CO at room temperature is specifically addressed. Finally, the fraction of released energy that is deposited in the catalyst is estimated.

  20. Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xianjun

    The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical

  1. Adoption and supply of a distributed energy technology

    NASA Astrophysics Data System (ADS)

    Strachan, Neil Douglas

    2000-12-01

    Technical and economic developments in distributed generation (DG) represent an opportunity for a radically different energy market paradigm, and potentially significant cuts in global carbon emissions. This thesis investigates DG along two interrelated themes: (1) Early adoption and supply of the DG technology of internal combustion (IC) engine cogeneration. (2) Private and social cost implications of DG for private investors and within an energy system. IC engine cogeneration of both power and heat has been a remarkable success in the Netherlands with over 5,000 installations and 1,500MWe of installed capacity by 1997. However, the technology has struggled in the UK with an installed capacity of 110Mwe, fulfilling only 10% of its large estimated potential. An investment simulation model of DG investments in the UK and Netherlands was used, together with analysis of site level data on all DG adoptions from 1985 through 1997. In the UK over 60% of the early installations were sized too small (<140kWe) to be economically attractive (suppliers made their money with maintenance contracts). In the Netherlands, most facilities were sized well above the economic size threshold of 100kWe (lower due to reduced operating and grid connection costs). Institutional players were key in improved sizing of DG. Aided by energy market and CO2 reduction regulatory policy, Dutch distributions utilities played a proactive role in DG. This involved joint ventures with engine cogen suppliers and users, offering improved electricity buy-back tariffs and lower connection costs. This has allowed flexible operation of distributed generation, especially in electricity sales to the grid. Larger units can be sized for on-site heat requirements with electricity export providing revenue and aiding in management of energy networks. A comparison of internal and external costs of three distributed and three centralized generation technologies over a range of heat to power ratios (HPR) was made

  2. Terahertz absorption spectra and potential energy distribution of liquid crystals.

    PubMed

    Chen, Zezhang; Jiang, Yurong; Jiang, Lulu; Ma, Heng

    2016-01-15

    In this work, the terahertz (THz) absorption spectra of a set of nematic liquid crystals were studied using the density functional theories (DFT). An accurate assignment of the vibrational modes corresponding to absorption frequencies were performed using potential energy distribution (PED) in a frequency range of 0-3 THz. The impacts of different core structures on THz absorption spectra were discussed. The results indicate that scope of application must be considered in the LC-based THz device designing. This proposed work may give a useful suggestion on the design of novel liquid crystal material in THz wave.

  3. Terahertz absorption spectra and potential energy distribution of liquid crystals

    NASA Astrophysics Data System (ADS)

    Chen, Zezhang; Jiang, Yurong; Jiang, Lulu; Ma, Heng

    2016-01-01

    In this work, the terahertz (THz) absorption spectra of a set of nematic liquid crystals were studied using the density functional theories (DFT). An accurate assignment of the vibrational modes corresponding to absorption frequencies were performed using potential energy distribution (PED) in a frequency range of 0-3 THz. The impacts of different core structures on THz absorption spectra were discussed. The results indicate that scope of application must be considered in the LC-based THz device designing. This proposed work may give a useful suggestion on the design of novel liquid crystal material in THz wave.

  4. Calculating fusion neutron energy spectra from arbitrary reactant distributions

    NASA Astrophysics Data System (ADS)

    Eriksson, J.; Conroy, S.; Andersson Sundén, E.; Hellesen, C.

    2016-02-01

    The Directional Relativistic Spectrum Simulator (DRESS) code can perform Monte-Carlo calculations of reaction product spectra from arbitrary reactant distributions, using fully relativistic kinematics. The code is set up to calculate energy spectra from neutrons and alpha particles produced in the D(d, n)3He and T(d, n)4He fusion reactions, but any two-body reaction can be simulated by including the corresponding cross section. The code has been thoroughly tested. The kinematics calculations have been benchmarked against the kinematics module of the ROOT Data Analysis Framework. Calculated neutron energy spectra have been validated against tabulated fusion reactivities and against an exact analytical expression for the thermonuclear fusion neutron spectrum, with good agreement. The DRESS code will be used as the core of a detailed synthetic diagnostic framework for neutron measurements at the JET and MAST tokamaks.

  5. Long-distance distribution of genuine energy-time entanglement

    PubMed Central

    Cuevas, A.; Carvacho, G.; Saavedra, G.; Cariñe, J.; Nogueira, W.A.T.; Figueroa, M.; Cabello, A.; Mataloni, P.; Lima, G.; Xavier, G.B.

    2013-01-01

    Any practical realization of entanglement-based quantum communication must be intrinsically secure and able to span long distances avoiding the need of a straight line between the communicating parties. The violation of Bell’s inequality offers a method for the certification of quantum links without knowing the inner workings of the devices. Energy-time entanglement quantum communication satisfies all these requirements. However, currently there is a fundamental obstacle with the standard configuration adopted: an intrinsic geometrical loophole that can be exploited to break the security of the communication, in addition to other loopholes. Here we show the first experimental Bell violation with energy-time entanglement distributed over 1 km of optical fibres that is free of this geometrical loophole. This is achieved by adopting a new experimental design, and by using an actively stabilized fibre-based long interferometer. Our results represent an important step towards long-distance secure quantum communication in optical fibres. PMID:24287678

  6. Distributional implications of reducing interstate energy price differences

    SciTech Connect

    Schmidt, R.H.; Gunther, J.W.

    1986-11-01

    A model of state residential energy consumption for electricity, natural gas, and petroleum examines scenarios which reflect the response to a reduction in regional price differences attributable to deregulation. The results indicate that natural gas deregulation will benefit eastern and northwestern consumers at the expense of middle and western consumers. The deregulation of bulk electric power also benefits the east coast, but rising electricity prices would outweigh any benefits for the northwest. In contrast, electricity producers in the west have the most to gain from deregulation of bulk power transmissions because of the opportunities of a national market. A deregulated environment will likely have less dramatic distributional consequences from future energy price shocks, while increased fuel competition will probably limit price movements in any one fuel. 3 figures, 5 tables.

  7. Long-distance distribution of genuine energy-time entanglement.

    PubMed

    Cuevas, A; Carvacho, G; Saavedra, G; Cariñe, J; Nogueira, W A T; Figueroa, M; Cabello, A; Mataloni, P; Lima, G; Xavier, G B

    2013-01-01

    Any practical realization of entanglement-based quantum communication must be intrinsically secure and able to span long distances avoiding the need of a straight line between the communicating parties. The violation of Bell's inequality offers a method for the certification of quantum links without knowing the inner workings of the devices. Energy-time entanglement quantum communication satisfies all these requirements. However, currently there is a fundamental obstacle with the standard configuration adopted: an intrinsic geometrical loophole that can be exploited to break the security of the communication, in addition to other loopholes. Here we show the first experimental Bell violation with energy-time entanglement distributed over 1 km of optical fibres that is free of this geometrical loophole. This is achieved by adopting a new experimental design, and by using an actively stabilized fibre-based long interferometer. Our results represent an important step towards long-distance secure quantum communication in optical fibres.

  8. Advanced Communication and Control Solutions of Distributed Energy Resources (DER)

    SciTech Connect

    Asgeirsson, Haukur; Seguin, Richard; Sherding, Cameron; de Bruet, Andre, G.; Broadwater, Robert; Dilek, Murat

    2007-01-10

    This report covers work performed in Phase II of a two phase project whose objective was to demonstrate the aggregation of multiple Distributed Energy Resources (DERs) and to offer them into the energy market. The Phase I work (DE-FC36-03CH11161) created an integrated, but distributed, system and procedures to monitor and control multiple DERs from numerous manufacturers connected to the electric distribution system. Procedures were created which protect the distribution network and personnel that may be working on the network. Using the web as the communication medium for control and monitoring of the DERs, the integration of information and security was accomplished through the use of industry standard protocols such as secure SSL,VPN and ICCP. The primary objective of Phase II was to develop the procedures for marketing the power of the Phase I aggregated DERs in the energy market, increase the number of DER units, and implement the marketing procedures (interface with ISOs) for the DER generated power. The team partnered with the Midwest Independent System Operator (MISO), the local ISO, to address the energy market and demonstrate the economic dispatch of DERs in response to market signals. The selection of standards-based communication technologies offers the ability of the system to be deployed and integrated with other utilities’ resources. With the use of a data historian technology to facilitate the aggregation, the developed algorithms and procedures can be verified, audited, and modified. The team has demonstrated monitoring and control of multiple DERs as outlined in phase I report including procedures to perform these operations in a secure and safe manner. In Phase II, additional DER units were added. We also expanded on our phase I work to enhance communication security and to develop the market model of having DERs, both customer and utility owned, participate in the energy market. We are proposing a two-part DER energy market model--a utility

  9. Electron energy distributions, vibrational population distributions, and negative-ion concentrations in hydrogen discharges

    SciTech Connect

    Hiskes, J.R.; Karo, A.M.

    1982-06-28

    We consider the negative ion concentrations in hydrogen discharges caused by electron excitation and dissociative attachment processes. The principal formation and destruction processes are discussed for electron densities in the range 10/sup 8/ to 10/sup 13/ electrons cm/sup -3/. Expressions are developed for calculating the high energy portion of the electron energy distribution in the discharge; using these energy distributions the electron excitation rates are evaluated. At low densities, the vibrational distribution arises from singlet electronic excitations and triplet excitations through the /sup 3/..pi../sub u/ state, in equilibrium with wall de-excitation processes. At high densities singlet excitations predominate in equilibrium with atom-molecule de-excitation processes. Possibilities for negative ion generation in a two-chamber tandem system are discussed in which the vibrational excitation occurs in a high power, high electron temperature discharge, kT/sub e/ = 5 eV, and dissociative attachment occurs in a low temperature kT/sub e/ = 1 eV, plasma chamber.

  10. Absolute and relative blindsight.

    PubMed

    Balsdon, Tarryn; Azzopardi, Paul

    2015-03-01

    The concept of relative blindsight, referring to a difference in conscious awareness between conditions otherwise matched for performance, was introduced by Lau and Passingham (2006) as a way of identifying the neural correlates of consciousness (NCC) in fMRI experiments. By analogy, absolute blindsight refers to a difference between performance and awareness regardless of whether it is possible to match performance across conditions. Here, we address the question of whether relative and absolute blindsight in normal observers can be accounted for by response bias. In our replication of Lau and Passingham's experiment, the relative blindsight effect was abolished when performance was assessed by means of a bias-free 2AFC task or when the criterion for awareness was varied. Furthermore, there was no evidence of either relative or absolute blindsight when both performance and awareness were assessed with bias-free measures derived from confidence ratings using signal detection theory. This suggests that both relative and absolute blindsight in normal observers amount to no more than variations in response bias in the assessment of performance and awareness. Consideration of the properties of psychometric functions reveals a number of ways in which relative and absolute blindsight could arise trivially and elucidates a basis for the distinction between Type 1 and Type 2 blindsight.

  11. Role for Distributed Energy Resources (DER) in the Digital Economy

    SciTech Connect

    Key, Thomas S

    2007-11-01

    A large, and growing, part of the Nation's economy either serves or depends upon the information technology industry. These high-tech or "digital" enterprises are characterized by a dependence on electronic devices, need for completely reliable power supply, and intolerance to any power quality problems. In some cases these enterprises are densely populated with electronic loads and have very high energy usage per square foot. Serving these enterprises presents both electric power and equipment cooling challenges. Traditional electric utilities are often hard-pressed to deliver power that meets the stringent requirements of digital customers, and the economic and social consequences of a service quality or reliability problem can be large. New energy delivery and control options must be developed to effectively serve a digital economy. This report explores how distributed energy resources, partnerships between utility and customer to share the responsibility for service quality, innovative facility designs, higher energy efficiencies and waste-heat utilization can be coupled to meet the needs of a growing digital economy.

  12. Calculation of the Absolute Free Energy of Binding and Related Entropies with the HSMD-TI Method: The FKBP12-L8 Complex.

    PubMed

    General, Ignacio J; Dragomirova, Ralitsa; Meirovitch, Hagai

    2011-10-27

    The hypothetical scanning molecular dynamics (HSMD) method is used here for calculating the absolute free energy of binding, ΔA(0) of the complex of the protein FKBP12 with the ligand SB2 (also denoted L8) - a system that has been studied previously for comparing the performance of different methods. Our preliminary study suggests that considering long-range electrostatics is imperative even for a hydrophobic ligand such as L8. Therefore the system is modeled by the AMBER force field using Particle Mesh Ewald (PME). HSMD consists of three stages applied to both the ligand-solvent and ligand-protein systems. (1) A small set of system configurations (frames) is extracted from an MD trajectory. (2) The entropy of the ligand in each frame is calculated by a reconstruction procedure. (3) The contribution of water and protein to ΔA(0) is calculated for each frame by gradually increasing the ligand-environment interactions from zero to their full value using thermodynamic integration (TI). Unlike the conventional methods, the structure of the ligand is kept fixed during TI, and HSMD is thus free from the end-point problem encountered with the double annihilation method (DAM); therefore, the need for applying restraints is avoided. Furthermore, unlike the conventional methods, the entropy of the ligand and water is obtained directly as a byproduct of the simulation. In this paper, in addition to the difference in the internal entropies of the ligand in the two environments, we calculate for the first time the external entropy of the ligand, which provides a measure for the size of the active site. We obtain ΔA(0) = -10.7 ±1.0 as compared to the experimental values -10.9 and -10.6 kcal/mol. However, a protein/water system treated by periodic boundary conditions grows significantly with increasing protein size and the computation of ΔA(0) would become expensive by all methods. Therefore, we also apply HSMD to FKBP12-L8 described by the GSBP/SSBP model of Roux's group

  13. Low energy ion distribution measurements in Madison Symmetric Torus plasmas

    SciTech Connect

    Titus, J. B. Mezonlin, E. D.; Johnson, J. A.

    2014-06-15

    Charge-exchange neutrals contain information about the contents of a plasma and can be detected as they escape confinement. The Florida A and M University compact neutral particle analyzer (CNPA), used to measure the contents of neutral particle flux, has been reconfigured, calibrated, and installed on the Madison Symmetric Torus (MST) for high temperature deuterium plasmas. The energy range of the CNPA has been extended to cover 0.34–5.2 keV through an upgrade of the 25 detection channels. The CNPA has been used on all types of MST plasmas at a rate of 20 kHz throughout the entire discharge (∼70 ms). Plasma parameter scans show that the ion distribution is most dependent on the plasma current. Magnetic reconnection events throughout these scans produce stronger poloidal electric fields, stronger global magnetic modes, and larger changes in magnetic energy all of which heavily influence the non-Maxwellian part of the ion distribution (the fast ion tail)

  14. The UV/Optical Energy Distributions of the A Stars

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, E. L.; Massa, D.

    1999-09-01

    We apply a technique developed for fitting the observed energy distributions of main sequence B stars with stellar atmosphere models to a sample of lightly reddened early A-type stars. The technique utilizes an expanded grid of R.L. Kurucz's ATLAS 9 models and involves simultaneously determining all the parameters of the best fitting model (effective temperature, surface gravity, metallicity, and microturulence velocity) AND the properties of interstellar extinction (E(B-V) and, sometimes, the shape of the UV extinction curve). For the B stars it has been shown that the models reproduce the observed energy distributions to a level consistent with the expected observational uncertainties (for IUE satellite UV spectrophotometry and optical photometry). For the A stars, excellent agreement between models and observations is seen in the wavelength range longward of 1500 A. At shorter wavelengths the models tend to slightly overestimate the emergent flux. We discuss the possible reasons for this phenomenon and illustrate the quality of the fits for a number of A0 V to A3 V stars. The UV opacity in the A stars is dominated by absorption due to many thousands of Fe lines which produce a very distinct opacity signature, visible even in relatively low resolution data. We demonstrate the ability of the fitting procedure to exploit this spectral structure and provide precise and robust estimates of [Fe/H] from low-resolution UV spectrophotometry. Several examples, spanning a factor of nearly 20 in Fe abundances, are shown.

  15. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  16. Validated modeling of distributed energy resources at distribution voltages : LDRD project 38672.

    SciTech Connect

    Ralph, Mark E.; Ginn, Jerry W.

    2004-03-01

    A significant barrier to the deployment of distributed energy resources (DER) onto the power grid is uncertainty on the part of utility engineers regarding impacts of DER on their distribution systems. Because of the many possible combinations of DER and local power system characteristics, these impacts can most effectively be studied by computer simulation. The goal of this LDRD project was to develop and experimentally validate models of transient and steady state source behavior for incorporation into utility distribution analysis tools. Development of these models had not been prioritized either by the distributed-generation industry or by the inverter industry. A functioning model of a selected inverter-based DER was developed in collaboration with both the manufacturer and industrial power systems analysts. The model was written in the PSCAD simulation language, a variant of the ElectroMagnetic Transients Program (EMTP), a code that is widely used and accepted by utilities. A stakeholder team was formed and a methodology was established to address the problem. A list of detailed DER/utility interaction concerns was developed and prioritized. The list indicated that the scope of the problem significantly exceeded resources available for this LDRD project. As this work progresses under separate funding, the model will be refined and experimentally validated. It will then be incorporated in utility distribution analysis tools and used to study a variety of DER issues. The key next step will be design of the validation experiments.

  17. Alternative energy estimation from the shower lateral distribution function

    NASA Astrophysics Data System (ADS)

    de Souza, Vitor; Escobar, Carlos; Brito, Joel; Dobrigkeit, Carola; Medina-Tanco, Gustavo

    The surface detector technique has been successfully used to detect cosmic ray showers for several decades. Scintillators or Cerenkov water tanks can be used to measure the number of particles and/or the energy density at a given depth in the atmosphere and reconstruct the primary particle properties. It has been shown that the experiment configuration and the resolution in reconstructing the core position determine a distance to the shower axis in which the lateral distribution function (LDF) of particles shows the least variation with respect to different primary particles type, simulation models and specific shapes of the LDF. Therefore, the signal at this distance (600 m for Haverah Park and 1000 m for Auger Observatory) has shown to be a good estimator of the shower energy. Revisiting the above technique, we show that a range of distances to the shower axis, instead of one single point, can be used as estimator of the shower energy. A comparison is done for the Auger Observatory configuration and the new estimator proposed here is shown to be a good and robust alternative to the standard single point procedure.

  18. Space and energy. [space systems for energy generation, distribution and control

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1976-01-01

    Potential contributions of space to energy-related activities are discussed. Advanced concepts presented include worldwide energy distribution to substation-sized users using low-altitude space reflectors; powering large numbers of large aircraft worldwide using laser beams reflected from space mirror complexes; providing night illumination via sunlight-reflecting space mirrors; fine-scale power programming and monitoring in transmission networks by monitoring millions of network points from space; prevention of undetected hijacking of nuclear reactor fuels by space tracking of signals from tagging transmitters on all such materials; and disposal of nuclear power plant radioactive wastes in space.

  19. Non-thermal plasma instabilities induced by deformation of the electron energy distribution function

    NASA Astrophysics Data System (ADS)

    Dyatko, N. A.; Kochetov, I. V.; Napartovich, A. P.

    2014-08-01

    Non-thermal plasma is a key component in gas lasers, microelectronics, medical applications, waste gas cleaners, ozone generators, plasma igniters, flame holders, flow control in high-speed aerodynamics and others. A specific feature of non-thermal plasma is its high sensitivity to variations in governing parameters (gas composition, pressure, pulse duration, E/N parameter). This sensitivity is due to complex deformations of the electron energy distribution function (EEDF) shape induced by variations in electric field strength, electron and ion number densities and gas excitation degree. Particular attention in this article is paid to mechanisms of instabilities based on non-linearity of plasma properties for specific conditions: gas composition, steady-state and decaying plasma produced by the electron beam, or by an electric current pulse. The following effects are analyzed: the negative differential electron conductivity; the absolute negative electron mobility; the stepwise changes of plasma properties induced by the EEDF bi-stability; thermo-current instability and the constriction of the glow discharge column in rare gases. Some of these effects were observed experimentally and some of them were theoretically predicted and still wait for experimental confirmation.

  20. Absolute Energy Calibration of X-ray TESs with 0.04 eV Uncertainty at 6.4 keV in a Hadron-Beam Environment

    NASA Astrophysics Data System (ADS)

    Tatsuno, H.; Doriese, W. B.; Bennett, D. A.; Curceanu, C.; Fowler, J. W.; Gard, J.; Gustafsson, F. P.; Hashimoto, T.; Hayano, R. S.; Hays-Wehle, J. P.; Hilton, G. C.; Iliescu, M.; Ishimoto, S.; Itahashi, K.; Iwasaki, M.; Kuwabara, K.; Ma, Y.; Marton, J.; Noda, H.; O'Neil, G. C.; Okada, S.; Outa, H.; Reintsema, C. D.; Sato, M.; Schmidt, D. R.; Shi, H.; Suzuki, K.; Suzuki, T.; Uhlig, J.; Ullom, J. N.; Widmann, E.; Yamada, S.; Zmeskal, J.; Swetz, D. S.

    2016-08-01

    A performance evaluation of superconducting transition-edge sensors (TESs) in the environment of a pion beam line at a particle accelerator is presented. Averaged across the 209 functioning sensors in the array, the achieved energy resolution is 5.2 eV FWHM at Co K_{α } (6.9 keV) when the pion beam is off and 7.3 eV at a beam rate of 1.45 MHz. Absolute energy uncertainty of ± 0.04 eV is demonstrated for Fe K_{α } (6.4 keV) with in-situ energy calibration obtained from other nearby known X-ray lines. To achieve this small uncertainty, it is essential to consider the non-Gaussian energy response of the TESs and thermal cross-talk pile-up effects due to charged particle hits in the silicon substrate of the TES array.

  1. Evaluation Framework and Tools for Distributed Energy Resources

    SciTech Connect

    Gumerman, Etan Z.; Bharvirkar, Ranjit R.; LaCommare, Kristina Hamachi; Marnay , Chris

    2003-02-01

    The Energy Information Administration's (EIA) 2002 Annual Energy Outlook (AEO) forecast anticipates the need for 375 MW of new generating capacity (or about one new power plant) per week for the next 20 years, most of which is forecast to be fueled by natural gas. The Distributed Energy and Electric Reliability Program (DEER) of the Department of Energy (DOE), has set a national goal for DER to capture 20 percent of new electric generation capacity additions by 2020 (Office of Energy Efficiency and Renewable Energy 2000). Cumulatively, this amounts to about 40 GW of DER capacity additions from 2000-2020. Figure ES-1 below compares the EIA forecast and DEER's assumed goal for new DER by 2020 while applying the same definition of DER to both. This figure illustrates that the EIA forecast is consistent with the overall DEER DER goal. For the purposes of this study, Berkeley Lab needed a target level of small-scale DER penetration upon which to hinge consideration of benefits and costs. Because the AEO2002 forecasted only 3.1 GW of cumulative additions from small-scale DER in the residential and commercial sectors, another approach was needed to estimate the small-scale DER target. The focus here is on small-scale DER technologies under 500 kW. The technology size limit is somewhat arbitrary, but the key results of interest are marginal additional costs and benefits around an assumed level of penetration that existing programs might achieve. Berkeley Lab assumes that small-scale DER has the same growth potential as large scale DER in AEO2002, about 38 GW. This assumption makes the small-scale goal equivalent to 380,000 DER units of average size 100 kW. This report lays out a framework whereby the consequences of meeting this goal might be estimated and tallied up. The framework is built around a list of major benefits and a set of tools that might be applied to estimate them. This study lists some of the major effects of an emerging paradigm shift away from central

  2. Vibrational energy distribution analysis (VEDA): scopes and limitations.

    PubMed

    Jamróz, Michał H

    2013-10-01

    The principle of operations of the VEDA program written by the author for Potential Energy Distribution (PED) analysis of theoretical vibrational spectra is described. Nowadays, the PED analysis is indispensible tool in serious analysis of the vibrational spectra. To perform the PED analysis it is necessary to define 3N-6 linearly independent local mode coordinates. Already for 20-atomic molecules it is a difficult task. The VEDA program reads the input data automatically from the Gaussian program output files. Then, VEDA automatically proposes an introductory set of local mode coordinates. Next, the more adequate coordinates are proposed by the program and optimized to obtain maximal elements of each column (internal coordinate) of the PED matrix (the EPM parameter). The possibility for an automatic optimization of PED contributions is a unique feature of the VEDA program absent in any other programs performing PED analysis.

  3. Vibrational Energy Distribution Analysis (VEDA): Scopes and limitations

    NASA Astrophysics Data System (ADS)

    Jamróz, Michał H.

    2013-10-01

    The principle of operations of the VEDA program written by the author for Potential Energy Distribution (PED) analysis of theoretical vibrational spectra is described. Nowadays, the PED analysis is indispensible tool in serious analysis of the vibrational spectra. To perform the PED analysis it is necessary to define 3N-6 linearly independent local mode coordinates. Already for 20-atomic molecules it is a difficult task. The VEDA program reads the input data automatically from the Gaussian program output files. Then, VEDA automatically proposes an introductory set of local mode coordinates. Next, the more adequate coordinates are proposed by the program and optimized to obtain maximal elements of each column (internal coordinate) of the PED matrix (the EPM parameter). The possibility for an automatic optimization of PED contributions is a unique feature of the VEDA program absent in any other programs performing PED analysis.

  4. Suprathermal electron energy distribution within the dayside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.; Miller, K. L.; Spenner, K.; Novak, V.; Michelson, P. F.; Whitten, R. C.

    1980-01-01

    The suprathermal electron energy distribution for the dayside ionosphere has been derived from data returned by the Pioneer-Venus orbiter retarding potential analyzer. The shape and magnitude of the spectrum are consistent with the assumption that solar EUV radiation is the only significant source. The magnitude of the spectrum and its variation with altitude suggest that significant vertical transport occurs, with the electrons being lost through the ionopause. In turn, significant vertical transport suggests that the effective vertical electron heat conductivity may be comparable to the field-free value. The heat input to the thermal electron gas from the measured suprathermal electron flux is too small by a factor of at least five to maintain the observed electron temperature profile if the electron thermal conductivity is assumed to be close to the field-free value. It is thus inferred that most of the heat is supplied by the solar wind.

  5. Optimal smoothing of site-energy distributions from adsorption isotherms

    SciTech Connect

    Brown, L.F.; Travis, B.J.

    1983-01-01

    The equation for the adsorption isotherm on a heterogeneous surface is a Fredholm integral equation. In solving it for the site-energy distribution (SED), some sort of smoothing must be carried out. The optimal amount of smoothing will give the most information that is possible without introducing nonexistent structure into the SED. Recently, Butler, Reeds, and Dawson proposed a criterion (the BRD criterion) for choosing the optimal smoothing parameter when using regularization to solve Fredholm equations. The BRD criterion is tested for its suitability in obtaining optimal SED's. This criterion is found to be too conservative. While using it never introduces nonexistent structure into the SED, significant information is often lost. At present, no simple criterion for choosing the optimal smoothing parameter exists, and a modeling approach is recommended.

  6. Curvature of the spectral energy distributions of blazars

    SciTech Connect

    Chen, Liang

    2014-06-20

    In this paper, spectral energy distributions (SED) of both synchrotron and inverse Compton (IC) components of a sample of Fermi bright blazars are fitted by a log-parabolic law. The second-degree term of the log parabola measures the curvature of an SED. We find a statistically significant correlation between the synchrotron peak frequency and its curvature. This result is in agreement with the theoretical prediction and confirms previous studies that dealt with a single source with observations at various epochs or a small sample. If a broken power law is employed to fit the SED, the difference between the two spectral indices (i.e., |α{sub 2} – α{sub 1}|) can be considered a 'surrogate' of the SED curvature. We collect data from the literature and find a correlation between the synchrotron peak frequency and the spectral difference. We do not find a significant correlation between the IC peak frequency and its curvature, which may be caused by a complicated seed photon field. It is also found that the synchrotron curvatures are on average larger than those of IC curvatures, and there is no correlation between these two parameters. As suggested by previous works, both the log-parabolic law of the SED and the above correlation can be explained by statistical and/or stochastic particle accelerations. Based on a comparison of the slops of the correlation, our result seems to favor stochastic acceleration mechanisms and emission processes. Additional evidence, including SED modeling, particle acceleration simulation, and comparisons between some predictions and empirical relations/correlations, also seems to support the idea that the electron energy distribution (and/or synchrotron SED) may be log-parabolic.

  7. The Spectral Energy Distributions of Interacting Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Liss, Sandra; Johnson, Kelsey E.; Stierwalt, Sabrina; Kallivayalil, Nitya; Besla, Gurtina; Patton, David R.; Privon, George C.

    2016-01-01

    We present spectral energy distributions (SEDs) for the TiNy Titans survey, the first systematic study of interactions between dwarf galaxies. Galaxy interactions are known to be of fundamental importance to the evolution of massive galaxies -- they have been observed to impact morphology, star formation rates, and ISM composition. Such interactions also occur frequently between low mass dwarf galaxies, but this process is poorly understood and largely overlooked in comparison. Although the majority of mergers at all redshifts are expected to take place between low mass galaxies, until now there have not been comparable systematic studies of dwarf galaxy interactions, leaving open the question of whether interactions between low mass galaxies can strongly affect their own evolution. The TiNy Titans survey, a complete sample of isolated dwarf galaxy pairs selected from the Sloan Digital Sky Survey (SDSS), is specifically designed to address this gap in our understanding of galaxy evolution. The SEDs presented here, generated from archival WISE, SDSS, and GALEX photometric data, allow us to characterize the typical interacting dwarf galaxy, as well as quantify the deviations from this average distribution. We also present trends in the SEDs as a function of projected radial separation, a proxy for interaction stage.

  8. A modal approach to modeling spatially distributed vibration energy dissipation.

    SciTech Connect

    Segalman, Daniel Joseph

    2010-08-01

    The nonlinear behavior of mechanical joints is a confounding element in modeling the dynamic response of structures. Though there has been some progress in recent years in modeling individual joints, modeling the full structure with myriad frictional interfaces has remained an obstinate challenge. A strategy is suggested for structural dynamics modeling that can account for the combined effect of interface friction distributed spatially about the structure. This approach accommodates the following observations: (1) At small to modest amplitudes, the nonlinearity of jointed structures is manifest primarily in the energy dissipation - visible as vibration damping; (2) Correspondingly, measured vibration modes do not change significantly with amplitude; and (3) Significant coupling among the modes does not appear to result at modest amplitudes. The mathematical approach presented here postulates the preservation of linear modes and invests all the nonlinearity in the evolution of the modal coordinates. The constitutive form selected is one that works well in modeling spatially discrete joints. When compared against a mathematical truth model, the distributed dissipation approximation performs well.

  9. Using Electron Distributions to Probe Energy Surfaces at Complex R

    NASA Astrophysics Data System (ADS)

    Macek, J. H.; Ovchinnikov, S. Yu.

    1997-04-01

    The hidden crossing theory describes ion-atom collisions(S. Yu. Ovchinnikov and E. A. Solovév, Comments At. Mol. Phys. 22) 69 (1988). in terms of a single function \\varepsilon(R) defined for all complex R, where R is the distance between target and projectile nuclei. Conventional adiabatic energy curves \\varepsilon_n(R) represent different branches of \\varepsilon(R) at real, positive R. Electron distributions are computed by evaluating a phase integral along an appropriate path in the complex R-plane. The real part of the phase oscillates rapidly for a class of transitions that proceed via the "top of barrier" mechanism. Electron distributions oscillate owing to interfrence between σ and π transitions, and this oscillation relates closely to the real part of \\varepsilon(R) for complex R. The oscillation rate is in qualitative agreement with measurements (R. Döner, K. Khemliche, M. H. Prior, C. L. Cocke, J. A. Gary, R. E. Olson, V. Mergel, J. Ullrich and H. Schmidt-Böking, Phys. Rev. Lett.77), 1024 (1996).

  10. Enhanced Security-Constrained OPF With Distributed Battery Energy Storage

    SciTech Connect

    Wen, YF; Guo, CX; Kirschen, DS; Dong, SF

    2015-01-01

    This paper discusses how fast-response distributed battery energy storage could be used to implement post-contingency corrective control actions. Immediately after a contingency, the injections of distributed batteries could be adjusted to alleviate overloads and reduce flows below their short-term emergency rating. This ensures that the post-contingency system remains stable until the operator has redispatched the generation. Implementing this form of corrective control would allow operators to take advantage of the difference between the short-and long-term ratings of the lines and would therefore increase the available transmission capacity. This problem is formulated as a two-stage, enhanced security-constrained OPF problem, in which the first-stage optimizes the pre-contingency generation dispatch, while the second-stage minimizes the corrective actions for each contingency. Case studies based on a six-bus test system and on the RTS 96 demonstrate that the proposed method provides effective corrective actions and can guarantee operational reliability and economy.

  11. Spectrophotometry of Wolf-Rayet stars. I - Continuum energy distributions

    NASA Technical Reports Server (NTRS)

    Morris, Patrick W.; Brownsberger, Kenneth R.; Conti, Peter S.; Massey, Philip; Vacca, William D.

    1993-01-01

    All available low-resolution IUE spectra are assembled for Galactic, LMC, and SMC W-R stars and are merged with ground-based optical and NIR spectra in order to collate in a systematic fashion the shapes of these energy distributions over the wavelength range 0.1-1 micron. They can be consistently fitted by a power law of the form F(lambda) is approximately equal to lambda exp -alpha over the range 1500-9000 A to derive color excesses E(B-V) and spectral indices by removing the 2175-A interstellar absorption feature. The WN star color excesses derived are found to be in good agreement with those of Schmutz and Vacca (1991) and Koesterke et al. (1991). Significant heterogeneity in spectral index values was generally seen with any given subtype, but the groups consisting of the combined set of Galactic and LMC W-R stars, the separate WN and WC sequences, and the Galactic and LMC W-R stars all showed a striking and consistent Gaussian-like frequency distribution of values.

  12. Ion energy distributions in dual frequency RF plasmas

    NASA Astrophysics Data System (ADS)

    Hatton, Peter; Rees, John; Bort, Sam; Seymour, Dave

    2015-09-01

    For many surface-processing applications involving plasmas operated at RF frequencies it has been found helpful to combine two sources of power operating at different frequencies. By choosing suitable input powers at the two frequencies and varying the phase relationship set between the two inputs, the energy distributions (IEDs) for the ions arriving at the target surface can be optimised. There have been, however, only a limited number of published reports of measured or modelled distributions. In the present work IEDs for both positive and negative ions formed in plasmas in argon and nitrous oxide have been measured for mass-identified ions in two different reactors, one of which is a parallel-plate, capacitatively-coupled, system and the other is an inductively-coupled system. Typical data for 13.56 and 27.1 MHz inputs are presented for a range of phase relationships. The IEDs show clearly significant differences between the data for different species of ions which result in part from the ion-molecule collisions occurring, particularly in the plasma/surface sheath regions.

  13. The Spectral Energy Distribution of HH 100 IRS

    NASA Technical Reports Server (NTRS)

    Siebenmorgen, Ralf

    1996-01-01

    Recent progress in the modeling of the radiative transfer in star forming regions has lead to improved dusty envelope models. Such models can now explain in great detail the observed infrared spectrum. The success of such models suggests that input parameters correspond to the true physical situation of the environment of the young stellar object. However, so far only minor attention has been given to models which include the spectroscopic signature of ice bands. Such models are applied to the Herbig-Haro energy source HH100 IRS. Calculations have been performed to interpret the spectral energy distribution as a function of dust parameters such as the grain size, the ice volume fraction, and the 'fluffiness' of the particles. The infrared spectrum together with the strength of the water ice band of HH 100 IRS is successfully reproduced if an upper limit of the grain size below 1 micron is used. Comet-like grains, with sizes above 1 micron, result in a poor fit of the observations.

  14. Equilibrium distribution of the wave energy in a carbyne chain

    NASA Astrophysics Data System (ADS)

    Kovriguine, D. A.; Nikitenkova, S. P.

    2016-03-01

    The steady-state energy distribution of thermal vibrations at a given ambient temperature has been investigated based on a simple mathematical model that takes into account central and noncentral interactions between carbon atoms in a one-dimensional carbyne chain. The investigation has been performed using standard asymptotic methods of nonlinear dynamics in terms of the classical mechanics. In the first-order nonlinear approximation, there have been revealed resonant wave triads that are formed at a typical nonlinearity of the system under phase matching conditions. Each resonant triad consists of one longitudinal and two transverse vibration modes. In the general case, the chain is characterized by a superposition of similar resonant triplets of different spectral scales. It has been found that the energy equipartition of nonlinear stationary waves in the carbyne chain at a given temperature completely obeys the standard Rayleigh-Jeans law due to the proportional amplitude dispersion. The possibility of spontaneous formation of three-frequency envelope solitons in carbyne has been demonstrated. Heat in the form of such solitons can propagate in a chain of carbon atoms without diffusion, like localized waves.

  15. Measurement of Ion Energy Distribution in Magnetized ICP using Multi-channel Ion Energy Analyzer

    NASA Astrophysics Data System (ADS)

    Lee, Woohyun; Kim, Hyuk; Kim, Jiwon; Cheong, Hee Woon; Koo, Il Gyo; Lee, Soojin; Seong, Hyo-Seong; Whang, Ki-Woong

    2013-09-01

    In plasma etch processes, the flux and energy of ions incident on the substrate are the important parameters that control the etch profile and the etch rate. In this regard, retarding field Ion Energy Analyzer (IEA) has been developed and applied to plasma etch. As the size of wafer and etch chamber increase, simultaneous measurement at multi points in radial and poloidal direction becomes important. For this purpose, Plasma lab in Seoul National University and SEMES jointly developed an IEA that can measure the ion energy distributions at five positions in 6-inch wafer at the same time. The IEA is composed of 4 mesh grids (floating, electron repelling, discriminator, secondary electron retarding) and one metal layer (Ion collector). We used a remote controllable voltage source and DAC to supply the stepwise wave form to discriminator voltage source. We used the developed IEA to measure the radial and polodial uniformity of energy distribution of ions incident on the substrate with the change of bias power, gas pressure and bias power frequency. This was supported by SEMES cooperative research project.

  16. Energy summation method for energy loss computation in radial distribution networks

    SciTech Connect

    Taleski, R.; Rajicic, D.

    1996-05-01

    A method for energy loss calculation in radial distribution networks is presented. It is based on the statistical representation of the influence of different load curves in the network upon element power flows and on the oriented ordering of the network elements. Also, the paper proposes the use of different, but constant, voltages at each node, instead of nominal voltage at all nodes. The procedure is very simple, and it involves four steps: element ordering, calculation of second moments, power flow calculation with average loads at nodes, and energy calculation in network elements. The presented results illustrate that the algorithm has advantages over methods that use nominal voltage at each node for accuracy, and advantages over methods that calculate accurate energy losses for speed.

  17. Disturbance-free distributed Bragg reflector laser-diode interferometer with a double sinusoidal phase-modulating technique for measurement of absolute distance.

    PubMed

    Suzuki, Takamasa; Ohizumi, Takao; Sekimoto, Tatsuhiko; Sasaki, Osami

    2004-08-10

    A new range-finding technique that uses both double sinusoidal phase modulation and quasi-two-wavelength interferometry is described. Two independent interference signals are generated with respect to two different wavelengths on a time-sharing basis. We clarify that external disturbances of these interference signals are eliminated by both feedback control and differential detection and that the feedback control does not affect the distance measurement. A single distributed Bragg reflector laser diode allows us to simplify the optical setup and to improve the measurement accuracy. After discussing a measurement range, we estimate a measurement error by making several measurements.

  18. Energy distribution functions of kilovolt ions in a modified Penning discharge.

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1972-01-01

    The distribution function of ion energy parallel to the magnetic field of a modified Penning discharge has been measured with a retarding potential energy analyzer. These ions escaped through one of the throats of the magnetic mirror geometry. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field have been made with a charge-exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and the parallel and perpendicular kinetic temperatures are equal within experimental error. These results suggest that turbulent processes previously observed in this discharge Maxwellianize the velocity distribution along a radius in velocity space, and result in an isotropic energy distribution.

  19. Energy distribution functions of kilovolt ions in a modified Penning discharge.

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1973-01-01

    The distribution function of ion energy parallel to the magnetic field of a modified Penning discharge has been measured with a retarding potential energy analyzer. These ions escaped through one of the throats of the magnetic mirror geometry. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field have been made with a charge-exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and the parallel and perpendicular kinetic temperatures are equal within experimental error. These results suggest that turbulent processes previously observed in this discharge Maxwellianize the velocity distribution along a radius in velocity space, and result in an isotropic energy distribution.

  20. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < -1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  1. The Spectral Energy Distribution of Fermi Bright Blazars

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Ackermann, M.; Agudo, I.; Ajello, M.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Arkharov, A. A.; Axelsson, M.; Bach, U.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Benitiez, E.; Berdyugin, A.; Gehrels, N.; Harding, A. K.; Hays, E.; Marshall, F.; Scargle, J. D.; Thompson, D. J.

    2010-01-01

    We have conducted a detailed investigation of the broadband spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray /gamma-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log v-log v Fv representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low- and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, alpha(sub ro) , and optical to X-ray, alpha(sub ox), spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency (v(sup S) (sub peak)) is positioned between 10(exp 12.5) and 10(exp 14) Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10(exp 13) and 10(exp 17) Hz in featureless BL Lacertae objects. We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than

  2. Direct Energy Exchange Enhancement in Distributed Injection Light Gas Launchers

    SciTech Connect

    Alger, T W; Finucane, R G; Hall, J P; Penetrante, B M; Uphaus, T M

    2000-04-06

    initially contained in the reservoir. This results deserves emphasis: whereas conventional guns apply a few percent of the reservoir pressure to a fast moving projectile, our design is paradoxically capable of applying nearly double the contained pressure. We later confirmed this experimental result analytically and related it to a type of direct energy exchange between unsteady fluid flows. This physical approach was the basis for the German V-1 ''buzz bomb'' of World War II; it has been applied to a limited number of commercial applications. (This work should not be confused with the German WWII distributed injection missile launchers.) Direct fluid-energy exchange has not previously been applied to any gas-launcher technology. As a result of these discoveries, we estimate that a practical, 15 km/s, high-velocity launcher could be built using our direct-energy-exchange, distributed-injection approach. However, the radical nature of the results, the lack of confirming or allied work being carried out anywhere else, and the fact that it would take extensive time and resources to demonstrate targeted performance precluded further development. We plan to submit the results to a refereed journal to ensure that the work will not be lost to the launcher community.

  3. Determining Energy Distributions of HF-Accelerated Electrons at HAARP

    DTIC Science & Technology

    2015-11-18

    are presented for selected modification mechanisms (electron heating or electron acceleration energy ), total RF-plasma energy transfer flux, and...suprathermal accelerated electron energy spectra [Gustavsson et al., 2005] using inversion techniques similar to those described by Rees and Luckey [1974...primary excitation mechanisms include electron impact excitation by energetic electrons with kinetic energy exceeding the respective energies of 1.96 and

  4. Design, modeling, simulation and evaluation of a distributed energy system

    NASA Astrophysics Data System (ADS)

    Cultura, Ambrosio B., II

    This dissertation presents the design, modeling, simulation and evaluation of distributed energy resources (DER) consisting of photovoltaics (PV), wind turbines, batteries, a PEM fuel cell and supercapacitors. The distributed energy resources installed at UMass Lowell consist of the following: 2.5kW PV, 44kWhr lead acid batteries and 1500W, 500W & 300W wind turbines, which were installed before year 2000. Recently added to that are the following: 10.56 kW PV array, 2.4 kW wind turbine, 29 kWhr Lead acid batteries, a 1.2 kW PEM fuel cell and 4-140F supercapacitors. Each newly added energy resource has been designed, modeled, simulated and evaluated before its integration into the existing PV/Wind grid-connected system. The Mathematical and Simulink model of each system was derived and validated by comparing the simulated and experimental results. The Simulated results of energy generated from a 10.56kW PV system are in good agreement with the experimental results. A detailed electrical model of a 2.4kW wind turbine system equipped with a permanent magnet generator, diode rectifier, boost converter and inverter is presented. The analysis of the results demonstrates the effectiveness of the constructed simulink model, and can be used to predict the performance of the wind turbine. It was observed that a PEM fuel cell has a very fast response to load changes. Moreover, the model has validated the actual operation of the PEM fuel cell, showing that the simulated results in Matlab Simulink are consistent with the experimental results. The equivalent mathematical equation, derived from an electrical model of the supercapacitor, is used to simulate its voltage response. The model is completely capable of simulating its voltage behavior, and can predict the charge time and discharge time of voltages on the supercapacitor. The bi-directional dc-dc converter was designed in order to connect the 48V battery bank storage to the 24V battery bank storage. This connection was

  5. Minority additive distributions in a ceramic metal-halide arc lamp using high-energy x-ray induced fluorescence

    NASA Astrophysics Data System (ADS)

    Curry, J. J.; Adler, H. G.; Shastri, S. D.; Lawler, J. E.

    2001-09-01

    X-ray induced fluorescence is used to measure the elemental densities of minority additives in a metal-halide arc contained inside a translucent ceramic envelope. A monochromatic x-ray beam from the Sector 1 Insertion Device beamline at the Advanced Photon Source is used to excite K-shell x-ray fluorescence in the constituents of a ceramic metal-halide arc lamp dosed with DyI3 and CsI. Fluorescence and scattered photons are collected by a cryogenic energy-resolving Ge detector. The high signal-to-noise spectra show strong fluorescence from Dy, Cs, and I, as well as elastic scattering from Hg. Radial distributions of the absolute elemental densities of Dy, Cs, and I are obtained.

  6. Minority additive distributions in a ceramic metal-halide arc lamp using high-energy x-ray induced fluorescence

    SciTech Connect

    Curry, J. J.; Adler, H. G.; Shastri, S. D.; Lawler, J. E.

    2001-09-24

    X-ray induced fluorescence is used to measure the elemental densities of minority additives in a metal-halide arc contained inside a translucent ceramic envelope. A monochromatic x-ray beam from the Sector 1 Insertion Device beamline at the Advanced Photon Source is used to excite K-shell x-ray fluorescence in the constituents of a ceramic metal-halide arc lamp dosed with DyI{sub 3} and CsI. Fluorescence and scattered photons are collected by a cryogenic energy-resolving Ge detector. The high signal-to-noise spectra show strong fluorescence from Dy, Cs, and I, as well as elastic scattering from Hg. Radial distributions of the absolute elemental densities of Dy, Cs, and I are obtained.

  7. Energy Systems Integration: Demonstrating Distribution Feeder Voltage Control

    SciTech Connect

    2017-01-01

    Overview fact sheet about the Smarter Grid Solutions Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  8. Energy Systems Integration: Demonstrating Distributed Grid-Edge Control Hierarchy

    SciTech Connect

    2017-01-01

    Overview fact sheet about the OMNETRIC Group Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  9. Distributed Energy Alternative to Electrical Distribution Grid Expansion in Consolidated Edison Service Territory

    SciTech Connect

    Kingston, Tim; Kelly, John

    2008-08-01

    The nation's power grid, specifically the New York region, faces burgeoning energy demand and suffers from congested corridors and aging equipment that cost New York consumers millions of dollars. Compounding the problem is high-density buildup in urban areas that limits available space to expand grid capacity. Coincidently, these urban areas are precisely where additional power is required. DER in this study refers to combined heat and power (CHP) technology, which simultaneously generates heat and electricity at or near the point where the energy will be consumed. There are multiple CHP options available that, combined with a portfolio of other building energy efficiency (EE) strategies, can help achieve a more efficient supply-demand balance than what the grid can currently provide. As an alternative to expanding grid capacity, CHP and EE strategies can be deployed in a flexible manner at virtually any point on the grid to relieve load. What's more, utilities and customers can install them in a variety of potentially profitable applications that are more environmentally friendly. Under the auspices of the New York State Energy Research and Development Authority (NYSERDA) and the Oak Ridge National Laboratory representing the Office of Electricity of the U.S. Department of Energy, Gas Technology Institute (GTI) conducted this study in cooperation with Consolidated Edison to help broaden the market penetration of EE and DER. This study provides realistic load models and identifies the impacts that EE and DER can have on the electrical distribution grid; specifically within the current economic and regulatory environment of a high load growth area of New York City called Hudson Yards in Midtown Manhattan. These models can be used to guide new policies that improve market penetration of appropriate CHP and EE technologies in new buildings. The following load modeling scenarios were investigated: (1) Baseline: All buildings are built per the Energy Conservation

  10. Simulated galaxy interactions as probes of merger spectral energy distributions

    SciTech Connect

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars; Hayward, Christopher C.; Brassington, Nicola

    2014-04-10

    We present the first systematic comparison of ultraviolet-millimeter spectral energy distributions (SEDs) of observed and simulated interacting galaxies. Our sample is drawn from the Spitzer Interacting Galaxy Survey and probes a range of galaxy interaction parameters. We use 31 galaxies in 14 systems which have been observed with Herschel, Spitzer, GALEX, and 2MASS. We create a suite of GADGET-3 hydrodynamic simulations of isolated and interacting galaxies with stellar masses comparable to those in our sample of interacting galaxies. Photometry for the simulated systems is then calculated with the SUNRISE radiative transfer code for comparison with the observed systems. For most of the observed systems, one or more of the simulated SEDs match reasonably well. The best matches recover the infrared luminosity and the star formation rate of the observed systems, and the more massive systems preferentially match SEDs from simulations of more massive galaxies. The most morphologically distorted systems in our sample are best matched to the simulated SEDs that are close to coalescence, while less evolved systems match well with the SEDs over a wide range of interaction stages, suggesting that an SED alone is insufficient for identifying the interaction stage except during the most active phases in strongly interacting systems. This result is supported by our finding that the SEDs calculated for simulated systems vary little over the interaction sequence.

  11. The quiescent spectral energy distribution of V404 Cyg

    NASA Astrophysics Data System (ADS)

    Hynes, R. I.; Bradley, C. K.; Rupen, M.; Gallo, E.; Fender, R. P.; Casares, J.; Zurita, C.

    2009-11-01

    We present a multiwavelength study of the black hole X-ray binary V404 Cyg in quiescence, focusing upon the spectral energy distribution (SED). Radio, optical, ultraviolet (UV) and X-ray coverage is simultaneous. We supplement the SED with additional non-simultaneous data in the optical through infrared where necessary. The compiled SED is the most complete available for this, the X-ray and radio brightest quiescent black hole system. We find no need for a substantial contribution from accretion light from the near-UV to the near-IR, and in particular the weak UV emission constrains published spectral models for V404 Cyg. We confirm that no plausible companion spectrum and interstellar extinction can fully explain the mid-IR, however, and an infrared (IR) excess from a jet or cool disc appears to be required. The X-ray spectrum is consistent with a Γ ~ 2 power law as found by all other studies to date. There is no evidence for any variation in the hardness over a range of a factor of 10 in luminosity. The radio flux is consistent with a flat spectrum (in fν). The break frequency between a flat and optically thin spectrum most likely occurs in the mid or far-IR, but is not strongly constrained by these data. We find the radio to be substantially variable but with no clear correlation with X-ray variability.

  12. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  13. Absolute airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  14. The density-of-states concept versus the experimentally determined distribution of activation energies

    SciTech Connect

    Adriaenssens, G.J.; Arkhipov, V.I.

    1996-12-31

    Random fluctuations of localized state energies will result in thermal release of carriers trapped in those states at shorter times than would be observed from a stationary distribution of the same energies. An experimentally observed distribution of activation energies will hence differ from the distribution of average energies of the states involved. It will also be temperature-dependent. In a-Si:H, low-frequency fluctuations with a spectrum comparable to the one of 1/f noise, can account for the measured temperature dependence of the distribution. They also explain the apparent shift in localized-state energy under steady-state illumination.

  15. Energy Distribution of Electrons in Radiation Induced-Helium Plasmas. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lo, R. H.

    1972-01-01

    Energy distribution of high energy electrons as they slow down and thermalize in a gaseous medium is studied. The energy distribution in the entire energy range from source energies down is studied analytically. A helium medium in which primary electrons are created by the passage of heavy-charged particles from nuclear reactions is emphasized. A radiation-induced plasma is of interest in a variety of applications, such as radiation pumped lasers and gaseous core nuclear reactors.

  16. Energy Distribution of the Bianchi Type i Solution

    NASA Astrophysics Data System (ADS)

    Radinschi, Irina

    We calculate the energy of an anisotropic model of universe based on the Bianchi type I metric in the Mo ller prescription. The total energy due to the matter and gravitational field is zero. This result supports the importance of the energy-momentum complexes in the localization of energy.

  17. Absolute-structure reports.

    PubMed

    Flack, Howard D

    2013-08-01

    All the 139 noncentrosymmetric crystal structures published in Acta Crystallographica Section C between January 2011 and November 2012 inclusive have been used as the basis of a detailed study of the reporting of absolute structure. These structure determinations cover a wide range of space groups, chemical composition and resonant-scattering contribution. Defining A and D as the average and difference of the intensities of Friedel opposites, their level of fit has been examined using 2AD and selected-D plots. It was found, regardless of the expected resonant-scattering contribution to Friedel opposites, that the Friedel-difference intensities are often dominated by random uncertainty and systematic error. An analysis of data collection strategy is provided. It is found that crystal-structure determinations resulting in a Flack parameter close to 0.5 may not necessarily be from crystals twinned by inversion. Friedifstat is shown to be a robust estimator of the resonant-scattering contribution to Friedel opposites, very little affected by the particular space group of a structure nor by the occupation of special positions. There is considerable confusion in the text of papers presenting achiral noncentrosymmetric crystal structures. Recommendations are provided for the optimal way of treating noncentrosymmetric crystal structures for which the experimenter has no interest in determining the absolute structure.

  18. 16 CFR Table 4 to Part 1512 - Relative Energy Distribution of Sources

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Relative Energy Distribution of Sources 4... SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Pt. 1512, Table 4 Table 4 to Part 1512—Relative Energy Distribution of Sources Wave length (nanometers) Relative energy 380 9.79 390 12.09 400 14.71 410 17.68 420...

  19. 16 CFR Table 4 to Part 1512 - Relative Energy Distribution of Sources

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Relative Energy Distribution of Sources 4... SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Pt. 1512, Table 4 Table 4 to Part 1512—Relative Energy Distribution of Sources Wave length (nanometers) Relative energy 380 9.79 390 12.09 400 14.71 410 17.68 420...

  20. 16 CFR Table 4 to Part 1512 - Relative Energy Distribution of Sources

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Relative Energy Distribution of Sources 4... SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Pt. 1512, Table 4 Table 4 to Part 1512—Relative Energy Distribution of Sources Wave length (nanometers) Relative energy 380 9.79 390 12.09 400 14.71 410 17.68 420...

  1. 16 CFR Table 4 to Part 1512 - Relative Energy Distribution of Sources

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Relative Energy Distribution of Sources 4... SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Pt. 1512, Table 4 Table 4 to Part 1512—Relative Energy Distribution of Sources Wave length (nanometers) Relative energy 380 9.79 390 12.09 400 14.71 410 17.68 420...

  2. 16 CFR Table 4 to Part 1512 - Relative Energy Distribution of Sources

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Relative Energy Distribution of Sources 4... SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Pt. 1512, Table 4 Table 4 to Part 1512—Relative Energy Distribution of Sources Wave length (nanometers) Relative energy 380 9.79 390 12.09 400 14.71 410 17.68 420...

  3. Kappa distributions in the presence of a potential energy

    NASA Astrophysics Data System (ADS)

    Livadiotis, George

    2016-10-01

    Classical particle systems reside at thermal equilibrium with their velocity distribution function stabilized into a Maxwell distribution. On the contrary, collisionless and correlated particle systems, such as geophysical, space, and astrophysical plasmas, are characterized by a non-Maxwellian behavior, typically described by the so-called kappa distributions, or combinations thereof. Empirical kappa distributions have become increasingly widespread across plasma physics. A breakthrough in the field came with the connection of kappa distributions to non-extensive statistical mechanics. Understanding the statistical origin of kappa distributions was the cornerstone of further theoretical developments and applications, one of which is the generalization to the phase-space kappa distributions of a Hamiltonian with non-zero potentials. We present the theory behind the phase-space kappa distributions and discuss three important applications in collisionless plasmas: (i) origin of polytropic relation; (ii) gravitational field; (iii) barometric relation (i.e., pressure vs. altitude); and (iv) plasma magnetization.

  4. Proposed low-energy absolute calibration of nuclear recoils in a dual-phase noble element TPC using D-D neutron scattering kinematics

    NASA Astrophysics Data System (ADS)

    Verbus, J. R.; Rhyne, C. A.; Malling, D. C.; Genecov, M.; Ghosh, S.; Moskowitz, A. G.; Chan, S.; Chapman, J. J.; de Viveiros, L.; Faham, C. H.; Fiorucci, S.; Huang, D. Q.; Pangilinan, M.; Taylor, W. C.; Gaitskell, R. J.

    2017-04-01

    We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an in situ measurement of the low-energy nuclear recoil response of the target media using the measured scattering angle between multiple neutron interactions within the detector volume. The low-energy reach and reduced systematics of this calibration have particular significance for the low-mass WIMP sensitivity of several leading dark matter experiments. Multiple strategies for improving this calibration technique are discussed, including the creation of a new type of quasi-monoenergetic neutron source with a minimum possible peak energy of 272 keV. We report results from a time-of-flight-based measurement of the neutron energy spectrum produced by an Adelphi Technology, Inc. DD108 neutron generator, confirming its suitability for the proposed nuclear recoil calibration.

  5. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  6. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P [Pasco, WA; Donnelly, Matthew K [Kennewick, WA; Dagle, Jeffery E [Richland, WA

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  7. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    SciTech Connect

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  8. Modelling and interpreting spectral energy distributions of galaxies with BEAGLE

    NASA Astrophysics Data System (ADS)

    Chevallard, Jacopo; Charlot, Stéphane

    2016-10-01

    We present a new-generation tool to model and interpret spectral energy distributions (SEDs) of galaxies, which incorporates in a consistent way the production of radiation and its transfer through the interstellar and intergalactic media. This flexible tool, named BEAGLE (for BayEsian Analysis of GaLaxy sEds), allows one to build mock galaxy catalogues as well as to interpret any combination of photometric and spectroscopic galaxy observations in terms of physical parameters. The current version of the tool includes versatile modelling of the emission from stars and photoionized gas, attenuation by dust and accounting for different instrumental effects, such as spectroscopic flux calibration and line spread function. We show a first application of the BEAGLE tool to the interpretation of broad-band SEDs of a published sample of ˜ 10^4 galaxies at redshifts 0.1 ≲ z ≲ 8. We find that the constraints derived on photometric redshifts using this multipurpose tool are comparable to those obtained using public, dedicated photometric-redshift codes and quantify this result in a rigorous statistical way. We also show how the post-processing of BEAGLE output data with the PYTHON extension PYP-BEAGLE allows the characterization of systematic deviations between models and observations, in particular through posterior predictive checks. The modular design of the BEAGLE tool allows easy extensions to incorporate, for example, the absorption by neutral galactic and circumgalactic gas, and the emission from an active galactic nucleus, dust and shock-ionized gas. Information about public releases of the BEAGLE tool will be maintained on http://www.jacopochevallard.org/beagle.

  9. Bayesian fitting of Taurus brown dwarf spectral energy distributions

    NASA Astrophysics Data System (ADS)

    Mayne, N. J.; Harries, Tim J.; Rowe, John; Acreman, David M.

    2012-06-01

    We present derived stellar and disc parameters for a sample of Taurus brown dwarfs both with and without evidence of an associated disc. These parameters have been derived using an online fitting tool (), which includes a statistically robust derivation of uncertainties, an indication of parameter degeneracies and a complete treatment of the input photometric and spectroscopic observations. The observations of the Taurus members with indications of disc presence have been fitted using a grid of theoretical models including detailed treatments of physical processes accepted for higher mass stars, such as dust sublimation, and a simple treatment of the accretion flux. This grid of models has been designed to test the validity of the adopted physical mechanisms, but we have also constructed models using parametrization, for example semi-empirical dust sublimation radii, for users solely interested in parameter derivation and the quality of the fit. The parameters derived for the naked and disc brown dwarf systems are largely consistent with literature observations. However, our inner disc edge locations are consistently closer to the star than previous results and we also derive elevated accretion rates over non-spectral energy distribution based accretion rate derivations. For inner edge locations, we attribute these differences to the detailed modelling we have performed of the disc structure, particularly at the crucial inner edge where departures in geometry from the often adopted vertical wall due to dust sublimation (and therefore accretion flux) can compensate for temperature (and therefore distance) changes to the inner edge of the dust disc. In the case of the elevated derived accretion rates, in some cases, this may be caused by the intrinsic stellar luminosities of the targets exceeding that predicted by the isochrones we have adopted.

  10. The research of 3D visualization techniques for the test of laser energy distribution

    NASA Astrophysics Data System (ADS)

    Liu, Lixin; Wang, Bo

    2013-07-01

    In the process of laser transmission in the atmosphere, the complexity and instability of the atmospheric composition that seriously interfere with, even change, the performance of the laser beam. The image of laser energy distribution can be captured and analyzed through infrared CCD and digital image processing technology. The basic features of laser energy density distribution, such as the location and power of the peak point and other basic parameters could be acquired; laser energy density distribution can display in real time continuous multi-frame; the 3D visualization of pseudo-color for laser energy density distribution could be displayed, that reflect the relative size and position of the energy distribution in the different regions of the laser spot, using the VC++, windows APIs and OpenGL programming. The laser energy density distribution can be observed from all angles.

  11. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  12. Absolute multilateration between spheres

    NASA Astrophysics Data System (ADS)

    Muelaner, Jody; Wadsworth, William; Azini, Maria; Mullineux, Glen; Hughes, Ben; Reichold, Armin

    2017-04-01

    Environmental effects typically limit the accuracy of large scale coordinate measurements in applications such as aircraft production and particle accelerator alignment. This paper presents an initial design for a novel measurement technique with analysis and simulation showing that that it could overcome the environmental limitations to provide a step change in large scale coordinate measurement accuracy. Referred to as absolute multilateration between spheres (AMS), it involves using absolute distance interferometry to directly measure the distances between pairs of plain steel spheres. A large portion of each sphere remains accessible as a reference datum, while the laser path can be shielded from environmental disturbances. As a single scale bar this can provide accurate scale information to be used for instrument verification or network measurement scaling. Since spheres can be simultaneously measured from multiple directions, it also allows highly accurate multilateration-based coordinate measurements to act as a large scale datum structure for localized measurements, or to be integrated within assembly tooling, coordinate measurement machines or robotic machinery. Analysis and simulation show that AMS can be self-aligned to achieve a theoretical combined standard uncertainty for the independent uncertainties of an individual 1 m scale bar of approximately 0.49 µm. It is also shown that combined with a 1 µm m‑1 standard uncertainty in the central reference system this could result in coordinate standard uncertainty magnitudes of 42 µm over a slender 1 m by 20 m network. This would be a sufficient step change in accuracy to enable next generation aerospace structures with natural laminar flow and part-to-part interchangeability.

  13. Multiplicity Distributions from Antiproton-Proton Collisions at 1.8 Tev Center of Mass Energy

    NASA Astrophysics Data System (ADS)

    Wang, Chi-Ho.

    Charged-particle multiplicity distributions from antiproton-proton collisions at 1800 GeV center of mass energy, obtained with the E735 detector multiplicity hodoscope, are presented and discussed. A simple iteration method is used for conversion from number of observed hodoscope hits to true charged-particle multiplicity. The first four moments of the distribution are compared with distributions from lower energies. The distributions are also fit to KNO-G and negative binomial functions.

  14. Development of a High-Speed Static Switch for Distributed Energy and Microgrid Applications

    SciTech Connect

    Kroposki, B.; Pink, C.; Lynch, J.; John, V.; Meor Daniel, S.; Benedict, E.; Vihinen, I.

    2007-01-01

    Distributed energy resources can provide power to local loads in the electric distribution system and benefits such as improved reliability. Microgrids are intentional islands formed at a facility or in an electrical distribution system that contains at least one distributed resource and associated loads. Microgrids that operate both electrical generation and loads in a coordinated manner can offer additional benefits to the customer and local utility. The loads and energy sources can be disconnected from and reconnected to the area or local utility with minimal disruption to the local loads, thereby improving reliability. This paper details the development and testing of a highspeed static switch for distributed energy and microgrid applications.

  15. The Spectral Energy Distribution of the Coldest Known Brown Dwarf

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.; Esplin, T. L.

    2016-09-01

    WISE J085510.83-071442.5 (hereafter WISE 0855-0714) is the coldest known brown dwarf (˜250 K) and the fourth-closest known system to the Sun (2.2 pc). It has been previously detected only in the J band and two mid-IR bands. To better measure its spectral energy distribution (SED), we have performed deep imaging of WISE 0855-0714 in six optical and near-IR bands with Gemini Observatory, the Very Large Telescope, and the Hubble Space Telescope. Five of the bands show detections, although one detection is marginal (S/N ˜ 3). We also have obtained two epochs of images with the Spitzer Space Telescope for use in refining the parallax of the brown dwarf. By combining astrometry from this work and previous studies, we have derived a parallax of 0.449 ± 0.008″ (2.23 ± 0.04 pc). We have compared our photometry for WISE 0855-0714 to data for known Y dwarfs and to the predictions of three suites of models by Saumon et al. and Morley et al. that are defined by the presence or absence of clouds and nonequilibrium chemistry. Our estimates of Y - J and J - H for WISE 0855-0714 are redder than colors of other Y dwarfs, confirming a predicted reversal of near-IR colors to redder values at temperatures below 300-400 K. In color-magnitude diagrams, no single suite of models provides a clearly superior match to the sequence formed by WISE 0855-0714 and other Y dwarfs. Instead, the best-fitting model changes from one diagram to the next. Similarly, all of the models have substantial differences from the SED of WISE 0855-0714. As a result, we are currently unable to constrain the presence of clouds or nonequilibrium chemistry in its atmosphere. Based on observations made with the Spitzer Space Telescope, the NASA/ESA Hubble Space Telescope, Gemini Observatory, and the ESO Telescopes at Paranal Observatory.

  16. MEAN SPECTRAL ENERGY DISTRIBUTIONS AND BOLOMETRIC CORRECTIONS FOR LUMINOUS QUASARS

    SciTech Connect

    Krawczyk, Coleman M.; Richards, Gordon T.; Mehta, Sajjan S.; Vogeley, Michael S.; Gallagher, S. C.; Leighly, Karen M.; Ross, Nicholas P.; Schneider, Donald P.

    2013-05-01

    We explore the mid-infrared (mid-IR) through ultraviolet (UV) spectral energy distributions (SEDs) of 119,652 luminous broad-lined quasars with 0.064 < z < 5.46 using mid-IR data from Spitzer and WISE, near-infrared data from the Two Micron All Sky Survey and UKIDSS, optical data from the Sloan Digital Sky Survey, and UV data from the Galaxy Evolution Explorer. The mean SED requires a bolometric correction (relative to 2500 A) of BC{sub 2500A} =2.75 {+-} 0.40 using the integrated light from 1 {mu}m-2 keV, and we further explore the range of bolometric corrections exhibited by individual objects. In addition, we investigate the dependence of the mean SED on various parameters, particularly the UV luminosity for quasars with 0.5 {approx}< z {approx}< 3 and the properties of the UV emission lines for quasars with z {approx}> 1.6; the latter is a possible indicator of the strength of the accretion disk wind, which is expected to be SED-dependent. Luminosity-dependent mean SEDs show that, relative to the high-luminosity SED, low-luminosity SEDs exhibit a harder (bluer) far-UV spectral slope ({alpha}{sub UV}), a redder optical continuum, and less hot dust. Mean SEDs constructed instead as a function of UV emission line properties reveal changes that are consistent with known Principal Component Analysis trends. A potentially important contribution to the bolometric correction is the unseen extreme UV (EUV) continuum. Our work suggests that lower-luminosity quasars and/or quasars with disk-dominated broad emission lines may require an extra continuum component in the EUV that is not present (or much weaker) in high-luminosity quasars with strong accretion disk winds. As such, we consider four possible models and explore the resulting bolometric corrections. Understanding these various SED-dependent effects will be important for accurate determination of quasar accretion rates.

  17. Ion energy distributions and densities in the plume of Enceladus

    NASA Astrophysics Data System (ADS)

    Sakai, Shotaro; Cravens, Thomas E.; Omidi, Nojan; Perry, Mark E.; Waite, J. Hunter

    2016-10-01

    Enceladus has a dynamic plume that is emitting gas, including water vapor, and dust. The gas is ionized by solar EUV radiation, charge exchange, and electron impact and extends throughout the inner magnetosphere of Saturn. The charge exchange collisions alter the plasma composition. Ice grains (dust) escape from the vicinity of Enceladus and form the E ring, including a portion that is negatively charged by the local plasma. The inner magnetosphere within 10 RS (Saturn radii) contains a complex mixture of plasma, neutral gas, and dust that links back to Enceladus. In this paper we investigate the energy distributions, ion species and densities of water group ions in the plume of Enceladus using test particle and Monte Carlo methods that include collisional processes such as charge exchange and ion-neutral chemical reactions. Ion observations from the Cassini Ion and Neutral Mass Spectrometer (INMS) for E07 are presented for the first time. We use the modeling results to interpret observations made by the Cassini Plasma Spectrometer (CAPS) and the INMS. The low energy ions, as observed by CAPS, appear to be affected by a vertical electric field (EZ=-10 μV/m) in the plume. The EZ field may be associated with the charged dust and/or the pressure gradient of plasma. The model results, along with the results of earlier models, show that H3O+ ions created by chemistry are predominant in the plume, which agrees with INMS and CAPS data, but the INMS count rate in the plume for the model is several times greater than the data, which we do not fully understand. This composition and the total ion count found in the plume agree with INMS and CAPS data. On the other hand, the Cassini Langmuir Probe measured a maximum plume ion density more than 30,000 cm-3, which is far larger than the maximum ion density from our model, 900 cm-3. The model results also demonstrate that most of the ions in the plume are from the external magnetospheric flow and are not generated by local

  18. Logistic distributed activation energy model--Part 1: Derivation and numerical parametric study.

    PubMed

    Cai, Junmeng; Jin, Chuan; Yang, Songyuan; Chen, Yong

    2011-01-01

    A new distributed activation energy model is presented using the logistic distribution to mathematically represent the pyrolysis kinetics of complex solid fuels. A numerical parametric study of the logistic distributed activation energy model is conducted to evaluate the influences of the model parameters on the numerical results of the model. The parameters studied include the heating rate, reaction order, frequency factor, mean of the logistic activation energy distribution, standard deviation of the logistic activation energy distribution. The parametric study addresses the dependence on the forms of the calculated α-T and dα/dT-T curves (α: reaction conversion, T: temperature). The study results would be very helpful to the application of the logistic distributed activation energy model, which is the main subject of the next part of this series.

  19. Energy storage management system with distributed wireless sensors

    DOEpatents

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  20. Terminal energy distribution of blast waves from bursting spheres

    NASA Technical Reports Server (NTRS)

    Adamczyk, A. A.; Strehlow, R. A.

    1977-01-01

    The calculation results for the total energy delivered to the surroundings by the burst of an idealized massless sphere containing an ideal gas are presented. The logic development of various formulas for sphere energy is also presented. For all types of sphere bursts the fraction of the total initial energy available in the sphere that is delivered to the surroundings is shown to lie between that delivered for the constant pressure addition of energy to a source region and that delivered by isentropic expansion of the sphere. The relative value of E sub/Q increases at fixed sphere pressure/surrounding pressure as sphere temperature increases because the velocity of sound increases.

  1. Neutron emission effects on final fragments mass and kinetic energy distribution from low energy fission of 34U

    NASA Astrophysics Data System (ADS)

    Montoya, M.; Rojas, J.; Lobato, I.

    2008-12-01

    The kinetic energy distribution as a function of mass of final fragments (m) from low energy fission of $^{234}U$, measured with the Lohengrin spectrometer by Belhafaf et al. presents a peak around m=108 and another around m = 122. The authors attribute the first peak to the evaporation of a large number of neutrons around the corresponding mass number; and the second peak to the distribution of the primary fragment kinetic energy. Nevertheless, the theoretical calculations related to primary distribution made by Faust et al. do not result in a peak around m = 122. In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without peaks on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on the standard deviation of the kinetic energy distribution around m = 109, a depletion from m = 121 to m = 129, and an small peak around m = 122, which is not as big as the measured by Belhafaf et al. Our simulation also reproduces the experimental results on the yield of the final mass, the average number of emitted neutrons as a function of the provisional mass (calculated from the values of the final kinetic energy of the complementary fragments) and the average value of fragment kinetic energy as a function of the final mass.

  2. High-energy lasers by using distributed reflection: A concept

    NASA Technical Reports Server (NTRS)

    Saffren, M. M.

    1975-01-01

    Lasers may be made with higher energy photons than heretofore possible. It has been proposed that vacuum ultraviolet lasing can be obtained by bombarding superfluid helium with electron beam, while coupling acoustic energy into helium to set up standing waves in fluid.

  3. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    PubMed

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  4. STANDARDIZING TYPE Ia SUPERNOVA ABSOLUTE MAGNITUDES USING GAUSSIAN PROCESS DATA REGRESSION

    SciTech Connect

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Nordin, J.; Thomas, R. C.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E.; and others

    2013-04-01

    We present a novel class of models for Type Ia supernova time-evolving spectral energy distributions (SEDs) and absolute magnitudes: they are each modeled as stochastic functions described by Gaussian processes. The values of the SED and absolute magnitudes are defined through well-defined regression prescriptions, so that data directly inform the models. As a proof of concept, we implement a model for synthetic photometry built from the spectrophotometric time series from the Nearby Supernova Factory. Absolute magnitudes at peak B brightness are calibrated to 0.13 mag in the g band and to as low as 0.09 mag in the z = 0.25 blueshifted i band, where the dispersion includes contributions from measurement uncertainties and peculiar velocities. The methodology can be applied to spectrophotometric time series of supernovae that span a range of redshifts to simultaneously standardize supernovae together with fitting cosmological parameters.

  5. Absolute Measurement of Electron Cloud Density in aPositively-Charged Particle Beam

    SciTech Connect

    Kireeff Covo, Michel; Molvik, Arthur W.; Friedman, Alex; Vay,Jean-Luc; Seidl, Peter A.; Logan, Grant; Baca, David; Vujic, Jasmina L.

    2006-04-27

    Clouds of stray electrons are ubiquitous in particle accelerators and frequently limit the performance of storage rings. Earlier measurements of electron energy distribution and flux to the walls provided only a relative electron cloud density. We have measured electron accumulation using ions expelled by the beam. The ion energy distribution maps the depressed beam potential and gives the dynamic cloud density. Clearing electrode current reveals the static background cloud density, allowing the first absolute measurement of the time-dependent electron cloud density during the beam pulse.

  6. Absolute Measurement of Electron Cloud Density in a Positively-Charged Particle Beam

    SciTech Connect

    Covo, M K; Molvik, A W; Friedman, A; Vay, J; Seidl, P A; Logan, B G; Baca, D; Vujic, J L

    2006-05-18

    Clouds of stray electrons are ubiquitous in particle accelerators and frequently limit the performance of storage rings. Earlier measurements of electron energy distribution and flux to the walls provided only a relative electron cloud density. We have measured electron accumulation using ions expelled by the beam. The ion energy distribution maps the depressed beam potential and gives the dynamic cloud density. Clearing electrode current reveals the static background cloud density, allowing the first absolute measurement of the time-dependent electron cloud density during the beam pulse.

  7. Absolute measurement of electron-cloud density in a positively charged particle beam.

    PubMed

    Kireeff Covo, Michel; Molvik, Arthur W; Friedman, Alex; Vay, Jean-Luc; Seidl, Peter A; Logan, Grant; Baca, David; Vujic, Jasmina L

    2006-08-04

    Clouds of stray electrons are ubiquitous in particle accelerators and frequently limit the performance of storage rings. Earlier measurements of electron energy distribution and flux to the walls provided only a relative electron-cloud density. We have measured electron accumulation using ions expelled by the beam. The ion energy distribution maps the depressed beam potential and gives the dynamic cloud density. Clearing electrode current reveals the static background cloud density, allowing the first absolute measurement of the time-dependent electron-cloud density during the beam pulse.

  8. On the Use of the Tsallis Distribution at LHC Energies.

    NASA Astrophysics Data System (ADS)

    Cleymans, J.

    2017-01-01

    Numerous papers have appeared recently showing fits to transverse momentum (pT ) spectra measured at the Large Hadron Collider (LHC) in proton - proton collisions. This talk focuses on the fits extending to very large values of the transverse momentum with pT values up to 200 GeV/c as measured by the ATLAS and CMS collaborations at and 7 TeV. A thermodynamically consistent form of the Tsallis distribution is used for fitting the transverse momentum spectra at mid-rapidity. The fits based on the proposed distribution provide an excellent description over 14 orders of magnitude. Despite this success, an ambiguity is noted concerning the determination of the parameters in the Tsallis distribution. This prevents drawing firm conclusions as to the universality of the parameters appearing in the Tsallis distribution.

  9. Concentrated vs. distributed energy: employment based community level differences

    SciTech Connect

    Hoover, L. J.; Santini, D. J.; Smeltzer, K. K.; Stenehjem, E. J.

    1980-01-01

    Consideration is given to the differences between concentrated options (central station electric, synfuels) and distributed options (SHACOB) for residential space conditioning. Employment, geographic location, community stability, and locational equity are the factors discussed.

  10. VAR Support from Distributed Wind Energy Resources: Preprint

    SciTech Connect

    Romanowitz, H.; Muljadi, E.; Butterfield, C. P.; Yinger, R.

    2004-07-01

    As the size and quantity of wind farms and other distributed generation facilities increase, especially in relation to local grids, the importance of a reactive power compensator or VAR support from these facilities becomes more significant. Poorly done, it can result in cycling or inadequate VAR support, and the local grid could experience excessive voltage regulation and, ultimately, instability. Improved wind turbine and distributed generation power control technologies are creating VAR support capabilities that can be used to enhance the voltage regulation and stability of local grids. Locating VAR support near the point of consumption, reducing step size, and making the control active all improve the performance of the grid. This paper presents and discusses alternatives for improving the integration of VAR support from distributed generation facilities such as wind farms. We also examine the relative effectiveness of distributed VAR support on the local grid and how it can b e integrated with the VAR support of the grid operator.

  11. Energy distribution functions of kilovolt ions in a modified Penning discharge

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1972-01-01

    The distribution function of ion energy parallel to the magnetic field of a Penning discharge was measured with a retarding potential energy analyzer. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field were made with a charge-exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and their kinetic temperatures are equal within experimental error. This suggests that turbulent processes previously observed Maxwellianize the velocity distribution along a radius in velocity space, and result in an isotropic energy distribution. The kinetic temperatures are on the order of kilovolts, and the tails of the ion energy distribution functions are Maxwellian up to a factor of 7 e-folds in energy. When the distributions depart from Maxwellian, they are enhanced above the Maxwellian tail. Above densities of about 10 to the 10th power particles/cc, this enhancement appears to be the result of a second, higher temperature Maxwellian distribution. At these high particle energies, only the ions perpendicular to the magnetic field lines were investigated.

  12. Negative absolute temperature for motional degrees of freedom.

    PubMed

    Braun, S; Ronzheimer, J P; Schreiber, M; Hodgman, S S; Rom, T; Bloch, I; Schneider, U

    2013-01-04

    Absolute temperature is usually bound to be positive. Under special conditions, however, negative temperatures-in which high-energy states are more occupied than low-energy states-are also possible. Such states have been demonstrated in localized systems with finite, discrete spectra. Here, we prepared a negative temperature state for motional degrees of freedom. By tailoring the Bose-Hubbard Hamiltonian, we created an attractively interacting ensemble of ultracold bosons at negative temperature that is stable against collapse for arbitrary atom numbers. The quasimomentum distribution develops sharp peaks at the upper band edge, revealing thermal equilibrium and bosonic coherence over several lattice sites. Negative temperatures imply negative pressures and open up new parameter regimes for cold atoms, enabling fundamentally new many-body states.

  13. Radial Flux Distribution of Low-Energy Neutrons.

    ERIC Educational Resources Information Center

    Higinbotham, J.

    1979-01-01

    Describes an experiment designed to illustrate the basic principle involved in the process of moderation of fast neutrons by water, and the monitoring of the low-energy neutron flux using indium as a probe. (GA)

  14. On the rapidity distribution of nucleons participating in elliptical flow at intermediate energies

    NASA Astrophysics Data System (ADS)

    Kaur, Kamaldeep; Kumar, Suneel

    2017-01-01

    The distribution of nucleons participating in elliptical flow is studied for the reactions of 79197Au + 79197Au, 60150Nd + 60150Nd, 50124Sn + 50124Sn, 4496Ru + 4496Ru, 3678Kr + 3678Kr, 2048Ca + 2048Ca and 2040Ca + 2040Ca using isospin-dependent quantum molecular dynamics (IQMD) model for various centrality ranges and over the wide range of intermediate energy. Our findings reveal that the sigma (width) of rapidity distribution obtained varies with mass of colliding system at a given energy. The peak of rapidity distribution decreases with decrease in the mass of colliding nuclei. Transition energy as well as width of rapidity distribution depends on the mass of fragment for a given centrality. Influence of isospin dependent symmetry energy and nucleon-nucleon cross-section can be studied using rapidity distribution. Second transition energy depends on the mass of the fragment. Rotational phenomenon of nucleons can be observed for nucleons participating in elliptical flow.

  15. Kinetic energy distributions of sputtered neutral aluminum clusters: Al--Al[sub 6

    SciTech Connect

    Coon, S.R.; Calaway, W.F.; Pellin, M.J. ); Curlee, G.A. . Dept. of Physics); White, J.M. . Dept. of Chemistry and Biochemistry)

    1992-01-01

    Neutral aluminum clusters sputtered from polycrystalline aluminum were analyzed by laser postionization time-of-flight (TOF) mass spectrometry. The kinetic energy distributions of Al through Al[sub 6] were measured by a neutrals time-of-flight technique. The interpretation of laser postionization TOF data to extract velocity and energy distributions is presented. The aluminum cluster distributions are qualitatively similar to previous copper cluster distribution measurements from our laboratory. In contrast to the steep high energy tails predicted by the single- or multiple- collision models, the measured cluster distributions have high energy power law dependences in the range of E[sup [minus]3] to E[sup [minus]4.5]. Correlated collision models may explain the substantial abundance of energetic clusters that are observed in these experiments. Possible influences of cluster fragmentation on the distributions are discussed.

  16. Kinetic energy distributions of sputtered neutral aluminum clusters: Al--Al{sub 6}

    SciTech Connect

    Coon, S.R.; Calaway, W.F.; Pellin, M.J.; Curlee, G.A.; White, J.M.

    1992-12-01

    Neutral aluminum clusters sputtered from polycrystalline aluminum were analyzed by laser postionization time-of-flight (TOF) mass spectrometry. The kinetic energy distributions of Al through Al{sub 6} were measured by a neutrals time-of-flight technique. The interpretation of laser postionization TOF data to extract velocity and energy distributions is presented. The aluminum cluster distributions are qualitatively similar to previous copper cluster distribution measurements from our laboratory. In contrast to the steep high energy tails predicted by the single- or multiple- collision models, the measured cluster distributions have high energy power law dependences in the range of E{sup {minus}3} to E{sup {minus}4.5}. Correlated collision models may explain the substantial abundance of energetic clusters that are observed in these experiments. Possible influences of cluster fragmentation on the distributions are discussed.

  17. Low-energy ion distribution functions on a magnetically quiet day at geostationary altitude /L = 7/

    NASA Technical Reports Server (NTRS)

    Singh, N.; Raitt, W. J.; Yasuhara, F.

    1982-01-01

    Ion energy and pitch angle distribution functions are examined for a magnetically quiet day using averaged data from ATS 6. For both field-aligned and perpendicular fluxes, the populations have a mixture of characteristic energies, and the distribution functions can be fairly well approximated by Maxwellian distributions over three different energy bands in the range 3-600 eV. Pitch angle distributions varying with local time, and energy distributions are used to compute total ion density. Pitch angle scattering mechanisms responsible for the observed transformation of pitch angle distribution are examined, and it is found that a magnetic noise of a certain power spectral density belonging to the electromagnetic ion cyclotron mode near the ion cyclotron frequency can be effective in trapping the field aligned fluxes by pitch angle scattering.

  18. Energy distributions of field emitted electrons from carbide tips and tungsten tips with diamondlike carbon coatings

    SciTech Connect

    Yu, M.L. |; Kim, H.; Hussey, B.W.; Chang, T.H.; Mackie, W.A.

    1996-11-01

    We have measured the energy distributions of electrons field emitted from tungsten carbide, HfC{l_angle}100{r_angle}, and ZrC{l_angle}100{r_angle} tips, and tungsten field emitters with diamondlike carbon coatings. Multiple-peaked energy distributions were observed from instability induced emission sites on the carbide tips. Energy distributions of electrons field emitted from the diamondlike carbon coated tungsten tips were broader than those from metal tips. They also showed a shift towards lower energies with increases in the emission current. {copyright} {ital 1996 American Vacuum Society}

  19. Hybrid Steered Molecular Dynamics Approach to Computing Absolute Binding Free Energy of Ligand-Protein Complexes: A Brute Force Approach That Is Fast and Accurate.

    PubMed

    Chen, Liao Y

    2015-04-14

    Computing the free energy of binding a ligand to a protein is a difficult task of essential importance for which purpose various theoretical/computational approaches have been pursued. In this paper, we develop a hybrid steered molecular dynamics (hSMD) method capable of resolving one ligand–protein complex within a few wall-clock days with high enough accuracy to compare with the experimental data. This hSMD approach is based on the relationship between the binding affinity and the potential of mean force (PMF) in the established literature. It involves simultaneously steering n (n = 1, 2, 3, ...) centers of mass of n selected segments of the ligand using n springs of infinite stiffness. Steering the ligand from a single initial state chosen from the bound state ensemble to the corresponding dissociated state, disallowing any fluctuations of the pulling centers along the way, one can determine a 3n-dimensional PMF curve connecting the two states by sampling a small number of forward and reverse pulling paths. This PMF constitutes a large but not the sole contribution to the binding free energy. Two other contributors are (1) the partial partition function containing the equilibrium fluctuations of the ligand at the binding site and the deviation of the initial state from the PMF minimum and (2) the partial partition function containing rotation and fluctuations of the ligand around one of the pulling centers that is fixed at a position far from the protein. We implement this hSMD approach for two ligand–protein complexes whose structures were determined and whose binding affinities were measured experimentally: caprylic acid binding to bovine β-lactoglobulin and glutathione binding to Schistosoma japonicum glutathione S-transferase tyrosine 7 to phenylalanine mutant. Our computed binding affinities agree with the experimental data within a factor of 1.5. The total time of computation for these two all-atom model systems (consisting of 96K and 114K atoms

  20. Ion composition and energy distribution during 10 magnetic storms

    SciTech Connect

    Lennartsson, W.; Sharp, R.D.; Shelley, E.G.; Johnson, R.G.; Balsiger, H.

    1981-06-01

    Data from the plasma composition experiment on ISEE 1 were used to investigate the relative quantities and energy characteristics of H/sup +/, He/sup + +/, and O/sup +/ in the near-equatorial magnetosphere at R< or =15 R/sub E/ during magnetic storms, principally during the early main phase. The ions included in this study had energies in the range of 0.1< or =E/Q< or =17 keV/e. The number densities were characterized by a large to dominant fraction of terrestrial ions through this energy window. Terrestrial O/sup +/ ions were most clearly identified, but strong evidence for a significant contribution of terrestrial H/sup +/ ions was also found. On occasions, the O/sup +/ alone contributed 50% or more of the integral number density, as well as the energy density, over distances of several earth radii along the orbit. The largest fractions of O/sup +/ (< or approx. =75%) and He/sup +/ (< or =25%) were found at R<3 R/sub E/(L<5). In general, the He/sup +/ only represented a few percent, however. Small fractions of O/sup +/ (<10%) and He/sup +/ (<1%) were mostly found in the 0100--0600 LT sector, at R> or approx. = 7 R/sub E/. The He/sup + +/ was often obscured by background and rarely exceeded 2%, except in the 0100--0600 LT sector, at R> or approx. =7 R/sub E/, where it reached several percent relatively frequently, suggesting a larger solar wind component here. It is argued, based on certain signatures in the energy spectra, that solar wind ions may enter the inner magnetosphere through this region and thereby contribute a larger portion of the high-energy ring current population (50--100 keV). The data do not suggest, however, that the solar wind is always the dominant source of ions for the high-energy ring current.

  1. Model for radial dependence of frequency distributions for energy imparted in nanometer volumes from HZE particles

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Nikjoo, H.; Goodhead, D. T.; Decillo, J. F. (Principal Investigator)

    2000-01-01

    This paper develops a deterministic model of frequency distributions for energy imparted (total energy deposition) in small volumes similar to DNA molecules from high-energy ions of interest for space radiation protection and cancer therapy. Frequency distributions for energy imparted are useful for considering radiation quality and for modeling biological damage produced by ionizing radiation. For high-energy ions, secondary electron (delta-ray) tracks originating from a primary ion track make dominant contributions to energy deposition events in small volumes. Our method uses the distribution of electrons produced about an ion's path and incorporates results from Monte Carlo simulation of electron tracks to predict frequency distributions for ions, including their dependence on radial distance. The contribution from primary ion events is treated using an impact parameter formalism of spatially restricted linear energy transfer (LET) and energy-transfer straggling. We validate our model by comparing it directly to results from Monte Carlo simulations for proton and alpha-particle tracks. We show for the first time frequency distributions of energy imparted in DNA structures by several high-energy ions such as cosmic-ray iron ions. Our comparison with results from Monte Carlo simulations at low energies indicates the accuracy of the method.

  2. Excitation function for H+O2 reaction: A study of zero-point energy effects and rotational distributions in trajectory calculations

    NASA Astrophysics Data System (ADS)

    Varandas, A. J. C.

    1993-07-01

    The excitation function of the H+O2 (v=0)→OH+O reaction has been determined from trajectory calculations using the HO2 DMBE IV potential energy surface. Reactive cross sections for thirteen translational energies, corresponding to a total of a quarter of a million trajectories, have been computed covering the range 65≤Etr/kJ mol-1≤550. Various schemes for analyzing the trajectories, three of which aim to correct approximately for the zero-point energy problem of classical dynamics, have been investigated. One of these schemes aims to correct also for known requirements on rotational distributions, e.g., for the fact that by Hund's rules for the coupling of angular momentum the product OH (2Π) molecule always rotates. It has been found that zero-point energy effects and lowest-J constraints on rotational distributions may have a crucial role, especially close to the threshold energy of reaction. Agreement with recent measurements of absolute reactive cross sections is generally satisfactory but, unlike experiment, no sharp maximum is found on the excitation function in the vicinity of Etr=170 kJ mol-1. Possible reasons for this discrepancy are discussed. There is also good agreement with existing experimental data on the products rotational distribution.

  3. Energy dependence of mass, charge, isotopic, and energy distributions in neutron-induced fission of 235U and 239Pu

    NASA Astrophysics Data System (ADS)

    Pasca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kim, Y.

    2016-05-01

    The mass, charge, isotopic, and kinetic-energy distributions of fission fragments are studied within an improved scission-point statistical model in the reactions 235U+n and 239Pu+n at different energies of the incident neutron. The charge and mass distributions of the electromagnetic- and neutron-induced fission of 214,218Ra, 230,232,238U are also shown. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments.

  4. Amorphous metal distribution transformers: The energy-efficient alternative

    SciTech Connect

    Garrity, T.F.

    1994-12-31

    Amorphous metal distribution transformers have been commercially available for the past 13 years. During that time, they have realized the promise of exceptionally high core efficiency as compared to silicon steel transformer cores. Utility planners today must consider all options available to meet the requirements of load growth. While additional generation capacity will be added, many demand-side initiatives are being undertaken as complementary programs to generation expansion. The efficiency improvement provided by amorphous metal distribution transformers deserves to be among the demand-side options. The key to understanding the positive impact of amorphous metal transformer efficiency is to consider the aggregate contribution those transformers can make towards demand reduction. It is estimated that distribution transformer core losses comprise at least 1% of the utility`s peak demand. Because core losses are continuous, any significant reduction in their magnitude is of great significance to the planner. This paper describes the system-wide economic contributions amorphous metal distribution transformers can make to a utility and suggests evaluation techniques that can be used. As a conservation tool, the amorphous metal transformer contributes to reduced power plant emissions. Calibration of those emissions reductions is also discussed in the paper.

  5. Parachuting harnesses comparative evaluation on energy distribution grids.

    PubMed

    Hembecker, Paula Karina; Poletto, Angela Regina; Gontijo, Leila Amaral

    2012-01-01

    This research aims to make a comparative evaluation of three different parachuting harnesses to work at heights in the energy industry, from the electricians' point of view concerning these products under the optics of usability and ergonomic principles, and mainly justified by the high quantity of injuries at the energy industry due to high falls. According to its main target, this field research is classified as exploratory-descriptive transversal viewing study and, considering this perspective, the study was developed in four steps. Research results have enlightened the weakest spots and the potential improvement opportunities of these products, developed to assure safety of the work at heights to the energy industry, according to the opinion of the users. Still, results point that, regardless of the model, these devices have adapting issues to fulfill the electrical sector user's needs.

  6. Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network.

    PubMed

    Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N

    2015-01-01

    Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead.

  7. Energy transfer and the distribution of excitation energy in the photosynthetic apparatus of spinach chloroplasts.

    PubMed

    Strasser, R J; Butler, W L

    1977-05-11

    Equations are derived from our model of the photochemical apparatus of photosynthesis to show that the yield of energy transfer from Photosystem II to Photosystem I, phi T(II leads to I), can be obtained from measurements on an individual sample of chloroplasts frozen to -196 degrees C by comparing the sum of two specifically defined fluorescence excitation spectra with the absorption spectrum of the sample. Then, given that value of phiT(II leads to I), the fraction of the quanta absorbed by the photochemical apparatus which is distributed initially to Photosystem I, alpha, can be determined as a function of the wavelength of excitation from the same fluorescence excitation spectra. The results obtained in this study of individual samples of chloroplasts frozen to -196 degrees C in the absence of divalent cations, namely, that phi T(II leads to I)varies from a minimum value of 0.10 when the Photosystem II reaction centers are all open to a maximum value of 0.25 when the centers are all closed and that alpha has a value of about 0.30 which is almost independent of wavelength for wavelength shorter than 675 nm (alpha increases rapidly toward unity at wavelength longer than 675 nm), agrees quite well with results obtained previously from comparative measurements of chloroplasts frozen to -196 degrees C in the presence and absence of divalent cations.

  8. Energy, ecology and the distribution of microbial life

    PubMed Central

    Macalady, Jennifer L.; Hamilton, Trinity L.; Grettenberger, Christen L.; Jones, Daniel S.; Tsao, Leah E.; Burgos, William D.

    2013-01-01

    Mechanisms that govern the coexistence of multiple biological species have been studied intensively by ecologists since the turn of the nineteenth century. Microbial ecologists in the meantime have faced many fundamental challenges, such as the lack of an ecologically coherent species definition, lack of adequate methods for evaluating population sizes and community composition in nature, and enormous taxonomic and functional diversity. The accessibility of powerful, culture-independent molecular microbiology methods offers an opportunity to close the gap between microbial science and the main stream of ecological theory, with the promise of new insights and tools needed to meet the grand challenges humans face as planetary engineers and galactic explorers. We focus specifically on resources related to energy metabolism because of their direct links to elemental cycling in the Earth's history, engineering applications and astrobiology. To what extent does the availability of energy resources structure microbial communities in nature? Our recent work on sulfur- and iron-oxidizing autotrophs suggests that apparently subtle variations in the concentration ratios of external electron donors and acceptors select for different microbial populations. We show that quantitative knowledge of microbial energy niches (population-specific patterns of energy resource use) can be used to predict variations in the abundance of specific taxa in microbial communities. Furthermore, we propose that resource ratio theory applied to micro-organisms will provide a useful framework for identifying how environmental communities are organized in space and time. PMID:23754819

  9. FUNDAMENTAL PARAMETERS AND SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG AND FIELD AGE OBJECTS WITH MASSES SPANNING THE STELLAR TO PLANETARY REGIME

    SciTech Connect

    Filippazzo, Joseph C.; Rice, Emily L.; Faherty, Jacqueline; Cruz, Kelle L.; Van Gordon, Mollie M.; Looper, Dagny L.

    2015-09-10

    We combine optical, near-infrared, and mid-infrared spectra and photometry to construct expanded spectral energy distributions for 145 field age (>500 Myr) and 53 young (lower age estimate <500 Myr) ultracool dwarfs (M6-T9). This range of spectral types includes very low mass stars, brown dwarfs, and planetary mass objects, providing fundamental parameters across both the hydrogen and deuterium burning minimum masses for the largest sample assembled to date. A subsample of 29 objects have well constrained ages as probable members of a nearby young moving group. We use 182 parallaxes and 16 kinematic distances to determine precise bolometric luminosities (L{sub bol}) and radius estimates from evolutionary models give semi-empirical effective temperatures (T{sub eff}) for the full range of young and field age late-M, L, and T dwarfs. We construct age-sensitive relationships of luminosity, temperature, and absolute magnitude as functions of spectral type and absolute magnitude to disentangle the effects of degenerate physical parameters such as T{sub eff}, surface gravity, and clouds on spectral morphology. We report bolometric corrections in J for both field age and young objects and find differences of up to a magnitude for late-L dwarfs. Our correction in Ks shows a larger dispersion but not necessarily a different relationship for young and field age sequences. We also characterize the NIR–MIR reddening of low gravity L dwarfs and identify a systematically cooler T{sub eff} of up to 300 K from field age objects of the same spectral type and 400 K cooler from field age objects of the same M{sub H} magnitude.

  10. Energy distributions and radiation transport in uranium plasmas

    NASA Technical Reports Server (NTRS)

    Miley, G. H.; Bathke, C.; Maceda, E.; Choi, C.

    1976-01-01

    An approximate analytic model, based on continuous electron slowing, has been used for survey calculations. Where more accuracy is required, a Monte Carlo technique is used which combines an analytic representation of Coulombic collisions with a random walk treatment of inelastic collisions. The calculated electron distributions have been incorporated into another code that evaluates both the excited atomic state densities within the plasma and the radiative flux emitted from the plasma.

  11. Stepanian's star - The energy distribution reveals a nontypical cataclysmic variable

    NASA Technical Reports Server (NTRS)

    Szkody, P.

    1981-01-01

    Einstein, IUE, optical multichannel spectrophotometry, and IR observations of Stepanian's star are discussed in terms of other known cataclysmics. While the X-ray flux and IUE emission-line data are similar to that of dwarf novae, the total continuum flux distribution from uv-IR is cooler (peaking near a 10,000 K blackbody) and is unlike either a stellar component or a classic steady-state disk. The IR data show no evidence for a late-type component.

  12. Canonical-Dissipative Nonequilibrium Energy Distributions: Parameter Estimation via Implicit Moment Method, Implementation and Application

    NASA Astrophysics Data System (ADS)

    Frank, T. D.; Kim, S.; Dotov, D. G.

    2013-11-01

    Canonical-dissipative nonequilibrium energy distributions play an important role in the life sciences. In one of the most fundamental forms, such energy distributions correspond to two-parametric normal distributions truncated to the left. We present an implicit moment method involving the first and second energy moments to estimate the distribution parameters. It is shown that the method is consistent with Cohen's 1949 formula. The implementation of the algorithm is discussed and the range of admissible parameter values is identified. In addition, an application to an earlier study on human oscillatory hand movements is presented. In this earlier study, energy was conceptualized as the energy of a Hamiltonian oscillator model. The canonical-dissipative approach allows for studying the systematic change of the model parameters with oscillation frequency. It is shown that the results obtained with the implicit moment method are consistent with those derived in the earlier study by other means.

  13. On minimal energy dipole moment distributions in regular polygonal agglomerates

    NASA Astrophysics Data System (ADS)

    Rosa, Adriano Possebon; Cunha, Francisco Ricardo; Ceniceros, Hector Daniel

    2017-01-01

    Static, regular polygonal and close-packed clusters of spherical magnetic particles and their energy-minimizing magnetic moments are investigated in a two-dimensional setting. This study focuses on a simple particle system which is solely described by the dipole-dipole interaction energy, both without and in the presence of an in-plane magnetic field. For a regular polygonal structure of n sides with n ≥ 3 , and in the absence of an external field, it is proved rigorously that the magnetic moments given by the roots of unity, i.e. tangential to the polygon, are a minimizer of the dipole-dipole interaction energy. Also, for zero external field, new multiple local minima are discovered for the regular polygonal agglomerates. The number of found local extrema is proportional to [ n / 2 ] and these critical points are characterized by the presence of a pair of magnetic moments with a large deviation from the tangential configuration and whose particles are at least three diameters apart. The changes induced by an in-plane external magnetic field on the minimal energy, tangential configurations are investigated numerically. The two critical fields, which correspond to a crossover with the linear chain minimal energy and with the break-up of the agglomerate, respectively are examined in detail. In particular, the numerical results are compared directly with the asymptotic formulas of Danilov et al. (2012) [23] and a remarkable agreement is found even for moderate to large fields. Finally, three examples of close-packed structures are investigated: a triangle, a centered hexagon, and a 19-particle close packed cluster. The numerical study reveals novel, illuminating characteristics of these compact clusters often seen in ferrofluids. The centered hexagon is energetically favorable to the regular hexagon and the minimal energy for the larger 19-particle cluster is even lower than that of the close packed hexagon. In addition, this larger close packed agglomerate has two

  14. Distributed SUSY breaking: dark energy, Newton's law and the LHC

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; van Nierop, L.; Williams, M.

    2014-07-01

    We identify the underlying symmetry mechanism that suppresses the low-energy effective 4D cosmological constant within some 6D supergravity models, generically leading to results suppressed by powers of the KK scale, m {/K K 2}, relative to the much larger size, m 4, associated with mass- m particles localized in these models on codimension-2 branes. These models are examples for which the local conditions for unbroken supersymmetry can be satisfied locally everywhere within the extra dimensions, but are obstructed only by global conditions like flux quantization or by the mutual inconsistency of the boundary conditions required at the various branes. Consequently quantities (like vacuum energies) forbidden by supersymmetry cannot become nonzero until wavelengths of order the KK scale are integrated out, since only such long wavelength modes can see the entire space and so `know' that supersymmetry has broken. We verify these arguments by extending earlier rugby-ball calculations of one-loop vacuum energies within these models to more general pairs of branes within two warped extra dimensions. For the Standard Model confined to one of two otherwise identical branes, the predicted effective 4D vacuum energy density is of order ρ vac ⋍ C( mM g /4 πM p )4 = C(5 .6 × 10-5 eV)4, where M g ≳ 10 TeV (corresponding to extra-dimensional size r ≲ 1 μm) and M p = 2 .44 × 1018 GeV are the 6D and 4D rationalized Planck scales, and m is the heaviest brane-localized particle. (For numerical purposes we take m to be the top-quark mass and take M g as small as possible, consistent with energy-loss bounds from supernovae.) C is a constant depending on the details of the bulk spectrum, which could easily be of order 500 for each of hundreds of fields in the bulk. The value C ˜ 6 × 106 would give the observed Dark Energy density.

  15. Microgrid Enabled Distributed Energy Solutions (MEDES) - Fort Bliss Military Reservation

    DTIC Science & Technology

    2014-04-01

    timed, and tested thoroughly to ensure no conflicts of authority. Although not a major issue, separate data loggers were used to collect baseline...from the data loggers approximately quarterly. The complete pool of data was sufficient to assess the performance objectives. 5.4.2 Technology...RESULTS The baseline characterization data was collected by energy meters and associated data loggers , described in more detail in the Microgrid

  16. Measurement and simulation of lineal energy distribution at the CERN high energy facility with a tissue equivalent proportional counter.

    PubMed

    Rollet, S; Autischer, M; Beck, P; Latocha, M

    2007-01-01

    The response of a tissue equivalent proportional counter (TEPC) in a mixed radiation field with a neutron energy distribution similar to the radiation field at commercial flight altitudes has been studied. The measurements have been done at the CERN-EU High-Energy Reference Field (CERF) facility where a well-characterised radiation field is available for intercomparison. The TEPC instrument used by the ARC Seibersdorf Research is filled with pure propane gas at low pressure and can be used to determine the lineal energy distribution of the energy deposition in a mass of gas equivalent to a 2 microm diameter volume of unit density tissue, of similar size to the nuclei of biological cells. The linearity of the detector response was checked both in term of dose and dose rate. The effect of dead-time has been corrected. The influence of the detector exposure location and orientation in the radiation field on the dose distribution was also studied as a function of the total dose. The microdosimetric distribution of the absorbed dose as a function of the lineal energy has been obtained and compared with the same distribution simulated with the FLUKA Monte Carlo transport code. The dose equivalent was calculated by folding this distribution with the quality factor as a function of linear energy transfer. The comparison between the measured and simulated distributions show that they are in good agreement. As a result of this study the detector is well characterised, thanks also to the numerical simulations the instrument response is well understood, and it's currently being used onboard the aircrafts to evaluate the dose to aircraft crew caused by cosmic radiation.

  17. Energy gradients and the geographic distribution of local ant diversity.

    PubMed

    Kaspari, Michael; Ward, Philip S; Yuan, May

    2004-08-01

    Geographical diversity gradients, even among local communities, can ultimately arise from geographical differences in speciation and extinction rates. We evaluated three models--energy-speciation, energy-abundance, and area--that predict how geographic trends in net diversification rates generate trends in diversity. We sampled 96 litter ant communities from four provinces: Australia, Madagascar, North America, and South America. The energy-speciation hypothesis best predicted ant species richness by accurately predicting the slope of the temperature diversity curve, and accounting for most of the variation in diversity. The communities showed a strong latitudinal gradient in species richness as well as inter-province differences in diversity. The former vanished in the temperature-diversity residuals, suggesting that the latitudinal gradient arises primarily from higher diversification rates in the tropics. However, inter-province differences in diversity persisted in those residuals--South American communities remained more diverse than those in North America and Australia even after the effects of temperature were removed.

  18. Ion composition and energy distribution during 10 magnetic storms

    NASA Astrophysics Data System (ADS)

    Lennartsson, W.; Sharp, R. D.; Shelley, E. G.; Johnson, R. G.; Balsiger, H.

    1981-06-01

    Data from the plasma composition experiment of ISEE 1 are used to investigate the relative quantities and energy characteristics of H(+), He(++), He(+), and O(+) ions in the near-equatorial magnetosphere during magnetic storm conditions. The ions in the study had energies between 0.1 and 17 keV/e and pitch angles between 45 and 135 deg. The data were obtained during 10 storms, for the most part at or immediately following the peak Dst, covering all major local time sectors and geocentric distances between 2 and 15 earth radii. The ion fluxes are averaged over the spacecraft spin angle and over time for periods ranging from about 20 min close to the earth to more than an hour in most distant regions. The inferred 'isotropic' number densities are characterized by a large to dominant fraction of terrestrial ions throughout the energy range covered. The data are found to be consistent with a terrestrial origin for all of the O(+), most of the He(+), and a large but varying fraction of the H(+), whereas the He(++) and part of the H(+) appear to be of solar wind origin.

  19. Ion composition and energy distribution during 10 magnetic storms

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.; Sharp, R. D.; Shelley, E. G.; Johnson, R. G.; Balsiger, H.

    1981-01-01

    Data from the plasma composition experiment of ISEE 1 are used to investigate the relative quantities and energy characteristics of H(+), He(++), He(+), and O(+) ions in the near-equatorial magnetosphere during magnetic storm conditions. The ions in the study had energies between 0.1 and 17 keV/e and pitch angles between 45 and 135 deg. The data were obtained during 10 storms, for the most part at or immediately following the peak Dst, covering all major local time sectors and geocentric distances between 2 and 15 earth radii. The ion fluxes are averaged over the spacecraft spin angle and over time for periods ranging from about 20 min close to the earth to more than an hour in most distant regions. The inferred 'isotropic' number densities are characterized by a large to dominant fraction of terrestrial ions throughout the energy range covered. The data are found to be consistent with a terrestrial origin for all of the O(+), most of the He(+), and a large but varying fraction of the H(+), whereas the He(++) and part of the H(+) appear to be of solar wind origin.

  20. Distributed Energy Resources and Dynamic Microgrid: An Integrated Assessment

    NASA Astrophysics Data System (ADS)

    Shang, Duo Rick

    The overall goal of this thesis is to improve understanding in terms of the benefit of DERs to both utility and to electricity end-users when integrated in power distribution system. To achieve this goal, a series of two studies was conducted to assess the value of DERs when integrated with new power paradigms. First, the arbitrage value of DERs was examined in markets with time-variant electricity pricing rates (e.g., time of use, real time pricing) under a smart grid distribution paradigm. This study uses a stochastic optimization model to estimate the potential profit from electricity price arbitrage over a five-year period. The optimization process involves two types of PHEVs (PHEV-10, and PHEV-40) under three scenarios with different assumptions on technology performance, electricity market and PHEV owner types. The simulation results indicate that expected arbitrage profit is not a viable option to engage PHEVs in dispatching and in providing ancillary services without more favorable policy and PHEV battery technologies. Subsidy or change in electricity tariff or both are needed. Second, it examined the concept of dynamic microgrid as a measure to improve distribution resilience, and estimates the prices of this emerging service. An economic load dispatch (ELD) model is developed to estimate the market-clearing price in a hypothetical community with single bid auction electricity market. The results show that the electricity market clearing price on the dynamic microgrid is predominantly decided by power output and cost of electricity of each type of DGs. At circumstances where CHP is the only source, the electricity market clearing price in the island is even cheaper than the on-grid electricity price at normal times. Integration of PHEVs in the dynamic microgrid will increase electricity market clearing prices. It demonstrates that dynamic microgrid is an economically viable alternative to enhance grid resilience.

  1. Ground Fault Overvoltage with Inverter-Interfaced Distributed Energy Resources

    SciTech Connect

    Ropp, Michael; Hoke, Anderson; Chakraborty, Sudipta; Schutz, Dustin; Mouw, Chris; Nelson, Austin; McCarty, Michael; Wang, Trudie; Sorenson, Adam

    2016-06-07

    Ground Fault Overvoltage can occur in situations in which a four-wire distribution circuit is energized by an ungrounded voltage source during a single phase to ground fault. The phenomenon is well-documented with ungrounded synchronous machines, but there is considerable discussion about whether inverters cause this phenomenon, and consequently whether inverters require effective grounding. This paper examines the overvoltages that can be supported by inverters during single phase to ground faults via theory, simulation and experiment, identifies the relevant physical mechanisms, quantifies expected levels of overvoltage, and makes recommendations for optimal mitigation.

  2. Assessment of grid-friendly collective optimization framework for distributed energy resources

    SciTech Connect

    Pensini, Alessandro; Robinson, Matthew; Heine, Nicholas; Stadler, Michael; Mammoli, Andrea

    2015-11-04

    Distributed energy resources have the potential to provide services to facilities and buildings at lower cost and environmental impact in comparison to traditional electric-gridonly services. The reduced cost could result from a combination of higher system efficiency and exploitation of electricity tariff structures. Traditionally, electricity tariffs are designed to encourage the use of ‘off peak’ power and discourage the use of ‘onpeak’ power, although recent developments in renewable energy resources and distributed generation systems (such as their increasing levels of penetration and their increased controllability) are resulting in pressures to adopt tariffs of increasing complexity. Independently of the tariff structure, more or less sophisticated methods exist that allow distributed energy resources to take advantage of such tariffs, ranging from simple pre-planned schedules to Software-as-a-Service schedule optimization tools. However, as the penetration of distributed energy resources increases, there is an increasing chance of a ‘tragedy of the commons’ mechanism taking place, where taking advantage of tariffs for local benefit can ultimately result in degradation of service and higher energy costs for all. In this work, we use a scheduling optimization tool, in combination with a power distribution system simulator, to investigate techniques that could mitigate the deleterious effect of ‘selfish’ optimization, so that the high-penetration use of distributed energy resources to reduce operating costs remains advantageous while the quality of service and overall energy cost to the community is not affected.

  3. Research on renewable energy power generation complementarity and storage distribution model

    NASA Astrophysics Data System (ADS)

    Wei, Xiaoxia; Zhang, Jinfang

    2017-01-01

    This paper mainly studied the equivalent conversion relationships and model of different “quality “energies in process of multi-energy conversion. In energy interconnection system containing wind turbine, photovoltaic cell and energy storage systems, it gives renewable energy and storage distribution development model, considering comprehensive effect of load demand characteristics on energy utilization mode, multi-objective optimization model is established with objectives of both maximized energy utilization ratio and minimized system operation costs. Then, take Chinese one certain area as scenario, and give out “renewable energy utilization“, “energy transfer” and “total operating cost” three different analyses, according to the connection model. The result is compared with that for traditional energy utilization model. Feasibility of the proposed model is verified with simulation results.

  4. Electron energy distributions in uranium helium mixtures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Makowski, M. A.

    1977-01-01

    The high energy portion of the electron energy distribution for mixtures of uranium and helium at 1 atm, 5000 K, and a neutron flux of 2x10 to the 12th power/sq cm-sec have been calculated. The addition of He improves the heat transport characteristics of the plasma and has the feature that the He energy levels lie in the high energy portion of the electron distribution, potentially allowing non maxwellian excitation. It is concluded, however, that the resulting reaction rates are marginal relative to achieving inversion in He.

  5. Kinetic Energy Distribution of D(2p) Atoms From Analysis of the D Lyman-a Line Profile

    NASA Technical Reports Server (NTRS)

    Ciocca, Marco; Ajello, Joseph M.; Liu, Xianming; Maki, Justin

    1997-01-01

    The absolute cross sections of the line center (slow atoms) and wings (fast atoms) and total emission line profile were measured from threshold to 400 eV. Analytical model coeffiecients are given for the energy dependence of the measured slow atom cross section.

  6. Effects of wind-energy facilities on grassland bird distributions

    USGS Publications Warehouse

    Shaffer, Jill A.; Buhl, Deb

    2016-01-01

    The contribution of renewable energy to meet worldwide demand continues to grow. Wind energy is one of the fastest growing renewable sectors, but new wind facilities are often placed in prime wildlife habitat. Long-term studies that incorporate a rigorous statistical design to evaluate the effects of wind facilities on wildlife are rare. We conducted a before-after-control-impact (BACI) assessment to determine if wind facilities placed in native mixed-grass prairies displaced breeding grassland birds. During 2003–2012, we monitored changes in bird density in 3 study areas in North Dakota and South Dakota (U.S.A.). We examined whether displacement or attraction occurred 1 year after construction (immediate effect) and the average displacement or attraction 2–5 years after construction (delayed effect). We tested for these effects overall and within distance bands of 100, 200, 300, and >300 m from turbines. We observed displacement for 7 of 9 species. One species was unaffected by wind facilities and one species exhibited attraction. Displacement and attraction generally occurred within 100 m and often extended up to 300 m. In a few instances, displacement extended beyond 300 m. Displacement and attraction occurred 1 year after construction and persisted at least 5 years. Our research provides a framework for applying a BACI design to displacement studies and highlights the erroneous conclusions that can be made without the benefit of adopting such a design. More broadly, species-specific behaviors can be used to inform management decisions about turbine placement and the potential impact to individual species. Additionally, the avoidance distance metrics we estimated can facilitate future development of models evaluating impacts of wind facilities under differing land-use scenarios.

  7. Absolute elastic differential electron scattering cross sections for He - A proposed calibration standard from 5 to 200 eV

    NASA Technical Reports Server (NTRS)

    Register, D. F.; Trajmar, S.; Srivastava, S. K.

    1980-01-01

    Absolute differential, integral, and momentum-transfer cross sections for electrons elastically scattered from helium are reported for the impact energy range of 5 to 200 eV. Angular distributions for elastically scattered electrons are measured in a crossed-beam geometry using a collimated, differentially pumped atomic-beam source which requires no effective-path-length correction. Below the first inelastic threshold the angular distributions were placed on an absolute scale by use of a phase-shift analysis. Above this threshold, the angular distributions from 10 to 140 deg were fitted using the phase-shift technique, and the resulting integral cross sections were normalized to a semiempirically derived integral elastic cross section. Depending on the impact energy, the data are estimated to be accurate to within 5 to 9%.

  8. Unfolding the fission prompt gamma-ray energy and multiplicity distribution measured by DANCE

    SciTech Connect

    Chyzh, A; Wu, C Y; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J; Laptev, A

    2010-10-16

    The nearly energy independence of the {gamma}-ray efficiency and multiplicity response for the DANCE array, the unusual characteristic elucidated in our early technical report (LLNL-TR-452298), gives one a unique opportunity to derive the true prompt {gamma}-ray energy and multiplicity distribution in fission from the measurement. This unfolding procedure for the experimental data will be described in details and examples will be given to demonstrate the feasibility of reconstruction of the true distribution.

  9. Distributed Power Flow Control: Distributed Power Flow Control using Smart Wires for Energy Routing

    SciTech Connect

    2012-04-24

    GENI Project: Smart Wire Grid is developing a solution for controlling power flow within the electric grid to better manage unused and overall transmission capacity. The 300,000 miles of high-voltage transmission line in the U.S. today are congested and inefficient, with only around 50% of all transmission capacity utilized at any given time. Increased consumer demand should be met in part with more efficient and an economical power flow. Smart Wire Grid’s devices clamp onto existing transmission lines and control the flow of power within—much like how internet routers help allocate bandwidth throughout the web. Smart wires could support greater use of renewable energy by providing more consistent control over how that energy is routed within the grid on a real-time basis. This would lessen the concerns surrounding the grid’s inability to effectively store intermittent energy from renewables for later use.

  10. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  11. Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structure; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Ruth, M.; Pratt, A.; Lunacek, M.; Mittal, S.; Wu, H.; Jones, W.

    2015-06-15

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is not well understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load. used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load.

  12. Absolute cross sections for dissociative electron attachment to H2O and D2O

    NASA Astrophysics Data System (ADS)

    Rawat, Prashant; Prabhudesai, Vaibhav S.; Aravind, G.; Rahman, M. A.; Krishnakumar, E.

    2007-12-01

    The dissociative electron attachment (DEA) process to water (H2O) and heavy water (D2O) has been studied in the gas phase in a cross beam experiment for electron energies up to 20 eV. The apparatus used eliminates discrimination due to the kinetic energy and angular distribution of the ions. The cross sections are normalized to absolute values using the cross section for production of O- from O2 (Rapp and Briglia 1965 J. Chem. Phys. 43 1480). These are the first exhaustive measurements of absolute cross sections for both the H- and O- from H2O and D- and O- from D2O at all the three resonances. The results are compared with the scarce data available in the literature. Isotope effect is observed at the 12 eV resonance in the H- channel and at all the three resonances in the O- channel.

  13. Energy Dependence of Angular Distributions of Sputtered Particles by Ion-Beam Bombardment at Normal Incidence

    NASA Astrophysics Data System (ADS)

    Matsuda, Yoshinobu; Yamamura, Yasunori; Ueda, Yasutoshi; Uchino, Kiichiro; Muraoka, Katsunori; Maeda, Mitsuo; Akazaki, Masanori

    1986-01-01

    The angular distributions of sputtered Fe-atoms were measured using the laser fluorescence technique during Ar-ion bombardment for energies of 0.6, 1, 2 and 3 keV at normal incidence. The measured cosine distribution at 0.6 keV progressively deviated to an over-cosine distribution at higher energies, and at 3 keV the angular distribution was an over-cosine distribution of about 20%. The experimental results agree qualitatively with calculations by a recent computer simulation code, ACAT. The results are explained by the competition between surface scattering and the effects of primary knock-on atoms, which tend to make the angular distributions over-cosine and under-cosine, respectively.

  14. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  15. Absolute and relative dosimetry for ELIMED

    NASA Astrophysics Data System (ADS)

    Cirrone, G. A. P.; Cuttone, G.; Candiano, G.; Carpinelli, M.; Leonora, E.; Lo Presti, D.; Musumarra, A.; Pisciotta, P.; Raffaele, L.; Randazzo, N.; Romano, F.; Schillaci, F.; Scuderi, V.; Tramontana, A.; Cirio, R.; Marchetto, F.; Sacchi, R.; Giordanengo, S.; Monaco, V.

    2013-07-01

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  16. Concurrent Application of ANC and THM to assess the 13C(α, n)16O Absolute Cross Section at Astrophysical Energies and Possible Consequences for Neutron Production in Low-mass AGB Stars

    NASA Astrophysics Data System (ADS)

    Trippella, O.; La Cognata, M.

    2017-03-01

    The {}13{{C}}{(α ,n)}16{{O}} reaction is considered to be the main neutron source responsible for the production of heavy nuclides (from {Sr} to {Bi}) through slow n-capture nucleosynthesis (s-process) at low temperatures during the asymptotic giant branch phase of low-mass stars (≲ 3{--}4 {M}ȯ , or LMSs). In recent years, several direct and indirect measurements have been carried out to determine the cross section at the energies of astrophysical interest (around 190+/- 40 {keV}). However, they yield inconsistent results that cause a highly uncertain reaction rate and affect the neutron release in LMSs. In this work we have combined two indirect approaches, the asymptotic normalization coefficient and the Trojan horse method, to unambiguously determine the absolute value of the {}13{{C}}{(α ,n)}16{{O}} astrophysical factor. With these, we have determined a very accurate reaction rate to be introduced into astrophysical models of s-process nucleosynthesis in LMSs. Calculations using this recommended rate have shown limited variations in the production of those neutron-rich nuclei (with 86≤slant A≤slant 209) that receive contribution only by slow neutron captures.

  17. Electron energy distribution in a helium plasma created by nuclear radiations

    NASA Technical Reports Server (NTRS)

    Lo, R. H.; Miley, G. H.

    1974-01-01

    An integral balance technique for calculation of the electron energy distribution in a radiation-induced plasma is described. Results predict W-values reasonably well and compare favorably with more complicated Monte-Carlo calculations. The distribution found differs from that in a normal electrical discharge and is of interest in radiation-pumped laser research.

  18. A method for the assessment of specific energy distribution in a model tumor system

    SciTech Connect

    Noska, M.A.

    1996-12-31

    Due to the short range of alpha particles in tissue, the calculation of dose from internally deposited alpha emitters requires a detailed analysis of the microscopic distribution of the radionuclide in order to determine the spatial distribution of energy emission events and, from this, the spatial distribution of dose. In the present study, the authors used quantitative autoradiography (QAR) to assess the microdistribution of a radiolabeled monoclonal antibody (MAb) fragment in human glioma xenografts in mice.

  19. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C.

    1994-06-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  20. THE ROLE AND DISTRIBUTION OF WRITTEN INFORMAL COMMUNICATION IN THEORETICAL HIGH ENERGY PHYSICS.

    ERIC Educational Resources Information Center

    LIBBEY, MILES A.; ZALTMAN, GERALD

    THIS STUDY OF "PREPRINT" DISTRIBUTION IN THEORECTICAL HIGH ENERGY PHYSICS USED A QUESTIONNAIRE CIRCULATED TO ALL KNOWN HIGH ENERGY THEORISTS. A SECOND QUESTIONNAIRE WAS SENT TO A REPRESENTATIVE SAMPLE OF "PREPRINT LIBRARIANS" AT VARIOUS INSTITUTIONS IN THE U.S. AND ABROAD. BASED ON THIS DATA, THE STUDY CONCLUDED THAT AN EXPERIMENT WITH CENTRALIZED…

  1. Energy distribution in the spectrograms of the cries of normal and birth asphyxiated infants.

    PubMed

    Pearce, S; Taylor, B

    1993-08-01

    This paper describes the distribution of energy and energy variance with frequency in the cries of normal and birth asphyxiated infants recorded within eight days of delivery. Single-variable statistical analysis suggested that asphyxiated infants have their cries shifted up in frequency compared to control infants, up to a frequency of 10 kHz.

  2. On the angular and energy distribution of solar neutrons generated in P-P reactions

    NASA Technical Reports Server (NTRS)

    Efimov, Y. E.; Kocharov, G. E.

    1985-01-01

    The problem of high energy neutron generation in P-P reactions in the solar atmosphere is reconsidered. It is shown that the angular distribution of emitted neutrons is anisotropic and the energy spectrum of neutrons depends on the angle of neutron emission.

  3. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  4. Consistent thermostatistics forbids negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Hilbert, Stefan

    2014-01-01

    Over the past 60 years, a considerable number of theories and experiments have claimed the existence of negative absolute temperature in spin systems and ultracold quantum gases. This has led to speculation that ultracold gases may be dark-energy analogues and also suggests the feasibility of heat engines with efficiencies larger than one. Here, we prove that all previous negative temperature claims and their implications are invalid as they arise from the use of an entropy definition that is inconsistent both mathematically and thermodynamically. We show that the underlying conceptual deficiencies can be overcome if one adopts a microcanonical entropy functional originally derived by Gibbs. The resulting thermodynamic framework is self-consistent and implies that absolute temperature remains positive even for systems with a bounded spectrum. In addition, we propose a minimal quantum thermometer that can be implemented with available experimental techniques.

  5. Power Hardware-in-the-Loop (PHIL) Testing Facility for Distributed Energy Storage (Poster)

    SciTech Connect

    Neubauer.J.; Lundstrom, B.; Simpson, M.; Pratt, A.

    2014-06-01

    The growing deployment of distributed, variable generation and evolving end-user load profiles presents a unique set of challenges to grid operators responsible for providing reliable and high quality electrical service. Mass deployment of distributed energy storage systems (DESS) has the potential to solve many of the associated integration issues while offering reliability and energy security benefits other solutions cannot. However, tools to develop, optimize, and validate DESS control strategies and hardware are in short supply. To fill this gap, NREL has constructed a power hardware-in-the-loop (PHIL) test facility that connects DESS, grid simulator, and load bank hardware to a distribution feeder simulation.

  6. Angular distributions of the quenched energy flow from dijets with different radius parameters in CMS

    NASA Astrophysics Data System (ADS)

    McGinn, Christopher F.

    2016-12-01

    The flow of the quenched energy in imbalanced dijet events has been previously studied by transverse vector sum of charged particles with the CMS detector, namely the missing pT measurement. The results have led to new theoretical insights to order to explain the wide angle radiation. The missing pT technique has been improved so that it allows the study of angular distribution of the energy flow with respect to the dijet axis. The measurements are performed using different distance parameters R with the anti-kT clustering algorithm, which provide information about how the angular distribution of the quenched energy depends on the jet width.

  7. K-Eigenvalue sensitivities of secondary distributions of continuous-energy data

    SciTech Connect

    Kiedrowski, B. C.; Brown, F. B.

    2013-07-01

    MCNP6 has the capability to produce energy-resolved sensitivity profiles for secondary distributions (fission {Chi} and scattering laws). Computing both unconstrained and constrained profiles are possible. Verification is performed with analytic test problems and a comparison to TSUNAMI-3D, and the comparisons show MCNP6 calculates correct or consistent results. Continuous-energy calculations are performed for three fast critical experiments: Jezebel, Flattop, and copper-reflected Zeus. The sensitivities to the secondary distributions (integrated over chosen energy ranges) are of similar magnitude to those of many of the cross sections, demonstrating the possibility that integral experiments are useful for assessing the fidelity of these data as well. (authors)

  8. Joint free-energy distribution in the random directed polymer problem.

    PubMed

    Dotsenko, V S; Ioffe, L B; Geshkenbein, V B; Korshunov, S E; Blatter, G

    2008-02-08

    We consider two configurations of a random directed polymer of length L confined to a plane and ending in two points separated by 2u. Defining the mean free-energy F[over ] and the free-energy difference F;{'} of the two configurations, we determine the joint distribution function P(L,u)(F[over ],F(')) using the replica approach. We find that for large L and large negative free energies F[over ], the joint distribution function factorizes into longitudinal [P(L,u)(F[over ])] and transverse [P(u)(F('))] components, which furthermore coincide with results obtained previously via different independent routes.

  9. Unexpected asymmetry of the charge distribution in the fission of Th,224222 at high excitation energies

    NASA Astrophysics Data System (ADS)

    Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2016-12-01

    Using the improved scission-point model, the isotopic trends of the charge distribution of fission fragments are studied in induced fission of even-even Th isotopes. The calculated results are in good agreement with available experimental data. With increasing neutron number the transition from symmetric to asymmetric fission mode is shown to be related to the change of the potential energy surface. The change of the shape of mass distribution with increasing excitation energy is discussed for fissioning ATh nuclei. At high excitation energies, there are unexpected large asymmetric modes in the fission of neutron-deficient Th isotopes considered.

  10. The integration of renewable energy sources into electric power distribution systems. Volume 1: National assessment

    SciTech Connect

    Barnes, P.R.; Van Dyke, J.W.; Tesche, F.M.; Zaininger, H.W.

    1994-06-01

    Renewable energy technologies such as photovoltaic, solar thermal electricity, and wind turbine power are environmentally beneficial sources of electric power generation. The integration of renewable energy sources into electric power distribution systems can provide additional economic benefits because of a reduction in the losses associated with transmission and distribution lines. Benefits associated with the deferment of transmission and distribution investment may also be possible for cases where there is a high correlation between peak circuit load and renewable energy electric generation, such as photovoltaic systems in the Southwest. Case studies were conducted with actual power distribution system data for seven electric utilities with the participation of those utilities. Integrating renewable energy systems into electric power distribution systems increased the value of the benefits by about 20 to 55% above central station benefits in the national regional assessment. In the case studies presented in Vol. II, the range was larger: from a few percent to near 80% for a case where costly investments were deferred. In general, additional savings of at least 10 to 20% can be expected by integrating at the distribution level. Wind energy systems were found to be economical in good wind resource regions, whereas photovoltaic systems costs are presently a factor of 2.5 too expensive under the most favorable conditions.

  11. Inferring the Energy Distribution of Accelerated Electrons in Solar Flares from X-ray Observations

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Sui, Linhui; Su, Yang

    2008-01-01

    Knowledge of the energy distribution of electrons accelerated in solar flares is important for constraining possible acceleration mechanisms and for understanding the relationships between flare X-ray sources, radio sources, and particles observed in space. Solar flare hard X-rays are primarily emitted from dense, thick-target regions in the lower atmosphere, but the electrons are understood to be accelerated higher in the corona. Various processes can distort the X-ray spectrum or the energy distribution of electrons before they reach the thick-target region. After briefly reviewing the processes that affect the X-ray spectrum and the electron distribution, I will describe recent results from a study of flare spectra from RHESSI to determine the importance of these processes in inferring the energy distribution of accelerated electrons.

  12. Autonomous Decentralized Voltage Profile Control of Super Distributed Energy System using Multi-agent Technology

    NASA Astrophysics Data System (ADS)

    Tsuji, Takao; Hara, Ryoichi; Oyama, Tsutomu; Yasuda, Keiichiro

    A super distributed energy system is a future energy system in which the large part of its demand is fed by a huge number of distributed generators. At one time some nodes in the super distributed energy system behave as load, however, at other times they behave as generator - the characteristic of each node depends on the customers' decision. In such situation, it is very difficult to regulate voltage profile over the system due to the complexity of power flows. This paper proposes a novel control method of distributed generators that can achieve the autonomous decentralized voltage profile regulation by using multi-agent technology. The proposed multi-agent system employs two types of agent; a control agent and a mobile agent. Control agents generate or consume reactive power to regulate the voltage profile of neighboring nodes and mobile agents transmit the information necessary for VQ-control among the control agents. The proposed control method is tested through numerical simulations.

  13. Distributed Waste to Energy Conversion: A Piece of the DOD’s Renewable Energy Puzzle

    DTIC Science & Technology

    2011-11-30

    FOR A CHANGING WORLD GEM Downdraft Gasification in a Nutshell Air Feed Waste or Biomass Feed Air Feed Air Feed Producer Gas Inert Ash Removal Solid...that is well-suited to provide distributed power to installations using local waste and biomass . Under ESTCP funding, Infoscitex is demonstrating...provide distributed power to installations using local waste and biomass . Under ESTCP funding, Infoscitex is demonstrating the technology at a DoD

  14. Distributed Particle Swarm Optimization and Simulated Annealing for Energy-efficient Coverage in Wireless Sensor Networks

    PubMed Central

    Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei

    2007-01-01

    The limited energy supply of wireless sensor networks poses a great challenge for the deployment of wireless sensor nodes. In this paper, we focus on energy-efficient coverage with distributed particle swarm optimization and simulated annealing. First, the energy-efficient coverage problem is formulated with sensing coverage and energy consumption models. We consider the network composed of stationary and mobile nodes. Second, coverage and energy metrics are presented to evaluate the coverage rate and energy consumption of a wireless sensor network, where a grid exclusion algorithm extracts the coverage state and Dijkstra's algorithm calculates the lowest cost path for communication. Then, a hybrid algorithm optimizes the energy consumption, in which particle swarm optimization and simulated annealing are combined to find the optimal deployment solution in a distributed manner. Simulated annealing is performed on multiple wireless sensor nodes, results of which are employed to correct the local and global best solution of particle swarm optimization. Simulations of wireless sensor node deployment verify that coverage performance can be guaranteed, energy consumption of communication is conserved after deployment optimization and the optimization performance is boosted by the distributed algorithm. Moreover, it is demonstrated that energy efficiency of wireless sensor networks is enhanced by the proposed optimization algorithm in target tracking applications.

  15. Estimating the electron energy distribution during ionospheric modification from spectrographic airglow measurements

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Varney, R. H.; Vlasov, M. N.; Nossa, E.; Watkins, B.; Pedersen, T.; Huba, J. D.

    2012-02-01

    The electron energy distribution during an F region ionospheric modification experiment at the HAARP facility near Gakona, Alaska, is inferred from spectrographic airglow emission data. Emission lines at 630.0, 557.7, and 844.6 nm are considered along with the absence of detectable emissions at 427.8 nm. Estimating the electron energy distribution function from the airglow data is a problem in classical linear inverse theory. We describe an augmented version of the method of Backus and Gilbert which we use to invert the data. The method optimizes the model resolution, the precision of the mapping between the actual electron energy distribution and its estimate. Here, the method has also been augmented so as to limit the model prediction error. Model estimates of the suprathermal electron energy distribution versus energy and altitude are incorporated in the inverse problem formulation as representer functions. Our methodology indicates a heater-induced electron energy distribution with a broad peak near 5 eV that decreases approximately exponentially by 30 dB between 5-50 eV.

  16. Ion energy and angular distributions in inductively driven RF discharges in chlorine

    SciTech Connect

    Woodworth, J.R.; Riley, M.E.; Hamilton, T.W.

    1996-03-01

    In this paper, the authors report values of ion energy distributions and ion angular distributions measured at the grounded electrode of an inductively-coupled discharge in pure chlorine gas. The inductive drive in the GEC reference cell produced high plasma densities (10{sup 11}/cm{sup 3} electron densities) and stable plasma potentials. As a result, ion energy distributions typically consisted of a single peak well separated from zero energy. Mean ion energy varied inversely with pressure, decreasing from 13 to 9 eV as the discharge pressure increased from 20 to 60 millitorr. Half-widths of the ion angular distributions in these experiments varied from 6 to 7.5 degrees, corresponding to transverse energies from 0.13 to 0.21 eV. Ion energies gradually dropped with time, probably due to the buildup of contaminants on the chamber walls. Cell temperature also was an important variable, with ion fluxes to the lower electrode increasing and the ion angular distribution narrowing as the cell temperature increased. Plasmas discharges are widely used to etch semiconductors, oxides and metals in the fabrication of integrated circuits.

  17. Numerical estimation of adsorption energy distributions from adsorption isotherm data with the expectation-maximization method

    SciTech Connect

    Stanley, B.J.; Guiochon, G. |

    1993-08-01

    The expectation-maximization (EM) method of parameter estimation is used to calculate adsorption energy distributions of molecular probes from their adsorption isotherms. EM does not require prior knowledge of the distribution function or the isotherm, requires no smoothing of the isotherm data, and converges with high stability towards the maximum-likelihood estimate. The method is therefore robust and accurate at high iteration numbers. The EM algorithm is tested with simulated energy distributions corresponding to unimodal Gaussian, bimodal Gaussian, Poisson distributions, and the distributions resulting from Misra isotherms. Theoretical isotherms are generated from these distributions using the Langmuir model, and then chromatographic band profiles are computed using the ideal model of chromatography. Noise is then introduced in the theoretical band profiles comparable to those observed experimentally. The isotherm is then calculated using the elution-by-characteristic points method. The energy distribution given by the EM method is compared to the original one. Results are contrasted to those obtained with the House and Jaycock algorithm HILDA, and shown to be superior in terms of robustness, accuracy, and information theory. The effect of undersampling of the high-pressure/low-energy region of the adsorption is reported and discussed for the EM algorithm, as well as the effect of signal-to-noise ratio on the degree of heterogeneity that may be estimated experimentally.

  18. Estimating the electron energy distribution during ionospheric modification from spectrographic airglow measurements

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Vlasov, M.; Watkins, B. J.

    2011-12-01

    The electron energy distribution during an F region ionospheric modification experiment is inferred from spectrographic airglow emission data. Emission lines at 630.0, 557.7, and 844.6 nm are considered along with the absence of detectable emissions at 427.8 nm. Estimating the electron energy distribution function from the airglow data is a problem in classical linear inverse theory. We describe an augmented version of the method of Backus and Gilbert which we use to invert the data. The method optimizes the model resolution, the precision of the mapping between the actual electron energy distribution and its estimate. Here, the method has also been augmented so as to limit the model prediction error. Our methodology predicts a heater-induced electron energy spectrum with a peak near 5 eV that decreases by almost three orders of magnitude between 5--30 eV.

  19. Two Instruments for Measuring Distributions of Low-Energy Charged Particles in Space

    NASA Technical Reports Server (NTRS)

    Bader, Michel; Fryer, Thomas B.; Witteborn, Fred C.

    1961-01-01

    Current estimates indicate that the bulk of interplanetary gas consists of protons with energies between 0 and 20 kev and concentrations of 1 to 105 particles/cu cm. Methods and instrumentation for measuring the energy and density distribution of such a gas are considered from the standpoint of suitability for space vehicle payloads. It is concluded that electrostatic analysis of the energy distribution can provide sufficient information in initial experiments. Both magnetic and electrostatic analyzers should eventually be used. Several instruments designed and constructed at the Ames Research Center for space plasma measurements, and the methods of calibration and data reduction are described. In particular, the instrument designed for operation on solar cell power has the following characteristics: weight, 1.1 pounds; size, 2 by 3 by 4 inches; and power consumption, 145 mw. The instrument is designed to yield information on the concentration, energy distribution, and the anisotropy of ion trajectories in the 0.2 to 20 kev range.

  20. An APL program for the distribution of energy deposition by charged particles passing through thin absorbers

    NASA Technical Reports Server (NTRS)

    Howell, L. W.

    1985-01-01

    An APL program which numerically evaluates the probability density function (PDF) for the energy deposited in a thin absorber by a charged particle is proposed, with application to the construction, pointing, and control of spacecraft. With this program, the PDF of the restricted energy loss distribution of Watts (1973) is derived, and Vavilov's (1957) distribution is obtained by proper parameter selection. The method is demonstrated with the example of the effect of charged particle induced radiation on the Hubble Space Telescope (HST) pointing accuracy. A Monte Carlo study simulates the photon noise caused by charged particles passing through the photomultiplier tube window, and the stochastic variation of energy loss is introduced into the simulation by generating random energy losses from a power law distribution. The program eliminates annoying loop procedures, and model parameter sensitivity can be studied using the graphical output.

  1. Efficient first-principles calculation of the quantum kinetic energy and momentum distribution of nuclei.

    PubMed

    Ceriotti, Michele; Manolopoulos, David E

    2012-09-07

    Light nuclei at room temperature and below exhibit a kinetic energy which significantly deviates from the predictions of classical statistical mechanics. This quantum kinetic energy is responsible for a wide variety of isotope effects of interest in fields ranging from chemistry to climatology. It also furnishes the second moment of the nuclear momentum distribution, which contains subtle information about the chemical environment and has recently become accessible to deep inelastic neutron scattering experiments. Here, we show how, by combining imaginary time path integral dynamics with a carefully designed generalized Langevin equation, it is possible to dramatically reduce the expense of computing the quantum kinetic energy. We also introduce a transient anisotropic Gaussian approximation to the nuclear momentum distribution which can be calculated with negligible additional effort. As an example, we evaluate the structural properties, the quantum kinetic energy, and the nuclear momentum distribution for a first-principles simulation of liquid water.

  2. Improving Power Quality in Low-Voltage Networks Containing Distributed Energy Resources

    NASA Astrophysics Data System (ADS)

    Mazumder, Sumit; Ghosh, Arindam; Zare, Firuz

    2013-05-01

    Severe power quality problems can arise when a large number of single-phase distributed energy resources (DERs) are connected to a low-voltage power distribution system. Due to the random location and size of DERs, it may so happen that a particular phase generates excess power than its load demand. In such an event, the excess power will be fed back to the distribution substation and will eventually find its way to the transmission network, causing undesirable voltage-current unbalance. As a solution to this problem, the article proposes the use of a distribution static compensator (DSTATCOM), which regulates voltage at the point of common coupling (PCC), thereby ensuring balanced current flow from and to the distribution substation. Additionally, this device can also support the distribution network in the absence of the utility connection, making the distribution system work as a microgrid. The proposals are validated through extensive digital computer simulation studies using PSCADTM.

  3. Advanced Communication and Control of Distributed Energy Resources at Detroit Edison

    SciTech Connect

    Haukur Asgeirsson; Richard Seguin

    2004-01-31

    The project objective was to create the communication and control system, the process and the economic procedures that will allow owners (e.g., residential, commercial, industrial, manufacturing, etc.) of Distributed Energy Resources (DER) connected in parallel to the electric distribution to have their resources operated in a manner that protects the electric utility distribution network and personnel that may be working on the network. The Distribution Engineering Workstation (DEW) (a power flow and short circuit modeling tool) was modified to calculate the real-time characteristics of the distribution network based on the real-time electric distribution network information and provide DER operating suggestions to the Detroit Edison system operators so that regional electric stability is maintained. Part of the suggestion algorithm takes into account the operational availability of DER’s, which is known by the Energy Aggregator, DTE Energy Technologies. The availability information will be exchanged from DTE Energy Technologies to Detroit Edison. For the calculated suggestions to be used by the Detroit Edison operators, procedures were developed to allow an operator to operate a DER by requesting operation of the DER through DTE Energy Technologies. Prior to issuing control of a DER, the safety of the distribution network and personnel needs to be taken into account. This information will be exchanged from Detroit Edison to DTE Energy Technologies. Once it is safe to control the DER, DTE Energy Technologies will issue the control signal. The real-time monitoring of the DECo system will reflect the DER control. Multi-vendor DER technologies’ representing approximately 4 MW of capacity was monitored and controlled using a web-based communication path. The DER technologies included are a photovoltaic system, energy storage, fuel cells and natural gas/diesel internal combustion engine generators. This report documents Phase I result for the Detroit Edison

  4. Free energy calculations, enhanced by a Gaussian ansatz, for the "chemical work" distribution.

    PubMed

    Boulougouris, Georgios C

    2014-05-15

    The evaluation of the free energy is essential in molecular simulation because it is intimately related with the existence of multiphase equilibrium. Recently, it was demonstrated that it is possible to evaluate the Helmholtz free energy using a single statistical ensemble along an entire isotherm by accounting for the "chemical work" of transforming each molecule, from an interacting one, to an ideal gas. In this work, we show that it is possible to perform such a free energy perturbation over a liquid vapor phase transition. Furthermore, we investigate the link between a general free energy perturbation scheme and the novel nonequilibrium theories of Crook's and Jarzinsky. We find that for finite systems away from the thermodynamic limit the second law of thermodynamics will always be an inequality for isothermal free energy perturbations, resulting always to a dissipated work that may tend to zero only in the thermodynamic limit. The work, the heat, and the entropy produced during a thermodynamic free energy perturbation can be viewed in the context of the Crooks and Jarzinsky formalism, revealing that for a given value of the ensemble average of the "irreversible" work, the minimum entropy production corresponded to a Gaussian distribution for the histogram of the work. We propose the evaluation of the free energy difference in any free energy perturbation based scheme on the average irreversible "chemical work" minus the dissipated work that can be calculated from the variance of the distribution of the logarithm of the work histogram, within the Gaussian approximation. As a consequence, using the Gaussian ansatz for the distribution of the "chemical work," accurate estimates for the chemical potential and the free energy of the system can be performed using much shorter simulations and avoiding the necessity of sampling the computational costly tails of the "chemical work." For a more general free energy perturbation scheme that the Gaussian ansatz may not be

  5. Utilizing an Energy Management System with Distributed Resources to Manage Critical Loads and Reduce Energy Costs

    DTIC Science & Technology

    2014-09-01

    Systems with Electric Power Systems,” IEEE std 1547.4–2011, IEEE , 2011. [3] Department of the Navy, “Department of the Navy’s Energy Program for...Providing Improved Power Quality in Microgrids,” IEEE Industry Applications Magazine , pp. 34–43, September– October 2014. [27] A. Julian, N. Peck...and G. Oriti, “ Power electronics enabled energy management systems,” in Proceedings of IEEE Applied Power Electronics Conference, Long Beach, CA

  6. Effects due to adsorbed atoms upon angular and energy distributions of surface produced negative hydrogen ions

    NASA Astrophysics Data System (ADS)

    Wada, M.; Bacal, M.; Kasuya, T.; Kato, S.; Kenmotsu, T.; Sasao, M.

    2013-02-01

    Exposure to Cs added hydrogen discharge makes surface of plasma grid of a negative hydrogen ion source covered with Cs and hydrogen. A Monte-Carlo particle simulation code ACAT was run to evaluate the effects due to adsorbed Cs and H atoms upon the angular and energy distributions of H atoms leaving the surface. Accumulation of H atoms on the surface reduces particle reflection coefficients and the mean energy of backscattered H atoms. Angular distributions of H atoms reflected from the hydrogen covered surface tend to be under-cosine at lower energies. Desorption of adsorbed H atoms is more efficient for hydrogen positive ions than for Cs positive ions at lower incident energy. At higher energy more than 100 eV, Cs ions desorb adsorbed H atoms more efficiently than hydrogen ions.

  7. Internal energy distributions from nitrogen dioxide fluorescence. 1. Cumulative sum method

    SciTech Connect

    Johnston, H.S.; Miller, C.E.; Oh, B.Y.; Patten, K.O. Jr.; Sisk, W.N. Lawrence Berkeley Lab., CA )

    1993-09-30

    This article describes a method of obtaining information about the internal energy (E) distribution of a fluorescing population of nitrogen dioxide, NO[sub 2]*, from its dispersed spectrum between 400 and 840 nm. We show that two fluorescing populations of the same average energy but different energy spread give statistically significant differences in their observed cumulative sum spectra, although the differences are small. Broadly spread distributions of NO[sub 2]* internal energy are produced by photolysis of RNO[sub 2] molecules and by collisional deactivation of monoenergetically excited NO[sub 2]. The cumulative sum fluorescence spectrum from a broadly distributed internal energy population is represented as a weighted combination of monoenergetically excited cumulative sum fluorescence spectra. A cumulative sum spectrum utilizes all of the data, is positive and single valued, and smoothly, monotonically increases with decreasing observation energy. By differentiation of the cumulative sum spectrum, the original spectrum is recovered undistorted. Unlike a structured monoenergetic fluorescence spectrum, the cumulative sum is well approximated by a simple algebraic expression, I(E,X), where E is the internal energy of NO[sub 2]* and X are the photon energies of the observed spectrum. 14 refs., 18 figs., 3 tabs.

  8. The Influence of Forming Companions on the Spectral Energy Distributions of Stars with Circumstellar Discs

    NASA Astrophysics Data System (ADS)

    Zakhozhay, Olga V.

    2017-04-01

    We study a possibility to detect signatures of brown dwarf companions in a circumstellar disc based on spectral energy distributions. We present the results of spectral energy distribution simulations for a system with a 0.8 M⊙ central object and a companion with a mass of 30 M J embedded in a typical protoplanetary disc. We use a solution to the one-dimensional radiative transfer equation to calculate the protoplanetary disc flux density and assume, that the companion moves along a circular orbit and clears a gap. The width of the gap is assumed to be the diameter of the brown dwarf Hill sphere. Our modelling shows that the presence of such a gap can initiate an additional minimum in the spectral energy distribution profile of a protoplanetary disc at λ = 10-100 μm. We found that it is possible to detect signatures of the companion when it is located within 10 AU, even when it is as small as 3 M J. The spectral energy distribution of a protostellar disc with a massive fragment (of relatively cold temperature 400 K) might have a similar double peaked profile to the spectral energy distribution of a more evolved disc that contains a gap.

  9. Random networks of fibres display maximal heterogeneity in the distribution of elastic energy.

    PubMed

    Aström, J A; Timonen, J; Myllys, M; Fellman, J; LeBell, J

    2007-01-01

    Above a small length scale, the distribution of local elastic energies in a material under an external load is typically Gaussian, and the dependence of the average elastic energy on strain defines the stiffness of the material. Some particular materials, such as granular packings, suspensions at the jamming transition, crumpled sheets and dense cellular aggregates, display under compression an exponential distribution of elastic energies, but also in this case the elastic properties are well defined. We demonstrate here that networks of fibres, which form uncorrelated non-fractal structures, have under external load a scale invariant distribution of elastic energy (epsilon) at the fibre-fibre contacts proportional to 1/epsilon. This distribution is much broader than any other distribution observed before for elastic energies in a material. We show that for small compressions it holds over 10 orders of magnitude in epsilon. In such a material a few 'hot spots' carry most of the elastic load. Consequently, these materials are highly susceptible to local irreversible deformations, and are thereby extremely efficient for damping vibrations.

  10. Ion energy and angular distributions in inductively coupled Argon RF discharges

    SciTech Connect

    Woodworth, J.R.; Riley, M.E.; Meister, D.C.

    1996-03-01

    We report measurements of the energies and angular distributions of positive ions in an inductively coupled argon plasma in a GEC reference cell. Use of two separate ion detectors allowed measurement of ion energies and fluxes as a function of position as well as ion angular distributions on the discharge centerline. The inductive drive on our system produced high plasma densities (up to 10{sup 12}/cm{sup 3} electron densities) and relatively stable plasma potentials. As a result, ion energy distributions typically consisted of a single feature well separated from zero energy. Mean ion energy was independent of rf power and varied inversely with pressure, decreasing from 29 eV to 12 eV as pressure increased form 2.4 m Torr to 50 mTorr. Half-widths of the ion angular distributions in these experiments varied from 5 degrees to 12.5 degrees, or equivalently, transverse temperatures varied form 0.2 to 0.5 eV with the distributions broadening as either pressure or RF power were increased.

  11. Random networks of fibres display maximal heterogeneity in the distribution of elastic energy

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Timonen, J.; Myllys, M.; Fellman, J.; Lebell, J.

    2007-01-01

    Above a small length scale, the distribution of local elastic energies in a material under an external load is typically Gaussian, and the dependence of the average elastic energy on strain defines the stiffness of the material. Some particular materials, such as granular packings, suspensions at the jamming transition, crumpled sheets and dense cellular aggregates, display under compression an exponential distribution of elastic energies, but also in this case the elastic properties are well defined. We demonstrate here that networks of fibres, which form uncorrelated non-fractal structures, have under external load a scale invariant distribution of elastic energy (ɛ) at the fibre-fibre contacts proportional to 1/ɛ. This distribution is much broader than any other distribution observed before for elastic energies in a material. We show that for small compressions it holds over 10 orders of magnitude in ɛ. In such a material a few 'hot spots' carry most of the elastic load. Consequently, these materials are highly susceptible to local irreversible deformations, and are thereby extremely efficient for damping vibrations.

  12. Monte Carlo calculations of energy deposition distributions of electrons below 20 keV in protein.

    PubMed

    Tan, Zhenyu; Liu, Wei

    2014-05-01

    The distributions of energy depositions of electrons in semi-infinite bulk protein and the radial dose distributions of point-isotropic mono-energetic electron sources [i.e., the so-called dose point kernel (DPK)] in protein have been systematically calculated in the energy range below 20 keV, based on Monte Carlo methods. The ranges of electrons have been evaluated by extrapolating two calculated distributions, respectively, and the evaluated ranges of electrons are compared with the electron mean path length in protein which has been calculated by using electron inelastic cross sections described in this work in the continuous-slowing-down approximation. It has been found that for a given energy, the electron mean path length is smaller than the electron range evaluated from DPK, but it is large compared to the electron range obtained from the energy deposition distributions of electrons in semi-infinite bulk protein. The energy dependences of the extrapolated electron ranges based on the two investigated distributions are given, respectively, in a power-law form. In addition, the DPK in protein has also been compared with that in liquid water. An evident difference between the two DPKs is observed. The calculations presented in this work may be useful in studies of radiation effects on proteins.

  13. Advanced air distribution: improving health and comfort while reducing energy use.

    PubMed

    Melikov, A K

    2016-02-01

    Indoor environment affects the health, comfort, and performance of building occupants. The energy used for heating, cooling, ventilating, and air conditioning of buildings is substantial. Ventilation based on total volume air distribution in spaces is not always an efficient way to provide high-quality indoor environments at the same time as low-energy consumption. Advanced air distribution, designed to supply clean air where, when, and as much as needed, makes it possible to efficiently achieve thermal comfort, control exposure to contaminants, provide high-quality air for breathing and minimizing the risk of airborne cross-infection while reducing energy use. This study justifies the need for improving the present air distribution design in occupied spaces, and in general the need for a paradigm shift from the design of collective environments to the design of individually controlled environments. The focus is on advanced air distribution in spaces, its guiding principles and its advantages and disadvantages. Examples of advanced air distribution solutions in spaces for different use, such as offices, hospital rooms, vehicle compartments, are presented. The potential of advanced air distribution, and individually controlled macro-environment in general, for achieving shared values, that is, improved health, comfort, and performance, energy saving, reduction of healthcare costs and improved well-being is demonstrated. Performance criteria are defined and further research in the field is outlined.

  14. Energy state distributions at oxide-semiconductor interfaces investigated by Laplace DLTS

    NASA Astrophysics Data System (ADS)

    Dobaczewski, L.; Markevich, V. P.; Kruszewski, P.; Hawkins, I. D.; Peaker, A. R.

    2009-12-01

    At disordered Si/SiO2 interfaces the lattice mismatching results in dangling bond Pb centres forming a rather broad distribution of energy states. In this study these energy distributions have been determined using isothermal current Laplace deep level transient spectroscopy (DLTS) for the (1 0 0) and (1 1 1) interface orientations. The (1 1 1) distribution is 0.08 eV broad and centred at 0.38 eV below the silicon conduction band. This is consistent with only Pb0 states being present. While for the (1 0 0) orientation this distribution is broader (0.1 eV) and deeper (0.43 eV) on the energy scale. Detailed studies revealed two types of the interface states in this broad distribution: one similar to the (1 1 1) orientation while the other has a negative-U character in which the emission rate versus surface potential dependence is qualitatively different from that observed for Pb0 and is presumed to be Pb1. Discrepancies between Pb states energy distributions obtained with a use of the isothermal Laplace and conventional DLTS measurements are discussed. The presented experimental procedure can be used for analysis of interface states observed at interfaces of other semiconductor-oxide/dielectric systems.

  15. Absolute classification with unsupervised clustering

    NASA Technical Reports Server (NTRS)

    Jeon, Byeungwoo; Landgrebe, D. A.

    1992-01-01

    An absolute classification algorithm is proposed in which the class definition through training samples or otherwise is required only for a particular class of interest. The absolute classification is considered as a problem of unsupervised clustering when one cluster is known initially. The definitions and statistics of the other classes are automatically developed through the weighted unsupervised clustering procedure, which is developed to keep the cluster corresponding to the class of interest from losing its identity as the class of interest. Once all the classes are developed, a conventional relative classifier such as the maximum-likelihood classifier is used in the classification.

  16. A Multiple Period Problem in Distributed Energy Management Systems Considering CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Muroda, Yuki; Miyamoto, Toshiyuki; Mori, Kazuyuki; Kitamura, Shoichi; Yamamoto, Takaya

    Consider a special district (group) which is composed of multiple companies (agents), and where each agent responds to an energy demand and has a CO2 emission allowance imposed. A distributed energy management system (DEMS) optimizes energy consumption of a group through energy trading in the group. In this paper, we extended the energy distribution decision and optimal planning problem in DEMSs from a single period problem to a multiple periods one. The extension enabled us to consider more realistic constraints such as demand patterns, the start-up cost, and minimum running/outage times of equipment. At first, we extended the market-oriented programming (MOP) method for deciding energy distribution to the multiple periods problem. The bidding strategy of each agent is formulated by a 0-1 mixed non-linear programming problem. Secondly, we proposed decomposing the problem into a set of single period problems in order to solve it faster. In order to decompose the problem, we proposed a CO2 emission allowance distribution method, called an EP method. We confirmed that the proposed method was able to produce solutions whose group costs were close to lower-bound group costs by computational experiments. In addition, we verified that reduction in computational time was achieved without losing the quality of solutions by using the EP method.

  17. Effect of directional distribution on non-linear energy transfer in wind wave spectrum

    NASA Astrophysics Data System (ADS)

    Lavrenov, I.; Krogstad, H.

    2003-04-01

    Different directional distribution is investigated from the point of view a non-linear energy transfer in wind wave spectrum. In order to produce a numerical simulation of the non-linear interaction in wind wave spectrum a method of numerical integration of the highest accuracy is used. It is shown that the value of non-linear energy transfer is very sensitive to details of frequency-angular approximation of wave spectrum. The non-linear energy transfer is non-zero in wide frequency - angular range, depending on spectrum angular distribution. The calculation results reveal the presence of non-linear energy transfer to spectral components, which propagation is opposite to wind direction for a wide spectrum angular distribution. It should be noted that neither the discrete interaction approximation (DIA) used in the WAM model (Komen et al., 1994), no diffusive approximation of the non-linear transfer (Pushkarev and Zakharov, 1999) are able not to produce this effect. Numerical results show that the bi-model angular distribution, obtained by Hwang et al. (2000) in field experiments, can be generated by the non-linear energy transfer, sending energy in side direction. Present study has been supported by the INTAS-99-666, INTAS-01-25, INTAS-01-234, INTAS-01-2156, RFBR- 01- 05-64846 Grants.

  18. Smart grids: A paradigm shift on energy generation and distribution with the emergence of a new energy management business model

    NASA Astrophysics Data System (ADS)

    Cardenas, Jesus Alvaro

    An energy and environmental crisis will emerge throughout the world if we continue with our current practices of generation and distribution of electricity. A possible solution to this problem is based on the Smart grid concept, which is heavily influenced by Information and Communication Technology (ICT). Although the electricity industry is mostly regulated, there are global models used as roadmaps for Smart Grids' implementation focusing on technologies and the basic generation-distribution-transmission model. This project aims to further enhance a business model for a future global deployment. It takes into consideration the many factors interacting in this energy provision process, based on the diffusion of technologies and literature surveys on the available documents in the Internet as well as peer-reviewed publications. Tariffs and regulations, distributed energy generation, integration of service providers, consumers becoming producers, self-healing devices, and many other elements are shifting this industry into a major change towards liberalization and deregulation of this sector, which has been heavily protected by the government due to the importance of electricity for consumers. We propose an Energy Management Business Model composed by four basic elements: Supply Chain, Information and Communication Technology (ICT), Stakeholders Response, and the resulting Green Efficient Energy (GEE). We support the developed model based on the literature survey, we support it with the diffusion analysis of these elements, and support the overall model with two surveys: one for peers and professionals, and other for experts in the field, based on the Smart Grid Carnegie Melon Maturity Model (CMU SEI SGMM). The contribution of this model is a simple path to follow for entities that want to achieve environmental friendly energy with the involvement of technology and all stakeholders.

  19. Investigation of Cost and Energy Optimization of Drinking Water Distribution Systems.

    PubMed

    Cherchi, Carla; Badruzzaman, Mohammad; Gordon, Matthew; Bunn, Simon; Jacangelo, Joseph G

    2015-11-17

    Holistic management of water and energy resources through energy and water quality management systems (EWQMSs) have traditionally aimed at energy cost reduction with limited or no emphasis on energy efficiency or greenhouse gas minimization. This study expanded the existing EWQMS framework and determined the impact of different management strategies for energy cost and energy consumption (e.g., carbon footprint) reduction on system performance at two drinking water utilities in California (United States). The results showed that optimizing for cost led to cost reductions of 4% (Utility B, summer) to 48% (Utility A, winter). The energy optimization strategy was successfully able to find the lowest energy use operation and achieved energy usage reductions of 3% (Utility B, summer) to 10% (Utility A, winter). The findings of this study revealed that there may be a trade-off between cost optimization (dollars) and energy use (kilowatt-hours), particularly in the summer, when optimizing the system for the reduction of energy use to a minimum incurred cost increases of 64% and 184% compared with the cost optimization scenario. Water age simulations through hydraulic modeling did not reveal any adverse effects on the water quality in the distribution system or in tanks from pump schedule optimization targeting either cost or energy minimization.

  20. Energy distributions exhibited during thermal runaway of commercial lithium ion batteries used for human spaceflight applications

    NASA Astrophysics Data System (ADS)

    Yayathi, Sandeep; Walker, William; Doughty, Daniel; Ardebili, Haleh

    2016-10-01

    Lithium ion (Li-ion) batteries provide low mass and energy dense solutions necessary for space exploration, but thermal related safety concerns impede the utilization of Li-ion technology for human applications. Experimental characterization of thermal runaway energy release with accelerated rate calorimetry supports safer thermal management systems. 'Standard' accelerated rate calorimetry setup provides means to measure the addition of energy exhibited through the body of a Li-ion cell. This study considers the total energy generated during thermal runaway as distributions between cell body and hot gases via inclusion of a unique secondary enclosure inside the calorimeter; this closed system not only contains the cell body and gaseous species, but also captures energy release associated with rapid heat transfer to the system unobserved by measurements taken on the cell body. Experiments include Boston Power Swing 5300, Samsung 18650-26F and MoliCel 18650-J Li-ion cells at varied states-of-charge. An inverse relationship between state-of-charge and onset temperature is observed. Energy contained in the cell body and gaseous species are successfully characterized; gaseous energy is minimal. Significant additional energy is measured with the heating of the secondary enclosure. Improved calorimeter apparatus including a secondary enclosure provides essential capability to measuring total energy release distributions during thermal runaway.

  1. Natural gas transmission and distribution model of the National Energy Modeling System

    SciTech Connect

    1997-02-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

  2. Spatiotemporal Modeling for Assessing Complementarity of Renewable Energy Sources in Distributed Energy Systems

    NASA Astrophysics Data System (ADS)

    Ramirez Camargo, L.; Zink, R.; Dorner, W.

    2015-07-01

    Spatial assessments of the potential of renewable energy sources (RES) have become a valuable information basis for policy and decision-making. These studies, however, do not explicitly consider the variability in time of RES such as solar energy or wind. Until now, the focus is usually given to economic profitability based on yearly balances, which do not allow a comprehensive examination of RES-technologies complementarity. Incrementing temporal resolution of energy output estimation will permit to plan the aggregation of a diverse pool of RES plants i.e., to conceive a system as a virtual power plant (VPP). This paper presents a spatiotemporal analysis methodology to estimate RES potential of municipalities. The methodology relies on a combination of open source geographic information systems (GIS) processing tools and the in-memory array processing environment of Python and NumPy. Beyond the typical identification of suitable locations to build power plants, it is possible to define which of them are the best for a balanced local energy supply. A case study of a municipality, using spatial data with one square meter resolution and one hour temporal resolution, shows strong complementarity of photovoltaic and wind power. Furthermore, it is shown that a detailed deployment strategy of potential suitable locations for RES, calculated with modest computational requirements, can support municipalities to develop VPPs and improve security of supply.

  3. 78 FR 23335 - Energy Conservation Program: Energy Conservation Standards for Distribution Transformers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    .... Specific Criteria a. Economic Impact on Manufacturers and Consumers b. Life-Cycle Costs c. Energy Savings d... F. Life-Cycle Cost and Payback Period Analysis 1. Modeling Transformer Purchase Decision 2. Inputs.... Economic Impacts on Customers a. Life-Cycle Cost and Payback Period b. Customer Subgroup Analysis...

  4. Modeling of thermal storage systems in MILP distributed energy resource models

    SciTech Connect

    Steen, David; Stadler, Michael; Cardoso, Gonçalo; Groissböck, Markus; DeForest, Nicholas; Marnay, Chris

    2014-08-04

    Thermal energy storage (TES) and distributed generation technologies, such as combined heat and power (CHP) or photovoltaics (PV), can be used to reduce energy costs and decrease CO2 emissions from buildings by shifting energy consumption to times with less emissions and/or lower energy prices. To determine the feasibility of investing in TES in combination with other distributed energy resources (DER), mixed integer linear programming (MILP) can be used. Such a MILP model is the well-established Distributed Energy Resources Customer Adoption Model (DER-CAM); however, it currently uses only a simplified TES model to guarantee linearity and short run-times. Loss calculations are based only on the energy contained in the storage. This paper presents a new DER-CAM TES model that allows improved tracking of losses based on ambient and storage temperatures, and compares results with the previous version. A multi-layer TES model is introduced that retains linearity and avoids creating an endogenous optimization problem. The improved model increases the accuracy of the estimated storage losses and enables use of heat pumps for low temperature storage charging. Ultimately,results indicate that the previous model overestimates the attractiveness of TES investments for cases without possibility to invest in heat pumps and underestimates it for some locations when heat pumps are allowed. Despite a variation in optimal technology selection between the two models, the objective function value stays quite stable, illustrating the complexity of optimal DER sizing problems in buildings and microgrids.

  5. Analysis of electron energy distribution function in the Linac4 H{sup −} source

    SciTech Connect

    Mochizuki, S. Nishida, K.; Hatayama, A.; Mattei, S.; Lettry, J.

    2016-02-15

    To understand the Electron Energy Distribution Function (EEDF) in the Radio Frequency Inductively Coupled Plasmas (RF-ICPs) in hydrogen negative ion sources, the detailed analysis of the EEDFs using numerical simulation and the theoretical approach based on Boltzmann equation has been performed. It is shown that the EEDF of RF-ICPs consists of two parts, one is the low energy part which obeys Maxwellian distribution and the other is high energy part deviated from Maxwellian distribution. These simulation results have been confirmed to be reasonable by the analytical approach. The results suggest that it is possible to enhance the dissociation of molecules and the resultant H{sup −} negative ion production by reducing the gas pressure.

  6. Analysis of electron energy distribution function in the Linac4 H- source

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Mattei, S.; Nishida, K.; Hatayama, A.; Lettry, J.

    2016-02-01

    To understand the Electron Energy Distribution Function (EEDF) in the Radio Frequency Inductively Coupled Plasmas (RF-ICPs) in hydrogen negative ion sources, the detailed analysis of the EEDFs using numerical simulation and the theoretical approach based on Boltzmann equation has been performed. It is shown that the EEDF of RF-ICPs consists of two parts, one is the low energy part which obeys Maxwellian distribution and the other is high energy part deviated from Maxwellian distribution. These simulation results have been confirmed to be reasonable by the analytical approach. The results suggest that it is possible to enhance the dissociation of molecules and the resultant H- negative ion production by reducing the gas pressure.

  7. Analysis of electron energy distribution function in the Linac4 H⁻ source.

    PubMed

    Mochizuki, S; Mattei, S; Nishida, K; Hatayama, A; Lettry, J

    2016-02-01

    To understand the Electron Energy Distribution Function (EEDF) in the Radio Frequency Inductively Coupled Plasmas (RF-ICPs) in hydrogen negative ion sources, the detailed analysis of the EEDFs using numerical simulation and the theoretical approach based on Boltzmann equation has been performed. It is shown that the EEDF of RF-ICPs consists of two parts, one is the low energy part which obeys Maxwellian distribution and the other is high energy part deviated from Maxwellian distribution. These simulation results have been confirmed to be reasonable by the analytical approach. The results suggest that it is possible to enhance the dissociation of molecules and the resultant H(-) negative ion production by reducing the gas pressure.

  8. Energy distributions of Bianchi type-VI h Universe in general relativity and teleparallel gravity

    NASA Astrophysics Data System (ADS)

    Özkurt, Şeref; Aygün, Sezg&idot; n.

    2017-04-01

    In this paper, we have investigated the energy and momentum density distributions for the inhomogeneous generalizations of homogeneous Bianchi type-VI h metric with Einstein, Bergmann-Thomson, Landau-Lifshitz, Papapetrou, Tolman and Møller prescriptions in general relativity (GR) and teleparallel gravity (TG). We have found exactly the same results for Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum distributions in Bianchi type-VI h metric for different gravitation theories. The energy-momentum distributions of the Bianchi type- VI h metric are found to be zero for h = -1 in GR and TG. However, our results agree with Tripathy et al, Tryon, Rosen and Aygün et al.

  9. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  10. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  11. Absolute Standards for Climate Measurements

    NASA Astrophysics Data System (ADS)

    Leckey, J.

    2016-10-01

    In a world of changing climate, political uncertainty, and ever-changing budgets, the benefit of measurements traceable to SI standards increases by the day. To truly resolve climate change trends on a decadal time scale, on-orbit measurements need to be referenced to something that is both absolute and unchanging. One such mission is the Climate Absolute Radiance and Refractivity Observatory (CLARREO) that will measure a variety of climate variables with an unprecedented accuracy to definitively quantify climate change. In the CLARREO mission, we will utilize phase change cells in which a material is melted to calibrate the temperature of a blackbody that can then be observed by a spectrometer. A material's melting point is an unchanging physical constant that, through a series of transfers, can ultimately calibrate a spectrometer on an absolute scale. CLARREO consists of two primary instruments: an infrared (IR) spectrometer and a reflected solar (RS) spectrometer. The mission will contain orbiting radiometers with sufficient accuracy to calibrate other space-based instrumentation and thus transferring the absolute traceability. The status of various mission options will be presented.

  12. Photometric Redshifts and Systematic Variations in the Spectral Energy Distributions of Luminous Red Galaxies from SDSS DR7

    NASA Astrophysics Data System (ADS)

    Greisel, N.; Seitz, S.; Drory, N.; Bender, R.; Saglia, R. P.; Snigula, J.

    2013-05-01

    We describe the construction of a template set of spectral energy distributions (SEDs) for the estimation of photometric redshifts of luminous red galaxies (LRGs) with a Bayesian template fitting method. By examining the color properties of several publicly available SED sets within a redshift range of 0 < z <~ 0.5 and comparing them to Sloan Digital Sky Survey (SDSS) Data Release 7 data, we show that only some of the investigated SEDs approximately match the colors of the LRG data throughout the redshift range, however not at the quantitative level required for precise photometric redshifts. This is because the SEDs of galaxies evolve with time (and redshift) and because at fixed redshift the LRG colors have an intrinsic spread such that they cannot be matched by one SED only. We generate new SEDs by superposing model SEDs of composite stellar populations with a burst model, allowing both components to be reddened by dust, in order to match the data in five different redshift bins. We select a set of SEDs which represents the LRG data in color space within five redshift bins, thus defining our new SED template set for photometric redshift estimates. The results we obtain with the new template set and our Bayesian template fitting photometric redshift code (PhotoZ) are nearly unbiased, with a scatter of σΔz = 0.027 (including outliers), a fraction of catastrophic outliers (|z phot - z spec|/(1 + z spec) > 0.15) of η = 0.12%, and a normalized median absolute rest frame deviation (NMAD) of σNMAD = 1.48 × MAD = 0.017 for non-outliers. We show that templates that optimally describe the brightest galaxies (-24.5 <= MR <= -22.7) indeed vary from z = 0.1 to z = 0.5, consistent with aging of the stellar population. Furthermore, we find that templates that optimally describe galaxies at z < 0.1 strongly differ as a function of the absolute magnitude of the galaxies, indicating an increase in star formation activity for less luminous galaxies. Our findings based on the

  13. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes

    USGS Publications Warehouse

    McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S.; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.

    2002-01-01

    The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.

  14. PHEV Energy Use Estimation: Validating the Gamma Distribution for Representing the Random Daily Driving Distance

    SciTech Connect

    Lin, Zhenhong; Dong, Jing; Liu, Changzheng; Greene, David L

    2012-01-01

    The petroleum and electricity consumptions of plug-in hybrid electric vehicles (PHEVs) are sensitive to the variation of daily vehicle miles traveled (DVMT). Some studies assume DVMT to follow a Gamma distribution, but such a Gamma assumption is yet to be validated. This study finds the Gamma assumption valid in the context of PHEV energy analysis, based on continuous GPS travel data of 382 vehicles, each tracked for at least 183 days. The validity conclusion is based on the found small prediction errors, resulting from the Gamma assumption, in PHEV petroleum use, electricity use, and energy cost. The finding that the Gamma distribution is valid and reliable is important. It paves the way for the Gamma distribution to be assumed for analyzing energy uses of PHEVs in the real world. The Gamma distribution can be easily specified with very few pieces of driver information and is relatively easy for mathematical manipulation. Given the validation in this study, the Gamma distribution can now be used with better confidence in a variety of applications, such as improving vehicle consumer choice models, quantifying range anxiety for battery electric vehicles, investigating roles of charging infrastructure, and constructing online calculators that provide personal estimates of PHEV energy use.

  15. HIGH-ENERGY ELECTRON COOLING BASED ON REALISTIC SIX-DIMENSIONAL DISTRIBUTION OF ELECTRONS

    SciTech Connect

    FEDOTOV,A.; BEN-ZVI, I.; ET AL.

    2007-06-25

    The high-energy electron cooling system for RHIC-II is unique compared to standard coolers. It requires bunched electron beam. Electron bunches are produced by an Energy Recovery Linac (ERL), and cooling is planned without longitudinal magnetic field. To address unique features of the RHIC cooler, a generalized treatment of cooling force was introduced in BETACOOE code which allows us to calculate friction force for an arbitrary distribution of electrons. Simulations for RHIC cooler based on electron distribution from ERL are presented.

  16. Multi-period Nash bargaining for Coordination of Distributed Energy Resources

    SciTech Connect

    2015-11-09

    Flexibility from distributed energy resources presents an enormous potential to provide various services to the smart grid. In this paper, we propose a unified hierarchical framework for aggregation and coordination of various flexible loads, such as commercial building Heating, Ventilation, and Air-Conditioning (HVAC) systems, Thermostatically Controlled Loads (TCLs), Distributed Energy Storages (DESs), residential Pool Pumps (PPs), and Electric Vehicles (EVs). Moreover, a multistage Nash-bargaining-based control strategy is proposed to coordinate different aggregations of flexible loads for demand response. Case studies are provided to demonstrate the efficacy of our proposed framework and coordination strategy in managing peak power demand in a community.

  17. Energy and mass distributions of impact ejecta blankets on the moon and Mercury

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Okeefe, J. D.

    1978-01-01

    The paper applies previously calculated impact-induced flow fields (O'Keefe and Ahrens, 1977) resulting from interaction of 5-cm radius gabbroic anorthosite impactor with a half-space of the same material, at various velocities, to obtain mass and energy ejecta distributions. Whereas earlier results described the ejecta distribution from a 15 km/s impact of an iron object on the moon in terms of mass vs. distance, the present results describe, at a given distance from the impact, the energy content as a function of depth, i.e., the thermal structure of ejecta blankets. Pertinent computational methods are included, and several tables and plots supplement the text.

  18. Results on the neutron energy distribution measurements at the RECH-1 Chilean nuclear reactor

    NASA Astrophysics Data System (ADS)

    Aguilera, P.; Molina, F.; Romero-Barrientos, J.

    2016-07-01

    Neutron activations experiments has been perform at the RECH-1 Chilean Nuclear Reactor to measure its neutron flux energy distribution. Samples of pure elements was activated to obtain the saturation activities for each reaction. Using - ray spectroscopy we identify and measure the activity of the reaction product nuclei, obtaining the saturation activities of 20 reactions. GEANT4 and MCNP was used to compute the self shielding factor to correct the cross section for each element. With the Expectation-Maximization algorithm (EM) we were able to unfold the neutron flux energy distribution at dry tube position, near the RECH-1 core. In this work, we present the unfolding results using the EM algorithm.

  19. Expansion-free evolving spheres must have inhomogeneous energy density distributions

    SciTech Connect

    Herrera, L.; Le Denmat, G.; Santos, N. O.

    2009-04-15

    In a recent paper a systematic study on shearing expansion-free spherically symmetric distributions was presented. As a particular case of such systems, the Skripkin model was mentioned, which corresponds to a nondissipative perfect fluid with a constant energy density. Here we show that such a model is inconsistent with junction conditions. It is shown that in general for any nondissipative fluid distribution, the expansion-free condition requires the energy density to be inhomogeneous. As an example we consider the case of dust, which allows for a complete integration.

  20. Electron energy distribution functions in low-pressure oxygen plasma columns sustained by propagating surface waves

    SciTech Connect

    Stafford, L.; Margot, J.; Moisan, M.; Khare, R.; Donnelly, V. M.

    2009-01-12

    Electron energy distribution functions (EEDFs) were measured in a 50 mTorr oxygen plasma column sustained by propagating surface waves. Trace-rare-gas-optical-emission spectroscopy was used to derive EEDFs by selecting lines to extract ''electron temperature''(T{sub e}) corresponding to either lower energy electrons that excite high-lying levels through stepwise excitation via metastable states or higher energy electrons that excite emission directly from the ground state. Lower energy T{sub e}'s decreased from 8 to 5.5 eV with distance from the wave launcher, while T{sub e}{approx_equal}6 eV for higher energy electrons and T{sub e}>20 eV for a high-energy tail. Mechanisms for such EEDFs are discussed.

  1. Kinetic Energy and Angular Distributions of He and Ar Atoms Evaporating from Liquid Dodecane.

    PubMed

    Patel, Enamul-Hasan; Williams, Mark A; Koehler, Sven P K

    2017-01-12

    We report both kinetic energy and angular distributions for He and Ar atoms evaporating from C12H26. All results were obtained by performing molecular dynamics simulations of liquid C12H26 with around 10-20 noble gas atoms dissolved in the liquid and by subsequently following the trajectories of the noble gas atoms after evaporation from the liquid. Whereas He evaporates with a kinetic energy distribution of (1.05 ± 0.03) × 2RT (corrected for the geometry used in experiments: (1.08 ± 0.03) × 2RT, experimentally obtained value: (1.14 ± 0.01) × 2RT), Ar displays a kinetic energy distribution that better matches a Maxwell-Boltzmann distribution at the temperature of the liquid ((0.99 ± 0.04) × 2RT). This behavior is also reflected in the angular distributions, which are close to a cosine distribution for Ar but slightly narrower, especially for faster atoms, in the case of He. This behavior of He is most likely due to the weak interaction potential between He and the liquid hydrocarbon.

  2. Energy distribution among reaction products. VI - F + H2, D2.

    NASA Technical Reports Server (NTRS)

    Polanyi, J. C.; Woodall, K. B.

    1972-01-01

    Study of the F + H2 reaction, which is of special theoretical interest since it is one of the simplest examples of an exothermic chemical reaction. The FH2 system involves only 11 electrons, and the computation of a potential-energy hypersurface to chemical accuracy may now be within the reach of ab initio calculations. The 'arrested relaxation' variant of the infrared chemiluminescence method is used to obtain the initial vibrational, rotational and translational energy distributions in the products of exothermic reactions.

  3. Angular distributions for /sup 16/O(/gamma/,p)/sup 15/N at intermediate energies

    SciTech Connect

    Adams, G.S.; Kinney, E.R.; Matthews, J.L.; Sapp, W.W.; Soos, T.; Owens, R.O.; Turley, R.S.; Pignault, G.

    1988-12-01

    The photoproton knockout reaction on /sup 16/O leaving /sup 15/N in low-lying bound states has been observed over the photon energy range from 196 to 361 MeV. The angular distribution for the reaction populating the ground state of /sup 15/N develops sharp structure as the photon energy is increased but that for population of the excited states is smooth. The results are not explained by existing theoretical models.

  4. Magnetized retarding field energy analyzer measuring the particle flux and ion energy distribution of both positive and negative ions.

    PubMed

    Rafalskyi, Dmytro; Dudin, Stanislav; Aanesland, Ane

    2015-05-01

    This paper presents the development of a magnetized retarding field energy analyzer (MRFEA) used for positive and negative ion analysis. The two-stage analyzer combines a magnetic electron barrier and an electrostatic ion energy barrier allowing both positive and negative ions to be analyzed without the influence of electrons (co-extracted or created downstream). An optimal design of the MRFEA for ion-ion beams has been achieved by a comparative study of three different MRFEA configurations, and from this, scaling laws of an optimal magnetic field strength and topology have been deduced. The optimal design consists of a uniform magnetic field barrier created in a rectangular channel and an electrostatic barrier consisting of a single grid and a collector placed behind the magnetic field. The magnetic barrier alone provides an electron suppression ratio inside the analyzer of up to 6000, while keeping the ion energy resolution below 5 eV. The effective ion transparency combining the magnetic and electrostatic sections of the MRFEA is measured as a function of the ion energy. It is found that the ion transparency of the magnetic barrier increases almost linearly with increasing ion energy in the low-energy range (below 200 eV) and saturates at high ion energies. The ion transparency of the electrostatic section is almost constant and close to the optical transparency of the entrance grid. We show here that the MRFEA can provide both accurate ion flux and ion energy distribution measurements in various experimental setups with ion beams or plasmas run at low pressure and with ion energies above 10 eV.

  5. Magnetized retarding field energy analyzer measuring the particle flux and ion energy distribution of both positive and negative ions

    SciTech Connect

    Rafalskyi, Dmytro; Aanesland, Ane; Dudin, Stanislav

    2015-05-15

    This paper presents the development of a magnetized retarding field energy analyzer (MRFEA) used for positive and negative ion analysis. The two-stage analyzer combines a magnetic electron barrier and an electrostatic ion energy barrier allowing both positive and negative ions to be analyzed without the influence of electrons (co-extracted or created downstream). An optimal design of the MRFEA for ion-ion beams has been achieved by a comparative study of three different MRFEA configurations, and from this, scaling laws of an optimal magnetic field strength and topology have been deduced. The optimal design consists of a uniform magnetic field barrier created in a rectangular channel and an electrostatic barrier consisting of a single grid and a collector placed behind the magnetic field. The magnetic barrier alone provides an electron suppression ratio inside the analyzer of up to 6000, while keeping the ion energy resolution below 5 eV. The effective ion transparency combining the magnetic and electrostatic sections of the MRFEA is measured as a function of the ion energy. It is found that the ion transparency of the magnetic barrier increases almost linearly with increasing ion energy in the low-energy range (below 200 eV) and saturates at high ion energies. The ion transparency of the electrostatic section is almost constant and close to the optical transparency of the entrance grid. We show here that the MRFEA can provide both accurate ion flux and ion energy distribution measurements in various experimental setups with ion beams or plasmas run at low pressure and with ion energies above 10 eV.

  6. Using field emission to control the electron energy distribution in high-pressure microdischarges at microscale dimensions

    SciTech Connect

    Li, Yingjie; Go, David B.

    2013-12-02

    Particle simulations of high-pressure microdischarges at gaps below 10 μm show that the electron energy distribution becomes non-continuous, with discrete peaks corresponding to specific inelastic collisions. The relative magnitude of these peaks and shape of the energy distribution can be directly controlled by the parameter pressure times distance (pd) and the applied potential across the gap. These parameters dictate inelastic collisions experienced by electrons and as both increase the distribution smooths into a Maxwellian-like distribution. By capitalizing on field emission at these dimensions, it is possible to control the energy distribution of free electrons to target specific, energy dependent reactions.

  7. Absolute cross sections for dissociative electron attachment to NH3 and CH4

    NASA Astrophysics Data System (ADS)

    Rawat, Prashant; Prabhudesai, Vaibhav S.; Rahman, M. A.; Ram, N. Bhargava; Krishnakumar, E.

    2008-11-01

    Dissociative electron attachment (DEA) cross sections for NH3 and CH4 are measured in a crossed beam apparatus with special care to eliminate discrimination due to kinetic energy and angular distribution of the fragment ions. The cross sections are put on absolute scale using the relative flow technique. The absolute cross sections for the formation of H- and NH2- from ammonia and H- and CH2- from methane are compared with available data from literature. It is seen that the present results are considerably different 6rom what has been reported before. We also compare the cross sections of the H- channel from these molecules along with that from H2O to those from organic molecules containing alkyl, amino and hydroxyl groups to examine the extent to which the recently observed functional group dependence in the DEA contributes.

  8. Observation of a power-law energy distribution in atom-ion hybrid system

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Akerman, Nitzan; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee

    2016-05-01

    Understanding atom-ion collision dynamics is at the heart of the growing field of ultra-cold atom-ion physics. The naive picture of a hot ion sympathetically-cooled by a cold atomic bath doesn't hold due to the time dependent potentials generated by the ion Paul trap. The energy scale of the atom-ion system is determined by a combination of the atomic bath temperature, the ion's excess micromotion (EMM) and the back action of the atom-ion attraction on the ion's position in the trap. However, it is the position dependent ion's inherent micromotion which acts as an amplifier for the ion's energy during random consecutive collisions. Due to this reason, the ion's energy distribution deviates from Maxwell-Boltzmann (MB) characterized by an exponential tail to one with power-law tail described by Tsallis q-exponential function. Here we report on the observation of a strong deviation from MB to Tsallis energy distribution of a trapped ion. In our experiment, a ground-state cooled 88 Sr+ ion is immersed in an ultra-cold cloud of 87 Rb atoms. The energy scale is determined by either EMM or solely due to the back action on the ion position during a collision with an atom in the trap. Energy distributions are obtained using narrow optical clock spectroscopy.

  9. Distribution of binding energies of a water molecule in the water liquid-vapor interface

    SciTech Connect

    Chempath, Shaji; Pratt, Lawrence R

    2008-01-01

    Distributions of binding energies of a water molecule in the water liquid-vapor interface are obtained on the basis of molecular simulation with the SPC/E model of water. These binding energies together with the observed interfacial density profile are used to test a minimally conditioned Gaussian quasi-chemical statistical thermodynamic theory. Binding energy distributions for water molecules in that interfacial region clearly exhibit a composite structure. A minimally conditioned Gaussian quasi-chemical model that is accurate for the free energy of bulk liquid water breaks down for water molecules in the liquid-vapor interfacial region. This breakdown is associated with the fact that this minimally conditioned Gaussian model would be inaccurate for the statistical thermodynamics of a dilute gas. Aggressive conditioning greatly improves the performance of that Gaussian quasi-chemical model. The analogy between the Gaussian quasi-chemical model and dielectric models of hydration free energies suggests that naive dielectric models without the conditioning features of quasi-chemical theory will be unreliable for these interfacial problems. Multi-Gaussian models that address the composite nature of the binding energy distributions observed in the interfacial region might provide a mechanism for correcting dielectric models for practical applications.

  10. Distribution Surge Arrester Failures due to Winter Lightning and Measurement of Energy Absorption Capability of Arresters

    NASA Astrophysics Data System (ADS)

    Sugimoto, Hitoshi; Shimasaki, Katsuhiko; Kado, Hiroyuki

    Surge arresters and distribution equipments with zinc-oxide elements are used for lightning protection of overhead power distribution lines in Japan. However, these surge arresters are sometimes damaged by direct lightning strokes, especially in winter. Increasing of surge arrester failures in winter is attributed to a very large electric charge of winter lightning than that of summer lightning. For improvement of surge arresters, we have measured the energy absorption capability of surge arresters using a half cycle of alternating current with a frequency of 50Hz for simulating a winter lightning current. The mean values of arrester failure energy increased in proportion to the volume of zinc-oxide element, however the values of arrester failure energy were quite uneven. We also have observed the aspects of damaged zinc-oxide elements, and have investigated the relationship between the arrester failure energy and the failure types of zinc-oxide elements. From these results, we suggest the improvement of the energy absorption capability of distribution surge arresters, especially for the uniform energy absorption capability.

  11. Investigation of pore size and energy distributions by statistical physics formalism applied to agriculture products

    NASA Astrophysics Data System (ADS)

    Aouaini, Fatma; Knani, Salah; Yahia, Manel Ben; Bahloul, Neila; Ben Lamine, Abdelmottaleb; Kechaou, Nabil

    2015-12-01

    In this paper, we present a new investigation that allows determining the pore size distribution (PSD) in a porous medium. This PSD is achieved by using the desorption isotherms of four varieties of olive leaves. This is by the means of statistical physics formalism and Kelvin's law. The results are compared with those obtained with scanning electron microscopy. The effect of temperature on the distribution function of pores has been studied. The influence of each parameter on the PSD is interpreted. A similar function of adsorption energy distribution, AED, is deduced from the PSD.

  12. Decoding Group Vocalizations: The Acoustic Energy Distribution of Chorus Howls Is Useful to Determine Wolf Reproduction

    PubMed Central

    López-Bao, José Vicente; Llaneza, Luis; Fernández, Carlos; Font, Enrique

    2016-01-01

    Population monitoring is crucial for wildlife management and conservation. In the last few decades, wildlife researchers have increasingly applied bioacoustics tools to obtain information on several essential ecological parameters, such as distribution and abundance. One such application involves wolves (Canis lupus). These canids respond to simulated howls by emitting group vocalizations known as chorus howls. These responses to simulated howls reveal the presence of wolf litters during the breeding period and are therefore often used to determine the status of wolf populations. However, the acoustic structure of chorus howls is complex and discriminating the presence of pups in a chorus is sometimes difficult, even for experienced observers. In this study, we evaluate the usefulness of analyses of the acoustic energy distribution in chorus howls to identify the presence of pups in a chorus. We analysed 110 Iberian wolf chorus howls with known pack composition and found that the acoustic energy distribution is concentrated at higher frequencies when there are pups vocalizing. We built predictive models using acoustic energy distribution features to determine the presence of pups in a chorus, concluding that the acoustic energy distribution in chorus howls can be used to determine the presence of wolf pups in a pack. The method we outline here is objective, accurate, easily implemented, and independent of the observer's experience. These advantages are especially relevant in the case of broad scale surveys or when many observers are involved. Furthermore, the analysis of the acoustic energy distribution can be implemented for monitoring other social canids that emit chorus howls such as jackals or coyotes, provides an easy way to obtain information on ecological parameters such as reproductive success, and could be useful to study other group vocalizations. PMID:27144887

  13. Decoding Group Vocalizations: The Acoustic Energy Distribution of Chorus Howls Is Useful to Determine Wolf Reproduction.

    PubMed

    Palacios, Vicente; López-Bao, José Vicente; Llaneza, Luis; Fernández, Carlos; Font, Enrique

    2016-01-01

    Population monitoring is crucial for wildlife management and conservation. In the last few decades, wildlife researchers have increasingly applied bioacoustics tools to obtain information on several essential ecological parameters, such as distribution and abundance. One such application involves wolves (Canis lupus). These canids respond to simulated howls by emitting group vocalizations known as chorus howls. These responses to simulated howls reveal the presence of wolf litters during the breeding period and are therefore often used to determine the status of wolf populations. However, the acoustic structure of chorus howls is complex and discriminating the presence of pups in a chorus is sometimes difficult, even for experienced observers. In this study, we evaluate the usefulness of analyses of the acoustic energy distribution in chorus howls to identify the presence of pups in a chorus. We analysed 110 Iberian wolf chorus howls with known pack composition and found that the acoustic energy distribution is concentrated at higher frequencies when there are pups vocalizing. We built predictive models using acoustic energy distribution features to determine the presence of pups in a chorus, concluding that the acoustic energy distribution in chorus howls can be used to determine the presence of wolf pups in a pack. The method we outline here is objective, accurate, easily implemented, and independent of the observer's experience. These advantages are especially relevant in the case of broad scale surveys or when many observers are involved. Furthermore, the analysis of the acoustic energy distribution can be implemented for monitoring other social canids that emit chorus howls such as jackals or coyotes, provides an easy way to obtain information on ecological parameters such as reproductive success, and could be useful to study other group vocalizations.

  14. Ion energy distribution functions of low energy beams formed by wire extraction electrodes

    SciTech Connect

    Tokumura, S.; Kasuya, T.; Vasquez, M. Jr.; Maeno, S.; Wada, M.

    2012-02-15

    The two-electrode extractor system made of 0.1 mm diameter tungsten wires separated by 0.7 mm has formed an argon ion beam with 50 V extraction potential. Energy spreads of the extracted beams were typically less than 2 eV when the beam current density was low. The beam intensity rapidly decreased as the distance between the extractor and the beam detector increased, indicating space charge limited transport of the beam. Problems associated with the emittance measurements are also discussed.

  15. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    SciTech Connect

    Steward, D.; Zuboy, J.

    2014-10-01

    Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

  16. Experimental investigation of static ice refrigeration air conditioning system driven by distributed photovoltaic energy system

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Li, M.; Luo, X.; Wang, Y. F.; Yu, Q. F.; Hassanien, R. H. E.

    2016-08-01

    The static ice refrigeration air conditioning system (SIRACS) driven by distributed photovoltaic energy system (DPES) was proposed and the test experiment have been investigated in this paper. Results revealed that system energy utilization efficiency is low because energy losses were high in ice making process of ice slide maker. So the immersed evaporator and co-integrated exchanger were suggested in system structure optimization analysis and the system COP was improved nearly 40%. At the same time, we have researched that ice thickness and ice super-cooled temperature changed along with time and the relationship between system COP and ice thickness was obtained.

  17. Ion energy distribution functions in inductively coupled RF discharges in mixtures of chlorine and boron trichloride

    SciTech Connect

    Woodworth, J.R.; Nichols, C.A.; Hamilton, T.W.

    1997-02-01

    Plasma discharges involving mixtures of chlorine and boron trichloride are widely used to etch metals in the production of very-large-scale-integrated circuits. Energetic ions play a critical role in this process, influencing the etch rates, etch profiles, and selectivity to different materials. The authors are using a gridded energy analyzer to measure positive ion energy distributions and fluxes at the grounded electrode of high-density inductively-coupled rf discharges. In this paper, they present details of ion energies and fluxes in discharges containing mixtures of chlorine and boron trichloride.

  18. Energy gains predict the distribution of plains bison across populations and ecosystems.

    PubMed

    Babin, Jean-Sébastien; Fortin, Daniel; Wilmshurst, John F; Fortin, Marie-Eve

    2011-01-01

    Developing tools that help predict animal distribution in the face of environmental change is central to understanding ecosystem function, but it remains a significant ecological challenge. We tested whether a single foraging currency could explain bison (Bison bison) distribution in dissimilar environments: a largely forested environment in Prince Albert National Park (Saskatchewan, Canada) and a prairie environment in Grasslands National Park (Saskatchewan, Canada). We blended extensive behavioral observations, relocations of radio-collared bison, vegetation surveys, and laboratory analyses to spatially link bison distribution in the two parks and expected gains for different nutritional currencies. In Prince Albert National Park, bison were more closely associated with the distribution of plants that maximized their instantaneous energy intake rate (IDE) than their daily intake of digestible energy. This result reflected both bison's intensity of use of individual meadows and their selection of foraging sites within meadows. On this basis, we tested whether IDE could explain the spatial dynamics of bison reintroduced to Grasslands National Park. As predicted, bison distribution in this park best matched spatial patterns of plants offering rapid IDE rather than rapid sodium intake, phosphorus intake, or daily intake of digestible energy. Because the two study areas have very different plant communities, a phenomenological model of resource selection developed in one area could not be used to predict animal distribution in the other. We were able, however, to successfully infer the distribution of bison from their foraging objective. This consistency in foraging currency across ecosystems and populations provides a strong basis for forecasting animal distributions in novel and dynamic environments.

  19. Measurement of Electron Density Using the Multipole Resonance Probe, Langmuir Probe and Optical Emission Spectroscopy in Low Pressure Plasmas with Different Electron Energy Distribution Functions

    NASA Astrophysics Data System (ADS)

    Oberberg, Moritz; Bibinov, Nikita; Ries, Stefan; Awakowicz, Peter; Institute of Electrical Engineering; Plasma Technology Team

    2016-09-01

    In recently publication, the young diagnostic tool Multipole Resonance Probe (MRP) for electron density measurements was introduced. It is based on active plasma resonance spectroscopy (APRS). The probe was simulated und evaluated for different devices. The geometrical and electrical symmetry simplifies the APRS model, so that the electron density can be easily calculated from the measured resonance. In this work, low pressure nitrogen mixture plasmas with different electron energy distribution functions (EEDF) are investigated. The results of the MRP measurement are compared with measurements of a Langmuir Probe (LP) and Optical Emission Spectroscopy (OES). Probes and OES measure in different regimes of kinetic electron energy. Both probes measure electrons with low kinetic energy (<10 eV), whereas the OES is influenced by electrons with high kinetic energy which are needed for transitions of molecule bands. By the determination of the absolute intensity of N2(C-B) and N2+(B-X)electron temperature and density can be calculated. In a non-maxwellian plasma, all plasma diagnostics need to be combined.

  20. 77 FR 32916 - Energy Conservation Standards for Distribution Transformers: Public Meeting and Availability of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... Transformers: Public Meeting and Availability of Supplementary Analysis AGENCY: Office of Energy Efficiency and... additional information that it is making available about the liquid-immersed distribution transformer... transformers. In addition to this notice and the public meeting, DOE has several documents and analytical...