Science.gov

Sample records for absolute frequency reference

  1. Low-pressure line-shape study in molecular oxygen with absolute frequency reference

    NASA Astrophysics Data System (ADS)

    Domysławska, J.; Wójtewicz, S.; Cygan, A.; Bielska, K.; Lisak, D.; Masłowski, P.; Trawiński, R. S.; Ciuryło, R.

    2013-11-01

    We present a line-shape analysis of the rovibronic R1 Q2 transition of the oxygen B band resolved by the Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy technique in the low pressure range. The frequency axis of the spectra is linked by the ultra-narrow diode laser to the optical frequency comb in order to measure the absolute frequency at each point of the recorded spectra. Experimental spectra are fitted with various line-shape models: the Voigt profile, the Galatry profile, the Nelkin-Ghatak profile, the speed-dependent Voigt profile, and the speed-dependent Nelkin-Ghatak profile with quadratic and hypergeometric approximations for the speed dependence of collisional broadening and shifting. The influences of Dicke narrowing, speed-dependent effects, and correlation between phase- and velocity-changing collisions on the line shape are investigated. Values of line-shape parameters, including the absolute frequency of the transition 435685.24828(46) GHz, are reported.

  2. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  3. Molecular iodine absolute frequencies. Final report

    SciTech Connect

    Sansonetti, C.J.

    1990-06-25

    Fifty specified lines of {sup 127}I{sub 2} were studied by Doppler-free frequency modulation spectroscopy. For each line the classification of the molecular transition was determined, hyperfine components were identified, and one well-resolved component was selected for precise determination of its absolute frequency. In 3 cases, a nearby alternate line was selected for measurement because no well-resolved component was found for the specified line. Absolute frequency determinations were made with an estimated uncertainty of 1.1 MHz by locking a dye laser to the selected hyperfine component and measuring its wave number with a high-precision Fabry-Perot wavemeter. For each line results of the absolute measurement, the line classification, and a Doppler-free spectrum are given.

  4. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  5. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  6. Accurate absolute reference frequencies from 1511 to 1545 nm of the {nu}{sub 1}+{nu}{sub 3} band of {sup 12}C{sub 2}H{sub 2} determined with laser frequency comb interval measurements

    SciTech Connect

    Madej, Alan A.; Alcock, A. John; Czajkowski, Andrzej; Bernard, John E.; Chepurov, Sergei

    2006-10-15

    Absolute frequency measurements, with uncertainties as low as 2 kHz (1x10{sup -11}), are presented for the {nu}{sub 1}+{nu}{sub 3} band of {sup 12}C{sub 2}H{sub 2} at 1.5 {mu}m (194-198 THz). The measurements were made using cavity-enhanced, diode-laser-based saturation spectroscopy. With one laser system stabilized to the P(16) line of {sup 13}C{sub 2}H{sub 2} and a system stabilized to the line in {sup 12}C{sub 2}H{sub 2} whose frequency was to be determined, a Cr:YAG laser-based frequency comb was employed to measure the frequency intervals. The systematic uncertainty is notably reduced relative to that of previous studies, and the region of measured lines has been extended. Improved molecular constants are obtained.

  7. Global absolut gravity reference system as replacement of IGSN 71

    NASA Astrophysics Data System (ADS)

    Wilmes, Herbert; Wziontek, Hartmut; Falk, Reinhard

    2015-04-01

    The determination of precise gravity field parameters is of great importance in a period in which earth sciences are achieving the necessary accuracy to monitor and document global change processes. This is the reason why experts from geodesy and metrology joined in a successful cooperation to make absolute gravity observations traceable to SI quantities, to improve the metrological kilogram definition and to monitor mass movements and smallest height changes for geodetic and geophysical applications. The international gravity datum is still defined by the International Gravity Standardization Net adopted in 1971 (IGSN 71). The network is based upon pendulum and spring gravimeter observations taken in the 1950s and 60s supported by the early free fall absolute gravimeters. Its gravity values agreed in every case to better than 0.1 mGal. Today, more than 100 absolute gravimeters are in use worldwide. The series of repeated international comparisons confirms the traceability of absolute gravity measurements to SI quantities and confirm the degree of equivalence of the gravimeters in the order of a few µGal. For applications in geosciences where e.g. gravity changes over time need to be analyzed, the temporal stability of an absolute gravimeter is most important. Therefore, the proposition is made to replace the IGSN 71 by an up-to-date gravity reference system which is based upon repeated absolute gravimeter comparisons and a global network of well controlled gravity reference stations.

  8. Absolute Te_2 reference for barium ion at 4554 nm

    NASA Astrophysics Data System (ADS)

    Dutta, Tarun; De Munshi, Debashis; Mukherjee, Manas

    2016-06-01

    Precision atomic spectroscopy is presently the work horse in quantum information technology, metrology, trace analysis and even for fundamental tests in physics. Stable lasers are inherent part of precision spectroscopy which in turn requires absolute wavelength markers suitably placed corresponding to the atomic species being probed. Here we present, new lines of tellurium (Te$_2$) which allows locking of external cavity diode laser (ECDL) for precision spectroscopy of singly charged barium ions. In addition, we have developed an ECDL with over 100 GHz mod-hop-free tuning range using commercially available diode from $\\textit{Nichia}$. These two developments allow nearly drift-free operation of a barium ion trap set-up with one single reference cell thereby reducing the complexity of the experiment.

  9. Absolute frequency measurement at 10-16 level based on the international atomic time

    NASA Astrophysics Data System (ADS)

    Hachisu, H.; Fujieda, M.; Kumagai, M.; Ido, T.

    2016-06-01

    Referring to International Atomic Time (TAI), we measured the absolute frequency of the 87Sr lattice clock with its uncertainty of 1.1 x 10-15. Unless an optical clock is continuously operated for the five days of the TAI grid, it is required to evaluate dead time uncertainty in order to use the available five-day average of the local frequency reference. We homogeneously distributed intermittent measurements over the five-day grid of TAI, by which the dead time uncertainty was reduced to low 10-16 level. Three campaigns of the five (or four)-day consecutive measurements have resulted in the absolute frequency of the 87Sr clock transition of 429 228 004 229 872.85 (47) Hz, where the systematic uncertainty of the 87Sr optical frequency standard amounts to 8.6 x 10-17.

  10. The absolute frequency of the 87Sr optical clock transition

    NASA Astrophysics Data System (ADS)

    Campbell, Gretchen K.; Ludlow, Andrew D.; Blatt, Sebastian; Thomsen, Jan W.; Martin, Michael J.; de Miranda, Marcio H. G.; Zelevinsky, Tanya; Boyd, Martin M.; Ye, Jun; Diddams, Scott A.; Heavner, Thomas P.; Parker, Thomas E.; Jefferts, Steven R.

    2008-10-01

    The absolute frequency of the 1S0-3P0 clock transition of 87Sr has been measured to be 429 228 004 229 873.65 (37) Hz using lattice-confined atoms, where the fractional uncertainty of 8.6 × 10-16 represents one of the most accurate measurements of an atomic transition frequency to date. After a detailed study of systematic effects, which reduced the total systematic uncertainty of the Sr lattice clock to 1.5 × 10-16, the clock frequency is measured against a hydrogen maser which is simultaneously calibrated to the US primary frequency standard, the NIST Cs fountain clock, NIST-F1. The comparison is made possible using a femtosecond laser based optical frequency comb to phase coherently connect the optical and microwave spectral regions and by a 3.5 km fibre transfer scheme to compare the remotely located clock signals.

  11. Absolute frequency measurements and hyperfine structures of the molecular iodine transitions at 578 nm

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takumi; Akamatsu, Daisuke; Hosaka, Kazumoto; Inaba, Hajime; Okubo, Sho; Tanabe, Takehiko; Yasuda, Masami; Onae, Atsushi; Hong, Feng-Lei

    2016-04-01

    We report absolute frequency measurements of 81 hyperfine components of the rovibrational transitions of molecular iodine at 578 nm using the second harmonic generation of an 1156-nm external-cavity diode laser and a fiber-based optical frequency comb. The relative uncertainties of the measured absolute frequencies are typically $1.4\\times10^{-11}$. Accurate hyperfine constants of four rovibrational transitions are obtained by fitting the measured hyperfine splittings to a four-term effective Hamiltonian including the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions. The observed transitions can be good frequency references at 578 nm, and are especially useful for research using atomic ytterbium since the transitions are close to the $^{1}S_{0}-^{3}P_{0}$ clock transition of ytterbium.

  12. Absolute frequency of an atomic hydrogen maser clock

    NASA Technical Reports Server (NTRS)

    Peters, H. E.; Hall, R. G.; Percival, D. B.

    1972-01-01

    An accurate determination was made of the unperturbed atomic hydrogen ground state hyperfine transition frequency (F=1,m=0 - F=0,m=0) in reference to present world wide realizations of internationally defined time interval. In relation to the international atomic time system, the composite value is 1,420,405,751.7755 plus or minus 0.0031 HZ.

  13. Precision absolute frequency laser spectroscopy of argon II in parallel and antiparallel geometry using a frequency comb for calibration

    NASA Astrophysics Data System (ADS)

    Lioubimov, Vladimir

    A collinear fast ion beam laser apparatus was constructed and tested. It will be used on-line to the SLOW RI radioactive beam facility in RIKEN (Japan) and as in the present experiment for precision absolute frequency measurements of astrophysically important reference lines. In the current work we conducted absolute measurements of spectral lines of Ar+ ions using parallel and antiparallel geometries. To provide a reference for the laser wavelength iodine saturation spectroscopy was used. The precision of this reference was enhanced by simultaneously observing the beat node between the spectroscopy laser and the corresponding mode of a femtosecond laser frequency comb. When performing collinear and anticollinear measurements simultaneously for the laser induced fluorescence, the exact relativistic formula for the transition frequency n0=ncoll˙n anticoll can be applied. In this geometry ion source instabilities due to pressure and anode voltage fluctuation are minimized. The procedure of fluorescence lineshapes fitting is discussed and the errors in the measurements are estimated. The result is n0 = 485, 573, 619.7 +/- 0.3MHz corresponding to Dnn = 6 x 10-10 and is an improvement of two orders of magnitude over the NIST published value.

  14. Reference frequency transmission over optical fiber

    NASA Technical Reports Server (NTRS)

    Lutes, G.; Kirk, A.

    1986-01-01

    A 100-MHz reference frequency from a hydrogen maser frequency standard has been transmitted via optical fiber over a 14-km distance with a measured stability of 1.5 X 10 to the-15 power for 1000 seconds averaging time. This capability was demonstrated in a frequency distribution experiment performed in April, 1986. The reference frequency was transmitted over a single-mode fiber-optic link from Deep Space Station (DSS) 13 to DSS 12 and back. The background leading up to the experiment and the significance of stable reference frequency distribution in the Deep Space Network (DSN) is discussed. Also described are the experiment, including the fiber-optic link, the measurement method and equipment, and finally the results of the experiment.

  15. Frequency References for Gravitational Wave Missions

    NASA Technical Reports Server (NTRS)

    Preston, Alix; Thrope, J. I.; Donelan, D.; Miner, L.

    2012-01-01

    The mitigation of laser frequency noise is an important aspect of interferometry for LISA-like missions. One portion of the baseline mitigation strategy in LISA is active stabilization utilizing opto-mechanical frequency references. The LISA optical bench is an attractive place to implement such frequency references due to its environmental stability and its access to primary and redundant laser systems. We have made an initial investigation of frequency references constructed using the techniques developed for the LISA and LISA Pathfinder optical benches. Both a Mach-Zehnder interferometer and triangular Fabry-Perot cavity have been successfully bonded to a Zerodur baseplate using the hydroxide bonding method. We will describe the construction of the bench along with preliminary stability results.

  16. Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques.

    PubMed

    Cygan, A; Wójtewicz, S; Kowzan, G; Zaborowski, M; Wcisło, P; Nawrocki, J; Krehlik, P; Śliwczyński, Ł; Lipiński, M; Masłowski, P; Ciuryło, R; Lisak, D

    2016-06-01

    Absolute frequencies of unperturbed (12)C(16)O transitions from the near-infrared (3-0) band were measured with uncertainties five-fold lower than previously available data. The frequency axis of spectra was linked to the primary frequency standard. Three different cavity enhanced absorption and dispersion spectroscopic methods and various approaches to data analysis were used to estimate potential systematic instrumental errors. Except for a well established frequency-stabilized cavity ring-down spectroscopy, we applied the cavity mode-width spectroscopy and the one-dimensional cavity mode-dispersion spectroscopy for measurement of absorption and dispersion spectra, respectively. We demonstrated the highest quality of the dispersion line shape measured in optical spectroscopy so far. We obtained line positions of the Doppler-broadened R24 and R28 transitions with relative uncertainties at the level of 10(-10). The pressure shifting coefficients were measured and the influence of the line asymmetry on unperturbed line positions was analyzed. Our dispersion spectra are the first demonstration of molecular spectroscopy with both axes of the spectra directly linked to the primary frequency standard, which is particularly desirable for the future reference-grade measurements of molecular spectra. PMID:27276950

  17. Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Cygan, A.; Wójtewicz, S.; Kowzan, G.; Zaborowski, M.; Wcisło, P.; Nawrocki, J.; Krehlik, P.; Śliwczyński, Ł.; Lipiński, M.; Masłowski, P.; Ciuryło, R.; Lisak, D.

    2016-06-01

    Absolute frequencies of unperturbed 12C16O transitions from the near-infrared (3-0) band were measured with uncertainties five-fold lower than previously available data. The frequency axis of spectra was linked to the primary frequency standard. Three different cavity enhanced absorption and dispersion spectroscopic methods and various approaches to data analysis were used to estimate potential systematic instrumental errors. Except for a well established frequency-stabilized cavity ring-down spectroscopy, we applied the cavity mode-width spectroscopy and the one-dimensional cavity mode-dispersion spectroscopy for measurement of absorption and dispersion spectra, respectively. We demonstrated the highest quality of the dispersion line shape measured in optical spectroscopy so far. We obtained line positions of the Doppler-broadened R24 and R28 transitions with relative uncertainties at the level of 10-10. The pressure shifting coefficients were measured and the influence of the line asymmetry on unperturbed line positions was analyzed. Our dispersion spectra are the first demonstration of molecular spectroscopy with both axes of the spectra directly linked to the primary frequency standard, which is particularly desirable for the future reference-grade measurements of molecular spectra.

  18. Utilizing a reference material for assessing absolute tumor mechanical properties in modality independent elastography

    NASA Astrophysics Data System (ADS)

    Kim, Dong Kyu; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    There is currently no reliable method for early characterization of breast cancer response to neoadjuvant chemotherapy (NAC) [1,2]. Given that disruption of normal structural architecture occurs in cancer-bearing tissue, we hypothesize that further structural changes occur in response to NAC. Consequently, we are investigating the use of modalityindependent elastography (MIE) [3-8] as a method for monitoring mechanical integrity to predict long term outcomes in NAC. Recently, we have utilized a Demons non-rigid image registration method that allows 3D elasticity reconstruction in abnormal tissue geometries, making it particularly amenable to the evaluation of breast cancer mechanical properties. While past work has reflected relative elasticity contrast ratios [3], this study improves upon that work by utilizing a known stiffness reference material within the reconstruction framework such that a stiffness map becomes an absolute measure. To test, a polyvinyl alcohol (PVA) cryogel phantom and a silicone rubber mock mouse tumor phantom were constructed with varying mechanical stiffness. Results showed that an absolute measure of stiffness could be obtained based on a reference value. This reference technique demonstrates the ability to generate accurate measurements of absolute stiffness to characterize response to NAC. These results support that `referenced MIE' has the potential to reliably differentiate absolute tumor stiffness with significant contrast from that of surrounding tissue. The use of referenced MIE to obtain absolute quantification of biomarkers is also translatable across length scales such that the characterization method is mechanics-consistent at the small animal and human application.

  19. Femtosecond frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor

    SciTech Connect

    Stalnaker, Jason E.; Mbele, Vela; Gerginov, Vladislav; Fortier, Tara M.; Diddams, Scott A.; Hollberg, Leo; Tanner, Carol E.

    2010-04-15

    We report measurements of absolute transition frequencies and hyperfine coupling constants for the 8S{sub 1/2}, 9S{sub 1/2}, 7D{sub 3/2}, and 7D{sub 5/2} states in {sup 133}Cs vapor. The stepwise excitation through either the 6P{sub 1/2} or 6P{sub 3/2} intermediate state is performed directly with broadband laser light from a stabilized femtosecond laser optical-frequency comb. The laser beam is split, counterpropagated, and focused into a room-temperature Cs vapor cell. The repetition rate of the frequency comb is scanned and we detect the fluorescence on the 7P{sub 1/2,3/2{yields}}6S{sub 1/2} branches of the decay of the excited states. The excitations to the different states are isolated by the introduction of narrow-bandwidth interference filters in the laser beam paths. Using a nonlinear least-squares method we find measurements of transition frequencies and hyperfine coupling constants that are in agreement with other recent measurements for the 8S state and provide improvement by 2 orders of magnitude over previously published results for the 9S and 7D states.

  20. The Path to an Up-to-date Absolute Gravity Reference System

    NASA Astrophysics Data System (ADS)

    Wilmes, H.; Falk, R.; Wziontek, H.

    2014-12-01

    The determination of precise gravity field parameters is of great importance in a period in which earth sciences are achieving the necessary accuracy to monitor and document global change processes. This is the reason why experts from geodesy and metrology joined in a successful cooperation to make absolute gravity observations traceable to SI quantities, to improve the metrological kilogram definition and to monitor mass movements and smallest height changes for geodetic and geophysical applications. How can we determine such a gravity reference system and secure it over multiple decades? Precise knowledge of the gravity acceleration and definition of standards, models and corrections are an important prerequisite to the definition of the gravity system. Over more than three decades, the absolute gravity community cooperated successfully to obtain the gravity reference in comparisons at intervals of 4 years and to certify metrological equivalence between National Metrology Institutes. With increasing resolution of the absolute gravimeter sensors and new measurement principles it becomes obvious that such comparisons are not sufficient for all applications. Mainly for geodetic purposes it is necessary to sub-divide comparison intervals and maintain a connected network of gravity reference sites where compared absolute gravimeters operate together with superconducting gravimeters to derive a continuous gravity reference function. By means of this distributed monitoring of the gravity reference it will also be possible to relate observations of earlier absolute gravimeters to the present-day and to future instruments. It will be possible to include new sensors like atom interferometers and in future to relate the results of precise optical clocks. With co-located space geodetic sensors like GNSS, SLR and VLBI, these reference sites fulfill the conditions of a geodetic fundamental station as a component of IAG's Global Geodetic Observing System.

  1. A Liquid-Helium-Cooled Absolute Reference Cold Load forLong-Wavelength Radiometric Calibration

    SciTech Connect

    Bensadoun, M.; Witebsky, C.; Smoot, George F.; De Amici,Giovanni; Kogut, A.; Levin, S.

    1990-05-01

    We describe a large (78-cm) diameter liquid-helium-cooled black-body absolute reference cold load for the calibration of microwave radiometers. The load provides an absolute calibration near the liquid helium (LHe) boiling point, accurate to better than 30 mK for wavelengths from 2.5 to 25 cm (12-1.2 GHz). The emission (from non-LHe temperature parts of the cold load) and reflection are small and well determined. Total corrections to the LHe boiling point temperature are {le} 50 mK over the operating range. This cold load has been used at several wavelengths at the South Pole and at the White Mountain Research Station. In operation, the average LHe loss rate was {le} 4.4 l/hr. Design considerations, radiometric and thermal performance and operational aspects are discussed. A comparison with other LHe-cooled reference loads including the predecessor of this cold load is given.

  2. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements

    NASA Astrophysics Data System (ADS)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-10-01

    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  3. Measuring absolute frequencies beyond the GPS limit via long-haul optical frequency dissemination.

    PubMed

    Clivati, Cecilia; Cappellini, Giacomo; Livi, Lorenzo F; Poggiali, Francesco; de Cumis, Mario Siciliani; Mancini, Marco; Pagano, Guido; Frittelli, Matteo; Mura, Alberto; Costanzo, Giovanni A; Levi, Filippo; Calonico, Davide; Fallani, Leonardo; Catani, Jacopo; Inguscio, Massimo

    2016-05-30

    Global Positioning System (GPS) dissemination of frequency standards is ubiquitous at present, providing the most widespread time and frequency reference for the majority of industrial and research applications worldwide. On the other hand, the ultimate limits of the GPS presently curb further advances in high-precision, scientific and industrial applications relying on this dissemination scheme. Here, we demonstrate that these limits can be reliably overcome even in laboratories without a local atomic clock by replacing the GPS with a 642-km-long optical fiber link to a remote primary caesium frequency standard. Through this configuration we stably address the 1S0-3P0 clock transition in an ultracold gas of 173Yb, with a precision that exceeds the possibilities of a GPS-based measurement, dismissing the need for a local clock infrastructure to perform beyond-GPS high-precision tasks. We also report an improvement of two orders of magnitude in the accuracy on the transition frequency reported in literature. PMID:27410109

  4. A millimeter-scale atomic frequency reference

    NASA Astrophysics Data System (ADS)

    Schwindt, Peter; Kitching, John; Knappe, Svenja; Liew, Li-Anne; Shah, Vishal; Moreland, John; Hollberg, Leo

    2004-05-01

    We are developing a MEMS-fabricated chip-scale atomic clock that uses all-optical excitation to interrogate the hyperfine splitting of cesium. To date, we have constructed several clock physics packages that include a laser, micro-optics package, cesium vapor cell, and photo diode. A recent physics package had a fractional frequency instability of 3*10-10 at one second, had a volume of 9.5 mm^3, and used 75 mW of power. We are working to decrease power consumption of physics package to 15 mW and to integrate control electronics and a local oscillator, such that the entire clock will be 1 cm^3 in size and use 30 mW of power, allowing battery operation. Because of the MEMS fabrication techniques employed, frequency references of this type could be assembled at the wafer level, enabling low-cost mass-production of thousands of identical units with the same process sequence, and easy integration with other electronics.

  5. A new absolute reference for atmospheric longwave irradiance measurements with traceability to SI units

    NASA Astrophysics Data System (ADS)

    Gröbner, J.; Reda, I.; Wacker, S.; Nyeki, S.; Behrens, K.; Gorman, J.

    2014-06-01

    Two independently designed and calibrated absolute radiometers measuring downwelling longwave irradiance were compared during two field campaigns in February and October 2013 at Physikalisch Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC). One absolute cavity pyrgeometer (ACP) developed by NREL and up to four Integrating Sphere Infrared Radiometers (IRIS) developed by PMOD/WRC took part in these intercomparisons. The internal consistency of the IRIS radiometers and the agreement with the ACP were within ±1 W m-2, providing traceability of atmospheric longwave irradiance to the international system of units with unprecedented accuracy. Measurements performed during the two field campaigns and over the past 4 years have shown that the World Infrared Standard Group (WISG) of pyrgeometers is underestimating clear-sky atmospheric longwave irradiance by 2 to 6 W m-2, depending on the amount of integrated water vapor (IWV). This behavior is an instrument-dependent feature and requires an individual sensitivity calibration of each pyrgeometer with respect to an absolute reference such as IRIS or ACP. For IWV larger than 10 mm, an average sensitivity correction of +6.5% should be applied to the WISG in order to be consistent with the longwave reference represented by the ACP and IRIS radiometers. A concerted effort at international level will need to be implemented in order to correct measurements of atmospheric downwelling longwave irradiance traceable to the WISG.

  6. A liquid-helium-cooled absolute reference cold load for long-wavelength radiometric calibration

    NASA Technical Reports Server (NTRS)

    Bensadoun, Marc; Witebsky, Chris; Smoot, George; De Amici, Giovanni; Kogut, AL; Levin, Steve

    1992-01-01

    Design, radiometric and thermal performance, and operation of a large diameter (78 cm) liquid-helium-cooled blackbody absolute reference cold load (CL) for the calibration of microwave radiometers is described. CL provides an absolute calibration near the liquid-helium (LHe) boiling point, with total uncertainty in the radiometric temperature of less than 30 mK over the 2.5-23 cm wavelength operating range. CL was used at several wavelengths at the South Pole, Antarctica and the White Mountain Research Center, California. Results show that, for the instruments operated at 20-, 12-, 7.9-, and 4.0 cm wavelength at the South Pole, the total corrections to the LHe boiling-point temperature (about 3.8 K) were 48 +/-23, 18 +/-10, 10 +/-18, and 15 +/-mK.

  7. Frequency-scanning interferometry for dynamic absolute distance measurement using Kalman filter.

    PubMed

    Tao, Long; Liu, Zhigang; Zhang, Weibo; Zhou, Yangli

    2014-12-15

    We propose a frequency-scanning interferometry using the Kalman filtering technique for dynamic absolute distance measurement. Frequency-scanning interferometry only uses a single tunable laser driven by a triangle waveform signal for forward and backward optical frequency scanning. The absolute distance and moving speed of a target can be estimated by the present input measurement of frequency-scanning interferometry and the previously calculated state based on the Kalman filter algorithm. This method not only compensates for movement errors in conventional frequency-scanning interferometry, but also achieves high-precision and low-complexity dynamic measurements. Experimental results of dynamic measurements under static state, vibration and one-dimensional movement are presented. PMID:25503050

  8. Quantifying discipline practices using absolute versus relative frequencies: clinical and research implications for child welfare.

    PubMed

    Lindhiem, Oliver; Shaffer, Anne; Kolko, David J

    2014-01-01

    In the parent intervention outcome literatures, discipline practices are generally quantified as absolute frequencies or, less commonly, as relative frequencies. These differences in methodology warrant direct comparison as they have critical implications for study results and conclusions among treatments targeted at reducing parental aggression and harsh discipline. In this study, we directly compared the absolute frequency method and the relative frequency method for quantifying physically aggressive, psychologically aggressive, and nonaggressive discipline practices. Longitudinal data over a 3-year period came from an existing data set of a clinical trial examining the effectiveness of a psychosocial treatment in reducing parental physical and psychological aggression and improving child behavior (N = 139). Discipline practices (aggressive and nonaggressive) were assessed using the Conflict Tactics Scale. The two methods yielded different patterns of results, particularly for nonaggressive discipline strategies. We suggest that each method makes its own unique contribution to a more complete understanding of the association between parental aggression and intervention effects. PMID:24106146

  9. Absolute Frequency Measurements of the D1 and D2 Transitions in Aatomic Li

    NASA Astrophysics Data System (ADS)

    Sheets, Donal; Almaguer, Jose; Baron, Jacob; Elgee, Peter; Rowan, Michael; Stalnaker, Jason

    2014-05-01

    We present preliminary results from our measurements of the D1 and D2 transitions in Li. The data were obtained from a collimated atomic beam excited by light from an extended cavity diode laser. The frequency of the diode laser was stabilized to an optical frequency comb, providing absolute frequency measurement and control of the excitation laser frequency. These measurements will provide a stringent test of atomic structure calculations and yield information about the nuclear structure. We also discuss plans to extend the technique to other high-lying states in lithium. Funded by the NIST Precision Measurements Grant and NSF Award #1305591.

  10. Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry

    SciTech Connect

    Le Floch, Sebastien; Salvade, Yves; Mitouassiwou, Rostand; Favre, Patrick

    2008-06-01

    We present a new technique applied to the variable optical synthetic wavelength generation in optical interferometry. It consists of a chain of optical injection locking among three lasers: first a distributed-feedback laser is used as a master to injection lock an intensity-modulated laser that is directly modulated around 15 GHz by a radio frequency generator on a sideband. A second distributed-feedback laser is injection locked on another sideband of the intensity-modulated laser. The variable synthetic wavelength for absolute distance measurement is simply generated by sweeping the radio frequency over a range of several hundred megahertz, which corresponds to the locking range of the two slave lasers. In this condition, the uncertainty of the variable synthetic wavelength is equivalent to the radio frequency uncertainty. This latter has a relative accuracy of 10{sup -7} or better, resulting in a resolution of {+-}25 {mu}m for distances exceeding tens of meters. The radio frequency generator produces a linear frequency sweep of 1 ms duration (i.e., exactly equal to one absolute distance measurement acquisition time), with frequency steps of about 1 MHz. Finally, results of absolute distance measurements for ranges up to 10 m are presented.

  11. Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry.

    PubMed

    Le Floch, Sébastien; Salvadé, Yves; Mitouassiwou, Rostand; Favre, Patrick

    2008-06-01

    We present a new technique applied to the variable optical synthetic wavelength generation in optical interferometry. It consists of a chain of optical injection locking among three lasers: first a distributed-feedback laser is used as a master to injection lock an intensity-modulated laser that is directly modulated around 15 GHz by a radio frequency generator on a sideband. A second distributed-feedback laser is injection locked on another sideband of the intensity-modulated laser. The variable synthetic wavelength for absolute distance measurement is simply generated by sweeping the radio frequency over a range of several hundred megahertz, which corresponds to the locking range of the two slave lasers. In this condition, the uncertainty of the variable synthetic wavelength is equivalent to the radio frequency uncertainty. This latter has a relative accuracy of 10(-7) or better, resulting in a resolution of +/-25 microm for distances exceeding tens of meters. The radio frequency generator produces a linear frequency sweep of 1 ms duration (i.e., exactly equal to one absolute distance measurement acquisition time), with frequency steps of about 1 MHz. Finally, results of absolute distance measurements for ranges up to 10 m are presented. PMID:18516123

  12. Facing the Sunrise: Cultural Worldview Underlying Intrinsic-Based Encoding of Absolute Frames of Reference in Aymara

    ERIC Educational Resources Information Center

    Nunez, Rafael E.; Cornejo, Carlos

    2012-01-01

    The Aymara of the Andes use absolute (cardinal) frames of reference for describing the relative position of ordinary objects. However, rather than encoding them in available absolute lexemes, they do it in lexemes that are intrinsic to the body: "nayra" ("front") and "qhipa" ("back"), denoting east and west, respectively. Why? We use different but…

  13. Absolute frequency measurement of the neutral 40Ca optical frequency standard at 657 nm based on microkelvin atoms

    NASA Astrophysics Data System (ADS)

    Wilpers, G.; Oates, C. W.; Diddams, S. A.; Bartels, A.; Fortier, T. M.; Oskay, W. H.; Bergquist, J. C.; Jefferts, S. R.; Heavner, T. P.; Parker, T. E.; Hollberg, L.

    2007-04-01

    We report an absolute frequency measurement of the optical clock transition at 657 nm in 40Ca with a relative uncertainty of 7.5 × 10-15, one of the most accurate frequency measurements of a neutral atom optical transition to date. The frequency (455 986 240 494 135.8 ± 3.4) Hz was measured by stabilizing a diode laser system to a spectroscopic signal derived from an ensemble of 106 atoms cooled in two stages to a temperature of 10 µK. The measurement used a femtosecond-laser-based frequency comb to compare the Ca transition frequency with that of the single-ion 199Hg+ optical frequency standard at NIST. The Hg+ frequency was simultaneously calibrated relative to the NIST Cs fountain via the NIST time scale to yield an absolute value for the Ca transition frequency. The relative fractional instability between the two optical standards was 2 × 10-15 for 10 s of averaging time and 2 × 10-16 for 2000 s.

  14. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    SciTech Connect

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-15

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  15. Simplified absolute phase retrieval of dual-frequency fringe patterns in fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Lu, Jin; Mo, Rong; Sun, Huibin; Chang, Zhiyong; Zhao, Xiaxia

    2016-04-01

    In fringe projection profilometry, a simplified method is proposed to recover absolute phase maps of two-frequency fringe patterns by using a unique mapping rule. The mapping rule is designed from the rounded phase values to the fringe order of each pixel. Absolute phase can be recovered by the fringe order maps. Unlike the existing techniques, where the lowest frequency of dual- or multiple-frequency fringe patterns must be single, the presented method breaks the limitation and simplifies the procedure of phase unwrapping. Additionally, due to many issues including ambient light, shadow, sharp edges, step height boundaries and surface reflectivity variations, a novel framework of automatically identifying and removing invalid phase values is also proposed. Simulations and experiments have been carried out to validate the performances of the proposed method.

  16. Stray-field-induced quadrupole shift and absolute frequency of the 688-THz {sup 171}Yb{sup +} single-ion optical frequency standard

    SciTech Connect

    Tamm, Chr.; Weyers, S.; Lipphardt, B.; Peik, E.

    2009-10-15

    We report experimental investigations of a single-ion optical frequency standard based on {sup 171}Yb{sup +}. The ion is confined in a cylindrically symmetric radiofrequency Paul trap. The reference transition is the {sup 2}S{sub 1/2}(F=0)-{sup 2}D{sub 3/2}(F{sup '}=2) electric quadrupole transition at 688 THz. Using a differential measurement scheme, we determine the shift of the reference transition frequency that occurs due to the interaction of the electric quadrupole moment of the {sup 2}D{sub 3/2} state with the gradient of the electrostatic stray field in the trap. We determine an upper limit for the instability of the quadrupole shift over times between 100 s to 20 h. We also observe the variations in the shift and in the applied stray-field compensation voltages that result from loading a new ion into the trap and during a subsequent storage period of 74 days. This information is utilized to measure the absolute frequency of the reference transition with an uncertainty that is a factor of 3 smaller than that of the previous measurement. Using a fiber laser based optical frequency comb generator and the cesium fountain clock CSF1 of PTB (Physikalisch-Technische Bundesanstalt), the frequency at 300 K temperature is determined as 688 358 979 309 306.62{+-}0.73 Hz.

  17. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.; Steinmetz, T.; Holzwarth, R.; Kentischer, T.; Schmidt, W.

    2012-10-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut für Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  18. Coherent Frequency Reference System for the NASA Deep Space Network

    NASA Technical Reports Server (NTRS)

    Tucker, Blake C.; Lauf, John E.; Hamell, Robert L.; Gonzaler, Jorge, Jr.; Diener, William A.; Tjoelker, Robert L.

    2010-01-01

    The NASA Deep Space Network (DSN) requires state-of-the-art frequency references that are derived and distributed from very stable atomic frequency standards. A new Frequency Reference System (FRS) and Frequency Reference Distribution System (FRD) have been developed, which together replace the previous Coherent Reference Generator System (CRG). The FRS and FRD each provide new capabilities that significantly improve operability and reliability. The FRS allows for selection and switching between frequency standards, a flywheel capability (to avoid interruptions when switching frequency standards), and a frequency synthesis system (to generate standardized 5-, 10-, and 100-MHz reference signals). The FRS is powered by redundant, specially filtered, and sustainable power systems and includes a monitor and control capability for station operations to interact and control the frequency-standard selection process. The FRD receives the standardized 5-, 10-, and 100-MHz reference signals and distributes signals to distribution amplifiers in a fan out fashion to dozens of DSN users that require the highly stable reference signals. The FRD is also powered by redundant, specially filtered, and sustainable power systems. The new DSN Frequency Distribution System, which consists of the FRS and FRD systems described here, is central to all operational activities of the NASA DSN. The frequency generation and distribution system provides ultra-stable, coherent, and very low phase-noise references at 5, l0, and 100 MHz to between 60 and 100 separate users at each Deep Space Communications Complex.

  19. Effects of relative and absolute frequency in the spectral weighting of loudness.

    PubMed

    Joshi, Suyash Narendra; Wróblewski, Marcin; Schmid, Kendra K; Jesteadt, Walt

    2016-01-01

    The loudness of broadband sound is often modeled as a linear sum of specific loudness across frequency bands. In contrast, recent studies using molecular psychophysical methods suggest that low and high frequency components contribute more to the overall loudness than mid frequencies. In a series of experiments, the contribution of individual components to the overall loudness of a tone complex was assessed using the molecular psychophysical method as well as a loudness matching task. The stimuli were two spectrally overlapping ten-tone complexes with two equivalent rectangular bandwidth spacing between the tones, making it possible to separate effects of relative and absolute frequency. The lowest frequency components of the "low-frequency" and the "high-frequency" complexes were 208 and 808 Hz, respectively. Perceptual-weights data showed emphasis on lowest and highest frequencies of both the complexes, suggesting spectral-edge related effects. Loudness matching data in the same listeners confirmed the greater contribution of low and high frequency components to the overall loudness of the ten-tone complexes. Masked detection thresholds of the individual components within the tone complex were not correlated with perceptual weights. The results show that perceptual weights provide reliable behavioral correlates of relative contributions of the individual frequency components to overall loudness of broadband sounds. PMID:26827032

  20. Absolute distance measurement by multi-heterodyne interferometry using a frequency comb and a cavity-stabilized tunable laser.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Balling, Petr; Qu, Xinghua

    2016-05-20

    In this paper, we develop a multi-heterodyne system capable of absolute distance measurement using a frequency comb and a tunable diode laser locked to a Fabry-Perot cavity. In a series of subsequent measurements, numerous beat components can be obtained by downconverting the optical frequency into the RF region with multi-heterodyne interferometry. The distances can be measured via the mode phases with a series of synthetic wavelengths. The comparison with the reference interferometer shows an agreement within 1.5 μm for the averages of five measurements and 2.5 μm for the single measurement, which is at the 10-8 relative precision level. PMID:27411152

  1. Noninvasive absolute cerebral oximetry with frequency-domain near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hallacoglu, Bertan

    Near-infrared spectroscopy (NIRS) measurements of absolute concentrations of oxy-hemoglobin and deoxy-hemoglobin in the human brain can provide critical information about cerebral physiology in terms of cerebral blood volume, blood flow, oxygen delivery, and metabolic rate of oxygen. We developed several frequency domain NIRS data acquisition and analysis methods aimed at absolute measurements of hemoglobin concentration and saturation in cerebral tissue of adult human subjects. Extensive experimental investigations were carried out in various homogenous and two-layered tissue-mimicking phantoms, and biological tissues. The advantages and limitations of commonly used homogenous models and inversion strategies were thoroughly investigated. Prior to human subjects, extensive studies were carried out in in vivo animal models. In rabbits, absolute hemoglobin oxygen desaturation was shown to depend strongly on surgically induced testicular torsion. Methods developed in this study were then adapted for measurements in the rat brain. Absolute values were demonstrated to discern cerebrovascular impairment in a rat model of diet-induced vascular cognitive impairment. These results facilitated the development of clinically useful optical measures of cerebrovascular health. In a large group of human subjects, employing a homogeneous model for absolute measurements was shown to be reliable and robust. However, it was also shown to be limited due to the relatively thick extracerebral tissue. The procedure we develop in this work and the thesis thereof performs a nonlinear inversion procedure with six unknown parameters with no other prior knowledge for the retrieval of the optical coefficients and top layer thickness with high accuracy on two-layered media. Our absolute measurements of cerebral hemoglobin concentration and saturation are based on the discrimination of extracerebral and cerebral tissue layers, and they can enhance the impact of NIRS for cerebral hemodynamics and

  2. Absolute frequency stabilization of an injection-seeded optical parametric oscillator

    SciTech Connect

    Plusquellic, D.F.; Votava, O.; Nesbitt, D.J.

    1996-03-01

    A method is described that provides absolute frequency stabilization and calibration of the signal and idler waves generated by an injection-seeded optical parametric oscillator (OPO). The method makes use of a He{endash}Ne stabilized transfer cavity (TC) to control the frequencies of the cw sources used to seed both the pump laser and OPO cavity. The TC serves as a stable calibration source for the signal and idler waves by providing marker fringes as the seed laser is scanned. Additionally, an acoustic-optic modulator (AOM) is used to shift the OPO seed laser{close_quote}s frequency before locking it onto the TC. The sidebands of the AOM are tunable over more than one free spectral range of the TC, thereby permitting stabilization of the signal and idler waves at any frequency. A {plus_minus}25-MHz residual error in the absolute frequency stabilities of the pump, signal, and idler waves is experimentally demonstrated, which is roughly 30{percent} of the 160-MHz near-transform-limited linewidths of the signal and idler pulses. {copyright} {ital 1996 Optical Society of America.}

  3. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements.

    PubMed

    Baumann, Esther; Giorgetta, Fabrizio R; Coddington, Ian; Sinclair, Laura C; Knabe, Kevin; Swann, William C; Newbury, Nathan R

    2013-06-15

    We demonstrate a comb-calibrated frequency-modulated continuous-wave laser detection and ranging (FMCW ladar) system for absolute distance measurements. The FMCW ladar uses a compact external cavity laser that is swept quasi-sinusoidally over 1 THz at a 1 kHz rate. The system simultaneously records the heterodyne FMCW ladar signal and the instantaneous laser frequency at sweep rates up to 3400 THz/s, as measured against a free-running frequency comb (femtosecond fiber laser). Demodulation of the ladar signal against the instantaneous laser frequency yields the range to the target with 1 ms update rates, bandwidth-limited 130 μm resolution and a ~100 nm accuracy that is directly linked to the counted repetition rate of the comb. The precision is <100 nm at the 1 ms update rate and reaches ~6 nm for a 100 ms average. PMID:23938965

  4. Dissemination of optical-comb-based ultra-broadband frequency reference through a fiber network.

    PubMed

    Nagano, Shigeo; Kumagai, Motohiro; Li, Ying; Ido, Tetsuya; Ishii, Shoken; Mizutani, Kohei; Aoki, Makoto; Otsuka, Ryohei; Hanado, Yuko

    2016-08-22

    We disseminated an ultra-broadband optical frequency reference based on a femtosecond (fs)-laser optical comb through a kilometer-scale fiber link. Its spectrum ranged from 1160 nm to 2180 nm without additional fs-laser combs at the end of the link. By employing a fiber-induced phase noise cancellation technique, the linewidth and fractional frequency instability attained for all disseminated comb modes were of order 1 Hz and 10-18 in a 5000 s averaging time. The ultra-broad optical frequency reference, for which absolute frequency is traceable to Japan Standard Time, was applied in the frequency stabilization of an injection-seeded Q-switched 2051 nm pulse laser for a coherent light detection and ranging LIDAR system. PMID:27557196

  5. Quantifying Discipline Practices Using Absolute vs. Relative Frequencies: Clinical and Research Implications for Child Welfare

    PubMed Central

    Lindhiem, Oliver; Shaffer, Anne; Kolko, David J.

    2014-01-01

    In the parent intervention outcome literatures, discipline practices are generally quantified as absolute frequencies or, less commonly, as relative frequencies. These differences in methodology warrant direct comparison as they have critical implications for study results and conclusions among treatments targeted at reducing parental aggression and harsh discipline. In this study, we directly compared the absolute frequency method and the relative frequency method for quantifying physically aggressive, psychologically aggressive, and nonaggressive discipline practices. Longitudinal data over a 3-year period came from an existing data set of a clinical trial examining the effectiveness of a psychosocial treatment in reducing parental physical and psychological aggression and improving child behavior (N = 139; Kolko et al., 2009). Discipline practices (both aggressive and nonaggressive) were assessed using the Conflict Tactics Scale (CTS; Straus et al., 1998). The two methods yielded different patterns of results, particularly for nonaggressive discipline strategies. We suggest that each method makes its own unique contribution to a more complete understanding of the association between parental aggression and intervention effects. PMID:24106146

  6. Mounting system for optical frequency reference cavities

    NASA Technical Reports Server (NTRS)

    Notcutt, Mark (Inventor); Hall, John L. (Inventor); Ma, Long-Sheng (Inventor)

    2008-01-01

    A technique for reducing the vibration sensitivity of laser-stabilizing optical reference cavities is based upon an improved design and mounting method for the cavity, wherein the cavity is mounted vertically. It is suspended at one plane, around the spacer cylinder, equidistant from the mirror ends of the cavity. The suspension element is a collar of an extremely low thermal expansion coefficient material, which surrounds the spacer cylinder and contacts it uniformly. Once the collar has been properly located, it is cemented in place so that the spacer cylinder is uniformly supported and does not have to be squeezed at all. The collar also includes a number of cavities partially bored into its lower flat surface, around the axial bore. These cavities are support points, into which mounting base pins will be inserted. Hence the collar is supported at a minimum of three points.

  7. Dual-frequency-moiré based absolute position sensing for lens focusing

    NASA Astrophysics Data System (ADS)

    Yin, Didi; Wang, Yahui; Di, Chengliang

    2015-10-01

    Micro motor, a typical equipment to adjust the zoom lens, together with a position feedback sensor constitute the closed position loop, which is the key factor to perform successfully accurate lens focusing. Traditionally, the incremental grating ruler tends to be adopted as the position sensor, which continues counting the number of grating pitches on a dynamic one-dimensional moving platform. Instead of incremental counting, this paper proposes a dual-frequency-moiré based absolute position sensing method for reading immediate position at static environment. According to the relative positions of two kind of moiré, the absolute position of the measurement point can be retrieve at nano-meters level through look-up table. By the way, the measurement range can be expanded to millimeters level satisfying the demands of lens focusing, and furthermore the measurement efficiency is improved greatly without dynamic moving. In order to verify the performances of proposed method, a model of dual-frequency-moiré is built, and theological principles are deduced. Finally, the simulation results indicate that, with established configurations, dual-frequency-moiré could measure position within 0~5000μm. At the same time, the measurement accuracy achieves nano-meters level.

  8. Use of the absolute phase in frequency modulated continuous wave plasma reflectometry

    SciTech Connect

    Cunningham, G.

    2008-08-15

    In frequency modulated continuous wave reflectometry, used for density profile measurement in fusion plasmas, it is usual to measure the beat frequency between the launched wave and the reflected wave, and from this to calculate the position of the reflecting layer in the plasma. The absolute phase of the beat signal is usually neglected. The reason is that the phase shift between sweeps is usually comparable with or more than 2{pi}, leading to an ambiguity that is impossible to resolve. However, recent observations on the MAST tokamak have shown that, under quiet plasma conditions (this term has to be defined), the phase shift between sweeps is small compared with 2{pi} and the phase ambiguity can be readily resolved. The reflectometer signal is then being analyzed as an interferometer signal would normally be, and there is a substantial improvement in spatial resolution. The method is illustrated by application to small edge localized mode precursor and allows what is believed to be the first quantitative measurement of the displacement of the plasma boundary by such a precursor mode. The errors in both the absolute phase measurement and the more conventional frequency measurement are also estimated.

  9. A dedicated pistonphone for absolute calibration of infrasound sensors at very low frequencies

    NASA Astrophysics Data System (ADS)

    He, Wen; He, Longbiao; Zhang, Fan; Rong, Zuochao; Jia, Shushi

    2016-02-01

    Aimed at the absolute calibration of infrasound sensors at very low frequencies, an upgraded and improved infrasonic pistonphone has been developed. The pistonphone was designed such that a very narrow clearance between the piston and its guide was realized based on an automatically-centered clearance-sealing structure, and a large volume rigid-walled chamber was also adopted, which improved the leakage time-constant of the chamber. A composite feedback control system was applied to the electromagnetic vibrator to control the precise motion of the piston. Performance tests and uncertainty analysis show that the leakage time-constant is so large, and the distortion of the sound pressure is so small, that the pistonphone can be used as a standard infrasound source in the frequency range from 0.001 Hz to 20 Hz. The low frequency property of the pistonphone has been verified through calibrating low frequency microphones. Comparison tests with the reciprocity method have shown that the pressure sensitivities from the pistonphone are not only reliable at common frequencies but also have smaller uncertainties at low frequencies.

  10. Absolute frequency measurements of the lithium D lines using an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Simien, Clayton; Brewer, Samuel; Tan, Joseph; Gillaspy, John; Sansonetti, Craig

    2010-03-01

    High precision spectroscopic measurements of the isotope shift of low-lying lithium transitions can be combined with precise theory to probe the relative nuclear charge radii of various lithium isotopes. This technique is of particular interest for exotic isotopes for which scattering experiments are not feasible. But recently measured isotope shifts for the D1 and D2 lines of the stable isotopes ^6Li and ^7Li remain in strong disagreement with each other and with theory. Experimental values for the splitting isotope shift (SIS), believed to be the most reliable prediction, are not even consistent as to sign and disagree with theory by as much as 16 standard deviations. We will report results from a new experiment in progress at the NIST. We observe the D lines by crossing a highly collimated lithium beam with a very stable tunable laser. Unlike previous experiments, we directly measure the optical frequency of the laser at every data point by using an optical frequency comb referenced to a cesium clock. Initial results suggest that fully resolved lithium hyperfine components will be determined with an uncertainty of a few tens of kilohertz. We expect to obtain precise new values for the fine structure, hyperfine structure, and isotope shifts of the lithium D lines and a definitive test of the calculated SIS.

  11. Absolute frequency measurement of the 7s2 1S0-7s7p 1P1 transition in Ra225

    NASA Astrophysics Data System (ADS)

    Santra, B.; Dammalapati, U.; Groot, A.; Jungmann, K.; Willmann, L.

    2014-10-01

    Transition frequencies were determined for transitions in Ra in an atomic beam and for reference lines in Te2 molecules in a vapor cell. The absolute frequencies were calibrated against a GPS stabilized Rb clock by means of an optical frequency comb. The 7s21S0(F=1/2)-7s7p1P1(F =3/2) transition in Ra225 was determined to be 621042124(2)MHz. The measurements provide input for designing efficient and robust laser cooling of Ra atoms in preparation of a search for a permanent electric dipole moment in Ra isotopes.

  12. High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing

    SciTech Connect

    Lam, Timothy T.-Y.; Chow, Jong H.; Shaddock, Daniel A.; Littler, Ian C. M.; Gagliardi, Gianluca; Gray, Malcolm B.; McClelland, David E.

    2010-07-20

    We present a quasi-static fiber optic strain sensing system capable of resolving signals below nanostrain from 20 mHz. A telecom-grade distributed feedback CW diode laser is locked to a fiber Fabry-Perot sensor, transferring the detected signals onto the laser. An H{sup 13}C{sup 14}N absorption line is then used as a frequency reference to extract accurate low-frequency strain signals from the locked system.

  13. Validation of RPS13 as a reference gene for absolute quantification of SIV RNA in tissue of rhesus macaques.

    PubMed

    Robichaux, Spencer; Lacour, Nedra; Bagby, Gregory J; Amedee, Angela M

    2016-10-01

    Persistent HIV reservoirs and the absolute quantification of viral RNA copies in tissues have become a prominent focus of multiple areas ofHIV/SIV research. Absolute quantification of viral RNA via reverse transcription, quantitative PCR (RT-qPCR) necessitates the use of an appropriate RNA reference gene whose expression is unaffected by both experimental and confounding conditions. In this study, we demonstrate the utility of ribosomal protein S13 mRNA (RPS13) as a stable, medium abundance reference gene for RT-qPCR normalization of HIV/SIV RNA copy number. We developed a RPS13 RNA standard assay utilizing an in vitro RNA transcript for normalization of absolute SIV RNA quantities in tissues reservoirs. The RT-qPCR assay showed a high degree of repeatability and reproducibility across RNA levels appropriate for absolute SIV quantification. In assessing the utility of RPS13 as a reference gene, limited variation in the absolute, inter-tissue quantities of RPS13 mRNA was observed within multiple tissue samples obtained from rhesus macaques (average CV=2.86%). We demonstrate rhesus macaque RPS13 mRNA expression is not affected by alcohol administration, SIV infection, or antiviral therapy (PMPA/FTC). Additionally, assay functionality was validated for normalization of SIV copy number using cellular RNA prepared from samples of variable RNA integrity. RPS13 is a suitable reference gene for normalization of absolute SIV RNA quantities in tissues and is most appropriate for intra-tissue or similar tissue type comparisons of SIV copy number. PMID:27510462

  14. Effect of laser frequency noise on fiber-optic frequency reference distribution

    NASA Technical Reports Server (NTRS)

    Logan, R. T., Jr.; Lutes, G. F.; Maleki, L.

    1989-01-01

    The effect of the linewidth of a single longitude-mode laser on the frequency stability of a frequency reference transmitted over a single-mode optical fiber is analyzed. The interaction of the random laser frequency deviations with the dispersion of the optical fiber is considered to determine theoretically the effect on the Allan deviation (square root of the Allan variance) of the transmitted frequency reference. It is shown that the magnitude of this effect may determine the limit of the ultimate stability possible for frequency reference transmission on optical fiber, but is not a serious limitation to present system performance.

  15. Dual frequency optical carrier technique for transmission of reference frequencies in dispersive media

    NASA Technical Reports Server (NTRS)

    Maleki, Lutfollah (Inventor)

    1993-01-01

    Two different carrier frequencies modulated by a reference frequency are transmitted to each receiver to be synchronized therewith. Each receiver responds to local phase differences between the two received signals to correct the phase of one of them so as to maintain the corrected signal as a reliable synchronization reference.

  16. Improved Absolute Frequency Measurement of the 171Yb Optical Lattice Clock towards a Candidate for the Redefinition of the Second

    NASA Astrophysics Data System (ADS)

    Yasuda, Masami; Inaba, Hajime; Kohno, Takuya; Tanabe, Takehiko; Nakajima, Yoshiaki; Hosaka, Kazumoto; Akamatsu, Daisuke; Onae, Atsushi; Suzuyama, Tomonari; Amemiya, Masaki; Hong, Feng-Lei

    2012-10-01

    We demonstrate an improved absolute frequency measurement of the 1S0–3P0 clock transition at 578 nm in 171Yb atoms in a one-dimensional optical lattice. The clock laser linewidth is reduced to ≈2 Hz by phase-locking the laser to an ultrastable neodymium-doped yttrium aluminum garnet (Nd:YAG) laser at 1064 nm through an optical frequency comb with an intracavity electrooptic modulator to achieve a high servo bandwidth. The absolute frequency is determined as 518 295 836 590 863.1(2.0) Hz relative to the SI second, and will be reported to the International Committee for Weights and Measures.

  17. Correlation of symptom clusters of schizophrenia with absolute powers of main frequency bands in quantitative EEG

    PubMed Central

    Gross, Andres; Joutsiniemi, Sirkka-Liisa; Rimon, Ranan; Appelberg, Björn

    2006-01-01

    Background Research of QEEG activity power spectra has shown intriguing results in patients with schizophrenia. Different symptom clusters have been correlated to QEEG frequency bands. The findings have been to some extent inconsistent. Replication of the findings of previous research is thus an important task. In the current study we investigated the correlations between the absolute powers of delta, theta, alpha, and beta frequency bands over the fronto-central scalp area (FC) with the PANSS subscales and the Liddle's factors in 16 patients with schizophrenia. The authors hypothesised a priori the correlations reported by Harris et al (1999) of PANSS negative subscale with delta power, Liddle's psychomotor poverty with delta and beta powers, disorganisation with delta power and reality distortion with alpha power on the midline FC. Methods The sample consisted of 16 patients with chronic schizophrenia considered as having insufficient clinical response to conventional antipsychotic treatment and evidencing a relapse. The correlations between quantitative electroencephalography (QEEG) absolute powers of delta (1.5–3.0 Hz), theta (3.0–7.5 Hz), alpha (7.5–12.5 Hz), and beta (12.5–20.0 Hz) frequency bands over the fronto-central scalp area (FC) with PANSS subscales and Liddle's factors (reality distortion, disorganisation, psychomotor poverty) were investigated. Results Significant positive correlations were found between the beta and psychomotor poverty (p < 0.05). Trends towards positive correlations (p < 0.1) were observed between delta and PANSS negative subscale and psychomotor poverty. Alpha did not correlate with reality distortion and delta did not correlate with disorganisation. Post hoc analysis revealed correlations of the same magnitude between beta and psychopathology generally over FC. Conclusion The a priori hypothesis was partly supported by the correlation of the beta and psychomotor poverty. Liddle's factors showed correlations of the same

  18. Determination of the absolute isotopic composition and Atomic Weight of a reference sample of natural iron

    NASA Astrophysics Data System (ADS)

    Taylor, P. D. P.; Maeck, R.; de Bièvre, P.

    1992-11-01

    Absolute values have been obtained by means of thermal ionisation mass spectrometry for the iron isotope abundance ratios of a sample of metallic iron of natural isotopic composition. This was achieved by calibrating the mass spectrometric measurement procedure using five different synthetic isotope mixtures, prepared from carefully characterised enriched isotope carrier compounds, viz. 54Fe2O3 and 56Fe2O3. These mixtures were made up at three different n(54Fe)/n(56Fe) ratios, covering a ratio range of more than two orders of magnitude, in order to determine the extent of the isotope fractionation in the ion source. Two mixtures bracket the natural ratio, two mixtures have ratio values approximating to unity, and one mixture has a ratio of about 10. The total relative uncertainty on the ratio values of the mixtures varies between 2 and 7 × 10-4 (2s). Three different mass spectrometric measurement procedures were developed, all using a silica-gel/boric acid ionisation enhancer. Measurements were carried out on two different instruments. The n(54Fe)/n(56Fe) ratio of the synthetic mixtures and of the natural iron isotopic reference material (IRM) were measured using a mass spectrometer with Faraday detector. Both the n(57Fe)/n(56Fe) and n(58Fe)/n(56Fe) ratios of the natural iron IRM were determined using the same instrument but operated at a higher ionisation temperature (1430°C instead of 1350°C) and using an internal normalisation procedure. For the determination of the abundances of the minor isotopes in the enriched isotope carrier compounds, an instrument equipped with a calibrated ion counting device was used and the ionisation temperature was 1150°C. Using the latter instrument and method, the n(54Fe)/n(56Fe) ratio of the IRM was found to a gree within 4 × 10-5 with the calibrated value of the Faraday measurements, indicating that experimental conditions were well controlled in both cases. Compared to the current IUPAC data (Atomic Weights of the Elements

  19. A system for measuring absolute frequencies of up to 4.25 THz using a Josephson point contact

    NASA Astrophysics Data System (ADS)

    Mild, Yukinobu; Onae, Atsushi; Kurosawa, Tomizo; Sakuma, Eiichi

    1993-11-01

    A system for measuring the absolute frequency of a far-infrared (FIR) laser is described. Josephson point contacts have been utilized in the system as a frequency harmonic mixer connecting microwaves and optically pumped CH3OH laser lines. The Josephson point contacts are capable of generating beat signals of 90 GHz microwaves and FIR waves of up to 4.25 THz. To measure the frequency of the beat signals from the Josephson junction with a frequency counter, tracking oscillators have been developed, which tracks the beat signals by phase locking and regenerate clean signals for frequency counting. It is shown that the absolute frequency can be measured to an accuracy of about 100 Hz by using the tracking oscillators.

  20. Ultrastable reference frequency distribution utilizing a fiber optic link

    NASA Technical Reports Server (NTRS)

    Calhoun, Malcolm; Kuhnle, Paul

    1993-01-01

    The Frequency Standards Laboratory at the Jet Propulsion Laboratory (JPL) is responsible for the generation and distribution of ultra-stable reference frequency in NASA's Deep Space Network (DSN). Certain assemblies and components of the Radio Science and VLBI systems are located in the cones of tracking antennas hundreds of meters from the Frequency and Timing Subsystem's frequency standards. The very stringent requirements of these users challenge the performance of state-of-the-art frequency sources as well as the associated signal distribution system. The reference frequency distribution system described is designed around a low temperature coefficient of delay (TCD) optical fiber. On-site measurements of the fiber optic link alone indicate 100 MHz phase noise performance on the order of -120 dBc at 1 Hz from the carrier and Allan deviation on the order of parts in 10(exp 16) at 1000 seconds averaging time. The measured phase noise and stability of the link indicate that the performance characteristics of the hydrogen maser frequency standards are not degraded by the distribution system. Thus, optical fibers and electro-optic devices as distribution media appear to be a viable alternative to the classical coaxial cable distribution systems.

  1. Fiber optic reference frequency distribution to remote beam waveguide antennas

    NASA Technical Reports Server (NTRS)

    Calhoun, Malcolm; Kuhnle, Paul; Law, Julius

    1995-01-01

    In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.

  2. Real-Time Determination of Absolute Frequency in Continuous-Wave Terahertz Radiation with a Photocarrier Terahertz Frequency Comb Induced by an Unstabilized Femtosecond Laser

    NASA Astrophysics Data System (ADS)

    Minamikawa, Takeo; Hayashi, Kenta; Mizuguchi, Tatsuya; Hsieh, Yi-Da; Abdelsalam, Dahi Ghareab; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Yasui, Takeshi

    2016-05-01

    A practical method for the absolute frequency measurement of continuous-wave terahertz (CW-THz) radiation uses a photocarrier terahertz frequency comb (PC-THz comb) because of its ability to realize real-time, precise measurement without the need for cryogenic cooling. However, the requirement for precise stabilization of the repetition frequency ( f rep) and/or use of dual femtosecond lasers hinders its practical use. In this article, based on the fact that an equal interval between PC-THz comb modes is always maintained regardless of the fluctuation in f rep, the PC-THz comb induced by an unstabilized laser was used to determine the absolute frequency f THz of CW-THz radiation. Using an f rep-free-running PC-THz comb, the f THz of the frequency-fixed or frequency-fluctuated active frequency multiplier chain CW-THz source was determined at a measurement rate of 10 Hz with a relative accuracy of 8.2 × 10-13 and a relative precision of 8.8 × 10-12 to a rubidium frequency standard. Furthermore, f THz was correctly determined even when fluctuating over a range of 20 GHz. The proposed method enables the use of any commercial femtosecond laser for the absolute frequency measurement of CW-THz radiation.

  3. Accurate absolute frequencies of the {nu}{sub 1}+{nu}{sub 3} band of {sup 13}C{sub 2}H{sub 2} determined using an infrared mode-locked Cr:YAG laser frequency comb

    SciTech Connect

    Madej, Alan A.; Bernard, John E.; John Alcock, A.; Czajkowski, Andrzej; Chepurov, Sergei

    2006-04-15

    Absolute frequency measurements, with up to 1x10{sup -11} level accuracies, are presented for 60 lines of the P and R branches for the {nu}{sub 1}+{nu}{sub 3} band of {sup 13}C{sub 2}H{sub 2} at 1.5 {mu}m (194 THz). The measurements were made using cavity-enhanced, diode-laser-based saturation spectroscopy. With one laser system stabilized to the P(16) line and a second laser system stabilized to the line whose frequency was to be determined, a Cr:YAG frequency comb was employed to accurately measure the tetrahertz level frequency intervals. The results are compared with recent work from other groups and indicate that these lines would form a basis for a high-quality atlas of reference frequencies for this region of the spectrum.

  4. High-Performance Optical Frequency References for Space

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Döringshoff, Klaus; Milke, Alexander; Sanjuan, Josep; Gohlke, Martin; Kovalchuk, Evgeny V.; Gürlebeck, Norman; Peters, Achim; Braxmaier, Claus

    2016-06-01

    A variety of future space missions rely on the availability of high-performance optical clocks with applications in fundamental physics, geoscience, Earth observation and navigation and ranging. Examples are the gravitational wave detector eLISA (evolved Laser Interferometer Space Antenna), the Earth gravity mission NGGM (Next Generation Gravity Mission) and missions, dedicated to tests of Special Relativity, e.g. by performing a Kennedy- Thorndike experiment testing the boost dependence of the speed of light. In this context we developed optical frequency references based on Doppler-free spectroscopy of molecular iodine; compactness and mechanical and thermal stability are main design criteria. With a setup on engineering model (EM) level we demonstrated a frequency stability of about 2·10-14 at an integration time of 1 s and below 6·10-15 at integration times between 100s and 1000s, determined from a beat-note measurement with a cavity stabilized laser where a linear drift was removed from the data. A cavity-based frequency reference with focus on improved long-term frequency stability is currently under development. A specific sixfold thermal shield design based on analytical methods and numerical calculations is presented.

  5. Stabilized Fiber-Optic Distribution of Reference Frequency

    NASA Technical Reports Server (NTRS)

    Calhoun, Malcolm; Tjoelker, Robert; Diener, William; Dick, G. John; Wang, Rabi; Kirk, Albert

    2003-01-01

    An optoelectronic system distributes a reference signal of low noise and highly stabilized phase and frequency (100 MHz) from an atomic frequency standard to a remote facility at a distance up to tens of kilometers. The reference signal is transmitted to the remote station as amplitude modulation of an optical carrier signal propagating in an optical fiber. The stabilization scheme implemented in this system is intended particularly to suppress phase and frequency fluctuations caused by vibrations and by expansion and contraction of the optical fiber and other components in diurnal and seasonal heating and cooling cycles. The system (see figure) comprises several subsystems, the main one being (1) a hydrogen-maser or linear-ion-trap frequency standard in an environmentally controlled room in a signal-processing center (SPC), (2) a stabilized fiber-optic distribution assembly (SFODA), (3) a compensated sapphire oscillator (CSO) in an environmentally controlled room in the remote facility, (4) thermally stabilized distribution amplifiers and cabling from the environmentally controlled room to end users, and (5) performance- measuring equipment.

  6. Homodyne digital interferometry for a sensitive fiber frequency reference.

    PubMed

    Ngo, Silvie; McRae, Terry G; Gray, Malcolm B; Shaddock, Daniel A

    2014-07-28

    Digitally enhanced homodyne interferometry enables robust interferometric sensitivity to be achieved in an optically simple configuration by shifting optical complexity into the digital signal processing regime. We use digitally enhanced homodyne interferometry in a simple, all-fiber Michelson interferometer to achieve a frequency reference stability of better than 20 Hz/√Hz from 10 mHz to 1 Hz, satisfying, for the first time in an all fiber system, the stability requirements for the Gravity Recovery and Climate Experiment Follow On mission. In addition, we have demonstrated stability that satisfies the future mission objectives at frequencies down to 1 mHz. This frequency domain stability translates into a fractional Allan deviation of 3.3 × 10(-17) for an integration time of 55 seconds. PMID:25089435

  7. Advances in the Metrology of Absolute Value Assignments to Isotopic Reference Materials: Consequences from the Avogadro Project

    NASA Astrophysics Data System (ADS)

    Vocke, Robert; Rabb, Savelas

    2015-04-01

    All isotope amount ratios (hereafter referred to as isotope ratios) produced and measured on any mass spectrometer are biased. This unfortunate situation results mainly from the physical processes in the source area where ions are produced. Because the ionized atoms in poly-isotopic elements have different masses, such processes are typically mass dependent and lead to what is commonly referred to as mass fractionation (for thermal ionization and electron impact sources) and mass bias (for inductively coupled plasma sources.) This biasing process produces a measured isotope ratio that is either larger or smaller than the "true" ratio in the sample. This has led to the development of numerous fractionation "laws" that seek to correct for these effects, many of which are not based on the physical processes giving rise to the biases. The search for tighter and reproducible precisions has led to two isotope ratio measurement systems that exist side-by-side. One still seeks to measure "absolute" isotope ratios while the other utilizes an artifact based measurement system called a delta-scale. The common element between these two measurement systems is the utilization of isotope reference materials (iRMs). These iRMs are used to validate a fractionation "law" in the former case and function as a scale anchor in the latter. Many value assignments of iRMs are based on "best measurements" by the original groups producing the reference material, a not entirely satisfactory approach. Other iRMs, with absolute isotope ratio values, have been produced by calibrated measurements following the Atomic Weight approach (AW) pioneered by NBS nearly 50 years ago. Unfortunately, the AW is not capable of calibrating the new generation of iRMs to sufficient precision. So how do we get iRMs with isotope ratios of sufficient precision and without bias? Such a focus is not to denigrate the extremely precise delta-scale measurements presently being made on non-traditional and tradition

  8. Absolute Radiometric Calibration of Narrow-Swath Imaging Sensors with Reference to Non-Coincident Wide-Swath Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Thome, Kurtis; Lockwood, Ronald

    2012-01-01

    An inter-calibration method is developed to provide absolute radiometric calibration of narrow-swath imaging sensors with reference to non-coincident wide-swath sensors. The method predicts at-sensor radiance using non-coincident imagery from the reference sensor and knowledge of spectral reflectance of the test site. The imagery of the reference sensor is restricted to acquisitions that provide similar view and solar illumination geometry to reduce uncertainties due to directional reflectance effects. Spectral reflectance of the test site is found with a simple iterative radiative transfer method using radiance values of a well-understood wide-swath sensor and spectral shape information based on historical ground-based measurements. At-sensor radiance is calculated for the narrow-swath sensor using this spectral reflectance and atmospheric parameters that are also based on historical in situ measurements. Results of the inter-calibration method show agreement on the 2 5 percent level in most spectral regions with the vicarious calibration technique relying on coincident ground-based measurements referred to as the reflectance-based approach. While the variability of the inter-calibration method based on non-coincident image pairs is significantly larger, results are consistent with techniques relying on in situ measurements. The method is also insensitive to spectral differences between the sensors by transferring to surface spectral reflectance prior to prediction of at-sensor radiance. The utility of this inter-calibration method is made clear by its flexibility to utilize image pairings with acquisition dates differing in excess of 30 days allowing frequent absolute calibration comparisons between wide- and narrow-swath sensors.

  9. Fractional frequency instability in the 10{sup -14} range with a thermal beam optical frequency reference

    SciTech Connect

    McFerran, John J.; Luiten, Andre N.

    2010-02-15

    We demonstrate a means of increasing the signal-to-noise ratio in a Ramsey-Borde interferometer with spatially separated oscillatory fields on a thermal atomic beam. The {sup 1}S{sub 0}{r_reversible}{sup 3}P{sub 1} intercombination line in neutral {sup 40}Ca is used as a frequency discriminator, with an extended cavity diode laser at 423 nm probing the ground state population after a Ramsey-Borde sequence of 657 nm light-field interactions with the atoms. Evaluation of the instability of the Ca frequency reference is carried out by comparison with (i) a hydrogen-maser and (ii) a cryogenic sapphire oscillator. In the latter case the Ca reference exhibits a square-root {Lambda} variance of 9.2x10{sup -14} at 1 s and 2.0x10{sup -14} at 64 s. This is an order-of-magnitude improvement for optical beam frequency references, to our knowledge. The shot noise of the readout fluorescence produces a limiting square-root {Lambda} variance of 7x10{sup -14}/{radical}({tau}), highlighting the potential for improvement. This work demonstrates the feasibility of a portable frequency reference in the optical domain with 10{sup -14} range frequency instability.

  10. Deep Mantle Structure As a Reference Frame for Absolute Plate Motions

    NASA Astrophysics Data System (ADS)

    Torsvik, T. H.; Van Der Voo, R.; Doubrovine, P. V.; Burke, K. C.; Steinberger, B. M.; Domeier, M.

    2014-12-01

    Since the Pangea supercontinent formed some 320 million years ago, the majority of large igneous provinces and diamond-bearing rocks (kimberlites) near Earth's surface can be sourced to plumes erupting from the margins of two large thermochemical reservoirs at the core-mantle boundary. Using this surface to core-mantle boundary correlation to locate continents in longitude and a new iterative approach for defining a paleomagnetic reference frame corrected for true polar wander, we present a model for plate motion back to earliest Paleozoic time (540 Ma). We have identified six phases of slow, oscillatory true polar wander during the Paleozoic. True polar wander rates (<1 Degree/Myr) are compatible to those in the Mesozoic but plate velocities are on average twice as high. We show that a geologically reasonable model that reconstructs continents in longitude in such a way that large igneous provinces and kimberlites are positioned above the plume generation zones at the times of their formation can be successfully applied to the entire Phanerozoic. Our model is a kinematic model for only the continents. The next step in improving it will be developing a model for the entire lithosphere, including synthetic oceanic lithosphere. This is challenging, but we will demonstrate a full-plate model back to the Late Paleozoic (410 Ma).

  11. An optical beam frequency reference with 10{sup -14} range frequency instability

    SciTech Connect

    McFerran, J. J.; Hartnett, J. G.; Luiten, A. N.

    2009-07-20

    The authors report on a thermal beam optical frequency reference with a fractional frequency instability of 9.2x10{sup -14} at 1 s reducing to 2.0x10{sup -14} at 64 s before slowly rising. The {sup 1}S{sub 0}{r_reversible}{sup 3}P{sub 1} intercombination line in neutral {sup 40}Ca is used as a frequency discriminator. A diode laser at 423 nm probes the ground state population after a Ramsey-Borde sequence of 657 nm light-field interactions on the atoms. The measured fractional frequency instability is an order of magnitude improvement on previously reported thermal beam optical clocks. The photon shot-noise of the read-out produces a limiting square root {lambda}-variance of 7x10{sup -14}/{radical}({tau})

  12. An iodine-based frequency reference for space applications

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Johann, Ulrich; Doeringshoff, Klaus; Kovalchuk, Evgeny; Peters, Achim; Braxmaier, Claus; Pahl, Julia; Stuehler, Johannes; Franz, Matthias

    We present the development of an iodine-based frequency reference for future potential applications in space, including the gravitational wave detector LISA/eLISA (Laser Interferometer Space Antenna), the mini SpaceTime Asymmetry Research (mSTAR) program, the aperture-synthesis telescope Darwin and the GRACE (Gravity Recovery and Climate Experiment) follow on mission/NGGM (Next Generation Gravity Mission) exploring Earth's gravity. Based on a state-of-the-art laboratory iodine frequency reference, setups on elegant breadboard (EBB) and engineering model (EM) level were realized, taking into account specific design criteria for space compatibility such as compactness and robustness. Both setups employ modulation transfer spectroscopy (MTS) in combination with balanced detection. They use a baseplate made of glass material in combination with a dedicated easy-to-handle assembly-integration technology (adhesive bonding) ensuring high pointing stability of the two counter-propagating laser beams in the iodine cell and therefore high long-term stability. The EBB setup utilizes a commercial off-the-shelf 30 cm long iodine cell in triple-pass configuration, the EM setup a specifically designed and manufactured compact iodine cell made of fused silica in a nine-pass configuration with a specific robust cold finger design. Both setups were characterized in beat measurements with a ULE cavity setup. Similar frequency stabilities of about 1*10 (-14) at an integration time of 1 s and below 5*10 (-15) at integration times between 10 s and 100 s were demonstrated. These values are comparable to the currently best laboratory setups. The EM setup was further subjected to environmental testing including thermal cycling and vibrational testing. Financial support by the German Space Agency DLR with funds provided by the Federal Ministry of Economics and Technology (BMWi) under grant numbers 50 QT 1102 and 50 QT 1201 is highly appreciated. The authors thank Jan Hrabina and Josef Lazar

  13. 3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique.

    PubMed

    Wang, Yajun; Laughner, Jacob I; Efimov, Igor R; Zhang, Song

    2013-03-11

    This paper presents a two-frequency binary phase-shifting technique to measure three-dimensional (3D) absolute shape of beating rabbit hearts. Due to the low contrast of the cardiac surface, the projector and the camera must remain focused, which poses challenges for any existing binary method where the measurement accuracy is low. To conquer this challenge, this paper proposes to utilize the optimal pulse width modulation (OPWM) technique to generate high-frequency fringe patterns, and the error-diffusion dithering technique to produce low-frequency fringe patterns. Furthermore, this paper will show that fringe patterns produced with blue light provide the best quality measurements compared to fringe patterns generated with red or green light; and the minimum data acquisition speed for high quality measurements is around 800 Hz for a rabbit heart beating at 180 beats per minute. PMID:23482151

  14. An ultra-stable iodine-based frequency reference for space applications

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Braxmaier, Claus; Doeringshoff, Klaus; Keetman, Anja; Reggentin, Matthias; Kovalchuk, Evgeny; Peters, Achim

    2012-07-01

    Future space missions require for ultra-stable optical frequency references. Examples are the gravitational wave detector LISA/eLISA (Laser Interferometer Space Antenna), the SpaceTime Asymmetry Research (STAR) program, the aperture-synthesis telescope Darwin and the GRACE (Gravity Recovery and Climate Experiment) follow on mission exploring Earth's gravity. As high long-term frequency stability is required, lasers stabilized to atomic or molecular transitions are preferred, also offering an absolute frequency reference. Frequency stabilities in the 10 ^{-15} domains at longer integration times (up to several hours) are demonstrated in laboratory experiments using setups based on Doppler-free spectroscopy. Such setups with a frequency stability comparable to the hydrogen maser in the microwave domain, have the potential to be developed space compatible on a relatively short time scale. Here, we present the development of ultra-stable optical frequency references based on modulation-transfer spectroscopy of molecular iodine. Noise levels of 2\\cdot10 ^{-14} at an integration time of 1 s and below 3\\cdot10 ^{-15} at integration times between 100 s and 1000 s are demonstrated with a laboratory setup using an 80 cm long iodine cell in single-pass configuration in combination with a frequency-doubled Nd:YAG laser and standard optical components and optomechanic mounts. The frequency stability at longer integration times is (amongst other things) limited by the dimensional stability of the optical setup, i.e. by th pointing stability of the two counter-propagating beams overlapped in the iodine cell. With the goal of a future space compatible setup, a compact frequency standard on EBB (elegant breadboard) level was realized. The spectroscopy unit utilizes a baseplate made of Clearceram-HS, a glass ceramics with an ultra-low coefficient of thermal expansion of 2\\cdot10 ^{-8} K ^{-1}. The optical components are joint to the baseplate using adhesive bonding technology

  15. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.20, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  16. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata.

    PubMed

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.2(0), respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result. PMID:23464200

  17. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    SciTech Connect

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-15

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and {+-}0.2{sup 0}, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ('Dee' voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  18. A 2015 International Geomagnetic Reference Field (IGRF) candidate model based on Swarm's experimental absolute magnetometer vector mode data

    NASA Astrophysics Data System (ADS)

    Vigneron, Pierre; Hulot, Gauthier; Olsen, Nils; Léger, Jean-Michel; Jager, Thomas; Brocco, Laura; Sirol, Olivier; Coïsson, Pierdavide; Lalanne, Xavier; Chulliat, Arnaud; Bertrand, François; Boness, Axel; Fratter, Isabelle

    2015-06-01

    Each of the three satellites of the European Space Agency Swarm mission carries an absolute scalar magnetometer (ASM) that provides the nominal 1-Hz scalar data of the mission for both science and calibration purposes. These ASM instruments, however, also deliver autonomous 1-Hz experimental vector data. Here, we report on how ASM-only scalar and vector data from the Alpha and Bravo satellites between November 29, 2013 (a week after launch) and September 25, 2014 (for on-time delivery of the model on October 1, 2014) could be used to build a very valuable candidate model for the 2015.0 International Geomagnetic Reference Field (IGRF). A parent model was first computed, describing the geomagnetic field of internal origin up to degree and order 40 in a spherical harmonic representation and including a constant secular variation up to degree and order 8. This model was next simply forwarded to epoch 2015.0 and truncated at degree and order 13. The resulting ASM-only 2015.0 IGRF candidate model is compared to analogous models derived from the mission's nominal data and to the now-published final 2015.0 IGRF model. Differences among models mainly highlight uncertainties enhanced by the limited geographical distribution of the selected data set (essentially due to a lack of availability of data at high northern latitude satisfying nighttime conditions at the end of the time period considered). These appear to be comparable to differences classically observed among IGRF candidate models. These positive results led the ASM-only 2015.0 IGRF candidate model to contribute to the construction of the final 2015.0 IGRF model.

  19. Characterization of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) ability to serve as an infrared satellite intercalibration reference

    NASA Astrophysics Data System (ADS)

    Tobin, David; Holz, Robert; Nagle, Fred; Revercomb, Henry

    2016-04-01

    Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a future mission employing an infrared spectrometer with unprecedented calibration accuracy and the ability to assess its calibration on-orbit using a novel verification system. Utilizing this capability for satellite intercalibration is a primary objective of the mission. This paper presents a new infrared intercalibration methodology that minimizes the intercalibration uncertainties and provides uncertainty estimates resulting from the scene variability and instrument noise. Results of a simulation study to characterize realistic spatial and temporal matching differences for simultaneous nadir overpasses (SNOs) of CLARREO and existing hyperspectral sounders are presented. This study, along with experience with intercalibration of real data, finds that intercalibration uncertainties are minimized when the SNOs are not screened for sky conditions but instead weighted based on the observed scene variability. Intercalibration performance is investigated for a 90° polar orbit mission and for a Pathfinder mission on the International Space Station, for various potential CLARREO footprint sizes, and as a function of mission length, scene brightness temperature, and wavelength. The results are encouraging and suggest that biases between CLARREO and sounder observations can be determined with low uncertainty and with high time frequency during a CLARREO mission. For example, the simulations suggest that a CLARREO footprint of 50 to 100 km in diameter is optimal for intercalibration, and that the 3 sigma intercalibration uncertainty is less than 0.1 K for channels at infrared window wavelengths using 2 months of accumulated SNOs, and for more absorbing channels with less scene variability the uncertainties are less than 50 mK.

  20. Drug Treated Schizophrenia, Schizoaffective and Bipolar Disorder Patients Evaluated by qEEG Absolute Spectral Power and Mean Frequency Analysis

    PubMed Central

    Wix-Ramos, Richard; Moreno, Xiomara; Capote, Eduardo; González, Gilbert; Uribe, Ezequiel

    2014-01-01

    Objective Research of electroencephalograph (EEG) power spectrum and mean frequency has shown inconsistent results in patients with schizophrenic, schizoaffective and bipolar disorders during medication when compared to normal subjects thus; the characterization of these parameters is an important task. Methods We applied quantitative EEG (qEEG) to investigate 38 control, 15 schizophrenic, 7 schizoaffective and 11 bipolar disorder subjects which remaine under the administration of psychotropic drugs (except control group). Absolute spectral power (ASP), mean frequency and hemispheric electrical asymmetry were measured by 19 derivation qEEG. Group mean values were compared with non parametrical Mann-Whitney test and spectral EEG maps with z-score method at p < 0.05. Results Most frequent drug treatments for schizophrenic patients were neuroleptic+antiepileptic (40% of cases) or 2 neuroleptics (33.3%). Schizoaffective patients received neuroleptic+benzodiazepine (71.4%) and for bipolar disorder patients neuroleptic+antiepileptic (81.8%). Schizophrenic (at all derivations except for Fp1, Fp2, F8 and T6) and schizoaffective (only at C3) show higher values of ASP (+57.7% and +86.1% respectively) compared to control group. ASP of bipolar disorder patients did not show differences against control group. The mean frequency was higher at Fp1 (+14.2%) and Fp2 (+17.4%) in bipolar disorder patients than control group, but no differences were found in frequencies between schizophrenic or schizoaffective patients against the control group. Majority of spectral differences were found at the left hemisphere in schizophrenic and schizoaffective but not in bipolar disorder subjects. Conclusion The present report contributes to characterize quantitatively the qEEG in drug treated schizophrenic, schizoaffective or bipolar disorder patients. PMID:24851121

  1. High frequency radar software reference manual for product one

    NASA Astrophysics Data System (ADS)

    Walden, D. C.; Winkelman, J. R.; Matheson, L. D.; Schultz, L. D.; Merrill, R. G.

    1984-02-01

    This manual for use with the HF Radar Product 1 software was first distributed to users in draft form in 1978. It has been updated several times since then as the software has evolved. It is being formally published now to record the achievement and to form a more convenient reference manual for the use of this product.

  2. A calculable, transportable audio-frequency AC reference standard

    SciTech Connect

    Oldham, N.M.; Hetrick, P.S. ); Zeng, X. )

    1989-04-01

    A transportable ac voltage source is described, in which sinusoidal signals are synthesized digitally in the audio-frequency range. The rms value of the output waveform may be calculated by measuring the dc level of the individual steps used to generate the waveform. The uncertainty of this calculation at the 7-V level is typically less than +-5 ppm from 60 Hz to 2 kHz and less than +-10 ppm from 30 Hz to 15 kHz.

  3. System and method for tuning adjusting the central frequency of a laser while maintaining frequency stabilization to an external reference

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey (Inventor); Thorpe, James I. (Inventor); Numata, Kenji (Inventor)

    2011-01-01

    A method and system for stabilizing a laser to a frequency reference with an adjustable offset. The method locks a sideband signal generated by passing an incoming laser beam through the phase modulator to a frequency reference, and adjusts a carrier frequency relative to the locked sideband signal by changing a phase modulation frequency input to the phase modulator. The sideband signal can be a single sideband (SSB), dual sideband (DSB), or an electronic sideband (ESB) signal. Two separate electro-optic modulators can produce the DSB signal. The two electro-optic modulators can be a broadband modulator and a resonant modulator. With a DSB signal, the method can introduce two sinusoidal phase modulations at the phase modulator. With ESB signals, the method can further drive the optical phase modulator with an electrical signal with nominal frequency OMEGA(sub 1) that is phase modulated at a frequency OMEGA(sub 2)

  4. The frequency of dietary references in homeopathic consultations.

    PubMed

    Filho, Rubens Dolce

    2011-07-01

    A retrospective quantitative study on dietary references found in medical records of 2753 patients attending consultations from 10/1/1994 to 5/31/2007 was conducted. The symptoms found in the rubrics relating to food and drink aggravation and amelioration, aversion and craving of homeopathic repertories reflect diets at different places and times and do not correspond fully, to contemporary gastronomy. Desires for sweet and spicy foods were statistically more frequent, revealing the prevailing taste for such food among the studied population. Food cravings should be carefully analyzed before considering them as indications for choosing homeopathic therapy, they are less significant than aversions, aggravations and ameliorations. PMID:21784331

  5. High frequency radar software reference manual for Product Two

    NASA Astrophysics Data System (ADS)

    Walden, D. C.; Winkelman, J. R.; Matheson, L. D.; Grubb, R. N.

    1984-03-01

    The Space Environment Laboratory (SEL) of NOAA developed a general purpose High Frequency (HF) Radar system capable of making most of the measurements of the ionosphere that can be made by coherent monostatic or bistatic radio wave sounding. This capability is provided by combining a very flexible, frequency-agile transmitter and receiver system with a digital control and signal processing system containing a general purpose 16-bit minicomputer for operator interaction and control. A manual is given which describes the software operating system written by the SEL staff to permit the Radar to be used for quite a wide range of standard measurements under simple operator control. The control language enables the user to exploit most of the capabilities of the instrument without having to program the system in detail. The manual is primarily directed at the user who needs to understand and use this capability. Secondarily, if used in conjunction with the computer manufacturer's system and language manuals, the SEL HF Radar Hardware manuals and the SEL source code listings, it should enable an experienced user to customize the software for special purposes or to produce new operating software.

  6. Absolute and relative emission spectroscopy study of 3 cm wide planar radio frequency atmospheric pressure bio-plasma source

    NASA Astrophysics Data System (ADS)

    Deng, Xiaolong; Nikiforov, Anton Yu; Ionita, Eusebiu-Rosini; Dinescu, Gheorghe; Leys, Christophe

    2015-08-01

    The dynamics of low power atmospheric pressure radio frequency discharge generated in Ar gas in long gap of 3 cm is investigated. This plasma source is characterized and analyzed for possible large scale biomedical applications where low gas temperature and potential-less effluent are required. The discharge forms a homogenous glow-like afterglow in ambient air at input power of 30 W with low gas temperature of 330 K, which is desirable in biomedical applications. With absolute calibrated spectroscopy of the discharge, electron density of 0.4 × 1018 m-3 and electron temperature of 1.5 eV are obtained from continuum Bremsstrahlung radiation of the source. Time and spatial resolved emission spectroscopy is used to analyze discharge generation mechanism and active species formation. It is found that discharge dynamics strongly correlates with the discharge current waveform. Strong Ar(2p) excited states emission is observed nearby the electrodes surface on a distance up to 200 μm in the plasma sheath region at 10 ns after the current peak, whereas OH(A) emission is uniform along of the interelectrode gap.

  7. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  8. Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references.

    PubMed

    Bartels, A; Diddams, S A; Oates, C W; Wilpers, G; Bergquist, J C; Oskay, W H; Hollberg, L

    2005-03-15

    We use femtosecond laser frequency combs to convert optical frequency references to the microwave domain, where we demonstrate the synthesis of 10-GHz signals having a fractional frequency instability of < or =3.5 x 10(-15) at a 1-s averaging time, limited by the optical reference. The residual instability and phase noise of the femtosecond-laser-based frequency synthesizers are 6.5 x 10(-16) at 1 s and -98 dBc/Hz at a 1-Hz offset from the 10-GHz carrier, respectively. The timing jitter of the microwave signals is 3.3 fs. PMID:15792011

  9. Absolute Quantification of Lipophilic Shellfish Toxins by Quantitative Nuclear Magnetic Resonance Using Removable Internal Reference Substance with SI Traceability.

    PubMed

    Kato, Tsuyoshi; Saito, Maki; Nagae, Mika; Fujita, Kazuhiro; Watai, Masatoshi; Igarashi, Tomoji; Yasumoto, Takeshi; Inagaki, Minoru

    2016-01-01

    Okadaic acid (OA), a lipophilic shellfish toxin, was accurately quantified using quantitative nuclear magnetic resonance with internal standards for the development of an authentic reference standard. Pyridine and the residual proton in methanol-d4 were used as removable internal standards to limit any contamination. They were calibrated based on a maleic acid certified reference material. Thus, the concentration of OA was traceable to the SI units through accurate quantitative NMR with an internal reference substance. Signals from the protons on the oxygenated and unsaturated carbons of OA were used for quantification. A reasonable accuracy was obtained by integrating between the lower and upper (13)C satellite signal range when more than 4 mg of OA was used. The best-determined purity was 97.4% (0.16% RSD) when 20 mg of OA was used. Dinophysistoxin-1, a methylated analog of OA having an almost identical spectrum, was also quantified by using the same methodology. PMID:27396652

  10. Measurement of absolute transition frequencies of {sup 87}Rb to nS and nD Rydberg states by means of electromagnetically induced transparency

    SciTech Connect

    Mack, Markus; Karlewski, Florian; Hattermann, Helge; Hoeckh, Simone; Jessen, Florian; Cano, Daniel; Fortagh, Jozsef

    2011-05-15

    We report the measurement of absolute excitation frequencies of {sup 87}Rb to nS and nD Rydberg states. The Rydberg transition frequencies are obtained by observing electromagnetically induced transparency on a rubidium vapor cell. The accuracy of the measurement of each state is < or approx. 1 MHz, which is achieved by frequency stabilizing the two diode lasers employed for the spectroscopy to a frequency comb and a frequency comb calibrated wavelength meter, respectively. Based on the spectroscopic data we determine the quantum defects of {sup 87}Rb, and compare it with previous measurements on {sup 85}Rb. We determine the ionization frequency from the 5S{sub 1/2}(F=1) ground state of {sup 87}Rb to 1010.029 164 6(3)THz, providing the binding energy of the ground state with an accuracy improved by two orders of magnitude.

  11. Three-wavelength digital holography using spatial frequency-division multiplexing and dual reference arms

    NASA Astrophysics Data System (ADS)

    Tahara, Tatsuki; Takeshita, Shingo; Morimoto, Kenta; Kaku, Toru; Arai, Yasuhiko

    2016-03-01

    We propose single-shot multiwavelength digital holography using a monochromatic image sensor and dual reference arms. Multiple wavelength information is multiplexed on the monochromatic image sensor plane in the space domain and is separated in the spatial frequency domain by utilizing the difference between the spatial frequencies of interference fringes at respective wavelengths. The recordable spatial bandwidth that is utilized for object waves is extended by using dual reference arms in comparison with that using a single reference arm. Both the three-dimensional and three-wavelength information of an object were recorded and reconstructed without the crosstalk between object waves with multiple wavelengths.

  12. Absolute frequency measurement of the ^1S0<->^3P0 clock transition at 578.4 nm in ytterbium

    NASA Astrophysics Data System (ADS)

    Hoyt, Chad; Barber, Zeb; Oates, Chris; Fortier, Tara; Diddams, Scott

    2005-05-01

    We report the first precision absolute frequency measurements of the highly forbidden (6s^2)^1S0<->(6s6p)^3P0 optical clock transition at 578.4 nm in two odd isotopes of ytterbium. Atoms are cooled to tens of microkelvins in two successive stages of laser cooling and magneto-optical trapping that use transitions at 398.9 nm and 555.8 nm, respectively. The resulting trapped atomic cloud is irradiated with excitation light at 578.4 nm and absorption is detected by monitoring trapped atom depletion. With the laser on resonance, we demonstrate trap depletions of more than 80 % relative to the off-resonance case. Absolute frequency measurements are made for ^171Yb (I=1/2) and ^173Yb (I=5/2) with an uncertainty of 4.4 kHz using a femtosecond-laser frequency comb calibrated by the NIST cesium fountain clock. The natural linewidth of these J=0 to J=0 transitions is ˜10 mHz, making them well-suited to support a new generation of optical atomic clocks based on confinement in an optical lattice. Lattice-based optical clocks have the potential to surpass the performance of the best current atomic clocks by orders of magnitude. The accurate ytterbium frequency knowledge presented here (nearly a million-fold reduction in uncertainty) will greatly expedite Doppler- and recoil-free lattice spectroscopy.

  13. Absolute frequency and isotope shift of the magnesium (3 s2) 1S0→(3 s 3 d ) 1D2 two-photon transition by direct frequency-comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Peters, E.; Reinhardt, S.; Hänsch, Th. W.; Udem, Th.

    2015-12-01

    We use a picosecond frequency-doubled mode-locked titanium sapphire laser to generate a frequency comb at 431 nm in order to probe the (3 s2) 1S0 →(3 s 3 d ) 1D2 transition in atomic magnesium. Using a second, self-referenced femtosecond frequency comb, the absolute transition frequency and the 24Mg and 26Mg isotope shift is determined relative to a global-positioning-system-referenced hydrogen maser. Our result for the transition frequency of the main isotope 24Mg of 1 391 128 606.14 (12 ) MHz agrees with previous measurements and reduces its uncertainty by four orders of magnitude. For the isotope shift we find δ ν26 ,24=3915.13 (39 ) MHz. Accurate values for transition frequencies in Mg are relevant in astrophysics and to test atomic structure calculations.

  14. Square Kilometre Array Telescope—Precision Reference Frequency Synchronisation via 1f-2f Dissemination

    PubMed Central

    Wang, B.; Zhu, X.; Gao, C.; Bai, Y.; Dong, J. W.; Wang, L. J.

    2015-01-01

    The Square Kilometre Array (SKA) project is an international effort to build the world’s largest radio telescope, with a one-square-kilometre collecting area. In addition to its ambitious scientific objectives, such as probing cosmic dawn and the cradle of life, the SKA demands several revolutionary technological breakthroughs, such as ultra-high precision synchronisation of the frequency references for thousands of antennas. In this report, with the purpose of application to the SKA, we demonstrate a frequency reference dissemination and synchronisation scheme in which the phase-noise compensation function is applied at the client site. Hence, one central hub can be linked to a large number of client sites, thus forming a star-shaped topology. As a performance test, a 100-MHz reference frequency signal from a hydrogen maser (H-maser) clock is disseminated and recovered at two remote sites. The phase-noise characteristics of the recovered reference frequency signal coincide with those of the H-maser source and satisfy the SKA requirements. PMID:26349544

  15. Square Kilometre Array Telescope—Precision Reference Frequency Synchronisation via 1f-2f Dissemination

    NASA Astrophysics Data System (ADS)

    Wang, B.; Zhu, X.; Gao, C.; Bai, Y.; Dong, J. W.; Wang, L. J.

    2015-09-01

    The Square Kilometre Array (SKA) project is an international effort to build the world’s largest radio telescope, with a one-square-kilometre collecting area. In addition to its ambitious scientific objectives, such as probing cosmic dawn and the cradle of life, the SKA demands several revolutionary technological breakthroughs, such as ultra-high precision synchronisation of the frequency references for thousands of antennas. In this report, with the purpose of application to the SKA, we demonstrate a frequency reference dissemination and synchronisation scheme in which the phase-noise compensation function is applied at the client site. Hence, one central hub can be linked to a large number of client sites, thus forming a star-shaped topology. As a performance test, a 100-MHz reference frequency signal from a hydrogen maser (H-maser) clock is disseminated and recovered at two remote sites. The phase-noise characteristics of the recovered reference frequency signal coincide with those of the H-maser source and satisfy the SKA requirements.

  16. Flight-Like Optical Reference Cavity for GRACE Follow-On Laser Frequency Stabilization

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; deVine, G.; Klipstein, W. M.; McKenzie, K.; Spero, R.; Thompson, R.; Yu, N.; Stephens, M.; Leitch, J.; Pierce, R.; Shaddock, D.; Lam, T.

    2011-01-01

    We describe a prototype optical cavity and associated optics that has been developed to provide a stable frequency reference for a future space-based laser ranging system. This instrument is being considered for inclusion as a technology demonstration on the recently announced GRACE follow-on mission, which will monitor variations in the Earth's gravity field.

  17. Square Kilometre Array Telescope--Precision Reference Frequency Synchronisation via 1f-2f Dissemination.

    PubMed

    Wang, B; Zhu, X; Gao, C; Bai, Y; Dong, J W; Wang, L J

    2015-01-01

    The Square Kilometre Array (SKA) project is an international effort to build the world's largest radio telescope, with a one-square-kilometre collecting area. In addition to its ambitious scientific objectives, such as probing cosmic dawn and the cradle of life, the SKA demands several revolutionary technological breakthroughs, such as ultra-high precision synchronisation of the frequency references for thousands of antennas. In this report, with the purpose of application to the SKA, we demonstrate a frequency reference dissemination and synchronisation scheme in which the phase-noise compensation function is applied at the client site. Hence, one central hub can be linked to a large number of client sites, thus forming a star-shaped topology. As a performance test, a 100-MHz reference frequency signal from a hydrogen maser (H-maser) clock is disseminated and recovered at two remote sites. The phase-noise characteristics of the recovered reference frequency signal coincide with those of the H-maser source and satisfy the SKA requirements. PMID:26349544

  18. An energy decomposition analysis for intermolecular interactions from an absolutely localized molecular orbital reference at the coupled-cluster singles and doubles level

    SciTech Connect

    Azar, R. Julian; Head-Gordon, Martin

    2012-01-14

    We propose a wave function-based method for the decomposition of intermolecular interaction energies into chemically-intuitive components, isolating both mean-field- and explicit correlation-level contributions. We begin by solving the locally-projected self-consistent field for molecular interactions equations for a molecular complex, obtaining an intramolecularly polarized reference of self-consistently optimized, absolutely-localized molecular orbitals (ALMOs), determined with the constraint that each fragment MO be composed only of atomic basis functions belonging to its own fragment. As explicit inter-electronic correlation is integral to an accurate description of weak forces underlying intermolecular interaction potentials, namely, coordinated fluctuations in weakly interacting electronic densities, we add dynamical correlation to the ALMO polarized reference at the coupled-cluster singles and doubles level, accounting for explicit dispersion and charge-transfer effects, which map naturally onto the cluster operator. We demonstrate the stability of energy components with basis set extension, follow the hydrogen bond-breaking coordinate in the C{sub s}-symmetry water dimer, decompose the interaction energies of dispersion-bound rare gas dimers and other van der Waals complexes, and examine charge transfer-dominated donor-acceptor interactions in borane adducts. We compare our results with high-level calculations and experiment when possible.

  19. A digitally compensated 1.5 GHz CMOS/FBAR frequency reference.

    PubMed

    Rai, Shailesh; Su, Ying; Pang, Wei; Ruby, Richard; Otis, Brian

    2010-03-01

    A temperature-compensated 1.5 GHz film bulk acoustic wave resonator (FBAR)-based frequency reference implemented in a 0.35 microm CMOS process is presented. The ultra-small form factor (0.79 mm x 1.72 mm) and low power dissipation (515 microA with 2 V supply) of a compensated FBAR oscillator present a promising alternative for the replacement of quartz crystal frequency references. The measured post-compensation frequency drift over a 0-100 degrees C temperature range is < +/- 10 ppm. The measured oscillator phase noise is -133 dBc/Hz at 100 kHz offset from the 1.5 GHz carrier. PMID:20211770

  20. Tunable cw UV laser with <35 kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states.

    PubMed

    Bridge, Elizabeth M; Keegan, Niamh C; Bounds, Alistair D; Boddy, Danielle; Sadler, Daniel P; Jones, Matthew P A

    2016-02-01

    We present a solid-state laser system that generates over 200 mW of continuous-wave, narrowband light, tunable from 316.3 nm - 317.7 nm and 318.0 nm - 319.3 nm. The laser is based on commercially available fiber amplifiers and optical frequency doubling technology, along with sum frequency generation in a periodically poled stoichiometric lithium tantalate crystal. The laser frequency is stabilized to an atomic-referenced high finesse optical transfer cavity. Using a GPS-referenced optical frequency comb we measure a long term frequency instability of < 35 kHz for timescales between 10(-3) s and 10(3) s. As an application we perform spectroscopy of Sr Rydberg states from n = 37 - 81, demonstrating mode-hop-free scans of 24 GHz. In a cold atomic sample we measure Doppler-limited linewidths of 350 kHz. PMID:26906804

  1. The Impact on the Positioning Accuracy of the Frequency Reference of a GPS Receiver

    NASA Astrophysics Data System (ADS)

    Yeh, Ta-Kang; Chen, Chieh-Hung; Xu, Guochang; Wang, Chuan-Sheng; Chen, Kwo-Hwa

    2013-01-01

    Despite the pervasive use of the global positioning system (GPS) as a positioning technology for its high efficiency and accuracy, several factors reduce its performance. This study examines to which extent the frequency offset and the frequency stability of the internal quartz oscillator or of an externally supplied rubidium oscillator have an influence. Observations were made at the Taiwan Ching Yun University (TCYU) tracking station, where a quartz oscillator and a rubidium oscillator were applied alternatively on a monthly basis throughout a 16-month period. Moreover, the accuracy of the local oscillator used in this study was calibrated by the National Standard Time and Frequency Laboratory, Taiwan. The frequency offset and frequency stability calculated via the remote method at the TCYU station were compared with values (uncertainty is 3.0E-13) measured directly at the National Standard Time and Frequency Laboratory, Taiwan. Analytical results show that the two methods vary by 1.4E-10 in terms of frequency offset and by 6.5E-12 in terms of frequency stability, demonstrating that the remote method can yield computational results almost as accurate as direct measurement. Positioning precision results also show that rubidium oscillator accuracy improved by 5, 11, and 15 % for short-, medium-, and long-baseline positioning, respectively, indicating that clock quality is more influential for long-baseline GPS relative positioning and that the frequency stability of a receiver clock is far more critical than the frequency offset. On the other hand, the positioning performance noted is essentially independent (max. 15 % change) of the reference frequency stability, which indeed differed by 4 orders of magnitude.

  2. Stabilization of a laser on a large-detuned atomic-reference frequency by resonant interferometry

    NASA Astrophysics Data System (ADS)

    Barboza, Priscila M. T.; Nascimento, Guilherme G.; Araújo, Michelle O.; da Silva, Cícero M.; Cavalcante, Hugo L. D. de S.; Oriá, Marcos; Chevrollier, Martine; Passerat de Silans, Thierry

    2016-04-01

    We report a simple technique for stabilization of a laser frequency at the wings of an atomic resonance. The reference signal used for stabilization issues from interference effects obtained in a low-quality cavity filled with a resonant atomic vapour. For a frequency detuned 2.6 GHz from the 133Cs D2 6S{}1/2 F = 4 to 6P{}3/2 F’ = 5 transition, the fractional frequency Allan deviation is 10-8 for averaging times of 300 s, corresponding to a frequency deviation of 4 MHz. Adequate choice of the atomic density and of the cell thickness allows locking the laser at detunings larger than 10 GHz. Such a simple technique does not require magnetic fields or signal modulation.

  3. Time domain and frequency domain design techniques for model reference adaptive control systems

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III

    1971-01-01

    Some problems associated with the design of model-reference adaptive control systems are considered and solutions to these problems are advanced. The stability of the adapted system is a primary consideration in the development of both the time-domain and the frequency-domain design techniques. Consequentially, the use of Liapunov's direct method forms an integral part of the derivation of the design procedures. The application of sensitivity coefficients to the design of model-reference adaptive control systems is considered. An application of the design techniques is also presented.

  4. Synthesis of Optical Frequencies and Ultrastable Femtosecond Pulse Trains from an Optical Reference Oscillator

    NASA Astrophysics Data System (ADS)

    Bartels, A.; Ramond, T. M.; Diddams, S. A.; Hollberg, L.

    Recently, atomic clocks based on optical frequency standards have been demonstrated [1,2]. A key element in these clocks is a femtosecond laser that downconverts the petahertz oscillation rate into countable ticks at 1 GHz. When compared to current microwave standards, these new optical clocks are expected to yield an improvement in stability and accuracy by roughly a factor of 1000. Furthermore, it is possible that the lowest noise microwave sources will soon be based on atomically-stabilized optical oscillators that have their frequency converted to the microwave domain via a femtosecond laser. Here, we present tests of the ability of femtosecond lasers to transfer stability from an optical oscillator to their repetition rates as well as to the associated broadband frequency comb. In a first experiment, we phase-lock two lasers to a stabilized laser diode and find that the relative timing jitter in their pulse trains can be on the order of 1 femtosecond in a 100 kHz bandwidth. It is important to distinguish this technique from previous work where a femtosecond laser has been stabilized to a microwave standard [3,4] or another femtosecond laser [5]. Furthermore, we extract highly stable microwave signals with a fractional frequency instability of 2×10-14 in 1 s by photodetection of the laser pulse trains. In a second experiment, we similarly phase-lock the femtosecond laser to an optical oscillator with linewidth less than 1 Hz [6]. The precision with which we can make the femtosecond frequency comb track this reference oscillator is then tested by a heterodyne measurement between a second stable optical oscillator and a mode of the frequency comb that is displaced 76 THz from the 1 Hz-wide reference. From this heterodyne signal we place an upper limit of 150 Hz on the linewidth of the elements of the frequency comb, limited by the noise in the measurement itself.

  5. Observation and absolute frequency measurements of the 1S0-3P0 optical clock transition in neutral ytterbium.

    PubMed

    Hoyt, C W; Barber, Z W; Oates, C W; Fortier, T M; Diddams, S A; Hollberg, L

    2005-08-19

    We report the direct excitation of the highly forbidden (6s2) 1S0 <--> (6s6p) 3P0 optical transition in two odd isotopes of neutral ytterbium. As the excitation laser frequency is scanned, absorption is detected by monitoring the depletion from an atomic cloud at approximately 70 microK in a magneto-optical trap. The measured frequency in 171Yb (F=1/2) is 518,295,836,591.6 +/- 4.4 kHz. The measured frequency in 173Yb (F=5/2) is 518,294,576,847.6 +/- 4.4 kHz. Measurements are made with a femtosecond-laser frequency comb calibrated by the National Institute of Standards and Technology cesium fountain clock and represent nearly a 10(6)-fold reduction in uncertainty. The natural linewidth of these J=0 to J=0 transitions is calculated to be approximately 10 mHz, making them well suited to support a new generation of optical atomic clocks based on confinement in an optical lattice. PMID:16196856

  6. Absolute optical frequency measurements of the cesium D1 transitions and their effect on alpha, the fine-structured constant

    NASA Astrophysics Data System (ADS)

    Calkins, Keith Gordon

    The fine-structure constant or electromagnetic coupling constant, alpha e, is a dimensionless ratio which unites many physics subfields. Although known precisely via experiments in each subfield, there is disagreement within and between subfields. In particular, precise values obtained via electron ge - 2 experiments which depend heavily on QED calculations have not always been in agreement with those obtained via muon g mu - 2 experiments. Also, solid state measurements (quantum hall effect and AC Josephson effect) often disagree with neutronic hmn measurements. alphae is often said to vary with energy but the question remains as to whether or not its low energy value is stable now or has been stable over the history of the universe. Improved precision helps resolve these issues as they relate to physics, possibly beyond the standard model. The Optical Frequency Measurements group in the Time and Frequency Division at the National Institute of Science and Technology (NIST, Boulder, CO) developed and maintains a femtosecond laser frequency comb which is calibrated with respect to the cesium fountain clock implementation of the second. A single frequency component of the femtosecond laser comb is used together with a solid state diode laser and cesium thermal beam to precisely measure the cesium D1 F ∈ {3,4} transition frequencies. The value of fD1centroid = 335 116 048 748.1(2.4) kHz obtained for the transition centroid is over fifteen times more precise than the most recent previous measurement. A precise value for the cesium D1 hyperfine splitting fHFe = 1 167 723.6(4.7) kHz is reported as well. This value is also over fifteen times more precise than the most recent previous measurement. These new neutral 133Cs 6s 2 S½ → 6p 2 P½ transition (D1) frequencies, when combined with the 2002 CODATA values of the Rydberg, proton/electron mass ratio, cesium atomic mass, and cesium recoil frequency, provide an almost QED-free value of alpha: alphae = 1/137.036 0000

  7. Accurate quantification of water-macromolecule exchange induced frequency shift: effects of reference substance.

    PubMed

    Leutritz, Tobias; Hilfert, Liane; Smalla, Karl-Heinz; Speck, Oliver; Zhong, Kai

    2013-01-01

    Water-macromolecule exchange induces a bulk water frequency shift contributing to the contrast in phase imaging. For separating the effects of the water-macromolecule exchange and the macromolecule susceptibility, appropriate internal or external references are needed. In this study, two internal reference compounds, 2,2,3,3-tetradeuterio-3-trimethylsilyl-propionate (TMSP) and 1,4-dioxane, were used to study the macromolecule-dependent water frequency shift in a bovine serum albumin (BSA)-water system in detail. For TMSP, the water-macromolecule exchange shift depended on both the BSA and the reference concentration and stabilized to a value of 0.025 ppm/mM (298 K, TMSP concentrations > 30 mM). For dioxane, the dependency of the water-macromolecule exchange shift on the BSA concentration is independent of dioxane at low concentrations. The resulting shift was smaller (0.009 ppm/mM) when compared with using higher TMSP concentrations as reference. This discrepancy might be due to additional dioxane-water interactions. Measurements with an external chloroform reference in a coaxial geometry showed a shift of -0.013 ppm/mM resulting from the opposing effects of macromolecules in water exchange-induced shift and diamagnetic susceptibility shift. All these effects should be considered in the interpretation of tissue phase contrast. From the experimental data, the equilibrium binding constant between BSA and TMSP has been quantified to be K(d) = 1.3 ± 0.4, and the estimated number of interaction sites for BSA is 12.7 ± 2.6. PMID:22374834

  8. Low-frequency rTMS over the Parieto-frontal network during a sensorimotor task: The role of absolute beta power in the sensorimotor integration.

    PubMed

    Gongora, Mariana; Bittencourt, Juliana; Teixeira, Silmar; Basile, Luis F; Pompeu, Fernando; Droguett, Enrique López; Arias-Carrion, Oscar; Budde, Henning; Cagy, Mauricio; Velasques, Bruna; Nardi, Antonio Egídio; Ribeiro, Pedro

    2016-01-12

    Several studies have demonstrated that Repetitive Transcranial Magnetic Stimulation (rTMS) promotes alterations in the Central Nervous System circuits and networks. The focus of the present study is to examine the absolute beta power patterns in the Parieto-frontal network. We hypothesize that rTMS alters the mechanisms of the sensorimotor integration process during a visuomotor task. Twelve young healthy volunteers performed a visuomotor task involving decision making recorded (Catch a ball in a free fall) by Electroencephalography. rTMS was applied on the Superior Parietal Cortex (SPC; Brodmann area [BA] 7) with low-frequency (1 Hz - 15 min - 80% Resting Motor Threshold). For each Frontal and Parietal region, a two-way ANOVA was used to compare the absolute beta power before and after TMS for each condition of the study (Rest 1, Task and Rest 2). The results demonstrated interactions (TMS vs. Condition) for the Frontal electrodes: Fp1, Fp2 and F7 and an effect of TMS (before and after) for F4.The results for the Parietal region showed a main effect of Condition for the P3, PZ and P4 electrodes. Thus, our paradigm was useful to better understand the reorganization and neural plasticity mechanisms in the parieto-frontal network during the sensorimotor integration process. PMID:26608023

  9. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    SciTech Connect

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-07-15

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

  10. Stabilized chip-scale Kerr frequency comb via a high-Q reference photonic microresonator

    NASA Astrophysics Data System (ADS)

    Lim, Jinkang; Huang, Shu-Wei; Vinod, Abhinav K.; Mortazavian, Parastou; Yu, Mingbin; Kwong, Dim-Lee; Savchenkov, Anatoliy A.; Matsko, Andrey B.; Maleki, Lute; Wong, Chee Wei

    2016-08-01

    We stabilize a chip-scale Si3N4 phase-locked Kerr frequency comb via locking the pump laser to an independent stable high-Q reference microresonator and locking the comb spacing to an external microwave oscillator. In this comb, the pump laser shift induces negligible impact on the comb spacing change. This scheme is a step towards miniaturization of the stabilized Kerr comb system as the microresonator reference can potentially be integrated on-chip. Fractional instability of the optical harmonics of the stabilized comb is limited by the microwave oscillator used for comb spacing lock below 1 s averaging time and coincides with the pump laser drift in the long term.

  11. Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells.

    PubMed

    Wang, Chenchen; Wheeler, Natalie V; Fourcade-Dutin, Coralie; Grogan, Michael; Bradley, Thomas D; Washburn, Brian R; Benabid, Fetah; Corwin, Kristan L

    2013-08-01

    Gas-filled hollow optical fiber references based on the P(13) transition of the ν1+ν3 band of 12C2H2 promise portability with moderate accuracy and stability. Previous realizations are corrected (<1σ) by using proper modeling of a shift due to line-shape. To improve portability, a sealed photonic microcell is characterized on the 12C2H2 ν1+ν3 P(23) transition with somewhat reduced accuracy and stability. Effects of the photonic crystal fiber, including surface modes, are explored. Both polarization-maintaining (PM) and non-PM 7-cell photonic bandgap fiber are shown to be unsuitable for kilohertz-level frequency references. PMID:23913062

  12. A Miniaturized Plasma Impedance Probe For Ionospheric Absolute Electron Density and Electron-Neutral Collision Frequency Measurements

    NASA Astrophysics Data System (ADS)

    Patra, S.; Rao, A. J.; Jayaram, M.; Hamoui, M. E.; Spencer, E. A.; Winstead, C.

    2008-12-01

    A fully integrated, low power, miniaturized Plasma Impedance Probe (PIP) is developed for small satellite constellation missions to create a map of electron density in the ionosphere. Two alternative methods for deriving plasma parameters from impedance measurements are discussed. The first method employs a frequency sweep technique, while the second employs a pulse based technique. The pulse based technique is a new method that leads to faster measurements. The two techniques necessitate different specifications for the front end analog circuit design. Unlike previous PIP designs, the integrated PIP performs direct voltage/current sampling at the probe's terminal. The signal processing tasks are performed by an off-chip FPGA to compute the impedance of the probe in the surrounding plasma. The new design includes self- calibration algorithms in order to increase the accuracy and reliability of the probe for small satellite constellation missions. A new feature included in this instrument is that the plasma parameters are derived from impedance measurements directly on the FPGA, significantly reducing the bandwith of telemetered data down to ground.

  13. Phase reference in phase-sensitive sum-frequency vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Shumei; Liang, Rongda; Xu, Xiaofan; Zhu, Heyuan; Shen, Y. Ron; Tian, Chuanshan

    2016-06-01

    Phase-sensitive sum-frequency vibrational spectroscopy (PS-SFVS) has been established as a powerful technique for surface characterization, but for it to generate a reliable spectrum, accurate phase measurement with a well-defined phase reference is most important. Incorrect phase measurement can lead to significant distortion of a spectrum, as recently seen in the case for the air/water interface. In this work, we show theoretically and experimentally that a transparent, highly nonlinear crystal, such as quartz and barium borate, can be a good phase reference if the surface is clean and unstrained and the crystal is properly oriented to yield a strong SF output. In such cases, the reflected SF signal is dominated by the bulk electric dipole contribution and its phase is either +90° or -90°. On the other hand, materials with inversion symmetry, such as water, fused quartz, and CaF2 are not good phase references due to the quadrupole contribution and phase dispersion at the interface. Using a proper phase reference in PS-SFVS, we have found the most reliable OH stretching spectrum for the air/water interface. The positive band at low frequencies in the imaginary component of the spectrum, which has garnered much interest and been interpreted by many to be due to strongly hydrogen-bonded water species, is no longer present. A weak positive feature however still exists. Its magnitude approximately equals to that of air/D2O away from resonances, suggesting that this positive feature is unrelated to surface resonance of water.

  14. Phase reference in phase-sensitive sum-frequency vibrational spectroscopy.

    PubMed

    Sun, Shumei; Liang, Rongda; Xu, Xiaofan; Zhu, Heyuan; Shen, Y Ron; Tian, Chuanshan

    2016-06-28

    Phase-sensitive sum-frequency vibrational spectroscopy (PS-SFVS) has been established as a powerful technique for surface characterization, but for it to generate a reliable spectrum, accurate phase measurement with a well-defined phase reference is most important. Incorrect phase measurement can lead to significant distortion of a spectrum, as recently seen in the case for the air/water interface. In this work, we show theoretically and experimentally that a transparent, highly nonlinear crystal, such as quartz and barium borate, can be a good phase reference if the surface is clean and unstrained and the crystal is properly oriented to yield a strong SF output. In such cases, the reflected SF signal is dominated by the bulk electric dipole contribution and its phase is either +90° or -90°. On the other hand, materials with inversion symmetry, such as water, fused quartz, and CaF2 are not good phase references due to the quadrupole contribution and phase dispersion at the interface. Using a proper phase reference in PS-SFVS, we have found the most reliable OH stretching spectrum for the air/water interface. The positive band at low frequencies in the imaginary component of the spectrum, which has garnered much interest and been interpreted by many to be due to strongly hydrogen-bonded water species, is no longer present. A weak positive feature however still exists. Its magnitude approximately equals to that of air/D2O away from resonances, suggesting that this positive feature is unrelated to surface resonance of water. PMID:27369537

  15. Development of reference states for use in absolute free energy calculations of atomic clusters with application to 55-atom Lennard-Jones clusters in the solid and liquid states

    NASA Astrophysics Data System (ADS)

    Amon, L. M.; Reinhardt, W. P.

    2000-09-01

    In this paper four reference states allowing computation of the absolute internal free energies of solid and liquid clusters are introduced and implemented. Three of these are introduced for the first time. Two of these references are useful for highly fluctional liquidlike clusters while the other two are appropriate for more rigid solidlike clusters. These reference states are combined with a finite time variational method to obtain upper and lower bounds to the absolute free energies of clusters of Lennard-Jones (LJ) atoms, LJ4 and LJ55, allowing the efficiency of each of the four reference states to be elucidated. The optimal references are then applied to obtain upper and lower bounds to the internal free energies (the absolute free energy in the cluster center of mass frame) of LJ55 over a series of fixed temperatures including the solid-liquid coexistence regime. The reversible scaling method, recently introduced by de Koning, Antonelli, and Yip, is then used to extend the results over a continuous range of temperatures. Estimation of the rotational free energy allows comparisons to free energies of LJ55 in the nonrotating center of mass frame as estimated by Doye and Wales.

  16. Reference hearing thresholds in an extended frequency range as a function of age.

    PubMed

    Jilek, Milan; Šuta, Daniel; Syka, Josef

    2014-10-01

    The ISO 7029 (2000) standard defines normative hearing thresholds H (dB hearing level) as a function of age Y (years), given by H = α(Y - 18)(2), up to 8 kHz. The purpose of this study was to determine reference thresholds above 8 kHz. Hearing thresholds were examined using pure-tone audiometry over the extended frequency range 0.125-16 kHz, and the acquired values were used to specify the optimal approximation of the dependence of hearing thresholds on age. A sample of 411 otologically normal men and women 16-70 years of age was measured in both ears using a high-frequency audiometer and Sennheiser HDA 200 headphones. The coefficients of quadratic, linear, polynomial and power-law approximations were calculated using the least-squares fitting procedure. The approximation combining the square function H = α(Y - 18)(2) with a power-law function H = β(Y - 18)(1.5), both gender-independent, was found to be the most appropriate. Coefficient α was determined at frequencies of 9 kHz (α = 0.021), 10 kHz (α = 0.024), 11.2 kHz (α = 0.029), and coefficient β at frequencies of 12.5 kHz (β = 0.24), 14 kHz (β = 0.32), 16 kHz (β = 0.36). The results could be used to determine age-dependent normal hearing thresholds in an extended frequency range and to normalize hearing thresholds when comparing participants differing in age. PMID:25324083

  17. Performance of low-cost commercial fiber-optic transceivers for reference frequency distribution

    NASA Technical Reports Server (NTRS)

    Dragonette, Richard; Suter, Joseph J.

    1993-01-01

    Precision time and frequency reference signals were effectively disseminated using high-quality intricate fiber-optic distribution systems. The quality of signals distributed by such systems is excellent, but the cost of these systems makes them unavailable to many potential users. A study of signal quality maintained using inexpensive commercial transmitter/receiver pairs is undertaken. Seven different transmitter/receiver pairs obtained from four different manufacturers were thoroughly tested using a 5 MHz sinusoid derived from a precision, temperature controlled, crystal-controlled oscillator. The electrical signal output from each fiber-optic receiver was tested for spectral purity, single-sideband phase noise, and AM noise, and the results are tabulated and discussed without identification of the manufacturer or the equipment model number.

  18. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  19. Fibers and combs: weaving a portable frequency reference in the near-IR

    NASA Astrophysics Data System (ADS)

    Corwin, Kristan

    2009-05-01

    Ten years after the advent of femtosecond optical frequency combs, they are now used for many applications. Here, we use near infrared combs to characterize and develop portable frequency references based on gas-filled hollow optical fibers. We explore the accuracy and stability of saturated absorption features in acetylene gas confined inside both 10 micron core diameter photonic bandgap fibers and ˜60 micron core diameter kagome-structured photonic crystal fibers. A cw fiber laser referenced to these features has resulted in stabilities of ˜10-11 in 1 s, competitive with iodine-stabilized HeNe lasers. Most of these studies have been performed using a femtosecond fiber laser that relies on a carbon nanotube saturable absorber. However, we have also explored Cr:forsterite femtosecond lasers with intracavity prisms, which reveal dramatic narrowing of the carrier-envelope offset beat when a knife edge is inserted in the cavity. Such observations and subsequent noise dynamics studies will lead to a better understanding of noise in these solid state combs, making Cr:forsterite laser combs more competitive for spectroscopy and other applications.

  20. Frequency dispersion of the first hyperpolarizabilities of reference molecules for nonlinear optics

    NASA Astrophysics Data System (ADS)

    de Wergifosse, Marc; Castet, Frédéric; Champagne, Benoît

    2015-05-01

    The frequency dispersion of the hyper-Rayleigh scattering first hyperpolarizabilities (βHRS) of five reference molecules for nonlinear optics, namely, carbon tetrachloride, chloroform, dichloromethane, acetonitrile, and trichloroacetonitrile, is described using the coupled-cluster singles and doubles quadratic response function (CCSD-QRF) as well as approximate schemes. Comparisons to approximate schemes in which the frequency dispersion is evaluated as either a multiplicative or an additive correction to the static hyperpolarizability yield the following observations: (i) errors of the order of 10% or less are usually encountered when using the multiplicative scheme for photon energies far from the lowest dipole-allowed excitation energies, (ii) spurious cases cannot be excluded as evidenced by carbon tetrachloride where the multiplicative scheme predicts a decrease of βHRS in contradiction to the increase obtained using the CCSD-QRF method, and (iii) the additive scheme is at best as reliable as the multiplicative approximation. The two-state approximation presents the advantage of correcting the wrong behavior of the additive and multiplicative schemes for carbon tetrachloride, but it is not an improved solution for the other compounds, while the question of selecting the appropriate dominant excited state remains unanswered. Finally, a new βxyz value of 18.9 a.u. is proposed for carbon tetrachloride in gas phase at λ = 1064 nm, to be compared with the measured 16.9 ± 1.4 a.u. value due to Shelton.

  1. Frequency dispersion of the first hyperpolarizabilities of reference molecules for nonlinear optics

    SciTech Connect

    Wergifosse, Marc de; Champagne, Benoît; Castet, Frédéric

    2015-05-21

    The frequency dispersion of the hyper-Rayleigh scattering first hyperpolarizabilities (β{sub HRS}) of five reference molecules for nonlinear optics, namely, carbon tetrachloride, chloroform, dichloromethane, acetonitrile, and trichloroacetonitrile, is described using the coupled-cluster singles and doubles quadratic response function (CCSD-QRF) as well as approximate schemes. Comparisons to approximate schemes in which the frequency dispersion is evaluated as either a multiplicative or an additive correction to the static hyperpolarizability yield the following observations: (i) errors of the order of 10% or less are usually encountered when using the multiplicative scheme for photon energies far from the lowest dipole-allowed excitation energies, (ii) spurious cases cannot be excluded as evidenced by carbon tetrachloride where the multiplicative scheme predicts a decrease of β{sub HRS} in contradiction to the increase obtained using the CCSD-QRF method, and (iii) the additive scheme is at best as reliable as the multiplicative approximation. The two-state approximation presents the advantage of correcting the wrong behavior of the additive and multiplicative schemes for carbon tetrachloride, but it is not an improved solution for the other compounds, while the question of selecting the appropriate dominant excited state remains unanswered. Finally, a new β{sub xyz} value of 18.9 a.u. is proposed for carbon tetrachloride in gas phase at λ = 1064 nm, to be compared with the measured 16.9 ± 1.4 a.u. value due to Shelton.

  2. Absolute and relative emission spectroscopy study of 3 cm wide planar radio frequency atmospheric pressure bio-plasma source

    SciTech Connect

    Deng, Xiaolong; Nikiforov, Anton Yu Leys, Christophe; Ionita, Eusebiu-Rosini; Dinescu, Gheorghe

    2015-08-03

    The dynamics of low power atmospheric pressure radio frequency discharge generated in Ar gas in long gap of 3 cm is investigated. This plasma source is characterized and analyzed for possible large scale biomedical applications where low gas temperature and potential-less effluent are required. The discharge forms a homogenous glow-like afterglow in ambient air at input power of 30 W with low gas temperature of 330 K, which is desirable in biomedical applications. With absolute calibrated spectroscopy of the discharge, electron density of 0.4 × 10{sup 18} m{sup −3} and electron temperature of 1.5 eV are obtained from continuum Bremsstrahlung radiation of the source. Time and spatial resolved emission spectroscopy is used to analyze discharge generation mechanism and active species formation. It is found that discharge dynamics strongly correlates with the discharge current waveform. Strong Ar(2p) excited states emission is observed nearby the electrodes surface on a distance up to 200 μm in the plasma sheath region at 10 ns after the current peak, whereas OH(A) emission is uniform along of the interelectrode gap.

  3. Measurement of absolute concentrations of individual compounds in metabolite mixtures by gradient-selective time-zero 1H-13C HSQC with two concentration references and fast maximum likelihood reconstruction analysis.

    PubMed

    Hu, Kaifeng; Ellinger, James J; Chylla, Roger A; Markley, John L

    2011-12-15

    Time-zero 2D (13)C HSQC (HSQC(0)) spectroscopy offers advantages over traditional 2D NMR for quantitative analysis of solutions containing a mixture of compounds because the signal intensities are directly proportional to the concentrations of the constituents. The HSQC(0) spectrum is derived from a series of spectra collected with increasing repetition times within the basic HSQC block by extrapolating the repetition time to zero. Here we present an alternative approach to data collection, gradient-selective time-zero (1)H-(13)C HSQC(0) in combination with fast maximum likelihood reconstruction (FMLR) data analysis and the use of two concentration references for absolute concentration determination. Gradient-selective data acquisition results in cleaner spectra, and NMR data can be acquired in both constant-time and non-constant-time mode. Semiautomatic data analysis is supported by the FMLR approach, which is used to deconvolute the spectra and extract peak volumes. The peak volumes obtained from this analysis are converted to absolute concentrations by reference to the peak volumes of two internal reference compounds of known concentration: DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid) at the low concentration limit (which also serves as chemical shift reference) and MES (2-(N-morpholino)ethanesulfonic acid) at the high concentration limit. The linear relationship between peak volumes and concentration is better defined with two references than with one, and the measured absolute concentrations of individual compounds in the mixture are more accurate. We compare results from semiautomated gsHSQC(0) with those obtained by the original manual phase-cycled HSQC(0) approach. The new approach is suitable for automatic metabolite profiling by simultaneous quantification of multiple metabolites in a complex mixture. PMID:22029275

  4. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  5. Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell

    NASA Astrophysics Data System (ADS)

    Meras, Patrick; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Spiers, Gary D.

    2010-04-01

    We have designed and built a hollow-core fiber frequency reference cell, filled it with CO2, and used it to demonstrate frequency stabilization of a 2.05 μm Tm:Ho:YLF laser using frequency modulation (FM) spectroscopy technique. The frequency reference cell is housed in a compact and robust hermetic package that contains a several meter long hollow-core photonic crystal fiber optically coupled to index-guiding fibers with a fusion splice on one end and a mechanical splice on the other end. The package has connectorized fiber pigtails and a valve used to evacuate, refill it, or adjust the gas pressure. We have demonstrated laser frequency standard deviation decreasing from >450MHz (free-running) to <2.4MHz (stabilized). The 2.05 μm laser wavelength is of particular interest for spectroscopic instruments due to the presence of many CO2 and H20 absorption lines in its vicinity. To our knowledge, this is the first reported demonstration of laser frequency stabilization at this wavelength using a hollow-core fiber reference cell. This approach enables all-fiber implementation of the optical portion of laser frequency stabilization system, thus making it dramatically more lightweight, compact, and robust than the traditional free-space version that utilizes glass or metal gas cells. It can also provide much longer interaction length of light with gas and does not require any alignment. The demonstrated frequency reference cell is particularly attractive for use in aircraft and space coherent lidar instruments for measuring atmospheric CO2 profile.

  6. Absolute frequency spectroscopy of CO2 lines at around 2.09 μm by combined use of an Er:fiber comb and a Ho:YLF amplifier.

    PubMed

    Gatti, D; Coluccelli, N; Gambetta, A; Di Lieto, A; Tonelli, M; Galzerano, G; Laporta, P; Marangoni, M

    2011-10-01

    The low-frequency tail of an octave-spanning supercontinuum (SC) generated by an Er:fiber comb is enhanced by a multipass Ho:YLF amplifier and used in a sum-frequency-generation scheme to obtain absolute referencing of a single-mode Tm-Ho:YAG laser tunable around 2.09 μm. By tuning the comb repetition frequency, the probing laser is scanned across the absorption lines of a CO(2) gas sample and highly accurate absorption profiles are measured. This approach can be readily scaled to any wavelength above ~2 μm. PMID:21964142

  7. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  8. Active Control of Multi-Tonal Noise with Reference Generator Based on On-Line Frequency Estimation

    NASA Astrophysics Data System (ADS)

    KIM, S.; PARK, Y.

    1999-10-01

    In this paper, a novel active noise control (ANC) structure with a frequency estimator is proposed for systems with multi-tonal noise. The conventional feedforward ANC algorithms need a measured reference signal to calculate the gradient of the squared error and filter coefficients. For ANC systems applied to aircraft or passenger ships, which reference signals are usually measured are so far from seats where engines from the main part of controllers is placed that the scheme might be difficult to implement or very costly. Feedback ANC algorithms which do not require a measure of reference signals, use error signals alone to update the filter and are usually sensitive to measurement noise and unexpected transient noise such as a sneeze, clapping of hands and so on.The proposed algorithm, which estimates frequencies of the multi-tonal noise in real time using adaptive notch filter (ANF), improves convergence rate, threshold SNR and computational efficiency compared with the conventional ones. The reference signal needed for the feedforward control is not measured directly, but is generated with the estimated frequencies. It has a strong similarity to the conventional IMC-based feedback control because the reference is generated from the error signal in both cases. The proposed ANC algorithm is compared with the conventional IMC-based feedback control algorithm.Cascade ANF, which has a low computational burden, is used to implement the ANC system in real time. Experiments for verifying efficacy of the proposed algorithm are carried out in the laboratory.

  9. Tuneable dual-comb spectrometer based on commercial femtosecond lasers and reference cell for optical frequency calibration

    NASA Astrophysics Data System (ADS)

    Portuondo-Campa, E.; Bennès, J.; Balet, L.; Kundermann, S.; Merenda, F.; Boer, G.; Lecomte, S.

    2016-07-01

    Two commercial femtosecond laser sources have been used to implement a dual-comb spectrometer tuneable across a spectral range from 1.5 to 2.2 μm. The optical linewidth of the comb modes was characterized for different time scales in order to estimate the achievable spectral resolution for an optimal acquisition time. The transmission spectra of three different gas samples were recorded, demonstrating good agreement with reference data. Frequency axis calibration was provided via the parallel monitoring of a reference sample. This technique allows an accurate calibration of the frequency axis of the spectrometer, with no need for stabilization or optical referencing of the frequency combs. Our set-up represents a good compromise for a compact and versatile dual-comb spectrometer based on commercially available parts with possible applications in trace-gas monitoring, remote sensing and spectroscopy of short-lived processes.

  10. Progress Report on a Portable TI:SAPPHIRE Comb Laser with Frequencies Referring to Cesium Atom Two-Photon Transitions

    NASA Astrophysics Data System (ADS)

    Cheng, Wang-Yau; Wu, Chien-Ming; Liu, Tz-Wei; Chen, Yo-Huan

    2010-06-01

    A portable Ti:sapphire comb laser would contribute significantly to generalize comb-laser applications, such as the astro-comb missions or other interdisciplinary collaborations. To develop a portable comb laser, three barriers lie ahead: one is to miniaturize and robotize the frequency reference system of the comb laser; the second is to ensure the long-term frequency accuracy without satellite connection, and the third is to miniaturize the pumping laser system. We developed two hand-size cesium-stabilized diode lasers at 822 nm and 884 nm to serve as frequency references for a comb laser and we carried out a comb-laser-based CPT experiment with one single cesium cell that might offer a locking procedure for long-term comb laser accuracy. We will also report our plans and progress on a fiber laser pumped Ti:sapphire comb laser.

  11. Frequency management engineering principles spectrum measurements (reference order 6050.23)

    NASA Astrophysics Data System (ADS)

    Fretz, J. D.

    1982-08-01

    Federal Aviation Administration personnel are frequently involved in the resolution of interference complaints. The skillful use of measurement equipment can be essential to the successful resolution of such complaints. This report provides a summary of the spectrum measurement techniques applicable to Federal Aviation Administration facilities using the radio frequency spectrum. It is oriented toward electromagnetic compatibility measurements made by frequency management engineers but is of interest to anyone involved in radio frequency measurements.

  12. Frequency and Informativeness of Gestural Cues Accompanying Generic and Particular Reference

    ERIC Educational Resources Information Center

    Meyer, Meredith; Gelman, Susan A.; Stilwell, Sarah M.

    2015-01-01

    Generic noun phrases, or generics, refer to abstract categories ("Dogs" bark) rather than particular individuals ("Those dogs" bark). Study 1 investigated how parents use gestures in association with generic versus particular reference during naturalistic interactions with their 2- and 3-year-old children. Parents provided…

  13. Laser Frequency Stabilization for Coherent Lidar Applications using Novel All-Fiber Gas Reference Cell Fabrication Technique

    NASA Technical Reports Server (NTRS)

    Meras, Patrick, Jr.; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Levin, Jason; Spiers, Gary D.

    2008-01-01

    Compact hollow-core photonic crystal fiber (HC-PCF)gas frequency reference cell was constructed using a novel packaging technique that relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers. The use of this gas cell for laser frequency stabilization was demonstrated by locking a tunable diode laser to the center of the P9 line from the (nu)1+(nu)3 band of acetylene with RMS frequency error of 2.06 MHz over 2 hours. This effort was performed in support of a task to miniaturize the laser frequency stabilization subsystem of JPL/LMCT Laser Absorption Spectrometer (LAS) instrument.

  14. Basic Restriction and Reference Level in Anatomically-based Japanese Models for Low-Frequency Electric and Magnetic Field Exposures

    NASA Astrophysics Data System (ADS)

    Takano, Yukinori; Hirata, Akimasa; Fujiwara, Osamu

    Human exposed to electric and/or magnetic fields at low frequencies may cause direct effect such as nerve stimulation and excitation. Therefore, basic restriction is regulated in terms of induced current density in the ICNIRP guidelines and in-situ electric field in the IEEE standard. External electric or magnetic field which does not produce induced quantities exceeding the basic restriction is used as a reference level. The relationship between the basic restriction and reference level for low-frequency electric and magnetic fields has been investigated using European anatomic models, while limited for Japanese model, especially for electric field exposures. In addition, that relationship has not well been discussed. In the present study, we calculated the induced quantities in anatomic Japanese male and female models exposed to electric and magnetic fields at reference level. A quasi static finite-difference time-domain (FDTD) method was applied to analyze this problem. As a result, spatially averaged induced current density was found to be more sensitive to averaging algorithms than that of in-situ electric field. For electric and magnetic field exposure at the ICNIRP reference level, the maximum values of the induced current density for different averaging algorithm were smaller than the basic restriction for most cases. For exposures at the reference level in the IEEE standard, the maximum electric fields in the brain were larger than the basic restriction in the brain while smaller for the spinal cord and heart.

  15. Assessment of the Performance of a Dual-Frequency Surface Reference Technique

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Liao, Liang; Tanelli, Simone; Durden, Stephen

    2013-01-01

    The high correlation of the rain-free surface cross sections at two frequencies implies that the estimate of differential path integrated attenuation (PIA) caused by precipitation along the radar beam can be obtained to a higher degree of accuracy than the path-attenuation at either frequency. We explore this finding first analytically and then by examining data from the JPL dual-frequency airborne radar using measurements from the TC4 experiment obtained during July-August 2007. Despite this improvement in the accuracy of the differential path attenuation, solving the constrained dual-wavelength radar equations for parameters of the particle size distribution requires not only this quantity but the single-wavelength path attenuation as well. We investigate a simple method of estimating the single-frequency path attenuation from the differential attenuation and compare this with the estimate derived directly from the surface return.

  16. Absolute frequency measurement of 1S0(F = 1/2)-3P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS

    NASA Astrophysics Data System (ADS)

    Park, Chang Yong; Yu, Dai-Hyuk; Lee, Won-Kyu; Eon Park, Sang; Kim, Eok Bong; Lee, Sun Kyung; Cho, Jun Woo; Yoon, Tai Hyun; Mun, Jongchul; Jong Park, Sung; Kwon, Taeg Yong; Lee, Sang-Bum

    2013-04-01

    We measured the absolute frequency of the optical clock transition 1S0(F = 1/2)-3P0(F = 1/2) of 171Yb atoms confined in a one-dimensional optical lattice and it was determined to be 518 295 836 590 863.5(8.1) Hz. The frequency was measured against Terrestrial Time (TT; the SI second on the geoid) using an optical frequency comb of which the frequency was phase-locked to an H-maser as a flywheel oscillator traceable to TT. The magic wavelength was also measured as 394 798.48(79) GHz. The results are in good agreement with two previous measurements of other institutes within the specified uncertainty of this work.

  17. Swept Frequency Laser Metrology System

    NASA Technical Reports Server (NTRS)

    Zhao, Feng (Inventor)

    2010-01-01

    A swept frequency laser ranging system having sub-micron accuracy that employs multiple common-path heterodyne interferometers, one coupled to a calibrated delay-line for use as an absolute reference for the ranging system. An exemplary embodiment uses two laser heterodyne interferometers to create two laser beams at two different frequencies to measure distance and motions of target(s). Heterodyne fringes generated from reflections off a reference fiducial X(sub R) and measurement (or target) fiducial X(sub M) are reflected back and are then detected by photodiodes. The measured phase changes Delta phi(sub R) and Delta phi (sub m) resulting from the laser frequency swept gives target position. The reference delay-line is the only absolute reference needed in the metrology system and this provides an ultra-stable reference and simple/economical system.

  18. Challenges and Solutions for Frequency and Energy References for Spaceborne and Airborne Integrated Path Differential Absorption Lidars

    NASA Astrophysics Data System (ADS)

    Fix, Andreas; Quatrevalet, Mathieu; Witschas, Benjamin; Wirth, Martin; Büdenbender, Christian; Amediek, Axel; Ehret, Gerhard

    2016-06-01

    The stringent requirements for both the frequency stability and power reference represent a challenging task for Integrated Path Differential Absorption Lidars (IPDA) to measure greenhouse gas columns from satellite or aircraft. Currently, the German-French methane mission MERLIN (Methan Remote Lidar Mission) is prepared. At the same time CHARM-F, an aircraft installed system has been developed at DLR as an airborne demonstrator for a spaceborne greenhouse gas mission. The concepts and realization of these important sub-systems are discussed.

  19. Absolute Antenna Calibration at the US National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.

    2012-12-01

    format. The NGS absolute system is located in Corbin, Virginia, and uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. NGS is interested in providing calibrations for a wide variety of dual-frequency, geodetic-grade antennas, from types in use at IGS and CORS reference stations to rover antennas not normally seen in those networks. In this presentation, we describe the NGS absolute calibration facility, and discuss the observation models and strategy used to generate NGS absolute calibrations. We also demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities.

  20. Effect of reference database on frequency estimates of polymerase chain reaction (PCR)-based DNA profiles.

    PubMed

    Monson, K L; Budowle, B

    1998-05-01

    A variety of general, regional, ancestral and ethnic databases is available for the polymerase chain reaction (PCR)-based loci LDLR, GYPA, HBGG, D7S8, Gc, DQA1, and D1S80. Generally, we observed greater differences in frequency estimations of DNA profiles between racial groups than between ethnic or geographic subgroups. Analysis revealed few forensically significant differences within ethnic subgroups, particularly within general United States groups, and multi-locus frequency estimates typically differ by less than a factor of ten. Using a database different from the one to which a target profile belongs tends to overestimate rarity. Implementation of the general correction of homozygote frequencies for a population substructure, advised by the 1996 National Research Council report, The Evaluation of Forensic DNA Evidence, has a minimal effect on profile frequencies. Even when it is known that both the suspect and all possible perpetrators must belong to the same isolated population, the special correction for inbreeding, which was proposed by the 1996 National Research Council report for this special case, has a relatively modest effect, typically a factor of two or less for 1% inbreeding. The effect becomes more substantial (exceeding a factor of ten) for inbreeding of 3% or more in multi-locus profiles rarer than about one in a million. PMID:9608687

  1. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  2. Mapping Bias Overestimates Reference Allele Frequencies at the HLA Genes in the 1000 Genomes Project Phase I Data

    PubMed Central

    Brandt, Débora Y. C.; Aguiar, Vitor R. C.; Bitarello, Bárbara D.; Nunes, Kelly; Goudet, Jérôme; Meyer, Diogo

    2015-01-01

    Next-generation sequencing (NGS) technologies have become the standard for data generation in studies of population genomics, as the 1000 Genomes Project (1000G). However, these techniques are known to be problematic when applied to highly polymorphic genomic regions, such as the human leukocyte antigen (HLA) genes. Because accurate genotype calls and allele frequency estimations are crucial to population genomics analyses, it is important to assess the reliability of NGS data. Here, we evaluate the reliability of genotype calls and allele frequency estimates of the single-nucleotide polymorphisms (SNPs) reported by 1000G (phase I) at five HLA genes (HLA-A, -B, -C, -DRB1, and -DQB1). We take advantage of the availability of HLA Sanger sequencing of 930 of the 1092 1000G samples and use this as a gold standard to benchmark the 1000G data. We document that 18.6% of SNP genotype calls in HLA genes are incorrect and that allele frequencies are estimated with an error greater than ±0.1 at approximately 25% of the SNPs in HLA genes. We found a bias toward overestimation of reference allele frequency for the 1000G data, indicating mapping bias is an important cause of error in frequency estimation in this dataset. We provide a list of sites that have poor allele frequency estimates and discuss the outcomes of including those sites in different kinds of analyses. Because the HLA region is the most polymorphic in the human genome, our results provide insights into the challenges of using of NGS data at other genomic regions of high diversity. PMID:25787242

  3. The assessment of frequency estimates of Hae III-generated VNTR profiles in various reference databases.

    PubMed

    Budowle, B; Monson, K L; Giusti, A M; Brown, B L

    1994-03-01

    The likelihood of occurrence of 1964 Hae III-generated target DNA profiles was estimated using fixed bin frequencies from various regional and ethnic databases and the multiplication rule. The databases generally were from the following major categories: Black, Caucasian, Hispanic, Oriental, and American Indian. It was found that subdivision, either by ethnic group or by U.S. geographic region, within a major population group did not substantially affect forensic estimates of the likelihood of occurrence of a DNA profile. As expected, the greatest variation in estimates for within-group estimates was among American Indian databases. Because the greatest variation in statistical estimates occurs across-major population groups, in most cases, there will be no unfair bias applying general population database estimates. Therefore, based on empirical data, there is no demonstrable need for using alternate approaches, such as the ceiling approach, to derive statistical estimates. The current practice of using general population databases and the multiplication rule provides valid estimates of the likelihood of occurrence of a DNA profile. PMID:7910844

  4. State-of-the-art fiber optics for short distance frequency reference distribution

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.; Primas, L. E.

    1989-01-01

    A number of recently developed fiber-optic components that hold the promise of unprecedented stability for passively stabilized frequency distribution links are characterized. These components include a fiber-optic transmitter, an optical isolator, and a new type of fiber-optic cable. A novel laser transmitter exhibits extremely low sensitivity to intensity and polarization changes of reflected light due to cable flexure. This virtually eliminates one of the shortcomings in previous laser transmitters. A high-isolation, low-loss optical isolator has been developed which also virtually eliminates laser sensitivity to changes in intensity and polarization of reflected light. A newly developed fiber has been tested. This fiber has a thermal coefficient of delay of less than 0.5 parts per million per deg C, nearly 20 times lower than the best coaxial hardline cable and 10 times lower than any previous fiber-optic cable. These components are highly suitable for distribution systems with short extent, such as within a Deep Space Communications Complex. Here, these new components are described and the test results presented.

  5. The Autonomous Cryocooled Sapphire Oscillator: A Reference for Frequency Stability and Phase Noise Measurements

    NASA Astrophysics Data System (ADS)

    Giordano, V.; Grop, S.; Fluhr, C.; Dubois, B.; Kersalé, Y.; Rubiola, E.

    2016-06-01

    The Cryogenic Sapphire Oscillator (CSO) is the microwave oscillator which feature the highest short-term stability. Our best units exhibit Allan deviation σy (τ) of 4.5x10-16 at 1s, ≈ 1.5x10-16 at 100 s ≤ t ≤ 5,000 s (floor), and ≤ 5x10-15 at one day. The use of a Pulse-Tube cryocooler enables full two year operation with virtually no maintenance. Starting with a short history of the CSO in our lab, we go through the architecture and we provide more details about the resonator, the cryostat, the oscillator loop, and the servo electronics. We implemented three similar oscillators, which enable the evaluation of each with the three- cornered hat method, and provide the potential for Allan deviation measurements at parts of 10-17 level. One of our CSOs (ULISS) is transportable, and goes with a small customized truck. The unique feature of ULISS is that its σy (τ) can be validated at destination by measuring before and after the roundtrip. To this extent, ULISS can be regarded as a traveling standard of frequency stability. The CSOs are a part of the Oscillator IMP project, a platform dedicated to the measurement of noise and short-term stability of oscillators and devices in the whole radio spectrum (from MHz to THz), including microwave photonics. The scope spans from routine measurements to the research on new oscillators, components, and measurement methods.

  6. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  7. Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel

    PubMed Central

    Huang, Jie; Howie, Bryan; McCarthy, Shane; Memari, Yasin; Walter, Klaudia; Min, Josine L.; Danecek, Petr; Malerba, Giovanni; Trabetti, Elisabetta; Zheng, Hou-Feng; Al Turki, Saeed; Amuzu, Antoinette; Anderson, Carl A.; Anney, Richard; Antony, Dinu; Artigas, María Soler; Ayub, Muhammad; Bala, Senduran; Barrett, Jeffrey C.; Barroso, Inês; Beales, Phil; Benn, Marianne; Bentham, Jamie; Bhattacharya, Shoumo; Birney, Ewan; Blackwood, Douglas; Bobrow, Martin; Bochukova, Elena; Bolton, Patrick F.; Bounds, Rebecca; Boustred, Chris; Breen, Gerome; Calissano, Mattia; Carss, Keren; Pablo Casas, Juan; Chambers, John C.; Charlton, Ruth; Chatterjee, Krishna; Chen, Lu; Ciampi, Antonio; Cirak, Sebahattin; Clapham, Peter; Clement, Gail; Coates, Guy; Cocca, Massimiliano; Collier, David A.; Cosgrove, Catherine; Cox, Tony; Craddock, Nick; Crooks, Lucy; Curran, Sarah; Curtis, David; Daly, Allan; Day, Ian N. M.; Day-Williams, Aaron; Dedoussis, George; Down, Thomas; Du, Yuanping; van Duijn, Cornelia M.; Dunham, Ian; Edkins, Sarah; Ekong, Rosemary; Ellis, Peter; Evans, David M.; Farooqi, I. Sadaf; Fitzpatrick, David R.; Flicek, Paul; Floyd, James; Foley, A. Reghan; Franklin, Christopher S.; Futema, Marta; Gallagher, Louise; Gasparini, Paolo; Gaunt, Tom R.; Geihs, Matthias; Geschwind, Daniel; Greenwood, Celia; Griffin, Heather; Grozeva, Detelina; Guo, Xiaosen; Guo, Xueqin; Gurling, Hugh; Hart, Deborah; Hendricks, Audrey E.; Holmans, Peter; Huang, Liren; Hubbard, Tim; Humphries, Steve E.; Hurles, Matthew E.; Hysi, Pirro; Iotchkova, Valentina; Isaacs, Aaron; Jackson, David K.; Jamshidi, Yalda; Johnson, Jon; Joyce, Chris; Karczewski, Konrad J.; Kaye, Jane; Keane, Thomas; Kemp, John P.; Kennedy, Karen; Kent, Alastair; Keogh, Julia; Khawaja, Farrah; Kleber, Marcus E.; van Kogelenberg, Margriet; Kolb-Kokocinski, Anja; Kooner, Jaspal S.; Lachance, Genevieve; Langenberg, Claudia; Langford, Cordelia; Lawson, Daniel; Lee, Irene; van Leeuwen, Elisabeth M.; Lek, Monkol; Li, Rui; Li, Yingrui; Liang, Jieqin; Lin, Hong; Liu, Ryan; Lönnqvist, Jouko; Lopes, Luis R.; Lopes, Margarida; Luan, Jian'an; MacArthur, Daniel G.; Mangino, Massimo; Marenne, Gaëlle; März, Winfried; Maslen, John; Matchan, Angela; Mathieson, Iain; McGuffin, Peter; McIntosh, Andrew M.; McKechanie, Andrew G.; McQuillin, Andrew; Metrustry, Sarah; Migone, Nicola; Mitchison, Hannah M.; Moayyeri, Alireza; Morris, James; Morris, Richard; Muddyman, Dawn; Muntoni, Francesco; Nordestgaard, Børge G.; Northstone, Kate; O'Donovan, Michael C.; O'Rahilly, Stephen; Onoufriadis, Alexandros; Oualkacha, Karim; Owen, Michael J.; Palotie, Aarno; Panoutsopoulou, Kalliope; Parker, Victoria; Parr, Jeremy R.; Paternoster, Lavinia; Paunio, Tiina; Payne, Felicity; Payne, Stewart J.; Perry, John R. B.; Pietilainen, Olli; Plagnol, Vincent; Pollitt, Rebecca C.; Povey, Sue; Quail, Michael A.; Quaye, Lydia; Raymond, Lucy; Rehnström, Karola; Ridout, Cheryl K.; Ring, Susan; Ritchie, Graham R. S.; Roberts, Nicola; Robinson, Rachel L.; Savage, David B.; Scambler, Peter; Schiffels, Stephan; Schmidts, Miriam; Schoenmakers, Nadia; Scott, Richard H.; Scott, Robert A.; Semple, Robert K.; Serra, Eva; Sharp, Sally I.; Shaw, Adam; Shihab, Hashem A.; Shin, So-Youn; Skuse, David; Small, Kerrin S.; Smee, Carol; Smith, George Davey; Southam, Lorraine; Spasic-Boskovic, Olivera; Spector, Timothy D.; St Clair, David; St Pourcain, Beate; Stalker, Jim; Stevens, Elizabeth; Sun, Jianping; Surdulescu, Gabriela; Suvisaari, Jaana; Syrris, Petros; Tachmazidou, Ioanna; Taylor, Rohan; Tian, Jing; Tobin, Martin D.; Toniolo, Daniela; Traglia, Michela; Tybjaerg-Hansen, Anne; Valdes, Ana M.; Vandersteen, Anthony M.; Varbo, Anette; Vijayarangakannan, Parthiban; Visscher, Peter M.; Wain, Louise V.; Walters, James T. R.; Wang, Guangbiao; Wang, Jun; Wang, Yu; Ward, Kirsten; Wheeler, Eleanor; Whincup, Peter; Whyte, Tamieka; Williams, Hywel J.; Williamson, Kathleen A.; Wilson, Crispian; Wilson, Scott G.; Wong, Kim; Xu, ChangJiang; Yang, Jian; Zaza, Gianluigi; Zeggini, Eleftheria; Zhang, Feng; Zhang, Pingbo; Zhang, Weihua; Gambaro, Giovanni; Richards, J. Brent; Durbin, Richard; Timpson, Nicholas J.; Marchini, Jonathan; Soranzo, Nicole

    2015-01-01

    Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants. PMID:26368830

  8. Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel.

    PubMed

    Huang, Jie; Howie, Bryan; McCarthy, Shane; Memari, Yasin; Walter, Klaudia; Min, Josine L; Danecek, Petr; Malerba, Giovanni; Trabetti, Elisabetta; Zheng, Hou-Feng; Gambaro, Giovanni; Richards, J Brent; Durbin, Richard; Timpson, Nicholas J; Marchini, Jonathan; Soranzo, Nicole

    2015-01-01

    Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants. PMID:26368830

  9. Observation and Absolute Frequency Measurements of the {sup 1}S{sub 0}-{sup 3}P{sub 0} Optical Clock Transition in Neutral Ytterbium

    SciTech Connect

    Hoyt, C.W.; Barber, Z.W.; Oates, C.W.; Fortier, T.M.; Diddams, S.A.; Hollberg, L.

    2005-08-19

    We report the direct excitation of the highly forbidden (6s{sup 2}){sup 1}S{sub 0}{r_reversible}(6s6p){sup 3}P{sub 0} optical transition in two odd isotopes of neutral ytterbium. As the excitation laser frequency is scanned, absorption is detected by monitoring the depletion from an atomic cloud at {approx}70 {mu}K in a magneto-optical trap. The measured frequency in {sup 171}Yb (F=1/2) is 518 295 836 591.6{+-}4.4 kHz. The measured frequency in {sup 173}Yb (F=5/2) is 518 294 576 847.6{+-}4.4 kHz. Measurements are made with a femtosecond-laser frequency comb calibrated by the National Institute of Standards and Technology cesium fountain clock and represent nearly a 10{sup 6}-fold reduction in uncertainty. The natural linewidth of these J=0 to J=0 transitions is calculated to be {approx}10 mHz, making them well suited to support a new generation of optical atomic clocks based on confinement in an optical lattice.

  10. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  11. Absolute CF{sub 2} density and gas temperature measurements by absorption spectroscopy in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas

    SciTech Connect

    Liu, Wen-Yao; Xu, Yong Peng, Fei; Gong, Fa-Ping; Li, Xiao-Song; Zhu, Ai-Min; Liu, Yong-Xin; Wang, You-Nian

    2014-10-15

    Broadband ultraviolet absorption spectroscopy has been used to determine the CF{sub 2} radical density in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas, using the CF{sub 2} A{sup ~1}B{sub 1}←X{sup ~1}A{sub 1} system of absorption spectrum. The rotational temperature of ground state CF{sub 2} and excited state CF was also estimated by using A{sup ~1}B{sub 1}←X{sup ~1}A{sub 1} system and B{sup 2}Δ−X{sup 2}Π system, respectively. The translational gas temperature was deduced from the Doppler width of the Ar{sup *}({sup 3}P{sub 2}) and Ar{sup *}({sup 3}P{sub 0}) metastable atoms absorption line by using the tunable diode laser absorption spectroscopy. The rotational temperatures of the excited state CF are about 100 K higher than those of ground state CF{sub 2}, and about 200 K higher than the translational gas temperatures. The dependences of the radical CF{sub 2} density, electron density, electron temperature, rotational temperature, and gas temperature on the high frequency power and pressure have been analyzed. Furthermore, the production and loss mechanisms of CF{sub 2} radical and the gas heating mechanisms have also been discussed.

  12. Vehicle-track interaction at high frequencies - Modelling of a flexible rotating wheelset in non-inertial reference frames

    NASA Astrophysics Data System (ADS)

    Guiral, A.; Alonso, A.; Giménez, J. G.

    2015-10-01

    Vehicle-track interaction in the mid- and high-frequency range has become an important issue for rolling-stock manufacturers, railway operators and administrations. Previous modelling approaches have been focused on the development of flexible wheelset-track systems based on the assumption that the unsprung masses are decoupled from the high-frequency dynamic behaviour of carbody and bogies. In this respect, the available flexible wheelset models account for gyroscopic and inertial effects due to the main rotation but are, in general, developed from the viewpoint of inertial spaces and consequently restricted to the study of tangent layouts. The aim of this paper is to present the formulation of a flexible rotating wheelset derived within the framework of a non-inertial vehicle moving reference frame. This brings a double advantage; on the one hand, the formulation is not restricted to tangent tracks, but is also suitable for the study of transition curves and curve negotiation. On the other hand, the use of a vehicle moving reference frame allows the introduction of the hypothesis of small displacement for the degrees of freedom of the wheelset. This hypothesis is not applied to the pitch angle, as it is associated with the main axis of rotation. In addition, unlike previous flexible wheelset models that only consider the rotation around the main axis, all the degrees of freedom will be considered when developing the dynamic equations of motion. Results for the proposed model will be presented and the influence of the inertial and gyroscopic terms not taken into account in previous derived formulations will be evaluated.

  13. Towards a reference cavitating vessel Part III—design and acoustic pressure characterization of a multi-frequency sonoreactor

    NASA Astrophysics Data System (ADS)

    Wang, Lian; Memoli, Gianluca; Hodnett, Mark; Butterworth, Ian; Sarno, Dan; Zeqiri, Bajram

    2015-08-01

    A multi-frequency cavitation vessel (RV-multi) has been commissioned at the National Physical Laboratory (NPL, UK), with the aim of establishing a standard source of acoustic cavitation in water, with reference to which details of the cavitation process can be studied and cavitation measurement techniques evaluated. The vessel is a cylindrical cavity with a maximum capacity up to 17 L, and is designed to work at six frequency ranges, from 21 kHz to 136 kHz, under controlled temperature conditions. This paper discusses the design of RV-multi and reports experiments carried out to establish the reproducibility of the acoustic pressure field established within the vessel and its operating envelope, including sensitivity to aspects such as water depth and temperature. The acoustic field distribution was determined along the radial and depth directions within the vessel using a miniature hydrophone, for two input voltage levels under low power transducer excitation conditions (e.g. below the cavitation threshold). Particular care was taken in determining peak acoustic pressure locations, as these are critical for accompanying cavitation studies. Perturbations of the vessel by the measuring hydrophone were also monitored with a bottom-mounted pressure sensor.

  14. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  15. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  16. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  17. Absolute distance measurements by variable wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Bien, F.; Camac, M.; Caulfield, H. J.; Ezekiel, S.

    1981-02-01

    This paper describes a laser interferometer which provides absolute distance measurements using tunable lasers. An active feedback loop system, in which the laser frequency is locked to the optical path length difference of the interferometer, is used to tune the laser wavelengths. If the two wavelengths are very close, electronic frequency counters can be used to measure the beat frequency between the two laser frequencies and thus to determine the optical path difference between the two legs of the interferometer.

  18. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  19. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  20. Mid-infrared laser phase-locking to a remote near-infrared frequency reference for high-precision molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Chanteau, B.; Lopez, O.; Zhang, W.; Nicolodi, D.; Argence, B.; Auguste, F.; Abgrall, M.; Chardonnet, C.; Santarelli, G.; Darquié, B.; Le Coq, Y.; Amy-Klein, A.

    2013-07-01

    We present a method for accurate mid-infrared frequency measurements and stabilization to a near-infrared ultra-stable frequency reference, transmitted with a long-distance fibre link and continuously monitored against state-of-the-art atomic fountain clocks. As a first application, we measure the frequency of an OsO4 rovibrational molecular line around 10 μm with an uncertainty of 8 × 10-13. We also demonstrate the frequency stabilization of a mid-infrared laser with fractional stability better than 4 × 10-14 at 1 s averaging time and a linewidth below 17 Hz. This new stabilization scheme gives us the ability to transfer frequency stability in the range of 10-15 or even better, currently accessible in the near infrared or in the visible, to mid-infrared lasers in a wide frequency range.

  1. Optimization of a digital lock-in algorithm with a square-wave reference for frequency-divided multi-channel sensor signal detection

    NASA Astrophysics Data System (ADS)

    Zhang, Shengzhao; Li, Gang; Lin, Ling; Zhao, Jing

    2016-08-01

    A digital lock-in detection technique is commonly used to measure the amplitude and phase of a selected frequency signal. A technique that uses a square wave as the reference signal has an advantage over the one using a sinusoidal wave due to its easier implementation and higher computational efficiency. However, demodulating multiple-frequency composite signals using square wave reference may result in interference between channels. To avoid interference between channels and reduce the computational complexity, we modify the calculations and determine the optimal parameter settings of the low-pass filter and carrier frequency, as detailed in this paper. The results of our analysis show that when the length of the average filter and carrier frequencies are properly set, the interference between the channels is removed. This optimization produces the digital lock-in detection suitable for measuring multi-channel sensor signals.

  2. Optimization of a digital lock-in algorithm with a square-wave reference for frequency-divided multi-channel sensor signal detection.

    PubMed

    Zhang, Shengzhao; Li, Gang; Lin, Ling; Zhao, Jing

    2016-08-01

    A digital lock-in detection technique is commonly used to measure the amplitude and phase of a selected frequency signal. A technique that uses a square wave as the reference signal has an advantage over the one using a sinusoidal wave due to its easier implementation and higher computational efficiency. However, demodulating multiple-frequency composite signals using square wave reference may result in interference between channels. To avoid interference between channels and reduce the computational complexity, we modify the calculations and determine the optimal parameter settings of the low-pass filter and carrier frequency, as detailed in this paper. The results of our analysis show that when the length of the average filter and carrier frequencies are properly set, the interference between the channels is removed. This optimization produces the digital lock-in detection suitable for measuring multi-channel sensor signals. PMID:27587155

  3. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  4. Combining canonical correlation analysis and infinite reference for frequency recognition of steady-state visual evoked potential recordings: a comparison with periodogram method.

    PubMed

    Tian, Yin; Li, Fali; Xu, Peng; Yuan, Zhen; Zhao, Dechun; Zhang, Haiyong

    2014-01-01

    Steady-state visual evoked potentials (SSVEP) are the visual system responses to a repetitive visual stimulus flickering with the constant frequency and of great importance in the study of brain activity using scalp electroencephalography (EEG) recordings. However, the reference influence for the investigation of SSVEP is generally not considered in previous work. In this study a new approach that combined the canonical correlation analysis with infinite reference (ICCA) was proposed to enhance the accuracy of frequency recognition of SSVEP recordings. Compared with the widely used periodogram method (PM), ICCA is able to achieve higher recognition accuracy when extracts frequency within a short span. Further, the recognition results suggested that ICCA is a very robust tool to study the brain computer interface (BCI) based on SSVEP. PMID:25226996

  5. 10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers.

    PubMed

    Knabe, Kevin; Wu, Shun; Lim, Jinkang; Tillman, Karl A; Light, Philip S; Couny, Francois; Wheeler, Natalie; Thapa, Rajesh; Jones, Andrew M; Nicholson, Jeffrey W; Washburn, Brian R; Benabid, Fetah; Corwin, Kristan L

    2009-08-31

    Saturated absorption spectroscopy reveals the narrowest features so far in molecular gas-filled hollow-core photonic crystal fiber. The 48-68 mum core diameter of the kagome-structured fiber used here allows for 8 MHz full-width half-maximum sub-Doppler features, and its wavelength-insensitive transmission is suitable for high-accuracy frequency measurements. A fiber laser is locked to the (12)C2H2 nu(1); + nu(3) P(13) transition inside kagome fiber, and compared with frequency combs based on both a carbon nanotube fiber laser and a Cr:forsterite laser, each of which are referenced to a GPS-disciplined Rb oscillator. The absolute frequency of the measured line center agrees with those measured in power build-up cavities to within 9.3 kHz (1 sigma error), and the fractional frequency instability is less than 1.2 x 10(-11) at 1 s averaging time. PMID:19724600

  6. Sub-nanometer periodic nonlinearity error in absolute distance interferometers.

    PubMed

    Yang, Hongxing; Huang, Kaiqi; Hu, Pengcheng; Zhu, Pengfei; Tan, Jiubin; Fan, Zhigang

    2015-05-01

    Periodic nonlinearity which can result in error in nanometer scale has become a main problem limiting the absolute distance measurement accuracy. In order to eliminate this error, a new integrated interferometer with non-polarizing beam splitter is developed. This leads to disappearing of the frequency and/or polarization mixing. Furthermore, a strict requirement on the laser source polarization is highly reduced. By combining retro-reflector and angel prism, reference and measuring beams can be spatially separated, and therefore, their optical paths are not overlapped. So, the main cause of the periodic nonlinearity error, i.e., the frequency and/or polarization mixing and leakage of beam, is eliminated. Experimental results indicate that the periodic phase error is kept within 0.0018°. PMID:26026510

  7. Calibrating the absolute amplitude scale for air showers measured at LOFAR

    NASA Astrophysics Data System (ADS)

    Nelles, A.; Hörandel, J. R.; Karskens, T.; Krause, M.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Erdmann, M.; Falcke, H.; Haungs, A.; Hiller, R.; Huege, T.; Krause, R.; Link, K.; Norden, M. J.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; Schröder, F. G.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.; Weidenhaupt, K.; Wijnholds, S. J.; Anderson, J.; Bähren, L.; Bell, M. E.; Bentum, M. J.; Best, P.; Bonafede, A.; Bregman, J.; Brouw, W. N.; Brüggen, M.; Butcher, H. R.; Carbone, D.; Ciardi, B.; de Gasperin, F.; Duscha, S.; Eislöffel, J.; Fallows, R. A.; Frieswijk, W.; Garrett, M. A.; van Haarlem, M. P.; Heald, G.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Kohler, J.; Kondratiev, V. I.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; McFadden, R.; McKay-Bukowski, D.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Schwarz, D.; Serylak, M.; Sluman, J.; Smirnov, O.; Tasse, C.; Toribio, M. C.; Vermeulen, R.; van Weeren, R. J.; Wijers, R. A. M. J.; Wucknitz, O.; Zarka, P.

    2015-11-01

    Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw-Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration of the whole system for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 19% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomical transients with LOFAR.

  8. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  9. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  10. Method and apparatus for frequency spectrum analysis

    NASA Technical Reports Server (NTRS)

    Cole, Steven W. (Inventor)

    1992-01-01

    A method for frequency spectrum analysis of an unknown signal in real-time is discussed. The method is based upon integration of 1-bit samples of signal voltage amplitude corresponding to sine or cosine phases of a controlled center frequency clock which is changed after each integration interval to sweep the frequency range of interest in steps. Integration of samples during each interval is carried out over a number of cycles of the center frequency clock spanning a number of cycles of an input signal to be analyzed. The invention may be used to detect the frequency of at least two signals simultaneously. By using a reference signal of known frequency and voltage amplitude (added to the two signals for parallel processing in the same way, but in a different channel with a sampling at the known frequency and phases of the reference signal), the absolute voltage amplitude of the other two signals may be determined by squaring the sine and cosine integrals of each channel and summing the squares to obtain relative power measurements in all three channels and, from the known voltage amplitude of the reference signal, obtaining an absolute voltage measurement for the other two signals by multiplying the known voltage of the reference signal with the ratio of the relative power of each of the other two signals to the relative power of the reference signal.

  11. Astigmatism error modification for absolute shape reconstruction using Fourier transform method

    NASA Astrophysics Data System (ADS)

    He, Yuhang; Li, Qiang; Gao, Bo; Liu, Ang; Xu, Kaiyuan; Wei, Xiaohong; Chai, Liqun

    2014-12-01

    A method is proposed to modify astigmatism errors in absolute shape reconstruction of optical plane using Fourier transform method. If a transmission and reflection flat are used in an absolute test, two translation measurements lead to obtain the absolute shapes by making use of the characteristic relationship between the differential and original shapes in spatial frequency domain. However, because the translation device cannot guarantee the test and reference flats rigidly parallel to each other after the translations, a tilt error exists in the obtained differential data, which caused power and astigmatism errors in the reconstructed shapes. In order to modify the astigmatism errors, a rotation measurement is added. Based on the rotation invariability of the form of Zernike polynomial in circular domain, the astigmatism terms are calculated by solving polynomial coefficient equations related to the rotation differential data, and subsequently the astigmatism terms including error are modified. Computer simulation proves the validity of the proposed method.

  12. Atomic frequency standards at NICT

    NASA Astrophysics Data System (ADS)

    Ido, T.; Fujieda, M.; Hachisu, H.; Hayasaka, K.; Kajita, M.; Kojima, R.; Kumagai, M.; Locke, C.; Li, Y.; Matsubara, K.; Nogami, A.; Shiga, N.; Yamaguchi, A.; Koyama, Y.; Hosokawa, M.; Hanado, Y.

    2011-10-01

    Various activities of atomic frequency standards studied in National Institute of Information and Communications Technology (NICT) are briefly reviewed. After BIPM accepted the first cesium fountain clock in NICT as a reference to determine International Atomic Time (TAI), efforts to further reduce the uncertainty of collision shifts are ongoing. A second fountain clock using atomic molasses is being built to enable the operation with less atomic density. Single ion clock using calcium has been pursued for several years in NICT. The absolute frequency measured in 2008 has CIPM to adopt the Ca+ clock transition as a part of the list of radiation (LoR) to realize the meter. Sr lattice clock has started its operation last year. The absolute frequency agreed well with those obtained in other institutes. Study of stable cavities to stabilize clock lasers are also introduced.

  13. An Initial Assessment of the Surface Reference Technique Applied to Data from the Dual-Frequency Precipitation Radar (DPR) on the GPM Satellite

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kim, Hyokyung; Liao, Liang; Jones, Jeffrey A.; Kwiatkowski, John M.

    2015-01-01

    It has long been recognized that path-integrated attenuation (PIA) can be used to improve precipitation estimates from high-frequency weather radar data. One approach that provides an estimate of this quantity from airborne or spaceborne radar data is the surface reference technique (SRT), which uses measurements of the surface cross section in the presence and absence of precipitation. Measurements from the dual-frequency precipitation radar (DPR) on the Global Precipitation Measurement (GPM) satellite afford the first opportunity to test the method for spaceborne radar data at Ka band as well as for the Ku-band-Ka-band combination. The study begins by reviewing the basis of the single- and dual-frequency SRT. As the performance of the method is closely tied to the behavior of the normalized radar cross section (NRCS or sigma(0)) of the surface, the statistics of sigma(0) derived from DPR measurements are given as a function of incidence angle and frequency for ocean and land backgrounds over a 1-month period. Several independent estimates of the PIA, formed by means of different surface reference datasets, can be used to test the consistency of the method since, in the absence of error, the estimates should be identical. Along with theoretical considerations, the comparisons provide an initial assessment of the performance of the single- and dual-frequency SRT for the DPR. The study finds that the dual-frequency SRT can provide improvement in the accuracy of path attenuation estimates relative to the single-frequency method, particularly at Ku band.

  14. New Results from Frequency and Energy Reference Measurements during the first Test Flight with the Airborne Integrated Path Differential Absorption Lidar System CHARM-F

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Fix, A.; Amediek, A.; Quatrevalet, M.

    2015-12-01

    The Integrated Path Differential Absorption Lidar (IPDA) technique is regarded as a suitable means for the measurement of methane and carbon dioxide columns from satellite or aircraft platforms with unprecedented accuracy. Currently, the German-French methane mission MERLIN (Methan Remote Lidar Mission) is prepared. At the same time CHARM-F, an aircraft installed system has been developed at DLR as an airborne demonstrator for a spaceborne greenhouse gas mission. Both use e.g. optical parametric oscillators (OPOs) in a double-pulse mode as the transmitter. Of particular importance for both instruments are the sub-modules required for the frequency stabilization of the transmitter wavelength and, since the IPDA technique, in contrast to DIAL, requires the exact knowledge of the energy ratio of outgoing on-line. The coherence of the lidar transmitter gives rise to speckle effects which have to be considered for the monitoring of the energy ratio of outgoing on- and off-line pulses. For the frequency reference of CHARM-F, a very successful stabilization scheme has been developed which will also serve as the reference for MERLIN. In Spring 2015, CHARM-F was flown aboard the German HALO aircraft for the first time which enables a detailed view on the performance of both the energy calibration and frequency reference subsystems under real flight conditions. As an initial quality check we will compared the airborne results to previous lab measurements which have been performed under stable environmental conditions.

  15. A Study on Theoretical Performance of Graphene FET using Analytical Approach with Reference to High Cutoff Frequency

    NASA Astrophysics Data System (ADS)

    Fahim-Al-Fattah, Md.; Rahman, Md. Tawabur; Islam, Md. Sherajul; Bhuiyan, Ashraful G.

    2016-02-01

    This paper presents a detailed study of theoretical performance of graphene field effect transistor (GFET) using analytical approach. GFET shows promising performance in terms of faster saturation as well as extremely high cutoff frequency (3.9THz). A significant shift of the Dirac point as well as an asymmetrical ambipolar behavior is observed on the transfer characteristics. Similarly, an approximate symmetrical capacitance-voltage (C-V) characteristics is obtained where it has guaranteed the consistency because it shows a significant saturation both in the accumulation and inversion region. In addition, a high transconductance of 6800uS at small channel length (20nm) along with high cutoff frequency (3.9THz) has been observed which demands for high speed field effect devices.

  16. Forced oscillation technique. Reference values for resistance and reactance over a frequency spectrum of 2-26 Hz in healthy children aged 2.3-12.5 years.

    PubMed

    Duiverman, E J; Clément, J; van de Woestijne, K P; Neijens, H J; van den Bergh, A C; Kerrebijn, K F

    1985-01-01

    The forced pseudo-random noise oscillation technique is a method by which total respiratory resistance (Rrs) and reactance (Xrs) can be measured simultaneously at various frequencies by means of complex oscillations, superimposed at the mouth during spontaneous quiet breathing. Reference values were obtained in 255 healthy Caucasian children of Dutch descent aged 2.3-12.5 years. Rrs and Xrs vs frequency (f) curves are mainly determined by the child's sex, age, height and weight. Taking complete Rrs and Xrs-f curves into account, we found that Rrs values were significantly higher in young boys than in young girls. They were equal at about 8 years, but at about 12 years of age Rrs values were again significantly higher in boys than in girls. Frequency dependence of Rrs was found in healthy boys up to about 5 years of age, but not in girls of the same age or in older children. These data suggest differences in airway diameter between boys and girls. At all ages Xrs was significantly lower in boys than in girls. This suggests differences in bronchial patency of peripheral airways, boys being at a disadvantage. It is concluded that multiple frequency oscillometry is a method which is ideal for children from the age of about 3 years. The possibility of measuring Rrs as well as frequency dependence of Rrs and Xrs simultaneously is the major advantage over other oscillation devices. PMID:3995199

  17. DFB fiber laser static strain sensor based on beat frequency interrogation with a reference fiber laser locked to a FBG resonator.

    PubMed

    Huang, Wenzhu; Feng, Shengwen; Zhang, Wentao; Li, Fang

    2016-05-30

    We report on a high-resolution static strain sensor developed with distributed feedback (DFB) fiber laser. A reference FBG resonator is used for temperature compensation. Locking another independent fiber laser to the resonator using the Pound-Drever-Hall technique results in a strain power spectral density better than Sε(f) = (4.6 × 10-21) ε2/Hz in the frequency range from 1 Hz to 1 kHz, corresponding to a minimum dynamic strain resolution of 67.8 pε/√Hz. This frequency stabilized fiber laser is proposed to interrogate the sensing DFB fiber laser by the beat frequency principle. As a reasonable DFB fiber laser setup is realized, a narrow beat frequency line-width of 3.23 kHz and a high beat frequency stability of 0.036 MHz in 15 minutes are obtained in the laboratory test, corresponding to a minimum static strain resolution of 270 pε. This is the first time that a sub-0.5 nε level for static strain measurement using DFB fiber laser is demonstrated. PMID:27410147

  18. The new Absolute Quantum Gravimeter (AQG): first results and perspectives

    NASA Astrophysics Data System (ADS)

    Bonvalot, Sylvain; Le Moigne, Nicolas; Merlet, Sebastien; Desruelle, Bruno; Lautier-Gaud, Jean; Menoret, Vincent; Vermeulen, Pierre

    2016-04-01

    Cold atom gravimetry represents one of the most innovative evolution in gravity instrumentation since the last 20 years. The concept of measuring the gravitational acceleration by dropping atoms and the development of the first instrumental devices during this last decade quickly revealed the promising perspectives of this new generation of gravity meters enabling accurate and absolute measurements of the Earth's gravity field for a wide range of applications (geophysics, geodesy, metrology, etc.). The Absolute Quantum Gravimeter (AQG) gravity meter, developed by MUQUANS (Talence, France - http://www.muquans.com/) with the support of RESIF, the French Seismologic and Geodetic Network (http://www.resif.fr/) belongs to this new generation of instruments. It also represents the first commercial device based on the utilization of advanced matter-wave interferometry techniques, which allow to characterize precisely the vertical acceleration experienced by a cloud of cold atoms. Recently, the first operational unit (AQG01) has been achieved as a compact transportable gravimeter with the aim of satisfying absolute gravity measurements in laboratory conditions under the following specifications: measurements the μGal level at a few Hz cycling frequency, sensitivity of 50μGal/√Hz, immunity to ground vibrations, easy and quickness of operation, automated continuous data acquisition for several months, etc. In order to evaluate the current performances of the AQG01, several experiments are carried out in collaboration between RESIF user's teams and the MUQUANS manufacturer on different reference gravity sites and laboratories in France. These measurements performed in indoor conditions including simultaneous observations with classical reference gravity instruments (corner-cube absolute gravity meters, relative superconducting meters) as well with the Cold Atom Gravity meter (CAG) developed by LNE-SYRTE, lead to a first objective characterization of the performances of

  19. A comparison of the fixed bin method with the floating bin and direct count methods: effect of VNTR profile frequency estimation and reference population.

    PubMed

    Monson, K L; Budowle, B

    1993-09-01

    When the results of a forensic comparison of highly polymorphic variable number tandem repeat (VNTR) loci fail to exclude a suspect as a possible contributor of biological evidence, it is desirable to convey to the trier of fact the significance of the match. Furthermore, in a forensic context, it is desirable that the estimated frequency of occurrence be conservative, that is, that any uncertainty in the estimate will favor the accused. Using an empirical approach with a data base of 2046 individuals belonging to one of four population groups, this study examined the effect of the method used to estimate frequency of occurrence of a VNTR profile from a reference data base, and the consequences of using a data base that may not represent the circumstances of the crime. The fixed bin method was at least as conservative as the floating bin and genotype counting (direct counting) methods. Secondly, for forensic purposes, profile frequency estimates from different reference populations do not deviate greatly. VNTR profiles are rare in any of the data bases. PMID:8228875

  20. Two-dimensional self-consistent radio frequency plasma simulations relevant to the Gaseous Electronics Conference RF Reference Cell

    SciTech Connect

    Lymberopoulos, D.P.; Economou, D.J.

    1995-07-01

    Over the pst few years multidimensional self-consistent plasma simulations including complex chemistry have been developed which are promising tools for furthering the understanding of reactive gas plasmas and for reactor design and optimization. These simulations must be benchmarked against experimental data obtained in well-characterized systems such as the Gaseous Electronics Conference (GEC) reference cell. Two-dimensional simulations relevant to the GEC Cell are reviewed in this paper with emphasis on fluid simulations. Important features observed experimentally, such as off-axis maxima in the charge density and hot spots of metastable species density near the electrode edges in capacitively-coupled GEC cells, have been captured by these simulations. Glow discharge plasmas are used extensively in the processing of electronic materials especially for etching and deposition of thin films.

  1. Laser interferometry method for absolute measurement of the acceleration of gravity

    NASA Technical Reports Server (NTRS)

    Hudson, O. K.

    1971-01-01

    Gravimeter permits more accurate and precise absolute measurement of g without reference to Potsdam values as absolute standards. Device is basically Michelson laser beam interferometer in which one arm is mass fitted with corner cube reflector.

  2. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  3. Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars

    USGS Publications Warehouse

    Werner, S.C.; Tanaka, K.L.

    2011-01-01

    For the boundaries of each chronostratigraphic epoch on Mars, we present systematically derived crater-size frequencies based on crater counts of geologic referent surfaces and three proposed " standard" crater size-frequency production distributions as defined by (a) a simple -2 power law, (b) Neukum and Ivanov, (c) Hartmann. In turn, these crater count values are converted to model-absolute ages based on the inferred cratering rate histories. We present a new boundary definition for the Late Hesperian-Early Amazonian transition. Our fitting of crater size-frequency distributions to the chronostratigraphic record of Mars permits the assignment of cumulative counts of craters down to 100. m, 1. km, 2. km, 5. km, and 16. km diameters to martian epochs. Due to differences in the " standard" crater size-frequency production distributions, a generalized crater-density-based definition to the chronostratigraphic system cannot be provided. For the diameter range used for the boundary definitions, the resulting model absolute age fits vary within 1.5% for a given set of production function and chronology model ages. Crater distributions translated to absolute ages utilizing different curve descriptions can result in absolute age differences exceeding 10%. ?? 2011 Elsevier Inc.

  4. Implants as absolute anchorage.

    PubMed

    Rungcharassaeng, Kitichai; Kan, Joseph Y K; Caruso, Joseph M

    2005-11-01

    Anchorage control is essential for successful orthodontic treatment. Each tooth has its own anchorage potential as well as propensity to move when force is applied. When teeth are used as anchorage, the untoward movements of the anchoring units may result in the prolonged treatment time, and unpredictable or less-than-ideal outcome. To maximize tooth-related anchorage, techniques such as differential torque, placing roots into the cortex of the bone, the use of various intraoral devices and/or extraoral appliances have been implemented. Implants, as they are in direct contact with bone, do not possess a periodontal ligament. As a result, they do not move when orthodontic/orthopedic force is applied, and therefore can be used as "absolute anchorage." This article describes different types of implants that have been used as orthodontic anchorage. Their clinical applications and limitations are also discussed. PMID:16463910

  5. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  6. Absolute neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Wolf, Joachim

    2011-10-01

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

  7. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  8. Optimization of a Frequency-Stabilized Laser Reference at 1.57μM for AN Active Laser Remote Sensing of CO2 from Space

    NASA Astrophysics Data System (ADS)

    Chen, S.; Petway, L. B.; Lee, H. R.; Harrison, F. W.; Browell, E. V.

    2011-12-01

    Several airborne flight campaigns have shown that active remote sensing of carbon dioxide mixing ratio (XCO2) in the atmosphere using either an Intensity Modulated-Continuous Wave (IM-CW) Laser Absorption Spectrometer (LAS) at 1.57 μm or a pulsed laser CO2 sounder at 1.57 μm is a promising technique for an accurate space measurement approach for the Active Sensing of CO2 over Nights, Days, and Seasons mission [1, 2]. In order to achieve a measurement accuracy of one part per million (ppmv) for CO2 column density and associated mixing ratio by volume, the frequency stability (frequency or wavelength variance) of the lasers at 1.57 μm for a space-borne active remote sensing system should be greater than 1.5e-9 (less than 300 kHz or less than 2.5e-3 pm) is required for most moderate-size instruments [3]. In this paper, we report a design and optimization of a frequency-locking laser reference with an integration of Frequency Modulation (FM), Phase Sensitive Detection (PSD) and Proportional Integration Derivation (PID) feed-back control techniques to stabilize laser frequency associated to one of CO or CO2 absorption lines at 1.57 μm. The optimized sensitivity based on PSD signals in terms of the modulation frequency, the length of the gas cell, and the pressure of the gas will be provided. The design and optimization has been demonstrated at a 2-μm CO2 absorption line and is applicable to the active remote sensing systems at 1.57 μm. [1] E. V. Browell, J. Dobler, F. W. Harrison, and B. Moore III, "Development and Validation of CO2 and O2 Laser Measurements for Future Active XCO2 Space Mission", Geophysical Research Abstracts, Vol. 13, EGU2011-12598, 2011 [2] J. B. Abshire, H. Riris, G. R. Allen, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, S. Biraud, "Pulsed Airborne Lidar Measurements of Atmospheric CO2 column Absorption", Tellus (2010), 62B, 770-783 [3] E. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, 2008: Space

  9. Design and simulation of a biconic multipass absorption cell for the frequency stabilization of the reference seeder laser in IPDA lidar.

    PubMed

    Mu, Yongji; Du, Juan; Yang, Zhongguo; Sun, Yanguang; Liu, Jiqiao; Hou, Xia; Chen, Weibiao

    2016-09-01

    The design process and simulation method of a multipass absorption cell used for the frequency stabilization of the reference seeder laser in integrated path differential absorption (IPDA) lidar are presented. On the basis of the fundamental theory of the Herriott multipass cell comprising two spherical mirrors, the initial parameters of the multipass cell, which has an optical path greater than 10 m and consists of two biconic mirrors, were calculated. More than 30 light spots were distributed on each mirror, and the distance between adjacent spots was mostly optimized to greater than six times the beam waist. After optimization, the simulated transmittance spectrum and associated differential signal were obtained. The interference induced by surface scattering was also simulated, and its influence on the differential signal was analyzed. A correspondence between the simulated results and the testing data was observed. PMID:27607288

  10. The absolute disparity anomaly and the mechanism of relative disparities.

    PubMed

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  11. The absolute disparity anomaly and the mechanism of relative disparities

    PubMed Central

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-01-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  12. Dispersion matching of sample and reference arms in optical frequency domain reflectometry-optical coherence tomography using a dispersion-shifted fiber

    NASA Astrophysics Data System (ADS)

    Asaka, Kota; Ohbayashi, Kohji

    2007-04-01

    We demonstrate dispersion matching of sample and reference arms in an optical frequency domain reflectometry-optical coherence tomography (OFDR-OCT) system with a discretely swept light source centered at 1550 nm, using a dispersion-shifted fiber (DSF) in the reference arm. By adjusting the optical length of the DSF so that it is equal to that of the free space in the sample arm, we achieve a high resolution of 27.2 μm (in air), which is very close to the theoretically expected value of 26.8 μm when we measure the reflective mirror. This improves the degraded resolution (36.1 μm ) in a system using a conventional single-mode fiber when the free-space length in the sample arm was 909 mm. We also demonstrate a clear interface between air and the enamel layer of an extracted human tooth with the discretely swept (DS) OFDR-OCT imaging due to the improved resolution provided by this technique. These results show the potential of our DS-OFDR-OCT system for a compact low-cost apparatus with a high axial resolution.

  13. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  14. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  15. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  16. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  17. Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider.

    PubMed

    Quinlan, Franklyn; Fortier, Tara M; Kirchner, Matthew S; Taylor, Jennifer A; Thorpe, Michael J; Lemke, Nathan; Ludlow, Andrew D; Jiang, Yanyi; Diddams, Scott A

    2011-08-15

    We present an optical frequency divider based on a 200 MHz repetition rate Er:fiber mode-locked laser that, when locked to a stable optical frequency reference, generates microwave signals with absolute phase noise that is equal to or better than cryogenic microwave oscillators. At 1 Hz offset from a 10 GHz carrier, the phase noise is below -100 dBc/Hz, limited by the optical reference. For offset frequencies >10 kHz, the phase noise is shot noise limited at -145 dBc/Hz. An analysis of the contribution of the residual noise from the Er:fiber optical frequency divider is also presented. PMID:21847227

  18. The National Geodetic Survey absolute gravity program

    NASA Astrophysics Data System (ADS)

    Peter, George; Moose, Robert E.; Wessells, Claude W.

    1989-03-01

    The National Geodetic Survey absolute gravity program will utilize the high precision afforded by the JILAG-4 instrument to support geodetic and geophysical research, which involves studies of vertical motions, identification and modeling of other temporal variations, and establishment of reference values. The scientific rationale of these objectives is given, the procedures used to collect gravity and environmental data in the field are defined, and the steps necessary to correct and remove unwanted environmental effects are stated. In addition, site selection criteria, methods of concomitant environmental data collection and relative gravity observations, and schedule and logistics are discussed.

  19. Constraining the Evolution of the Fundamental Constants with a Solid-State Optical Frequency Reference Based on the {sup 229}Th Nucleus

    SciTech Connect

    Rellergert, Wade G.; Hudson, Eric R.; DeMille, D.; Greco, R. R.; Hehlen, M. P.; Torgerson, J. R.

    2010-05-21

    We describe a novel approach to directly measure the energy of the narrow, low-lying isomeric state in {sup 229}Th. Since nuclear transitions are far less sensitive to environmental conditions than atomic transitions, we argue that the {sup 229}Th optical nuclear transition may be driven inside a host crystal with a high transition Q. This technique might also allow for the construction of a solid-state optical frequency reference that surpasses the short-term stability of current optical clocks, as well as improved limits on the variability of fundamental constants. Based on analysis of the crystal lattice environment, we argue that a precision (short-term stability) of 3x10{sup -17}<{Delta}f/f<1x10{sup -15} after 1 s of photon collection may be achieved with a systematic-limited accuracy (long-term stability) of {Delta}f/f{approx}2x10{sup -16}. Improvement by 10{sup 2}-10{sup 3} of the constraints on the variability of several important fundamental constants also appears possible.

  20. Low frequency AC waveform generator

    DOEpatents

    Bilharz, Oscar W.

    1986-01-01

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stabilization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform itself. The cosine is synthesized by squaring the triangular waveform, raising the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  1. Low frequency ac waveform generator

    DOEpatents

    Bilharz, O.W.

    1983-11-22

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stablization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  2. Fiber optic frequency transfer link

    NASA Technical Reports Server (NTRS)

    Primas, Lori E. (Inventor); Sydnor, Richard L. (Inventor); Lutes, George F. (Inventor)

    1991-01-01

    A reference frequency distribution system is disclosed for transmitting a reference frequency from a reference unit to a remote unit while keeping the reference frequency at the reference unit and the remote unit in phase. A fiber optic cable connects the reference unit to the remote unit. A frequency source at the reference unit produces a reference frequency having an adjustable phase. A fiber optic transmitter at the reference unit modulates a light beam with the reference frequency and transmits the light beam into the fiber optic cable. A 50/50 reflector at the remote unit reflects a first portion of the light beam from the reference unit back into the fiber optic cable to the reference unit. A first fiber optic receiver disposed at the remote unit receives a second portion of the light beam and demodulates the reference frequency to be used at the remote unit. A second fiber optic receiver disposed at the reference unit receives the first portion of the light beam and demodulates a reference frequency component. A phase conjugator is connected to the frequency source for comparing the phase of the reference frequency component to the phase of the reference frequency modulating the light beam being transmitted from the reference unit to maintain a conjugate (anti-symmetric) relationship between the reference frequency component and the reference frequency modulating the light beam where virtually no phase difference exists between the phase of the reference frequency component and the phase of the reference frequency modulating the light beam.

  3. Non-Invasive Method of Determining Absolute Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor); Hargens, Alan E. (Inventor)

    2004-01-01

    A method is presented for determining absolute intracranial pressure (ICP) in a patient. Skull expansion is monitored while changes in ICP are induced. The patient's blood pressure is measured when skull expansion is approximately zero. The measured blood pressure is indicative of a reference ICP value. Subsequently, the method causes a known change in ICP and measured the change in skull expansion associated therewith. The absolute ICP is a function of the reference ICP value, the known change in ICP and its associated change in skull expansion; and a measured change in skull expansion.

  4. Design of digital Pound-Drever-Hall frequency stabilizing system for two-cavity dual-frequency Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Xing, Junhong; Jiao, Mingxing; Zheng, Yi; Zheng, Lingling

    2013-01-01

    Two-cavity dual-frequency Nd:YAG laser with large frequency difference can be used as an ideal light source for synthetic-wave absolute-distance interferometric system. The operation principle of the two-cavity dual-frequency Nd:YAG laser with large frequency difference has been introduced, and the frequency locking principle of the Pound-Drever-Hall (PDH) method has been analyzed. A FPGA-based digital PDH frequency stabilizing system for the two-cavity dual-frequency Nd:YAG laser has been designed, in which the same frequency reference of a high finesse Fabry-Perot cavity is used and two separate heterodyne interference sub-systems are employed so that two electrical error signals can be obtained. Having been processed through FPGA, the output signals are applied to drive the PZT frequency actuators attached on the two-cavity dual-frequency Nd:YAG laser, as a result both operating frequencies of the two-cavity dual-frequency Nd:YAG laser can be simultaneously frequency-locked to two resonant frequencies of the Fabry-Perot cavity. A frequency stability of better than 10-10 will be obtained by use of the digital PDH frequency locking system, which can meet the needs of synthetic-wave absolute-distance interferometry.

  5. Comparison of resonance frequencies of major atomic lines in 398-423 nm

    NASA Astrophysics Data System (ADS)

    Enomoto, Katsunari; Hizawa, Nagisa; Suzuki, Takahiro; Kobayashi, Kaori; Moriwaki, Yoshiki

    2016-05-01

    We have demonstrated spectroscopy of Ca, Rb, In, K, Ga, and Yb atomic lines in 398-423 nm. Using an etalon of an ultralow-expansion coefficient, we have determined ratios of the resonance frequencies of these atoms. The etalon has small group-delay-dispersion mirrors to be an accurate frequency reference over a wavelength span of a few tens of nanometer. The etalon resonance frequencies are calibrated with accurately known transition frequencies of Ca at 423 nm and Rb at 422 nm. Based on this calibration, the absolute frequencies are also determined for some atomic lines with smaller uncertainties than earlier reports.

  6. Swarm Absolute Scalar Magnetometers first in-orbit results

    NASA Astrophysics Data System (ADS)

    Fratter, Isabelle; Léger, Jean-Michel; Bertrand, François; Jager, Thomas; Hulot, Gauthier; Brocco, Laura; Vigneron, Pierre

    2016-04-01

    The ESA Swarm mission will provide the best ever survey of the Earth's magnetic field and its temporal evolution. This will be achieved by a constellation of three identical satellites, launched together on the 22nd of November 2013. In order to observe the magnetic field thoroughly, each satellite carries two magnetometers: a Vector Field Magnetometer (VFM) coupled with a star tracker camera, to measure the direction of the magnetic field in space, and an Absolute Scalar Magnetometer (ASM), to measure its intensity. The ASM is the French contribution to the Swarm mission. This new generation instrument was designed by CEA-Leti and developed in close partnership with CNES, with scientific support from IPGP. Its operating principle is based on the atomic spectroscopy of the helium 4 metastable state. It makes use of the Zeeman's effect to transduce the magnetic field into a frequency, the signal being amplified by optical pumping. The primary role of the ASM is to provide absolute measurements of the magnetic field's strength at 1 Hz, for the in-flight calibration of the VFM. As the Swarm magnetic reference, the ASM scalar performance is crucial for the mission's success. Thanks to its innovative design, the ASM offers the best precision, resolution and absolute accuracy ever attained in space, with similar performance all along the orbit. In addition, thanks to an original architecture, the ASM implements on an experimental basis a capacity for providing simultaneously vector measurements at 1 Hz. This new feature makes it the first instrument capable of delivering both scalar and vector measurements simultaneously at the same point. Swarm offers a unique opportunity to validate the ASM vector data in orbit by comparison with the VFM's. Furthermore, the ASM can provide scalar data at a much higher sampling rate, when run in "burst" mode at 250 Hz, with a 100 Hz measurement bandwidth. An analysis of the spectral content of the magnetic field above 1 Hz becomes thus

  7. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  8. Optical voltage reference

    DOEpatents

    Rankin, Richard; Kotter, Dale

    1994-01-01

    An optical voltage reference for providing an alternative to a battery source. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function.

  9. Optical voltage reference

    DOEpatents

    Rankin, R.; Kotter, D.

    1994-04-26

    An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

  10. Multifrequency continuous wave terahertz spectroscopy for absolute thickness determination

    SciTech Connect

    Scheller, Maik; Baaske, Kai; Koch, Martin

    2010-04-12

    We present a tunable multifrequency continuous wave terahertz spectrometer based on two laser diodes, photoconductive antennas, and a coherent detection scheme. The system is employed to determine the absolute thickness of samples utilizing a proposed synthetic difference frequency method to circumvent the 2pi uncertainty known from conventional photomixing systems while preserving a high spatial resolution.

  11. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  12. Standardization of the cumulative absolute velocity

    SciTech Connect

    O'Hara, T.F.; Jacobson, J.P. )

    1991-12-01

    EPRI NP-5930, A Criterion for Determining Exceedance of the Operating Basis Earthquake,'' was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.

  13. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  14. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  15. Extension of the absolute flux density scale to 22.285 GHz. [radio astronomy

    NASA Technical Reports Server (NTRS)

    Janssen, M. A.; Golden, L. M.; Welch, W. J.

    1974-01-01

    Extending the absolute flux density scale at microwave wavelengths, the absolute flux densities at 22.285 GHz of several standard sources were determined using the absolute calibrations of the 6.1 meter antenna of the Hat Creek Observatory. Interpolation formulas for each nonthermal standard source have been derived by combining these data with those determined at lower frequencies. The suitability of employing the standard sources for calibrating other antennas is discussed.

  16. Method and apparatus for two-dimensional absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2004-01-01

    This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.

  17. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  18. The operational performance of hydrogen masers in the deep space network: The performance of laboratory reference frequency standards in an operational environment

    NASA Technical Reports Server (NTRS)

    Ward, S. C.

    1981-01-01

    Hydrogen masers used as aids in meeting the routine frequency and time operational requirements within the 64 m antenna Deep Space Network. Both the operational syntonation (frequency synchronization) and the the clock (epoch) synchronization requirements were established through the use of specifically calibrated H-P E215061A flying clock. The sync/synt to UTC was maintained using LORAN and TV in simultaneous reception mode. The sync/synt within the 64 m net was maintained through the use of very long base interferometry. Results indicate that the hydrogen masers perform well within the required specifications.

  19. Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna

    2015-09-01

    Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.

  20. Measurements and analysis of the equivalent circuit of the GEC RF Reference Cell. [GEC (Gaseous Electronics Conference); RF (radio-frequency)

    SciTech Connect

    Verdeyen, J.T. . Dept. of Electrical and Computer Engineering)

    1992-09-01

    The equivalent circuit of the GEC RF Reference Cell is determined by the use of a vector impedance meter and reported here. The measurement procedure and data reduction techniques are discussed and typical data are presented from which the component values are determined. Once the circuit is established, one can use it to define the ABCD parameters of the Cell which relate the terminal measurements to those at the plasma. A significant and as yet unresolved question is emphasized: namely, [open quotes]what is the path for the rf current [close quotes] An experimental procedure for answering this question is suggested, but there does not appear to be a simple [open quotes]plasma[close quotes] reason for the answer. To obtain such an answer is a challenge to the experimenters and modelers. While the emphasis is on the GEC RF Reference Cell, the procedure, data reduction techniques, and [open quotes]the question[close quotes] are pertinent to all reactors.

  1. Determination of absolute internal conversion coefficients using the SAGE spectrometer

    NASA Astrophysics Data System (ADS)

    Sorri, J.; Greenlees, P. T.; Papadakis, P.; Konki, J.; Cox, D. M.; Auranen, K.; Partanen, J.; Sandzelius, M.; Pakarinen, J.; Rahkila, P.; Uusitalo, J.; Herzberg, R.-D.; Smallcombe, J.; Davies, P. J.; Barton, C. J.; Jenkins, D. G.

    2016-03-01

    A non-reference based method to determine internal conversion coefficients using the SAGE spectrometer is carried out for transitions in the nuclei of 154Sm, 152Sm and 166Yb. The Normalised-Peak-to-Gamma method is in general an efficient tool to extract internal conversion coefficients. However, in many cases the required well-known reference transitions are not available. The data analysis steps required to determine absolute internal conversion coefficients with the SAGE spectrometer are presented. In addition, several background suppression methods are introduced and an example of how ancillary detectors can be used to select specific reaction products is given. The results obtained for ground-state band E2 transitions show that the absolute internal conversion coefficients can be extracted using the methods described with a reasonable accuracy. In some cases of less intense transitions only an upper limit for the internal conversion coefficient could be given.

  2. Validation of GOCE by absolute and relative gravimetry

    NASA Astrophysics Data System (ADS)

    Pettersen, B. R.; Sprlak, M.; Lysaker, D. I.; Omang, O. C. D.; Sekowski, M.; Dykowski, P.

    2012-04-01

    Absolute gravimetry has been performed in 2011 by FG5 and A10 instruments in selected sites of the Norwegian first order gravity network. These observations are used as reference values to transform a large number of relative gravity values collected in 1968-1972. The outcome is a database at current epoch in a reference frame defined by the absolute gravity values. This constitutes our test field for validation of GOCE results. In the test fields, validation of GOCE-derived gravity anomalies was performed. The spectral enhancement method was applied to avoid the spectral inconsistency between the terrestrial and the satellite data. For this purpose, contributions of the EGM2008 model and a gravitational effect of a residual terrain model were calculated.

  3. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  4. Absolute phase effects on CPMG-type pulse sequences

    NASA Astrophysics Data System (ADS)

    Mandal, Soumyajit; Oh, Sangwon; Hürlimann, Martin D.

    2015-12-01

    We describe and analyze the effects of transients within radio-frequency (RF) pulses on multiple-pulse NMR measurements such as the well-known Carr-Purcell-Meiboom-Gill (CPMG) sequence. These transients are functions of the absolute RF phases at the beginning and end of the pulse, and are thus affected by the timing of the pulse sequence with respect to the period of the RF waveform. Changes in transients between refocusing pulses in CPMG-type sequences can result in signal decay, persistent oscillations, changes in echo shape, and other effects. We have explored such effects by performing experiments in two different low-frequency NMR systems. The first uses a conventional tuned-and-matched probe circuit, while the second uses an ultra-broadband un-tuned or non-resonant probe circuit. We show that there are distinct differences between the absolute phase effects in these two systems, and present simple models that explain these differences.

  5. The Electromotive Series and Other Non-Absolute Scales

    NASA Astrophysics Data System (ADS)

    Peckham, Gavin D.

    1998-01-01

    This article describes an analogy which may be used to illustrate the principles that underlie the establishment of non-absolute scales of measurements that are evaluated relative to a chosen reference point. The analogy is interwoven with the establishment of the electromotive series, but may be extended to other parameters such as the Celsius and Fahrenheit temperature scales, potential energies, formation and reaction enthalpies, etc.

  6. NMR absolute shielding scale and nuclear magnetic dipole moment of (207)Pb.

    PubMed

    Adrjan, Bożena; Makulski, Włodzimierz; Jackowski, Karol; Demissie, Taye B; Ruud, Kenneth; Antušek, Andrej; Jaszuński, Michał

    2016-06-28

    An absolute shielding scale is proposed for (207)Pb nuclear magnetic resonance (NMR) spectroscopy. It is based on ab initio calculations performed on an isolated tetramethyllead Pb(CH3)4 molecule and the assignment of the experimental resonance frequency from the gas-phase NMR spectra of Pb(CH3)4, extrapolated to zero density of the buffer gas to obtain the result for an isolated molecule. The computed (207)Pb shielding constant is 10 790 ppm for the isolated molecule, leading to a shielding of 10799.7 ppm for liquid Pb(CH3)4 which is the accepted reference standard for (207)Pb NMR spectra. The new experimental and theoretical data are used to determine μ((207)Pb), the nuclear magnetic dipole moment of (207)Pb, by applying the standard relationship between NMR frequencies, shielding constants and nuclear moments of two nuclei in the same external magnetic field. Using the gas-phase (207)Pb and (reference) proton results and the theoretical value of the Pb shielding in Pb(CH3)4, we find μ((207)Pb) = 0.59064 μN. The analysis of new experimental and theoretical data obtained for the Pb(2+) ion in water solutions provides similar values of μ((207)Pb), in the range of 0.59000-0.59131 μN. PMID:27265668

  7. Improved absolute calibration of LOPES measurements and its impact on the comparison with REAS 3.11 and CoREAS simulations

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hiller, R.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Nehls, S.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.

    2016-02-01

    LOPES was a digital antenna array detecting the radio emission of cosmic-ray air showers. The calibration of the absolute amplitude scale of the measurements was done using an external, commercial reference source, which emits a frequency comb with defined amplitudes. Recently, we obtained improved reference values by the manufacturer of the reference source, which significantly changed the absolute calibration of LOPES. We reanalyzed previously published LOPES measurements, studying the impact of the changed calibration. The main effect is an overall decrease of the LOPES amplitude scale by a factor of 2.6 ± 0.2, affecting all previously published values for measurements of the electric-field strength. This results in a major change in the conclusion of the paper 'Comparing LOPES measurements of air-shower radio emission with REAS 3.11 and CoREAS simulations' published by Apel et al. (2013) : With the revised calibration, LOPES measurements now are compatible with CoREAS simulations, but in tension with REAS 3.11 simulations. Since CoREAS is the latest version of the simulation code incorporating the current state of knowledge on the radio emission of air showers, this new result indicates that the absolute amplitude prediction of current simulations now is in agreement with experimental data.

  8. Children and adults exposed to low-frequency magnetic fields at the ICNIRP reference levels: theoretical assessment of the induced electric fields.

    PubMed

    Bakker, J F; Paulides, M M; Neufeld, E; Christ, A; Chen, X L; Kuster, N; van Rhoon, G C

    2012-04-01

    To avoid potentially adverse health effects, the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined reference levels for time varying magnetic fields. Restrictions on the electric fields induced in the human body are provided based on biological response data for peripheral nerve stimulation and the induction of phosphenes. Numerical modeling is commonly used to assess the induced electric fields for various exposure configurations. The objective of this study was to assess the variations of the electric fields induced in children and adults and to compare the exposure at reference levels with the basic restrictions as function of anatomy. We used the scalar potential finite element method to calculate the induced electric fields in six children and two adults when exposed to uniform magnetic fields polarized in three orthogonal directions. We found that the induced electric fields are within the ICNIRP basic restrictions in nearly all cases. In PNS tissues, we found electric fields up to 95% (upper uncertainty limit due to discretization errors, k = 2) of the ICNIRP basic restrictions for exposures at the general public reference levels. For occupational reference levels, we found an over-exposure of maximum 79% (k = 2) in PNS tissues. We further found that the ICNIRP recommendations on spatial averaging in 2 × 2 × 2 mm³ contiguous tissue volumes and removal of peak values by the 99th percentile cause the results to depend strongly on the grid discretization step (i.e. an uncertainty of more than 50% at 2 mm) and the number of distinguished tissues in the anatomical models. The computational results obtained by various research institutes should be robust for different discretization settings and various anatomical models. Therefore, we recommend considering alternative routines for small anatomical structures such as non-contiguous averaging without taking the 99th percentile in future guidelines leading to consistent

  9. Children and adults exposed to low-frequency magnetic fields at the ICNIRP reference levels: theoretical assessment of the induced electric fields

    NASA Astrophysics Data System (ADS)

    Bakker, J. F.; Paulides, M. M.; Neufeld, E.; Christ, A.; Chen, X. L.; Kuster, N.; van Rhoon, G. C.

    2012-04-01

    To avoid potentially adverse health effects, the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined reference levels for time varying magnetic fields. Restrictions on the electric fields induced in the human body are provided based on biological response data for peripheral nerve stimulation and the induction of phosphenes. Numerical modeling is commonly used to assess the induced electric fields for various exposure configurations. The objective of this study was to assess the variations of the electric fields induced in children and adults and to compare the exposure at reference levels with the basic restrictions as function of anatomy. We used the scalar potential finite element method to calculate the induced electric fields in six children and two adults when exposed to uniform magnetic fields polarized in three orthogonal directions. We found that the induced electric fields are within the ICNIRP basic restrictions in nearly all cases. In PNS tissues, we found electric fields up to 95% (upper uncertainty limit due to discretization errors, k = 2) of the ICNIRP basic restrictions for exposures at the general public reference levels. For occupational reference levels, we found an over-exposure of maximum 79% (k = 2) in PNS tissues. We further found that the ICNIRP recommendations on spatial averaging in 2 × 2 × 2 mm3 contiguous tissue volumes and removal of peak values by the 99th percentile cause the results to depend strongly on the grid discretization step (i.e. an uncertainty of more than 50% at 2 mm) and the number of distinguished tissues in the anatomical models. The computational results obtained by various research institutes should be robust for different discretization settings and various anatomical models. Therefore, we recommend considering alternative routines for small anatomical structures such as non-contiguous averaging without taking the 99th percentile in future guidelines leading to consistent

  10. Use of the characteristic Raman lines of toluene (C7 H8) as a precise frequency reference on the spectral analysis of gasoline-ethanol blends

    NASA Astrophysics Data System (ADS)

    Ortega Clavero, Valentin; Javahiraly, Nicolas; Weber, Andreas; Schröder, Werner; Curticapean, Dan; Meyrueis, Patrick P.

    2014-09-01

    In order to reduce some of the toxic emissions produced by internal combustion engines, the fossil-based fuels have been combined with less harmful materials in recent years. However, the fuels used in the automotive industry generally contain different additives, such as toluene, as anti-shock agents and as octane number enhancers. These materials can cause certain negative impact, besides the high volatility implied, on public health or environment due to its chemical composition. Toluene, among several other chemical compounds, is an additive widely used in the commercially-available gasoline-ethanol blends. Despite the negative aspects in terms of toxicity that this material might have, the Raman spectral information of toluene can be used to achieve certain level of frequency calibration without using any additional chemical marker in the sample or any other external device. Moreover, the characteristic and well-defined Raman line of this chemical compound at 1003 cm-1 (even at low v/v content) can be used to quantitatively determine certain aspects of the gasoline-ethanol blend under observation. By using an own-designed Fourier-Transform Raman spectrometer (FT-Raman), we have collected and analyzed different commercially-available and laboratory-prepared gasoline-ethanol blends. By carefully observing the main Raman peaks of toluene in these fuel blends, we have determined the frequency accuracy of the Raman spectra obtained. The spectral information has been obtained in the range of 0 cm-1 to 3500 cm-1 with a spectral resolution of 1.66 cm-1. The Raman spectra obtained presented only reduced frequency deviations in comparison to the standard Raman spectrum of toluene provided by the American Society for Testing and Materials (ASTM).

  11. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant

  12. Absolute height measurement of specular surfaces with modified active fringe reflection photogrammetry

    NASA Astrophysics Data System (ADS)

    Ren, Hongyu; Jiang, Xiangqian; Gao, Feng; Zhang, Zonghua

    2014-07-01

    Deflectometric methods have been studied for more than a decade for slope measurement of specular freeform surfaces through utilization of the deformation of a sample pattern after reflection from a tested sample surface. Usually, these approaches require two-directional fringe patterns to be projected on a LCD screen or ground glass and require slope integration, which leads to some complexity for the whole measuring process. This paper proposes a new mathematical measurement model for measuring topography information of freeform specular surfaces, which integrates a virtual reference specular surface into the method of active fringe reflection photogrammetry and presents a straight-forward relation between height of the tested surface and phase signals. This method only requires one direction of horizontal or vertical sinusoidal fringe patterns to be projected from a LCD screen, resulting in a significant reduction in capture time over established methods. Assuming the whole system has been precalibrated during the measurement process, the fringe patterns are captured separately via the virtual reference and detected freeform surfaces by a CCD camera. The reference phase can be solved according to the spatial geometric relation between the LCD screen and the CCD camera. The captured phases can be unwrapped with a heterodyne technique and optimum frequency selection method. Based on this calculated unwrapped-phase and that proposed mathematical model, absolute height of the inspected surface can be computed. Simulated and experimental results show that this methodology can conveniently calculate topography information for freeform and structured specular surfaces without integration and reconstruction processes.

  13. Improving HST Pointing & Absolute Astrometry

    NASA Astrophysics Data System (ADS)

    Lallo, Matthew; Nelan, E.; Kimmer, E.; Cox, C.; Casertano, S.

    2007-05-01

    Accurate absolute astrometry is becoming increasingly important in an era of multi-mission archives and virtual observatories. Hubble Space Telescope's (HST's) Guidestar Catalog II (GSC2) has reduced coordinate error to around 0.25 arcsecond, a factor 2 or more compared with GSC1. With this reduced catalog error, special attention must be given to calibrate and maintain the Fine Guidance Sensors (FGSs) and Science Instruments (SIs) alignments in HST to a level well below this in order to ensure that the accuracy of science product's astrometry keywords and target positioning are limited only by the catalog errors. After HST Servicing Mission 4, such calibrations' improvement in "blind" pointing accuracy will allow for more efficient COS acquisitions. Multiple SIs and FGSs each have their own footprints in the spatially shared HST focal plane. It is the small changes over time in primarily the whole-body positions & orientations of these instruments & guiders relative to one another that is addressed by this work. We describe the HST Cycle 15 program CAL/OTA 11021 which, along with future variants of it, determines and maintains positions and orientations of the SIs and FGSs to better than 50 milli- arcseconds and 0.04 to 0.004 degrees of roll, putting errors associated with the alignment sufficiently below GSC2 errors. We present recent alignment results and assess their errors, illustrate trends, and describe where and how the observer sees benefit from these calibrations when using HST.

  14. Absolute oral bioavailability of ciprofloxacin.

    PubMed

    Drusano, G L; Standiford, H C; Plaisance, K; Forrest, A; Leslie, J; Caldwell, J

    1986-09-01

    We evaluated the absolute bioavailability of ciprofloxacin, a new quinoline carboxylic acid, in 12 healthy male volunteers. Doses of 200 mg were given to each of the volunteers in a randomized, crossover manner 1 week apart orally and as a 10-min intravenous infusion. Half-lives (mean +/- standard deviation) for the intravenous and oral administration arms were 4.2 +/- 0.77 and 4.11 +/- 0.74 h, respectively. The serum clearance rate averaged 28.5 +/- 4.7 liters/h per 1.73 m2 for the intravenous administration arm. The renal clearance rate accounted for approximately 60% of the corresponding serum clearance rate and was 16.9 +/- 3.0 liters/h per 1.73 m2 for the intravenous arm and 17.0 +/- 2.86 liters/h per 1.73 m2 for the oral administration arm. Absorption was rapid, with peak concentrations in serum occurring at 0.71 +/- 0.15 h. Bioavailability, defined as the ratio of the area under the curve from 0 h to infinity for the oral to the intravenous dose, was 69 +/- 7%. We conclude that ciprofloxacin is rapidly absorbed and reliably bioavailable in these healthy volunteers. Further studies with ciprofloxacin should be undertaken in target patient populations under actual clinical circumstances. PMID:3777908

  15. Absolute Instability in Coupled-Cavity TWTs

    NASA Astrophysics Data System (ADS)

    Hung, D. M. H.; Rittersdorf, I. M.; Zhang, Peng; Lau, Y. Y.; Simon, D. H.; Gilgenbach, R. M.; Chernin, D.; Antonsen, T. M., Jr.

    2014-10-01

    This paper will present results of our analysis of absolute instability in a coupled-cavity traveling wave tube (TWT). The structure mode at the lower and upper band edges are respectively approximated by a hyperbola in the (omega, k) plane. When the Briggs-Bers criterion is applied, a threshold current for onset of absolute instability is observed at the upper band edge, but not the lower band edge. The nonexistence of absolute instability at the lower band edge is mathematically similar to the nonexistence of absolute instability that we recently demonstrated for a dielectric TWT. The existence of absolute instability at the upper band edge is mathematically similar to the existence of absolute instability in a gyroton traveling wave amplifier. These interesting observations will be discussed, and the practical implications will be explored. This work was supported by AFOSR, ONR, and L-3 Communications Electron Devices.

  16. Kilohertz-Resolution Spectroscopy of Cold Atoms with an Optical Frequency Comb

    SciTech Connect

    Fortier, T. M.; Le Coq, Y.; Stalnaker, J. E.; Diddams, S. A.; Oates, C. W.; Hollberg, L.; Ortega, D.

    2006-10-20

    We have performed sub-Doppler spectroscopy on the narrow intercombination line of cold calcium atoms using the amplified output of a femtosecond laser frequency comb. Injection locking of a 657-nm diode laser with a femtosecond comb allows for two regimes of amplification, one in which many lines of the comb are amplified, and one where a single line is predominantly amplified. The output of the laser in both regimes was used to perform kilohertz-level spectroscopy. This experiment demonstrates the potential for high-resolution absolute-frequency spectroscopy over the entire spectrum of the frequency comb output using a single high-finesse optical reference cavity.

  17. Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb.

    PubMed

    Fortier, T M; Coq, Y Le; Stalnaker, J E; Ortega, D; Diddams, S A; Oates, C W; Hollberg, L

    2006-10-20

    We have performed sub-Doppler spectroscopy on the narrow intercombination line of cold calcium atoms using the amplified output of a femtosecond laser frequency comb. Injection locking of a 657-nm diode laser with a femtosecond comb allows for two regimes of amplification, one in which many lines of the comb are amplified, and one where a single line is predominantly amplified. The output of the laser in both regimes was used to perform kilohertz-level spectroscopy. This experiment demonstrates the potential for high-resolution absolute-frequency spectroscopy over the entire spectrum of the frequency comb output using a single high-finesse optical reference cavity. PMID:17155398

  18. Absolute negative mobility of interacting Brownian particles

    NASA Astrophysics Data System (ADS)

    Ou, Ya-li; Hu, Cai-tian; Wu, Jian-chun; Ai, Bao-quan

    2015-12-01

    Transport of interacting Brownian particles in a periodic potential is investigated in the presence of an ac force and a dc force. From Brownian dynamic simulations, we find that both the interaction between particles and the thermal fluctuations play key roles in the absolute negative mobility (the particle noisily moves backwards against a small constant bias). When no the interaction acts, there is only one region where the absolute negative mobility occurs. In the presence of the interaction, the absolute negative mobility may appear in multiple regions. The weak interaction can be helpful for the absolute negative mobility, while the strong interaction has a destructive impact on it.

  19. Multiple-integrating sphere spectrophotometer for measuring absolute spectral reflectance and transmittance.

    PubMed

    Zerlaut, G A; Anderson, T E

    1981-11-01

    A spectroreflectometer/transmissometer is described that permits determination of absolute optical characteristics in the 300-2600-nm wavelength region (which is essentially the complete solar spectrum). The uniqueness of the instrument derives from use of three rapidly interchangeable 20-cm (8-in.) integrating spheres to measure (1) absolute hemispherical spectral reflectance as a function of angles of incidence from -40 to +40 degrees employing an Edwards-type integrating sphere with a center-mounted sample [using small 2.5-cm (1-in.) diam specimens], (2) absolute hemispherical and absolute diffuse spectral reflectance at an angle of incidence of 20 degrees employing a sphere with a wall-mounted sample (for large specimens) and a screened detector, and (3) absolute hemispherical and absolute directional (near-normal exitance) transmittance employing a complete integrating sphere with the only ports being for the sample and reference beams. Data are presented that demonstrate the ability to measure the spectral reflectance of nonmirror surfaces to an absolute accuracy of 0.995 (an uncertainty of +/-0.005 reflectance units) in both reflectance spheres and of highly specular mirrors to an absolute accuracy of 0.993 (an uncertainty of +/-0.007 reflectance units). Spectral transmittance can be measured to an absolute accuracy of better than 0.995 (an uncertainty of +/-0.005 transmittance units). PMID:20372262

  20. Absolute orientations from EBSD measurements - as easy as it seems?

    NASA Astrophysics Data System (ADS)

    Kilian, Rüdiger; Bestmann, Michel; Heilbronner, Renée

    2016-04-01

    In structural geology, some problems can be addressed by inspecting the crystal orientation of grains in a rock. Deriving shear senses, kinematics of flow, information on deformation processes and recrystallization are some examples. Usually, oriented samples are taken in the field and, if inspected in an universal stage, the researcher has full control over the procedure and can make sure that the derived orientation is related to our geographic reference frame - that it is an absolute orientation. Nowadays, usage of electron backscatter diffraction (EBSD) has greatly improved the information in the derived data (fully crystal orientations, mappings, etc…), and the speed of data acquisition. However, this comes to the price of having to rely on the vendor supplied software and machine setup. Recent benchmarks and comparison of reference data revealed that for various EBSD setups around the world, the orientation data defaults to the wrong absolute orientation. The absolute orientation is not correctly derived - it commonly suffer a 180 degree rotation around the normal of the sample surface. In this contribution we will discuss the implications of such erroneous measurements and what kind of interpretations derived by orientation and texture data will be affected.

  1. Skeletal lesions in the broiler, with special reference to dyschondroplasia (osteochondrosis). Pathology, frequency and clinical significance in two strains of birds on high and low energy feed.

    PubMed

    Poulos, P W; Reiland, S; Elwinger, K; Olsson, S E

    1978-01-01

    The material consisted of 2,950 broilers of the variety Hybro Compact of two lines. An equal number of birds of both lines were given either a high energy feed (H) or a low energy feed (L), containing all nutrients known to be required by broilers. During the first 3 weeks, H and L starter feeds were given and thereafter H and L finishing feeds. At 21, 35, and 45 days of age, the birds were weighed in groups, and feed conversion calculated. At 21 days of age, the frequency of crooked toes and swollen hocks was registered. Birds were taken from each group for necropsy at regular intervals. Both clinically normal birds and those with locomotor disturbances were selected for necropsy, including radiographic examination. With the exception of 240 birds, which were kept for a long-term study, the birds on the H feed were slaughtered at 42 days of age and the ones on the L feed at 49 days of age. The long-term birds were slaughtered at regular intervals, weighed, and necropsied. The last birds were slaughtered at 134 days of age. A large number of skeletal lesions were found. They were: Twisted legs, slipped tendons, crooked toes, bowing of the proximal tibia, dyschondroplasia at different sites, fracture of the fibula, deformity of the spine, deviated sternum (with breast blisters), arthritis, and osteomyelitis. Leg weakness was found to be almost synonymous with skeletal deformities. Other causes were rare. The normal development and morphology of the skeleton and the morphology of tibial dyschondroplasia were the same as those previously described in the turkey. Dyschondroplasia was found not only in the proximal tibia but also in the distal tibia, proximal tarsometatarsus, proximal and distal femur, and to some extent also in the costochondral junction. Tibial dyschondroplasia was more common in the birds on the H feed than in the birds on the L feed. Hence, tibial dyschondroplasia was correlated with rapid growth. The other skeletal lesions did not differ in

  2. United time-frequency spectroscopy for dynamics and global structure.

    PubMed

    Marian, Adela; Stowe, Matthew C; Lawall, John R; Felinto, Daniel; Ye, Jun

    2004-12-17

    Ultrashort laser pulses have thus far been used in two distinct modes. In the time domain, the pulses have allowed probing and manipulation of dynamics on a subpicosecond time scale. More recently, phase stabilization has produced optical frequency combs with absolute frequency reference across a broad bandwidth. Here we combine these two applications in a spectroscopic study of rubidium atoms. A wide-bandwidth, phase-stabilized femtosecond laser is used to monitor the real-time dynamic evolution of population transfer. Coherent pulse accumulation and quantum interference effects are observed and well modeled by theory. At the same time, the narrow linewidth of individual comb lines permits a precise and efficient determination of the global energy-level structure, providing a direct connection among the optical, terahertz, and radio-frequency domains. The mechanical action of the optical frequency comb on the atomic sample is explored and controlled, leading to precision spectroscopy with an appreciable reduction in systematic errors. PMID:15550622

  3. Inequalities, Absolute Value, and Logical Connectives.

    ERIC Educational Resources Information Center

    Parish, Charles R.

    1992-01-01

    Presents an approach to the concept of absolute value that alleviates students' problems with the traditional definition and the use of logical connectives in solving related problems. Uses a model that maps numbers from a horizontal number line to a vertical ray originating from the origin. Provides examples solving absolute value equations and…

  4. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  5. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  6. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  7. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  8. Absolute Position of Targets Measured Through a Chamber Window Using Lidar Metrology Systems

    NASA Technical Reports Server (NTRS)

    Kubalak, David; Hadjimichael, Theodore; Ohl, Raymond; Slotwinski, Anthony; Telfer, Randal; Hayden, Joseph

    2012-01-01

    Lidar is a useful tool for taking metrology measurements without the need for physical contact with the parts under test. Lidar instruments are aimed at a target using azimuth and elevation stages, then focus a beam of coherent, frequency modulated laser energy onto the target, such as the surface of a mechanical structure. Energy from the reflected beam is mixed with an optical reference signal that travels in a fiber path internal to the instrument, and the range to the target is calculated based on the difference in the frequency of the returned and reference signals. In cases when the parts are in extreme environments, additional steps need to be taken to separate the operator and lidar from that environment. A model has been developed that accurately reduces the lidar data to an absolute position and accounts for the three media in the testbed air, fused silica, and vacuum but the approach can be adapted for any environment or material. The accuracy of laser metrology measurements depends upon knowing the parameters of the media through which the measurement beam travels. Under normal conditions, this means knowledge of the temperature, pressure, and humidity of the air in the measurement volume. In the past, chamber windows have been used to separate the measuring device from the extreme environment within the chamber and still permit optical measurement, but, so far, only relative changes have been diagnosed. The ability to make accurate measurements through a window presents a challenge as there are a number of factors to consider. In the case of the lidar, the window will increase the time-of-flight of the laser beam causing a ranging error, and refract the direction of the beam causing angular positioning errors. In addition, differences in pressure, temperature, and humidity on each side of the window will cause slight atmospheric index changes and induce deformation and a refractive index gradient within the window. Also, since the window is a

  9. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  10. Absolute charge calibration of scintillating screens for relativistic electron detection

    SciTech Connect

    Buck, A.; Popp, A.; Schmid, K.; Karsch, S.; Krausz, F.; Zeil, K.; Jochmann, A.; Kraft, S. D.; Sauerbrey, R.; Cowan, T.; Schramm, U.; Hidding, B.; Kudyakov, T.; Sears, C. M. S.; Veisz, L.; Pawelke, J.

    2010-03-15

    We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm{sup 2}. The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm{sup 2} was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

  11. Absolute charge calibration of scintillating screens for relativistic electron detection

    NASA Astrophysics Data System (ADS)

    Buck, A.; Zeil, K.; Popp, A.; Schmid, K.; Jochmann, A.; Kraft, S. D.; Hidding, B.; Kudyakov, T.; Sears, C. M. S.; Veisz, L.; Karsch, S.; Pawelke, J.; Sauerbrey, R.; Cowan, T.; Krausz, F.; Schramm, U.

    2010-03-01

    We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm2. The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm2 was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

  12. In-flight Absolute Radiometric Calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, D.; Savage, R. K.

    1984-01-01

    The Thematic Mapper (TM) multispectral scanner system was placed into Earth orbit on July 16, 1982, as part of NASA's LANDSAT 4 payload. To determine temporal changes of the absolute radiometric calibration of the entire system in flight, spectroradiometric measurements of the ground and the atmosphere are made simultaneously with TM image acquisitions over the White Sands, New Mexico area. By entering the measured values into an atmospheric radiative transfer program, the radiance levels at the entrance pupil of the TM in four of the TM spectral bands are determined. These levels are compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors. By reference to an adjacent, larger uniform area, the calibration is extended to all 16 detectors in each of the three bands.

  13. Flow rate calibration for absolute cell counting rationale and design.

    PubMed

    Walker, Clare; Barnett, David

    2006-05-01

    There is a need for absolute leukocyte enumeration in the clinical setting, and accurate, reliable (and affordable) technology to determine absolute leukocyte counts has been developed. Such technology includes single platform and dual platform approaches. Derivations of these counts commonly incorporate the addition of a known number of latex microsphere beads to a blood sample, although it has been suggested that the addition of beads to a sample may only be required to act as an internal quality control procedure for assessing the pipetting error. This unit provides the technical details for undertaking flow rate calibration that obviates the need to add reference beads to each sample. It is envisaged that this report will provide the basis for subsequent clinical evaluations of this novel approach. PMID:18770842

  14. GNSS Absolute Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.; Geoghegan, C.

    2011-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and compare absolute calibrations to the traditional NGS relative calibrations.

  15. Absolute Pitch in Boreal Chickadees and Humans: Exceptions that Test a Phylogenetic Rule

    ERIC Educational Resources Information Center

    Weisman, Ronald G.; Balkwill, Laura-Lee; Hoeschele, Marisa; Moscicki, Michele K.; Bloomfield, Laurie L.; Sturdy, Christopher B.

    2010-01-01

    This research examined generality of the phylogenetic rule that birds discriminate frequency ranges more accurately than mammals. Human absolute pitch chroma possessors accurately tracked transitions between frequency ranges. Independent tests showed that they used note naming (pitch chroma) to remap the tones into ranges; neither possessors nor…

  16. Absolute calibration for a broad range single shot electron spectrometer

    SciTech Connect

    Glinec, Y.; Faure, J.; Guemnie-Tafo, A.; Malka, V.; Monard, H.; Larbre, J. P.; De Waele, V.; Marignier, J. L.; Mostafavi, M.

    2006-10-15

    This article gives a detailed description of a single shot electron spectrometer which was used to characterize electron beams produced by laser-plasma interaction. Contrary to conventional electron sources, electron beams from laser-plasma accelerators can produce a broad range of energies. Therefore, diagnosing these electron spectra requires specific attention and experimental development. Here, we provide an absolute calibration of the Lanex Kodak Fine screen on a laser-triggered radio frequency picosecond electron accelerator. The efficiency of scintillating screens irradiated by electron beams has never been investigated so far. This absolute calibration is then compared to charge measurements from an integrating current transformer for quasimonoenergetic electron spectra from laser-plasma interaction.

  17. Proposal for an absolute, atomic definition of mass

    NASA Astrophysics Data System (ADS)

    Wignall, J. W. G.

    1991-11-01

    It is proposed that the mass of a particle be defined absolutely as its de Broglie frequency, measured as the mean de Broglie wavelength of the particle when it has a mean speed (v) and Lorentz factor (gamma); the masses of systems too large to have a measurable de Broglie wavelength mean are then to be derived by specifying the usual inertial and additive properties of mass. This definition avoids the use of an arbitrary macroscopic standard such as the prototype kilogram, and, if present theory is correct, does not even require the choice of a specific particle as a mass standard. Suggestions are made as to how this absolute mass can be realized and measured at the macroscopic level and, finally, some comments are made on the effect of the new definition on the form of the equations of physics.

  18. Absolute calibration for a broad range single shot electron spectrometer

    NASA Astrophysics Data System (ADS)

    Glinec, Y.; Faure, J.; Guemnie-Tafo, A.; Malka, V.; Monard, H.; Larbre, J. P.; De Waele, V.; Marignier, J. L.; Mostafavi, M.

    2006-10-01

    This article gives a detailed description of a single shot electron spectrometer which was used to characterize electron beams produced by laser-plasma interaction. Contrary to conventional electron sources, electron beams from laser-plasma accelerators can produce a broad range of energies. Therefore, diagnosing these electron spectra requires specific attention and experimental development. Here, we provide an absolute calibration of the Lanex Kodak Fine screen on a laser-triggered radio frequency picosecond electron accelerator. The efficiency of scintillating screens irradiated by electron beams has never been investigated so far. This absolute calibration is then compared to charge measurements from an integrating current transformer for quasimonoenergetic electron spectra from laser-plasma interaction.

  19. Laser interferometer for absolute distance measurement based on a tunable VCSEL laser

    NASA Astrophysics Data System (ADS)

    Cip, Ondrej; Mikel, Bretislav; Lazar, Josef

    2005-02-01

    In the work, we present the absolute distance interferometer with a narrow-linewidth tunable VCSEL laser (Vertical-Cavity Surface-Emitting Laser) working at &lambda ~760 nm. As a detection technique, we use a fast wavelength-scanning interferometry improved by an amplitude division of the interference fringe with using two signals in quadrature. Used VCSEL laser is wide tunable with the mod-hop free tuning range more than 1.2 nm by means of the amplitude modulation of the injection current. We control the stabilization and tuning process of the laser wavelength with using the frequency lock to a Fabry-Perot resonator. We build that resonator as a glass plan-parallel etalon with high-fines. Except the frequency lock, the etalon helps us to measure a wavelength-tuning interval of VCSEL laser during the scanning process. We have stabilized an operating temperature of the VCSEL laser by means of a fast digital temperature controller. The optical set-up of the interferometer begins with a polarizing beam-splitter. It splits the laser beam into the measuring and reference arm of the Michelson interferometer. Two cubic corner cubes reflect beams back to this beam-splitter. It collects reflected beams to the same axis of propagation. Then a detection unit produces the combination of two perpendicularly polarized laser beams with production of two electronic signals that are in the quadrature. A fast analog-to-digital card equipped with the digital signal processor (DSP) samples these signals. DSP also controls the course of the scanning process. After Δλ ~ 1 nm scan of the wavelength of VCSEL laser we obtain a record of passed interference fringes and passed Fabry-Perot resonance modes at the same time. On basis of these measured quantities we are able to calculate with high precision the instantaneous value of the optical path length difference between the measuring and reference arm of the Michelson interferometer. We experimentally compared the developed absolute

  20. Detection of DNA hybridization and extension reactions by an extended-gate field-effect transistor: characterizations of immobilized DNA-probes and role of applying a superimposed high-frequency voltage onto a reference electrode.

    PubMed

    Kamahori, Masao; Ishige, Yu; Shimoda, Maki

    2008-02-28

    As we have already shown in a previous publication [Kamahori, M., Ihige, Y., Shimoda, M., 2007. Anal. Sci. 23, 75-79], an extended-gate field-effect transistor (FET) sensor with a gold electrode, on which both DNA probes and 6-hydroxyl-1-hexanethiol (6-HHT) molecules are immobilized, can detect DNA hybridization and extension reactions by applying a superimposed high-frequency voltage to a reference electrode. However, kinetic parameters such as the dissociation constant (K(d)(s)) and the apparent DNA-probe concentration (C(probe)(s)) on a surface were not clarified. In addition, the role of applying the superimposed high-frequency voltage was not considered in detail. In this study, the values of K(d)(s) and C(probe)(s) were estimated using a method involving single-base extension reaction combined with bioluminescence detection. The value of K(d)(s) on the surface was 0.38 microM, which was about six times that in a liquid phase. The value of C(probe)(s), which expressed the upper detection limit for the solid phase reaction, was 0.079 microM at a DNA-probe density of 2.6 x 10(12)molecules/cm(2). We found that applying the superimposed high-frequency voltage accelerated the DNA molecules to reach the gold surface. Also, the distance between the DNA-probes immobilized on the gold surface was controlled to be over 6 nm by applying a method of competitive reaction with DNA probes and 6-HHT molecules. This space was sufficient to enable the immobilized DNA-probes to lie down on the 6-HHT monolayer in the space between them. Thus, the FET sensor could detect DNA hybridization and extension reactions by applying a superimposed high-frequency voltage to the DNA-probes density-controlling gold surface. PMID:18054478

  1. Absolute optical surface measurement with deflectometry

    NASA Astrophysics Data System (ADS)

    Li, Wansong; Sandner, Marc; Gesierich, Achim; Burke, Jan

    Deflectometry utilises the deformation and displacement of a sample pattern after reflection from a test surface to infer the surface slopes. Differentiation of the measurement data leads to a curvature map, which is very useful for surface quality checks with sensitivity down to the nanometre range. Integration of the data allows reconstruction of the absolute surface shape, but the procedure is very error-prone because systematic errors may add up to large shape deviations. In addition, there are infinitely many combinations for slope and object distance that satisfy a given observation. One solution for this ambiguity is to include information on the object's distance. It must be known very accurately. Two laser pointers can be used for positioning the object, and we also show how a confocal chromatic distance sensor can be used to define a reference point on a smooth surface from which the integration can be started. The used integration algorithm works without symmetry constraints and is therefore suitable for free-form surfaces as well. Unlike null testing, deflectometry also determines radius of curvature (ROC) or focal lengths as a direct result of the 3D surface reconstruction. This is shown by the example of a 200 mm diameter telescope mirror, whose ROC measurements by coordinate measurement machine and deflectometry coincide to within 0.27 mm (or a sag error of 1.3μm). By the example of a diamond-turned off-axis parabolic mirror, we demonstrate that the figure measurement uncertainty comes close to a well-calibrated Fizeau interferometer.

  2. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-01-01

    The need for independent, redundant absolute radiometric calibration methods is discussed with reference to the Thematic Mapper. Uncertainty requirements for absolute calibration of between 0.5 and 4 percent are defined based on the accuracy of reflectance retrievals at an agricultural site. It is shown that even very approximate atmospheric corrections can reduce the error in reflectance retrieval to 0.02 over the reflectance range 0 to 0.4.

  3. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  4. Cosmic backgrounds of relic gravitons and their absolute normalization

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2014-11-01

    Provided the consistency relations are not violated, the recent BICEP2 observations pin down the absolute normalization, the spectral slope and the maximal frequency of the cosmic graviton background produced during inflation. The properly normalized spectra are hereby computed from the lowest frequencies (of the order of the present Hubble rate) up to the highest frequency range in the GHz region. Deviations from the conventional paradigm cannot be excluded and are examined by allowing for different physical possibilities including, in particular, a running of the tensor spectral index, an explicit breaking of the consistency relations and a spike in the high-frequency tail of the spectrum coming either from a post-inflationary phase dominated by a stiff fluid or from the contribution of waterfall fields in a hybrid inflationary context. The direct determinations of the tensor to scalar ratio at low frequencies, if confirmed by the forthcoming observations, will also affect and constrain the high-frequency uncertainties. The limits on the cosmic graviton backgrounds coming from wide-band interferometers (such as LIGO/Virgo, LISA and BBO/DECIGO) together with a more accurate scrutiny of the tensor B-mode polarization at low frequencies will set direct bounds on the post-inflationary evolution and on other unconventional completions of the standard lore.

  5. Accurate determination of absolute carrier-envelope phase dependence using photo-ionization.

    PubMed

    Sayler, A M; Arbeiter, M; Fasold, S; Adolph, D; Möller, M; Hoff, D; Rathje, T; Fetić, B; Milošević, D B; Fennel, T; Paulus, G G

    2015-07-01

    The carrier-envelope phase (CEP) dependence of few-cycle above-threshold ionization (ATI) of Xe is calibrated for use as a reference measurement for determining and controlling the absolute CEP in other interactions. This is achieved by referencing the CEP-dependent ATI measurements of Xe to measurements of atomic H, which are in turn referenced to ab initio calculations for atomic H. This allows for the accurate determination of the absolute CEP dependence of Xe ATI, which enables relatively easy determination of the offset between the relative CEP measured and/or controlled by typical devices and the absolute CEP in the interaction. PMID:26125386

  6. Correction of NIM-3A absolute gravimeter for self-attraction effect

    NASA Astrophysics Data System (ADS)

    Li, Chunjian; Xu, Jin-yi; Feng, Jin-yang; SU, Duo-wu; Wu, Shu-qing

    2015-02-01

    The mass of free-fall absolute gravimeter can produce vertical gravitational attraction to the free-falling test body during the measurement of acceleration due to gravity. The vertical gravitational attraction can cause an artificial deviation to the measured value of gravitational acceleration. This paper describes the operating principle of a free-fall absolute gravimeter and the method used to determine the reference height of a gravimeter. It also describes the physical structure of NIM-3A absolute gravimeter lately developed by National Institute of Metrology (China), and studies the correction of gravimeter for Self-attraction effect.

  7. Frequency ratios and the discrimination of pure tone sequences.

    PubMed

    Schellenberg, E G; Trehub, S E

    1994-10-01

    We examined the effect of frequency ratios on the discrimination of patterns of alternating pure tones (ABABA). Listeners heard a repeating pattern presented in transposition (same frequency ratios between successive tones, different absolute frequencies) and were required to indicate when the pattern changed (different frequency ratios and absolute frequencies). Changes from patterns with simple frequency ratios to those with more complex ratios were more readily detected than were changes from complex ratios to simpler ratios. PMID:7984402

  8. Absolute optical instruments without spherical symmetry

    NASA Astrophysics Data System (ADS)

    Tyc, Tomáš; Dao, H. L.; Danner, Aaron J.

    2015-11-01

    Until now, the known set of absolute optical instruments has been limited to those containing high levels of symmetry. Here, we demonstrate a method of mathematically constructing refractive index profiles that result in asymmetric absolute optical instruments. The method is based on the analogy between geometrical optics and classical mechanics and employs Lagrangians that separate in Cartesian coordinates. In addition, our method can be used to construct the index profiles of most previously known absolute optical instruments, as well as infinitely many different ones.

  9. Methods to calibrate the absolute receive sensitivity of single-element, focused transducers

    PubMed Central

    Rich, Kyle T.; Mast, T. Douglas

    2015-01-01

    Absolute pressure measurements of acoustic emissions by single-element, focused passive cavitation detectors would be facilitated by improved wideband receive calibration techniques. Here, calibration methods were developed to characterize the absolute, frequency-dependent receive sensitivity of a spherically focused, single-element transducer using pulse-echo and pitch-catch techniques. Validation of these calibration methods on a focused receiver were made by generating a pulse from a small diameter source at the focus of the transducer and comparing the absolute pressure measured by a calibrated hydrophone to that of the focused transducer using the receive sensitivities determined here. PMID:26428812

  10. Methods to calibrate the absolute receive sensitivity of single-element, focused transducers.

    PubMed

    Rich, Kyle T; Mast, T Douglas

    2015-09-01

    Absolute pressure measurements of acoustic emissions by single-element, focused passive cavitation detectors would be facilitated by improved wideband receive calibration techniques. Here, calibration methods were developed to characterize the absolute, frequency-dependent receive sensitivity of a spherically focused, single-element transducer using pulse-echo and pitch-catch techniques. Validation of these calibration methods on a focused receiver were made by generating a pulse from a small diameter source at the focus of the transducer and comparing the absolute pressure measured by a calibrated hydrophone to that of the focused transducer using the receive sensitivities determined here. PMID:26428812

  11. Molecular frequency reference at 1.56  μm using a 12C16O overtone transition with the noise-immune cavity-enhanced optical heterodyne molecular spectroscopy method.

    PubMed

    Saraf, Shailendhar; Berceau, Paul; Stochino, Alberto; Byer, Robert; Lipa, John

    2016-05-15

    We report on a molecular clock based on the interrogation of the 3ν rotational-vibrational combination band at 1563 nm of carbon monoxide C1612O. The laser stabilization scheme is based on the noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) technique in frequency modulation (FM) saturation spectroscopy. We use a high-finesse ultra-low expansion (ULE) glass optical cavity with CO as the molecular reference for long-term stabilization of the cavity resonance. We report an Allan deviation of 1.8×10-12 at 1 s that improves to ∼3.5×10-14 with 1000 s of averaging. PMID:27176959

  12. Absolute site effects in Kachchh, India, determined from aftershocks of the 2002 Bhuj earthquake.

    NASA Astrophysics Data System (ADS)

    Malagnini, L.; Mayeda, K.; Bodin, P.; Akinci, A.

    2004-12-01

    What can be learned about absolute site effects on ground motions from recordings of aftershocks at ten temporary seismic stations, none of which could be considered a "reference" (hard rock) site, and for which no geotechnical information is available? This challenge motivated our current study of Bhuj aftershocks; and our answer, briefly put, is: quite a bit. We started by constraining the regional attenuation and geometric spreading: this was the result of an earlier study [Bodin et al., BSSA 2004], the goal of which was to be able to reproduce the general character of the observations with a constrained set of stochastic synthetic ground motions. Our present work is based on the same aftershock data we used in the prior study. We first produced stable and reliable, unbiased source moment-rate spectra using the technique described by Mayeda et al., [BSSA, 2003]. With these known "absolute" source spectra, and the propagation terms we quantified in the previous study we inverted for the site response using only the largest ~200 earthquakes (M>2.8) in each of two depth ranges (0-25 km, and 20-40 km), to yield the "absolute" site terms for horizontal and vertical ground motions. We were able to obtain stable results in the 1-14 hz frequency band. The results reveal that the site terms generally share a common character: small amplifications (near unity) at the longer-period end of the pass-band, and decreases (perhaps due to attenuation or near-site scattering) at the higher frequency end. This character is evident in a similar study of earthquake ground motions in the Alps at sites on hard rock [Malagnini et al., BSSA 2004]. In contrast to Alpine hard rock sites, however, the vertical site terms at our sediment and soft-rock sites are generally rather flat and featureless. We observe differences in site response between stations which appeared to be on similar geologic conditions, and vice versa. For sites that appear to be on deep unconsolidated soils

  13. Absolute magnitudes of trans-neptunian objects

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.

    2015-10-01

    Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.

  14. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  15. Reference Assessment

    ERIC Educational Resources Information Center

    Bivens-Tatum, Wayne

    2006-01-01

    This article presents interesting articles that explore several different areas of reference assessment, including practical case studies and theoretical articles that address a range of issues such as librarian behavior, patron satisfaction, virtual reference, or evaluation design. They include: (1) "Evaluating the Quality of a Chat Service"…

  16. Reference Services.

    ERIC Educational Resources Information Center

    Bunge, Charles A.

    1999-01-01

    Discusses library reference services. Topics include the historical development of reference services; instruction in library use, particularly in college and university libraries; guidance; information and referral services and how they differ from traditional question-answering service; and future concerns, including user fees and the planning…

  17. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-03

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  18. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2008-10-21

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  19. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-17

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  20. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-10-02

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  1. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2009-09-01

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  2. Reference Book Guides.

    ERIC Educational Resources Information Center

    Webb, Bill, Ed.

    For each reference work there is a 5 1/2 x 8 1/2" card with information about the work in brief, standardized format. The card indicates what the subject coverage is, the types of materials included, the service given, frequency of publication, procedure for use, an example of the procedure, a sample entry with explanatory notes, other places to…

  3. Overspecification of color, pattern, and size: salience, absoluteness, and consistency

    PubMed Central

    Tarenskeen, Sammie; Broersma, Mirjam; Geurts, Bart

    2015-01-01

    The rates of overspecification of color, pattern, and size are compared, to investigate how salience and absoluteness contribute to the production of overspecification. Color and pattern are absolute and salient attributes, whereas size is relative and less salient. Additionally, a tendency toward consistent responses is assessed. Using a within-participants design, we find similar rates of color and pattern overspecification, which are both higher than the rate of size overspecification. Using a between-participants design, however, we find similar rates of pattern and size overspecification, which are both lower than the rate of color overspecification. This indicates that although many speakers are more likely to include color than pattern (probably because color is more salient), they may also treat pattern like color due to a tendency toward consistency. We find no increase in size overspecification when the salience of size is increased, suggesting that speakers are more likely to include absolute than relative attributes. However, we do find an increase in size overspecification when mentioning the attributes is triggered, which again shows that speakers tend to refer in a consistent manner, and that there are circumstances in which even size overspecification is frequently produced. PMID:26594190

  4. Measurement of Absolute Carbon Isotope Ratios: Mechanisms and Implications

    NASA Astrophysics Data System (ADS)

    Vogel, J. S.; Giacomo, J. A.; Dueker, S. R.

    2012-12-01

    An accelerator mass spectrometer (AMS) produced absolute isotope ratio measurements for 14C/13C as tested against >500 samples of NIST SRM-4990-C (OxII 14C standard) to an accuracy of 2.2±0.6‰ over a period of one year with measurements made to 1% counting statistics. The spectrometer is not maximized for 13C/12C, but measured ∂13C to 0.4±0.1‰ accuracy, with known methods for improvement. An AMS produces elemental anions from a sputter ion source and includes a charge-changing collision in a gas cell to isolate the rare 14C from the common isotopes and molecular isobars. Both these physical processes have been modeled to determine the parameters providing such absolute measures. Neutral resonant ionization in a cesium plasma produces mass-independent ionization, while velocity dependent charge-state distributions in gas collisions produce relative ion beam intensities that are linear in mass at specific collision energies. The mechanisms are not specific to carbon isotopes, but stand alone absolute IRMS (AIR-MS) instruments have not yet been made. Aside from the obvious applications in metrology, AIR-MS is particularly valuable in coupled separatory MS because no internal or external standards are required. Sample definition processes can be compared, even if no exact standard reference sample exists. Isotope dilution measurements do not require standards matching the dilution end-points and can be made over an extended, even extrapolated, range.

  5. Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Nishiyama, A.; Nakashima, K.; Matsuba, A.; Misono, M.

    2015-12-01

    We performed Doppler-free two-photon absorption spectroscopy of naphthalene using an optical frequency comb as a frequency reference. Rotationally resolved rovibronic spectra were observed, and absolute frequencies of the rovibronic transitions were determined with an uncertainty of several tens of kHz. The resolution and precision of our system are finer than the natural width of naphthalene. We assigned 1466 lines of the Q (Ka) Q (J) transition and calculated molecular constants. We attribute systematic spectral line shifts to the Coriolis interaction, and discuss the origin of the spectral linewidths.

  6. Reference frames and reference networks

    NASA Astrophysics Data System (ADS)

    Bosy, Jaroslaw; Krynski, Jan

    2015-12-01

    The summary of research activities concerning reference frames and reference networks performed in Poland in a period of 2011-2014 is presented. It contains the results of research on implementation of IUGG2011 and IAU2012 resolutions on reference systems, implementation of the ETRS89 in Poland, operational work of permanent IGS/ EUREF stations in Poland, operational work of ILRS laser ranging station in Poland, active GNSS station networks in Poland, maintenance of vertical control in Poland, maintenance and modernization of gravity control, and maintenance of magnetic control in Poland. The bibliography of the related works is given in references.

  7. Absolute GNSS Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G.; Bilich, A.; Geoghegan, C.

    2012-04-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and outline future planned refinements to the system.

  8. Ready Reference.

    ERIC Educational Resources Information Center

    Koltay, Emery

    1999-01-01

    Includes the following ready reference information: "Publishers' Toll-Free Telephone Numbers"; "How to Obtain an ISBN (International Standard Book Number)"; "How to Obtain an ISSN (International Standard Serial Number)"; and "How to Obtain an SAN (Standard Address Number)". (AEF)

  9. On the effect of distortion and dispersion in fringe signal of the FG5 absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Křen, Petr; Pálinkáš, Vojtech; Mašika, Pavel

    2016-02-01

    The knowledge of absolute gravity acceleration at the level of 1  ×  10-9 is needed in geosciences (e.g. for monitoring crustal deformations and mass transports) and in metrology for watt balance experiments related to the new SI definition of the unit of kilogram. The gravity reference, which results from the international comparisons held with the participation of numerous absolute gravimeters, is significantly affected by qualities of instruments prevailing in the comparisons (i.e. at present, FG5 gravimeters). Therefore, it is necessary to thoroughly investigate all instrumental (particularly systematic) errors. This paper deals with systematic errors of the FG5#215 coming from the distorted fringe signal and from the electronic dispersion at several electronic components including cables. In order to investigate these effects, we developed a new experimental system for acquiring and analysing the data parallel to the FG5 built-in system. The new system based on the analogue-to-digital converter with digital waveform processing using the FFT swept band pass filter is developed and tested on the FG5#215 gravimeter equipped with a new fast analogue output. The system is characterized by a low timing jitter, digital handling of the distorted swept signal with determination of zero-crossings for the fundamental frequency sweep and also for its harmonics and can be used for any gravimeter based on the laser interferometry. Comparison of the original FG5 system and the experimental systems is provided on g-values, residuals and additional measurements/models. Moreover, advanced approach for the solution of the free-fall motion is presented, which allows to take into account a non-linear gravity change with height.

  10. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed. PMID:19831037

  11. Stitching interferometry and absolute surface shape metrology: similarities

    NASA Astrophysics Data System (ADS)

    Bray, Michael

    2001-12-01

    Stitching interferometry is a method of analysing large optical components using a standard small interferometer. This result is obtained by taking multiple overlapping images of the large component, and numerically stitching these sub-apertures together by computing a correcting Tip- Tilt-Piston correction for each sub-aperture. All real-life measurement techniques require a calibration phase. By definition, a perfect surface does not exist. Methods abound for the accurate measurement of diameters (viz., the Three Flat Test). However, we need total surface knowledge of the reference surface, because the stitched overlap areas will suffer from the slightest deformation. One must not be induced into thinking that Stitching is the cause of this error: it simply highlights the lack of absolute knowledge of the reference surface, or the lack of adequate thermal control, issues which are often sidetracked... The goal of this paper is to highlight the above-mentioned calibration problems in interferometry in general, and in stitching interferometry in particular, and show how stitching hardware and software can be conveniently used to provide the required absolute surface shape metrology. Some measurement figures will illustrate this article.

  12. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  13. Absolute phase effects on CPMG-type pulse sequences.

    PubMed

    Mandal, Soumyajit; Oh, Sangwon; Hürlimann, Martin D

    2015-12-01

    We describe and analyze the effects of transients within radio-frequency (RF) pulses on multiple-pulse NMR measurements such as the well-known Carr-Purcell-Meiboom-Gill (CPMG) sequence. These transients are functions of the absolute RF phases at the beginning and end of the pulse, and are thus affected by the timing of the pulse sequence with respect to the period of the RF waveform. Changes in transients between refocusing pulses in CPMG-type sequences can result in signal decay, persistent oscillations, changes in echo shape, and other effects. We have explored such effects by performing experiments in two different low-frequency NMR systems. The first uses a conventional tuned-and-matched probe circuit, while the second uses an ultra-broadband un-tuned or non-resonant probe circuit. We show that there are distinct differences between the absolute phase effects in these two systems, and present simple models that explain these differences. PMID:26575106

  14. On-orbit absolute radiance standard for the next generation of IR remote sensing instruments

    NASA Astrophysics Data System (ADS)

    Best, Fred A.; Adler, Douglas P.; Pettersen, Claire; Revercomb, Henry E.; Gero, P. Jonathan; Taylor, Joseph K.; Knuteson, Robert O.; Perepezko, John H.

    2012-11-01

    The next generation of infrared remote sensing satellite instrumentation, including climate benchmark missions will require better absolute measurement accuracy than now available, and will most certainly rely on the emerging capability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances with an absolute brightness temperature error of better than 0.1 K will require high-emissivity (<0.999) calibration blackbodies with emissivity uncertainty of better than 0.06%, and absolute temperature uncertainties of better than 0.045K (k=3). Key elements of an On-Orbit Absolute Radiance Standard (OARS) meeting these stringent requirements have been demonstrated in the laboratory at the University of Wisconsin (UW) and refined under the NASA Instrument Incubator Program (IIP). This work recently culminated with an integrated subsystem that was used in the laboratory to demonstrate end-to-end radiometric accuracy verification for the UW Absolute Radiance Interferometer. Along with an overview of the design, we present details of a key underlying technology of the OARS that provides on-orbit absolute temperature calibration using the transient melt signatures of small quantities (<1g) of reference materials (gallium, water, and mercury) imbedded in the blackbody cavity. In addition we present performance data from the laboratory testing of the OARS.

  15. Absolute isotopic abundances of TI in meteorites

    NASA Astrophysics Data System (ADS)

    Niederer, F. R.; Papanastassiou, D. A.; Wasserburg, G. J.

    1985-03-01

    The absolute isotope abundance of Ti has been determined in Ca-Al-rich inclusions from the Allende and Leoville meteorites and in samples of whole meteorites. The absolute Ti isotope abundances differ by a significant mass dependent isotope fractionation transformation from the previously reported abundances, which were normalized for fractionation using 46Ti/48Ti. Therefore, the absolute compositions define distinct nucleosynthetic components from those previously identified or reflect the existence of significant mass dependent isotope fractionation in nature. The authors provide a general formalism for determining the possible isotope compositions of the exotic Ti from the measured composition, for different values of isotope fractionation in nature and for different mixing ratios of the exotic and normal components.

  16. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record PMID:26478959

  17. Absolute calibration in vivo measurement systems

    SciTech Connect

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

  18. Precise Measurement of the Absolute Fluorescence Yield

    NASA Astrophysics Data System (ADS)

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2011-09-01

    We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.

  19. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed. PMID:26022836

  20. Ready Reference.

    ERIC Educational Resources Information Center

    Koltay, Emery

    2001-01-01

    Includes four articles that relate to ready reference, including a list of publishers' toll-free telephone numbers and Web sites; how to obtain an ISBN (International Standard Book Number) and an ISSN (International Standard Serial Number); and how to obtain an SAN (Standard Address Number), for organizations that are involved in the book…

  1. Poroelastic references

    SciTech Connect

    Morency, Christina

    2014-12-12

    This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

  2. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  3. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  4. Teaching Absolute Value Inequalities to Mature Students

    ERIC Educational Resources Information Center

    Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea

    2011-01-01

    This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…

  5. Increasing Capacity: Practice Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Dodds, Pennie; Donkin, Christopher; Brown, Scott D.; Heathcote, Andrew

    2011-01-01

    In most of the long history of the study of absolute identification--since Miller's (1956) seminal article--a severe limit on performance has been observed, and this limit has resisted improvement even by extensive practice. In a startling result, Rouder, Morey, Cowan, and Pfaltz (2004) found substantially improved performance with practice in the…

  6. On Relative and Absolute Conviction in Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2015-01-01

    Conviction is a central construct in mathematics education research on justification and proof. In this paper, we claim that it is important to distinguish between absolute conviction and relative conviction. We argue that researchers in mathematics education frequently have not done so and this has lead to researchers making unwarranted claims…

  7. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  8. Nonequilibrium equalities in absolutely irreversible processes

    NASA Astrophysics Data System (ADS)

    Murashita, Yuto; Funo, Ken; Ueda, Masahito

    2015-03-01

    Nonequilibrium equalities have attracted considerable attention in the context of statistical mechanics and information thermodynamics. Integral nonequilibrium equalities reveal an ensemble property of the entropy production σ as = 1 . Although nonequilibrium equalities apply to rather general nonequilibrium situations, they break down in absolutely irreversible processes, where the forward-path probability vanishes and the entropy production diverges. We identify the mathematical origins of this inapplicability as the singularity of probability measure. As a result, we generalize conventional integral nonequilibrium equalities to absolutely irreversible processes as = 1 -λS , where λS is the probability of the singular part defined based on Lebesgue's decomposition theorem. The acquired equality contains two physical quantities related to irreversibility: σ characterizing ordinary irreversibility and λS describing absolute irreversibility. An inequality derived from the obtained equality demonstrates the absolute irreversibility leads to the fundamental lower bound on the entropy production. We demonstrate the validity of the obtained equality for a simple model.

  9. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  10. Precision absolute positional measurement of laser beams.

    PubMed

    Fitzsimons, Ewan D; Bogenstahl, Johanna; Hough, James; Killow, Christian J; Perreur-Lloyd, Michael; Robertson, David I; Ward, Henry

    2013-04-20

    We describe an instrument which, coupled with a suitable coordinate measuring machine, facilitates the absolute measurement within the machine frame of the propagation direction of a millimeter-scale laser beam to an accuracy of around ±4 μm in position and ±20 μrad in angle. PMID:23669658

  11. Virtual pitch extraction from harmonic structures by absolute-pitch musicians

    NASA Astrophysics Data System (ADS)

    Hsieh, I.-Hui; Saberi, Kourosh

    2009-03-01

    The ability of absolute-pitch (AP) musicians to identify or produce virtual pitch from harmonic structures without feedback or an external acoustic referent was examined in three experiments. Stimuli consisted of pure tones, missing-fundamental harmonic complexes, or piano notes highpass filtered to remove their fundamental frequency and lower harmonics. Results of Experiment I showed that relative to control (non-AP) musicians, AP subjects easily (>90%) identified pitch of harmonic complexes in a 12-alternative forced-choice task. Increasing harmonic order (i.e., lowest harmonic number in the complex), however, resulted in a monotonic decline in performance. Results suggest that AP musicians use two pitch cues from harmonic structures: 1) spectral spacing between harmonic components, and 2) octave-related cues to note identification in individually resolved harmonics. Results of Experiment II showed that highpass filtered piano notes are identified by AP subjects at better than 75% accuracy even when the note’s energy is confined to the 4th and higher harmonics. Identification of highpass piano notes also appears to be better than that expected from pure or complex tones, possibly due to contributions from familiar timbre cues to note identity. Results of Experiment III showed that AP subjects can adjust the spectral spacing between harmonics of a missing-fundamental complex to accurately match the expected spacing from a target musical note. Implications of these findings for mechanisms of AP encoding are discussed.

  12. ARCADE 2 MEASUREMENT OF THE ABSOLUTE SKY BRIGHTNESS AT 3-90 GHz

    SciTech Connect

    Fixsen, D. J.; Levin, S.; Seiffert, M.; Limon, M.; Lubin, P.; Mirel, P.; Singal, J.; Villela, T.; Wuensche, C. A.

    2011-06-10

    The ARCADE 2 instrument has measured the absolute temperature of the sky at frequencies 3, 8, 10, 30, and 90 GHz, using an open-aperture cryogenic instrument observing at balloon altitudes with no emissive windows between the beam-forming optics and the sky. An external blackbody calibrator provides an in situ reference. Systematic errors were greatly reduced by using differential radiometers and cooling all critical components to physical temperatures approximating the cosmic microwave background (CMB) temperature. A linear model is used to compare the output of each radiometer to a set of thermometers on the instrument. Small corrections are made for the residual emission from the flight train, balloon, atmosphere, and foreground Galactic emission. The ARCADE 2 data alone show an excess radio rise of 54 {+-} 6 mK at 3.3 GHz in addition to a CMB temperature of 2.731 {+-} 0.004 K. Combining the ARCADE 2 data with data from the literature shows an excess power-law spectrum of T = 24.1 {+-} 2.1 (K) ({nu}/{nu}{sub 0}){sup -2.599{+-}0.036} from 22 MHz to 10 GHz ({nu}{sub 0} = 310 MHz) in addition to a CMB temperature of 2.725 {+-} 0.001 K.

  13. Absolute surface metrology by differencing spatially shifted maps from a phase-shifting interferometer.

    PubMed

    Bloemhof, E E

    2010-07-15

    Surface measurements of precision optics are commonly made with commercially available phase-shifting Fizeau interferometers that provide data relative to flat or spherical reference surfaces whose unknown errors are comparable to those of the surface being tested. A number of ingenious techniques provide surface measurements that are "absolute," rather than relative to any reference surface. Generally, these techniques require numerous measurements and the introduction of additional surfaces, but still yield absolute information only along certain lines over the surface of interest. A very simple alternative is presented here, in which no additional optics are required beyond the surface under test and the transmission flat (or sphere) defining the interferometric reference surface. The optic under test is measured in three positions, two of which have small lateral shifts along orthogonal directions, nominally comparable to the transverse spatial resolution of the interferometer. The phase structure in the reference surface then cancels out when these measurements are subtracted in pairs, providing a grid of absolute surface height differences between neighboring resolution elements of the surface under test. The full absolute surface, apart from overall phase and tip/tilt, is then recovered by standard wavefront reconstruction techniques. PMID:20634825

  14. Determination of absolute threshold and just noticeable difference in the sensory perception of pungency.

    PubMed

    Orellana-Escobedo, L; Ornelas-Paz, J J; Olivas, G I; Guerrero-Beltran, J A; Jimenez-Castro, J; Sepulveda, D R

    2012-03-01

    Absolute threshold and just noticeable difference (JND) were determined for the perception of pungency using chili pepper in aqueous solutions. Absolute threshold and JND were determined using 2 alternative forced-choice sensory tests tests. High-performance liquid chromatography technique was used to determine capsaicinoids concentration in samples used for sensory analysis. Sensory absolute threshold was 0.050 mg capsaicinoids/kg sample. Five JND values were determined using 5 reference solutions with different capsaicinoids concentration. JND values changed proportionally as capsaicinoids concentration of the reference sample solutions changed. Weber fraction remained stable for the first 4 reference capsaicinoid solutions (0.05, 0.11, 0.13, and 0.17 mg/kg) but changed when the most concentrated reference capsaicinoids solution was used (0.23 mg/kg). Quantification limit for instrumental analysis was 1.512 mg/kg capsaicinoids. Sensory methods employed in this study proved to be more sensitive than instrumental methods. Practical Application: A better understanding of the process involved in the sensory perception of pungency is currently required because "hot" foods are becoming more popular in western cuisine. Absolute thresholds and differential thresholds are useful tools in the formulation and development of new food products. These parameters may help in defining how much chili pepper is required in a formulated product to ensure a perceptible level of pungency, as well as in deciding how much more chili pepper is required in a product to produce a perceptible increase in its pungency. PMID:22384966

  15. Design of laser system for absolute gravimeter based on 87Rb atom interferometer

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Wang, Shaokai; Zhuang, Wei; Fang, Fang; Li, Tianchu

    2015-08-01

    We present a laser system design for an absolute gravimeter based on 87Rb atom interferometer. By skillful design, lasers with 9 different frequencies are based on two diode lasers including tapered amplifier. Two electrical feedback systems are used for laser frequency stabilization and the Raman lasers generation respectively. All other lasers are based on two Raman lasers and realized with frequency shift by acoustic optical modulators. This laser system not only has the compact and simple construction, but meets all requirements for laser power and frequency controlling for the atom interferometer. It has the characteristic of reliability and integrity.

  16. Absolute Transition Probabilities of Lines in the Spectra of Astrophysical Atoms, Molecules, and Ions

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Smith, P. L.; Yoshino, K.

    1984-01-01

    Progress in the investigation of absolute transition probabilities (A-values or F values) for ultraviolet lines is reported. A radio frequency ion trap was used for measurement of transition probabilities for intersystem lines seen in astronomical spectra. The intersystem line at 2670 A in Al II, which is seen in pre-main sequence stars and symbiotic stars, was studied.

  17. FTS Studies of the 17O Enriched Isotopologues of CO_2 Toward Creating a Complete and Highly Accurate Reference Standard

    NASA Astrophysics Data System (ADS)

    Elliott, Ben; Sung, Keeyoon; Brown, Linda; Miller, Charles

    2014-06-01

    The proliferation and increased abilities of remote sensing missions for the monitoring of planetary atmospheric gas species has spurred the need for complete and accurate spectroscopic reference standards. As a part of our ongoing effort toward creating a global carbon dioxide (CO2) frequency reference standard, we report new FTS measurements of the 17O enriched isotopologues of CO2. The first measurements were taken in the ν3 region (2200 - 2450 cm-1, 65 - 75 THz), have absolute calibration accuracies of 100 kHz (3E-6 cm-1), comparable to the uncertainties for typical sub-millimeter/THz spectroscopy. Such high absolute calibration accuracy has become regular procedure for the cases of linear molecules such as CO2 and CO for FTS measurements at JPL, and enables us to produce measured transition frequencies for entire bands with accuracies that rival those of early heterodyne measurements for individual beat notes. Additionally, by acquiring spectra of multiple carbon dioxide isotopologues simultaneously, we have begun to construct a self-consistent frequency grid based on CO2 that extends from 20 - 200 THz. These new spectroscopic reference standards are a significant step towards minimizing CO2 retrieval errors from remote sensing applications, especially those involving targets with predominantly CO2 atmospheres such as Mars, Venus and candidate terrestrial exoplanets where minor isotopologues will make significant contributions to the radiance signals.

  18. Combined Use of Absolute and Differential Seismic Arrival Time Data to Improve Absolute Event Location

    NASA Astrophysics Data System (ADS)

    Myers, S.; Johannesson, G.

    2012-12-01

    Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement

  19. Morphology and Absolute Magnitudes of the SDSS DR7 QSOs

    NASA Astrophysics Data System (ADS)

    Coelho, B.; Andrei, A. H.; Antón, S.

    2014-10-01

    The ESA mission Gaia will furnish a complete census of the Milky Way, delivering astrometrics, dynamics, and astrophysics information for 1 billion stars. Operating in all-sky repeated survey mode, Gaia will also provide measurements of extra-galactic objects. Among the later there will be at least 500,000 QSOs that will be used to build the reference frame upon which the several independent observations will be combined and interpreted. Not all the QSOs are equally suited to fulfill this role of fundamental, fiducial grid-points. Brightness, morphology, and variability define the astrometric error budget for each object. We made use of 3 morphological parameters based on the PSF sharpness, circularity and gaussianity, which enable us to distinguish the "real point-like" QSOs. These parameters are being explored on the spectroscopically certified QSOs of the SDSS DR7, to compare the performance against other morphology classification schemes, as well as to derive properties of the host galaxy. We present a new method, based on the Gaia quasar database, to derive absolute magnitudes, on the SDSS filters domain. The method can be extrapolated all over the optical window, including the Gaia filters. We discuss colors derived from SDSS apparent magnitudes and colors based on absolute magnitudes that we obtained tanking into account corrections for dust extinction, either intergalactic or from the QSO host, and for the Lyman α forest. In the future we want to further discuss properties of the host galaxies, comparing for e.g. the obtained morphological classification with the color, the apparent and absolute magnitudes, and the redshift distributions.

  20. Absolute versus relative ascertainment of pedophilia in men.

    PubMed

    Blanchard, Ray; Kuban, Michael E; Blak, Thomas; Cantor, James M; Klassen, Philip E; Dickey, Robert

    2009-12-01

    There are at least two different criteria for assessing pedophilia in men: absolute ascertainment (their sexual interest in children is intense) and relative ascertainment (their sexual interest in children is greater than their interest in adults). The American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders, 3rd edition (DSM-III) used relative ascertainment in its diagnostic criteria for pedophilia; this was abandoned and replaced by absolute ascertainment in the DSM-III-R and all subsequent editions. The present study was conducted to demonstrate the continuing need for relative ascertainment, particularly in the laboratory assessment of pedophilia. A total of 402 heterosexual men were selected from a database of patients referred to a specialty clinic. These had undergone phallometric testing, a psychophysiological procedure in which their penile blood volume was monitored while they were presented with a standardized set of laboratory stimuli depicting male and female children, pubescents, and adults.The 130 men selected for the Teleiophilic Profile group responded substantially to prepubescent girls but even more to adult women; the 272 men selected for the Pedophilic Profile group responded weakly to prepubescent girls but even less to adult women. In terms of absolute magnitude, every patient in the Pedophilic Profile group had a lesser penile response to prepubescent girls than every patient in the Teleiophilic Profile group. Nevertheless, the Pedophilic Profile group had a significantly greater number of known sexual offenses against prepubescent girls, indicating that they contained a higher proportion of true pedophiles. These results dramatically demonstrate the utility-or perhaps necessity-of relative ascertainment in the laboratory assessment of erotic age-preference. PMID:19901237

  1. Standardization of the cumulative absolute velocity. Final report

    SciTech Connect

    O`Hara, T.F.; Jacobson, J.P.

    1991-12-01

    EPRI NP-5930, ``A Criterion for Determining Exceedance of the Operating Basis Earthquake,`` was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.

  2. Absolute Temperature Monitoring Using RF Radiometry in the MRI Scanner.

    PubMed

    El-Sharkawy, Abdel-Monem M; Sotiriadis, Paul P; Bottomley, Paul A; Atalar, Ergin

    2006-11-01

    Temperature detection using microwave radiometry has proven value for noninvasively measuring the absolute temperature of tissues inside the body. However, current clinical radiometers operate in the gigahertz range, which limits their depth of penetration. We have designed and built a noninvasive radiometer which operates at radio frequencies (64 MHz) with ∼100-kHz bandwidth, using an external RF loop coil as a thermal detector. The core of the radiometer is an accurate impedance measurement and automatic matching circuit of 0.05 Ω accuracy to compensate for any load variations. The radiometer permits temperature measurements with accuracy of ±0.1°K, over a tested physiological range of 28° C-40° C in saline phantoms whose electric properties match those of tissue. Because 1.5 T magnetic resonance imaging (MRI) scanners also operate at 64 MHz, we demonstrate the feasibility of integrating our radiometer with an MRI scanner to monitor RF power deposition and temperature dosimetry, obtaining coarse, spatially resolved, absolute thermal maps in the physiological range. We conclude that RF radiometry offers promise as a direct, noninvasive method of monitoring tissue heating during MRI studies and thereby providing an independent means of verifying patient-safe operation. Other potential applications include titration of hyper- and hypo-therapies. PMID:18026562

  3. Absolute and relative dosimetry for ELIMED

    SciTech Connect

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  4. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum. PMID:25423049

  5. Absolute-magnitude distributions of supernovae

    SciTech Connect

    Richardson, Dean; Wright, John; Jenkins III, Robert L.; Maddox, Larry

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  6. Absolute radiometry and the solar constant

    NASA Technical Reports Server (NTRS)

    Willson, R. C.

    1974-01-01

    A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).

  7. Absolute calibration of TFTR helium proportional counters

    SciTech Connect

    Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L.; Barnes, C.W. |; Loughlin, M. |

    1995-06-01

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments.

  8. Absolute enantioselective separation: optical activity ex machina.

    PubMed

    Bielski, Roman; Tencer, Michal

    2005-11-01

    The paper describes methodology of using three independent macroscopic factors affecting molecular orientation to accomplish separation of a racemic mixture without the presence of any other chiral compounds, i. e., absolute enantioselective separation (AES) which is an extension of a concept of applying these factors to absolute asymmetric synthesis. The three factors may be applied simultaneously or, if their effects can be retained, consecutively. The resulting three mutually orthogonal or near orthogonal directors constitute a true chiral influence and their scalar triple product is the measure of the chirality of the system. AES can be executed in a chromatography-like microfluidic process in the presence of an electric field. It may be carried out on a chemically modified flat surface, a monolithic polymer column made of a mesoporous material, each having imparted directional properties. Separation parameters were estimated for these media and possible implications for the natural homochirality are discussed. PMID:16342798

  9. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  10. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  11. Metallic Magnetic Calorimeters for Absolute Activity Measurement

    NASA Astrophysics Data System (ADS)

    Loidl, M.; Leblanc, E.; Rodrigues, M.; Bouchard, J.; Censier, B.; Branger, T.; Lacour, D.

    2008-05-01

    We present a prototype of metallic magnetic calorimeters that we are developing for absolute activity measurements of low energy emitting radionuclides. We give a detailed description of the realization of the prototype, containing an 55Fe source inside the detector absorber. We present the analysis of first data taken with this detector and compare the result of activity measurement with liquid scintillation counting. We also propose some ways for reducing the uncertainty on the activity determination with this new technique.

  12. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  13. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  14. Silicon Absolute X-Ray Detectors

    SciTech Connect

    Seely, John F.; Korde, Raj; Sprunck, Jacob; Medjoubi, Kadda; Hustache, Stephanie

    2010-06-23

    The responsivity of silicon photodiodes having no loss in the entrance window, measured using synchrotron radiation in the 1.75 to 60 keV range, was compared to the responsivity calculated using the silicon thickness measured using near-infrared light. The measured and calculated responsivities agree with an average difference of 1.3%. This enables their use as absolute x-ray detectors.

  15. Blood pressure targets and absolute cardiovascular risk.

    PubMed

    Odutayo, Ayodele; Rahimi, Kazem; Hsiao, Allan J; Emdin, Connor A

    2015-08-01

    In the Eighth Joint National Committee guideline on hypertension, the threshold for the initiation of blood pressure-lowering treatment for elderly adults (≥60 years) without chronic kidney disease or diabetes mellitus was raised from 140/90 mm Hg to 150/90 mm Hg. However, the committee was not unanimous in this decision, particularly because a large proportion of adults ≥60 years may be at high cardiovascular risk. On the basis of Eighth Joint National Committee guideline, we sought to determine the absolute 10-year risk of cardiovascular disease among these adults through analyzing the National Health and Nutrition Examination Survey (2005-2012). The primary outcome measure was the proportion of adults who were at ≥20% predicted absolute cardiovascular risk and above goals for the Seventh Joint National Committee guideline but reclassified as at target under the Eighth Joint National Committee guideline (reclassified). The Framingham General Cardiovascular Disease Risk Score was used. From 2005 to 2012, the surveys included 12 963 adults aged 30 to 74 years with blood pressure measurements, of which 914 were reclassified based on the guideline. Among individuals reclassified as not in need of additional treatment, the proportion of adults 60 to 74 years without chronic kidney disease or diabetes mellitus at ≥20% absolute risk was 44.8%. This corresponds to 0.8 million adults. The proportion at high cardiovascular risk remained sizable among adults who were not receiving blood pressure-lowering treatment. Taken together, a sizable proportion of reclassified adults 60 to 74 years without chronic kidney disease or diabetes mellitus was at ≥20% absolute cardiovascular risk. PMID:26056340

  16. Relative errors can cue absolute visuomotor mappings.

    PubMed

    van Dam, Loes C J; Ernst, Marc O

    2015-12-01

    When repeatedly switching between two visuomotor mappings, e.g. in a reaching or pointing task, adaptation tends to speed up over time. That is, when the error in the feedback corresponds to a mapping switch, fast adaptation occurs. Yet, what is learned, the relative error or the absolute mappings? When switching between mappings, errors with a size corresponding to the relative difference between the mappings will occur more often than other large errors. Thus, we could learn to correct more for errors with this familiar size (Error Learning). On the other hand, it has been shown that the human visuomotor system can store several absolute visuomotor mappings (Mapping Learning) and can use associated contextual cues to retrieve them. Thus, when contextual information is present, no error feedback is needed to switch between mappings. Using a rapid pointing task, we investigated how these two types of learning may each contribute when repeatedly switching between mappings in the absence of task-irrelevant contextual cues. After training, we examined how participants changed their behaviour when a single error probe indicated either the often-experienced error (Error Learning) or one of the previously experienced absolute mappings (Mapping Learning). Results were consistent with Mapping Learning despite the relative nature of the error information in the feedback. This shows that errors in the feedback can have a double role in visuomotor behaviour: they drive the general adaptation process by making corrections possible on subsequent movements, as well as serve as contextual cues that can signal a learned absolute mapping. PMID:26280315

  17. Absolute stellar photometry on moderate-resolution FPA images

    USGS Publications Warehouse

    Stone, T.C.

    2009-01-01

    An extensive database of star (and Moon) images has been collected by the ground-based RObotic Lunar Observatory (ROLO) as part of the US Geological Survey program for lunar calibration. The stellar data are used to derive nightly atmospheric corrections for the observations from extinction measurements, and absolute calibration of the ROLO sensors is based on observations of Vega and published reference flux and spectrum data. The ROLO telescopes were designed for imaging the Moon at moderate resolution, thus imposing some limitations for the stellar photometry. Attaining accurate stellar photometry with the ROLO image data has required development of specialized processing techniques. A key consideration is consistency in discriminating the star core signal from the off-axis point spread function. The analysis and processing methods applied to the ROLO stellar image database are described. ?? 2009 BIPM and IOP Publishing Ltd.

  18. Conductance and Absolutely Continuous Spectrum of 1D Samples

    NASA Astrophysics Data System (ADS)

    Bruneau, L.; Jakšić, V.; Last, Y.; Pillet, C.-A.

    2016-06-01

    We characterize the absolutely continuous spectrum of the one-dimensional Schrödinger operators {h = -Δ + v} acting on {ℓ^2(mathbb{Z}_+)} in terms of the limiting behaviour of the Landauer-Büttiker and Thouless conductances of the associated finite samples. The finite sample is defined by restricting h to a finite interval {[1, L] \\cap mathbb{Z}_+} and the conductance refers to the charge current across the sample in the open quantum system obtained by attaching independent electronic reservoirs to the sample ends. Our main result is that the conductances associated to an energy interval {I} are non-vanishing in the limit {L to infty} iff {sp_ac(h) \\cap I neq emptyset}. We also discuss the relationship between this result and the Schrödinger Conjecture (Avila, J Am Math Soc 28:579-616, 2015; Bruneau et al., Commun Math Phys 319:501-513, 2013).

  19. An absolute scale for measuring the utility of money

    NASA Astrophysics Data System (ADS)

    Thomas, P. J.

    2010-07-01

    Measurement of the utility of money is essential in the insurance industry, for prioritising public spending schemes and for the evaluation of decisions on protection systems in high-hazard industries. Up to this time, however, there has been no universally agreed measure for the utility of money, with many utility functions being in common use. In this paper, we shall derive a single family of utility functions, which have risk-aversion as the only free parameter. The fact that they return a utility of zero at their low, reference datum, either the utility of no money or of one unit of money, irrespective of the value of risk-aversion used, qualifies them to be regarded as absolute scales for the utility of money. Evidence of validation for the concept will be offered based on inferential measurements of risk-aversion, using diverse measurement data.

  20. Valproate reopens critical-period learning of absolute pitch

    PubMed Central

    Gervain, Judit; Vines, Bradley W.; Chen, Lawrence M.; Seo, Rubo J.; Hensch, Takao K.; Werker, Janet F.; Young, Allan H.

    2013-01-01

    Absolute pitch, the ability to identify or produce the pitch of a sound without a reference point, has a critical period, i.e., it can only be acquired early in life. However, research has shown that histone-deacetylase inhibitors (HDAC inhibitors) enable adult mice to establish perceptual preferences that are otherwise impossible to acquire after youth. In humans, we found that adult men who took valproate (VPA) (a HDAC inhibitor) learned to identify pitch significantly better than those taking placebo—evidence that VPA facilitated critical-period learning in the adult human brain. Importantly, this result was not due to a general change in cognitive function, but rather a specific effect on a sensory task associated with a critical-period. PMID:24348349

  1. Absolute dosimetry for extreme-ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Berger, Kurt W.; Campiotti, Richard H.

    2000-06-01

    The accurate measurement of an exposure dose reaching the wafer on an extreme ultraviolet (EUV) lithographic system has been a technical challenge directly applicable to the evaluation of candidate EUV resist materials and calculating lithography system throughputs. We have developed a dose monitoring sensor system that can directly measure EUV intensities at the wafer plane of a prototype EUV lithographic system. This sensor system, located on the wafer stage adjacent to the electrostatic chuck used to grip wafers, operates by translating the sensor into the aerial image, typically illuminating an 'open' (unpatterned) area on the reticle. The absolute signal strength can be related to energy density at the wafer, and thus used to determine resist sensitivity, and the signal as a function of position can be used to determine illumination uniformity at the wafer plane. Spectral filtering to enhance the detection of 13.4 nm radiation was incorporated into the sensor. Other critical design parameters include the packaging and amplification technologies required to place this device into the space and vacuum constraints of a EUV lithography environment. We describe two approaches used to determine the absolute calibration of this sensor. The first conventional approach requires separate characterization of each element of the sensor. A second novel approach uses x-ray emission from a mildly radioactive iron source to calibrate the absolute response of the entire sensor system (detector and electronics) in a single measurement.

  2. High-resolution optical frequency metrology with stabilized femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Jones, Ronald Jason

    is analyzed in this work. A fractional frequency instability below 4 x 10-13 in only 100 milliseconds of averaging time was measured between the fs comb and the reference cavity. These initial results show great potential as higher finesse reference cavities and increased servo bandwidths can be used to further reduce the short term instability of the laser to unprecedented levels. Two experiments demonstrating the unique properties of the cavity stabilized mode-locked laser are performed. First., the equally spaced modes of the KLM laser are used as a, "frequency ruler" to characterize the dispersion in the Fabry-Perot reference cavity as a result of frequency dependent phase shifts in the cavity mirrors. This technique is then applied to measure the dispersion of air by characterizing the reference cavity dispersion in vacuum and at atmospheric pressure. The fs laser is also used to directly measure optical frequencies. The absolute optical frequency of the reference cavity modes were measured with a precision of better than 1 kHz (˜2 parts in 1012) for averaging times less than one second, limited by instabilities in the radio frequency counters used. A two-photon optical transition frequency in atomic rubidium was also measured directly with the mode-locked laser. The measurement demonstrates the high short term stability and potential accuracy of optical frequency measurements based on the cavity stabilized femtosecond laser. The stability of this measurement (˜10-11 ) was limited primarily by that of the cw laser locked to the atomic transition.

  3. Absolute negative mobility induced by potential phase modulation

    NASA Astrophysics Data System (ADS)

    Dandogbessi, Bruno S.; Kenfack, Anatole

    2015-12-01

    We investigate the transport properties of a particle subjected to a deterministic inertial rocking system, under a constant bias, for which the phase of the symmetric spatial potential used is time modulated. We show that this modulated phase, assisted by a periodic driving force, can lead to the occurrence of the so-called absolute negative mobility (ANM), the phenomenon in which the particle surprisingly moves against the bias. Furthermore, we discover that ANM predominantly originates from chaotic-periodic transitions. While a detailed mechanism of ANM remains unclear, we show that one can manipulate the control parameters, i.e., the amplitude and the frequency of the phase, in order to enforce the motion of the particle in a given direction. Finally, for this experimentally realizable system, we devise a two-parameter current plot which may be a good guide for controlling ANM.

  4. Performance of a laser frequency comb calibration system with a high-resolution solar echelle spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.; Kentischer, T. J.; Steinmetz, T.; Probst, R. A.; Franz, M.; Holzwarth, R.; Udem, Th.; Hänsch, T. W.; Schmidt, W.

    2012-09-01

    Laser frequency combs (LFC) provide a direct link between the radio frequency (RF) and the optical frequency regime. The comb-like spectrum of an LFC is formed by exact equidistant laser modes, whose absolute optical frequencies are controlled by RF-references such as atomic clocks or GPS receivers. While nowadays LFCs are routinely used in metrological and spectroscopic fields, their application in astronomy was delayed until recently when systems became available with a mode spacing and wavelength coverage suitable for calibration of astronomical spectrographs. We developed a LFC based calibration system for the high-resolution echelle spectrograph at the German Vacuum Tower Telescope (VTT), located at the Teide observatory, Tenerife, Canary Islands. To characterize the calibration performance of the instrument, we use an all-fiber setup where sunlight and calibration light are fed to the spectrograph by the same single-mode fiber, eliminating systematic effects related to variable grating illumination.

  5. Communication: Probing the absolute configuration of chiral molecules at aqueous interfaces.

    PubMed

    Lotze, Stephan; Versluis, Jan; Olijve, Luuk L C; van Schijndel, Luuk; Milroy, Lech G; Voets, Ilja K; Bakker, Huib J

    2015-11-28

    We demonstrate that the enantiomers of chiral macromolecules at an aqueous interface can be distinguished with monolayer sensitivity using heterodyne-detected vibrational sum-frequency generation (VSFG). We perform VSFG spectroscopy with a polarization combination that selectively probes chiral molecular structures. By using frequencies far detuned from electronic resonances, we probe the chiral macromolecular structures with high surface specificity. The phase of the sum-frequency light generated by the chiral molecules is determined using heterodyne detection. With this approach, we can distinguish right-handed and left-handed helical peptides at a water-air interface. We thus show that heterodyne-detected VSFG is sensitive to the absolute configuration of complex, interfacial macromolecules and has the potential to determine the absolute configuration of enantiomers at interfaces. PMID:26627942

  6. Communication: Probing the absolute configuration of chiral molecules at aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Lotze, Stephan; Versluis, Jan; Olijve, Luuk L. C.; van Schijndel, Luuk; Milroy, Lech G.; Voets, Ilja K.; Bakker, Huib J.

    2015-11-01

    We demonstrate that the enantiomers of chiral macromolecules at an aqueous interface can be distinguished with monolayer sensitivity using heterodyne-detected vibrational sum-frequency generation (VSFG). We perform VSFG spectroscopy with a polarization combination that selectively probes chiral molecular structures. By using frequencies far detuned from electronic resonances, we probe the chiral macromolecular structures with high surface specificity. The phase of the sum-frequency light generated by the chiral molecules is determined using heterodyne detection. With this approach, we can distinguish right-handed and left-handed helical peptides at a water-air interface. We thus show that heterodyne-detected VSFG is sensitive to the absolute configuration of complex, interfacial macromolecules and has the potential to determine the absolute configuration of enantiomers at interfaces.

  7. Communication: Probing the absolute configuration of chiral molecules at aqueous interfaces

    SciTech Connect

    Lotze, Stephan Versluis, Jan; Olijve, Luuk L. C.; Schijndel, Luuk van; Milroy, Lech G.; Voets, Ilja K.; Bakker, Huib J.

    2015-11-28

    We demonstrate that the enantiomers of chiral macromolecules at an aqueous interface can be distinguished with monolayer sensitivity using heterodyne-detected vibrational sum-frequency generation (VSFG). We perform VSFG spectroscopy with a polarization combination that selectively probes chiral molecular structures. By using frequencies far detuned from electronic resonances, we probe the chiral macromolecular structures with high surface specificity. The phase of the sum-frequency light generated by the chiral molecules is determined using heterodyne detection. With this approach, we can distinguish right-handed and left-handed helical peptides at a water-air interface. We thus show that heterodyne-detected VSFG is sensitive to the absolute configuration of complex, interfacial macromolecules and has the potential to determine the absolute configuration of enantiomers at interfaces.

  8. Prospects for the Moon as an SI-Traceable Absolute Spectroradiometric Standard for Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Cramer, C. E.; Stone, T. C.; Lykke, K.; Woodward, J. T.

    2015-12-01

    The Earth's Moon has many physical properties that make it suitable for use as a reference light source for radiometric calibration of remote sensing satellite instruments. Lunar calibration has been successfully applied to many imagers in orbit, including both MODIS instruments and NPP-VIIRS, using the USGS ROLO model to predict the reference exoatmospheric lunar irradiance. Sensor response trending was developed for SeaWIFS with a relative accuracy better than 0.1 % per year with lunar calibration techniques. However, the Moon rarely is used as an absolute reference for on-orbit calibration, primarily due to uncertainties in the ROLO model absolute scale of 5%-10%. But this limitation lies only with the models - the Moon itself is radiometrically stable, and development of a high-accuracy absolute lunar reference is inherently feasible. A program has been undertaken by NIST to collect absolute measurements of the lunar spectral irradiance with absolute accuracy <1 % (k=2), traceable to SI radiometric units. Initial Moon observations were acquired from the Whipple Observatory on Mt. Hopkins, Arizona, elevation 2367 meters, with continuous spectral coverage from 380 nm to 1040 nm at ~3 nm resolution. The lunar spectrometer acquired calibration measurements several times each observing night by pointing to a calibrated integrating sphere source. The lunar spectral irradiance at the top of the atmosphere was derived from a time series of ground-based measurements by a Langley analysis that incorporated measured atmospheric conditions and ROLO model predictions for the change in irradiance resulting from the changing Sun-Moon-Observer geometry throughout each night. Two nights were selected for further study. An extensive error analysis, which includes instrument calibration and atmospheric correction terms, shows a combined standard uncertainty under 1 % over most of the spectral range. Comparison of these two nights' spectral irradiance measurements with predictions

  9. Celestial Reference Frame

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher S.

    2013-09-01

    Concepts and Background: This paper gives an overview of modern celestial reference frames as realized at radio frequencies using the Very Long baseline Interferometry (VLBI) technique. We discuss basic celestial reference frame concepts, desired properties, and uses. We review the networks of antennas used for this work. We briefly discuss the history of the science of astrometry touching upon the discovery of precession, proper motion, nutation, and parallax, and the field of radio astronomy. Building Celestial Frames: Next, we discuss the multi-step process of building a celestial frame: First candidate sources are identified based on point-like properties from single dish radio telescopes surveys. Second, positions are refined using connected element interferometers such as the Very Large Array, and the ATCA. Third, positions of approximately milli-arcsecond (mas) accuracy are determined using intercontinental VLBI surveys. Fourth, sub-mas positions are determined by multiyear programs using intercontinental VLBI. These sub-mas sets of positions are then verified by multiple teams in preparation for release to non-specialists in the form of an official IAU International Celestial Reference Frame (ICRF). The process described above has until recently been largely restricted to work at S/X-band (2.3/8.4 GHz). However, in the last decade sub-mas work has expanded to include celestial frames at K-band (24 GHz), Ka-band (32 GHz), and Q-band (43 GHz). While these frames currently have the disadvantage of far smaller data sets, the astrophysical quality of the sources themselves improves at these higher frequencies and thus make these frequencies attractive for realizations of celestial reference frames. Accordingly, we review progress at these higher frequency bands. Path to the Future: We discuss prospects for celestial reference frames over the next decade. We present an example of an error budget for astrometric VLBI and discuss the budget's use as a tool for

  10. Parametric Effects of Word Frequency in Memory for Mixed Frequency Lists

    ERIC Educational Resources Information Center

    Lohnas, Lynn J.; Kahana, Michael J.

    2013-01-01

    The "word frequency paradox" refers to the finding that low frequency words are better recognized than high frequency words yet high frequency words are better recalled than low frequency words. Rather than comparing separate groups of low and high frequency words, we sought to quantify the functional relation between word frequency and…

  11. Absolute configuration assignment of a chiral molecule in the gas phase using foil-induced Coulomb explosion imaging

    NASA Astrophysics Data System (ADS)

    Herwig, Philipp; Zawatzky, Kerstin; Schwalm, Dirk; Grieser, Manfred; Heber, Oded; Jordon-Thaden, Brandon; Krantz, Claude; Novotný, Oldřich; Repnow, Roland; Schurig, Volker; Vager, Zeev; Wolf, Andreas; Trapp, Oliver; Kreckel, Holger

    2014-11-01

    Chiral molecules exist in two configurations that are nonsuperposable mirror images of one another. The underlying molecular structure is referred to as the absolute configuration. In chiral environments, the handedness of molecules influences their chemical characteristics dramatically, and therefore the determination of absolute configurations is of fundamental interest in organic chemistry and biology. Commonly applied techniques to assign absolute configuration are anomalous single-crystal x-ray diffraction and vibrational circular dichroism. However, these techniques become increasingly more challenging when applied to molecules that are made out of light atoms exclusively. Furthermore, there is no established method to determine the absolute handedness of gas-phase molecules that are not optically active. In this work, we apply the foil-induced Coulomb explosion imaging technique to determine directly the absolute configuration of the chiral molecule trans-2,3-dideuterooxirane (C2OD2H2) in the gas phase. The experiment leads to the definitive assignment of the (R ,R ) configuration to an enantio-selected dideuterooxirane sample with a statistical confidence of 5 σ . As the handedness of trans-2,3-dideuterooxirane is unambiguously linked by chemical synthesis to the stereochemical key reference glyceraldehyde, our results provide an independent verification of the absolute configuration of the stereochemical reference standard.

  12. An absolute radius scale for Saturn's rings

    NASA Technical Reports Server (NTRS)

    Nicholson, Philip D.; Cooke, Maren L.; Pelton, Emily

    1990-01-01

    Radio and stellar occultation observations of Saturn's rings made by the Voyager spacecraft are discussed. The data reveal systematic discrepancies of almost 10 km in some parts of the rings, limiting some of the investigations. A revised solution for Saturn's rotation pole has been proposed which removes the discrepancies between the stellar and radio occultation profiles. Corrections to previously published radii vary from -2 to -10 km for the radio occultation, and +5 to -6 km for the stellar occultation. An examination of spiral density waves in the outer A Ring supports that the revised absolute radii are in error by no more than 2 km.

  13. Characterization of the DARA solar absolute radiometer

    NASA Astrophysics Data System (ADS)

    Finsterle, W.; Suter, M.; Fehlmann, A.; Kopp, G.

    2011-12-01

    The Davos Absolute Radiometer (DARA) prototype is an Electrical Substitution Radiometer (ESR) which has been developed as a successor of the PMO6 type on future space missions and ground based TSI measurements. The DARA implements an improved thermal design of the cavity detector and heat sink assembly to minimize air-vacuum differences and to maximize thermal symmetry of measuring and compensating cavity. The DARA also employs an inverted viewing geometry to reduce internal stray light. We will report on the characterization and calibration experiments which were carried out at PMOD/WRC and LASP (TRF).

  14. Absolute calibration of the Auger fluorescence detectors

    SciTech Connect

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  15. Absolute angular positioning in ultrahigh vacuum

    SciTech Connect

    Schief, H.; Marsico, V.; Kern, K.

    1996-05-01

    Commercially available angular resolvers, which are routinely used in machine tools and robotics, are modified and adapted to be used under ultrahigh-vacuum (UHV) conditions. They provide straightforward and reliable measurements of angular positions for any kind of UHV sample manipulators. The corresponding absolute reproducibility is on the order of 0.005{degree}, whereas the relative resolution is better than 0.001{degree}, as demonstrated by high-resolution helium-reflectivity measurements. The mechanical setup and possible applications are discussed. {copyright} {ital 1996 American Institute of Physics.}

  16. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  17. Absolute Priority for a Vehicle in VANET

    NASA Astrophysics Data System (ADS)

    Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad

    In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.

  18. Combined absolute and relative gravity measurement for microgravity monitoring in Aso volcanic field

    NASA Astrophysics Data System (ADS)

    Sofyan, Yayan; Nishijima, Jun; Yoshikawa, Shin; Fujimitsu, Yasuhiro; Kagiyama, Tsuneomi; Fukuda, Yoichi

    2014-05-01

    Absolute measurement with a portable A10-017 absolute gravimeter at some benchmarks in the Aso volcanic field are valuable for reducing uncertainties of regional gravity variations and will be useful for delineating the long term trends of gravity changes. A10 absolute gravimeter is a new generation of portable absolute instrument and has accuracy 10 microGal. To further the development of a high precision gravity data, we also conducted measurement using two relative gravimeter (Scintrex CG-5 [549] and LaCoste type G-1016) to be combined with an A10 absolute gravimeter. The using absolute gravimeter along with relative gravimeter can reduce drift correction factor and improve the result of gravity change data in microgravity monitoring. Microgravity monitoring is a valued tool for mapping the redistribution of subsurface mass and for assessing changes in the fluid as a dynamic process in volcanic field. Gravity changes enable the characterization of subsurface processes: i.e., the mass of the intrusion or hydrothermal flow. A key assumption behind gravity monitoring is that changes in earth's gravity reflect mass-transport processes at depth [1]. The absolute gravity network was installed at seven benchmarks using on May 2010, which re-occupied in October 2010, and June 2011. The relative gravity measurements were performed at 28 benchmarks in one month before the eruption on May 2011 and then followed by series of gravity monitoring after the eruption in every three to five months. Gravity measurements covered the area more than 60 km2 in the west side of Aso caldera. Some gravity benchmarks were measured using both absolute and relative gravimeter and is used as the reference benchmarks. In longer time period, the combined gravity method will improve the result of gravity change data for monitoring in the Aso volcanic field. As a result, the gravity changes detected the hydrothermal flow in the subsurface which has a correlation to water level fluctuation in the

  19. The Absolute Vector Magnetometers on Board Swarm, Lessons Learned From Two Years in Space.

    NASA Astrophysics Data System (ADS)

    Hulot, G.; Leger, J. M.; Vigneron, P.; Brocco, L.; Olsen, N.; Jager, T.; Bertrand, F.; Fratter, I.; Sirol, O.; Lalanne, X.

    2015-12-01

    ESA's Swarm satellites carry 4He absolute magnetometers (ASM), designed by CEA-Léti and developed in partnership with CNES. These instruments are the first-ever space-born magnetometers to use a common sensor to simultaneously deliver 1Hz independent absolute scalar and vector readings of the magnetic field. They have provided the very high accuracy scalar field data nominally required by the mission (for both science and calibration purposes, since each satellite also carries a low noise high frequency fluxgate magnetometer designed by DTU), but also very useful experimental absolute vector data. In this presentation, we will report on the status of the instruments, as well as on the various tests and investigations carried out using these experimental data since launch in November 2013. In particular, we will illustrate the advantages of flying ASM instruments on space-born magnetic missions for nominal data quality checks, geomagnetic field modeling and science objectives.

  20. Fundamentals of absolute pyroheliometry and objective characterization. [using a narrow field of view radiometer

    NASA Technical Reports Server (NTRS)

    Crommelynck, D. A.

    1982-01-01

    The radiometric methodology in use with a narrow field of view radiometer for observation of the solar constant is described. The radiation output of the Sun is assumed to be constant, enabling the monitoring of the solar source by an accurately pointed radiometer, and the Sun's output is measured as a function of time. The instrument is described, its angular response considered, and principles for absolute radiometric measurement presented. Active modes of operation are analyzed, taking into consideration instrumental perturbations and sensor efficiency, heating wire effect, cavity sensor efficiency, thermal effects on the surface of the sensitive area, the effect of the field of view limiting system, and the frequency response of the heat flux detector and absolute radiometric system. Performance of absolute measurements with relatively high accuracy is demonstrated.

  1. A new determination of the Geneva photometric passbands and their absolute calibration

    NASA Astrophysics Data System (ADS)

    Rufener, F.; Nicolet, B.

    The consensus regarding the absolute calibrations of the spectra of alpha Lyr and subdwarfs provoked a revision of the calibration of the Geneva photometric system passbands. The alterations made to the earlier version by Rufener and Maeder (1971) are smaller than plus or minus -5 percent. The new response functions are presented in tabular form for an equiphotonic flux. An absolute spectrophotometric adjustment allows to obtain for each entry of the Geneva catalog (28,000 stars) a corresponding spectrophotometric description in SI units. The definition and the means of computing the necessary quasi-isophotal frequencies or wavelengths are given. The coherence of the Geneva catalog with several sets of absolute spectrophotometric data is examined. A correction for the entire Gunn and Stryker (1983) catalog is proposed.

  2. Determination of the absolute contours of optical flats

    NASA Technical Reports Server (NTRS)

    Primak, W.

    1969-01-01

    Emersons procedure is used to determine true absolute contours of optical flats. Absolute contours of standard flats are determined and a comparison is then made between standard and unknown flats. Contour differences are determined by deviation of Fizeau fringe.

  3. Mid-infrared frequency combs

    NASA Astrophysics Data System (ADS)

    Schliesser, Albert; Picqué, Nathalie; Hänsch, Theodor W.

    2012-07-01

    Laser frequency combs are coherent light sources that emit a broad spectrum of discrete, evenly spaced narrow lines whose absolute frequency can be measured to within the accuracy of an atomic clock. Their development in the near-infrared and visible domains has revolutionized frequency metrology while also providing numerous unexpected opportunities in other fields such as astronomy and attosecond science. Researchers are now exploring how to extend frequency comb techniques to the mid-infrared spectral region. Versatile mid-infrared frequency comb generators based on novel laser gain media, nonlinear frequency conversion or microresonators promise to significantly expand the applications of frequency combs. In particular, novel approaches to molecular spectroscopy in the 'fingerprint region', with dramatically improved precision, sensitivity, recording time and/or spectral bandwidth may lead to new discoveries in the various fields relevant to molecular science.

  4. Ridge-spotting: A new test for Pacific absolute plate motion models

    NASA Astrophysics Data System (ADS)

    Wessel, Paul; Müller, R. Dietmar

    2016-06-01

    Relative plate motions provide high-resolution descriptions of motions of plates relative to other plates. Yet geodynamically, motions of plates relative to the mantle are required since such motions can be attributed to forces (e.g., slab pull and ridge push) acting upon the plates. Various reference frames have been proposed, such as the hot spot reference frame, to link plate motions to a mantle framework. Unfortunately, both accuracy and precision of absolute plate motion models lag behind those of relative plate motion models. Consequently, it is paramount to use relative plate motions in improving our understanding of absolute plate motions. A new technique called "ridge-spotting" combines absolute and relative plate motions and examines the viability of proposed absolute plate motion models. We test the method on six published Pacific absolute plate motions models, including fixed and moving hot spot models as well as a geodynamically derived model. Ridge-spotting reconstructs the Pacific-Farallon and Pacific-Antarctica ridge systems over the last 80 Myr. All six absolute plate motion models predict large amounts of northward migration and monotonic clockwise rotation for the Pacific-Farallon ridge. A geodynamic implication of our ridge migration predictions is that the suggestion that the Pacific-Farallon ridge may have been pinned by a large mantle upwelling is not supported. Unexpected or erratic ridge behaviors may be tied to limitations in the models themselves or (for Indo-Atlantic models) discrepancies in the plate circuits used to project models into the Pacific realm. Ridge-spotting is promising and will be extended to include more plates and other ocean basins.

  5. Absolute rates of hole transfer in DNA.

    PubMed

    Senthilkumar, Kittusamy; Grozema, Ferdinand C; Guerra, Célia Fonseca; Bickelhaupt, F Matthias; Lewis, Frederick D; Berlin, Yuri A; Ratner, Mark A; Siebbeles, Laurens D A

    2005-10-26

    Absolute rates of hole transfer between guanine nucleobases separated by one or two A:T base pairs in stilbenedicarboxamide-linked DNA hairpins were obtained by improved kinetic analysis of experimental data. The charge-transfer rates in four different DNA sequences were calculated using a density-functional-based tight-binding model and a semiclassical superexchange model. Site energies and charge-transfer integrals were calculated directly as the diagonal and off-diagonal matrix elements of the Kohn-Sham Hamiltonian, respectively, for all possible combinations of nucleobases. Taking into account the Coulomb interaction between the negative charge on the stilbenedicarboxamide linker and the hole on the DNA strand as well as effects of base pair twisting, the relative order of the experimental rates for hole transfer in different hairpins could be reproduced by tight-binding calculations. To reproduce quantitatively the absolute values of the measured rate constants, the effect of the reorganization energy was taken into account within the semiclassical superexchange model for charge transfer. The experimental rates could be reproduced with reorganization energies near 1 eV. The quantum chemical data obtained were used to discuss charge carrier mobility and hole-transport equilibria in DNA. PMID:16231945

  6. Transient absolute robustness in stochastic biochemical networks.

    PubMed

    Enciso, German A

    2016-08-01

    Absolute robustness allows biochemical networks to sustain a consistent steady-state output in the face of protein concentration variability from cell to cell. This property is structural and can be determined from the topology of the network alone regardless of rate parameters. An important question regarding these systems is the effect of discrete biochemical noise in the dynamical behaviour. In this paper, a variable freezing technique is developed to show that under mild hypotheses the corresponding stochastic system has a transiently robust behaviour. Specifically, after finite time the distribution of the output approximates a Poisson distribution, centred around the deterministic mean. The approximation becomes increasingly accurate, and it holds for increasingly long finite times, as the total protein concentrations grow to infinity. In particular, the stochastic system retains a transient, absolutely robust behaviour corresponding to the deterministic case. This result contrasts with the long-term dynamics of the stochastic system, which eventually must undergo an extinction event that eliminates robustness and is completely different from the deterministic dynamics. The transiently robust behaviour may be sufficient to carry out many forms of robust signal transduction and cellular decision-making in cellular organisms. PMID:27581485

  7. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  8. Sentinel-2/MSI absolute calibration: first results

    NASA Astrophysics Data System (ADS)

    Lonjou, V.; Lachérade, S.; Fougnie, B.; Gamet, P.; Marcq, S.; Raynaud, J.-L.; Tremas, T.

    2015-10-01

    Sentinel-2 is an optical imaging mission devoted to the operational monitoring of land and coastal areas. It is developed in partnership between the European Commission and the European Space Agency. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. It will offer a unique combination of global coverage with a wide field of view (290km), a high revisit (5 days with two satellites), a high resolution (10m, 20m and 60m) and multi-spectral imagery (13 spectral bands in visible and shortwave infra-red domains). CNES is involved in the instrument commissioning in collaboration with ESA. This paper reviews all the techniques that will be used to insure an absolute calibration of the 13 spectral bands better than 5% (target 3%), and will present the first results if available. First, the nominal calibration technique, based on an on-board sun diffuser, is detailed. Then, we show how vicarious calibration methods based on acquisitions over natural targets (oceans, deserts, and Antarctica during winter) will be used to check and improve the accuracy of the absolute calibration coefficients. Finally, the verification scheme, exploiting photometer in-situ measurements over Lacrau plain, is described. A synthesis, including spectral coherence, inter-methods agreement and temporal evolution, will conclude the paper.

  9. Absolute Spectrophotometry of 237 Open Cluster Stars

    NASA Astrophysics Data System (ADS)

    Clampitt, L.; Burstein, D.

    1994-12-01

    We present absolute spectrophotometry of 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M 39. The observations were taken using the Wampler single-channel scanner (Wampler 1966) on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. 21 bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwiths ranging from 32Angstroms to 64 Angstroms. Data are standardized to the Hayes--Latham (1975) system. Our measurements are compared to filter colors on the Johnson BV, Stromgren ubvy, and Geneva U V B_1 B_2 V_1 G systems, as well as to spectrophotometry of a few stars published by Gunn, Stryker & Tinsley and in the Spectrophotometric Standards Catalog (Adelman; as distributed by the NSSDC). Both internal and external comparisons to the filter systems indicate a formal statistical accuracy per bandpass of 0.01 to 0.02 mag, with apparent larger ( ~ 0.03 mag) differences in absolute calibration between this data set and existing spectrophotometry. These data will comprise part of the spectrophotometry that will be used to calibrate the Beijing-Arizona-Taipei-Connecticut Color Survey of the Sky (see separate paper by Burstein et al. at this meeting).

  10. Correction due to the finite speed of light in absolute gravimeters Correction due to the finite speed of light in absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Nagornyi, V. D.; Zanimonskiy, Y. M.; Zanimonskiy, Y. Y.

    2011-06-01

    Equations (45) and (47) in our paper [1] in this issue have incorrect sign and should read \\tilde T_i=T_i+{b\\mp S_i\\over c},\\cr\\tilde T_i=T_i\\mp {S_i\\over c}. The error traces back to our formula (3), inherited from the paper [2]. According to the technical documentation [3, 4], the formula (3) is implemented by several commercially available instruments. An incorrect sign would cause a bias of about 20 µGal not known for these instruments, which probably indicates that the documentation incorrectly reflects the implemented measurement equation. Our attention to the error was drawn by the paper [5], also in this issue, where the sign is mentioned correctly. References [1] Nagornyi V D, Zanimonskiy Y M and Zanimonskiy Y Y 2011 Correction due to the finite speed of light in absolute gravimeters Metrologia 48 101-13 [2] Niebauer T M, Sasagawa G S, Faller J E, Hilt R and Klopping F 1995 A new generation of absolute gravimeters Metrologia 32 159-80 [3] Micro-g LaCoste, Inc. 2006 FG5 Absolute Gravimeter Users Manual [4] Micro-g LaCoste, Inc. 2007 g7 Users Manual [5] Niebauer T M, Billson R, Ellis B, Mason B, van Westrum D and Klopping F 2011 Simultaneous gravity and gradient measurements from a recoil-compensated absolute gravimeter Metrologia 48 154-63

  11. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  12. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a...

  13. Precision absolute value amplifier for a precision voltmeter

    SciTech Connect

    Hearn, W. E.; Rondeau, D. J.

    1985-05-21

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  14. Precision absolute value amplifier for a precision voltmeter

    DOEpatents

    Hearn, William E.; Rondeau, Donald J.

    1985-01-01

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  15. Precision absolute-value amplifier for a precision voltmeter

    DOEpatents

    Hearn, W.E.; Rondeau, D.J.

    1982-10-19

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resistor is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resistor. The output current through the load resistor is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resistor. A second gain determining resistor is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  16. Large eddy simulation predictions of absolutely unstable round hot jet

    NASA Astrophysics Data System (ADS)

    Boguslawski, A.; Tyliszczak, A.; Wawrzak, K.

    2016-02-01

    The paper presents a novel view on the absolute instability phenomenon in heated variable density round jets. As known from literature the global instability mechanism in low density jets is released when the density ratio is lower than a certain critical value. The existence of the global modes was confirmed by an experimental evidence in both hot and air-helium jets. However, some differences in both globally unstable flows were observed concerning, among others, a level of the critical density ratio. The research is performed using the Large Eddy Simulation (LES) method with a high-order numerical code. An analysis of the LES results revealed that the inlet conditions for the velocity and density distributions at the nozzle exit influence significantly the critical density ratio and the global mode frequency. Two inlet velocity profiles were analyzed, i.e., the hyperbolic tangent and the Blasius profiles. It was shown that using the Blasius velocity profile and the uniform density distribution led to a significantly better agreement with the universal scaling law for global mode frequency.

  17. A high-precision mechanical absolute-rotation sensor.

    PubMed

    Venkateswara, Krishna; Hagedorn, Charles A; Turner, Matthew D; Arp, Trevor; Gundlach, Jens H

    2014-01-01

    We have developed a mechanical absolute-rotation sensor capable of resolving ground rotation angle of less than 1 nrad/√Hz above 30 mHz and 0.2 nrad/√Hz above 100 mHz about a single horizontal axis. The device consists of a meter-scale beam balance, suspended by a pair of flexures, with a resonance frequency of 10.8 mHz. The center of mass is located 3 μm above the pivot, giving an excellent horizontal displacement rejection of better than 3 × 10(-5) rad/m. The angle of the beam is read out optically using a high-sensitivity autocollimator. We have also built a tiltmeter with better than 1 nrad/√Hz sensitivity above 30 mHz. Co-located measurements using the two instruments allowed us to distinguish between background rotation signal at low frequencies and intrinsic instrument noise. The rotation sensor is useful for rotational seismology and for rejecting background rotation signal from seismometers in experiments demanding high levels of seismic isolation, such as Advanced Laser Interferometer Gravitational-wave Observatory. PMID:24517804

  18. Inertial forces, absolute space, and Mach's principle: The genesis of relativity

    NASA Astrophysics Data System (ADS)

    Newburgh, Ronald

    2007-05-01

    The cornerstone of Newtonian mechanics is the inertial frame of reference. With this frame we can understand the difference between real and fictitious or pseudo forces and the importance of these two types of forces in Newton's analysis of his rotating bucket. This analysis was the basis of his belief in absolute space. Mach, who believed strongly in an empiricist view of science, showed that the existence of inertial forces leads to a refutation of absolute space. He replaced absolute space with a frame of reference at rest with respect to the distant fixed stars considered as a rigid system. His principle, which was not expressed explicitly by him, is that the inertia of a body is a consequence of its interaction with all other bodies in the universe. Mach's refutation of absolute space made Einstein's general theory of relativity possible. Einstein later abandoned Mach's principle and found the source of inertia in the nonzero curvature of the space-time metric, a fact that does not diminish the importance of Mach in Einstein's early thinking.

  19. Heterodyne frequency measurements on N2O at 5.3 and 9.0 microns

    NASA Technical Reports Server (NTRS)

    Wells, J. S.; Jennings, D. A.; Hinz, A.; Murray, J. S.; Maki, A. G.

    1985-01-01

    Heterodyne frequency measurements on the 01(1)1-00(0)0 band of N2O have been made with the use of a tunable-diode laser, CO laser transfer oscillator, and a CO2 laser frequency synthesizer. A beat frequency was measured between a CO laser and tunable-diode laser whose frequency was locked to the peak of N2O absorption features. The frequency of the CO laser was simultaneously determined by neasuring the beat frequency with respect to a reference synthesized from two CO2 lasers. New rovibrational constants are given for the 01(1)1 state of N2O, which are in excellent agreement with previous results, although the band center is 4 MHz higher than in the previous measurements. A table for the line frequencies and their absolute uncertainties is given for the N2O absorption lines in the wave-number region from 1830 to 1920 kaysers. Some additional frequency measurements near the lower-frequency end of the 02(0)0-00(0)0 band have also been made with respect to a C-12)(0-18)2 laser.

  20. Observing absolute gravity change in the Fennoscandian postglacial rebound area

    NASA Astrophysics Data System (ADS)

    Mäkinen, J.; Engfeldt, A.; Gitlein, O.; Kaminskis, J.; Klopping, F.; Oja, T.; Paršeliunas, E.; Pettersen, B. R.; Strykowski, G.; Wilmes, H.

    2009-04-01

    Absolute gravity measurements in the Fennoscandian postglacial rebound area started already in 1976 when a team from Istituto di Metrología "G. Colonnetti" (Torino) measured six stations with the rise-and-fall gravimeter IMGC (Cannizzo et al., 1978). In 1980 two stations were measured by the team of the AN SSSR from Novosibirsk, using the gravimeter GABL (Arnautov et al., 1982). From the beginning the goal was to establish reference values for future remeasurement in order to detect gravity change due to the postglacial rebound. The maximum uplift rates are 1 cm/yr, which implies a surface gravity change of about -2 microgal/yr. In 1988, regular repeat measurements were began by the Finnish Geodetic Institute (FGI) with the JILAg-5. An important advance was the introduction of FG5 gravimeters into the work by BKG (Frankfurt a/M) and NOAA (Boulder, CO) in 1993. In 2003 annual large-scale campaigns with FG5 gravimeters started, coordinated by the Working Group for Geodynamics of the Nordic Geodetic Commission (NKG). This was prompted by the launch of the GRACE satellite gravity mission, which made it important to collect a comprehensive set of ground-truth values of gravity change during the lifetime of the satellite pair. The initial participation by gravimeter teams of Leibniz Universität Hannover, FGI and BKG has since expanded to include the University of Life Sciences (Ås, Norway) and Lantmäteriet (Gävle, Sweden). At present some 50 sites have repeated absolute measurements and most of them are co-located with continuous GPS. We give an overview of the sites, instrumentation and campaigns, and show examples of results achieved so far.

  1. Landsat-7 ETM+ radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Barker, J.L.; Barsi, J.A.; Kaita, E.; Thome, K.J.; Helder, D.L.; Palluconi, Frank Don; Schott, J.R.; Scaramuzza, P.

    2002-01-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than ??1%, reflective band absolute calibration to better than ??5%, and thermal band absolute calibration to better than ??0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m 2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of ??0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  2. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  3. Multinomial tree models for assessing the status of the reference in studies of the accuracy of tools for binary classification

    PubMed Central

    Botella, Juan; Huang, Huiling; Suero, Manuel

    2013-01-01

    Studies that evaluate the accuracy of binary classification tools are needed. Such studies provide 2 × 2 cross-classifications of test outcomes and the categories according to an unquestionable reference (or gold standard). However, sometimes a suboptimal reliability reference is employed. Several methods have been proposed to deal with studies where the observations are cross-classified with an imperfect reference. These methods require that the status of the reference, as a gold standard or as an imperfect reference, is known. In this paper a procedure for determining whether it is appropriate to maintain the assumption that the reference is a gold standard or an imperfect reference, is proposed. This procedure fits two nested multinomial tree models, and assesses and compares their absolute and incremental fit. Its implementation requires the availability of the results of several independent studies. These should be carried out using similar designs to provide frequencies of cross-classification between a test and the reference under investigation. The procedure is applied in two examples with real data. PMID:24106484

  4. Absolute calibration of ultraviolet filter photometry

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Fairchild, T.; Code, A. D.

    1972-01-01

    The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.

  5. Absolute geostrophic currents in global tropical oceans

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Yuan, Dongliang

    2016-03-01

    A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.

  6. Absolute Measurement of Electron Cloud Density

    SciTech Connect

    Covo, M K; Molvik, A W; Cohen, R H; Friedman, A; Seidl, P A; Logan, G; Bieniosek, F; Baca, D; Vay, J; Orlando, E; Vujic, J L

    2007-06-21

    Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 {micro}s duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.

  7. Absolute instability of a viscous hollow jet

    NASA Astrophysics Data System (ADS)

    Gañán-Calvo, Alfonso M.

    2007-02-01

    An investigation of the spatiotemporal stability of hollow jets in unbounded coflowing liquids, using a general dispersion relation previously derived, shows them to be absolutely unstable for all physical values of the Reynolds and Weber numbers. The roots of the symmetry breakdown with respect to the liquid jet case, and the validity of asymptotic models are here studied in detail. Asymptotic analyses for low and high Reynolds numbers are provided, showing that old and well-established limiting dispersion relations [J. W. S. Rayleigh, The Theory of Sound (Dover, New York, 1945); S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1961)] should be used with caution. In the creeping flow limit, the analysis shows that, if the hollow jet is filled with any finite density and viscosity fluid, a steady jet could be made arbitrarily small (compatible with the continuum hypothesis) if the coflowing liquid moves faster than a critical velocity.

  8. Stitching interferometry: recent results and absolute calibration

    NASA Astrophysics Data System (ADS)

    Bray, Michael

    2004-02-01

    Stitching Interferometry is a method of analysing large optical components using a standard "small" interferometer. This result is obtained by taking multiple overlapping images of the large component, and numerically "stitching" these sub-apertures together. We have already reported the industrial use our Stitching Interferometry systems (Previous SPIE symposia), but experimental results had been lacking because this technique is still new, and users needed to get accustomed to it before producing reliable measurements. We now have more results. We will report user comments and show new, unpublished results. We will discuss sources of error, and show how some of these can be reduced to arbitrarily small values. These will be discussed in some detail. We conclude with a few graphical examples of absolute measurements performed by us.

  9. Swarm's Absolute Scalar Magnetometer metrological performances

    NASA Astrophysics Data System (ADS)

    Leger, J.; Fratter, I.; Bertrand, F.; Jager, T.; Morales, S.

    2012-12-01

    The Absolute Scalar Magnetometer (ASM) has been developed for the ESA Earth Observation Swarm mission, planned for launch in November 2012. As its Overhauser magnetometers forerunners flown on Oersted and Champ satellites, it will deliver high resolution scalar measurements for the in-flight calibration of the Vector Field Magnetometer manufactured by the Danish Technical University. Latest results of the ground tests carried out to fully characterize all parameters that may affect its accuracy, both at instrument and satellite level, will be presented. In addition to its baseline function, the ASM can be operated either at a much higher sampling rate (burst mode at 250 Hz) or in a dual mode where it also delivers vector field measurements as a by-product. The calibration procedure and the relevant vector performances will be discussed.

  10. Absolute nonlocality via distributed computing without communication

    NASA Astrophysics Data System (ADS)

    Czekaj, Ł.; Pawłowski, M.; Vértesi, T.; Grudka, A.; Horodecki, M.; Horodecki, R.

    2015-09-01

    Understanding the role that quantum entanglement plays as a resource in various information processing tasks is one of the crucial goals of quantum information theory. Here we propose an alternative perspective for studying quantum entanglement: distributed computation of functions without communication between nodes. To formalize this approach, we propose identity games. Surprisingly, despite no signaling, we obtain that nonlocal quantum strategies beat classical ones in terms of winning probability for identity games originating from certain bipartite and multipartite functions. Moreover we show that, for a majority of functions, access to general nonsignaling resources boosts success probability two times in comparison to classical ones for a number of large enough outputs. Because there are no constraints on the inputs and no processing of the outputs in the identity games, they detect very strong types of correlations: absolute nonlocality.

  11. Absolute Cavity Pyrgeometer to Measure the Absolute Outdoor Longwave Irradiance with Traceability to International System of Units, SI

    SciTech Connect

    Reda, I.; Zeng, J.; Scheuch, J.; Hanssen, L.; Wilthan, B.; Myers, D.; Stoffel, T.

    2012-03-01

    This article describes a method of measuring the absolute outdoor longwave irradiance using an absolute cavity pyrgeometer (ACP), U.S. Patent application no. 13/049, 275. The ACP consists of domeless thermopile pyrgeometer, gold-plated concentrator, temperature controller, and data acquisition. The dome was removed from the pyrgeometer to remove errors associated with dome transmittance and the dome correction factor. To avoid thermal convection and wind effect errors resulting from using a domeless thermopile, the gold-plated concentrator was placed above the thermopile. The concentrator is a dual compound parabolic concentrator (CPC) with 180{sup o} view angle to measure the outdoor incoming longwave irradiance from the atmosphere. The incoming irradiance is reflected from the specular gold surface of the CPC and concentrated on the 11 mm diameter of the pyrgeometer's blackened thermopile. The CPC's interior surface design and the resulting cavitation result in a throughput value that was characterized by the National Institute of Standards and Technology. The ACP was installed horizontally outdoor on an aluminum plate connected to the temperature controller to control the pyrgeometer's case temperature. The responsivity of the pyrgeometer's thermopile detector was determined by lowering the case temperature and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The responsivity is then used to calculate the absolute atmospheric longwave irradiance with an uncertainty estimate (U{sub 95}) of {+-}3.96 W m{sup 02} with traceability to the International System of Units, SI. The measured irradiance was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the Interim World Infrared Standard Group, WISG. A total of 408 readings were collected over three different nights. The calculated irradiance measured by the ACP was 1.5 W/m{sup 2} lower than that

  12. An absolute cavity pyrgeometer to measure the absolute outdoor longwave irradiance with traceability to international system of units, SI

    NASA Astrophysics Data System (ADS)

    Reda, Ibrahim; Zeng, Jinan; Scheuch, Jonathan; Hanssen, Leonard; Wilthan, Boris; Myers, Daryl; Stoffel, Tom

    2012-03-01

    This article describes a method of measuring the absolute outdoor longwave irradiance using an absolute cavity pyrgeometer (ACP), U.S. Patent application no. 13/049, 275. The ACP consists of domeless thermopile pyrgeometer, gold-plated concentrator, temperature controller, and data acquisition. The dome was removed from the pyrgeometer to remove errors associated with dome transmittance and the dome correction factor. To avoid thermal convection and wind effect errors resulting from using a domeless thermopile, the gold-plated concentrator was placed above the thermopile. The concentrator is a dual compound parabolic concentrator (CPC) with 180° view angle to measure the outdoor incoming longwave irradiance from the atmosphere. The incoming irradiance is reflected from the specular gold surface of the CPC and concentrated on the 11 mm diameter of the pyrgeometer's blackened thermopile. The CPC's interior surface design and the resulting cavitation result in a throughput value that was characterized by the National Institute of Standards and Technology. The ACP was installed horizontally outdoor on an aluminum plate connected to the temperature controller to control the pyrgeometer's case temperature. The responsivity of the pyrgeometer's thermopile detector was determined by lowering the case temperature and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The responsivity is then used to calculate the absolute atmospheric longwave irradiance with an uncertainty estimate (U95) of ±3.96 W m-2 with traceability to the International System of Units, SI. The measured irradiance was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the Interim World Infrared Standard Group, WISG. A total of 408 readings were collected over three different nights. The calculated irradiance measured by the ACP was 1.5 W/m2 lower than that measured by the two

  13. Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases

    SciTech Connect

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; Di Giulio, C.; Luis, P.Facal San; Gonzales, D.; Hojvat, C.; Horandel, J.R.; Hrabovsky, M.; Iarlori, M.; /INFN, Aquila /Karlsruhe, Inst. Technol.

    2011-01-01

    We have performed a measurement of the absolute yield of fluorescence photons at the Fermilab Test Beam. A systematic uncertainty at 5% level was achieved by the use of Cherenkov radiation as a reference calibration light source. A cross-check was performed by an independent calibration using a laser light source. A significant improvement on the energy scale uncertainty of Ultra-High Energy Cosmic Rays is expected.

  14. Frequency standard stability for Doppler measurements on-board the shuttle

    NASA Technical Reports Server (NTRS)

    Harton, P. L.

    1974-01-01

    The short and long term stability characteristics of crystal and atomic standards are described. Emphasis is placed on crystal oscillators because of the selection which was made for the shuttle baseline and the complexities which are introduced by the shuttle environment. Attention is given, first, to the definitions of stability and the application of these definitions to the shuttle system and its mission. Data from time domain measurements are used to illustrate the definitions. Results of a literature survey to determine environmental effects on frequency reference sources are then presented. Finally, methods of standard frequency dissemination over radio frequency carriers are noted as a possible means of measuring absolute accuracy and long term stability characteristics during on one way Doppler equipment.

  15. Quantum cascade laser-based mid-IR frequency metrology system with ultra-narrow linewidth and 1  ×  10⁻¹³-level frequency instability.

    PubMed

    Hansen, Michael G; Magoulakis, Evangelos; Chen, Qun-Feng; Ernsting, Ingo; Schiller, Stephan

    2015-05-15

    We demonstrate a powerful tool for high-resolution mid-IR spectroscopy and frequency metrology with quantum cascade lasers (QCLs). We have implemented frequency stabilization of a QCL to an ultra-low expansion (ULE) reference cavity, via upconversion to the near-IR spectral range, at a level of 1×10(-13). The absolute frequency of the QCL is measured relative to a hydrogen maser, with instability <1×10(-13) and inaccuracy 5×10(-13), using a frequency comb phase stabilized to an independent ultra-stable laser. The QCL linewidth is determined to be 60 Hz, dominated by fiber noise. Active suppression of fiber noise could result in sub-10 Hz linewidth. PMID:26393721

  16. Absolute Depth Sensitivity in Cat Primary Visual Cortex under Natural Viewing Conditions.

    PubMed

    Pigarev, Ivan N; Levichkina, Ekaterina V

    2016-01-01

    Mechanisms of 3D perception, investigated in many laboratories, have defined depth either relative to the fixation plane or to other objects in the visual scene. It is obvious that for efficient perception of the 3D world, additional mechanisms of depth constancy could operate in the visual system to provide information about absolute distance. Neurons with properties reflecting some features of depth constancy have been described in the parietal and extrastriate occipital cortical areas. It has also been shown that, for some neurons in the visual area V1, responses to stimuli of constant angular size differ at close and remote distances. The present study was designed to investigate whether, in natural free gaze viewing conditions, neurons tuned to absolute depths can be found in the primary visual cortex (area V1). Single-unit extracellular activity was recorded from the visual cortex of waking cats sitting on a trolley in front of a large screen. The trolley was slowly approaching the visual scene, which consisted of stationary sinusoidal gratings of optimal orientation rear-projected over the whole surface of the screen. Each neuron was tested with two gratings, with spatial frequency of one grating being twice as high as that of the other. Assuming that a cell is tuned to a spatial frequency, its maximum response to the grating with a spatial frequency twice as high should be shifted to a distance half way closer to the screen in order to attain the same size of retinal projection. For hypothetical neurons selective to absolute depth, location of the maximum response should remain at the same distance irrespective of the type of stimulus. It was found that about 20% of neurons in our experimental paradigm demonstrated sensitivity to particular distances independently of the spatial frequencies of the gratings. We interpret these findings as an indication of the use of absolute depth information in the primary visual cortex. PMID:27547179

  17. Absolute Depth Sensitivity in Cat Primary Visual Cortex under Natural Viewing Conditions

    PubMed Central

    Pigarev, Ivan N.; Levichkina, Ekaterina V.

    2016-01-01

    Mechanisms of 3D perception, investigated in many laboratories, have defined depth either relative to the fixation plane or to other objects in the visual scene. It is obvious that for efficient perception of the 3D world, additional mechanisms of depth constancy could operate in the visual system to provide information about absolute distance. Neurons with properties reflecting some features of depth constancy have been described in the parietal and extrastriate occipital cortical areas. It has also been shown that, for some neurons in the visual area V1, responses to stimuli of constant angular size differ at close and remote distances. The present study was designed to investigate whether, in natural free gaze viewing conditions, neurons tuned to absolute depths can be found in the primary visual cortex (area V1). Single-unit extracellular activity was recorded from the visual cortex of waking cats sitting on a trolley in front of a large screen. The trolley was slowly approaching the visual scene, which consisted of stationary sinusoidal gratings of optimal orientation rear-projected over the whole surface of the screen. Each neuron was tested with two gratings, with spatial frequency of one grating being twice as high as that of the other. Assuming that a cell is tuned to a spatial frequency, its maximum response to the grating with a spatial frequency twice as high should be shifted to a distance half way closer to the screen in order to attain the same size of retinal projection. For hypothetical neurons selective to absolute depth, location of the maximum response should remain at the same distance irrespective of the type of stimulus. It was found that about 20% of neurons in our experimental paradigm demonstrated sensitivity to particular distances independently of the spatial frequencies of the gratings. We interpret these findings as an indication of the use of absolute depth information in the primary visual cortex. PMID:27547179

  18. Absolute plate motions since 130 Ma constrained by subduction zone kinematics

    NASA Astrophysics Data System (ADS)

    Williams, Simon; Flament, Nicolas; Dietmar Müller, R.; Butterworth, Nathaniel

    2015-05-01

    The absolute motions of the lithospheric plates relative to the Earth's deep interior are commonly constrained using observations from paleomagnetism and age-progressive seamount trails. In contrast, an absolute plate motion (APM) model linking surface plate motions to subducted slab remnants mapped from seismic tomography has recently been proposed. Absolute plate motion models (or "reference frames") derived using different methodologies, different subsets of hotspots, or differing assumptions of hotspot motion, have contrasting implications for parameters that describe the long term state of the plate-mantle system, such as the balance between advance and retreat of subduction zones, plate velocities, and net lithospheric rotation. Previous studies of contemporary plate motions have used subduction zone kinematics as a constraint on the most likely APM model. Here we use a relative plate motion model to compute these values for the last 130 Myr for a range of alternative reference frames, and quantitatively compare the results. We find that hotspot and tomographic slab-remnant reference frames yield similar results for the last 70 Myr. For the 130-70 Ma period, where hotspot reference frames are less well constrained, these models yield a much more dispersed distribution of slab advance and retreat velocities. By contrast, plate motions calculated using the slab-remnant reference frame, or using a reference frame designed to minimise net rotation, yield more consistent subduction zone kinematics for times older than 70 Ma. Introducing the global optimisation of trench migration characteristics as a key criterion in the construction of APM models forms the foundation of a new method of constraining APMs (and in particular paleolongitude) in deep geological time.

  19. Reflectance characteristics of the Viking lander camera reference test charts

    NASA Technical Reports Server (NTRS)

    Wall, S. D.; Burcher, E. E.; Jabson, D. J.

    1975-01-01

    Reference test charts provide radiometric, colorimetric, and spatial resolution references for the Viking lander cameras on Mars. Reflectance measurements of these references are described, including the absolute bidirectional reflectance of the radiometric references and the relative spectral reflectance of both radiometric and colorimetric references. Results show that the bidirection reflectance of the radiometric references is Lambertian to within + or - 7% for incidence angles between 20 deg and 60 deg, and that their spectral reflectance is constant with wavelength to within + or - 5% over the spectral range of the cameras. Estimated accuracy of the measurements is + or - 0.05 in relative spectral reflectance.

  20. Precision spectroscopy with a frequency-comb-calibrated solar spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.

    2015-06-01

    The measurement of the velocity field of the plasma at the solar surface is a standard diagnostic tool in observational solar physics. Detailed information about the energy transport as well as on the stratification of temperature, pressure and magnetic fields in the solar atmosphere are encoded in Doppler shifts and in the precise shape of the spectral lines. The available instruments deliver data of excellent quality and precision. However, absolute wavelength calibration in solar spectroscopy was so far mostly limited to indirect methods and in general suffers from large systematic uncertainties of the order of 100 m/s. During the course of this thesis, a novel wavelength calibration system based on a laser frequency comb was deployed to the solar Vacuum Tower Telescope (VTT), Tenerife, with the goal of enabling highly accurate solar wavelength measurements at the level of 1 m/s on an absolute scale. The frequency comb was developed in a collaboration between the Kiepenheuer-Institute for Solar Physics, Freiburg, Germany and the Max Planck Institute for Quantum Optics, Garching, Germany. The efforts cumulated in the new prototype instrument LARS (Lars is an Absolute Reference Spectrograph) for solar precision spectroscopy which is in preliminary scientific operation since~2013. The instrument is based on the high-resolution echelle spectrograph of the VTT for which feed optics based on single-mode optical fibres were developed for this project. The setup routinely achieves an absolute calibration accuracy of 60 cm/s and a repeatability of 2.5 cm/s. An unprecedented repeatability of only 0.32 cm/s could be demonstrated with a differential calibration scheme. In combination with the high spectral resolving power of the spectrograph of 7x10^5 and virtually absent internal scattered light, LARS provides a spectral purity and fidelity that previously was the domain of Fourier-transform spectrometers only. The instrument therefore provides unique capabilities for

  1. Determination of the absolute configuration of a chiral epoxide using foil induced Coulomb explosion imaging

    NASA Astrophysics Data System (ADS)

    Herwig, P.; Zawatzky, K.; Schwalm, D.; Grieser, M.; Heber, O.; Jordon-Thaden, B.; Krantz, C.; Novotný, O.; Repnow, R.; Schurig, V.; Vager, Z.; Wolf, A.; Trapp, O.; Kreckel, H.

    2015-09-01

    We have applied the method of foil-induced Coulomb Explosion Imaging (FCEI) to determine the handedness of a homochiral sample of the compound trans-2,3-dideuterooxirane C2OH2D2. We determined the compound to be of the (R, R)-econfiguration with a statistical significance of 5σ. As the molecular sample was chemically linked to the stereochemical reference standard glyceraldehyde, our assignment constitutes an independent verification of the absolute handedness of all compounds linked to this reference substance.

  2. Absolute IGS antenna phase center model igs08.atx: status and potential improvements

    NASA Astrophysics Data System (ADS)

    Schmid, R.; Dach, R.; Collilieux, X.; Jäggi, A.; Schmitz, M.; Dilssner, F.

    2016-04-01

    On 17 April 2011, all analysis centers (ACs) of the International GNSS Service (IGS) adopted the reference frame realization IGS08 and the corresponding absolute antenna phase center model igs08.atx for their routine analyses. The latter consists of an updated set of receiver and satellite antenna phase center offsets and variations (PCOs and PCVs). An update of the model was necessary due to the difference of about 1 ppb in the terrestrial scale between two consecutive realizations of the International Terrestrial Reference Frame (ITRF2008 vs. ITRF2005), as that parameter is highly correlated with the GNSS satellite antenna PCO components in the radial direction.

  3. Library Reference Services.

    ERIC Educational Resources Information Center

    Miller, Constance; And Others

    1985-01-01

    Seven articles on library reference services highlight reference obsolescence in academic libraries, major studies of unobtrusive reference tests, methods for evaluating reference desk performance, reference interview evaluation, problems of reference desk control, online searching by end users, and reference collection development in…

  4. On-Orbit Absolute Radiance Standard for Future IR Remote Sensing Instruments

    NASA Astrophysics Data System (ADS)

    Best, F. A.; Adler, D. P.; Pettersen, C.; Revercomb, H. E.; Gero, P. J.; Taylor, J. K.; Knuteson, R. O.; Perepezko, J. H.

    2010-12-01

    Future NASA infrared remote sensing missions, including the climate benchmark CLARREO mission will require better absolute measurement accuracy than now available, and will most certainly rely on the emerging capability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances with an absolute brightness temperature error of better than 0.1 K will require high-emissivity (>0.999) calibration blackbodies with emissivity uncertainty of better than 0.06%, and absolute temperature uncertainties of better than 0.045K (3 sigma). Key elements of an On-Orbit Absolute Radiance Standard (OARS) meeting these stringent requirements have been demonstrated in the laboratory at the University of Wisconsin and are undergoing Technology Readiness Level (TRL) advancement under the NASA Instrument Incubator Program (IIP). We present the new technologies that underlie the OARS and the results of laboratory testing that demonstrate the required accuracy is being met. The underlying technologies include on-orbit absolute temperature calibration using the transient melt signatures of small quantities (<1g) of reference materials (gallium, water, and mercury) imbedded in the blackbody cavity; and on-orbit cavity spectral emissivity measurement using a heated halo. For these emissivity measurements, a carefully baffled heated cylinder is placed in front of a blackbody in the infrared spectrometer system, and the combined radiance of the blackbody and Heated Halo reflection is observed. Knowledge of key temperatures and the viewing geometry allow the blackbody cavity spectral emissivity to be calculated. This work will culminate with an integrated subsystem that can provide on-orbit end-to-end radiometric accuracy validation for infrared remote sensing instruments.

  5. On-Orbit Absolute Radiance Standard for the Next Generation of IR Remote Sensing Instruments

    NASA Astrophysics Data System (ADS)

    Best, F. A.; Adler, D. P.; Pettersen, C.; Revercomb, H. E.; Gero, P.; Taylor, J. K.; Knuteson, R. O.; Perepezko, J. H.

    2011-12-01

    The next generation of infrared remote sensing satellite instrumentation, including climate benchmark missions will require better absolute measurement accuracy than now available, and will most certainly rely on the emerging capability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances with an absolute brightness temperature error of better than 0.1 K will require high-emissivity (>0.999) calibration blackbodies with emissivity uncertainty of better than 0.06%, and absolute temperature uncertainties of better than 0.045K (k=3). Key elements of an On-Orbit Absolute Radiance Standard (OARS) meeting these stringent requirements have been demonstrated in the laboratory at the University of Wisconsin and are undergoing further refinement under the NASA Instrument Incubator Program (IIP). This work will culminate with an integrated subsystem that can provide on-orbit end-to-end radiometric accuracy validation for infrared remote sensing instruments. We present the new technologies that underlie the OARS and updated results of laboratory testing that demonstrate the required accuracy. The underlying technologies include on-orbit absolute temperature calibration using the transient melt signatures of small quantities (<1g) of reference materials (gallium, water, and mercury) imbedded in the blackbody cavity; and on-orbit cavity spectral emissivity measurement using a heated halo. For these emissivity measurements, a carefully baffled heated cylinder is placed in front of a blackbody in the infrared spectrometer system, and the combined radiance of the blackbody and Heated Halo reflection is observed. Knowledge of key temperatures and the viewing geometry allow the blackbody cavity spectral emissivity to be calculated.

  6. On-Orbit Absolute Radiance Standard for the Next Generation of IR Remote Sensing Instruments

    NASA Astrophysics Data System (ADS)

    Best, F. A.; Adler, D. P.; Pettersen, C.; Revercomb, H. E.; Gero, P. J.; Taylor, J. K.; Knuteson, R. O.; Perepezko, J. H.

    2012-12-01

    The next generation of infrared remote sensing satellite instrumentation, including climate benchmark missions will require better absolute measurement accuracy than now available, and will most certainly rely on the emerging capability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances with an absolute brightness temperature error of better than 0.1 K will require high-emissivity (>0.999) calibration blackbodies with emissivity uncertainty of better than 0.06%, and absolute temperature uncertainties of better than 0.045K (k=3). Key elements of an On-Orbit Absolute Radiance Standard (OARS) meeting these stringent requirements have been demonstrated in the laboratory at the University of Wisconsin and are undergoing further refinement under the NASA Instrument Incubator Program (IIP). This work will culminate with an integrated subsystem that can provide on-orbit end-to-end radiometric accuracy validation for infrared remote sensing instruments. We present the new technologies that underlie the OARS and updated results of laboratory testing that demonstrate the required accuracy. The underlying technologies include on-orbit absolute temperature calibration using the transient melt signatures of small quantities (<1g) of reference materials (gallium, water, and mercury) imbedded in the blackbody cavity; and on-orbit cavity spectral emissivity measurement using a heated halo. For these emissivity measurements, a carefully baffled heated cylinder is placed in front of a blackbody in the infrared spectrometer system, and the combined radiance of the blackbody and Heated Halo reflection is observed. Knowledge of key temperatures and the viewing geometry allow the blackbody cavity spectral emissivity to be calculated.

  7. Frequency curves

    USGS Publications Warehouse

    Riggs, H.C.

    1968-01-01

    This manual describes graphical and mathematical procedures for preparing frequency curves from samples of hydrologic data. It also discusses the theory of frequency curves, compares advantages of graphical and mathematical fitting, suggests methods of describing graphically defined frequency curves analytically, and emphasizes the correct interpretations of a frequency curve.

  8. The Implications for Higher-Accuracy Absolute Measurements for NGS and its GRAV-D Project

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Winester, D.; Roman, D. R.; Eckl, M. C.; Smith, D. A.

    2013-12-01

    Absolute and relative gravity measurements play an important role in the work of NOAA's National Geodetic Survey (NGS). When NGS decided to replace the US national vertical datum, the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project added a new dimension to the NGS gravity program. Airborne gravity collection would complement existing satellite and surface gravity data to allow the creation of a gravimetric geoid sufficiently accurate to form the basis of the new reference surface. To provide absolute gravity ties for the airborne surveys, initially new FG5 absolute measurements were made at existing absolute stations and relative measurements were used to transfer those measurements to excenters near the absolute mark and to the aircraft sensor height at the parking space. In 2011, NGS obtained a field-capable A10 absolute gravimeter from Micro-g LaCoste which became the basis of the support of the airborne surveys. Now A10 measurements are made at the aircraft location and transferred to sensor height. Absolute and relative gravity play other roles in GRAV-D. Comparison of surface data with new airborne collection will highlight surface surveys with bias or tilt errors and can provide enough information to repair or discard the data. We expect that areas of problem surface data may be re-measured. The GRAV-D project also plans to monitor the geoid in regions of rapid change and update the vertical datum when appropriate. Geoid change can result from glacial isostatic adjustment (GIA), tectonic change, and the massive drawdown of large scale aquifers. The NGS plan for monitoring these changes over time is still in its preliminary stages and is expected to rely primarily on the GRACE and GRACE Follow On satellite data in conjunction with models of GIA and tectonic change. We expect to make absolute measurements in areas of rapid change in order to verify model predictions. With the opportunities presented by rapid, highly accurate

  9. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    SciTech Connect

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  10. Absolute surface energy for zincblende semiconductors

    NASA Astrophysics Data System (ADS)

    Zhang, S. B.; Wei, Su-Huai

    2003-03-01

    Recent advance in nanosciences requires the determination of surface (or facet) energy of semiconductors, which is often difficult due to the polar nature of some of the most important surfaces such as the (111)A/(111)B surfaces. Several approaches have been developed in the past [1-3] to deal with the problem but an unambiguous division of the polar surface energies is yet to come [2]. Here we show that an accurate division is indeed possible for the zincblende semiconductors and will present the results for GaAs, ZnSe, and CuInSe2 [4], respectively. A general trend emerges, relating the absolute surface energy to the ionicity of the bulk materials. [1] N. Chetty and R. M. Martin, Phys. Rev. B 45, 6074 (1992). [2] N. Moll, et al., Phys. Rev. B 54, 8844 (1996). [3] S. Mankefors, Phys. Rev. B 59, 13151 (1999). [4] S. B. Zhang and S.-H. Wei, Phys. Rev. B 65, 081402 (2002).

  11. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  12. Absolute decay width measurements in 16O

    NASA Astrophysics Data System (ADS)

    Wheldon, C.; Ashwood, N. I.; Barr, M.; Curtis, N.; Freer, M.; Kokalova, Tz; Malcolm, J. D.; Spencer, S. J.; Ziman, V. A.; Faestermann, Th; Krücken, R.; Wirth, H.-F.; Hertenberger, R.; Lutter, R.; Bergmaier, A.

    2012-09-01

    The reaction 126C(63Li, d)168O* at a 6Li bombarding energy of 42 MeV has been used to populate excited states in 16O. The deuteron ejectiles were measured using the high-resolution Munich Q3D spectrograph. A large-acceptance silicon-strip detector array was used to register the recoil and break-up products. This complete kinematic set-up has enabled absolute α-decay widths to be measured with high-resolution in the 13.9 to 15.9 MeV excitation energy regime in 16O; many for the first time. This energy region spans the 14.4 MeV four-α breakup threshold. Monte-Carlo simulations of the detector geometry and break-up processes yield detection efficiencies for the two dominant decay modes of 40% and 37% for the α+12C(g.s.) and a+12C(2+1) break-up channels respectively.

  13. Absolute calibration of forces in optical tweezers

    NASA Astrophysics Data System (ADS)

    Dutra, R. S.; Viana, N. B.; Maia Neto, P. A.; Nussenzveig, H. M.

    2014-07-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past 15 years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spot, adapting frequently employed video microscopy techniques. Combined with interface spherical aberration, it reveals a previously unknown window of instability for trapping. Comparison with experimental data leads to an overall agreement within error bars, with no fitting, for a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Besides signaling full first-principles theoretical understanding of optical tweezers operation, the results may lead to improved instrument design and control over experiments, as well as to an extended domain of applicability, allowing reliable force measurements, in principle, from femtonewtons to nanonewtons.

  14. Absolute spectrophotometry of northern compact planetary nebulae

    NASA Astrophysics Data System (ADS)

    Wright, S. A.; Corradi, R. L. M.; Perinotto, M.

    2005-06-01

    We present medium-dispersion spectra and narrowband images of six northern compact planetary nebulae (PNe): BoBn 1, DdDm 1, IC 5117, M 1-5, M 1-71, and NGC 6833. From broad-slit spectra, total absolute fluxes and equivalent widths were measured for all observable emission lines. High signal-to-noise emission line fluxes of Hα, Hβ, [Oiii], [Nii], and HeI may serve as emission line flux standards for northern hemisphere observers. From narrow-slit spectra, we derive systemic radial velocities. For four PNe, available emission line fluxes were measured with sufficient signal-to-noise to probe the physical properties of their electron densities, temperatures, and chemical abundances. BoBn 1 and DdDm 1, both type IV PNe, have an Hβ flux over three sigma away from previous measurements. We report the first abundance measurements of M 1-71. NGC 6833 measured radial velocity and galactic coordinates suggest that it is associated with the outer arm or possibly the galactic halo, and its low abundance ([O/H]=1.3× 10-4) may be indicative of low metallicity within that region.

  15. Approximating relational observables by absolute quantities: a quantum accuracy-size trade-off

    NASA Astrophysics Data System (ADS)

    Miyadera, Takayuki; Loveridge, Leon; Busch, Paul

    2016-05-01

    The notion that any physical quantity is defined and measured relative to a reference frame is traditionally not explicitly reflected in the theoretical description of physical experiments where, instead, the relevant observables are typically represented as ‘absolute’ quantities. However, the emergence of the resource theory of quantum reference frames as a new branch of quantum information science in recent years has highlighted the need to identify the physical conditions under which a quantum system can serve as a good reference. Here we investigate the conditions under which, in quantum theory, an account in terms of absolute quantities can provide a good approximation of relative quantities. We find that this requires the reference system to be large in a suitable sense.

  16. Method and apparatus for making absolute range measurements

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Key, William S.; Sanders, Alvin J.; Earl, Dennis D.

    1999-01-01

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through an object which causes it to be split (hereinafter referred to as a "beamsplitter"), and then to a target. The beam is reflected from the target onto a screen containing an aperture spaced a known distance from the beamsplitter. The aperture is sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector, spaced a known distance from the screen. The detector detects the central intensity of the beam. The distance from the object which causes the beam to be split to the target can then be calculated based upon the known wavelength, aperture radius, beam intensity, and distance from the detector to the screen. Several apparatus embodiments are disclosed for practicing the method embodiments of the present invention.

  17. Absolute and relative pitch: Global versus local processing of chords

    PubMed Central

    Ziv, Naomi; Radin, Shulamit

    2014-01-01

    Absolute pitch (AP) is the ability to identify or produce notes without any reference note. An ongoing debate exists regarding the benefits or disadvantages of AP in processing music. One of the main issues in this context is whether the categorical perception of pitch in AP possessors may interfere in processing tasks requiring relative pitch (RP). Previous studies, focusing mainly on melodic and interval perception, have obtained inconsistent results. The aim of the present study was to examine the effect of AP and RP separately, using isolated chords. Seventy-three musicians were categorized into four groups of high and low AP and RP, and were tested on two tasks: identifying chord types (Task 1), and identifying a single note within a chord (Task 2). A main effect of RP on Task 1 and an interaction between AP and RP in reaction times were found. On Task 2 main effects of AP and RP, and an interaction were found, with highest performance in participants with both high AP and RP. Results suggest that AP and RP should be regarded as two different abilities, and that AP may slow down reaction times for tasks requiring global processing. PMID:24855499

  18. Dichotomy and perceptual distortions in absolute pitch ability

    PubMed Central

    Athos, E. Alexandra; Levinson, Barbara; Kistler, Amy; Zemansky, Jason; Bostrom, Alan; Freimer, Nelson; Gitschier, Jane

    2007-01-01

    Absolute pitch (AP) is the rare ability to identify the pitch of a tone without the aid of a reference tone. Understanding both the nature and genesis of AP can provide insights into neuroplasticity in the auditory system. We explored factors that may influence the accuracy of pitch perception in AP subjects both during the development of the trait and in later age. We used a Web-based survey and a pitch-labeling test to collect perceptual data from 2,213 individuals, 981 (44%) of whom proved to have extraordinary pitch-naming ability. The bimodal distribution in pitch-naming ability signifies AP as a distinct perceptual trait, with possible implications for its genetic basis. The wealth of these data has allowed us to uncover unsuspected note-naming irregularities suggestive of a “perceptual magnet” centered at the note “A.” In addition, we document a gradual decline in pitch-naming accuracy with age, characterized by a perceptual shift in the “sharp” direction. These findings speak both to the process of acquisition of AP and to its stability. PMID:17724340

  19. Absolute and relative pitch: Global versus local processing of chords.

    PubMed

    Ziv, Naomi; Radin, Shulamit

    2014-01-01

    Absolute pitch (AP) is the ability to identify or produce notes without any reference note. An ongoing debate exists regarding the benefits or disadvantages of AP in processing music. One of the main issues in this context is whether the categorical perception of pitch in AP possessors may interfere in processing tasks requiring relative pitch (RP). Previous studies, focusing mainly on melodic and interval perception, have obtained inconsistent results. The aim of the present study was to examine the effect of AP and RP separately, using isolated chords. Seventy-three musicians were categorized into four groups of high and low AP and RP, and were tested on two tasks: identifying chord types (Task 1), and identifying a single note within a chord (Task 2). A main effect of RP on Task 1 and an interaction between AP and RP in reaction times were found. On Task 2 main effects of AP and RP, and an interaction were found, with highest performance in participants with both high AP and RP. Results suggest that AP and RP should be regarded as two different abilities, and that AP may slow down reaction times for tasks requiring global processing. PMID:24855499

  20. Method and apparatus for making absolute range measurements

    DOEpatents

    Allison, S.W.; Cates, M.R.; Key, W.S.; Sanders, A.J.; Earl, D.D.

    1999-06-22

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through an object which causes it to be split (hereinafter referred to as a beam splitter''), and then to a target. The beam is reflected from the target onto a screen containing an aperture spaced a known distance from the beam splitter. The aperture is sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector, spaced a known distance from the screen. The detector detects the central intensity of the beam. The distance from the object which causes the beam to be split to the target can then be calculated based upon the known wavelength, aperture radius, beam intensity, and distance from the detector to the screen. Several apparatus embodiments are disclosed for practicing the method embodiments of the present invention. 9 figs.

  1. Gray- and white-matter anatomy of absolute pitch possessors.

    PubMed

    Dohn, Anders; Garza-Villarreal, Eduardo A; Chakravarty, M Mallar; Hansen, Mads; Lerch, Jason P; Vuust, Peter

    2015-05-01

    Absolute pitch (AP), the ability to identify a musical pitch without a reference, has been examined behaviorally in numerous studies for more than a century, yet only a few studies have examined the neuroanatomical correlates of AP. Here, we used MRI and diffusion tensor imaging to investigate structural differences in brains of musicians with and without AP, by means of whole-brain vertex-wise cortical thickness (CT) analysis and tract-based spatial statistics (TBSS) analysis. APs displayed increased CT in a number of areas including the bilateral superior temporal gyrus (STG), the left inferior frontal gyrus, and the right supramarginal gyrus. Furthermore, we found higher fractional anisotropy in APs within the path of the inferior fronto-occipital fasciculus, the uncinate fasciculus, and the inferior longitudinal fasciculus. The findings in gray matter support previous studies indicating an increased left lateralized posterior STG in APs, yet they differ from previous findings of thinner cortex for a number of areas in APs. Finally, we found a relation between the white-matter results and the CT in the right parahippocampal gyrus. In this study, we present novel findings in AP research that may have implications for the understanding of the neuroanatomical underpinnings of AP ability. PMID:24304583

  2. Recent changes in reference evapotranspiration in Romania

    NASA Astrophysics Data System (ADS)

    Croitoru, Adina-Eliza; Piticar, Adrian; Dragotă, Carmen Sofia; Burada, Doina Cristina

    2013-12-01

    In the last few decades, climate changes have become the most important topic in the field of climatology. Reference evapotranspiration (ET0) is often used to identify regions prone to drought or aridity. In this paper, we used monthly data recorded in 57 weather stations in Romania over the period 1961-2007. The FAO Penman-Monteith method, based on air temperature, sunshine duration, relative humidity and wind speed, was employed in order to calculate ET0. Seasonal, annual, winter wheat and maize growing seasons data sets of ET0 were generated. The trends were detected using the Mann-Kendall test and Sen's slope, while an ArcGIS software was employed for mapping the results. The main findings of the study are: positive slopes were found in 71% of the data series considered and almost 30% of the total number of series were found significant at α = 0.05; the highest frequency of the increasing trends as well as their absolute maximum magnitude were detected during summer and maize growing season; in winter, significant increasing changes are specific mainly to the extra-Carpathians regions; in autumn decreasing ET0 is specific to more than 80% of the locations, but the significant decrease characterizes mainly the southern half of the country; during the growing seasons of maize and winter wheat, the increase of the ET0 is dominant for the entire country. The relative change decreases with the increase of the length of the period considered: the most intense changes were detected for climatic seasons, followed by crop growing seasons and annual values. Among the climatic seasons, the highest relative increase is specific to winter followed by summer, spring and autumn, while for the crop growing seasons the values detected are similar.

  3. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  4. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  5. INTERPRETATION OF THE ARCADE 2 ABSOLUTE SKY BRIGHTNESS MEASUREMENT

    SciTech Connect

    Seiffert, M.; Levin, S. M.; Fixsen, D. J.; Kogut, A.; Wollack, E.; Limon, M.; Lubin, P. M.; Mirel, P.; Singal, J.; Villela, T.; Wuensche, C. A.

    2011-06-10

    We use absolutely calibrated data between 3 and 90 GHz from the 2006 balloon flight of the ARCADE 2 instrument, along with previous measurements at other frequencies, to constrain models of extragalactic emission. Such emission is a combination of the cosmic microwave background (CMB) monopole, Galactic foreground emission, the integrated contribution of radio emission from external galaxies, any spectral distortions present in the CMB, and any other extragalactic source. After removal of estimates of foreground emission from our own Galaxy, and an estimated contribution of external galaxies, we present fits to a combination of the flat-spectrum CMB and potential spectral distortions in the CMB. We find 2{sigma} upper limits to CMB spectral distortions of {mu} < 6 x 10{sup -4} and |Y{sub ff}| < 1 x 10{sup -4}. We also find a significant detection of a residual signal beyond that, which can be explained by the CMB plus the integrated radio emission from galaxies estimated from existing surveys. This residual signal may be due to an underestimated galactic foreground contribution, an unaccounted for contribution of a background of radio sources, or some combination of both. The residual signal is consistent with emission in the form of a power law with amplitude 18.4 {+-} 2.1 K at 0.31 GHz and a spectral index of -2.57 {+-} 0.05.

  6. A nonmusical paradigm for identifying absolute pitch possessors

    NASA Astrophysics Data System (ADS)

    Ross, David A.; Olson, Ingrid R.; Marks, Lawrence E.; Gore, John C.

    2004-09-01

    The ability to identify and reproduce sounds of specific frequencies is remarkable and uncommon. The etiology and defining characteristics of this skill, absolute pitch (AP), have been very controversial. One theory suggests that AP requires a specific type of early musical training and that the ability to encode and remember tones depends on these learned musical associations. An alternate theory argues that AP may be strongly dependent on hereditary factors and relatively independent of musical experience. To date, it has been difficult to test these hypotheses because all previous paradigms for identifying AP have required subjects to employ knowledge of musical nomenclature. As such, these tests are insensitive to the possibility of discovering AP in either nonmusicians or musicians of non-Western training. Based on previous literature in pitch memory, a paradigm is presented that is intended to distinguish between AP possessors and nonpossessors independent of the subjects' musical experience. The efficacy of this method is then tested with 20 classically defined AP possessors and 22 nonpossessors. Data from these groups strongly support the validity of the paradigm. The use of a nonmusical paradigm to identify AP may facilitate research into many aspects of this phenomenon.

  7. Frequency stabilized laser

    NASA Astrophysics Data System (ADS)

    Mongeon, R. J.; Henschke, R. W.

    1984-08-01

    The document describes a frequency control system for a laser for compensating for thermally-induced laser resonator length changes. The frequency control loop comprises a frequency reference for producing an error signal and electrical means to move a length-controlling transducer in response thereto. The transducer has one of the laser mirrors attached thereto. The effective travel of the transducer is multiplied severalfold by circuitry for sensing when the transducer is running out of extension and in response thereto rapidly moving the transducer and its attached mirror toward its midrange position.

  8. Reference Frames and Relativity.

    ERIC Educational Resources Information Center

    Swartz, Clifford

    1989-01-01

    Stresses the importance of a reference frame in mechanics. Shows the Galilean transformation in terms of relativity theory. Discusses accelerated reference frames and noninertial reference frames. Provides examples of reference frames with diagrams. (YP)

  9. Absolute ultrasonic displacement amplitude measurements with a submersible electrostatic acoustic transducer

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.

    1992-01-01

    An experimental technique for absolute measurement of ultrasonic wave particle displacement amplitudes in liquids is reported. The technique is capable of measurements over a frequency range of two decades with a sensitivity less than one angstrom. The technique utilizes a previously reported submersible electrostatic acoustic transducer (ESAT) featuring a conductive membrane stretched over a recessed electrode. An uncertainty analysis shows that the displacement amplitude of an ultrasonic plane wave incident on the ESAT can be experimentally determined to better than 2.3-4 percent, depending on frequency, in the frequency range of 0.5-15 MHz. Membranes with lower and more uniform areal densities can improve the accuracy and extend the operation to higher frequencies.

  10. Absolute pitch in Costa Rica: Distribution of pitch identification ability and implications for its genetic basis.

    PubMed

    Chavarria-Soley, Gabriela

    2016-08-01

    Absolute pitch is the unusual ability to recognize a pitch without an external reference. The current view is that both environmental and genetic factors are involved in the acquisition of the trait. In the present study, 127 adult musicians were subjected to a musical tone identification test. Subjects were university music students and volunteers who responded to a newspaper article. The test consisted of the identification of 40 piano and 40 pure tones. Subjects were classified in three categories according to their pitch naming ability: absolute pitch (AP), high accuracy of tone identification (HA), and non-absolute pitch (non-AP). Both the percentage of correct responses and the mean absolute deviation showed a statistically significant variation between categories. A very clear pattern of higher accuracy for white than for black key notes was observed for the HA and the non-AP groups. Meanwhile, the AP group had an almost perfect pitch naming accuracy for both kinds of tones. Each category presented a very different pattern of deviation around the correct response. The age at the beginning of musical training did not differ between categories. The distribution of pitch identification ability in this study suggests a complex inheritance of the trait. PMID:27586721

  11. On the calculation of the absolute grand potential of confined smectic-A phases

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Cheng; Baus, Marc; Ryckaert, Jean-Paul

    2015-09-01

    We determine the absolute grand potential Λ along a confined smectic-A branch of a calamitic liquid crystal system enclosed in a slit pore of transverse area A and width L, using the rod-rod Gay-Berne potential and a rod-wall potential favouring perpendicular orientation at the walls. For a confined phase with an integer number of smectic layers sandwiched between the opposite walls, we obtain the excess properties (excess grand potential Λexc, solvation force fs and adsorption Γ) with respect to the bulk phase at the same μ (chemical potential) and T (temperature) state point. While usual thermodynamic integration methods are used along the confined smectic branch to estimate the grand potential difference as μ is varied at fixed L, T, the absolute grand potential at one reference state point is obtained via the evaluation of the absolute Helmholtz free energy in the (N, L, A, T) canonical ensemble. It proceeds via a sequence of free energy difference estimations involving successively the cost of localising rods on layers and the switching on of a one-dimensional harmonic field to keep layers integrity coupled to the elimination of inter-layers and wall interactions. The absolute free energy of the resulting set of fully independent layers of interacting rods is finally estimated via the existing procedures. This work opens the way to the computer simulation study of phase transitions implying confined layered phases.

  12. Absolute calibration technique for broadband ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1994-01-01

    Calibrating an ultrasonic transducer can be performed with a reduced number of calculations and testing. A wide-band pulser is connected to an ultrasonic transducer under test to generate ultrasonic waves in a liquid. A single frequency is transmitted to the electrostatic acoustic transducer (ESAT) and the voltage change produced is monitored. Then a broadband ultrasonic pulse is generated by the ultrasonic transducer and received by the ESAT. The output of the ESAT is amplified and input to a digitized oscilloscope for fast Fourier transform. The resulting plot is normalized with the monitored signal from the single frequency pulse. The plot is then corrected for characteristics of the membrane and diffraction effects. The transfer function of the final plot is determined. The transfer function gives the final sensitivity of the ultrasonic transducer as a function of frequency. The advantage of the system is the speed of calibrating the transducer by a reduced number of measurements and removal of the membrane and diffraction effects.

  13. Absolute Instability near the Band Edge of Traveling-Wave Amplifiers

    NASA Astrophysics Data System (ADS)

    Hung, D. M. H.; Rittersdorf, I. M.; Zhang, P.; Chernin, D.; Lau, Y. Y.; Antonsen, T. M.; Luginsland, J. W.; Simon, D. H.; Gilgenbach, R. M.

    2015-09-01

    Applying the Briggs-Bers "pole-pinch" criterion to the exact transcendental dispersion relation of a dielectric traveling wave tube (TWT), we find that there is no absolute instability regardless of the beam current. We extend this analysis to the circuit band edges of a linear beam TWT by approximating the circuit mode as a hyperbola in the frequency-wave-number (ω -k ) plane and consider the weak coupling limit. For an operating mode whose group velocity is in the same direction as the beam mode, we find that the lower band edge is not subjected to absolute instability. At the upper band edge, we find a threshold beam current beyond which absolute instability is excited. The nonexistence of absolute instability in a linear beam TWT and the existence in a gyrotron TWT, both at the lower band edge, is contrasted. The general study given here is applicable to some contemporary TWTs such as metamaterial-based and advanced Smith-Purcell TWTs.

  14. Surveying with the A10-20 Absolute Gravimeter for Geodesy and Geodynamics - first results

    NASA Astrophysics Data System (ADS)

    Krynski, Jan; Sekowski, Marcin

    2010-05-01

    The A10 is the first outdoor absolute gravimeter that allows for the determination of gravity with high precision. Absolute gravity survey with the A10 becomes highly competitive in terms of both efficiency and precision with traditional relative gravity survey. The portable A10-20 absolute gravimeter has been installed at the Borowa Gora Geodetic-Geophysical Observatory in September 2008. Since then a number of test measurements was conducted. Under laboratory conditions the series of gravity determination was obtained at two independent pillars at Borowa Gora as well as in Metsahovi and the BIPM gravimetric laboratories. Also a number outdoor gravity measurements with the use of mobile gravimetric laboratory was performed at the stations of gravity control in Poland and in Finland. The results obtained indicate high quality of gravity determination with the A10 under laboratory conditions and unprecedented quality under field conditions. They confirm the applicability of the A10 absolute gravimeter to the modernization of gravity control and high precision gravity survey required in modern gravity networks, but also its usefulness in microgravimetry as well as geodynamics. Some practical problems concerning the use of the A10 and its operational procedure including laser and frequency standard are discussed.

  15. Absolute Instability near the Band Edge of Traveling-Wave Amplifiers.

    PubMed

    Hung, D M H; Rittersdorf, I M; Zhang, P; Chernin, D; Lau, Y Y; Antonsen, T M; Luginsland, J W; Simon, D H; Gilgenbach, R M

    2015-09-18

    Applying the Briggs-Bers "pole-pinch" criterion to the exact transcendental dispersion relation of a dielectric traveling wave tube (TWT), we find that there is no absolute instability regardless of the beam current. We extend this analysis to the circuit band edges of a linear beam TWT by approximating the circuit mode as a hyperbola in the frequency-wave-number (ω-k) plane and consider the weak coupling limit. For an operating mode whose group velocity is in the same direction as the beam mode, we find that the lower band edge is not subjected to absolute instability. At the upper band edge, we find a threshold beam current beyond which absolute instability is excited. The nonexistence of absolute instability in a linear beam TWT and the existence in a gyrotron TWT, both at the lower band edge, is contrasted. The general study given here is applicable to some contemporary TWTs such as metamaterial-based and advanced Smith-Purcell TWTs. PMID:26430996

  16. Orion Absolute Navigation System Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2012-01-01

    The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.

  17. Evaluation of the Absolute Regional Temperature Potential

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.

    2012-01-01

    The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  18. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  19. A linewidth-narrowed and frequency-stabilized dye laser for application in laser cooling of molecules.

    PubMed

    Dai, D P; Xia, Y; Yin, Y N; Yang, X X; Fang, Y F; Li, X J; Yin, J P

    2014-11-17

    We demonstrate a robust and versatile solution for locking the continuous-wave dye laser for applications in laser cooling of molecules which need linewidth-narrowed and frequency-stabilized lasers. The dye laser is first stabilized with respect to a reference cavity by Pound-Drever-Hall (PDH) technique which results in a single frequency with the linewidth 200 kHz and short-term stabilization, by stabilizing the length of the reference cavity to a stabilized helium-neon laser we simultaneously transfer the ± 2 MHz absolute frequency stability of the helium-neon laser to the dye laser with long-term stabilization. This allows the dye laser to be frequency chirped with the maximum 60 GHz scan range while its frequency remains locked. It also offers the advantages of locking at arbitrary dye laser frequencies, having a larger locking capture range and frequency scanning range to be implemented via software. This laser has been developed for the purpose of laser cooling a molecular magnesium fluoride beam. PMID:25402105

  20. The Swarm Absolute Scalar Magnetometers now operating in orbit

    NASA Astrophysics Data System (ADS)

    Fratter, Isabelle; Leger, Jean-Michel; Bertrand, François; Jager, Thomas; Hulot, Gauthier

    2014-05-01

    Swarm is one of the Earth Explorer Missions run by the European Space Agency. Its principal goal is to make the best ever survey of the Earth's magnetic field and ionosphere and to study how they vary over space and time. This will be achieved by a constellation of three identical satellites, launched on the 22nd of November 2013. In order to observe the magnetic field thoroughly, each satellite carries two magnetometers: a Vector Field Magnetometer coupled with a star tracker camera, to measure the direction of the magnetic field in space, and an Absolute Scalar Magnetometer (ASM), to measure its intensity. The ASM is the French contribution to the Swarm mission. This new generation instrument, based on the atomic spectroscopy of the helium 4 metastable state, was developed by CEA-Leti (1) in Grenoble with technical assistance and financing from CNES (2) and scientific support from IPGP (3). As the Swarm magnetic reference, the ASM scalar performances are crucial for the mission's success. Thanks to a new dedicated design, the ASM offers the best precision and absolute accuracy ever attained in space, with similar performances all along the orbit. The ASM will thus deliver high resolution scalar measurements at 1 Hz for the in-flight calibration of the vector field data over the 4 year mission. It can also be operated at a much higher sampling rate ("burst" mode at 250 Hz). In addition, on an experimental basis, this instrument also takes vector field measurements, which are being validated jointly by CEA-Leti and IPGP, with support from CNES. This poster presents the capabilities and working principle of this instrument as well as the results of the in-flight verifications carried out during the 3 first months in orbit, including the performances, the last status and future prospects. 1 CEA-Leti : French Atomic Energy and Alternative Energies Commission - Electronics and Information Technology Laboratory 2 CNES : Centre National d'Etudes Spatiales - French Space

  1. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%–0.68% (k  =  2).

  2. Search for Temporal Variations in Alpha Using a Yb^+ Optical Frequency Standard

    NASA Astrophysics Data System (ADS)

    Peik, Ekkehard

    2008-05-01

    Optical frequency standards based on forbidden transitions of trapped and laser-cooled ions have now achieved significantly higher stability and also greater accuracy than primary cesium clocks. At PTB we investigate an optical clock based on the electric quadrupole transition S1/2- D3/2 at 688 THz in the ^171Yb^+ ion and have shown that the frequencies realized in two independent ion traps agree to within a few parts in 10^16. Results from a sequence of precise measurements of the absolute transition frequency are now available that cover a period of seven years. Combined with data obtained at NIST on the quadrupole transition in Hg^+, this allows to derive a model-independent limit for a temporal drift of the fine structure constant alpha. We prepare to observe the electric-octupole transition S1/2- F7/2 of Yb^+ at 642 THz with sub-hertz resolution. This narrow-linewidth reference transition promises a reduced quantum-noise limited instability of the single-ion optical clock. The ratio of the 688 THz and 642 THz reference frequencies can be measured as a dimensionless number with a femtosecond laser frequency comb, independent from the realization of the SI second with cesium clocks. Repeated measurements of this quantity permit to search for temporal variations of alpha with increased sensitivity.

  3. Implications of an Absolute Simultaneity Theory for Cosmology and Universe Acceleration

    PubMed Central

    Kipreos, Edward T.

    2014-01-01

    An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift–distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe. PMID:25536116

  4. Absolute testing of surface based on sub-aperture stitching interferometry

    NASA Astrophysics Data System (ADS)

    Jia, Xin; Xu, Fuchao; Xie, Weimin; Xing, Tingwen

    2015-02-01

    Large-aperture optical elements are widely employed in high-power laser system, astronomy, and outer-space technology. Sub-aperture stitching is an effective way to extend the lateral and vertical dynamic range of a conventional interferometer. Most of the commercial available sub-aperture stitching interferometers measure the surface with a standard lens that produces a reference wavefront, and the precision of the interferometer is generally limited by the standard lens. The test accuracy can be achieved by removing the error of reference surface by the absolute testing method. In our paper we use the different sub-apertures as the different flats to get the profile of the reference lens. Only two lens in the testing process which is fewer than the traditional 3-flat method. In the testing equipment, we add a reflective lens and a lens which can transparent and reflect to get the non rationally symmetric errors of the testing flat. The arithmetic is present in this paper which uses the absolute testing method to improve the testing accuracy of the sub-aperture stitching interferometers by removing the errors caused by reference surface.

  5. Absolute testing of flats in sub-stitching interferometer by rotation-shift method

    NASA Astrophysics Data System (ADS)

    Jia, Xin; Xu, Fuchao; Xie, Weimin; Li, Yun; Xing, Tingwen

    2015-09-01

    Most of the commercial available sub-aperture stitching interferometers measure the surface with a standard lens that produces a reference wavefront, and the precision of the interferometer is generally limited by the standard lens. The test accuracy can be achieved by removing the error of reference surface by the absolute testing method. When the testing accuracy (repeatability and reproducibility) is close to 1nm, in addition to the reference surface, other factors will also affect the measuring accuracy such as environment, zoom magnification, stitching precision, tooling and fixture, the characteristics of optical materials and so on. We establish a stitching system in the thousand level cleanroom. The stitching system is including the Zygo interferometer, the motion system with Bilz active isolation system at level VC-F. We review the traditional absolute flat testing methods and emphasize the method of rotation-shift functions. According to the rotation-shift method we get the profile of the reference lens and the testing lens. The problem of the rotation-shift method is the tilt error. In the motion system, we control the tilt error no more than 4 second to reduce the error. In order to obtain higher testing accuracy, we analyze the influence surface shape measurement accuracy by recording the environment error with the fluke testing equipment.

  6. Implications of an absolute simultaneity theory for cosmology and universe acceleration.

    PubMed

    Kipreos, Edward T

    2014-01-01

    An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe. PMID:25536116

  7. T-shaped cavity dual-frequency Nd:YAG laser with electro-optical modulation

    NASA Astrophysics Data System (ADS)

    Xing, Junhong; Jiao, Mingxing; Liu, Yun

    2016-05-01

    A T-shaped cavity dual-frequency Nd:YAG laser with electro-optical modulation is proposed, which consists of both p- and s-cavities sharing the same gain medium of Nd:YAG. Each cavity was not only able to select longitudinal mode but also tune frequency using an electro-optic birefringent filter polarization beam splitter + lithium niobate. The frequency difference of dual frequency was tuned through the whole gain bandwidth of Nd:YAG, which is far above the usually accepted free spectral range value in the case of a single-axis laser. As a result, the simultaneous operation of orthogonally and linearly polarized dual-frequency laser was obtained, which coincides with the theoretical analysis based on Jones matrices. The obtained frequency difference ranges from 0 to 132 GHz. This offers a simple and widely tunable source with potential for portable frequency reference applications in terahertz-wave generation and absolute-distance interferometry measurement areas.

  8. Robust control design with real parameter uncertainty using absolute stability theory. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Hall, Steven R.

    1993-01-01

    The purpose of this thesis is to investigate an extension of mu theory for robust control design by considering systems with linear and nonlinear real parameter uncertainties. In the process, explicit connections are made between mixed mu and absolute stability theory. In particular, it is shown that the upper bounds for mixed mu are a generalization of results from absolute stability theory. Both state space and frequency domain criteria are developed for several nonlinearities and stability multipliers using the wealth of literature on absolute stability theory and the concepts of supply rates and storage functions. The state space conditions are expressed in terms of Riccati equations and parameter-dependent Lyapunov functions. For controller synthesis, these stability conditions are used to form an overbound of the H2 performance objective. A geometric interpretation of the equivalent frequency domain criteria in terms of off-axis circles clarifies the important role of the multiplier and shows that both the magnitude and phase of the uncertainty are considered. A numerical algorithm is developed to design robust controllers that minimize the bound on an H2 cost functional and satisfy an analysis test based on the Popov stability multiplier. The controller and multiplier coefficients are optimized simultaneously, which avoids the iteration and curve-fitting procedures required by the D-K procedure of mu synthesis. Several benchmark problems and experiments on the Middeck Active Control Experiment at M.I.T. demonstrate that these controllers achieve good robust performance and guaranteed stability bounds.

  9. Modelling and measurement of the absolute level of power radiated by antenna integrated THz UTC photodiodes.

    PubMed

    Natrella, Michele; Liu, Chin-Pang; Graham, Chris; van Dijk, Frederic; Liu, Huiyun; Renaud, Cyril C; Seeds, Alwyn J

    2016-05-30

    We determine the output impedance of uni-travelling carrier (UTC) photodiodes at frequencies up to 400 GHz by performing, for the first time, 3D full-wave modelling of detailed UTC photodiode structures. In addition, we demonstrate the importance of the UTC impedance evaluation, by using it in the prediction of the absolute power radiated by an antenna integrated UTC, over a broad frequency range and confirming the predictions by experimental measurements up to 185 GHz. This is done by means of 3D full-wave modelling and is only possible since the source (UTC) to antenna impedance match is properly taken into account. We also show that, when the UTC-to-antenna coupling efficiency is modelled using the classical junction-capacitance/series-resistance concept, calculated and measured levels of absolute radiated power are in substantial disagreement, and the maximum radiated power is overestimated by a factor of almost 7 dB. The ability to calculate the absolute emitted power correctly enables the radiated power to be maximised through optimisation of the UTC-to-antenna impedance match. PMID:27410104

  10. Subduction trench migration as a constraint on absolute plate motions since 130 Ma

    NASA Astrophysics Data System (ADS)

    Williams, Simon; Flament, Nicolas; Müller, Dietmar; Butterworth, Nathan

    2015-04-01

    The absolute motions of the lithospheric plates relative to the Earth's deep interior are commonly constrained using observations from paleomagnetism and age-progressive seamount trails. In contrast, a reference frame linking surface plate motions to subducted slab remnants mapped from seismic tomography has recently been proposed. Absolute plate motion (APM) models (or "reference frames") derived using different methodologies, different subsets of hotspots, or differing assumptions of hotspot motion, have contrasting implications for parameters that describe the long term state of the plate-mantle system, such as the balance between advance and retreat of subduction zones, plate velocities, and net lithospheric rotation. Previous studies of contemporary plate motions have used subduction zone kinematics as a constraint on the most likely APM model. Here we use a relative plate motion model to compute these values for the last 130 Myr for a range of alternative reference frames, and quantitatively compare the results. We find that hotspot and tomographic slab-remnant reference frames yield similar results for the last 70 Myr. For the 130-70 Ma period, where hotspot reference frames are less well constrained, these models yield a much more dispersed distribution of slab advance and retreat velocities. By contrast, plate motions calculated using the slab-remnant reference frame, or using a reference frame designed to minimise net rotation, yield more consistent subduction zone kinematics for times older than 70 Ma. Introducing the global minimisation of trench migration rates as a key criterion in the construction of APM models forms the foundation of a new method of constraining APMs (and in particular paleolongitude) in deep geological time.

  11. A 20-40 MHz low-power clock oscillator with open-loop frequency calibration and temperature compensation

    NASA Astrophysics Data System (ADS)

    Lee, Dongsoo; Kim, Hongjin; Lee, Kang-Yoon

    2014-05-01

    In this paper, a 20-40 MHz low-power clock oscillator is presented to provide the frequency reference in data interface applications. The frequency source is referenced to a frequency-calibrated and temperature-compensated 2.5 GHz LC VCO that is implemented with a bondwire inductor. Class-C type VCO is adopted in order to improve the phase noise and reduce the current consumption. A full digital frequency calibration circuit is proposed to cover the wide output frequency range minimizing the frequency variation. External crystal oscillator (REF_CLK) is used only for the absolute frequency calibration at the initial programming stage and is not needed after the programming stage. On the other hand, temperature compensation is performed in an analogue way by controlling the varactor in the LC VCO. This chip is fabricated using 0.18-µm CMOS with the option of lateral PNP transistor. Lateral PNP transistors are used in the temperature compensation circuits. It can be implemented laterally in standard CMOS process. The power consumption is 4.8 mW from a 1.8 V supply. The accuracy of the frequency is ±58 ppm from -20°C to 80°C. The nominal phase noise at 1 MHz and period jitter is -122 dBc/Hz and 2 ps, respectively, when the output frequency is 25 MHz.

  12. Supplementary and Enrichment Series: Absolute Value. Teachers' Commentary. SP-25.

    ERIC Educational Resources Information Center

    Bridgess, M. Philbrick, Ed.

    This is one in a series of manuals for teachers using SMSG high school supplementary materials. The pamphlet includes commentaries on the sections of the student's booklet, answers to the exercises, and sample test questions. Topics covered include addition and multiplication in terms of absolute value, graphs of absolute value in the Cartesian…

  13. Supplementary and Enrichment Series: Absolute Value. SP-24.

    ERIC Educational Resources Information Center

    Bridgess, M. Philbrick, Ed.

    This is one in a series of SMSG supplementary and enrichment pamphlets for high school students. This series is designed to make material for the study of topics of special interest to students readily accessible in classroom quantity. Topics covered include absolute value, addition and multiplication in terms of absolute value, graphs of absolute…

  14. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  15. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  16. Frequency stabilized lasers for space applications

    NASA Astrophysics Data System (ADS)

    Lieber, Mike; Adkins, Mike; Pierce, Robert; Warden, Robert; Wallace, Cynthia; Weimer, Carl

    2014-09-01

    metrology, spectroscopy, atomic clocks and geodesy. This technology will be a key enabler to several proposed NASA science missions. Although lasers such as Q-switched Nd-YAG are now commonly used in space, other types of lasers - especially those with narrow linewidth - are still few in number and more development is required to advance their technology readiness. In this paper we discuss a reconfigurable laser frequency stabilization testbed, and end-to-end modeling to support system development. Two important features enabling testbed flexibility are that the controller, signal processing and interfaces are hosted on a field programmable gate array (FPGA) which has spacequalified equivalent parts, and secondly, fiber optic relay of the beam paths. Given the nonlinear behavior of lasers, FPGA implementation is a key system reliability aspect allowing on-orbit retuning of the control system and initial frequency acquisition. The testbed features a dual sensor system, one based upon a high finesse resonator cavity which provides relative stability through Pound-Drever-Hall (PDH) modulation and secondly an absolute frequency reference by dither locking to an acetylene gas cell (GC). To provide for differences between ground and space implementation, we have developed an end-to-end Simulink/ Matlab®-based control system model of the testbed components including the important noise sources. This model is in the process of being correlated to the testbed data which then can be used for trade studies, and estimation of space-based performance and sensitivities. A 1530 nm wavelength semiconductor laser is used for this initial work.

  17. On the Error Sources in Absolute Individual Antenna Calibrations

    NASA Astrophysics Data System (ADS)

    Aerts, Wim; Baire, Quentin; Bilich, Andria; Bruyninx, Carine; Legrand, Juliette

    2013-04-01

    field) multi path errors, both during calibration and later on at the station, absolute sub-millimeter positioning with GPS is not (yet) possible. References [1] G. Wübbena, M. Schmitz, G. Boettcher, C. Schumann, "Absolute GNSS Antenna Calibration with a Robot: Repeatability of Phase Variations, Calibration of GLONASS and Determination of Carrier-to-Noise Pattern", International GNSS Service: Analysis Center workshop, 8-12 May 2006, Darmstadt, Germany. [2] P. Zeimetz, H. Kuhlmann, "On the Accuracy of Absolute GNSS Antenna Calibration and the Conception of a New Anechoic Chamber", FIG Working Week 2008, 14-19 June 2008, Stockholm, Sweden. [3] P. Zeimetz, H. Kuhlmann, L. Wanninger, V. Frevert, S. Schön and K. Strauch, "Ringversuch 2009", 7th GNSS-Antennen-Workshop, 19-20 March 2009, Dresden, Germany.

  18. Karst Water System Investigated by Absolute Gravimetry

    NASA Astrophysics Data System (ADS)

    Quinif, Y.; Meus, P.; van Camp, M.; Kaufmann, O.; van Ruymbeke, M.; Vandiepenbeeck, M.; Camelbeeck, T.

    2006-12-01

    The highly anisotropic and heterogeneous hydrogeological characteristics of karst aquifers are difficult to characterize and present challenges for modeling of storage capacities. Little is known about the surface and groundwater interconnection, about the connection between the porous formations and the draining cave and conduits, and about the variability of groundwater volume within the system. Usually, an aquifer is considered as a black box, where water fluxes are monitored as input and output. However, water inflow and outflow are highly variable and cannot be measured directly. A recent project, begun in 2006 sought to constrain the water budget in a Belgian karst aquifer and to assess the porosity and water dynamics, combining absolute gravity (AG) measurements and piezometric levels around the Rochefort cave. The advantage of gravity measurements is that they integrate all the subsystems in the karst system. This is not the case with traditional geophysical tools like boring or monitoring wells, which are soundings affected by their near environment and its heterogeneity. The investigated cave results from the meander cutoff system of the Lomme River. The main inputs are swallow holes of the river crossing the limestone massif. The river is canalized and the karst system is partly disconnected from the hydraulic system. In February and March 2006, when the river spilled over its dyke and sank into the most important swallow hole, this resulted in dramatic and nearly instantaneous increases in the piezometric levels in the cave, reaching up to 13 meters. Meanwhile, gravity increased by 50 and 90 nms-2 in February and March, respectively. A first conclusion is that during these sudden floods, the pores and fine fissures were poorly connected with the enlarged fractures, cave, and conduits. With a rise of 13 meters in the water level and a 5% porosity, a gravity change of 250 nms-2 should have been expected. This moderate gravity variation suggests either a

  19. Toward a generalized plate motion reference frame

    NASA Astrophysics Data System (ADS)

    Becker, T. W.; Schaeffer, A. J.; Lebedev, S.; Conrad, C. P.

    2015-05-01

    An absolute plate motion (APM) model is required to address issues such as the thermochemical evolution of Earth's mantle. All APM models have to rely on indirect inferences, including those based on hot spots and seismic anisotropy, each with their own set of uncertainties. Here, we explore a seafloor spreading-aligned reference frame. We show that this reference frame fits azimuthal seismic anisotropy in the uppermost mantle very well. The corresponding Euler pole is close to those of hot spot reference frames, ridge motion minimizing models, and geodynamic estimates of net rotation and predicts clear trench motion patterns. We conclude that a net rotation pole guided by the spreading-aligned model (at 64°E, 61°S, with moderate rotation of ˜ 0.2 … 0.3°/Myr) could indeed represent a standard, comprehensive reference frame for present-day plate motions with respect to the deep mantle.

  20. Testing the quasi-absolute method in photon activation analysis

    SciTech Connect

    Sun, Z. J.; Wells, D.; Starovoitova, V.; Segebade, C.

    2013-04-19

    In photon activation analysis (PAA), relative methods are widely used because of their accuracy and precision. Absolute methods, which are conducted without any assistance from calibration materials, are seldom applied for the difficulty in obtaining photon flux in measurements. This research is an attempt to perform a new absolute approach in PAA - quasi-absolute method - by retrieving photon flux in the sample through Monte Carlo simulation. With simulated photon flux and database of experimental cross sections, it is possible to calculate the concentration of target elements in the sample directly. The QA/QC procedures to solidify the research are discussed in detail. Our results show that the accuracy of the method for certain elements is close to a useful level in practice. Furthermore, the future results from the quasi-absolute method can also serve as a validation technique for experimental data on cross sections. The quasi-absolute method looks promising.

  1. Learning in the temporal bisection task: Relative or absolute?

    PubMed

    de Carvalho, Marilia Pinheiro; Machado, Armando; Tonneau, François

    2016-01-01

    We examined whether temporal learning in a bisection task is absolute or relational. Eight pigeons learned to choose a red key after a t-seconds sample and a green key after a 3t-seconds sample. To determine whether they had learned a relative mapping (short→Red, long→Green) or an absolute mapping (t-seconds→Red, 3t-seconds→Green), the pigeons then learned a series of new discriminations in which either the relative or the absolute mapping was maintained. Results showed that the generalization gradient obtained at the end of a discrimination predicted the pattern of choices made during the first session of a new discrimination. Moreover, most acquisition curves and generalization gradients were consistent with the predictions of the learning-to-time model, a Spencean model that instantiates absolute learning with temporal generalization. In the bisection task, the basis of temporal discrimination seems to be absolute, not relational. PMID:26752233

  2. Frequency Combs

    NASA Astrophysics Data System (ADS)

    Hänsch, Theodor W.; Picqué, Nathalie

    Much of modern research in the field of atomic, molecular, and optical science relies on lasers, which were invented some 50 years ago and perfected in five decades of intense research and development. Today, lasers and photonic technologies impact most fields of science and they have become indispensible in our daily lives. Laser frequency combs were conceived a decade ago as tools for the precision spectroscopy of atomic hydrogen. Through the development of optical frequency comb techniques, technique a setup of the size 1 ×1 m2, good for precision measurements of any frequency, and even commercially available, has replaced the elaborate previous frequency-chain schemes for optical frequency measurements, which only worked for selected frequencies. A true revolution in optical frequency measurements has occurred, paving the way for the creation of all-optical clocks clock with a precision that might approach 10-18. A decade later, frequency combs are now common equipment in all frequency metrology-oriented laboratories. They are also becoming enabling tools for an increasing number of applications, from the calibration of astronomical spectrographs to molecular spectroscopy. This chapter first describes the principle of an optical frequency comb synthesizer. Some of the key technologies to generate such a frequency comb are then presented. Finally, a non-exhaustive overview of the growing applications is given.

  3. 88Sr+ 445-THz Single-Ion Reference at the 10-17 Level

    NASA Astrophysics Data System (ADS)

    Madej, Alan

    2013-05-01

    We report experiments and precision measurements on a trapped and laser cooled single ion of 88Sr+ which when probed on the narrow 5 s 2S1/2 - 4 d 2D5/2 transition at 445-THz (674 nm) provides a reference yielding an evaluated fractional inaccuracy of 2.3 × 10-17 and which significantly outperforms the current realization of the SI second. The extremely low systematic shifts obtained are a result of our ability to evaluate, control and in some instances cancel some of the main perturbations that the trapped ion experiences. The fractional uncertainty on the micromotion induced shifts of the trapped ion has been evaluated to better than 1 × 10-18. This is achieved by minimizing any spurious displacement of the ion from trap center using DC trim electrodes and operating the system at a ``magic'' trap frequency where there is anti-correlation between the micromotion induced second order Doppler and Stark shifts resulting in near complete cancellation of this form of perturbation. The electrical quadrupole shift seen in many trapped ion systems is reduced to the 10-19 level by averaging the measured shifts of several pairs of Zeeman components. As in many optical frequency references, the dominant source of uncertainty arises from the blackbody radiation shift. We have been able to reduce the uncertainties associated by this shift using a recent theoretical evaluation of the differential scalar polarizability of the reference transition together with experimental measurements of the trap heating behavior and modeling of the blackbody field at the ion location. The present measurements are performed with resolution of spectral features down to the 4 Hz level (1 part in 1014) together with continuous measurement periods exceeding a few days allowing the possibility for the device to be used as an optical atomic time standard. As part of the effort to link this ultra accurate standard with current time/frequency standards, an absolute frequency measurement of the

  4. Computers and Reference Service.

    ERIC Educational Resources Information Center

    Purcell, Royal

    1989-01-01

    Discusses the current status and potential for automated library reference services in the areas of community information systems, online catalogs, remote online reference services, and telephone reference services. Several models of the reference procedure which might be used in developing expert systems are examined. (19 references) (CLB)

  5. Reference Service Policy Statement.

    ERIC Educational Resources Information Center

    Young, William F.

    This reference service policy manual provides general guidelines to encourage reference service of the highest possible quality and to insure uniform practice. The policy refers only to reference service in the University Libraries and is intended for use in conjunction with other policies and procedures issued by the Reference Services Division.…

  6. 47 CFR 15.11 - Cross reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Cross reference. 15.11 Section 15.11 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES General § 15.11 Cross reference. The provisions of subparts A, H, I, J and K of part 2 apply to intentional and unintentional...

  7. 47 CFR 15.11 - Cross reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Cross reference. 15.11 Section 15.11 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES General § 15.11 Cross reference. The provisions of subparts A, H, I, J and K of part 2 apply to intentional and unintentional...

  8. 47 CFR 15.11 - Cross reference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Cross reference. 15.11 Section 15.11 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES General § 15.11 Cross reference. The provisions of subparts A, H, I, J and K of part 2 apply to intentional and unintentional...

  9. 47 CFR 15.11 - Cross reference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Cross reference. 15.11 Section 15.11 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES General § 15.11 Cross reference. The provisions of subparts A, H, I, J and K of part 2 apply to intentional and unintentional...

  10. 47 CFR 15.11 - Cross reference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Cross reference. 15.11 Section 15.11 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES General § 15.11 Cross reference. The provisions of subparts A, H, I, J and K of part 2 apply to intentional and unintentional...

  11. 47 CFR 15.705 - Cross reference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Cross reference. 15.705 Section 15.705 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Television Band Devices § 15.705 Cross reference. (a) The provisions of subparts A, B, and C of this part apply to TVBDs, except...

  12. 47 CFR 15.405 - Cross reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Cross reference. 15.405 Section 15.405 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed National Information Infrastructure Devices § 15.405 Cross reference. (a) The provisions of subparts A, B, and C of this part apply...

  13. 47 CFR 15.405 - Cross reference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Cross reference. 15.405 Section 15.405 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed National Information Infrastructure Devices § 15.405 Cross reference. (a) The provisions of subparts A, B, and C of this part apply...

  14. 47 CFR 15.405 - Cross reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Cross reference. 15.405 Section 15.405 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed National Information Infrastructure Devices § 15.405 Cross reference. (a) The provisions of subparts A, B, and C of this part apply...

  15. 47 CFR 15.405 - Cross reference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Cross reference. 15.405 Section 15.405 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed National Information Infrastructure Devices § 15.405 Cross reference. (a) The provisions of subparts A, B, and C of this part apply...

  16. 47 CFR 15.405 - Cross reference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Cross reference. 15.405 Section 15.405 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed National Information Infrastructure Devices § 15.405 Cross reference. (a) The provisions of subparts A, B, and C of this part apply...

  17. Concepts and characteristics of the ‘COST Reference Microplasma Jet’

    NASA Astrophysics Data System (ADS)

    Golda, J.; Held, J.; Redeker, B.; Konkowski, M.; Beijer, P.; Sobota, A.; Kroesen, G.; Braithwaite, N. St. J.; Reuter, S.; Turner, M. M.; Gans, T.; O'Connell, D.; Schulz-von der Gathen, V.

    2016-03-01

    Biomedical applications of non-equilibrium atmospheric pressure plasmas have attracted intense interest in the past few years. Many plasma sources of diverse design have been proposed for these applications, but the relationship between source characteristics and application performance is not well-understood, and indeed many sources are poorly characterized. This circumstance is an impediment to progress in application development. A reference source with well-understood and highly reproducible characteristics may be an important tool in this context. Researchers around the world should be able to compare the characteristics of their own sources and also their results with this device. In this paper, we describe such a reference source, developed from the simple and robust micro-scaled atmospheric pressure plasma jet (μ-APPJ) concept. This development occurred under the auspices of COST Action MP1101 ‘Biomedical Applications of Atmospheric Pressure Plasmas’. Gas contamination and power measurement are shown to be major causes of irreproducible results in earlier source designs. These problems are resolved in the reference source by refinement of the mechanical and electrical design and by specifying an operating protocol. These measures are shown to be absolutely necessary for reproducible operation. They include the integration of current and voltage probes into the jet. The usual combination of matching unit and power supply is replaced by an integrated LC power coupling circuit and a 5 W single frequency generator. The design specification and operating protocol for the reference source are being made freely available.

  18. Active low-frequency vertical vibration isolation system for precision measurements

    NASA Astrophysics Data System (ADS)

    Wu, Kang; Li, Gang; Hu, Hua; Wang, Lijun

    2016-06-01

    Low-frequency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise. Several types of active vibration isolation systems have been developed. However, few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility. An active low-frequency vertical vibration isolation system based on an earlier instrument, the Super Spring, is designed and implemented. The system, which is simple and compact, consists of two stages: a parallelogram-shaped linkage to ensure vertical motion, and a simple spring-mass system. The theoretical analysis of the vibration isolation system is presented, including terms erroneously ignored before. By carefully choosing the mechanical parameters according to the above analysis and using feedback control, the resonance frequency of the system is reduced from 2.3 to 0.03 Hz, a reduction by a factor of more than 75. The vibration isolation system is installed as an inertial reference in an absolute gravimeter, where it improved the scatter of the absolute gravity values by a factor of 5. The experimental results verifies the improved performance of the isolation system, making it particularly suitable for precision experiments. The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems. An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed, providing fundamental guidelines for vibration isolator design and assembling.

  19. Absolute Proper Motions of Nearby Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Olszewski, Edward

    1997-07-01

    We propose to measure precise absolute proper motions for four dwarf spheroidal satellites of the Milky Way using spectroscopically-confirmed background QSOs to define a zero- velocity reference frame. Two epochs separated by 2 yrs will yield systemic tangential velocities of UMi, Car, Scl, {and For} to +/- 78 kms {+/- 130 kms}. These are worst-case velocity precisions and they are likely to be 2-4* smaller. Our long-term goal is to reduce them by an additional factor of several by obtaining data over the lifetime of WFPC2. With 2-3 QSOs per galaxy, we will still be confident of our motions with only 2 epochs. We will test whether the halo contains a small number of massive streams containing several dwarf galaxies, or whether the individual halo dwarfs are traveling along independent orbits. HST is essential to achieving the high precisions needed to conclusively compare the projected orbital motions of the individual galaxies; even with our conservative uncertainties, we are competitive with the best ground-based efforts with only a 2 year baseline. We will also use our results to improve our estimate of the mass of the Galaxy interior to 100 kpc. We believe that our project will show that astrometry has been a much ignored resource and power of HST. If HST performs as well as we suspect it can, it will be possible to measure the internal motions of stars in the dwarf spheroidals and the proper motions of all of the Local Group members over a timespan of 5 - 10 years.

  20. Embedded north-seeker for automatic absolute magnetic DI measurements

    NASA Astrophysics Data System (ADS)

    Gonsette, Alexandre; Rasson, Jean

    2014-05-01

    In magnetic observatory Earth magnetic field is recorded with a resolution of 0.1nT for 1min sampling (new standards impose 1pT for 1s sampling). The method universally adopted for measuring it is a combination of three instruments. Vectorial magnetometer (variometer) records variations of the three components around a reference value or a baseline. A proton or an overhauser magnetometer is an absolute instrument able to measure the modulus of the field and used to determine the F component baseline of the variometer. The declination and inclination baselines require a manual procedure to be computed. An operator manipulates a non-magnetic theodolite (also called a DIFlux) to measure the D and I angles in different configurations with a resolution of a few arcsec. The AutoDIF is a non-magnetic automatic DIFlux using the same protocol as the manual procedure. The declination defined according to the true north is determined by means of a target pointing system. Even if the technique is fast and accurate, it becomes problematic in case of unmanned deployment. In particular the area between the target and the DIFlux is out of control. Snow storm, fog, vegetation or condensation on windows are examples of perturbation preventing for finding the target. It is obvious in case of (future) seafloor observatories. A FOG based north-seeker has been implemented and mounted on the AutoDIF. The first results using a low cost gyro don't meet the Intermagnet specifications yet but are however hopeful. A 0.1° standard deviation has been reached and statistically reduced to 0.01° after less than two days in laboratory. The magnetic disturbance of the sensor is taken into account and compensated by the measurement protocol.

  1. Preliminary OARE absolute acceleration measurements on STS-50

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James

    1993-01-01

    On-orbit Orbital Acceleration Research Experiment (OARE) data on STS-50 was examined in detail during a 2-day time period. Absolute acceleration levels were derived at the OARE location, the orbiter center-of-gravity, and at the STS-50 spacelab Crystal Growth Facility. The tri-axial OARE raw acceleration measurements (i.e., telemetered data) during the interval were filtered using a sliding trimmed mean filter in order to remove large acceleration spikes (e.g., thrusters) and reduce the noise. Twelve OARE measured biases in each acceleration channel during the 2-day interval were analyzed and applied to the filtered data. Similarly, the in situ measured x-axis scale factors in the sensor's most sensitive range were also analyzed and applied to the data. Due to equipment problem(s) on this flight, both y- and z- axis sensitive range scale factors were determined in a separate process (using the OARE maneuver data) and subsequently applied to the data. All known significant low-frequency corrections at the OARE location (i.e., both vertical and horizontal gravity-gradient, and rotational effects) were removed from the filtered data in order to produce the acceleration components at the orbiter's center-of-gravity, which are the aerodynamic signals along each body axes. Results indicate that there is a force of unknown origin being applied to the Orbiter in addition to the aerodynamic forces. The OARE instrument and all known gravitational and electromagnetic forces were reexamined, but none produce the observed effect. Thus, it is tentatively concluded that the Orbiter is creating the environment observed.

  2. Preliminary OARE absolute acceleration measurements on STS-50

    NASA Astrophysics Data System (ADS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James

    1993-02-01

    On-orbit Orbital Acceleration Research Experiment (OARE) data on STS-50 was examined in detail during a 2-day time period. Absolute acceleration levels were derived at the OARE location, the orbiter center-of-gravity, and at the STS-50 spacelab Crystal Growth Facility. The tri-axial OARE raw acceleration measurements (i.e., telemetered data) during the interval were filtered using a sliding trimmed mean filter in order to remove large acceleration spikes (e.g., thrusters) and reduce the noise. Twelve OARE measured biases in each acceleration channel during the 2-day interval were analyzed and applied to the filtered data. Similarly, the in situ measured x-axis scale factors in the sensor's most sensitive range were also analyzed and applied to the data. Due to equipment problem(s) on this flight, both y- and z- axis sensitive range scale factors were determined in a separate process (using the OARE maneuver data) and subsequently applied to the data. All known significant low-frequency corrections at the OARE location (i.e., both vertical and horizontal gravity-gradient, and rotational effects) were removed from the filtered data in order to produce the acceleration components at the orbiter's center-of-gravity, which are the aerodynamic signals along each body axes. Results indicate that there is a force of unknown origin being applied to the Orbiter in addition to the aerodynamic forces. The OARE instrument and all known gravitational and electromagnetic forces were reexamined, but none produce the observed effect. Thus, it is tentatively concluded that the Orbiter is creating the environment observed.

  3. A New Instantaneous Frequency Measure Based on The Stockwell Transform

    NASA Astrophysics Data System (ADS)

    yedlin, M. J.; Ben-Horrin, Y.; Fraser, J. D.

    2011-12-01

    We propose the use of a new transform, the Stockwell transform[1], as a means of creating time-frequency maps and applying them to distinguish blasts from earthquakes. This new transform, the Stockwell transform can be considered as a variant of the continuous wavelet transform, that preserves the absolute phase.The Stockwell transform employs a complex Morlet mother wavelet. The novelty of this transform lies in its resolution properties. High frequencies in the candidate signal are well-resolved in time but poorly resolved in frequency, while the converse is true for low frequency signal components. The goal of this research is to obtain the instantaneous frequency as a function of time for both the earthquakes and the blasts. Two methods will be compared. In the first method, we will compute the analytic signal, the envelope and the instantaneous phase as a function of time[2]. The instantaneous phase derivative will yield the instantaneous angular frequency. The second method will be based on time-frequency analysis using the Stockwell transform. The Stockwell transform will be computed in non-redundant fashion using a dyadic representation[3]. For each time-point, the frequency centroid will be computed -- a representation for the most likely frequency at that time. A detailed comparison will be presented for both approaches to the computation of the instantaneous frequency. An advantage of the Stockwell approach is that no differentiation is applied. The Hilbert transform method can be less sensitive to edge effects. The goal of this research is to see if the new Stockwell-based method could be used as a discriminant between earthquakes and blasts. References [1] Stockwell, R.G., Mansinha, L. and Lowe, R.P. "Localization of the complex spectrum: the S transform", IEEE Trans. Signal Processing, vol.44, no.4, pp.998-1001, (1996). [2]Taner, M.T., Koehler, F. "Complex seismic trace analysis", Geophysics, vol. 44, Issue 6, pp. 1041-1063 (1979). [3] Brown, R

  4. Mini-implants and miniplates generate sub-absolute and absolute anchorage

    PubMed Central

    Consolaro, Alberto

    2014-01-01

    The functional demand imposed on bone promotes changes in the spatial properties of osteocytes as well as in their extensions uniformly distributed throughout the mineralized surface. Once spatial deformation is established, osteocytes create the need for structural adaptations that result in bone formation and resorption that happen to meet the functional demands. The endosteum and the periosteum are the effectors responsible for stimulating adaptive osteocytes in the inner and outer surfaces.Changes in shape, volume and position of the jaws as a result of skeletal correction of the maxilla and mandible require anchorage to allow bone remodeling to redefine morphology, esthetics and function as a result of spatial deformation conducted by orthodontic appliances. Examining the degree of changes in shape, volume and structural relationship of areas where mini-implants and miniplates are placed allows us to classify mini-implants as devices of subabsolute anchorage and miniplates as devices of absolute anchorage. PMID:25162561

  5. Absolute brightness temperature measurements at 2.1-mm wavelength

    NASA Technical Reports Server (NTRS)

    Ulich, B. L.

    1974-01-01

    Absolute measurements of the brightness temperatures of the Sun, new Moon, Venus, Mars, Jupiter, Saturn, and Uranus, and of the flux density of DR21 at 2.1-mm wavelength are reported. Relative measurements at 3.5-mm wavelength are also preented which resolve the absolute calibration discrepancy between The University of Texas 16-ft radio telescope and the Aerospace Corporation 15-ft antenna. The use of the bright planets and DR21 as absolute calibration sources at millimeter wavelengths is discussed in the light of recent observations.

  6. Direct comparisons between absolute and relative geomagnetic paleointensities: Absolute calibration of a relative paleointensity stack

    NASA Astrophysics Data System (ADS)

    Mochizuki, N.; Yamamoto, Y.; Hatakeyama, T.; Shibuya, H.

    2013-12-01

    Absolute geomagnetic paleointensities (APIs) have been estimated from igneous rocks, while relative paleomagnetic intensities (RPIs) have been reported from sediment cores. These two datasets have been treated separately, as correlations between APIs and RPIs are difficult on account of age uncertainties. High-resolution RPI stacks have been constructed from globally distributed sediment cores with high sedimentation rates. Previous studies often assumed that the RPI stacks have a linear relationship with geomagnetic axial dipole moments, and calibrated the RPI values to API values. However, the assumption of a linear relationship between APIs and RPIs has not been evaluated. Also, a quantitative calibration method for the RPI is lacking. We present a procedure for directly comparing API and RPI stacks, thus allowing reliable calibrations of RPIs. Direct comparisons between APIs and RPIs were conducted with virtually no associated age errors using both tephrochronologic correlations and RPI minima. Using the stratigraphic positions of tephra layers in oxygen isotope stratigraphic records, we directly compared the RPIs and APIs reported from welded tuffs contemporaneously extruded with the tephra layers. In addition, RPI minima during geomagnetic reversals and excursions were compared with APIs corresponding to the reversals and excursions. The comparison of APIs and RPIs at these exact points allowed a reliable calibration of the RPI values. We applied this direct comparison procedure to the global RPI stack PISO-1500. For six independent calibration points, virtual axial dipole moments (VADMs) from the corresponding APIs and RPIs of the PISO-1500 stack showed a near-linear relationship. On the basis of the linear relationship, RPIs of the stack were successfully calibrated to the VADMs. The direct comparison procedure provides an absolute calibration method that will contribute to the recovery of temporal variations and distributions of geomagnetic axial dipole

  7. Frequency spectrum analyzer with phase-lock

    DOEpatents

    Boland, Thomas J.

    1984-01-01

    A frequency-spectrum analyzer with phase-lock for analyzing the frequency and amplitude of an input signal is comprised of a voltage controlled oscillator (VCO) which is driven by a ramp generator, and a phase error detector circuit. The phase error detector circuit measures the difference in phase between the VCO and the input signal, and drives the VCO locking it in phase momentarily with the input signal. The input signal and the output of the VCO are fed into a correlator which transfers the input signal to a frequency domain, while providing an accurate absolute amplitude measurement of each frequency component of the input signal.

  8. Interference signal frequency tracking for extracting phase in frequency scanning interferometry using an extended Kalman filter.

    PubMed

    Liu, Zhe; Liu, Zhigang; Deng, Zhongwen; Tao, Long

    2016-04-10

    Optical frequency scanning nonlinearity seriously affects interference signal phase extraction accuracy in frequency-scanning interferometry systems using external cavity diode lasers. In this paper, an interference signal frequency tracking method using an extended Kalman filter is proposed. The interferometric phase is obtained by integrating the estimated instantaneous frequency over time. The method is independent of the laser's optical frequency scanning nonlinearity. The method is validated through simulations and experiments. The experimental results demonstrate that the relative phase extraction error in the fractional part is <1.5% with the proposed method and the standard deviation of absolute distance measurement is <2.4  μm. PMID:27139864

  9. Simple sweep frequency generator

    NASA Astrophysics Data System (ADS)

    Yegorov, I.

    1985-01-01

    A sweep frequency generator is described whose center frequency can be varied from 10 kHz to 50 MHz, with seven 1 to 3 and 3 to 10 scales covering the 10 kHz to 30 MHz range and one 3 to 5 scale for the 30 to 50 MHz range. It consists of a tunable pulse generator with output voltage attenuator, a diode mixer for calibration, and a sawtooth voltage generator as a source of frequency deviation. The pulse generator is a multivibrator with two emitter coupled transistors and two diodes in the collector circuit of one. The first diode extends the tuning range and increases the frequency deviation, the second diode provides the necessary base bias to the other transistor. The pulse repetition rate is modulated either directly by the sweep voltage of the calibrating oscilloscope, this voltage being applied to the base of the transistor with the two diodes in its collector circuit through an additional attenuator or a special emitter follower, or by the separate sawtooth voltage generator. The latter is a conventional two transistor multivibrator and produces signals at any constant frequency within the 40 to 60 Hz range. The mixer receives unmodulated signals from a reference frequency source and produces different frequency signals which are sent through an RCR-filter to a calibrating oscilloscope.

  10. Floquet representation of absolute phase and pulse-shape effects on laser-driven molecular photodissociation

    NASA Astrophysics Data System (ADS)

    Nguyen-Dang, T. T.; Lefebvre, C.; Abou-Rachid, H.; Atabek, O.

    2005-02-01

    Using a recent reformulation of Floquet theory [S. GuérinH. R. Jauslin, Adv. Chem. Phys.12520031], we discuss the dynamical role of the absolute phase in the photofragmentation of molecules subjected to laser pulses. We show how the dependence of Floquet states on an absolute phase is related to the complexity of the dressed molecular scheme and to the multiphoton character of the molecular dynamics. The general theory is applied to the study of the photodissociation of H+2 in a 400-nm periodic laser pulse, repeated with a frequency lying in the IR. The dependence of the dynamics on the phase of the pulse envelope is highlighted through an effect previously called dynamical dissociation quenching (DDQ) [F. Châteauneufet al., J. Chem. Phys.10819983974] and through photofragment kinetic energy spectra. These spectra allow us to map out the Floquet content of the dynamics—i.e., its multiphoton character both with respect to the carrier-wave frequency, which gives rise to the usual bond-softening mechanism, and with respect to the pulse modulation frequency in the IR. The synchronization of this pulse modulation with the wave packet motion governs the DDQ effect in this uv-visible pulsed excitation case.

  11. Reach for Reference. Four Recent Reference Books

    ERIC Educational Resources Information Center

    Safford, Barbara Ripp

    2004-01-01

    This article provides descriptions of four new science and technology encyclopedias that are appropriate for inclusion in upper elementary and/or middle school reference collections. "The Macmillan Encyclopedia of Weather" (Stern, Macmillan Reference/Gale), a one-volume encyclopedia for upper elementary and middle level students, is a…

  12. Absolute calibration of sniffer probes on Wendelstein 7-X.

    PubMed

    Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured. PMID:27587121

  13. Absolute Value Boundedness, Operator Decomposition, and Stochastic Media and Equations

    NASA Technical Reports Server (NTRS)

    Adomian, G.; Miao, C. C.

    1973-01-01

    The research accomplished during this period is reported. Published abstracts and technical reports are listed. Articles presented include: boundedness of absolute values of generalized Fourier coefficients, propagation in stochastic media, and stationary conditions for stochastic differential equations.

  14. The conditions of absolute summability of multiple trigonometric series

    NASA Astrophysics Data System (ADS)

    Bitimkhan, Samat; Akishev, Gabdolla

    2015-09-01

    In this work necessary and sufficient conditions of absolute summability of multiple trigonometric Fourier series of functions from anisotropic spaces of Lebesque are found in terms of its best approximation, the module of smoothness and the mixed smoothness module.

  15. Absolute calibration of sniffer probes on Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  16. Absolute and Convective Instability of a Liquid Jet in Microgravity

    NASA Technical Reports Server (NTRS)

    Lin, Sung P.; Vihinen, I.; Honohan, A.; Hudman, Michael D.

    1996-01-01

    The transition from convective to absolute instability is observed in the 2.2 second drop tower of the NASA Lewis Research Center. In convective instability the disturbance grows spatially as it is convected downstream. In absolute instability the disturbance propagates both downstream and upstream, and manifests itself as an expanding sphere. The transition Reynolds numbers are determined for two different Weber numbers by use of Glycerin and a Silicone oil. Preliminary comparisons with theory are made.

  17. Absolute biphoton meter of the quantum efficiency of photomultipliers

    NASA Astrophysics Data System (ADS)

    Ginzburg, V. M.; Keratishvili, N. G.; Korzhenevich, E. L.; Lunev, G. V.; Sapritskii, V. I.

    1992-07-01

    An biphoton absolute meter of photomultiplier quantum efficiency is presented which is based on spontaneous parametric down-conversion. Calculation and experiment results were obtained which made it possible to choose the parameters of the setup that guarantee a linear dependence of wavelength on the Z coordinate (along the axicon axis). Results of a series of absolute measurements of the quantum efficiency of a specific photomultiplier (FEU-136) are presented.

  18. Absolute/convective instability of planar viscoelastic jets

    NASA Astrophysics Data System (ADS)

    Ray, Prasun K.; Zaki, Tamer A.

    2015-01-01

    Spatiotemporal linear stability analysis is used to investigate the onset of local absolute instability in planar viscoelastic jets. The influence of viscoelasticity in dilute polymer solutions is modeled with the FENE-P constitutive equation which requires the specification of a non-dimensional polymer relaxation time (the Weissenberg number, We), the maximum polymer extensibility, L, and the ratio of solvent and solution viscosities, β. A two-parameter family of velocity profiles is used as the base state with the parameter, S, controlling the amount of co- or counter-flow while N-1 sets the thickness of the jet shear layer. We examine how the variation of these fluid and flow parameters affects the minimum value of S at which the flow becomes locally absolutely unstable. Initially setting the Reynolds number to Re = 500, we find that the first varicose jet-column mode dictates the presence of absolute instability, and increasing the Weissenberg number produces important changes in the nature of the instability. The region of absolute instability shifts towards thin shear layers, and the amount of back-flow needed for absolute instability decreases (i.e., the influence of viscoelasticity is destabilizing). Additionally, when We is sufficiently large and N-1 is sufficiently small, single-stream jets become absolutely unstable. Numerical experiments with approximate equations show that both the polymer and solvent contributions to the stress become destabilizing when the scaled shear rate, η = /W e dU¯1/dx 2L ( /d U ¯ 1 d x 2 is the base-state velocity gradient), is sufficiently large. These qualitative trends are largely unchanged when the Reynolds number is reduced; however, the relative importance of the destabilizing stresses increases tangibly. Consequently, absolute instability is substantially enhanced, and single-stream jets become absolutely unstable over a sizable portion of the parameter space.

  19. Heat capacity and absolute entropy of iron phosphides

    SciTech Connect

    Dobrokhotova, Z.V.; Zaitsev, A.I.; Litvina, A.D.

    1994-09-01

    There is little or no data on the thermodynamic properties of iron phosphides despite their importance for several areas of science and technology. The information available is of a qualitative character and is based on assessments of the heat capacity and absolute entropy. In the present work, we measured the heat capacity over the temperature range of 113-873 K using a differential scanning calorimeter (DSC) and calculated the absolute entropy.

  20. Fundamentals of Reference

    ERIC Educational Resources Information Center

    Mulac, Carolyn M.

    2012-01-01

    The all-in-one "Reference reference" you've been waiting for, this invaluable book offers a concise introduction to reference sources and services for a variety of readers, from library staff members who are asked to work in the reference department to managers and others who wish to familiarize themselves with this important area of…