Science.gov

Sample records for absolute frequency stabilization

  1. Enhanced Lamb dip for absolute laser frequency stabilization

    NASA Technical Reports Server (NTRS)

    Siegman, A. E.; Byer, R. L.; Wang, S. C.

    1972-01-01

    Enhanced Lamb dip width is 5 MHz and total depth is 10 percent of peak power. Present configuration is useful as frequency standard in near infrared. Technique extends to other lasers, for which low pressure narrow linewidth gain tubes can be constructed.

  2. Absolute frequency stabilization of an injection-seeded optical parametric oscillator

    SciTech Connect

    Plusquellic, D.F.; Votava, O.; Nesbitt, D.J.

    1996-03-01

    A method is described that provides absolute frequency stabilization and calibration of the signal and idler waves generated by an injection-seeded optical parametric oscillator (OPO). The method makes use of a He{endash}Ne stabilized transfer cavity (TC) to control the frequencies of the cw sources used to seed both the pump laser and OPO cavity. The TC serves as a stable calibration source for the signal and idler waves by providing marker fringes as the seed laser is scanned. Additionally, an acoustic-optic modulator (AOM) is used to shift the OPO seed laser{close_quote}s frequency before locking it onto the TC. The sidebands of the AOM are tunable over more than one free spectral range of the TC, thereby permitting stabilization of the signal and idler waves at any frequency. A {plus_minus}25-MHz residual error in the absolute frequency stabilities of the pump, signal, and idler waves is experimentally demonstrated, which is roughly 30{percent} of the 160-MHz near-transform-limited linewidths of the signal and idler pulses. {copyright} {ital 1996 Optical Society of America.}

  3. Monolithically integrated absolute frequency comb laser system

    SciTech Connect

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  4. Absolute distance measurement by multi-heterodyne interferometry using a frequency comb and a cavity-stabilized tunable laser.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Balling, Petr; Qu, Xinghua

    2016-05-20

    In this paper, we develop a multi-heterodyne system capable of absolute distance measurement using a frequency comb and a tunable diode laser locked to a Fabry-Perot cavity. In a series of subsequent measurements, numerous beat components can be obtained by downconverting the optical frequency into the RF region with multi-heterodyne interferometry. The distances can be measured via the mode phases with a series of synthetic wavelengths. The comparison with the reference interferometer shows an agreement within 1.5 μm for the averages of five measurements and 2.5 μm for the single measurement, which is at the 10-8 relative precision level.

  5. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, Henry D.; Fugitt, Jock A.; Howard, Donald R.

    1984-01-01

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  6. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1984-12-25

    Disclosed is a long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator. 5 figs.

  7. C2H2 absolutely optical frequency-stabilized and 40 GHz repetition-rate-stabilized, regeneratively mode-locked picosecond erbium fiber laser at 1.53 microm.

    PubMed

    Nakazawa, Masataka; Kasai, Keisuke; Yoshida, Masato

    2008-11-15

    We have succeeded in the simultaneous stabilization of the optical frequency and repetition rate of a regeneratively mode-locked picosecond erbium-doped fiber ring laser. The optical frequency was locked to the molecular absorption of C2H2 in the 1.5 microm band, and the repetition rate was stabilized to a 40 GHz synthesizer by using a microwave phase-locked loop. The optical frequency stability of the pulse train reached 2x10(-11) for tau=10-100 s. The key to success is the independent control of the repetition rate without disturbing the optical cavity condition.

  8. Absolute Stability Analysis of a Phase Plane Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol

    2010-01-01

    Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.

  9. Absolute Rate Theories of Epigenetic Stability

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.; Onuchic, Jose N.; Wolynes, Peter G.

    2006-03-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape, and the transmission factor, depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic and strictly adiabatic regimes, characterized by the relative values of those input rates.

  10. Absolute rate theories of epigenetic stability

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.; Onuchic, José N.; Wolynes, Peter G.

    2005-12-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape and the transmission factor depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic, and strictly adiabatic regimes, characterized by the relative values of those input rates. rate theory | stochastic gene expression | gene switches

  11. Femtosecond frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor

    SciTech Connect

    Stalnaker, Jason E.; Mbele, Vela; Gerginov, Vladislav; Fortier, Tara M.; Diddams, Scott A.; Hollberg, Leo; Tanner, Carol E.

    2010-04-15

    We report measurements of absolute transition frequencies and hyperfine coupling constants for the 8S{sub 1/2}, 9S{sub 1/2}, 7D{sub 3/2}, and 7D{sub 5/2} states in {sup 133}Cs vapor. The stepwise excitation through either the 6P{sub 1/2} or 6P{sub 3/2} intermediate state is performed directly with broadband laser light from a stabilized femtosecond laser optical-frequency comb. The laser beam is split, counterpropagated, and focused into a room-temperature Cs vapor cell. The repetition rate of the frequency comb is scanned and we detect the fluorescence on the 7P{sub 1/2,3/2{yields}}6S{sub 1/2} branches of the decay of the excited states. The excitations to the different states are isolated by the introduction of narrow-bandwidth interference filters in the laser beam paths. Using a nonlinear least-squares method we find measurements of transition frequencies and hyperfine coupling constants that are in agreement with other recent measurements for the 8S state and provide improvement by 2 orders of magnitude over previously published results for the 9S and 7D states.

  12. Robust control design with real parameter uncertainty using absolute stability theory. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Hall, Steven R.

    1993-01-01

    The purpose of this thesis is to investigate an extension of mu theory for robust control design by considering systems with linear and nonlinear real parameter uncertainties. In the process, explicit connections are made between mixed mu and absolute stability theory. In particular, it is shown that the upper bounds for mixed mu are a generalization of results from absolute stability theory. Both state space and frequency domain criteria are developed for several nonlinearities and stability multipliers using the wealth of literature on absolute stability theory and the concepts of supply rates and storage functions. The state space conditions are expressed in terms of Riccati equations and parameter-dependent Lyapunov functions. For controller synthesis, these stability conditions are used to form an overbound of the H2 performance objective. A geometric interpretation of the equivalent frequency domain criteria in terms of off-axis circles clarifies the important role of the multiplier and shows that both the magnitude and phase of the uncertainty are considered. A numerical algorithm is developed to design robust controllers that minimize the bound on an H2 cost functional and satisfy an analysis test based on the Popov stability multiplier. The controller and multiplier coefficients are optimized simultaneously, which avoids the iteration and curve-fitting procedures required by the D-K procedure of mu synthesis. Several benchmark problems and experiments on the Middeck Active Control Experiment at M.I.T. demonstrate that these controllers achieve good robust performance and guaranteed stability bounds.

  13. Stabilized radio-frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1982-09-29

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  14. The assessment of protective behavioral strategies: comparing the absolute frequency and contingent frequency response scales.

    PubMed

    Kite, Benjamin A; Pearson, Matthew R; Henson, James M

    2013-12-01

    The purpose of the present studies was to examine the effects of response scale on the observed relationships between protective behavioral strategies (PBS) measures and alcohol-related outcomes. We reasoned that an "absolute frequency" scale (stem: "how many times …"; response scale: 0 times to 11+ times) conflates the frequency of using PBS with the frequency of consuming alcohol; thus, we hypothesized that the use of an absolute frequency response scale would result in positive relationships between types of PBS and alcohol-related outcomes. Alternatively, a "contingent frequency" scale (stem: "When drinking … how often …"; response scale: never to always) does not conflate frequency of alcohol use with use of PBS; therefore, we hypothesized that use of a contingent frequency scale would result in negative relationships between use of PBS and alcohol-related outcomes. Two published measures of PBS were used across studies: the Protective Behavioral Strategies Survey (PBSS) and the Strategy Questionnaire (SQ). Across three studies, we demonstrate that when measured using a contingent frequency response scale, PBS measures relate negatively to alcohol-related outcomes in a theoretically consistent manner; however, when PBS measures were measured on an absolute frequency response scale, they were nonsignificantly or positively related to alcohol-related outcomes. We discuss the implications of these findings for the assessment of PBS.

  15. Subnanometer absolute displacement measurement using a frequency comb referenced dual resonance tracking Fabry-Perot interferometer.

    PubMed

    Zhu, Minhao; Wei, Haoyun; Zhao, Shijie; Wu, Xuejian; Li, Yan

    2015-05-10

    Fabry-Perot (F-P) interferometry is a traceable high-resolution method for displacement metrology that has no nonlinearity. Compared with the single resonance tracking F-P interferometry, the dual resonance tracking (DRT) F-P interferometer system is able to realize tens of millimeters measurement range while maintaining the intrinsic high resolution. A DRT F-P system is thus developed for absolute displacement measurement in metrology applications. Two external cavity diode lasers (ECDLs) are simultaneously locked to two resonances of a high-finesse F-P cavity using the Pound-Drever-Hall locking scheme. The absolute optical frequencies of the locked ECDLs are measured using a reference diode laser, with the frequency stabilized and controlled by an optical frequency comb. The absolute cavity resonance order numbers are investigated. The measurement range is experimentally tested to achieve 20 mm, while the resolution reaches ~10 pm level, mainly limited by the mechanical stability of the F-P cavity. Compared with the measurement results from a self-developed displacement-angle heterodyne interferometer, the displacement residuals are within 10 nm in the range of 20 mm. This high-resolution interferometer may become a candidate for length metrology such as in Watt balance or Joule balance projects.

  16. Laser frequency stabilization for LISA

    NASA Technical Reports Server (NTRS)

    Mueller, Guido; McNamara, Paul; Thorpe, Ira; Camp, Jordan

    2005-01-01

    The requirement on laser frequency noise in the Laser Interferometer Space Antenna (LISA) depends on the velocity and our knowledge of the position of each spacecraft of the interferometer. Currently it is assumed that the lasers must have a pre-stabilized frequency stability of 30Hz/square root of Hz over LISA'S most sensitive frequency band (3 mHz - 30 mHz). The intrinsic frequency stability of even the most stable com- mercial lasers is several orders of magnitude above this level. Therefore it is necessary to stabilize the laser frequency to an ultra-stable frequency reference which meets the LISA requirements. The baseline frequency reference for the LISA lasers are high finesse optical cavities based on ULE spacers. We measured the stability of two ULE spacer cavities with respect to each other. Our current best results show a noise floor at, or below, 30 Hz/square root of Hz above 3 mHz. In this report we describe the experimental layout of the entire experiment and discuss the limiting noise sources.

  17. Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb.

    PubMed

    Wu, Xuejian; Wei, Haoyun; Zhang, Hongyuan; Ren, Libing; Li, Yan; Zhang, Jitao

    2013-04-01

    We present a frequency-sweeping heterodyne interferometer to measure an absolute distance based on a frequency-tunable diode laser calibrated by an optical frequency comb (OFC) and an interferometric phase measurement system. The laser frequency-sweeping process is calibrated by the OFC within a range of 200 GHz and an accuracy of 1.3 kHz, which brings about a precise temporal synthetic wavelength of 1.499 mm. The interferometric phase measurement system consisting of the analog signal processing circuit and the digital phase meter achieves a phase difference resolution better than 0.1 deg. As the laser frequency is sweeping, the absolute distance can be determined by measuring the phase difference variation of the interference signals. In the laboratory condition, our experimental scheme realizes micrometer accuracy over meter distance.

  18. FREQUENCY STABILIZING SYSTEM

    DOEpatents

    Kerns, Q.A.; Anderson, O.A.

    1960-05-01

    An electronic control circuit is described in which a first signal frequency is held in synchronization with a second varying reference signal. The circuit receives the first and second signals as inputs and produces an output signal having an amplitude dependent upon rate of phase change between the two signals and a polarity dependent on direction of the phase change. The output may thus serve as a correction signal for maintaining the desired synchronization. The response of the system is not dependent on relative phase angle between the two compared signals. By having practically no capacitance in the circuit, there is minimum delay between occurrence of a phase shift and a response in the output signal and therefore very fast synchronization is effected.

  19. Landsat-7 ETM+ radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Barker, J.L.; Barsi, J.A.; Kaita, E.; Thome, K.J.; Helder, D.L.; Palluconi, Frank Don; Schott, J.R.; Scaramuzza, P.; ,

    2002-01-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than ??1%, reflective band absolute calibration to better than ??5%, and thermal band absolute calibration to better than ??0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m 2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of ??0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  20. Cavity ring-down spectroscopy of Doppler-broadened absorption line with sub-MHz absolute frequency accuracy.

    PubMed

    Cheng, C-F; Sun, Y R; Pan, H; Lu, Y; Li, X-F; Wang, J; Liu, A-W; Hu, S-M

    2012-04-23

    A continuous-wave cavity ring-down spectrometer has been built for precise determination of absolute frequencies of Doppler-broadened absorption lines. Using a thermo-stabilized Fabry-Pérot interferometer and Rb frequency references at the 780 nm and 795 nm, 0.1 - 0.6 MHz absolute frequency accuracy has been achieved in the 775-800 nm region. A water absorption line at 12579 cm(-1) is studied to test the performance of the spectrometer. The line position at zero-pressure limit is determined with an uncertainty of 0.3 MHz (relative accuracy of 0.8 × 10(-9)).

  1. DSS 13 frequency stability tests

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.; Franco, M. M.

    1987-01-01

    In a previous article, the results of frequency stability tests at DSS 13 were presented in table form for tau = 1000 s for the test period May 1985 through March 1986. This article is a continuation of that initial report and presents specially selected Allan sigma (square root of variance) plots of each of the subsystem test previously reported. An additional result obtained from tests performed during July 1986 was included for completeness. The Allan sigma plots are useful in that frequency stability information is not only given for tau = 1000 s, but for tau values in the regions of 1, 100, 500, and 2000 s as well.

  2. Space interferometry application of laser frequency stabilization with molecular iodine.

    PubMed

    Leonhardt, Volker; Camp, Jordan B

    2006-06-10

    A number of planned space interferometry missions, including the Laser Interferometer Space Antenna (LISA) gravitational wave detector, require a laser system with high-frequency stability over long time scales. A 1064 nm wavelength nonplanar ring oscillator (NPRO) laser stabilized to a resonant transition in molecular iodine is suitable for these missions, providing high-frequency stability at an absolute reference frequency. The iodine stabilized laser also offers low sensitivity to temperature and alignment fluctuations and allows frequency tuning. We have evaluated the noise performance of a NPRO laser stabilized to iodine using frequency modulation spectroscopy and have found an Allan standard deviation of 10(-14) over 100 s. Simplified optical configurations and the radiation hardness of the frequency-doubling crystals have also been investigated.

  3. 47 CFR 24.135 - Frequency stability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Frequency stability. 24.135 Section 24.135... SERVICES Narrowband PCS § 24.135 Frequency stability. (a) The frequency stability of the transmitter shall be maintained within ±0.0001 percent (±1 ppm) of the center frequency over a temperature variation...

  4. 47 CFR 24.135 - Frequency stability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Frequency stability. 24.135 Section 24.135... SERVICES Narrowband PCS § 24.135 Frequency stability. (a) The frequency stability of the transmitter shall be maintained within ±0.0001 percent (±1 ppm) of the center frequency over a temperature variation...

  5. 47 CFR 24.235 - Frequency stability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Frequency stability. 24.235 Section 24.235... SERVICES Broadband PCS § 24.235 Frequency stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block....

  6. 47 CFR 24.135 - Frequency stability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Frequency stability. 24.135 Section 24.135... SERVICES Narrowband PCS § 24.135 Frequency stability. (a) The frequency stability of the transmitter shall be maintained within ±0.0001 percent (±1 ppm) of the center frequency over a temperature variation...

  7. 47 CFR 24.135 - Frequency stability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Frequency stability. 24.135 Section 24.135... SERVICES Narrowband PCS § 24.135 Frequency stability. (a) The frequency stability of the transmitter shall be maintained within ±0.0001 percent (±1 ppm) of the center frequency over a temperature variation...

  8. 47 CFR 24.235 - Frequency stability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Frequency stability. 24.235 Section 24.235... SERVICES Broadband PCS § 24.235 Frequency stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block....

  9. 47 CFR 24.235 - Frequency stability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Frequency stability. 24.235 Section 24.235... SERVICES Broadband PCS § 24.235 Frequency stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block....

  10. 47 CFR 24.235 - Frequency stability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Frequency stability. 24.235 Section 24.235... SERVICES Broadband PCS § 24.235 Frequency stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block....

  11. 47 CFR 24.135 - Frequency stability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Frequency stability. 24.135 Section 24.135... SERVICES Narrowband PCS § 24.135 Frequency stability. (a) The frequency stability of the transmitter shall be maintained within ±0.0001 percent (±1 ppm) of the center frequency over a temperature variation...

  12. 47 CFR 24.235 - Frequency stability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Frequency stability. 24.235 Section 24.235... SERVICES Broadband PCS § 24.235 Frequency stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block....

  13. Single-track absolute position encoding method based on spatial frequency of stripes

    NASA Astrophysics Data System (ADS)

    Xiang, Xiansong; Lu, Yancong; Wei, Chunlong; Zhou, Changhe

    2014-11-01

    A new method of single-track absolute position encoding based on spatial frequency of stripes is proposed. Instead of using pseudorandom-sequence arranged stripes as in conventional situations, this kind of encoding method stores the location information in the frequency space of the stripes, which means the spatial frequency of stripes varies with position and indicates position. This encoding method has a strong fault-tolerant capability with single-stripe detecting errors. The method can be applied to absolute linear encoders, absolute photoelectric angle encoders or two-dimensional absolute linear encoders. The measuring apparatus includes a CCD image sensor and a microscope system, and the method of decoding this frequency code is based on FFT algorithm. This method should be highly interesting for practical applications as an absolute position encoding method.

  14. 47 CFR 27.54 - Frequency stability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Frequency stability. 27.54 Section 27.54 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.54 Frequency stability. The frequency stability shall...

  15. 47 CFR 22.863 - Frequency stability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Frequency stability. 22.863 Section 22.863...-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.863 Frequency stability. The frequency stability of equipment used under this subpart shall be sufficient to ensure that,...

  16. 47 CFR 27.54 - Frequency stability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Frequency stability. 27.54 Section 27.54 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.54 Frequency stability. The frequency stability shall...

  17. 47 CFR 22.863 - Frequency stability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Frequency stability. 22.863 Section 22.863...-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.863 Frequency stability. The frequency stability of equipment used under this subpart shall be sufficient to ensure that,...

  18. 47 CFR 22.863 - Frequency stability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Frequency stability. 22.863 Section 22.863...-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.863 Frequency stability. The frequency stability of equipment used under this subpart shall be sufficient to ensure that,...

  19. 47 CFR 27.54 - Frequency stability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Frequency stability. 27.54 Section 27.54 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.54 Frequency stability. The frequency stability shall...

  20. 47 CFR 22.863 - Frequency stability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Frequency stability. 22.863 Section 22.863...-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.863 Frequency stability. The frequency stability of equipment used under this subpart shall be sufficient to ensure that,...

  1. 47 CFR 27.54 - Frequency stability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Frequency stability. 27.54 Section 27.54 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.54 Frequency stability. The frequency stability shall...

  2. 47 CFR 27.54 - Frequency stability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Frequency stability. 27.54 Section 27.54 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.54 Frequency stability. The frequency stability shall...

  3. 47 CFR 22.863 - Frequency stability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Frequency stability. 22.863 Section 22.863...-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.863 Frequency stability. The frequency stability of equipment used under this subpart shall be sufficient to ensure that,...

  4. Robust frequency stabilization of multiple spectroscopy lasers with large and tunable offset frequencies.

    PubMed

    Nevsky, A; Alighanbari, S; Chen, Q-F; Ernsting, I; Vasilyev, S; Schiller, S; Barwood, G; Gill, P; Poli, N; Tino, G M

    2013-11-15

    We have demonstrated a compact, robust device for simultaneous absolute frequency stabilization of three diode lasers whose carrier frequencies can be chosen freely relative to the reference. A rigid ULE multicavity block is employed, and, for each laser, the sideband locking technique is applied. A small lock error, computer control of frequency offset, wide range of frequency offset, simple construction, and robust operation are the useful features of the system. One concrete application is as a stabilization unit for the cooling and trapping lasers of a neutral-atom lattice clock. The device significantly supports and improves the clock's operation. The laser with the most stringent requirements imposed by this application is stabilized to a line width of 70 Hz, and a residual frequency drift less than 0.5 Hz/s. The carrier optical frequency can be tuned over 350 MHz while in lock.

  5. 47 CFR 87.133 - Frequency stability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Frequency stability. 87.133 Section 87.133... Technical Requirements § 87.133 Frequency stability. (a) Except as provided in paragraphs (c), (d), (f), and (g) of this section, the carrier frequency of each station must be maintained within these...

  6. 47 CFR 90.539 - Frequency stability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Frequency stability. 90.539 Section 90.539... MOBILE RADIO SERVICES Regulations Governing the Licensing and Use of Frequencies in the 763-775 and 793-805 MHz Bands § 90.539 Frequency stability. Transmitters designed to operate in 769-775 MHz and...

  7. 47 CFR 5.101 - Frequency stability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Frequency stability. 5.101 Section 5.101...) Technical Standards and Operating Requirements § 5.101 Frequency stability. An applicant must propose to use a frequency tolerance that would confine emissions within the band of operation, unless...

  8. 47 CFR 5.101 - Frequency stability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Frequency stability. 5.101 Section 5.101... Operating Requirements § 5.101 Frequency stability. Experimental Radio Service licensees shall ensure that transmitted emissions remain within the authorized frequency band under normal operating conditions:...

  9. 47 CFR 87.133 - Frequency stability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Frequency stability. 87.133 Section 87.133... Technical Requirements § 87.133 Frequency stability. (a) Except as provided in paragraphs (c), (d), (f), and (g) of this section, the carrier frequency of each station must be maintained within these...

  10. 47 CFR 90.539 - Frequency stability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Frequency stability. 90.539 Section 90.539... MOBILE RADIO SERVICES Regulations Governing the Licensing and Use of Frequencies in the 763-775 and 793-805 MHz Bands § 90.539 Frequency stability. Transmitters designed to operate in 769-775 MHz and...

  11. 47 CFR 87.133 - Frequency stability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Frequency stability. 87.133 Section 87.133... Technical Requirements § 87.133 Frequency stability. (a) Except as provided in paragraphs (c), (d), (f), and (g) of this section, the carrier frequency of each station must be maintained within these...

  12. 47 CFR 90.213 - Frequency stability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Frequency stability. 90.213 Section 90.213... MOBILE RADIO SERVICES General Technical Standards § 90.213 Frequency stability. (a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency...

  13. 47 CFR 5.101 - Frequency stability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Frequency stability. 5.101 Section 5.101...) Technical Standards and Operating Requirements § 5.101 Frequency stability. An applicant must propose to use a frequency tolerance that would confine emissions within the band of operation, unless...

  14. 47 CFR 90.539 - Frequency stability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Frequency stability. 90.539 Section 90.539... MOBILE RADIO SERVICES Regulations Governing the Licensing and Use of Frequencies in the 763-775 and 793-805 MHz Bands § 90.539 Frequency stability. Transmitters designed to operate in 769-775 MHz and...

  15. 47 CFR 90.539 - Frequency stability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Frequency stability. 90.539 Section 90.539... MOBILE RADIO SERVICES Regulations Governing the Licensing and Use of Frequencies in the 763-775 and 793-805 MHz Bands § 90.539 Frequency stability. Transmitters designed to operate in 769-775 MHz and...

  16. 47 CFR 90.213 - Frequency stability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Frequency stability. 90.213 Section 90.213... MOBILE RADIO SERVICES General Technical Standards § 90.213 Frequency stability. (a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency...

  17. 47 CFR 90.213 - Frequency stability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Frequency stability. 90.213 Section 90.213... MOBILE RADIO SERVICES General Technical Standards § 90.213 Frequency stability. (a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency...

  18. 47 CFR 90.213 - Frequency stability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Frequency stability. 90.213 Section 90.213... MOBILE RADIO SERVICES General Technical Standards § 90.213 Frequency stability. (a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency...

  19. 47 CFR 90.213 - Frequency stability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Frequency stability. 90.213 Section 90.213... MOBILE RADIO SERVICES General Technical Standards § 90.213 Frequency stability. (a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency...

  20. 47 CFR 87.133 - Frequency stability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Frequency stability. 87.133 Section 87.133... Technical Requirements § 87.133 Frequency stability. (a) Except as provided in paragraphs (c), (d), and (f) of this section, the carrier frequency of each station must be maintained within these...

  1. 47 CFR 87.133 - Frequency stability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Frequency stability. 87.133 Section 87.133... Technical Requirements § 87.133 Frequency stability. (a) Except as provided in paragraphs (c), (d), (f), and (g) of this section, the carrier frequency of each station must be maintained within these...

  2. 47 CFR 5.101 - Frequency stability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Frequency stability. 5.101 Section 5.101... Operating Requirements § 5.101 Frequency stability. Experimental Radio Service licensees shall ensure that transmitted emissions remain within the authorized frequency band under normal operating conditions:...

  3. 47 CFR 5.101 - Frequency stability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Frequency stability. 5.101 Section 5.101...) Technical Standards and Operating Requirements § 5.101 Frequency stability. An applicant must propose to use a frequency tolerance that would confine emissions within the band of operation, unless...

  4. 47 CFR 90.539 - Frequency stability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Frequency stability. 90.539 Section 90.539... MOBILE RADIO SERVICES Regulations Governing the Licensing and Use of Frequencies in the 758-775 and 788-805 MHz Bands § 90.539 Frequency stability. Transmitters designed to operate in 769-775 MHz and...

  5. High-precision absolute distance and vibration measurement with frequency scanned interferometry

    SciTech Connect

    Yang, H.-J.; Deibel, Jason; Nyberg, Sven; Riles, Keith

    2005-07-01

    We report high-precision absolute distance and vibration measurements performed with frequency scanned interferometry using a pair of single-mode optical fibers. Absolute distance was determined by counting the interference fringes produced while scanning the laser frequency. A high-finesse Fabry-Perot interferometer was used to determine frequency changes during scanning. Two multiple-distance-measurement analysis techniques were developed to improve distance precision and to extract the amplitude and frequency of vibrations. Under laboratory conditions, measurement precision of {approx}50 nm was achieved for absolute distances ranging from 0.1 to 0.7 m by use of the first multiple-distance-measurement technique. The second analysis technique has the capability to measure vibration frequencies ranging from 0.1 to 100 Hz with an amplitude as small as a few nanometers without a priori knowledge.

  6. High-precision absolute distance and vibration measurement with frequency scanned interferometry.

    PubMed

    Yang, Hai-Jun; Deibel, Jason; Nyberg, Sven; Riles, Keith

    2005-07-01

    We report high-precision absolute distance and vibration measurements performed with frequency scanned interferometry using a pair of single-mode optical fibers. Absolute distance was determined by counting the interference fringes produced while scanning the laser frequency. A high-finesse Fabry-Perot interferometer was used to determine frequency changes during scanning. Two multiple-distance-measurement analysis techniques were developed to improve distance precision and to extract the amplitude and frequency of vibrations. Under laboratory conditions, measurement precision of approximately 50 nm was achieved for absolute distances ranging from 0.1 to 0.7 m by use of the first multiple-distance-measurement technique. The second analysis technique has the capability to measure vibration frequencies ranging from 0.1 to 100 Hz with an amplitude as small as a few nanometers without a priori knowledge.

  7. Absolute frequency measurement of rubidium 5S-7S two-photon transitions.

    PubMed

    Morzyński, Piotr; Wcisło, Piotr; Ablewski, Piotr; Gartman, Rafał; Gawlik, Wojciech; Masłowski, Piotr; Nagórny, Bartłomiej; Ozimek, Filip; Radzewicz, Czesław; Witkowski, Marcin; Ciuryło, Roman; Zawada, Michał

    2013-11-15

    We report the absolute frequency measurements of rubidium 5S-7S two-photon transitions with a cw laser digitally locked to an atomic transition and referenced to an optical frequency comb. The narrow, two-photon transition, 5S-7S (760 nm), insensitive to first-order in a magnetic field, is a promising candidate for frequency reference. The performed tests yielded more accurate transition frequencies than previously reported.

  8. Operational frequency stability of rubidium and cesium frequency standards

    NASA Technical Reports Server (NTRS)

    Lavery, J. E.

    1973-01-01

    The frequency stabilities under operational conditions of several commercially available rubidium and cesium frequency standards were determined from experimental data for frequency averaging times from 10 to the 7th power s and are presented in table and graph form. For frequency averaging times between 10 to the 5th power and 10 to the 7th power s, the rubidium standards tested have a stability of between 10 to the minus 12th power and 5 x 10 to the minus 12th power, while the cesium standards have a stability of between 2 x 10 to the minus 13th power and 5 x 10 to the minus 13th power.

  9. 47 CFR 101.507 - Frequency stability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Frequency stability. 101.507 Section 101.507 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.507 Frequency stability. The...

  10. Phase and frequency stability of Cassegrainian antennas

    NASA Technical Reports Server (NTRS)

    Cha, A. G.

    1987-01-01

    Phase and frequency stability of Cassegrainian antennas is important in radio astronomy, geodesy, and planetary sciences. This paper presents a rigorous approach, exact definitions, and simple algorithms for computing these characteristics. Such a consistent and rigorous treatment of phase and frequency stability does not appear to exist in the literature.

  11. 47 CFR 101.507 - Frequency stability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Frequency stability. 101.507 Section 101.507 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.507 Frequency stability. The...

  12. 47 CFR 101.507 - Frequency stability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Frequency stability. 101.507 Section 101.507 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.507 Frequency stability. The...

  13. 47 CFR 101.507 - Frequency stability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Frequency stability. 101.507 Section 101.507 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.507 Frequency stability. The...

  14. 47 CFR 101.507 - Frequency stability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Frequency stability. 101.507 Section 101.507 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.507 Frequency stability. The...

  15. The CO2 laser frequency stability measurements

    NASA Technical Reports Server (NTRS)

    Johnson, E. H., Jr.

    1973-01-01

    Carbon dioxide laser frequency stability data are considered for a receiver design that relates to maximum Doppler frequency and its rate of change. Results show that an adequate margin exists in terms of data acquisition, Doppler tracking, and bit error rate as they relate to laser stability and transmitter power.

  16. Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays.

    PubMed

    Cao, Jinde; Wang, Jun

    2004-04-01

    This paper investigates the absolute exponential stability of a general class of delayed neural networks, which require the activation functions to be partially Lipschitz continuous and monotone nondecreasing only, but not necessarily differentiable or bounded. Three new sufficient conditions are derived to ascertain whether or not the equilibrium points of the delayed neural networks with additively diagonally stable interconnection matrices are absolutely exponentially stable by using delay Halanay-type inequality and Lyapunov function. The stability criteria are also suitable for delayed optimization neural networks and delayed cellular neural networks whose activation functions are often nondifferentiable or unbounded. The results herein answer a question: if a neural network without any delay is absolutely exponentially stable, then under what additional conditions, the neural networks with delay is also absolutely exponentially stable.

  17. Frequency-scanning interferometry for dynamic absolute distance measurement using Kalman filter.

    PubMed

    Tao, Long; Liu, Zhigang; Zhang, Weibo; Zhou, Yangli

    2014-12-15

    We propose a frequency-scanning interferometry using the Kalman filtering technique for dynamic absolute distance measurement. Frequency-scanning interferometry only uses a single tunable laser driven by a triangle waveform signal for forward and backward optical frequency scanning. The absolute distance and moving speed of a target can be estimated by the present input measurement of frequency-scanning interferometry and the previously calculated state based on the Kalman filter algorithm. This method not only compensates for movement errors in conventional frequency-scanning interferometry, but also achieves high-precision and low-complexity dynamic measurements. Experimental results of dynamic measurements under static state, vibration and one-dimensional movement are presented.

  18. Absolute stability and Hopf bifurcation in a Plasmodium falciparum malaria model incorporating discrete immune response delay.

    PubMed

    Ncube, Israel

    2013-05-01

    We consider the absolute stability of the disease-free equilibrium of an intra-host Plasmodium falciparum malarial model allowing for antigenic variation within a single species. Antigenic variation can be viewed as an adaptation of the parasite to evade host defence [2]. The model was recently developed in [3-6]. The host's immune response is compartmentalised into reactions to major and minor epitopes. The immune response mounted by the human host is delayed, where, for simplicity, the delay is assumed to be discrete. We investigate the resulting characteristic equation, with a view to establishing absolute stability criteria and computing the Hopf bifurcation of the disease-free equilibrium.

  19. Quantifying discipline practices using absolute versus relative frequencies: clinical and research implications for child welfare.

    PubMed

    Lindhiem, Oliver; Shaffer, Anne; Kolko, David J

    2014-01-01

    In the parent intervention outcome literatures, discipline practices are generally quantified as absolute frequencies or, less commonly, as relative frequencies. These differences in methodology warrant direct comparison as they have critical implications for study results and conclusions among treatments targeted at reducing parental aggression and harsh discipline. In this study, we directly compared the absolute frequency method and the relative frequency method for quantifying physically aggressive, psychologically aggressive, and nonaggressive discipline practices. Longitudinal data over a 3-year period came from an existing data set of a clinical trial examining the effectiveness of a psychosocial treatment in reducing parental physical and psychological aggression and improving child behavior (N = 139). Discipline practices (aggressive and nonaggressive) were assessed using the Conflict Tactics Scale. The two methods yielded different patterns of results, particularly for nonaggressive discipline strategies. We suggest that each method makes its own unique contribution to a more complete understanding of the association between parental aggression and intervention effects.

  20. Absolute frequency measurement at 10-16 level based on the international atomic time

    NASA Astrophysics Data System (ADS)

    Hachisu, H.; Fujieda, M.; Kumagai, M.; Ido, T.

    2016-06-01

    Referring to International Atomic Time (TAI), we measured the absolute frequency of the 87Sr lattice clock with its uncertainty of 1.1 x 10-15. Unless an optical clock is continuously operated for the five days of the TAI grid, it is required to evaluate dead time uncertainty in order to use the available five-day average of the local frequency reference. We homogeneously distributed intermittent measurements over the five-day grid of TAI, by which the dead time uncertainty was reduced to low 10-16 level. Three campaigns of the five (or four)-day consecutive measurements have resulted in the absolute frequency of the 87Sr clock transition of 429 228 004 229 872.85 (47) Hz, where the systematic uncertainty of the 87Sr optical frequency standard amounts to 8.6 x 10-17.

  1. Precise Stabilization of the Optical Frequency of WGMRs

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Matsko, Andrey; Yu, Nan; Maleki, Lute; Iltchenko, Vladimir

    2009-01-01

    Crystalline whispering gallery mode resonators (CWGMRs) made of crystals with axial symmetry have ordinary and extraordinary families of optical modes. These modes have substantially different thermo-refractive constants. This results in a very sharp dependence of differential detuning of optical frequency on effective temperature. This frequency difference compared with clock gives an error signal for precise compensation of the random fluctuations of optical frequency. Certain crystals, like MgF2, have turnover points where the thermo-refractive effect is completely nullified. An advantage for applications using WGMRs for frequency stabilization is in the possibility of manufacturing resonators out of practically any optically transparent crystal. It is known that there are crystals with negative and zero thermal expansion at some specific temperatures. Doping changes properties of the crystals and it is possible to create an optically transparent crystal with zero thermal expansion at room temperature. With this innovation s stabilization technique, the resultant WGMR will have absolute frequency stability The expansion of the resonator s body can be completely compensated for by nonlinear elements. This results in compensation of linear thermal expansion (see figure). In three-mode, the MgF2 resonator, if tuned at the turnover thermal point, can compensate for all types of random thermal-related frequency drift. Simplified dual-mode method is also available. This creates miniature optical resonators with good short- and long-term stability for passive secondary frequency ethalon and an active resonator for active secondary frequency standard (a narrowband laser with long-term stability).

  2. Metrology with AN Optical Feedback Frequency Stabilized Crds

    NASA Astrophysics Data System (ADS)

    Kassi, Samir; Burkart, Johannes

    2015-06-01

    We will present a metrological application of our recently developed Optical Feedback Frequency Stabilized - Cavity Ring Down Spectrometer (OFFS-CRDS). This instrument, which ideally fits with an optical frequency comb for absolute frequency calibration, relies on the robust lock of a steady cavity ring down resonator against a highly stable, radiofrequency tuned optical source. At 1.6 μm, over 7 nm, we demonstrate Lamb dip spectroscopy of CO_2 with line frequency retrieval at the kHz level, a dynamic in excess of 700,000 on the absorption scale and a detectivity of 4x10-13cm-1Hz-1/2. Such an instrument nicely meets the requirements for the most demanding spectroscopy spanning from accurate isotopic ratio determination and very precise lineshape recordings to Boltzmann constant redefinition.

  3. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution.

    PubMed

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  4. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    SciTech Connect

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-15

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  5. Absolute Frequency Measurements with a Set of Transportable HE-NE/CH4 Optical Frequency Standards and Prospects for Future Design and Applications

    NASA Astrophysics Data System (ADS)

    Gubin, M.; Kovalchuk, E.; Petrukhin, E.; Shelkovnikov, A.; Tyurikov, D.; Gamidov, R.; Erdogan, C.; Sahin, E.; Felder, R.; Gill, P.; Lea, S. N.; Kramer, G.; Lipphardt, B.

    2002-04-01

    The accumulated results of absolute frequency measurements (AFM) carried out in 1997-2000 with transportable double-mode He-Ne/CH4 optical frequency standards (λ = 3 .39μm) in a collaboration of several laboratories are presented. The performance of this secondary optical frequency standard is estimated on the level of 10-13 (in repeatability), and 1 × 10-14/s (in stability). The next steps towards He-Ne/CH4 standards with one order of magnitude better performance, including devices based on monolithic zerodur resonators, are discussed. Important applications of transportable He-Ne/CH4 optical frequency standards have appeared now due to dramatic progress in the field of optical frequency measurements. Used to stabilize the repetition rate of a Ti:Sa fs laser, these compact secondary standards can transfer their performance into the whole optical range covered by a fs comb. Thus they can play the role of a narrow spectrum interrogative oscillator for super-accurate optical or microwave frequency standards substituting in some tasks a H-maser or oscillators based on cryogenic sapphire resonators.

  6. Frequency stabilization in nonlinear micromechanical oscillators

    NASA Astrophysics Data System (ADS)

    Antonio, Dario; Zanette, Damián H.; López, Daniel

    2012-05-01

    Mechanical oscillators are present in almost every electronic device. They mainly consist of a resonating element providing an oscillating output with a specific frequency. Their ability to maintain a determined frequency in a specified period of time is the most important parameter limiting their implementation. Historically, quartz crystals have almost exclusively been used as the resonating element, but micromechanical resonators are increasingly being considered to replace them. These resonators are easier to miniaturize and allow for monolithic integration with electronics. However, as their dimensions shrink to the microscale, most mechanical resonators exhibit nonlinearities that considerably degrade the frequency stability of the oscillator. Here we demonstrate that, by coupling two different vibrational modes through an internal resonance, it is possible to stabilize the oscillation frequency of nonlinear self-sustaining micromechanical resonators. Our findings provide a new strategy for engineering low-frequency noise oscillators capitalizing on the intrinsic nonlinear phenomena of micromechanical resonators.

  7. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.20, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  8. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata.

    PubMed

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.2(0), respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  9. Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser.

    PubMed

    Wang, Guochao; Jang, Yoon-Soo; Hyun, Sangwon; Chun, Byung Jae; Kang, Hyun Jay; Yan, Shuhua; Kim, Seung-Woo; Kim, Young-Jin

    2015-04-06

    A multi-wavelength interferometer utilizing the frequency comb of a femtosecond laser as the wavelength ruler is tested for its capability of ultra-precision positioning for machine axis control. The interferometer uses four different wavelengths phase-locked to the frequency comb and then determines the absolute position through a multi-channel scheme of detecting interference phases in parallel so as to enable fast, precise and stable measurements continuously over a few meters of axis-travel. Test results show that the proposed interferometer proves itself as a potential candidate of absolute-type position transducer needed for next-generation ultra-precision machine axis control, demonstrating linear errors of less than 61.9 nm in peak-to-valley over a 1-meter travel with an update rate of 100 Hz when compared to an incremental-type He-Ne laser interferometer.

  10. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.; Steinmetz, T.; Holzwarth, R.; Kentischer, T.; Schmidt, W.

    2012-10-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut für Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  11. Noninvasive absolute cerebral oximetry with frequency-domain near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hallacoglu, Bertan

    Near-infrared spectroscopy (NIRS) measurements of absolute concentrations of oxy-hemoglobin and deoxy-hemoglobin in the human brain can provide critical information about cerebral physiology in terms of cerebral blood volume, blood flow, oxygen delivery, and metabolic rate of oxygen. We developed several frequency domain NIRS data acquisition and analysis methods aimed at absolute measurements of hemoglobin concentration and saturation in cerebral tissue of adult human subjects. Extensive experimental investigations were carried out in various homogenous and two-layered tissue-mimicking phantoms, and biological tissues. The advantages and limitations of commonly used homogenous models and inversion strategies were thoroughly investigated. Prior to human subjects, extensive studies were carried out in in vivo animal models. In rabbits, absolute hemoglobin oxygen desaturation was shown to depend strongly on surgically induced testicular torsion. Methods developed in this study were then adapted for measurements in the rat brain. Absolute values were demonstrated to discern cerebrovascular impairment in a rat model of diet-induced vascular cognitive impairment. These results facilitated the development of clinically useful optical measures of cerebrovascular health. In a large group of human subjects, employing a homogeneous model for absolute measurements was shown to be reliable and robust. However, it was also shown to be limited due to the relatively thick extracerebral tissue. The procedure we develop in this work and the thesis thereof performs a nonlinear inversion procedure with six unknown parameters with no other prior knowledge for the retrieval of the optical coefficients and top layer thickness with high accuracy on two-layered media. Our absolute measurements of cerebral hemoglobin concentration and saturation are based on the discrimination of extracerebral and cerebral tissue layers, and they can enhance the impact of NIRS for cerebral hemodynamics and

  12. Frequency-comb-referenced tunable diode laser spectroscopy and laser stabilization applied to laser cooling.

    PubMed

    Fordell, Thomas; Wallin, Anders E; Lindvall, Thomas; Vainio, Markku; Merimaa, Mikko

    2014-11-01

    Laser cooling of trapped atoms and ions in optical clocks demands stable light sources with precisely known absolute frequencies. Since a frequency comb is a vital part of any optical clock, the comb lines can be used for stabilizing tunable, user-friendly diode lasers. Here, a light source for laser cooling of trapped strontium ions is described. The megahertz-level stability and absolute frequency required are realized by stabilizing a distributed-feedback semiconductor laser to a frequency comb. Simple electronics is used to lock and scan the laser across the comb lines, and comb mode number ambiguities are resolved by using a separate, saturated absorption cell that exhibits easily distinguishable hyperfine absorption lines with known frequencies. Due to the simplicity, speed, and wide tuning range it offers, the employed technique could find wider use in precision spectroscopy.

  13. Absolute stability for multiple delay general Lur'e control systems with multiple nonlinearities

    NASA Astrophysics Data System (ADS)

    He, Yong; Wu, Min

    2003-10-01

    In this paper, necessary and sufficient conditions are obtained for the existence of Lyapunov functional of extended Lur'e form to guarantee absolute stability for multiple delay general Lur'e control systems with multiple nonlinearities, and the existence reduces to a problem of solving a group of linear matrix inequalities (LMIs). When the LMIs are feasible, the free parameters in the Lyapunov functional are given by the solution of these LMIs. Otherwise, this class of Lyapunov functional does not exist.

  14. Stabilized fiber-optic frequency distribution system

    NASA Technical Reports Server (NTRS)

    Primas, L. E.; Lutes, G. F.; Sydnor, R. L.

    1989-01-01

    A technique for stabilizing reference frequencies transmitted over fiber-optic cable in a frequency distribution system is discussed. The distribution system utilizes fiber-optic cable as the transmission medium to distribute precise reference signals from a frequency standard to remote users. The stability goal of the distribution system is to transmit a 100-MHz signal over a 22-km fiber-optic cable and maintain a stability of 1 part in 10(17) for 1000-second averaging times. Active stabilization of the link is required to reduce phase variations produced by environmental effects, and is achieved by transmitting the reference signal from the frequency standard to the remote unit and then reflecting back to the reference unit over the same optical fiber. By comparing the phase of the transmitted and reflected signals at the reference unit, phase variations of the remote signal can be measured. An error voltage derived from the phase difference between the two signals is used to add correction phase.

  15. A novel absolute measurement for the low-frequency figure correction of aspheric surfaces

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Cheng; Chang, Shenq-Tsong; Ho, Cheng-Fang; Kuo, Ching-Hsiang; Chung, Chien-Kai; Hsu, Wei-Yao; Tseng, Shih-Feng; Sung, Cheng-Kuo

    2015-07-01

    This study proposes an absolute measurement method with a computer-generated hologram (CGHs) to assist the identification of manufacturing form error, and gravity and mounting resulted distortions for a 300 mm aspherical mirror. This method adopts the frequency of peaks and valleys of each Zernike coefficient grabbed by the measurement with various orientations of the mirror in horizontal optical-axis configuration. In addition, the rotational-symmetric aberration (spherical aberration) is calibrated with random ball test method. According to the measured absolute surface figure, a high accuracy aspherical surface with peak to valley (P-V) value of 1/8 wave @ 632.8 nm was fabricated after surface figure correction with the reconstructed error map.

  16. Stabilizing Microwave Frequency of a Photonic Oscillator

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Yu, Nan; Tu, Meirong

    2006-01-01

    A scheme for stabilizing the frequency of a microwave signal is proposed that exploits the operational characteristics of a coupled optoelectronic oscillator (COEO) and related optoelectronic equipment. An essential element in the scheme is a fiber mode-locked laser (MLL), the optical frequency of which is locked to an atomic transition. In this scheme, the optical frequency stability of the mode-locked laser is transferred to that of the microwave in the same device. Relative to prior schemes for using wideband optical frequency comb to stabilize microwave signals, this scheme is simpler and lends itself more readily to implementation in relatively compact, rugged equipment. The anticipated development of small, low-power, lightweight, highly stable microwave oscillators based on this scheme would afford great benefits in communication, navigation, metrology, and fundamental sciences. COEOs of various designs, at various stages of development, in some cases called by different names, have been described in a number of prior NASA Tech Briefs articles. A COEO is an optoelectronic apparatus that generates both short (picosecond) optical pulses and a steady microwave signal having an ultrahigh degree of spectral purity. The term "coupled optoelectronic" in the full name of such an apparatus signifies that its optical and electronic oscillations are coupled to each other in a single device. The present frequency-stabilization scheme is best described indirectly by describing the laboratory apparatus used to demonstrate it. The apparatus (see figure) includes a COEO that generates a comb-like optical spectrum, the various frequency components of which interfere, producing short optical pulses. This spectrum is centered at a nominal wavelength of 1,560 nm. The spectrum separation of this comb is about 10 GHz, as determined primarily by the length of an optical loop and the bandpass filter in the microwave feedback loop. The optical loop serves as microwave resonator

  17. Measuring absolute frequencies beyond the GPS limit via long-haul optical frequency dissemination.

    PubMed

    Clivati, Cecilia; Cappellini, Giacomo; Livi, Lorenzo F; Poggiali, Francesco; de Cumis, Mario Siciliani; Mancini, Marco; Pagano, Guido; Frittelli, Matteo; Mura, Alberto; Costanzo, Giovanni A; Levi, Filippo; Calonico, Davide; Fallani, Leonardo; Catani, Jacopo; Inguscio, Massimo

    2016-05-30

    Global Positioning System (GPS) dissemination of frequency standards is ubiquitous at present, providing the most widespread time and frequency reference for the majority of industrial and research applications worldwide. On the other hand, the ultimate limits of the GPS presently curb further advances in high-precision, scientific and industrial applications relying on this dissemination scheme. Here, we demonstrate that these limits can be reliably overcome even in laboratories without a local atomic clock by replacing the GPS with a 642-km-long optical fiber link to a remote primary caesium frequency standard. Through this configuration we stably address the 1S0-3P0 clock transition in an ultracold gas of 173Yb, with a precision that exceeds the possibilities of a GPS-based measurement, dismissing the need for a local clock infrastructure to perform beyond-GPS high-precision tasks. We also report an improvement of two orders of magnitude in the accuracy on the transition frequency reported in literature.

  18. Absolute frequency measurement with uncertainty below 1× 10^{-15} using International Atomic Time

    NASA Astrophysics Data System (ADS)

    Hachisu, Hidekazu; Petit, Gérard; Ido, Tetsuya

    2017-01-01

    The absolute frequency of the ^{87}Sr clock transition measured in 2015 (Jpn J Appl Phys 54:112401, 2015) was reevaluated using an improved frequency link to the SI second. The scale interval of International Atomic Time (TAI) that we used as the reference was calibrated for an evaluation interval of 5 days instead of the conventional interval of 1 month which is regularly employed in Circular T. The calibration on a 5-day basis removed the uncertainty in assimilating the TAI scale of the 5-day mean to that of the 1-month mean. The reevaluation resulted in the total uncertainty of 10^{-16} level for the first time without local cesium fountains. Since there are presumably no correlations among systematic shifts of cesium fountains worldwide, the measurement is not limited by the systematic uncertainty of a specific primary frequency standard.

  19. Laser Frequency Stabilization for GRACE-II

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; deVine, G.; Klipstein, W. M.; McKenzie, K.; Shaddock, D.; Spero, R.; Thompson, R.; Wuchenich, D.; Yu, N.; Stephens, M.; Leitch, J.; Davis, M.; deCino, J.; Pace, C.; Pierce, R.

    2010-01-01

    The GRACE mission monitors changes in the Earth's gravity field by measuring changes in the distance between spacecraft induced by that changing field. The distance variation is measured with a microwave ranging system with sub-micron accuracy. The ranging measurement accuracy is limited by the signal-to-noise ratio and by the frequency stability of the microwave signal referenced to an ultra-stable oscillator (USO). For GRACE-2 a laser ranging system is envisioned with accuracy better than the GRACE microwave ranging system. A laser ranging system easily provides an improved signal-to-noise ratio over the microwave system. Laser frequency stability better than the GRACE USO stability has been demonstrated in several laboratories using thermally stabilized optical cavities. We are developing a space-qualifiable optical cavity and associated optics and electronics for use on GRACE-2 to provide a stable frequency reference for the laser ranging system. Two breadboard units have been developed and tested for performance and ability to survive launch and orbit environments. A prototype unit is being designed using lessons learned from tests of the breadboard units.

  20. Use of the absolute phase in frequency modulated continuous wave plasma reflectometry

    SciTech Connect

    Cunningham, G.

    2008-08-15

    In frequency modulated continuous wave reflectometry, used for density profile measurement in fusion plasmas, it is usual to measure the beat frequency between the launched wave and the reflected wave, and from this to calculate the position of the reflecting layer in the plasma. The absolute phase of the beat signal is usually neglected. The reason is that the phase shift between sweeps is usually comparable with or more than 2{pi}, leading to an ambiguity that is impossible to resolve. However, recent observations on the MAST tokamak have shown that, under quiet plasma conditions (this term has to be defined), the phase shift between sweeps is small compared with 2{pi} and the phase ambiguity can be readily resolved. The reflectometer signal is then being analyzed as an interferometer signal would normally be, and there is a substantial improvement in spatial resolution. The method is illustrated by application to small edge localized mode precursor and allows what is believed to be the first quantitative measurement of the displacement of the plasma boundary by such a precursor mode. The errors in both the absolute phase measurement and the more conventional frequency measurement are also estimated.

  1. Using AIRS and IASI Data to Evaluate Absolute Radiometric Accuracy and Stability for Climate Applications

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Pagano, Thomas S.

    2008-01-01

    The creation of multi-decadal data sets for climate research requires better than 100 mK absolute calibration accuracy for the full range of spectral temperatures encountered under global conditions. Validation that this accuracy is achieved by the operational hyperspectral sounders from polar orbit is facilitated by comparing data from two instruments. Extreme radiometric calibration stability is critical to allow a long time series of noisy, but presumably long-term accurate truth measurements to be used for the validation of absolute accuracy at the 100 mK level. We use the RTGSST in the tropical oceans as ground truth. The difference between the AIRS derived sst2616 and the RTGSST based on six years of data shows a systematic cold bias of about 250 mK, but better than 4 mK/year stability. The double difference between AIRS and the RTGSST and IASI and the RTGSST with less than one year of data already allows statements at the 100 mK absolute level. It shows a 60 mK difference between the AIRS and the IASI calibration at 2616 cm-(sup 1) and 300 K, with a statistically insignificant 20 mK shift in six months.

  2. A dedicated pistonphone for absolute calibration of infrasound sensors at very low frequencies

    NASA Astrophysics Data System (ADS)

    He, Wen; He, Longbiao; Zhang, Fan; Rong, Zuochao; Jia, Shushi

    2016-02-01

    Aimed at the absolute calibration of infrasound sensors at very low frequencies, an upgraded and improved infrasonic pistonphone has been developed. The pistonphone was designed such that a very narrow clearance between the piston and its guide was realized based on an automatically-centered clearance-sealing structure, and a large volume rigid-walled chamber was also adopted, which improved the leakage time-constant of the chamber. A composite feedback control system was applied to the electromagnetic vibrator to control the precise motion of the piston. Performance tests and uncertainty analysis show that the leakage time-constant is so large, and the distortion of the sound pressure is so small, that the pistonphone can be used as a standard infrasound source in the frequency range from 0.001 Hz to 20 Hz. The low frequency property of the pistonphone has been verified through calibrating low frequency microphones. Comparison tests with the reciprocity method have shown that the pressure sensitivities from the pistonphone are not only reliable at common frequencies but also have smaller uncertainties at low frequencies.

  3. High-accuracy absolute distance measurement with a mode-resolved optical frequency comb

    NASA Astrophysics Data System (ADS)

    Voigt, Dirk; van den Berg, Steven A.; Lešundák, Adam; van Eldik, Sjoerd; Bhattacharya, Nandini

    2016-04-01

    Optical interferometry enables highly accurate non-contact displacement measurement. The optical phase ambiguity needs to be resolved for absolute distance ranging. In controlled laboratory conditions and for short distances it is possible to track a non-interrupted displacement from a reference position to a remote target. With large distances covered in field applications this may not be feasible, e.g. in structure monitoring, large scale industrial manufacturing or aerospace navigation and attitude control. We use an optical frequency comb source to explore absolute distance measurement by means of a combined spectral and multi-wavelength homodyne interferometry. This relaxes the absolute distance ambiguity to a few tens of centimeters, covered by simpler electronic distance meters, while maintaining highly accurate optical phase measuring capability. A virtually imaged phased array spectrometer records a spatially dispersed interferogram in a single exposure and allows for resolving the modes of our near infrared comb source with 1 GHz mode separation. This enables measurements with direct traceability of the atomic clock referenced comb source. We observed agreement within 500 nm in comparison with a commercial displacement interferometer for target distances up to 50 m. Furthermore, we report on current work toward applicability in less controlled conditions. A filter cavity decimates the comb source to an increased mode separation larger than 20 GHz. A simple grating spectrometer then allows to record mode-resolved interferograms.

  4. Auto-elimination of fiber optical path-length drift in a frequency scanning interferometer for absolute distance measurements

    NASA Astrophysics Data System (ADS)

    Tao, Long; Liu, Zhigang; Zhang, Weibo

    2015-09-01

    Because of its compact size and portability, optical fiber has been wildly used as optical paths in frequency-scanning interferometers for high-precision absolute distance measurements. However, since the fiber is sensitive to ambient temperature, its length and refractive index change with temperature, resulting in an optical path length drift that influences the repeatability of measurements. To improve the thermal stability of the measurement system, a novel frequency-scanning interferometer composed of two Michelson-type interferometers sharing a common fiber optical path is proposed. One interferometer defined as origin interferometer is used to monitor the drift of the measurement origin due to the optical path length drift of the optical fiber under on-site environment. The other interferometer defined as measurement interferometer is used to measure the distance to the target. Because the optical path length drift of the fiber appears in both interferometers, its influence can be eliminated by subtracting the optical path difference of the origin interferometer from the optical path difference of the measurement interferometer. A prototype interferometer was developed in our research, and experimental results demonstrate its robustness and stability. Under on-site environment, an accuracy about 4 μm was achieved for a distance of about 1 m.

  5. Cryogenic masers. [frequency stability and design parameters

    NASA Technical Reports Server (NTRS)

    Berlinsky, A. J.; Hardy, W. N.

    1982-01-01

    Various factors affecting the frequency stability of hydrogen masers are described and related to maser design parameters. The long-term frequency stability of a hydrogen maser is limited by the mechanical stability of the cavity, and the magnitudes of the wall relaxation, spin exchange, and recombination rates which affect the Q of the line. Magnetic resonance studies of hydrogen atoms at temperatures below 1 K and in containers coated with liquid helium films demonstrated that cryogenic masers may allow substantial improvements in all of these parameters. In particular the thermal expansion coefficients of most materials are negligible at 1 K. Spin exchange broadening is three orders of magnitude smaller at 1 K than at room temperature, and the recombination and wall relaxation rates are negligible at 0.52 K where the frequency shift due to the 4 He-coated walls of the container has a broad minimum as a function of temperature. Other advantages of the helium-cooled maser result from the high purity, homogeneity, and resilence of helium-film-coated walls and the natural compatibility of the apparatus with helium-cooled amplifiers.

  6. Absolute measurements of the high-frequency magnetic dynamics in high-{Tc} superconductors

    SciTech Connect

    Hayden, S.M.; Aeppli, G.; Dai, P.; Mook, H.A.; Perring, T.G.; Cheong, S.W.; Fisk, Z.; Dogan, F.; Mason, T.E.

    1997-08-07

    The authors review recent measurements of the high-frequency dynamic magnetic susceptibility in the high-T{sub c} superconducting systems La{sub 2{minus}x}Sr{sub x}CuO{sub 4} and YBa{sub 2}Cu{sub 3}O{sub 6+x}. Experiments were performed using the chopper spectrometers HET and MARI at the ISIS spallation source. The authors have placed their measurements on an absolute intensity scale, this allows systematic trends to be seen and comparisons with theory to be made. They find that the insulating S = 1/2 antiferromagnetic parent compounds show a dramatic renormalization in the spin wave intensity. The effect of doping on the response is to cause broadenings in wave vector and large redistributions of spectral weight in frequency.

  7. Absolute and relative surface profile interferometry using multiple frequency-scanned lasers

    NASA Astrophysics Data System (ADS)

    Peca, Marek; Psota, Pavel; Vojtíšek, Petr; Lédl, Vít.

    2016-11-01

    An interferometer has been used to measure the surface profile of generic object. Frequency scanning interferometry has been employed to provide unambiguous phase readings, to suppress etalon fringes, and to supersede phase-shifting. The frequency scan has been performed in three narrow wavelength bands, each generated by a temperature tuned laser diode. It is shown, that for certain portions of measured object, it was possible to get absolute phase measurement, counting all wave periods from the point of zero path difference, yielding precision of 2.7nm RMS over 11.75mm total path difference. For the other areas where steep slopes were present in object geometry, a relative measurement is still possible, at measured surface roughness comparable to that of machining process (the same 2.7nm RMS). It is concluded, that areas containing steep slopes exhibit systematic error, attributed to a combined factors of dispersion and retrace error.

  8. Effective approach for calculations of absolute stability of proteins using focused dielectric constants.

    PubMed

    Vicatos, Spyridon; Roca, Maite; Warshel, Arieh

    2009-11-15

    The ability to predict the absolute stability of proteins based on their corresponding sequence and structure is a problem of great fundamental and practical importance. In this work, we report an extensive, refinement and validation of our recent approach (Roca et al., FEBS Lett 2007;581:2065-2071) for predicting absolute values of protein stability DeltaG(fold). This approach employs the semimacroscopic protein dipole Langevin dipole method in its linear response approximation version (PDLD/S-LRA) while using the best fitted values of the dielectric constants epsilon'(p) and epsilon'(eff) for the self energy and charge-charge interactions, respectively. The method is validated on a diverse set of 45 proteins. It is found that the best fitted values of both dielectric constants are around 40. However, the self energy of internal residues and the charge-charge interactions of Lys have to be treated with care, using a somewhat lower values of epsilon'(p) and epsilon'(eff). The predictions of DeltaG(fold) reported here, have an average error of only 1.8 kcal/mole compared to the observed values, making our method very promising for estimating protein stability. It also provides valuable insight into the complex electrostatic phenomena taking place in folded proteins.

  9. Laser frequency stabilization using bichromatic crossover spectroscopy

    SciTech Connect

    Jeong, Taek; Seb Moon, Han

    2015-03-07

    We propose a Doppler-free spectroscopic method named bichromatic crossover spectroscopy (BCS), which we then use for the frequency stabilization of an off-resonant frequency that does not correspond to an atomic transition. The observed BCS in the 5S{sub 1/2} → 5P{sub 1/2} transition of {sup 87}Rb is related to the hyperfine structure of the conventional saturated absorption spectrum of this transition. Furthermore, the Doppler-free BCS is numerically calculated by considering all of the degenerate magnetic sublevels of the 5S{sub 1/2} → 5P{sub 1/2} transition in an atomic vapor cell, and is found to be in good agreement with the experimental results. Finally, we successfully achieve modulation-free off-resonant locking at the center frequency between the two 5S{sub 1/2}(F = 1 and 2) → 5P{sub 1/2}(F′ = 1) transitions using a polarization rotation of the BCS. The laser frequency stability was estimated to be the Allan variance of 2.1 × 10{sup −10} at 1 s.

  10. Absolute stability and synchronization in neural field models with transmission delays

    NASA Astrophysics Data System (ADS)

    Kao, Chiu-Yen; Shih, Chih-Wen; Wu, Chang-Hong

    2016-08-01

    Neural fields model macroscopic parts of the cortex which involve several populations of neurons. We consider a class of neural field models which are represented by integro-differential equations with transmission time delays which are space-dependent. The considered domains underlying the systems can be bounded or unbounded. A new approach, called sequential contracting, instead of the conventional Lyapunov functional technique, is employed to investigate the global dynamics of such systems. Sufficient conditions for the absolute stability and synchronization of the systems are established. Several numerical examples are presented to demonstrate the theoretical results.

  11. Measurement of absolute transition frequencies of {sup 87}Rb to nS and nD Rydberg states by means of electromagnetically induced transparency

    SciTech Connect

    Mack, Markus; Karlewski, Florian; Hattermann, Helge; Hoeckh, Simone; Jessen, Florian; Cano, Daniel; Fortagh, Jozsef

    2011-05-15

    We report the measurement of absolute excitation frequencies of {sup 87}Rb to nS and nD Rydberg states. The Rydberg transition frequencies are obtained by observing electromagnetically induced transparency on a rubidium vapor cell. The accuracy of the measurement of each state is < or approx. 1 MHz, which is achieved by frequency stabilizing the two diode lasers employed for the spectroscopy to a frequency comb and a frequency comb calibrated wavelength meter, respectively. Based on the spectroscopic data we determine the quantum defects of {sup 87}Rb, and compare it with previous measurements on {sup 85}Rb. We determine the ionization frequency from the 5S{sub 1/2}(F=1) ground state of {sup 87}Rb to 1010.029 164 6(3)THz, providing the binding energy of the ground state with an accuracy improved by two orders of magnitude.

  12. Simplified fringe order correction for absolute phase maps recovered with multiple-spatial-frequency fringe projections

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Peng, Kai; Lu, Lei; Zhong, Kai; Zhu, Ziqi

    2017-02-01

    Various kinds of fringe order errors may occur in the absolute phase maps recovered with multi-spatial-frequency fringe projections. In existing methods, multiple successive pixels corrupted by fringe order errors are detected and corrected pixel-by-pixel with repeating searches, which is inefficient for applications. To improve the efficiency of multiple successive fringe order corrections, in this paper we propose a method to simplify the error detection and correction by the stepwise increasing property of fringe order. In the proposed method, the numbers of pixels in each step are estimated to find the possible true fringe order values, repeating the search in detecting multiple successive errors can be avoided for efficient error correction. The effectiveness of our proposed method is validated by experimental results.

  13. Absolute photometric calibration of detectors to 0.3 mmag using amplitude-stabilized lasers and a helium-cooled absolute radiometer

    NASA Technical Reports Server (NTRS)

    Miller, Peter J.

    1988-01-01

    Laser sources whose intensity is determined with a cryogenic electrical substitution radiometer are described. Detectors are then calibrated against this known flux, with an overall error of 0.028 percent (0.3 mmag). Ongoing research has produced laser intensity stabilizers with flicker and drift of less than 0.01 percent. Recently, the useful wavelength limit of these stabilizers have been extended to 1.65 microns by using a new modular technology and InGaAs detector systems. Data from Si photodiode calibration using the method of Zalewski and Geist are compared against an absolute cavity radiometer calibration as an internal check on the calibration system.

  14. Accurate absolute frequencies of the {nu}{sub 1}+{nu}{sub 3} band of {sup 13}C{sub 2}H{sub 2} determined using an infrared mode-locked Cr:YAG laser frequency comb

    SciTech Connect

    Madej, Alan A.; Bernard, John E.; John Alcock, A.; Czajkowski, Andrzej; Chepurov, Sergei

    2006-04-15

    Absolute frequency measurements, with up to 1x10{sup -11} level accuracies, are presented for 60 lines of the P and R branches for the {nu}{sub 1}+{nu}{sub 3} band of {sup 13}C{sub 2}H{sub 2} at 1.5 {mu}m (194 THz). The measurements were made using cavity-enhanced, diode-laser-based saturation spectroscopy. With one laser system stabilized to the P(16) line and a second laser system stabilized to the line whose frequency was to be determined, a Cr:YAG frequency comb was employed to accurately measure the tetrahertz level frequency intervals. The results are compared with recent work from other groups and indicate that these lines would form a basis for a high-quality atlas of reference frequencies for this region of the spectrum.

  15. Correlation of symptom clusters of schizophrenia with absolute powers of main frequency bands in quantitative EEG

    PubMed Central

    Gross, Andres; Joutsiniemi, Sirkka-Liisa; Rimon, Ranan; Appelberg, Björn

    2006-01-01

    Background Research of QEEG activity power spectra has shown intriguing results in patients with schizophrenia. Different symptom clusters have been correlated to QEEG frequency bands. The findings have been to some extent inconsistent. Replication of the findings of previous research is thus an important task. In the current study we investigated the correlations between the absolute powers of delta, theta, alpha, and beta frequency bands over the fronto-central scalp area (FC) with the PANSS subscales and the Liddle's factors in 16 patients with schizophrenia. The authors hypothesised a priori the correlations reported by Harris et al (1999) of PANSS negative subscale with delta power, Liddle's psychomotor poverty with delta and beta powers, disorganisation with delta power and reality distortion with alpha power on the midline FC. Methods The sample consisted of 16 patients with chronic schizophrenia considered as having insufficient clinical response to conventional antipsychotic treatment and evidencing a relapse. The correlations between quantitative electroencephalography (QEEG) absolute powers of delta (1.5–3.0 Hz), theta (3.0–7.5 Hz), alpha (7.5–12.5 Hz), and beta (12.5–20.0 Hz) frequency bands over the fronto-central scalp area (FC) with PANSS subscales and Liddle's factors (reality distortion, disorganisation, psychomotor poverty) were investigated. Results Significant positive correlations were found between the beta and psychomotor poverty (p < 0.05). Trends towards positive correlations (p < 0.1) were observed between delta and PANSS negative subscale and psychomotor poverty. Alpha did not correlate with reality distortion and delta did not correlate with disorganisation. Post hoc analysis revealed correlations of the same magnitude between beta and psychopathology generally over FC. Conclusion The a priori hypothesis was partly supported by the correlation of the beta and psychomotor poverty. Liddle's factors showed correlations of the same

  16. Absolute calibration of an ultraviolet spectrometer using a stabilized laser and a cryogenic cavity radiometer

    NASA Technical Reports Server (NTRS)

    Jauniskis, L.; Foukal, P.; Kochling, H.

    1992-01-01

    We carry out the calibration of an ultraviolet spectrometer by using a cryogenic electrical-substitution radiometer and intensity-stabilized laser sources. A comparison of the error budgets for the laser-based calibration described here and for a calibration using a type-FEL tungsten spectral-irradiance standard indicates that this technique could provide an improvement of a factor of about three in the uncertainty of the spectrometer calibration, resulting in an absolute accuracy (standard deviation of three) of about 1 percent at 257 nm. The technique described here might significantly improve the accuracy of calibrations on NASA ozone-monitoring and solar ultraviolet-monitoring spectrophotometers when used to complement present procedures that employ lamps and the SURF II synchrotron ultraviolet radiation facility at the National Institute of Standards and Technology.

  17. Absolute calibration of an ultraviolet spectrometer using a stabilized laser and a cryogenic cavity radiometer.

    PubMed

    Jauniskis, L; Foukal, P; Kochling, H

    1992-09-20

    We carry out the calibration of an ultraviolet spectrometer by using a cryogenic electrical-substitution radiometer and intensity-stabilized laser sources. A comparison of the error budgets for the laser-based calibration described here and for a calibration using a type-FEL tungsten spectral-irradiance standard indicates that this technique could provide an improvement of a factor of ~3 in the uncertainty of the spectrometer calibration, resulting in an absolute accuracy (standard deviation of 3) of ~1% at 257 nm. The technique described here might significantly improve the accuracy of calibrations on NASA ozone-monitoring and solar ultraviolet-monitoring spectrophotometers when used to complement present procedures that employ lamps and the SURF II synchrotron ultraviolet radiation facility at the National Institute of Standards and Technology.

  18. Accurate absolute reference frequencies from 1511 to 1545 nm of the {nu}{sub 1}+{nu}{sub 3} band of {sup 12}C{sub 2}H{sub 2} determined with laser frequency comb interval measurements

    SciTech Connect

    Madej, Alan A.; Alcock, A. John; Czajkowski, Andrzej; Bernard, John E.; Chepurov, Sergei

    2006-10-15

    Absolute frequency measurements, with uncertainties as low as 2 kHz (1x10{sup -11}), are presented for the {nu}{sub 1}+{nu}{sub 3} band of {sup 12}C{sub 2}H{sub 2} at 1.5 {mu}m (194-198 THz). The measurements were made using cavity-enhanced, diode-laser-based saturation spectroscopy. With one laser system stabilized to the P(16) line of {sup 13}C{sub 2}H{sub 2} and a system stabilized to the line in {sup 12}C{sub 2}H{sub 2} whose frequency was to be determined, a Cr:YAG laser-based frequency comb was employed to measure the frequency intervals. The systematic uncertainty is notably reduced relative to that of previous studies, and the region of measured lines has been extended. Improved molecular constants are obtained.

  19. Frequency stabilization for mobile satellite terminals via LORAN

    NASA Technical Reports Server (NTRS)

    Ernst, Gregory J.; Kee, Steven M.; Marquart, Robert C.

    1990-01-01

    Digital satellite communication systems require careful management of frequency stability. Historically, frequency stability has been accomplished by continuously powered, high cost, high performance reference oscillators. Today's low cost mobile satellite communication equipment must operate under wide ranging environmental conditions, stabilize quickly after application of power, and provide adequate performance margin to overcome RF link impairments unique to the land mobile environment. Methods for frequency stabilization in land mobile applications must meet these objectives without incurring excessive performance degradation. A frequency stabilization scheme utilizing the LORAN (Long Range Navigation) system is presented.

  20. Absolute exponential stability of recurrent neural networks with generalized activation function.

    PubMed

    Xu, Jun; Cao, Yong-Yan; Sun, Youxian; Tang, Jinshan

    2008-06-01

    In this paper, the recurrent neural networks (RNNs) with a generalized activation function class is proposed. In this proposed model, every component of the neuron's activation function belongs to a convex hull which is bounded by two odd symmetric piecewise linear functions that are convex or concave over the real space. All of the convex hulls are composed of generalized activation function classes. The novel activation function class is not only with a more flexible and more specific description of the activation functions than other function classes but it also generalizes some traditional activation function classes. The absolute exponential stability (AEST) of the RNN with a generalized activation function class is studied through three steps. The first step is to demonstrate the global exponential stability (GES) of the equilibrium point of original RNN with a generalized activation function being equivalent to that of RNN under all vertex functions of convex hull. The second step transforms the RNN under every vertex activation function into neural networks under an array of saturated linear activation functions. Because the GES of the equilibrium point of three systems are equivalent, the next stability analysis focuses on the GES of the equilibrium point of RNN system under an array of saturated linear activation functions. The last step is to study both the existence of equilibrium point and the GES of the RNN under saturated linear activation functions using the theory of M-matrix. In the end, a two-neuron RNN with a generalized activation function is constructed to show the effectiveness of our results.

  1. A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Rodahl, Michael; Kasemo, Bengt

    1996-09-01

    An experimental setup is described that can simultaneously measure the absolute dissipation factor and the resonant frequency of a short-circuited quartz crystal microbalance. The crystal is driven at approximately its resonant frequency by a signal generator which is intermittently disconnected by a relay, causing the crystal oscillation amplitude to decay exponentially. The decay is measured using a ferrite toroid transformer. One of the crystal leads is fed through the center of the ferrite toroid and thereby acts as the primary winding of the transformer. The secondary winding of the transformer is connected to a digitizing oscilloscope which records the decay of the crystal oscillation. From the recorded decay curve, the absolute dissipation factor (calculated from the decay time constant) and the series resonant frequency of the freely oscillating crystal are obtained. Alternatively, the dissipation factor and resonant frequency can be measured for the crystal oscillating under open-circuit conditions, i.e., in the parallel mode. The measurements are automated.

  2. Long-term laser frequency stabilization using fiber interferometers

    SciTech Connect

    Kong, Jia; Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Mitchell, Morgan W.

    2015-07-15

    We report long-term laser frequency stabilization using only the target laser and a pair of 5 m fiber interferometers, one as a frequency reference and the second as a sensitive thermometer to stabilize the frequency reference. When used to stabilize a distributed feedback laser at 795 nm, the frequency Allan deviation at 1000 s drops from 5.6 × 10{sup −8} to 6.9 × 10{sup −10}. The performance equals that of an offset lock employing a second, atom-stabilized laser in the temperature control.

  3. 47 CFR 2.1055 - Measurements required: Frequency stability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Measurements required: Frequency stability. 2.1055 Section 2.1055 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization...

  4. 47 CFR 2.1055 - Measurements required: Frequency stability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Measurements required: Frequency stability. 2.1055 Section 2.1055 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization...

  5. 47 CFR 2.1055 - Measurements required: Frequency stability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Measurements required: Frequency stability. 2.1055 Section 2.1055 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization...

  6. 47 CFR 2.1055 - Measurements required: Frequency stability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Measurements required: Frequency stability. 2.1055 Section 2.1055 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization...

  7. 47 CFR 2.1055 - Measurements required: Frequency stability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Measurements required: Frequency stability. 2.1055 Section 2.1055 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization...

  8. Stabilization of a self-referenced, prism-based, Cr:forsterite laser frequency comb using an intracavity prism

    SciTech Connect

    Tillman, Karl A.; Thapa, Rajesh; Knabe, Kevin; Wu Shun; Lim, Jinkang; Washburn, Brian R.; Corwin, Kristan L.

    2009-12-20

    The frequency comb from a prism-based Cr:forsterite laser has been frequency stabilized using intracavity prism insertion and pump power modulation. Absolute frequency measurements of a CW fiber laser stabilized to the P(13) transition of acetylene demonstrate a fractional instability of {approx}2x10{sup -11} at a 1 s gate time, limited by a commercial Global Positioning System (GPS)-disciplined rubidium oscillator. Additionally, absolute frequency measurements made simultaneously using a second frequency comb indicate relative instabilities of 3x10{sup -12} for both combs for a 1 s gate time. Estimations of the carrier-envelope offset frequency linewidth based on relative intensity noise and the response dynamics of the carrier-envelope offset to pump power changes confirm the observed linewidths.

  9. Frequency standard stability for Doppler measurements on-board the shuttle

    NASA Technical Reports Server (NTRS)

    Harton, P. L.

    1974-01-01

    The short and long term stability characteristics of crystal and atomic standards are described. Emphasis is placed on crystal oscillators because of the selection which was made for the shuttle baseline and the complexities which are introduced by the shuttle environment. Attention is given, first, to the definitions of stability and the application of these definitions to the shuttle system and its mission. Data from time domain measurements are used to illustrate the definitions. Results of a literature survey to determine environmental effects on frequency reference sources are then presented. Finally, methods of standard frequency dissemination over radio frequency carriers are noted as a possible means of measuring absolute accuracy and long term stability characteristics during on one way Doppler equipment.

  10. Absolute frequency measurement of the {{}^{1}}{{\\text{S}}_{0}} – {{}^{3}}{{\\text{P}}_{0}} transition of 171Yb

    NASA Astrophysics Data System (ADS)

    Pizzocaro, Marco; Thoumany, Pierre; Rauf, Benjamin; Bregolin, Filippo; Milani, Gianmaria; Clivati, Cecilia; Costanzo, Giovanni A.; Levi, Filippo; Calonico, Davide

    2017-02-01

    We report the absolute frequency measurement of the unperturbed transition {{}1}{{\\text{S}}0} – {{}3}{{\\text{P}}0} at 578 nm in 171Yb realized in an optical lattice frequency standard relative to a cryogenic caesium fountain. The measurement result is 518 295 836 590 863.59(31) Hz with a relative standard uncertainty of 5.9× {{10}-16} . This value is in agreement with the ytterbium frequency recommended as a secondary representation of the second in the International System of Units.

  11. Atomic frequency standards for ultra-high-frequency stability

    NASA Technical Reports Server (NTRS)

    Maleki, L.; Prestage, J. D.; Dick, G. J.

    1987-01-01

    The general features of the Hg-199(+) trapped-ion frequency standard are outlined and compared to other atomic frequency standards, especially the hydrogen maser. The points discussed are those which make the trapped Hg-199(+) standard attractive: high line Q, reduced sensitivity to external magnetic fields, and simplicity of state selection, among others.

  12. Fiber-based femtosecond optical frequency comb stabilized to iodine frequency standard

    NASA Astrophysics Data System (ADS)

    Bagayev, S. N.; Denisov, V. I.; Dychkov, A. S.; Koliada, N. A.; Nyushkov, B. N.; Pivtsov, V. S.; Farnosov, S. A.; Antropov, A. A.

    2017-01-01

    A fiber-based femtosecond optical frequency comb spanning wavelengths from 1 to 2 μm was stabilized precisely to an iodine frequency standard by means of heterodyne optical phase-locked loops. It enables transfer of frequency stability across electromagnetic spectrum and implementation of compact optical clocks with ∼10-15 long-term instability.

  13. Methods and apparatus for broadband frequency comb stabilization

    DOEpatents

    Cox, Jonathan A; Kaertner, Franz X

    2015-03-17

    Feedback loops can be used to shift and stabilize the carrier-envelope phase of a frequency comb from a mode-locked fibers laser or other optical source. Compared to other frequency shifting and stabilization techniques, feedback-based techniques provide a wideband closed-loop servo bandwidth without optical filtering, beam pointing errors, or group velocity dispersion. It also enables phase locking to a stable reference, such as a Ti:Sapphire laser, continuous-wave microwave or optical source, or self-referencing interferometer, e.g., to within 200 mrad rms from DC to 5 MHz. In addition, stabilized frequency combs can be coherently combined with other stable signals, including other stabilized frequency combs, to synthesize optical pulse trains with pulse durations of as little as a single optical cycle. Such a coherent combination can be achieved via orthogonal control, using balanced optical cross-correlation for timing stabilization and balanced homodyne detection for phase stabilization.

  14. All-fiber frequency-stabilized erbium doped ring laser.

    PubMed

    Marty, Patrick Thomas; Morel, Jacques; Feurer, Thomas

    2010-12-20

    We present an all-fiber frequency-stabilized ring laser system with an integrated reference gas cell consisting of a hollow core fiber filled with acetylene. Through nonlinear absorption spectroscopy the laser frequency is stabilized to a specific absorption line of acetylene. Three different stabilization schemes are investigated and the minimum Allan deviation obtained after 100 s is 4.4 · 10(-11).

  15. Measurement of the frequency stability of responders in aircraft

    NASA Technical Reports Server (NTRS)

    Liu, Xiaofan

    1994-01-01

    Measurement on an aircraft orbit, such as a satellite launching orbit, is made by the responder in the aircraft along with several remote track stations on the ground. During the launching, the system is required to have precise time synchronization and frequency accuracy. At the same time, accurate measurement of aircraft velocity requires high frequency stability of the system. However, atomic frequency standards in the ground stations supply time and frequency reference standard with excellent long term and short term frequency stability for the above-mentioned goals. The stability of responder is also an important factor affecting the performance of the system and there are more requirements for the corresponding time/frequency measurements. In the system, the responders do not use continuous wave (CW) but narrow pulse modulated wave; consequently, the characterization theory of their stability is more complicated and the measurement technique is more difficult for pulsed wave than that for CW. A systematic characterization theory of the frequency stability for pulsed wave is demonstrated and the measuring methods are discussed. The measurement systems, which have been set up in Beijing Institute of Radio Metrology and Measurement (BIRMM) and can be used to test the frequency stability of pulse coherent responders in time domain and frequency domain with high sensitivity and accuracy, are described. Using these measurement systems, successful measurements for the responders were made with which the satellite launching orbits were precisely obtained and tracked.

  16. The measurement of frequency and frequency stability of precision oscillators

    NASA Technical Reports Server (NTRS)

    Allan, D. W.

    1974-01-01

    The specification and performance of precision oscillators is discussed as a very important topic to the owners and users of these oscillators. This paper presents at the tutorial level some convenient methods of measuring the frequencies of precision oscillators -- giving advantages and disadvantages of these methods. Further it is shown that by processing the data from the frequency measurements in certain ways, one may be able to state more general characteristics of the oscillators being measured. The goal in this regard is to allow the comparisons of different manufacturers' specifications and more importantly to help assess whether these oscillators will meet the standard of performance the user may have in a particular application.

  17. Absolute frequency list of the ν3-band transitions of methane at a relative uncertainty level of 10(-11).

    PubMed

    Okubo, Sho; Nakayama, Hirotaka; Iwakuni, Kana; Inaba, Hajime; Sasada, Hiroyuki

    2011-11-21

    We determine the absolute frequencies of 56 rotation-vibration transitions of the ν(3) band of CH(4) from 88.2 to 90.5 THz with a typical uncertainty of 2 kHz corresponding to a relative uncertainty of 2.2 × 10(-11) over an average time of a few hundred seconds. Saturated absorption lines are observed using a difference-frequency-generation source and a cavity-enhanced absorption cell, and the transition frequencies are measured with a fiber-laser-based optical frequency comb referenced to a rubidium atomic clock linked to the international atomic time. The determined value of the P(7) F(2)((2)) line is consistent with the International Committee for Weights and Measures recommendation within the uncertainty.

  18. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure for absolute gravimetry.

    PubMed

    Wang, G; Wu, K; Hu, H; Li, G; Wang, L J

    2016-10-01

    To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.

  19. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure for absolute gravimetry

    NASA Astrophysics Data System (ADS)

    Wang, G.; Wu, K.; Hu, H.; Li, G.; Wang, L. J.

    2016-10-01

    To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.

  20. Absolute frequency measurement of the 674-nm {sup 88}Sr{sup +} clock transition using a femtosecond optical frequency comb

    SciTech Connect

    Margolis, H.S.; Huang, G.; Barwood, G.P.; Lea, S.N.; Klein, H.A.; Rowley, W.R.C.; Gill, P.; Windeler, R.S.

    2003-03-01

    The frequency of the 5s {sup 2}S{sub 1/2}-4d {sup 2}D{sub 5/2} electric quadrupole transition at 674 nm in a single, trapped, laser-cooled {sup 88}Sr{sup +} ion has been measured with respect to the Systeme International (SI) second using a femtosecond laser optical frequency comb. The measured frequency of 444 779 044 095.52 kHz, with an estimated standard uncertainty of 0.10 kHz, is more accurate than, and in agreement with, the value previously measured using a conventional frequency chain.

  1. On the control aspect of laser frequency stabilization

    NASA Technical Reports Server (NTRS)

    Zia, Omar

    1991-01-01

    Realization of frequency stable lasers is viewed as key to progress in many areas of research; therefore, the search for more effective techniques of frequency stabilization has intensified significantly in recent years. Investigating and validating the fundamental linewidth and frequency stability limits of a Nd:YAG laser oscillator, locked to a high finesse reference cavity in the microgravity and vibration-free environment of space, is the objective of a NASA project called SUNLITE at LaRC. The objective of this paper is to further investigate the application of feedback control theory in active frequency control as a frequency stabilization technique and determine the most appropriate control strategy to be used in general and particularly in the SUNLITE Project.

  2. Frequency stability improvement for piezoresistive micromechanical oscillators via synchronization

    NASA Astrophysics Data System (ADS)

    Pu, Dong; Huan, Ronghua; Wei, Xueyong

    2017-03-01

    Synchronization phenomenon first discovered in Huygens' clock shows that the rhythms of oscillating objects can be adjusted via an interaction. Here we show that the frequency stability of a piezoresistive micromechanical oscillator can be enhanced via synchronization. The micromechanical clamped-clamped beam oscillator is built up using the electrostatic driving and piezoresistive sensing technique and the synchronization phenomenon is observed after coupling it to an external oscillator. An enhancement of frequency stability is obtained in the synchronization state. The influences of the synchronizing perturbation intensity and frequency detuning applied on the oscillator are studied experimentally. A theoretical analysis of phase noise leads to an analytical formula for predicting Allan deviation of the frequency output of the piezoresistive oscillator, which successfully explains the experimental observations and the mechanism of frequency stability enhancement via synchronization.

  3. 3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique

    PubMed Central

    Wang, Yajun; Laughner, Jacob I.; Efimov, Igor R.; Zhang, Song

    2013-01-01

    This paper presents a two-frequency binary phase-shifting technique to measure three-dimensional (3D) absolute shape of beating rabbit hearts. Due to the low contrast of the cardiac surface, the projector and the camera must remain focused, which poses challenges for any existing binary method where the measurement accuracy is low. To conquer this challenge, this paper proposes to utilize the optimal pulse width modulation (OPWM) technique to generate high-frequency fringe patterns, and the error-diffusion dithering technique to produce low-frequency fringe patterns. Furthermore, this paper will show that fringe patterns produced with blue light provide the best quality measurements compared to fringe patterns generated with red or green light; and the minimum data acquisition speed for high quality measurements is around 800 Hz for a rabbit heart beating at 180 beats per minute. PMID:23482151

  4. Assessment of Stability of Craniofacial Implants by Resonant Frequency Analysis.

    PubMed

    Ivanjac, Filip; Konstantinović, Vitomir S; Lazić, Vojkan; Dordević, Igor; Ihde, Stefan

    2016-03-01

    Implant stability is a principal precondition for the success of implant therapy. Extraoral implants (EO) are mainly used for anchoring of maxillofacial epithesis. However, assessment of implant stability is mostly based on principles derived from oral implants. The aim of this study was to investigate clinical stability of EO craniofacial disk implants (single, double, and triple) by resonance frequency analysis at different stages of the bone's healing. Twenty patients with orbital (11), nasal (5), and auricular (4) defects with 50 EO implants placed for epithesis anchorage were included. Implant stability was measured 3 times; after implant placement, at 3 months and at least after 6 months. A significant increase in implant stability values was noted between all of the measurements, except for triple-disk implants between third and sixth months, and screw implants between 0 and third months. Disk implants showed lower implant stability quotient (ISQ) values compared with screw implants. Triple-disk implants showed better stability compared with single and double-disk implants. Based on resonance frequency analysis values, disk implants could be safely loaded when their ISQ values are 38 (single disks), 47 (double disks), and 48 (triple disks). According to resonance frequency analysis, disk implant stability increased over time, which showed good osseointegration and increasing mineralization. Although EO screw implants showed higher ISQ values than disk implants, disk-type implants can be safely loaded even if lower values of stability are measured.

  5. Absolute measurement of the 1S0 − 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link

    PubMed Central

    Morzyński, Piotr; Bober, Marcin; Bartoszek-Bober, Dobrosława; Nawrocki, Jerzy; Krehlik, Przemysław; Śliwczyński, Łukasz; Lipiński, Marcin; Masłowski, Piotr; Cygan, Agata; Dunst, Piotr; Garus, Michał; Lisak, Daniel; Zachorowski, Jerzy; Gawlik, Wojciech; Radzewicz, Czesław; Ciuryło, Roman; Zawada, Michał

    2015-01-01

    We report a stability below 7 × 10−17 of two independent optical lattice clocks operating with bosonic 88Sr isotope. The value (429 228 066 418 008.3(1.9)syst (0.9)stat Hz) of the absolute frequency of the 1S0 – 3P0 transition was measured with an optical frequency comb referenced to the local representation of the UTC by the 330 km-long stabilized fibre optical link. The result was verified by series of measurements on two independent optical lattice clocks and agrees with recommendation of Bureau International des Poids et Mesures. PMID:26639347

  6. Absolute measurement of the 1S0 - 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link.

    PubMed

    Morzyński, Piotr; Bober, Marcin; Bartoszek-Bober, Dobrosława; Nawrocki, Jerzy; Krehlik, Przemysław; Śliwczyński, Łukasz; Lipiński, Marcin; Masłowski, Piotr; Cygan, Agata; Dunst, Piotr; Garus, Michał; Lisak, Daniel; Zachorowski, Jerzy; Gawlik, Wojciech; Radzewicz, Czesław; Ciuryło, Roman; Zawada, Michał

    2015-12-07

    We report a stability below 7 × 10(-17) of two independent optical lattice clocks operating with bosonic (88)Sr isotope. The value (429 228 066 418 008.3(1.9)(syst) (0.9)(stat) Hz) of the absolute frequency of the (1)S(0) - (3)P(0) transition was measured with an optical frequency comb referenced to the local representation of the UTC by the 330 km-long stabilized fibre optical link. The result was verified by series of measurements on two independent optical lattice clocks and agrees with recommendation of Bureau International des Poids et Mesures.

  7. Laser frequency stabilization and shifting by using modulation transfer spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Bing; Wang, Zhao-Ying; Wu, Bin; Xu, Ao-Peng; Wang, Qi-Yu; Xu, Yun-Fei; Lin, Qiang

    2014-10-01

    The stabilizing and shifting of laser frequency are very important for the interaction between the laser and atoms. The modulation transfer spectroscopy for the 87Rb atom with D2 line transition F = 2 → F' = 3 is used for stabilizing and shifting the frequency of the external cavity grating feedback diode laser. The resonant phase modulator with electro—optical effect is used to generate frequency sideband to lock the laser frequency. In the locking scheme, circularly polarized pump- and probe-beams are used. By optimizing the temperature of the vapor, the pump- and probe-beam intensity, the laser linewidth of 280 kHz is obtained. Furthermore, the magnetic field generated by a solenoid is added into the system. Therefore the system can achieve the frequency locking at any point in a range of hundreds of megahertz frequency shifting with very low power loss.

  8. Third-order chromatic dispersion stabilizes Kerr frequency combs.

    PubMed

    Parra-Rivas, Pedro; Gomila, Damià; Leo, François; Coen, Stéphane; Gelens, Lendert

    2014-05-15

    Using numerical simulations of an extended Lugiato-Lefever equation we analyze the stability and nonlinear dynamics of Kerr frequency combs generated in microresonators and fiber resonators, taking into account third-order dispersion effects. We show that cavity solitons underlying Kerr frequency combs, normally sensitive to oscillatory and chaotic instabilities, are stabilized in a wide range of parameter space by third-order dispersion. Moreover, we demonstrate how the snaking structure organizing compound states of multiple cavity solitons is qualitatively changed by third-order dispersion, promoting an increased stability of Kerr combs underlined by a single cavity soliton.

  9. Frequency domain stability analysis of nonlinear active disturbance rejection control system.

    PubMed

    Li, Jie; Qi, Xiaohui; Xia, Yuanqing; Pu, Fan; Chang, Kai

    2015-05-01

    This paper applies three methods (i.e., root locus analysis, describing function method and extended circle criterion) to approach the frequency domain stability analysis of the fast tool servo system using nonlinear active disturbance rejection control (ADRC) algorithm. Root locus qualitative analysis shows that limit cycle is generated because the gain of the nonlinear function used in ADRC varies with its input. The parameters in the nonlinear function are adjustable to suppress limit cycle. In the process of root locus analysis, the nonlinear function is transformed based on the concept of equivalent gain. Then, frequency domain description of the nonlinear function via describing function is presented and limit cycle quantitative analysis including estimating prediction error is presented, which virtually and theoretically demonstrates that the describing function method cannot guarantee enough precision in this case. Furthermore, absolute stability analysis based on extended circle criterion is investigated as a complement.

  10. Stability and noise spectra of relative Loran-C frequency comparisons

    NASA Technical Reports Server (NTRS)

    Proverbio, E.; Quesada, V.; Simoncini, A.

    1973-01-01

    Relative comparisons of Loran-C frequency transmissions between the master station of Catanzaro (Simeri Crichi) and the X, Z slave stations of Estartit (Spain) and Lampedusa (Italy) are carrying out by the GG LORSTA monitor station of the Mediterranean Sea Loran-C chain. These comparisons are able to emphasize the relative and, under certain conditions, the absolute rate of the emitting standard frequencies of the slave stations and some relevant statistical properties of the Loran-C Method for frequency transmission and time synchronization. The stability of each Loran-C frequency standard transmission is subject to perturbations, more or less known, due to the propagation medium and other causes. Following the Allan (1966) method for data processing, the performance of the relative rate of frequency of the transmissions of the X, Z slave stations are described calculating the standard deviation of a set of N frequency measurements from its mean averaged during sampling times. This standard deviation is designated as the measure of the stability of the Loran-C frequency transmission.

  11. High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing

    SciTech Connect

    Lam, Timothy T.-Y.; Chow, Jong H.; Shaddock, Daniel A.; Littler, Ian C. M.; Gagliardi, Gianluca; Gray, Malcolm B.; McClelland, David E.

    2010-07-20

    We present a quasi-static fiber optic strain sensing system capable of resolving signals below nanostrain from 20 mHz. A telecom-grade distributed feedback CW diode laser is locked to a fiber Fabry-Perot sensor, transferring the detected signals onto the laser. An H{sup 13}C{sup 14}N absorption line is then used as a frequency reference to extract accurate low-frequency strain signals from the locked system.

  12. Absolute group refractive index measurement of air by dispersive interferometry using frequency comb.

    PubMed

    Yang, L J; Zhang, H Y; Li, Y; Wei, H Y

    2015-12-28

    The absolute group refractive index of air at 1563 nm is measured by dispersive interferometry, and a combined uncertainty of 1.2 × 10(-8) is achieved. The group refractive index of air is calculated from the dispersive interferograms of the two beams passing through the inner and outer regions of a vacuum cell by fast-Fourier-transform. Experimental results show that the discrepancies between our method and modified Edlén equation are less than 3.43 × 10(-8) and 4.4 × 10(-8) for short-term and long-term experiments, respectively. The interferogram update rate is 15 ms, which makes it suitable for application of real-time monitoring. Furthermore, it is promising to improve the measurement uncertainty to 3.0 × 10(-9) by changing the material of the vacuum cell and measuring its length more accurately through optical interferometry.

  13. A phase-stabilized carbon nanotube fiber laser frequency comb.

    PubMed

    Lim, Jinkang; Knabe, Kevin; Tillman, Karl A; Neely, William; Wang, Yishan; Amezcua-Correa, Rodrigo; Couny, François; Light, Philip S; Benabid, Fetah; Knight, Jonathan C; Corwin, Kristan L; Nicholson, Jeffrey W; Washburn, Brian R

    2009-08-03

    A frequency comb generated by a 167 MHz repetition frequency erbium-doped fiber ring laser using a carbon nanotube saturable absorber is phase-stabilized for the first time. Measurements of the in-loop phase noise show an integrated phase error on the carrier envelope offset frequency of 0.35 radians. The carbon nanotube fiber laser comb is compared with a CW laser near 1533 nm stabilized to the nu(1) + nu(3) overtone transition in an acetylene-filled kagome photonic crystal fiber reference, while the CW laser is simultaneously compared to another frequency comb based on a Cr:Forsterite laser. These measurements demonstrate that the stability of a GPS-disciplined Rb clock is transferred to the comb, resulting in an upper limit on the locked comb's frequency instability of 1.2 x 10(-11) in 1 s, and a relative instability of <3 x 10(-12) in 1 s. The carbon nanotube laser frequency comb offers much promise as a robust and inexpensive all-fiber frequency comb with potential for scaling to higher repetition frequencies.

  14. Scientific applications of frequency-stabilized laser technology in space

    NASA Technical Reports Server (NTRS)

    Schumaker, Bonny L.

    1990-01-01

    A synoptic investigation of the uses of frequency-stabilized lasers for scientific applications in space is presented. It begins by summarizing properties of lasers, characterizing their frequency stability, and describing limitations and techniques to achieve certain levels of frequency stability. Limits to precision set by laser frequency stability for various kinds of measurements are investigated and compared with other sources of error. These other sources include photon-counting statistics, scattered laser light, fluctuations in laser power, and intensity distribution across the beam, propagation effects, mechanical and thermal noise, and radiation pressure. Methods are explored to improve the sensitivity of laser-based interferometric and range-rate measurements. Several specific types of science experiments that rely on highly precise measurements made with lasers are analyzed, and anticipated errors and overall performance are discussed. Qualitative descriptions are given of a number of other possible science applications involving frequency-stabilized lasers and related laser technology in space. These applications will warrant more careful analysis as technology develops.

  15. Precise Frequency Measurements Using a Superconducting Cavity Stabilized Oscillator

    NASA Technical Reports Server (NTRS)

    Strayer, D. M.; Yeh, N.-C.; Jiang, W.; Anderson, V. L.; Asplund, N.

    1999-01-01

    Many physics experiments call on improved resolution to better define the experimental results, thus improving tests of theories. Modern microwave technology combined with high-Q resonators can achieve frequency readout and control with resolutions up to a part in 10(exp 18). When the physical quantity in question in the experiment can be converted to a frequency or a change in frequency, a high-stability microwave oscillator can be applied to obtain state-of-the-art precision. In this work we describe the overall physical concepts and the required experimental procedures for optimizing a high-resolution frequency measurement system that employs a high-Q superconducting microwave cavity and a low-noise frequency synthesizer. The basic approach is to resolve the resonant frequencies of a high-Q (Q > 10(exp 10)) cavity to extremely high precision (one part in 10(exp 17)- 10(exp 18)). Techniques for locking the synthesizer frequency to a resonant frequency of the superconducting cavity to form an ultra-stable oscillator are described. We have recently set up an ultra-high-vacuum high-temperature annealing system to process superconducting niobium cavities, and have been able to consistently achieve Q > 10(exp 9). We have integrated high-Q superconducting cavities with a low-noise microwave synthesizer in a phase-locked-loop to verify the frequency stability of the system. Effects that disturb the cavity resonant frequency (such as the temperature fluctuations and mechanical vibrations) and methods to mitigate those effects are also considered. Applicability of these techniques to experiments will be discussed, and our latest experimental progress in achieving high-resolution frequency measurements using the superconducting-cavity-stabilized-oscillator will be presented.

  16. Time domain measurement of frequency stability: A tutorial introduction

    NASA Technical Reports Server (NTRS)

    Vanier, J.; Tetu, M.

    1978-01-01

    The theoretical basis behind the definition of frequency stability in the time domain is outlined. Various types of variances were examined. Their differences and interrelation are pointed out. Systems that are generally used in the measurement of these variances are described.

  17. Stabilized Fiber-Optic Distribution of Reference Frequency

    NASA Technical Reports Server (NTRS)

    Calhoun, Malcolm; Tjoelker, Robert; Diener, William; Dick, G. John; Wang, Rabi; Kirk, Albert

    2003-01-01

    An optoelectronic system distributes a reference signal of low noise and highly stabilized phase and frequency (100 MHz) from an atomic frequency standard to a remote facility at a distance up to tens of kilometers. The reference signal is transmitted to the remote station as amplitude modulation of an optical carrier signal propagating in an optical fiber. The stabilization scheme implemented in this system is intended particularly to suppress phase and frequency fluctuations caused by vibrations and by expansion and contraction of the optical fiber and other components in diurnal and seasonal heating and cooling cycles. The system (see figure) comprises several subsystems, the main one being (1) a hydrogen-maser or linear-ion-trap frequency standard in an environmentally controlled room in a signal-processing center (SPC), (2) a stabilized fiber-optic distribution assembly (SFODA), (3) a compensated sapphire oscillator (CSO) in an environmentally controlled room in the remote facility, (4) thermally stabilized distribution amplifiers and cabling from the environmentally controlled room to end users, and (5) performance- measuring equipment.

  18. Landsat-7 ETM+ on-orbit reflective-band radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Thome, K.J.; Barsi, J.A.; Kaita, E.; Helder, Dennis L.; Barker, J. L.; Scaramuzza, Pat

    2004-01-01

    Launched in April 1999, the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) instrument is in its sixth year of operation. The ETM+ instrument has been the most stable of any of the Landsat instruments. To date, the best onboard calibration source for the reflective bands has been the Full Aperture Solar Calibrator, a solar-diffuser-based system, which has indicated changes of between 1% to 2% per year in the ETM+ gain for bands 1-4 and 8 and less than 0.5%/year for bands 5 and 7. However, most of this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on vicarious calibrations and observations of "invariant sites", hyperarid sites of the Sahara and Arabia. Weighted average slopes determined from these datasets suggest changes of 0.0% to 0.4% per year for bands 1-4 and 8 and 0.4% to 0.5% per year for bands 5 and 7. Absolute calibration of the reflective bands of the ETM+ is consistent with vicarious observations and other sensors generally at the 5% level, though there appear to be some systematic differences.

  19. Frequency stabilization of CO2 lasers at the Hertz level

    NASA Astrophysics Data System (ADS)

    George, Thomas; Nicolaisen, H. W.; Bernard, V.; Durand, P. E.; Amy-Klein, Anne; Chardonnet, Christian; Breant, Christian

    1995-04-01

    Ultrahigh resolution spectroscopy and metrology require very stable lasers with a high spectral purity. For spectroscopy with a resolution up to 1 kHz at 30 THz, the laser stabilization on a strong molecular absorption line detected in an external cell can provide a stability of a few Hz/mn and a linewidth of about 10 Hz. The development of a new stabilization scheme which acts separately on the short- and long-term stabilities is in progress. The stabilization on a peak of a high-finesses ULE Fabry-Perot cavity by using a piezoelectric transducer and an acousto-optic modulator should yield a laser linewidth of better than 1 Hz. Frequency locking on a molecular saturation line detected in transmission of another Fabry-Perot cavity can provide a long-term stability of a few Hertz on several hours. Such performances are required for spectroscopy with a resolution better than 100 Hz and for the realization of a new generation of frequency standards in the 10-micrometers spectral region based on a signal of a two-photon Ramsey fringes experiment.

  20. Frequency spectrum analysis for spectrum stabilization in airborne gamma-ray spectrometer.

    PubMed

    Zeng, Guoqiang; Tan, Chengjun; Ge, Liangquan; Zhang, Qingxian; Gu, Yi

    2014-02-01

    Abnormal multi-crystal spectral drifts often can be observed when power on the airborne gamma-ray spectrometer. Currently, these spectral drifts of each crystal are generally eliminated through manual adjustment, which is time-consuming and labor-ineffective. To realize this quick automatic spectrum stabilization of multi-crystal, a frequency spectrum analysis method for natural gamma-ray background spectrum is put forward in this paper to replace traditional spectrum stabilization method used characteristic peak. Based on the polynomial fitting of high harmonics in frequency spectrum and gamma-ray spectral drift, it calculates overall spectral drift of natural gamma-ray spectrum and adjusts the gain of spectrometer by this spectral drift value, thus completing quick spectrum stabilization in the power on stage of spectrometer. This method requires no manual intervention and can obtain the overall spectral drift value automatically under no time-domain pre-processing to the natural gamma-ray spectra. The spectral drift value calculated by this method has an absolute error less than five channels (1024 resolution) and a relative error smaller than 0.80%, which can satisfy the quick automatic spectrum stabilization requirement when power on the airborne gamma-ray spectrometer instead of manual operation.

  1. Stability of a frequency-comb-based transfer-lock using a passive Fabry-Perot resonator.

    PubMed

    Pal, Sambit B; Lam, Mark M; Dieckmann, K

    2016-12-01

    We report on a transfer-lock laser frequency stabilization that utilizes a frequency comb (FC) and a radio frequency counter referenced to a GPS frequency standard to compensate for the frequency drifts of two lasers, which are locked to a single passive Fabry-Perot resonator (FPR). The method requires only one optical phase lock with the FC and allows transfer locking of lasers at wavelengths beyond the usable range of the FC. To attain a large frequency tuning range for the lasers, we implement optical serrodyning. We further demonstrate an efficient scheme to suppress residual amplitude modulation, thereby improving the stability of the Pound-Drever-Hall lock used in this case. The absolute frequency stability was found to be better than 2×10-13 on timescales up to 300 s. Hence, together with the frequency stability on short timescales provided by the FPR, this scheme facilitates coherent Raman spectroscopy as needed for an example for the production of ultracold dipolar heteronuclear molecules.

  2. Drug Treated Schizophrenia, Schizoaffective and Bipolar Disorder Patients Evaluated by qEEG Absolute Spectral Power and Mean Frequency Analysis

    PubMed Central

    Wix-Ramos, Richard; Moreno, Xiomara; Capote, Eduardo; González, Gilbert; Uribe, Ezequiel

    2014-01-01

    Objective Research of electroencephalograph (EEG) power spectrum and mean frequency has shown inconsistent results in patients with schizophrenic, schizoaffective and bipolar disorders during medication when compared to normal subjects thus; the characterization of these parameters is an important task. Methods We applied quantitative EEG (qEEG) to investigate 38 control, 15 schizophrenic, 7 schizoaffective and 11 bipolar disorder subjects which remaine under the administration of psychotropic drugs (except control group). Absolute spectral power (ASP), mean frequency and hemispheric electrical asymmetry were measured by 19 derivation qEEG. Group mean values were compared with non parametrical Mann-Whitney test and spectral EEG maps with z-score method at p < 0.05. Results Most frequent drug treatments for schizophrenic patients were neuroleptic+antiepileptic (40% of cases) or 2 neuroleptics (33.3%). Schizoaffective patients received neuroleptic+benzodiazepine (71.4%) and for bipolar disorder patients neuroleptic+antiepileptic (81.8%). Schizophrenic (at all derivations except for Fp1, Fp2, F8 and T6) and schizoaffective (only at C3) show higher values of ASP (+57.7% and +86.1% respectively) compared to control group. ASP of bipolar disorder patients did not show differences against control group. The mean frequency was higher at Fp1 (+14.2%) and Fp2 (+17.4%) in bipolar disorder patients than control group, but no differences were found in frequencies between schizophrenic or schizoaffective patients against the control group. Majority of spectral differences were found at the left hemisphere in schizophrenic and schizoaffective but not in bipolar disorder subjects. Conclusion The present report contributes to characterize quantitatively the qEEG in drug treated schizophrenic, schizoaffective or bipolar disorder patients. PMID:24851121

  3. Physics characterization and frequency stability of the pulsed rubidium maser

    SciTech Connect

    Godone, Aldo; Micalizio, Salvatore; Levi, Filippo; Calosso, Claudio

    2006-10-15

    In this paper we report the theoretical and experimental characterization of a pulsed optically pumped vapor-cell frequency standard based on the detection of the free-induction decay microwave signal. The features that make this standard similar to a pulsed passive maser are presented. In order to predict and optimize the frequency stability, thermal and shot noise sources are analyzed, as well as the conversions of the laser and microwave fluctuations into the output frequency. The experimental results obtained with a clock prototype based on {sup 87}Rb in buffer gas are compared with the theoretical predictions, showing the practical possibility to implement a frequency standard limited in the medium term only by thermal drift. The achieved frequency stability is {sigma}{sub y}({tau})=1.2x10{sup -12}{tau}{sup -1/2} for measurement times up to {tau}{approx_equal}10{sup 5} s. It represents one of the best results reported in literature for gas cell frequency standards and is compliant with the present day requirements for on board space applications.

  4. Low Frequency Vibration Energy Harvesting using Diamagnetically Stabilized Magnet Levitation

    NASA Astrophysics Data System (ADS)

    Palagummi, Sri Vikram

    Over the last decade, vibration-based energy harvesting has provided a technology push on the feasibility of self-powered portable small electronic devices and wireless sensor nodes. Vibration energy harvesters in general transduce energy by damping out the environmentally induced relative emotion through either a cantilever beam or an equivalent suspension mechanism with one of the transduction mechanisms, like, piezoelectric, electrostatic, electromagnetic or magnetostrictive. Two major challenges face the present harvesters in literature, one, they suffer from the unavoidable mechanical damping due to internal friction present in the systems, second, they cannot operate efficiently in the low frequency range (< 10 Hz), when most of the ambient vibrational energy is in this low frequency broadband range. Passive and friction free diamagnetically stabilized magnet levitation mechanisms which can work efficiently as a vibration energy harvester in the low frequency range are discussed in this work. First, a mono-stable vertical diamagnetic levitation (VDL) based vibration energy harvester (VEH) is discussed. The harvester consists of a lifting magnet (LM), a floating magnet (FM) and two diamagnetic plates (DPs). The LM balances out the weight of the FM and stability is brought about by the repulsive effect of the DPs, made of pyrolytic graphite. Two thick cylindrical coils, placed in grooves which are engraved in the DPs, are used to convert the mechanical energy into electrical energy. Experimental frequency response of the system is validated by the theoretical analysis which showed that the VEH works in a low frequency range but sufficient levitation gap was not achieved and the frequency response characteristic of the system was effectively linear. To overcome these challenges, the influence of the geometry of the FM, the LM, and the DP were parametrically studied to assess their effects on the levitation gap, size of the system and the natural frequency. For

  5. Laser frequency stabilization by dual arm locking for LISA

    SciTech Connect

    Sutton, Andrew; Shaddock, Daniel A.

    2008-10-15

    The Laser Interferometer Space Antenna (LISA) will be the first dedicated space based gravitational wave detector. LISA will consist of a triangular formation of spacecraft, forming an interferometer with 5x10{sup 6} km long arms. Annual length variations of the interferometer arms prevent exact laser frequency noise cancellation. Despite prestabilization to an optical cavity the expected frequency noise is many orders of magnitude larger than the required levels. Arm locking is a feedback control method that will further stabilize the laser frequency by referencing it to the 5x10{sup 6} km arms. Although the original arm locking scheme produced a substantial noise reduction, the technique suffered from slowly decaying start-up transients and excess noise at harmonic frequencies of the inverse round-trip time. Dual arm locking, presented here, improves on the original scheme by combining information from two interferometer arms for feedback control. Compared to conventional arm locking, dual arm locking exhibits significantly reduced start-up transients, no noise amplification at frequencies within the LISA signal band, and more than 50 fold improvement in noise suppression at low frequencies. In this article we present a detailed analysis of the dual arm locking control system and present simulation results showing a noise reduction of 10 000 at a frequency of 10 mHz.

  6. Oscillator frequency stability improvement by means of negative feedback.

    PubMed

    Goryachev, Maxim; Galliou, Serge; Abbé, Philippe; Komine, Vadim

    2011-11-01

    A novel, simple method is proposed to increase the frequency stability of an oscillator. An additional negative feedback is used in combination with the positive loop of the harmonic oscillator to decrease the phase sensitivity to fluctuations of parameters other than the resonator. The main advantage of the proposed correction approach is that it does not require expensive external elements such as mixers or resonators. The validity of the method is theoretically demonstrated on a Colpitts oscillator using the control system theory approach and numerical simulations, and is experimentally verified with phase noise measurements of an actual oscillator-mockup. It is shown that the medium-term frequency stability can be easily improved by a factor of ten.

  7. Longitudinal Stability Calculations

    SciTech Connect

    Blaskiewicz,M.

    2009-01-02

    Coupled bunch longitudinal stability in the presence of high frequency impedances is considered. A frequency domain technique is developed and compared with simulations. The frequency domain technique allows for absolute stability tests and is applied to the problem of longitudinal stability in RHIC with the new 56 MHz RF system.

  8. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  9. Frequency stabilization of diode-laser-pumped solid state lasers

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.

  10. Heterodyne stabilization as a possible laser frequency stabilization technique for LISA

    NASA Astrophysics Data System (ADS)

    Eichholz, Johannes

    The Laser Interferometer Space Antenna is a joint NASA/ESA mission aimed at the detection of gravitational wave radiation in the frequency range from 30 uHz to 0.1 Hz. LISA uses a modified Michelson interferometer setup consisting of three identical spacecraft, arranged in an equilateral triangular constellation. It measures the differential length changes of the 5 · 109 m long interferometer arms between free-floating proof masses housed within each spacecraft. Laser pre-stabilization is required in conjunction with Time-Delay Interferometry data post-processing to monitor the armlength changes with picometer precision. A modulation/demodulation technique to stabilize the frequency of the lasers to an optical reference cavity has been proposed for a long time, but it requires several additional optical components and would need to be built as a separate system. Using a different sensing tech-nique, heterodyne interferometry, we propose a modified stabilization scheme, which similarly transfers the stability of an optical reference cavity to the laser frequency. It only uses com-ponents that are already available in the LISA assembly and can easily be integrated into the optical bench design. A similar stabilization scheme is going to be used in LISA Pathfinder. We will discuss this technique in detail and present initial experimental results, as well as predicted performances on the LISA bench.

  11. Frequency stabilization in nonlinear MEMS and NEMS oscillators

    SciTech Connect

    Lopez, Omar Daniel; Antonio, Dario

    2014-09-16

    An illustrative system includes an amplifier operably connected to a phase shifter. The amplifier is configured to amplify a voltage from an oscillator. The phase shifter is operably connected to a driving amplitude control, wherein the phase shifter is configured to phase shift the amplified voltage and is configured to set an amplitude of the phase shifted voltage. The oscillator is operably connected to the driving amplitude control. The phase shifted voltage drives the oscillator. The oscillator is at an internal resonance condition, based at least on the amplitude of the phase shifted voltage, that stabilizes frequency oscillations in the oscillator.

  12. Dynamics of microresonator frequency comb generation: models and stability

    NASA Astrophysics Data System (ADS)

    Hansson, Tobias; Wabnitz, Stefan

    2016-06-01

    Microresonator frequency combs hold promise for enabling a new class of light sources that are simultaneously both broadband and coherent, and that could allow for a profusion of potential applications. In this article, we review various theoretical models for describing the temporal dynamics and formation of optical frequency combs. These models form the basis for performing numerical simulations that can be used in order to better understand the comb generation process, for example helping to identify the universal combcharacteristics and their different associated physical phenomena. Moreover, models allow for the study, design and optimization of comb properties prior to the fabrication of actual devices. We consider and derive theoretical formalisms based on the Ikeda map, the modal expansion approach, and the Lugiato-Lefever equation. We further discuss the generation of frequency combs in silicon resonators featuring multiphoton absorption and free-carrier effects. Additionally, we review comb stability properties and consider the role of modulational instability as well as of parametric instabilities due to the boundary conditions of the cavity. These instability mechanisms are the basis for comprehending the process of frequency comb formation, for identifying the different dynamical regimes and the associated dependence on the comb parameters. Finally, we also discuss the phenomena of continuous wave bi- and multistability and its relation to the observation of mode-locked cavity solitons.

  13. Frequency stability of maser oscillators operated with cavity Q. [hydrogen and rubidium masers

    NASA Technical Reports Server (NTRS)

    Tetu, M.; Tremblay, P.; Lesage, P.; Petit, P.; Audoin, C.

    1982-01-01

    The short term frequency stability of masers equipped with an external feedback loop to increase the cavity quality factor was studied. The frequency stability of a hydrogen and a rubidium maser were measured and compared with theoretical evaluation. It is shown that the frequency stability passes through an optimum when the cavity Q is varied. Long term fluctuations are discussed and the optimum mid term frequency stability achievably by small size active and passive H-masers is considered.

  14. Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide.

    PubMed

    Numata, Kenji; Chen, Jeffrey R; Wu, Stewart T; Abshire, James B; Krainak, Michael A

    2011-03-01

    We demonstrate a wavelength-locked laser source that rapidly steps through six wavelengths distributed across a 1572.335 nm carbon dioxide (CO(2)) absorption line to allow precise measurements of atmospheric CO(2) absorption. A distributed-feedback laser diode (DFB-LD) was frequency-locked to the CO(2) line center by using a frequency modulation technique, limiting its peak-to-peak frequency drift to 0.3 MHz at 0.8 s averaging time over 72 hours. Four online DFB-LDs were then offset locked to this laser using phase-locked loops, retaining virtually the same absolute frequency stability. These online and two offline DFB-LDs were subsequently amplitude switched and combined. This produced a precise wavelength-stepped laser pulse train, to be amplified for CO(2) measurements.

  15. Spiral resonators for on-chip laser frequency stabilization

    PubMed Central

    Lee, Hansuek; Suh, Myoung-Gyun; Chen, Tong; Li, Jiang; Diddams, Scott A.; Vahala, Kerry J.

    2013-01-01

    Frequency references are indispensable to radio, microwave and time keeping systems, with far reaching applications in navigation, communication, remote sensing and basic science. Over the past decade, there has been an optical revolution in time keeping and microwave generation that promises to ultimately impact all of these areas. Indeed, the most precise clocks and lowest noise microwave signals are now based on a laser with short-term stability derived from a reference cavity. In spite of the tremendous progress, these systems remain essentially laboratory devices and there is interest in their miniaturization, even towards on-chip systems. Here we describe a chip-based optical reference cavity that uses spatial averaging of thermorefractive noise to enhance resonator stability. Stabilized fibre lasers exhibit relative Allan deviation of 3.9 × 10−13 at 400 μs averaging time and an effective linewidth <100 Hz by achieving over 26 dB of phase-noise reduction. PMID:24043134

  16. Absolute Photometry

    NASA Astrophysics Data System (ADS)

    Hartig, George

    1990-12-01

    The absolute sensitivity of the FOS will be determined in SV by observing 2 stars at 3 epochs, first in 3 apertures (1.0", 0.5", and 0.3" circular) and then in 1 aperture (1.0" circular). In cycle 1, one star, BD+28D4211 will be observed in the 1.0" aperture to establish the stability of the sensitivity and flat field characteristics and improve the accuracy obtained in SV. This star will also be observed through the paired apertures since these are not calibrated in SV. The stars will be observed in most detector/grating combinations. The data will be averaged to form the inverse sensitivity functions required by RSDP.

  17. All-optical stabilization of a soliton frequency comb in a crystalline microresonator.

    PubMed

    Jost, J D; Lucas, E; Herr, T; Lecaplain, C; Brasch, V; Pfeiffer, M H P; Kippenberg, T J

    2015-10-15

    We demonstrate the all-optical stabilization of a low-noise temporal soliton based microresonator based optical frequency comb in a crystalline resonator via a new technique to control the repetition rate. This is accomplished by thermally heating the microresonator with an additional probe laser coupled to an auxiliary optical resonator mode. The carrier-envelope offset frequency is controlled by stabilizing the pump laser frequency to a reference optical frequency comb. We analyze the stabilization by performing an out-of-loop comparison and measure the overlapping Allan deviation. This all-optical stabilization technique can prove useful as an actuator for self-referenced microresonator frequency combs.

  18. Frequency-range discriminations and absolute pitch in black-capped chickadees (Poecile atricapillus), mountain chickadees (Poecile gambeli), and zebra finches (Taeniopygia guttata).

    PubMed

    Lee, Tiffany T Y; Charrier, Isabelle; Bloomfield, Laurie L; Weisman, Ronald G; Sturdy, Christopher B

    2006-08-01

    The acoustic frequency ranges in birdsongs provide important absolute pitch cues for the recognition of conspecifics. Black-capped chickadees (Poecile atricapillus), mountain chickadees (Poecile gambeli), and zebra finches (Taeniopygia guttata) were trained to sort tones contiguous in frequency into 8 ranges on the basis of associations between response to the tones in each range and reward. All 3 species acquired accurate frequency-range discriminations, but zebra finches acquired the discrimination in fewer trials and to a higher standard than black-capped or mountain chickadees, which did not differ appreciably in the discrimination. Chickadees' relatively poorer accuracy was traced to poorer discrimination of tones in the higher frequency ranges. During transfer tests, the discrimination generalized to novel tones when the training tones were included, but not when they were omitted.

  19. Developing Stabilized Lasers, Measuring their Frequencies, demoting the Metre, inventing the Comb, and further consequences

    NASA Astrophysics Data System (ADS)

    Hall, John L.

    2010-02-01

    Michelson's 1907 proposal to define the SI Metre in terms of an optical wavelength was realized only in 1960, based on a ^86Krypton discharge lamp. The same year saw the cw HeNe laser arrive and a future redefinition based on laser technology assured. Separation in the late 60's of the laser's gain and spectral-reference-gas functions led to unprecedented levels of laser frequency stability and reproducibility. In addition to HeNe:CH4 system at 3392 nm and HeNe:I2 at 633 nm, systems at 514 nm and 10600 nm were studied. Absolute frequency measurement became the holy grail and some NBS team experiences will be shared. We measured both frequency and wavelength in 1972, and so obtained a speed of light value, improved 100-fold in accuracy. During the next decade, the NBS value of c was confirmed by other national labs, and frequency metrology was extended to the 473 THz (633 nm) Iodine-based wavelength standard. This frequency to ˜10 digit accuracy was obtained in 1983, thus setting the stage for redefining the SI Metre. By consensus choice the value 299 792 458 m/s was adopted for the speed of light, effectively reducing the Metre to a derived SI quantity. Knowledge of the frequency of the particular laser being utilized was controlled by International intercomparisons, but the need for a fast and accurate means to make these laser frequency measurements was obvious. Creative proposals by H"ansch and by Chebotayev were to use ultra-fast repetitive pulses to create an ``Optical Comb,'' but it was years before any technical basis existed to implement their Fourier dreams. Finally, in 1999 the last needed capability was demonstrated -- continuum production at 100 MHz rates and non-destructive power levels. By May 2000 phase-locked combs were operational in both Garching and Boulder, substantially accelerated by their collaborative interactions. Within 18 months all the known proposed ``optical frequency standards'' had been accurately measured via Comb techniques. )

  20. Planar-waveguide external cavity laser stabilization for an optical link with 10(-19) frequency stability.

    PubMed

    Clivati, Cecilia; Mura, Alberto; Calonico, Davide; Levi, Filippo; Costanzo, Giovanni A; Calosso, Claudio E; Godone, Aldo

    2011-12-01

    We stabilized the frequency of a compact planar-waveguide external cavity laser (ECL) on a Fabry-Perot cavity (FPC) through a Pound-Drever-Hall scheme. The residual frequency stability of the ECL is 10(-14), comparable to the stability achievable with a fiber laser (FL) locked to an FPC through the same scheme. We set up an optical link of 100 km, based on fiber spools, that reaches 10(-19) relative stability, and we show that its performances using the ECL or FL are comparable. Thus ECLs could serve as an excellent replacement for FLs in optical links where cost-effectiveness and robustness are important considerations.

  1. Frequency-stabilization of mode-locked laser-based photonic microwave oscillator

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Tu, Meirong; Salik, Ertan; Maleki, Lute

    2005-01-01

    In this paper, we will describe our recent phase-noise measurements of photonic microwave oscillators. We will aslo discuss our investigation of the frequency stability link between the optical and microwave frequencies in the coupled oscillator.

  2. Landau damping with high frequency impedance

    SciTech Connect

    Blaskiewicz,M.

    2009-05-04

    Coupled bunch longitudinal stability in the presence of high frequency impedances is considered. A frequency domain technique is developed and compared with simulations. The frequency domain technique allows for absolute stability tests and is applied to the problem of longitudinal stability in RHIC with the new 56 MHz RF system.

  3. Frequency stabilization of a 369 nm diode laser by nonlinear spectroscopy of Ytterbium ions in a discharge

    NASA Astrophysics Data System (ADS)

    Lee, Michael W.; Jarratt, Marie Claire; Marciniak, Christian; Biercuk, Michael J.

    2014-03-01

    We demonstrate stabilisation of an ultraviolet diode laser via Doppler free spectroscopy of Ytterbium ions in a discharge. Our technique employs polarization spectroscopy, which produces a natural dispersive lineshape whose zero-crossing is largely immune to environmental drifts, making this signal an ideal absolute frequency reference for Yb$^+$ ion trapping experiments. We stabilise an external-cavity diode laser near 369 nm for cooling Yb$^+$ ions, using amplitude-modulated polarisation spectroscopy and a commercial PID feedback system. We achieve stable, low-drift locking with a standard deviation of measured laser frequency ~400 kHz over 10 minutes, limited by the instantaneous linewidth of the diode laser. These results and the simplicity of our optical setup makes our approach attractive for stabilization of laser sources in atomic-physics applications.

  4. Optical Frequency Metrology of an Iodine-Stabilized He-Ne Laser Using the Frequency Comb of a Quantum-Interference-Stabilized Mode-Locked Laser

    PubMed Central

    Smith, Ryan P.; Roos, Peter A.; Wahlstrand, Jared K.; Pipis, Jessica A.; Rivas, Maria Belmonte; Cundiff, Steven T.

    2007-01-01

    We perform optical frequency metrology of an iodine-stabilized He-Ne laser using a mode-locked Ti:sapphire laser frequency comb that is stabilized using quantum interference of photocurrents in a semiconductor. Using this technique, we demonstrate carrier-envelope offset frequency fluctuations of less than 5 mHz using a 1 s gate time. With the resulting stable frequency comb, we measure the optical frequency of the iodine transition [127I2 R(127) 11-5 i component] to be 473 612 214 712.96 ± 0.66 kHz, well within the uncertainty of the CIPM recommended value. The stability of the quantum interference technique is high enough such that it does not limit the measurements. PMID:27110472

  5. Measurement of plasma wave frequency from absolute stimulated Raman scattering near the quarter-critical surface in a laser plasma

    NASA Astrophysics Data System (ADS)

    Villeneuve, D. M.; Bernard, J. E.; Baldis, H. A.

    1987-12-01

    Thomson scattering techniques were used to measure the frequency of plasma waves near the quarter-critical surface in a well-diagnosed plasma irradiated by a nanosecond CO2 laser with intensity ˜1014 W/cm2. The frequency ωp was shown to be less than ω0/2, in disagreement with the commonly used estimate ωp=ω0/2+ (9)/(8) (ve/c)2ω0. The theory of Afeyan and Williams [Phys. Fluids 28, 3397 (1985)] gives better agreement, and shows that the density scale length is more important than the temperature in determining the frequency shift.

  6. Dispersive white light combined with a frequency-modulated continuous-wave interferometer for high-resolution absolute measurements of distance.

    PubMed

    Rovati, L; Minoni, U; Docchio, F

    1997-06-15

    A nonincremental interferometer for the absolute measurement of distances is presented. The measuring technique is based on both dispersive white-light (DWL) interferometry and frequency-modulated continuous-wave (FMCW) interferometry. The proposed configuration integrates both techniques in the same interferometer by use of a single laser diode. This solution enables the results from the coarse measurements from the FMCW interferometer to be combined with the fine readouts from the DWL interferometer. Preliminary experimental results confirm the capability of the system to combine the advantages of the two techniques.

  7. Absolute frequency of cesium 6S-8S 822 nm two-photon transition by a high-resolution scheme.

    PubMed

    Wu, Chien-Ming; Liu, Tze-Wei; Wu, Ming-Hsuan; Lee, Ray-Kuang; Cheng, Wang-Yau

    2013-08-15

    We present an alternative scheme for determining the frequencies of cesium (Cs) atom 6S-8S Doppler-free transitions. With the use of a single electro-optical crystal, we simultaneously narrow the laser linewidth, lock the laser frequency, and resolve a narrow spectrum point by point. The error budget for this scheme is presented, and we prove that the transition frequency obtained from the Cs cell at room temperature and with one-layer μ-metal shielding is already very near that for the condition of zero collision and zero magnetic field. We point out that a sophisticated linewidth measurement could be a good guidance for choosing a suitable Cs cell for better frequency accuracy.

  8. Enabling coherent control of trapped ions with economical multi-laser frequency stabilization technology

    NASA Astrophysics Data System (ADS)

    Lybarger, Warren Emanuel, Jr.

    A phase-locked scanning stability transfer cavity (SSTC) for transferring the absolute frequency stability of an iodine referenced He-Ne (master) laser to three otherwise uncalibrated (slave) lasers (at 844, 1033, & 1092 nm) of a trapped-Sr+ quantum information processing (QIP) apparatus is described. When locked, the 422 nm frequency-doubled Doppler-cooling laser exhibits an error of <1 MHz RMS for several hours, and similar stability is achieved with the other slave lasers. When unlocked, each slave laser drifts by a large fraction (or more) of the corresponding transition linewidth in minutes, thus making reliable laser cooling, ion state readout, and execution of QIP algorithms practically infeasible. The SSTC makes coherent control of Sr+ possible by addressing this problem, and the QIP apparatus is now sufficiently stable for single user operation. New single-ion experimental capabilities include ground state cooling, high-fidelity Rabi flopping, Ramsey interferometry, and sympathetic cooling of 88Sr+( 86Sr+) with 86Sr+( 88Sr+). A 2.5 msec coherence time has been achieved with the optical quoit encoded in a |5 2S 1/2> ↔ |4 2D5/2> quadrupole transition, a precision measurement of the isotope shift of the qubit transition in 86Sr+ relative to 88Sr+ is reported, and a single-ion heating rate consistent with results throughout the trapped-ion community is reported. The SSTC is simple to implement, uses no custom optics, and it has a higher scanning rate than previously demonstrated SSTC's. Phase-locked SSTC's are shown to have an advantage over the more common displacement-locked SSTC in the low finesse regime, and they are an attractive alternative to passively stable but complex optical references and diode lasers designed to address the same problem. The SSTC is useful in spectroscopic applications with other ion species, atoms, and molecules, in general. An appendix is dedicated to describing in detail an advanced trapped-ion quantum processor concept

  9. [The influence of mode and intensity of homogenization on the absolute value and stability of oxygen consumption of guinea pig liver homogenates (author's transl)].

    PubMed

    Schmidt, H J; Schaum, U; Pichotka, J P

    1977-01-01

    The influence of five different methods of homogenisation (1. The method according to Potter and Elvehjem, 2. A modification of this method called Potter S, 3. The method of Dounce, 4. Homogenisation by hypersonic waves and 5. Coarce-grained homogenisation with the "Mikrofleischwolf") on the absolute value and stability of oxygen uptake of guinea pig liver homogenates has been investigated in simultaneous measurements. All homogenates showed a characteristic fall of oxygen uptake during measuring time (3 hours). The modified method according to Potter and Elvehjem called Potter S showed reproducible results without any influence by homogenisation intensity.

  10. Frequency-Tunable Pre-stabilized lasers for LISA via Stabilized Lasers for LISA via Sideband Locking

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey; Thorpe, James Ira; Numata, K.

    2008-01-01

    This viewgraph presentation discusses a major potential source of noise for the Laser Interferometer Space Antenna (LISA) that is the laser frequency noise and the proposed mechanism to suppress the unstabilized frequency fluctuations. These fluctuations must be suppresed by about 12 orders of magnitude to achieve a stability that is sufficient for the detection of gravitational waves. This presentation reviews present a modification to the traditional cavity locking technique that allows the laser to be locked to a cavity resonance with an adjustable frequency offset. This presentation also discusses measurements of the system stability, demonstrating that the pre-stabilization level satisfies LISA requirements and a demonstration of a phase-lock loop which utilizes the tunable sideband locking technique as a pre-stabilization stage.

  11. Sexual Frequency and the Stability of Marital and Cohabiting Unions

    ERIC Educational Resources Information Center

    Yabiku, Scott T.; Gager, Constance T.

    2009-01-01

    Prior research found that lower sexual frequency and satisfaction were associated with higher rates of divorce, but little research had examined the role of sexual activity in the dissolution of cohabiting unions. We drew upon social exchange theory to hypothesize why sexual frequency is more important in cohabitation: (a) cohabitors' lower costs…

  12. Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser.

    PubMed

    Kim, K; Washburn, B R; Wilpers, G; Oates, C W; Hollberg, L; Newbury, N R; Diddams, S A; Nicholson, J W; Yan, M F

    2005-04-15

    A frequency comb is generated with a Cr:forsterite femtosecond laser, spectrally broadened through a highly nonlinear optical fiber to span from 1.0 to 2.2 ,m, and stabilized using the f-to-2f self-referencing technique. The repetition rate and the carrier-envelope offset frequency are stabilized to a hydrogen maser, calibrated by a cesium atomic fountain clock. Simultaneous frequency measurement of a 657-nm cw laser by use of the stabilized frequency combs from this Cr:forsterite system and a Ti:sapphire laser agree at the 10(-13) level. The frequency noise of the comb components is observed at 1064, 1314, and 1550 nm by comparing the measured beat frequencies between cw lasers and the supercontinuum frequency combs.

  13. High stability multiplexed fiber interferometer and its application on absolute displacement measurement and on-line surface metrology.

    PubMed

    Lin, Dejiao; Jiang, Xiangqian; Xie, Fang; Zhang, Wei; Zhang, Lin; Bennion, Ian

    2004-11-15

    We propose a self-reference multiplexed fiber interferometer (MFI) by using a tunable laser and fiber Bragg grating (FBG). The optical measurement system multiplexes two Michelson fiber interferometers with shared optical path in the main part of optical system. One fiber optic interferometer is used as a reference interferometer to monitor and control the high accuracy of the measurement system under environmental perturbations. The other is used as a measurement interferometer to obtain information from the target. An active phase tracking homodyne (APTH) technique is applied for signal processing to achieve high resolution. MFI can be utilized for high precision absolute displacement measurement with different combination of wavelengths from the tunable laser. By means of Wavelength-Division-Multiplexing (WDM) technique, MFI is also capable of realizing on-line surface measurement, in which traditional stylus scanning is replaced by spatial light-wave scanning so as to greatly improve the measurement speed and robustness.

  14. Phase stabilization of a frequency comb using multipulse quantum interferometry.

    PubMed

    Cadarso, Andrea; Mur-Petit, Jordi; García-Ripoll, Juan José

    2014-02-21

    From the interaction between a frequency comb and an atomic qubit, we derive quantum protocols for the determination of the carrier-envelope offset phase, using the qubit coherence as a reference, and without the need of frequency doubling or an octave spanning comb. Compared with a trivial interference protocol, the multipulse protocol results in a polynomial enhancement of the sensitivity O(N-2) with the number N of laser pulses involved. We specialize the protocols using optical or hyperfine qubits, Λ schemes, and Raman transitions, and introduce methods where the reference is another phase-stable cw laser or frequency comb.

  15. Frequency and Intensity Stabilization of Planar Waveguide-External Cavity Lasers

    NASA Astrophysics Data System (ADS)

    Tellez, Gregorio; Shoen, Steven; Quetschke, Volker

    2012-02-01

    Planar Waveguide External Cavity Lasers (PW-ECL) show an immense potential for use in precision measurement tasks and space missions because of its compactness and simple design. We show the techniques used to frequency and intensity stabilize a PW-ECL 1550nm laser system with the goal of achieving a frequency stability of 30 Hz/sqrt(Hz) and a RIN of less than 10-6. These PW-ECL systems are a potential replacement for Non-Planar Ring Oscillator (NPRO) laser systems, which have become a standard for low-noise interferometric applications, if the PW-ECL can meet the required stability. We present the initial experimental results of the intensity and frequency stabilization setup and we show a comparison between PW-ECL lasers and NPRO lasers with respect to measurements and applications requiring a high frequency and intensity stability.

  16. Asymptotic (h tending to infinity) absolute stability for BDFs applied to stiff differential equations. [Backward Differentiation Formulas

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.; Stewart, K.

    1984-01-01

    Methods based on backward differentiation formulas (BDFs) for solving stiff differential equations require iterating to approximate the solution of the corrector equation on each step. One hope for reducing the cost of this is to make do with iteration matrices that are known to have errors and to do no more iterations than are necessary to maintain the stability of the method. This paper, following work by Klopfenstein, examines the effect of errors in the iteration matrix on the stability of the method. Application of the results to an algorithm is discussed briefly.

  17. Development of Frequency Stabilizing Scheme for Integrating Wind Power Generation into an Isolated Grid

    NASA Astrophysics Data System (ADS)

    Yamashita, Koji; Sakamoto, Orie; Kitauchi, Yoshihiro; Nanahara, Toshiya; Inoue, Toshio; Shiohama, Tomohiro; Fukuda, Hitoshi

    Integrating of wind power generation into small islands has been one of the demonstration projects in Okinawa prefecture. Since such integration could deteriorate power quality including frequency in an island grid, a frequency stabilizing system using flywheels has been installed into a small island. In order to establish a proper frequency stabilizing scheme for the small island, an accurate model of a diesel generator including governor is vital. Therefore, the model was developed based on the measured values of generator dump tests. A new frequency stabilizing scheme was also developed through time-domain simulation of the island grid model which consists of the above-mentioned diesel generator model and an equivalent load change representing wind power variation. The proper parameters of the scheme were derived considering role sharing between the diesel generators and the flywheels. The developed stabilizing scheme was applied to the flywheels in the island grid and revealed great performance for mitigating frequency variation.

  18. Enhancement of Frequency Stability Using Synchronization of a Cantilever Array for MEMS-Based Sensors

    PubMed Central

    Torres, Francesc; Uranga, Arantxa; Riverola, Martí; Sobreviela, Guillermo; Barniol, Núria

    2016-01-01

    Micro and nano electromechanical resonators have been widely used as single or multiple-mass detection sensors. Smaller devices with higher resonance frequencies and lower masses offer higher mass responsivities but suffer from lower frequency stability. Synchronization phenomena in multiple MEMS resonators have become an important issue because they allow frequency stability improvement, thereby preserving mass responsivity. The authors present an array of five cantilevers (CMOS-MEMS system) that are forced to vibrate synchronously to enhance their frequency stability. The frequency stability has been determined in closed-loop configuration for long periods of time by calculating the Allan deviation. An Allan deviation of 0.013 ppm (@ 1 s averaging time) for a 1 MHz cantilever array MEMS system was obtained at the synchronized mode, which represents a 23-fold improvement in comparison with the non-synchronized operation mode (0.3 ppm). PMID:27754377

  19. Frequency-tunable Pre-stabilized Lasers for LISA via Sideband-locking

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.; Thorpe, James I.; Numata, Kenji; Mitryk, Shawn; Mueller, Guido; Wand, Vinzenz

    2008-01-01

    Laser frequency noise mitigation is one of the most challenging aspects of the LISA interferometric measurement system. The unstabilized frequency fluctuations must be suppressed by roughly twelve orders of magnitude in order to achieve stability sufficient for gravitational wave detection. This enormous suppression will be achieved through a combination of stabilization and common-mode rejection. The stabilization component will itself be achieved in two stages: pre-stabilization to a local optical cavity followed by arm-locking to some combination of the inter-spacecraft distances. In order for these two stabilization stages to work simultaneously, the lock-point of the pre-stabilization loop must be frequency tunable. The current baseline stabilization technique, locking to an optical cavity, does not provide tunability between cavity resonances, which are typically spaced by 100s of MHz. Here we present a modification to the traditional Pound-Drever-Hall cavity locking technique that allows the laser to be locked to a cavity resonance with an adjustable frequency offset. This technique requires no modifications to the optical cavity itself, thus preserving the stability of the frequency reference. We present measurements of the system performance and demonstrate that we can meet implement the first two stages of stabilization.

  20. System and method for tuning adjusting the central frequency of a laser while maintaining frequency stabilization to an external reference

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey (Inventor); Thorpe, James I. (Inventor); Numata, Kenji (Inventor)

    2011-01-01

    A method and system for stabilizing a laser to a frequency reference with an adjustable offset. The method locks a sideband signal generated by passing an incoming laser beam through the phase modulator to a frequency reference, and adjusts a carrier frequency relative to the locked sideband signal by changing a phase modulation frequency input to the phase modulator. The sideband signal can be a single sideband (SSB), dual sideband (DSB), or an electronic sideband (ESB) signal. Two separate electro-optic modulators can produce the DSB signal. The two electro-optic modulators can be a broadband modulator and a resonant modulator. With a DSB signal, the method can introduce two sinusoidal phase modulations at the phase modulator. With ESB signals, the method can further drive the optical phase modulator with an electrical signal with nominal frequency OMEGA(sub 1) that is phase modulated at a frequency OMEGA(sub 2)

  1. Low-frequency rTMS over the Parieto-frontal network during a sensorimotor task: The role of absolute beta power in the sensorimotor integration.

    PubMed

    Gongora, Mariana; Bittencourt, Juliana; Teixeira, Silmar; Basile, Luis F; Pompeu, Fernando; Droguett, Enrique López; Arias-Carrion, Oscar; Budde, Henning; Cagy, Mauricio; Velasques, Bruna; Nardi, Antonio Egídio; Ribeiro, Pedro

    2016-01-12

    Several studies have demonstrated that Repetitive Transcranial Magnetic Stimulation (rTMS) promotes alterations in the Central Nervous System circuits and networks. The focus of the present study is to examine the absolute beta power patterns in the Parieto-frontal network. We hypothesize that rTMS alters the mechanisms of the sensorimotor integration process during a visuomotor task. Twelve young healthy volunteers performed a visuomotor task involving decision making recorded (Catch a ball in a free fall) by Electroencephalography. rTMS was applied on the Superior Parietal Cortex (SPC; Brodmann area [BA] 7) with low-frequency (1 Hz - 15 min - 80% Resting Motor Threshold). For each Frontal and Parietal region, a two-way ANOVA was used to compare the absolute beta power before and after TMS for each condition of the study (Rest 1, Task and Rest 2). The results demonstrated interactions (TMS vs. Condition) for the Frontal electrodes: Fp1, Fp2 and F7 and an effect of TMS (before and after) for F4.The results for the Parietal region showed a main effect of Condition for the P3, PZ and P4 electrodes. Thus, our paradigm was useful to better understand the reorganization and neural plasticity mechanisms in the parieto-frontal network during the sensorimotor integration process.

  2. Photonic radio-frequency dissemination via optical fiber with high-phase stability.

    PubMed

    Wang, Xiaocheng; Liu, Zhangweiyi; Wang, Siwei; Sun, Dongning; Dong, Yi; Hu, Weisheng

    2015-06-01

    We demonstrate a photonic radio-frequency transmission system via optical fiber. Optical radio-frequency signal is generated utilizing a Mach-Zehnder modulator based on double-side-band with carrier suppression modulation scheme. The phase error induced by optical fiber transmission is transferred to an intermediate frequency signal by the dual-heterodyne phase error transfer scheme, and then canceled by a phase locked loop. With precise phase compensation, a radio frequency with high-phase stability can be obtained at the remote end. We performed 20.07-GHz radio-frequency transfer over 100-km optical fiber, and achieved residual phase noise of -65  dBc/Hz at 1-Hz offset frequency, and the RMS timing jitter in the frequency range from 0.01 Hz to 1 MHz reaches 110 fs. The long-term frequency stability also achieves 8×10(-17) at 10,000 s averaging time.

  3. Thermal Noise Limit in Frequency Stabilization of Lasers with Rigid Cavities

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Kemery, Amy; Camp, Jordan

    2004-01-01

    We evaluated thermal noise (Brownian motion) in a rigid reference cavity used for frequency stabilization of lasers, based on the mechanical loss of cavity materials and the numerical analysis of the mirror-spacer mechanics with t.he direct application of the fluctuation dissipation theorem. This noise sets a fundamental limit for the frequency stability achieved with a rigid frequency- reference cavity of order 1 Hz/square root Hz(0.01 Hz/square root Hz) at 10 mHz (100 Hz) at room temperature. This level coincides with the world-highest level stabilization results.

  4. Thermal Noise Limit in Frequency Stabilization of Lasers with Rigid Cavities

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Kemery, Amy; Camp, Jordan

    2005-01-01

    We evaluated thermal noise (Brownian motion) in a rigid reference cavity Used for frequency stabilization of lasers, based on the mechanical loss of cavity materials and the numerical analysis of the mirror-spacer mechanics with the direct application of the fluctuation dissipation theorem. This noise sets a fundamental limit for the frequency stability achieved with a rigid frequency-reference cavity of order 1 Hz/rtHz at 10mHz at room temperature. This level coincides with the world-highest level stabilization results.

  5. Frequency-dependent stability of parallel-plate electrostatic actuators in conductive fluids

    NASA Astrophysics Data System (ADS)

    Sounart, T. L.; Panchawagh, H. V.; Mahajan, R. L.

    2010-05-01

    We present an electromechanical stability analysis of passivated parallel-plate electrostatic actuators in conductive dielectric media and show that the pull-in instability can be eliminated by tuning the applied frequency below a design-dependent stability limit. A partial instability region is also obtained, where the actuator jumps from the pull-in displacement to another stable position within the gap. The results predict that the stability limit is always greater than the critical actuation frequency, and therefore any device that is feasible to actuate in a conductive fluid can be operated with stability over the full range of motion.

  6. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    SciTech Connect

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-07-15

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

  7. Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells.

    PubMed

    Dale, John; Hughes, Ben; Lancaster, Andrew J; Lewis, Andrew J; Reichold, Armin J H; Warden, Matthew S

    2014-10-06

    We present an implementation of an absolute distance measurement system which uses frequency scanning interferometry (FSI). The technique, referred to as dynamic FSI, uses two frequency scanning lasers, a gas absorption cell and a reference interferometer to determine the unknown optical path length difference (OPD) of one or many measurement interferometers. The gas absorption cell is the length reference for the measurement system and is traceable to international standards through knowledge of the frequencies of its absorption features. The OPD of the measurement interferometers can vary during the measurement and the variation is measured at the sampling rate of the system (2.77 MHz in the system described here). The system is shown to measure distances from 0.2 m to 20 m with a combined relative uncertainty of 0.41 × 10⁻⁶ at the two sigma level (k = 2). It will be shown that within a scan the change in OPD of the measurement interferometer can be determined to a resolution of 40 nm.

  8. Laser frequency stabilization using a dispersive line shape induced by Doppler Effect.

    PubMed

    Wang, Qing; Qi, Xianghui; Liu, Shuyong; Yu, Jiachen; Chen, Xuzong

    2015-02-09

    We report a simple and robust Doppler-free spectroscopic technique to stabilize a laser frequency to the atomic transition. By employing Doppler Effect on the atomic beam, we obtained a very stable dispersive signal with a high signal-to-noise ratio and no Doppler-background, which served as an error signal to electronically stabilize a laser frequency without modulation. For validating the performance of this technique, we locked a DFB laser to the (133)Cs D2 line and observed an efficient suppression of the frequency noise and a long-term reduction of the frequency drifts in a laboratory environment.

  9. Frequency-Tuneable Pre-Stabilized Lasers for LISA via Sideband Locking

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira; Numata, Kenji; Livas, jeffery

    2008-01-01

    Laser frequency noise mitigation is one of the most challenging aspects of the LISA interferometric measurement system. The unstabilized frequency fluctuations must be suppressed by roughly twelve orders of magnitude in order to achieve a stability sufficient for gravitational wave detection. This enormous suppression will be achieved through a combination of stabilization and common-mode rejection. The stabilization component will itself be achieved in two stages: pre-stabilization to a local optical cavity followed by arm-locking to some combination of the inter-spacecraft distances. In order for these two stabilization stages to work simultaneously, the lock-point of the pre-stabilization loop must be frequency tunable. The current baseline stabilization technique, locking to an optical cavity, does not provide tunability between cavity resonance, which are typically spaced by 100s of MHz. Here we present a modification to the traditional Pound-Drever-Hall cavity locking technique that allows the laser to be locked to a cavity resonance with an adjustable frequency offset. This technique requires no modifications to the optical cavity itself, thus preserving the stability of the frequency reference. We present measurements of the system stability, demonstrating that the pre-stabilization level satisfies LISA requirements. We also present a demonstration of a phase-lock loop which utilizes the tunable sideband locking technique as a pre-stabilizations tage. The performance of the pre-stabilized phase-lock-loop indicates that the tunable sideband technique will meet the requirements as an actuator for arm-locking in LISA.

  10. Study of fuzzy adaptive PID controller on thermal frequency stabilizing laser with double longitudinal modes

    NASA Astrophysics Data System (ADS)

    Mo, Qingkai; Zhang, Tao; Yan, Yining

    2016-10-01

    There are contradictions among speediness, anti-disturbance performance, and steady-state accuracy caused by traditional PID controller in the existing light source systems of thermal frequency stabilizing laser with double longitudinal modes. In this paper, a new kind of fuzzy adaptive PID controller was designed by combining fuzzy PID control technology and expert system to make frequency stabilizing system obtain the optimal performance. The experiments show that the frequency stability of the designed PID controller is similar to the existing PID controller (the magnitude of frequency stability is less than 10-9 in constant temperature and 10-7 in open air). But the preheating time is shortened obviously (from 10 minutes to 5 minutes) and the anti-disturbance capability is improved significantly (the recovery time needed after strong interference is reduced from 1 minute to 10 seconds).

  11. Laser Frequency Stabilization and Control through Offset Sideband Locking to Optical Cavities

    NASA Technical Reports Server (NTRS)

    Thorpe, James I.; Livas, J.; Numata, K.

    2008-01-01

    We describe a class of techniques whereby a laser frequency can be stabilized to a fixed optical cavity resonance with an adjustable offset, providing a wide tuning range for the central frequency. These techniques require only minor modifications to the standard Pound-Drever-Hall locking techniques and have the advantage of not altering the intrinsic stability of the frequency reference. In a laboratory investigation the sideband techniques were found to perform equally well as the standard, non-tunable Pound-Drever-Hall technique, each providing more than four decades of frequency noise suppression over the free-running noise. An application of a tunable system as a pre-stabilization stage in a phase-lock loop is also presented with the combined system achieving a frequency noise suppression of nearly twelve orders of magnitude.

  12. Review of the frequency stabilization of TEA CO2 laser oscillators

    NASA Technical Reports Server (NTRS)

    Willetts, David V.

    1987-01-01

    Most applications of TEA CO2 lasers in heterodyne radar systems require that the transmitter has a high degree of frequency stability. This ensures good Doppler resolution and maximizes receiver sensitivity. However, the environment within the device is far from benign with fast acoustic and electrical transients being present. Consequently the phenomena which govern the frequency stability of pulsed lasers are quite different from those operative in their CW counterparts. This review concentrates on the mechanisms of chirping within the output pulse; pulse to pulse frequency drift may be eliminated by frequency measurement and correction on successive pulses. It emerges that good stability hinges on correct cavity design. The energy-dependent laser-induced frequency sweep falls dramatically as mode diameter is increased. Thus, it is necessary to construct resonators with good selectivity for single mode operation while having a large spot size.

  13. A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Yuan, W. H.; Deng, K.; Deng, A.; Xu, Z. T.; Qin, C. B.; Lu, Z. H.; Luo, J.

    2013-12-01

    As many precision laser spectroscopy experiments require frequency stabilized lasers, development of long-term stabilized lasers is of great interest. In this work, we report long-term frequency stabilization of a 280 nm deep ultraviolet laser to a high precision wavemeter with digital servo control such that the long-term drift of the laser frequency was greatly reduced. Long-term laser frequency drift was measured with a fiber frequency comb system over 8 h. After locking, the maximum drift rate of the 280 nm laser was lowered from 576 MHz/h to 6.4 MHz/h. With proper environment control of the wavemeter, the maximum drift rate of the 280 nm laser was further lowered to less than 480 kHz/h. The locked laser system was successfully used in a Mg+ ions trapping experiment, which was also discussed in this work.

  14. Doppler modulation and Zeeman modulation: laser frequency stabilization without direct frequency modulation.

    PubMed

    Weis, A; Derler, S

    1988-07-01

    We discuss two methods (Zeeman modulation and Doppler modulation) for locking the frequency of a singlemode cw laser to an atomic absorption line. These methods do not require the laser frequency to be modulated directly. In the first scheme the absorption frequency of the atom is modulated via the Zeeman effect; in the second scheme the laser frequency is modulated indirectly via the Doppler effect in an atomic beam. We used the two methods successfully to lock two dye lasers to the transitions 6S((1/2)) ? 7S((1/2)) and 7S((1/2)) ? 15P(?) in atomic cesium.

  15. Frequency stabilization in injection controlled pulsed CO2 lasers

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Ancellet, Gerard M.

    1987-01-01

    Longitudinal mode selection by injection has been demonstrated as a viable technique for tailoring a TEA-CO2 laser with pulse energies of a Joule or greater to fit the requirements of a coherent lidar transmitter. Once reliable generation of single-longitudinal-mode (SLM) pulses is obtained, one can study the intrapulse frequency variation and attempt to determine the sources of frequency sweeping, or chirp. These sources include the effect of the decaying plasma, the thermal gradient due to the energy dissipation associated with the laser mechanism itself, and the pressure shift of the center frequency of the laser transition. The use of the positive-branch unstable resonator as an efficient means of coupling a discharge with transverse spatial dimensions of the order of centimeters to an optical cavity mode introduces another concern: namely, what can be done to emphasize transverse mode discrimination in an unstable resonator cavity while maintaining high coupling efficiency. These issues are briefly discussed in the paper, and representative experimental examples are included.

  16. Mid-IR beam direction stabilization scheme for vibrational spectroscopy, including dual-frequency 2DIR.

    PubMed

    Nyby, Clara M; Leger, Joel D; Tang, Jianan; Varner, Clyde; Kireev, Victor V; Rubtsov, Igor V

    2014-03-24

    A compact laser beam direction stabilization scheme is developed that provides the angular stability of better than 50 μrad over a wide range of frequencies from 800 to 4000 cm-1. The schematic is fully automated and features a single MCT quadrant detector. The schematic was tested to stabilize directions of the two IR beams used for dual-frequency two-dimensional infrared (2DIR) measurements and showed excellent results: automatic tuning of the beam direction allowed achieving the alignment quality within 10% of the optimal alignment obtained manually. The schematic can be easily implemented to any nonlinear spectroscopic measurements in the mid-IR spectral region.

  17. Diode-laser frequency stabilization based on the resonant Faraday effect

    NASA Technical Reports Server (NTRS)

    Wanninger, P.; Valdez, E. C.; Shay, T. M.

    1992-01-01

    The authors present the results of a method for frequency stabilizing laser diodes based on the resonant Faraday effects. A Faraday cell in conjunction with a polarizer crossed with respect to the polarization of the laser diode comprises the intracavity frequency selective element. In this arrangement, a laser pull-in range of 9 A was measured, and the laser operated at a single frequency with a linewidth less than 6 MHz.

  18. The PSDAVLL signal detection with synchronous ferroelectric liquid crystal switching as a laser frequency stabilization method

    NASA Astrophysics Data System (ADS)

    Dudzik, G.; Rzepka, J.; Abramski, K. M.

    2016-12-01

    In this paper we present the DAVLL (Dichroic Atomic Vapor Laser Lock) signals detection method for laser frequency stabilization which has been improved by synchronous detection system based on the surface-stabilized ferroelectric liquid crystal (SSFLC). The SSFLC cell is a polarization switch and quarter waveplate component and it replaces the well-known two-photodiode detection configuration known as the balanced polarimeter. The presented polarization switching dichroic atomic vapor laser lock technique (PSDAVLL) was practically used in VCSEL-based frequency stabilization system with vapor isotopes (85,87Rb) rubidium cell. The applied PSDAVLL method has allowed us to obtain a frequency stability of 2.7 × 10-9 and a reproducibility of 1.2 × 10-8, with a dynamic range ratio (DNR) of detected signals of around 81.4 dB, what is 9.6 dB better than obtained in the balanced polarimeter configuration. The described PSDAVLL technique was compared with 3-f (on the 3rd harmonic) and passive frequency stabilization methods. Additionally, the presented setup consists only one-photodiode detection path what reduces parasitic phenomena like offsets between photodiode amplifiers, amplifier gain changes due to ambient conditions, aging effects of electronic components etc. as a consequence leads to better frequency reproducibility, stabilization accuracy and less detection system sensitivity to ambient condition changes.

  19. An atomic magnetometer with autonomous frequency stabilization and large dynamic range

    SciTech Connect

    Pradhan, S. E-mail: pradhans75@gmail.com; Poornima,; Dasgupta, K.; Mishra, S.; Behera, R.

    2015-06-15

    The operation of a highly sensitive atomic magnetometer using elliptically polarized resonant light is demonstrated. It is based on measurement of zero magnetic field resonance in degenerate two level systems using polarimetric detection. The transmitted light through the polarimeter is used for laser frequency stabilization, whereas reflected light is used for magnetic field measurement. Thus, the experimental geometry allows autonomous frequency stabilization of the laser frequency leading to compact operation of the overall device and has a preliminary sensitivity of <10 pT/Hz{sup 1/2} @ 1 Hz. Additionally, the dynamic range of the device is improved by feedback controlling the bias magnetic field without compromising on its sensitivity.

  20. Exploring the Frequency Stability Limits of Whispering Gallery Mode Resonators for Metrological Applications

    NASA Technical Reports Server (NTRS)

    Chembo, Yanne K.; Baumgartel, Lukas; Grudinin, Ivan; Strekalov, Dmitry; Thompson, Robert; Yu, Nan

    2012-01-01

    Whispering gallery mode resonators are attracting increasing interest as promising frequency reference cavities. Unlike commonly used Fabry-Perot cavities, however, they are filled with a bulk medium whose properties have a significant impact on the stability of its resonance frequencies. In this context that has to be reduced to a minimum. On the other hand, a small monolithic resonator provides opportunity for better stability against vibration and acceleration. this feature is essential when the cavity operates in a non-laboratory environment. In this paper, we report a case study for a crystalline resonator, and discuss the a pathway towards the inhibition of vibration-and acceleration-induced frequency fluctuations.

  1. An atomic magnetometer with autonomous frequency stabilization and large dynamic range.

    PubMed

    Pradhan, S; Mishra, S; Behera, R; Poornima; Dasgupta, K

    2015-06-01

    The operation of a highly sensitive atomic magnetometer using elliptically polarized resonant light is demonstrated. It is based on measurement of zero magnetic field resonance in degenerate two level systems using polarimetric detection. The transmitted light through the polarimeter is used for laser frequency stabilization, whereas reflected light is used for magnetic field measurement. Thus, the experimental geometry allows autonomous frequency stabilization of the laser frequency leading to compact operation of the overall device and has a preliminary sensitivity of <10 pT/Hz(1/2) @ 1 Hz. Additionally, the dynamic range of the device is improved by feedback controlling the bias magnetic field without compromising on its sensitivity.

  2. Hybrid nanolaminate dielectrics engineered for frequency and bias stability

    NASA Astrophysics Data System (ADS)

    Sahoo, S. K.; Patel, R. P.; Wolden, C. A.

    2013-08-01

    Metal-insulator-metal capacitors were fabricated from hybrid alumina-silicone nanolaminates deposited by plasma-enhanced chemical vapor deposition. These two materials have complementary properties that produce dielectrics that are exceptionally stable with respect to frequency and dc bias. 50% alumina-silicone nanolaminates displayed low dielectric loss (tan δ = 0.04) and a negligible quadratic voltage coefficient (α = 7 ppm/V2). Both of these values are exceptionally improved over the properties of the individual components. This performance was achieved in 165 nm thick films that provide both high specific capacitance (30 nF/cm2) and extremely low leakage (˜10-9 A/cm2 at 1 MV/cm).

  3. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  4. Doppler modulation and Zeeman modulation: laser frequency stabilization without direct frequency modulation

    SciTech Connect

    Weis, A.; Derler, S.

    1988-07-01

    We discuss two methods (Zeeman modulation and Doppler modulation) for locking the frequency of a single-mode cw laser to an atomic absorption line. These methods do not require the laser frequency to be modulated directly. In the first scheme the absorption frequency of the atom is modulated via the Zeeman effect; in the second scheme the laser frequency is modulated indirectly via the Doppler effect in an atomic beam. We used the two methods successfully to lock two dye lasers to the transitions 6S/sub 1/2/..-->..7S/sub 1/2/ and 7S/sub 1/2/..-->..15P/sub 3/2/ in atomic cesium.

  5. A compact laser head with high-frequency stability for Rb atomic clocks and optical instrumentation

    SciTech Connect

    Affolderbach, Christoph; Mileti, Gaetano

    2005-07-15

    We present a compact and frequency-stabilized laser head based on an extended-cavity diode laser. The laser head occupies a volume of 200 cm{sup 3} and includes frequency stabilization to Doppler-free saturated absorption resonances on the hyperfine components of the {sup 87}Rb D{sub 2} lines at 780 nm, obtained from a simple and compact spectroscopic setup using a 2 cm{sup 3} vapor cell. The measured frequency stability is {<=}2x10{sup -12} over integration times from 1 s to 1 day and shows the potential to reach 2x10{sup -13} over 10{sup 2}-10{sup 5} s. Compact laser sources with these performances are of great interest for applications in gas-cell atomic frequency standards, atomic magnetometers, interferometers and other instruments requiring stable and narrow-band optical sources.

  6. Short term frequency stability measurement for narrow linewidth laser by time domain self-heterodyne method

    NASA Astrophysics Data System (ADS)

    Lu, Lidong; Sun, Xiaoyan; Bu, Xiande; Li, Binglin

    2016-11-01

    Based on the time delay self-heterodyne method to measure the laser linewidth, the short-term linewidth variation of a narrow linewidth laser is experimentally studied and analyzed, and then a time domain self-heterodyne method is proposed to measure the short-term frequency stability of narrow linewidth laser. The Rayleigh backscattering frequency of a pulsed light propagating in an optical fiber with length of 100km is used as the local oscillation frequency with relatively long time duration to measure the frequency variation of the narrow linewidth laser. By heterodyne between the laser frequency and the local oscillation frequency, the variation of the laser frequency is presented in the heterodyne radio frequency (IF). Then the time domain data of the heterodyne IF are extracted by an oscilloscope and through short time Fourier transform the frequency from the laser in different time segments is obtained. Experimental results demonstrate that for narrow linewidth laser its frequency in short-term is randomly fluctuating with a range less than triple of the laser linewidth. The measurement and evaluation of laser short-term frequency stability benefits the application of narrow linewidth lasers in distributed optical fiber sensing area.

  7. Improvement in medium long-term frequency stability of the integrating sphere cold atom clock

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Cheng, Huadong; Meng, Yanling; Wan, Jinyin; Xiao, Ling; Wang, Xiumei; Wang, Yaning; Liu, Liang

    2016-07-01

    The medium-long term frequency stability of the integrating sphere cold atom clock was improved.During the clock operation, Rb atoms were cooled and manipulated using cooling light diffusely reflected by the inner surface of a microwave cavity in the clock. This light heated the cavity and caused a frequency drift from the resonant frequency of the cavity. Power fluctuations of the cooling light led to atomic density variations in the cavity's central area, which increased the clock frequency instability through a cavity pulling effect. We overcame these limitations with appropriate solutions. A frequency stability of 3.5E-15 was achieved when the integrating time ? increased to 2E4 s.

  8. Dependence of microwave-excitation signal parameters on frequency stability of caesium atomic clock

    NASA Astrophysics Data System (ADS)

    Petrov, A. A.; Davydov, V. V.; Vologdin, V. A.; Zalyotov, D. V.

    2015-11-01

    New scheme of the microwave - excitation signal for the caesium atomic clock is based on method of direct digital synthesis. The theoretical calculations and experimental research showed decrease step frequency tuning by several orders and improvement the spectral characteristics of the output signal of frequency synthesizer. A range of generated output frequencies is expanded, and the possibility of detuning the frequency of the neighboring resonance of spectral line that makes it possible to adjust the C-field in quantum frequency standard is implemented. Experimental research of the metrological characteristics of the quantum frequency standard on the atoms of caesium - 133 with new design scheme of the microwave - excitation signal showed improvement in daily frequency stability on 1.2*10-14.

  9. Absolute and relative emission spectroscopy study of 3 cm wide planar radio frequency atmospheric pressure bio-plasma source

    SciTech Connect

    Deng, Xiaolong; Nikiforov, Anton Yu Leys, Christophe; Ionita, Eusebiu-Rosini; Dinescu, Gheorghe

    2015-08-03

    The dynamics of low power atmospheric pressure radio frequency discharge generated in Ar gas in long gap of 3 cm is investigated. This plasma source is characterized and analyzed for possible large scale biomedical applications where low gas temperature and potential-less effluent are required. The discharge forms a homogenous glow-like afterglow in ambient air at input power of 30 W with low gas temperature of 330 K, which is desirable in biomedical applications. With absolute calibrated spectroscopy of the discharge, electron density of 0.4 × 10{sup 18} m{sup −3} and electron temperature of 1.5 eV are obtained from continuum Bremsstrahlung radiation of the source. Time and spatial resolved emission spectroscopy is used to analyze discharge generation mechanism and active species formation. It is found that discharge dynamics strongly correlates with the discharge current waveform. Strong Ar(2p) excited states emission is observed nearby the electrodes surface on a distance up to 200 μm in the plasma sheath region at 10 ns after the current peak, whereas OH(A) emission is uniform along of the interelectrode gap.

  10. Evaluating the thermal stability of multi-pass cells' effective optical path length using optical frequency domain reflectometer

    NASA Astrophysics Data System (ADS)

    Gao, Hong; Cao, Xiuhan; Li, Jinyi; Du, Zhenhui

    2016-10-01

    Multi-pass cells (MPCs) are commonly used to improve the sensitivity for trace gas detection using spectroscopy technologies. The determination of Effective Optical Path Length (EOPL) of a MPC is very important and challenging in applications which aim at absolute measurements. It is well-known that the temperature changing will exercise some influence on the MPCs' spatial structure, however, measurements of the influence haven't been reported which might due to the limitation of measuring method. In this paper, we used a direct high-precision measuring method with Optical Frequency Domain Reflectometer (OFDR) to evaluate the thermal stability of a multi-pass cell. To simulate the environment with a large range of temperature changing, this paper gave a series of experiments by setting the temperature control unit in system from 25 to 175 degree Celsius, and the MPC's EOPL was measured simultaneously for the investigation of temperature response. The results showed that the effective optical path length increase monotonically along with the variation of the temperature, and the rising rate is 0.5 mm/ºC with the total length of about 3 meters which should be pay attention to when the ultra-high accuracy results are demanded. To stabilize the EOPL of the system, if it is possible, the environment temperature of gas cell can be controlled with a constant temperature. In practical applications, the real-time monitoring of EOPL with a direct measuring method may be necessary.

  11. Microresonator-stabilized extended-cavity diode laser for supercavity frequency stabilization

    NASA Astrophysics Data System (ADS)

    Lim, Jinkang; Savchenkov, Anatoliy A.; Matsko, Andrey B.; Huang, Shu-Wei; Maleki, Lute; Wong, Chee Wei

    2017-04-01

    We demonstrate a simple, compact, and cost-effective laser noise reduction method for stabilizing an extended cavity diode laser to a 3x105 finesse mirror Fabry-P\\'erot (F-P) cavity corresponding to resonance linewidth of 10 kHz using a crystalline MgF2 whispering gallery mode microresonator (WGMR). The laser linewidth is reduced to sub-kHz such that a stable Pound-Drever-Hall (PDH) error signal is built up. The wavelength of the pre-stabilized laser is tunable within a large bandwidth covering the high reflection mirror coating of a F-P supercavity.

  12. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  13. Experimental setup to demonstrate low-frequency high-precision frequency stabilization of 1550 nm ECL Lasers

    NASA Astrophysics Data System (ADS)

    Shoen, Steven; Téllez, Gregorio; Quetschke, Volker

    2012-02-01

    Advances in fiber and waveguide technologies have brought about a new type of laser: the Planar Waveguide External Cavity Laser (PW-ECL) that shows a great potential for precision interferometric measurements. We show an experimental setup based on a 1550nm PW-ECL which was designed to achieve a frequency stabilization of 30 Hz/sqrt(Hz) or less at 10 mHz. The presented design makes use of thermal shielding to suppress temperature fluctuations at low frequencies as well as a vacuum system, high finesse cavity and low-noise electronics to reduce the frequency noise. A description of the components used in the design is given and initial results are presented.

  14. Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCIs

    NASA Astrophysics Data System (ADS)

    Wu, Zhenghua; Yao, Dezhong

    2008-03-01

    Due to the relative noise and artifact insensitivity, steady-state visual evoked potential (SSVEP) has been used increasingly in the study of a brain-computer interface (BCI). However, SSVEP is still influenced by the same frequency component in the spontaneous EEG, and it is meaningful to find a parameter that can avoid or decrease this influence to improve the transfer rate and the accuracy of the SSVEP-based BCI. In this work, with wavelet analysis, a new parameter named stability coefficient (SC) was defined to measure the stability of a frequency, and then the electrode with the highest stability was selected as the signal electrode for further analysis. After that, the SC method and the traditional power spectrum (PS) method were used comparatively to recognize the stimulus frequency from an analogous BCI data constructed from a real SSVEP data, and the results showed that the SC method is better for a short time window data.

  15. Particle simulation on radio frequency stabilization of flute modes in a tandem mirror. I. Parallel antenna

    SciTech Connect

    Kadoya, Y.; Abe, H.

    1988-04-01

    A two- and one-half-dimensional electromagnetic particle code (PS2M) (H. Abe and S. Nakajima, J. Phys. Soc. Jpn. 53, xxx (1987)) is used to study how an electric field applied parallel to the magnetic field affects the radio frequency stabilization of flute modes in a tandem mirror plasma. The parallel electric field E/sub parallel/ perturbs the electron velocity v/sub parallel/ parallel to the magnetic field and also induces a perpendicular magnetic field perturbation B/sub perpendicular/. The unstable growth of the flute mode in the absence of such a radio frequency electric field is first studied as a basis for comparison. The ponderomotive force originating from the time-averaged product is then shown to stabilize the flute modes. The stabilizing wave power threshold, the frequency dependency, and the dependence on delchemically bondE/sub parallel/chemically bond all agree with the theoretical predictions.

  16. Wavemeter measurements of frequency stability of an injection seeded alexandrite laser for pressure and temperature lidar

    NASA Technical Reports Server (NTRS)

    Prasad, C. R.; Schwemmer, G. K.; Korb, C. L.

    1992-01-01

    The GSFC pressure-temperature lidar is a differential absorption lidar operating in the oxygen A band absorption region (760 to 770 nm), and utilizes two tunable pulsed alexandrite lasers. For obtaining temperature measurements with an accuracy of less than or = 1 K, it has been determined that the stability of the online laser frequency over a period of time corresponding to a set of measurements, 0.1 to 30 min, has to be better than +/- 0.002/cm. In addition, the requirements on laser spectral bandwidth and spectral purity are less than or = 0.02/cm and greater than or = 99.9 percent, respectively. Injection seeding with a stabilized AlGaAs diode laser was used to achieve the required frequency stability and spectral bandwidth. A high resolution Fizeau wavemeter was employed to determine the frequency stability of the pulsed alexandrite laser and determine its bandwidth, mode structure. We present the results of measurements of the frequency stability and the spectrum of the injection seeded alexandrite laser.

  17. Improvement in the control aspect of laser frequency stabilization for SUNLITE project

    NASA Technical Reports Server (NTRS)

    Zia, Omar

    1992-01-01

    Flight Electronics Division of Langley Research Center is developing a spaceflight experiment called the Stanford University and NASA Laser In-Space Technology (SUNLITE). The objective of the project is to explore the fundamental limits on frequency stability using an FM laser locking technique on a Nd:YAG non-planar ring (free-running linewidth of 5 KHz) oscillator in the vibration free, microgravity environment of space. Compact and automated actively stabilized terahertz laser oscillators will operate in space with an expected linewidth of less than 3 Hz. To implement and verify this experiment, NASA engineers have designed and built a state of the art, space qualified high speed data acquisition system for measuring the linewidth and stability limits of a laser oscillator. In order to achieve greater stability and better performance, an active frequency control scheme requiring the use of a feedback control loop has been applied. In the summer of 1991, the application of control theory in active frequency control as a frequency stabilization technique was investigated. The results and findings were presented in 1992 at the American Control Conference in Chicago, and have been published in Conference Proceedings. The main focus was to seek further improvement in the overall performance of the system by replacing the analogue controller by a digital algorithm.

  18. Stabilization of a laser on a large-detuned atomic-reference frequency by resonant interferometry

    NASA Astrophysics Data System (ADS)

    Barboza, Priscila M. T.; Nascimento, Guilherme G.; Araújo, Michelle O.; da Silva, Cícero M.; Cavalcante, Hugo L. D. de S.; Oriá, Marcos; Chevrollier, Martine; Passerat de Silans, Thierry

    2016-04-01

    We report a simple technique for stabilization of a laser frequency at the wings of an atomic resonance. The reference signal used for stabilization issues from interference effects obtained in a low-quality cavity filled with a resonant atomic vapour. For a frequency detuned 2.6 GHz from the 133Cs D2 6S{}1/2 F = 4 to 6P{}3/2 F’ = 5 transition, the fractional frequency Allan deviation is 10-8 for averaging times of 300 s, corresponding to a frequency deviation of 4 MHz. Adequate choice of the atomic density and of the cell thickness allows locking the laser at detunings larger than 10 GHz. Such a simple technique does not require magnetic fields or signal modulation.

  19. Frequency stabilization via the mixed mode in three mode HeNe lasers

    SciTech Connect

    Ellis, J D; Joo, K; Buice, E S; Spronck, J W; Munnig Schmidt, R H

    2010-02-05

    This paper describes a three mode HeNe laser frequency stabilization technique using the mixed mode frequency to obtain a fractional frequency stability of 2 x 10{sup -11}. The mixed mode frequency occurs due to optical nonlinear interactions with the adjacent modes at each of the three modes. In precision displacement interferometry systems, the laser source frequency must be stabilized to provide an accurate conversion ratio between phase change and displacement. In systems, such as lithography applications, which require high speed, high accuracy and low data age uncertainty, it is also desirable to avoid periodic nonlinearities, which reduces computation time and errors. One method to reduce periodic nonlinearity is to spatially separate the measurement and reference beams to prevent optical mixing, which has been shown for several systems. Using spatially separated beams and the proper optical configuration, the interferometer can be fiber fed, which can increase the interferometer's stability by reducing the number of beam steering optical elements. Additionally, as the number of measurement axes increases, a higher optical power from the laser source is necessary.

  20. Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy.

    PubMed

    Vainio, Markku; Karhu, Juho

    2017-02-20

    A fully stabilized mid-infrared optical frequency comb spanning from 2.9 to 3.4 µm is described in this article. The comb is based on half-harmonic generation in a femtosecond optical parametric oscillator, which transfers the high phase coherence of a fully stabilized near-infrared Er-doped fiber laser comb to the mid-infrared region. The method is simple, as no phase-locked loops or reference lasers are needed. Precise locking of optical frequencies of the mid-infrared comb to the pump comb is experimentally verified at sub-20 mHz level, which corresponds to a fractional statistical uncertainty of 2 × 10-16 at the center frequency of the mid-infrared comb. The fully stabilized mid-infrared comb is an ideal tool for high-precision molecular spectroscopy, as well as for optical frequency metrology in the mid-infrared region, which is difficult to access with other stabilized frequency comb techniques.

  1. Chip Scale Atomic Resonator Frequency Stabilization System With Ultra-Low Power Consumption for Optoelectronic Oscillators.

    PubMed

    Zhao, Jianye; Zhang, Yaolin; Lu, Haoyuan; Hou, Dong; Zhang, Shuangyou; Wang, Zhong

    2016-07-01

    We present a long-term chip scale stabilization scheme for optoelectronic oscillators (OEOs) based on a rubidium coherent population trapping (CPT) atomic resonator. By locking a single mode of an OEO to the (85)Rb 3.035-GHz CPT resonance utilizing an improved phase-locked loop (PLL) with a PID regulator, we achieved a chip scale frequency stabilization system for the OEO. The fractional frequency stability of the stabilized OEO by overlapping Allan deviation reaches 6.2 ×10(-11) (1 s) and  ∼ 1.45 ×10 (-11) (1000 s). This scheme avoids a decrease in the extra phase noise performance induced by the electronic connection between the OEO and the microwave reference in common injection locking schemes. The total physical package of the stabilization system is [Formula: see text] and the total power consumption is 400 mW, which provides a chip scale and portable frequency stabilization approach with ultra-low power consumption for OEOs.

  2. An Auto-Lock Laser System for Long Term Frequency Stabilization

    NASA Astrophysics Data System (ADS)

    Berthiaume, Robert; Vorozcovs, Andrew; Kumarakrishnan, A.

    2010-03-01

    We have developed a compact, digitally controlled system to automatically stabilize the frequency of an external cavity diode laser to an atomic resonance. The key component of the system is a low-cost single-board computer with A/D and D/A capability that acts as a specialized lock-in amplifier. The system performs pattern matching between Doppler-free peaks obtained by scanning the laser frequency and reference peaks stored in the processor's memory. The incoming spectral signals are compared with the reference waveforms using a sliding correlation algorithm, which determines the control voltage required for adjusting the laser frequency to the desired lock point. The system has a scan amplitude of less than 1MHz when locked and it can re-lock for frequency drifts up to 10 GHz without human intervention. The dependence of laser frequency stability on ambient temperature, humidity, and pressure has been investigated. The performance of the system is suitable for experiments in atom trapping and atom interferometry that require long-term laser frequency stabilization.

  3. Laser frequency stabilization to spectral hole burning frequency references in erbium-doped crystals: Material and device optimization

    NASA Astrophysics Data System (ADS)

    Bottger, Thomas

    2002-01-01

    Narrow spectral holes in the absorption lines of Er3+ doped crystals have been explored as references for frequency stabilizing external cavity diode lasers at the important 1.5 mum optical communication wavelength. Allan deviations of the beat signal between two independent stabilized lasers as low as 200 Hz over 10 ms integration time have been achieved using regenerative spectral holes in Er3+:Y2SiO5 and Er3+:KTP, while drift was reduced to ˜7 kHz/min by incorporating the inhomogeneous absorption line as a fixed reference. During active stabilization, the transient spectral hole was continuously regenerated as hole burning balanced relaxation. In contrast, persistent spectral holes in Er3+:D-:CaF2, with lifetimes of several weeks, provided programmable and transportable secondary frequency references that maintained sub-kilohertz stability over several seconds and enabled 6 kHz stability over 1.6 x 103 s. The error signal was derived from the spectral hole transmission using frequency modulation spectroscopy. A servo amplifier applied fast frequency corrections to the injection current of the laser diode and slower adjustments to the piezo-driven feedback prism plate. These stabilized lasers provide ideal sources for spectral hole burning applications based on optical coherent transients, where laser stability is required over the storage time of the material. Since the lifetime of the frequency reference is exactly the material storage time, this requirement is automatically met by using our technique. This was demonstrated in Er 3+:Y2SiO5 and successfully transferred to high-bandwidth signal processing applications. The material Er3+:Y2SiO5 was optimized for these applications. The 4I15/2 and 4 I13/2 crystal field levels were site-selectively determined by absorption and fluorescence spectroscopy. The excited state lifetime was measured to be 11.4 ms for site 1 and 9.2 ms for site 2. Zeeman experiments and two-pulse photon echo spectroscopy as a function of

  4. UHF FM receiver having improved frequency stability and low RFI emission

    DOEpatents

    Lupinetti, Francesco

    1990-02-27

    A UHF receiver which converts UHF modulated carrier signals to baseband video signals without any heterodyne or frequency conversion stages. A bandpass filter having a fixed frequency first filters the signals. A low noise amplifier amplifies the filtered signal and applies the signal through further amplification stages to a limited FM demodulator circuit. The UHF signal is directly converted to a baseband video signal. The baseband video signal is clamped by a clamping circuit before driving a monitor. Frequency stability for the receivers is at a theoretical maximum, and interference to adjacent receivers is eliminated due to the absence of a local oscillator.

  5. Frequency noise induced by fiber perturbations in a fiber-linked stabilized laser

    NASA Technical Reports Server (NTRS)

    Pang, YI; Hamilton, Jeffrey J.; Richard, Jean-Paul

    1992-01-01

    The effects of acoustic perturbations on an optical fiber that links a stabilized laser to its reference cavity are studied. An extrapolation indicates that 69 dB of acoustic noise impinging on a 1-m segment of the 10-m fiber contribute frequency noise at the level of 1 Hz/(Hz)1/2 in the 1100-2100-Hz band.

  6. Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser

    NASA Astrophysics Data System (ADS)

    Hu, Guoqing; Mizuguchi, Tatsuya; Zhao, Xin; Minamikawa, Takeo; Mizuno, Takahiko; Yang, Yuli; Li, Cui; Bai, Ming; Zheng, Zheng; Yasui, Takeshi

    2017-02-01

    A single, free-running, dual-wavelength mode-locked, erbium-doped fibre laser was exploited to measure the absolute frequency of continuous-wave terahertz (CW-THz) radiation in real time using dual THz combs of photo-carriers (dual PC-THz combs). Two independent mode-locked laser beams with different wavelengths and different repetition frequencies were generated from this laser and were used to generate dual PC-THz combs having different frequency spacings in photoconductive antennae. Based on the dual PC-THz combs, the absolute frequency of CW-THz radiation was determined with a relative precision of 1.2 × 10‑9 and a relative accuracy of 1.4 × 10‑9 at a sampling rate of 100 Hz. Real-time determination of the absolute frequency of CW-THz radiation varying over a few tens of GHz was also demonstrated. Use of a single dual-wavelength mode-locked fibre laser, in place of dual mode-locked lasers, greatly reduced the size, complexity, and cost of the measurement system while maintaining the real-time capability and high measurement precision.

  7. Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser

    PubMed Central

    Hu, Guoqing; Mizuguchi, Tatsuya; Zhao, Xin; Minamikawa, Takeo; Mizuno, Takahiko; Yang, Yuli; Li, Cui; Bai, Ming; Zheng, Zheng; Yasui, Takeshi

    2017-01-01

    A single, free-running, dual-wavelength mode-locked, erbium-doped fibre laser was exploited to measure the absolute frequency of continuous-wave terahertz (CW-THz) radiation in real time using dual THz combs of photo-carriers (dual PC-THz combs). Two independent mode-locked laser beams with different wavelengths and different repetition frequencies were generated from this laser and were used to generate dual PC-THz combs having different frequency spacings in photoconductive antennae. Based on the dual PC-THz combs, the absolute frequency of CW-THz radiation was determined with a relative precision of 1.2 × 10−9 and a relative accuracy of 1.4 × 10−9 at a sampling rate of 100 Hz. Real-time determination of the absolute frequency of CW-THz radiation varying over a few tens of GHz was also demonstrated. Use of a single dual-wavelength mode-locked fibre laser, in place of dual mode-locked lasers, greatly reduced the size, complexity, and cost of the measurement system while maintaining the real-time capability and high measurement precision. PMID:28186148

  8. Design and Stability of Load-Side Primary Frequency Control in Power Systems

    SciTech Connect

    Zhao, CH; Topcu, U; Li, N; Low, S

    2014-05-01

    We present a systematic method to design ubiquitous continuous fast-acting distributed load control for primary frequency regulation in power networks, by formulating an optimal load control (OLC) problem where the objective is to minimize the aggregate cost of tracking an operating point subject to power balance over the network. We prove that the swing dynamics and the branch power flows, coupled with frequency-based load control, serve as a distributed primal-dual algorithm to solve OLC. We establish the global asymptotic stability of a multimachine network under such type of load-side primary frequency control. These results imply that the local frequency deviations on each bus convey exactly the right information about the global power imbalance for the loads to make individual decisions that turn out to be globally optimal. Simulations confirm that the proposed algorithm can rebalance power and resynchronize bus frequencies after a disturbance with significantly improved transient performance.

  9. Spike width and frequency alter stability of phase-locking in electrically coupled neurons.

    PubMed

    Dodla, Ramana; Wilson, Charles J

    2013-06-01

    The stability of phase-locked states of electrically coupled type-1 phase response curve neurons is studied using piecewise linear formulations for their voltage profile and phase response curves. We find that at low frequency and/or small spike width, synchrony is stable, and antisynchrony unstable. At high frequency and/or large spike width, these phase-locked states switch their stability. Increasing the ratio of spike width to spike height causes the antisynchronous state to transition into a stable synchronous state. We compute the interaction function and the boundaries of stability of both these phase-locked states, and present analytical expressions for them. We also study the effect of phase response curve skewness on the boundaries of synchrony and antisynchrony.

  10. Western Wind and Solar Integration Study Phase 3 – Frequency Response and Transient Stability

    SciTech Connect

    Miller, N. W.; Shao, M.; Pajic, S.; D'Aquila, R.

    2014-12-01

    Power system operators and utilities worldwide have concerns about the impact of high-penetration wind and solar generation on electric grid reliability (EirGrid 2011b, Hydro-Quebec 2006, ERCOT 2010). The stability of North American grids under these conditions is a particular concern and possible impediment to reaching future renewable energy goals. Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3) considers a 33% wind and solar annual energy penetration level that results in substantial changes to the characteristics of the bulk power system, including different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior of wind and solar generation. WWSIS-3 evaluates two specific aspects of fundamental frequency system stability: frequency response and transient stability.

  11. Frequency stability optimization of an OEO using phase-locked-loop and self-injection-locking

    NASA Astrophysics Data System (ADS)

    Fu, Rongrong; Jin, Xiaofeng; Zhu, Yanhong; Jin, Xiangdong; Yu, Xianbin; Zheng, Shilie; Chi, Hao; Zhang, Xianmin

    2017-03-01

    Frequency stability optimization of an X-band optoelectronic oscillator (OEO) using the technique of phase-locked loop (PLL) and dual loop self-injection-locking (DSIL) is proposed and demonstrated. The relationship between the loop transfer characteristics of a PLL and the phase noise of the oscillation signal is analyzed. The close-in phase noise and frequency overlapping Allan deviation (ADEV) of the OEO are optimized by properly choosing the bandwidth of the loop filter of the PLL. The phase noise of the OEO is suppressed by 41.5 dB at 100 Hz offset and 21.3 dB at 10 kHz offset with PLL and DSIL. The frequency overlapping ADEV achieved 7.03×10-12 at average time of 100 s, which is several orders of magnitude better than that of the DSIL OEO and the free-running OEO, proves the high oscillation stability of proposed scheme.

  12. Frequency stabilization of spin-torque-driven oscillations by coupling with a magnetic nonlinear resonator

    SciTech Connect

    Kudo, Kiwamu Suto, Hirofumi; Nagasawa, Tazumi; Mizushima, Koichi; Sato, Rie

    2014-10-28

    The fundamental function of any oscillator is to produce a waveform with a stable frequency. Here, we show a method of frequency stabilization for spin-torque nano-oscillators (STNOs) that relies on coupling with an adjacent nanomagnet through the magnetic dipole–dipole interaction. It is numerically demonstrated that highly stable oscillations occur as a result of mutual feedback between an STNO and a nanomagnet. The nanomagnet acts as a nonlinear resonator for the STNO. This method is based on the nonlinear behavior of the resonator and can be considered as a magnetic analogue of an optimization scheme in nanoelectromechanical systems. The oscillation frequency is most stabilized when the nanomagnet is driven at a special feedback point at which the feedback noise between the STNO and resonator is completely eliminated.

  13. Frequency stabilization of internal-mirror He-Ne lasers by air cooling

    NASA Astrophysics Data System (ADS)

    Qian, Jin; Liu, Zhongyou; Shi, Chunying; Liu, Xiuying; Wang, Jianbo; Yin, Cong; Cai, Shan

    2013-01-01

    Instead of traditional heating method, the cavity length of an internal-mirror He-Ne laser is controlled by air cooling which is generated by a mini cooling fan. A PID servo controlling system is designed to drive the cooling fan tuning the frequency of the laser. The frequency is stabilized by balancing the power of two operating longitudinal modes. Beating with an iodine stabilized He-Ne laser, a relative uncertainty(Δf / ̅f ) of 4.3×10-9 in 5 months, a frequency fluctuation of less than 2.6 MHz and an Allan deviation of 3×10-11 (τ=100 s) in 75 h are obtained.

  14. A semiconductor-based, frequency-stabilized mode-locked laser using a phase modulator and an intracavity etalon.

    PubMed

    Davila-Rodriguez, Josue; Ozdur, Ibrahim; Williams, Charles; Delfyett, Peter J

    2010-12-15

    We report a frequency-stabilized semiconductor-based mode-locked laser that uses a phase modulator and an intracavity Fabry-Perot etalon for both active mode-locking and optical frequency stabilization. A twofold multiplication of the repetition frequency of the laser is inherently obtained in the process. The residual timing jitter of the mode-locked pulse train is 13 fs (1 Hz to 100 MHz), measured after regenerative frequency division of the photodetected pulse train.

  15. Nonlinear oscillation and interfacial stability of an encapsulated microbubble under dual-frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael; Liu, Yunqiao; Wang, Qianxi

    2016-11-01

    Encapsulated microbubbles (EMBs) are widely used in medical ultrasound imaging as contrast-enhanced agents. However, the potential damaging effects of violent, collapsing EMBs to cells and tissues in clinical practice have remained a concern. Dual-frequency ultrasound is a promising technique for improving the efficacy and safety of sonography. The EMB system modeled consists of the external liquid, membrane, and internal gases. The microbubble dynamics are simulated using a simple nonlinear interactive theory, considering the compressibility of the internal gas, viscosity of the liquid flow, and elasticity of the membrane. The radial oscillation and interfacial stability of an EMB under single and dual-frequency excitations are compared. The simulation results show that the dual-frequency technique produces larger backscatter pressure at higher harmonics of the primary driving frequency. This enriched acoustic spectrum can enhance blood-tissue contrast and improve sonographic image quality. The results further show that the acoustic pressure threshold associated with the onset of shape instability is greater for dual-frequency driving. This suggests that the dual-frequency technique stabilizes the EMB, thereby improving the efficacy and safety of contrast-enhanced agents.

  16. A novel single frequency stabilized Fabry-Perot laser diode at 1590 nm for gas sensing

    NASA Astrophysics Data System (ADS)

    Weldon, Vincent; Boylan, Karl; Corbett, Brian; McDonald, David; O'Gorman, James

    2002-09-01

    A novel single frequency stabilized Fabry-Perot (SFP) laser diode with an emission wavelength of λ=1590 nm for H 2S gas sensing is reported. Sculpting of the multi-mode spectral distribution of a FP laser to achieve single frequency emission is carried out using post growth photolitographic processing of the device. The resulting longitudinal-mode controlled FP laser has a stabilized single frequency emission with a side mode suppression ratio (SMSR) of 40 dB. The application of this device to spectroscopic based H 2S sensing is demonstrated by targeting absorption lines in the wavelength range 1588≤ λ≤1591 nm. Using wavelength modulation spectroscopy (WMS), a low detection limit of 120 ppm.m.Hz -1/2 was estimated while targeting the absorption line at 1590.08 nm. These initial results demonstrate the potential of the stabilized FP laser diode at this wavelength as a tunable, single frequency source for spectroscopic based gas sensing.

  17. Operational stability of rubidium and cesium frequency standards. [analysis of equipment performance at NASA tracking stations

    NASA Technical Reports Server (NTRS)

    Lavery, J. E.

    1972-01-01

    In the course of testing various rubidium and cesium frequency standards under operational conditions for use in NASA tracking stations, about 55 unit-years of relative frequency measurements for averaging times from 10 to 10 to the 7th power have been accumulated at Goddard Space Flight Center (GSFC). Statistics on the behavior of rubidium and cesium standards under controlled laboratory conditions have been published, but it was not known to what extent the lesser controlled environments of NASA tracking stations affected the performance of the standards. The purpose of this report is to present estimates of the frequency stability of rubidium and cesium frequency standards under operational conditions based on the data accumulated at GSFC.

  18. High-bandwidth transfer of phase stability through a fiber frequency comb.

    PubMed

    Scharnhorst, Nils; Wübbena, Jannes B; Hannig, Stephan; Jakobsen, Kornelius; Kramer, Johannes; Leroux, Ian D; Schmidt, Piet O

    2015-07-27

    We demonstrate phase locking of a 729 nm diode laser to a 1542 nm master laser via an erbium-doped-fiber frequency comb, using a transfer-oscillator feedforward scheme which suppresses the effect of comb noise in an unprecedented 1.8 MHz bandwidth. We illustrate its performance by carrying out coherent manipulations of a trapped calcium ion with 99 % fidelity even at few-μs timescales. We thus demonstrate that transfer-oscillator locking can provide sufficient phase stability for high-fidelity quantum logic manipulation even without pre-stabilization of the slave diode laser.

  19. Carrier-envelope offset frequency stabilization in a femtosecond optical parametric oscillator without nonlinear interferometry.

    PubMed

    Balskus, Karolis; Fleming, Melissa; McCracken, Richard A; Zhang, Zhaowei; Reid, Derryck T

    2016-03-01

    By exploiting the correlation between changes in the wavelength and the carrier-envelope offset frequency (f(CEO)) of the signal pulses in a synchronously pumped optical parametric oscillator, we show that f(CEO) can be stabilized indefinitely to a few megahertz in a 333 MHz repetition-rate system. Based on a position-sensitive photodiode, the technique is easily implemented, requires no nonlinear interferometry, has a wide capture range, and is compatible with feed-forward techniques that can enable f(CEO) stabilization at loop bandwidths far exceeding those currently available to OPO combs.

  20. Stability and stabilisation of linear multidimensional discrete systems in the frequency domain

    NASA Astrophysics Data System (ADS)

    Li, Lizhen; Xu, Li; Lin, Zhiping

    2013-11-01

    This paper gives a reasonably detailed review of advances in stability and stabilisation of linear multidimensional (N-D) discrete systems in the frequency domain. The emphasis is on the recent progress, especially in the past decade. The discussion will focus on two topics: (i) stability test. Determination of whether a given N-D (N ≥ 2) system is stable; (ii) stabilisation. Parameterisation of all stabilising compensators for a stabilisable N-D system. After reviewing the progress and several state of the art methods in these two topics with illustrative examples, some related issues are also briefly mentioned at the end.

  1. Nonlinear oscillation and interfacial stability of an encapsulated microbubble under dual-frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Liu, Yunqiao; Calvisi, Michael L.; Wang, Qianxi

    2017-04-01

    Encapsulated microbubbles (EMBs) are widely used in medical ultrasound imaging as contrast-enhanced agents. However, the potential damaging effects of violent collapsing EMBs to cells and tissues in clinical settings have remained a concern. Dual-frequency ultrasound is a promising technique for improving the efficacy and safety of sonography. The system modeled consists of the external liquid, membrane and internal gases of an EMB. The microbubble dynamics are simulated using a simple nonlinear interactive theory, considering the compressibility of the internal gas, viscosity of the liquid flow and viscoelasticity of the membrane. The radial oscillation and interfacial stability of an EMB under single- and dual-frequency excitations are compared. The simulation results show that the dual-frequency technique produces larger backscatter pressure at higher harmonics of the primary driving frequency—this enriched acoustic spectrum can enhance blood-tissue contrast and improve the quality of sonographic images. The results further show that the acoustic pressure threshold associated with the onset of shape instability is greater for dual-frequency driving. This suggests that the dual-frequency technique stabilizes the encapsulated bubble, thereby improving the efficacy and safety of contrast-enhanced agents.

  2. Fast phase stabilization of a low frequency beat note for atom interferometry

    NASA Astrophysics Data System (ADS)

    Oh, E.; Horne, R. A.; Sackett, C. A.

    2016-06-01

    Atom interferometry experiments rely on the ability to obtain a stable signal that corresponds to an atomic phase. For interferometers that use laser beams to manipulate the atoms, noise in the lasers can lead to errors in the atomic measurement. In particular, it is often necessary to actively stabilize the optical phase between two frequency components of the beams. Typically this is achieved using a time-domain measurement of a beat note between the two frequencies. This becomes challenging when the frequency difference is small and the phase measurement must be made quickly. The method presented here instead uses a spatial interference detection to rapidly measure the optical phase for arbitrary frequency differences. A feedback system operating at a bandwidth of about 10 MHz could then correct the phase in about 3 μs. This time is short enough that the phase correction could be applied at the start of a laser pulse without appreciably degrading the fidelity of the atom interferometer operation. The phase stabilization system was demonstrated in a simple atom interferometer measurement of the 87Rb recoil frequency.

  3. Optimising a High-Stability CW Laser-Pumped Rubidium Gas-Cell Frequency Standard

    NASA Astrophysics Data System (ADS)

    Affolderbach, C.; Gruet, F.; Miletic, D.; Mileti, G.

    2009-04-01

    We report on our development of a compact and high-performance laser-pumped Rubidium atomic frequency standard. The clock design is based on optical-microwave double-resonance using cw optical pumping, and a physical realization as simple as possible. Main development goals are a short-term instability of ≤ 6 × 10-13 τ-1/2 and a flicker floor of ≤ 1 × 10-14 up to one day. Here we discuss our approaches for controlling the clock's main physical parameters in view of optimized frequency stability.

  4. Frequency stabilization for space-based missions using optical fiber interferometry.

    PubMed

    McRae, Terry G; Ngo, Silvie; Shaddock, Daniel A; Hsu, Magnus T L; Gray, Malcolm B

    2013-02-01

    We present measurement results for a laser frequency reference, implemented with an all-optical fiber Michelson interferometer, down to frequencies as low as 1 mHz. Optical fiber is attractive for space-based operations as it is physically robust, small and lightweight. The small free spectral range of fiber interferometers also provides the possibility to prestabilize two lasers on two distant spacecraft and ensures that the beatnote remains within the detector bandwidth. We demonstrate that these fiber interferometers are viable candidates for future laser-based gravity recovery and climate experiment missions requiring a stability of 30 Hz/√Hz over a 10 mHz-1 Hz bandwidth.

  5. Frequency tracking in acoustic trapping for improved performance stability and system surveillance.

    PubMed

    Hammarström, Björn; Evander, Mikael; Wahlström, Jacob; Nilsson, Johan

    2014-03-07

    This work proposes and demonstrates an acoustic trapping system where the trapping frequency is automatically determined and can be used to analyse changes in the acoustic trap. Critical for the functionality of this system is the use of a kerfed transducer that removes spurious resonances. This makes it possible to determine the optimal trapping frequency by analysing electrical impedance. It is demonstrated that the novel combination of a kerfed transducer and acoustic trapping in glass capillaries creates a high Q-value resonator. This narrows the frequency bandwidth but allows excellent performance, as confirmed by a ten-fold increase in the flow retention speed when compared to previously reported values. Importantly, the use of automatic frequency tracking allows the use of such a narrow bandwidth resonator without compromising system stability. As changes in temperature, buffer-properties, and the amount of captured particles will affect the properties of the acoustic resonator, corresponding changes in resonance frequency will occur. It is shown that such frequency changes can be accurately tracked using the setup. Therefore, monitoring the frequency over time adds a new feature to acoustic trapping, where experimental progress can be monitored and the amount of trapped material can be quantified.

  6. Compensated Multi-Pole Mercury Trapped Ion Frequency Standard and Stability Evaluation of Systematic Effects

    NASA Astrophysics Data System (ADS)

    Burt, E. A.; Taghavi-Larigani, S.; Prestage, J. D.; Tjoelker, R. L.

    2009-04-01

    We have developed a compensated multi-pole Linear Ion Trap Standard (LITS) that eliminates nearly all frequency sensitivity to residual ion number variations. When operated with 199Hg+, this trapped ion clock has recently demonstrated extremely good stability over a 9-month period. The short-term stability has been measured at 5 × 10-14/τ1/2 and an upper limit on long-term fractional frequency deviations of < 2.7 × 10-17/day was measured in comparison to the laser-cooled primary standards and to the post-processed ultra-stable version of TAI known as TTBIPM using GPS carrier phase time transfer. We have also made a first measurement of the Hg+/Hg collision shift and place a limit of +3.8(7.2) × 10-8/Pa on the shift constant.

  7. Local vs. global redundancy - trade-offs between resilience against cascading failures and frequency stability

    NASA Astrophysics Data System (ADS)

    Plietzsch, A.; Schultz, P.; Heitzig, J.; Kurths, J.

    2016-05-01

    When designing or extending electricity grids, both frequency stability and resilience against cascading failures have to be considered amongst other aspects of energy security and economics such as construction costs due to total line length. Here, we compare an improved simulation model for cascading failures with state-of-the-art simulation models for short-term grid dynamics. Random ensembles of realistic power grid topologies are generated using a recent model that allows for a tuning of global vs local redundancy. The former can be measured by the algebraic connectivity of the network, whereas the latter can be measured by the networks transitivity. We show that, while frequency stability of an electricity grid benefits from a global form of redundancy, resilience against cascading failures rather requires a more local form of redundancy and further analyse the corresponding trade-off.

  8. Monolithic CEO-stabilization scheme-based frequency comb from an octave-spanning laser

    NASA Astrophysics Data System (ADS)

    Zi-Jiao, Yu; Hai-Nian, Han; Yang, Xie; Hao, Teng; Zhao-Hua, Wang; Zhi-Yi, Wei

    2016-04-01

    We demonstrate a carrier-envelope phase-stabilized octave-spanning oscillator based on the monolithic scheme. A wide output spectrum extending from 480 nm to 1050 nm was generated directly from an all-chirped mirror Ti:sapphire laser. After several improvements, the carrier-envelope offset (CEO) beat frequency accessed nearly 60 dB under a resolution of 100 kHz. Using a feedback system with 50-kHz bandwidth, we compressed the residual phase noise to 55 mrad (integrated from 1 Hz to 1 MHz) for the stabilized CEO, corresponding to 23-as timing jitter at the central wavelength of 790 nm. This is, to the best of our knowledge, the smallest timing jitter achieved among the existing octave-spanning laser based frequency combs. Project supported by the National Basic Research Program of China (Grant No. 2012CB821304) and the National Natural Science Foundation of China (Grant Nos. 11078022 and 61378040).

  9. DSS 13 frequency stability tests performed during May 1985 through March 1986

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.; Franco, M. M.

    1986-01-01

    Results of station frequency stability testing performed at DSS 13 (Deep Space Station) during May 1985 through March 1986 are presented. The testing was done on X-band uplink and X- and S-band downlink subsystems as well as on end-to-end systems. The subsystem test data are useful for assessing the frequency stability of various prototype X-band uplink or downlink subsystems for purposes of making design improvements. Information derived from extensive testing at DSS 13 will be useful in the preparation of an X-band Uplink Demonstration Experiment to be conducted at DSS 13, and will also be valuable in the preparations of gravity wave experiments to be conducted at other DSN stations in the future.

  10. Self-stabilization of high-frequency oscillations in semiconductor superlattices by time-delay autosynchronization.

    PubMed

    Schlesner, J; Amann, A; Janson, N B; Just, W; Schöll, E

    2003-12-01

    We present a scheme to stabilize high-frequency domain oscillations in semiconductor superlattices by a time-delayed feedback loop. Applying concepts from chaos control theory we propose to control the spatiotemporal dynamics of fronts of accumulation and depletion layers which are generated at the emitter and may collide and annihilate during their transit, and thereby suppress chaos. The proposed method only requires the feedback of internal global electrical variables, viz., current and voltage, which makes the practical implementation very easy.

  11. Self-stabilization of high-frequency oscillations in semiconductor superlattices by time-delay autosynchronization

    NASA Astrophysics Data System (ADS)

    Schlesner, J.; Amann, A.; Janson, N. B.; Just, W.; Schöll, E.

    2003-12-01

    We present a scheme to stabilize high-frequency domain oscillations in semiconductor superlattices by a time-delayed feedback loop. Applying concepts from chaos control theory we propose to control the spatiotemporal dynamics of fronts of accumulation and depletion layers which are generated at the emitter and may collide and annihilate during their transit, and thereby suppress chaos. The proposed method only requires the feedback of internal global electrical variables, viz., current and voltage, which makes the practical implementation very easy.

  12. Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons

    NASA Astrophysics Data System (ADS)

    Hansson, Tobias; Wabnitz, Stefan

    2015-07-01

    The generation of optical frequency combs in microresonators is considered without resorting to the mean-field approximation. New dynamical regimes are found to appear for high intracavity power that cannot be modeled using the Lugiato-Lefever equation. Using the Ikeda map we show the existence of multi-valued stationary states and analyse their stability. Period doubled patterns are considered and a novel type of super cavity soliton associated with the multi-stable states is predicted.

  13. A structure function representation theorem with applications to frequency stability estimation

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1982-01-01

    Random processes with stationary nth differences serve as models for oscillator phase noise. A theorem which obtains the structure function (covariance of the nth differences) of such a process in terms of the differences of a single function of one time variable is proven. In turn, this function can easily be obtained from the spectral density of the process. The theorem is used for computing the variance of two estimators of frequency stability.

  14. Stabilized chip-scale Kerr frequency comb via a high-Q reference photonic microresonator

    NASA Astrophysics Data System (ADS)

    Lim, Jinkang; Huang, Shu-Wei; Vinod, Abhinav K.; Mortazavian, Parastou; Yu, Mingbin; Kwong, Dim-Lee; Savchenkov, Anatoliy A.; Matsko, Andrey B.; Maleki, Lute; Wong, Chee Wei

    2016-08-01

    We stabilize a chip-scale Si3N4 phase-locked Kerr frequency comb via locking the pump laser to an independent stable high-Q reference microresonator and locking the comb spacing to an external microwave oscillator. In this comb, the pump laser shift induces negligible impact on the comb spacing change. This scheme is a step towards miniaturization of the stabilized Kerr comb system as the microresonator reference can potentially be integrated on-chip. Fractional instability of the optical harmonics of the stabilized comb is limited by the microwave oscillator used for comb spacing lock below 1 s averaging time and coincides with the pump laser drift in the long term.

  15. Stabilized chip-scale Kerr frequency comb via a high-Q reference photonic microresonator.

    PubMed

    Lim, Jinkang; Huang, Shu-Wei; Vinod, Abhinav K; Mortazavian, Parastou; Yu, Mingbin; Kwong, Dim-Lee; Savchenkov, Anatoliy A; Matsko, Andrey B; Maleki, Lute; Wong, Chee Wei

    2016-08-15

    We stabilize a chip-scale Si3N4 phase-locked Kerr frequency comb via locking the pump laser to an independent stable high-Q reference microresonator and locking the comb spacing to an external microwave oscillator. In this comb, the pump laser shift induces negligible impact on the comb spacing change. This scheme is a step toward miniaturization of the stabilized Kerr comb system as the microresonator reference can potentially be integrated on-chip. Fractional instability of the optical harmonics of the stabilized comb is limited by the microwave oscillator used for a comb spacing lock below 1 s averaging time and coincides with the pump laser drift in the long term.

  16. Absolute Quantitation of Met Using Mass Spectrometry for Clinical Application: Assay Precision, Stability, and Correlation with MET Gene Amplification in FFPE Tumor Tissue

    PubMed Central

    Catenacci, Daniel V. T.; Liao, Wei-Li; Thyparambil, Sheeno; Henderson, Les; Xu, Peng; Zhao, Lei; Rambo, Brittany; Hart, John; Xiao, Shu-Yuan; Bengali, Kathleen; Uzzell, Jamar; Darfler, Marlene; Krizman, David B.; Cecchi, Fabiola; Bottaro, Donald P.; Karrison, Theodore; Veenstra, Timothy D.; Hembrough, Todd; Burrows, Jon

    2014-01-01

    Background Overexpression of Met tyrosine kinase receptor is associated with poor prognosis. Overexpression, and particularly MET amplification, are predictive of response to Met-specific therapy in preclinical models. Immunohistochemistry (IHC) of formalin-fixed paraffin-embedded (FFPE) tissues is currently used to select for ‘high Met’ expressing tumors for Met inhibitor trials. IHC suffers from antibody non-specificity, lack of quantitative resolution, and, when quantifying multiple proteins, inefficient use of scarce tissue. Methods After describing the development of the Liquid-Tissue-Selected Reaction Monitoring-mass spectrometry (LT-SRM-MS) Met assay, we evaluated the expression level of Met in 130 FFPE gastroesophageal cancer (GEC) tissues. We assessed the correlation of SRM Met expression to IHC and mean MET gene copy number (GCN)/nucleus or MET/CEP7 ratio by fluorescence in situ hybridization (FISH). Results Proteomic mapping of recombinant Met identified 418TEFTTALQR426 as the optimal SRM peptide. Limits of detection (LOD) and quantitation (LOQ) for this peptide were 150 and 200 amol/µg tumor protein, respectively. The assay demonstrated excellent precision and temporal stability of measurements in serial sections analyzed one year apart. Expression levels of 130 GEC tissues ranged (<150 amol/µg to 4669.5 amol/µg. High correlation was observed between SRM Met expression and both MET GCN and MET/CEP7 ratio as determined by FISH (n = 30; R2 = 0.898). IHC did not correlate well with SRM (n = 44; R2 = 0.537) nor FISH GCN (n = 31; R2 = 0.509). A Met SRM level of ≥1500 amol/µg was 100% sensitive (95% CI 0.69–1) and 100% specific (95% CI 0.92–1) for MET amplification. Conclusions The Met SRM assay measured the absolute Met levels in clinical tissues with high precision. Compared to IHC, SRM provided a quantitative and linear measurement of Met expression, reliably distinguishing between non-amplified and amplified MET

  17. Maximum likelihood method for estimating airplane stability and control parameters from flight data in frequency domain

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1980-01-01

    A frequency domain maximum likelihood method is developed for the estimation of airplane stability and control parameters from measured data. The model of an airplane is represented by a discrete-type steady state Kalman filter with time variables replaced by their Fourier series expansions. The likelihood function of innovations is formulated, and by its maximization with respect to unknown parameters the estimation algorithm is obtained. This algorithm is then simplified to the output error estimation method with the data in the form of transformed time histories, frequency response curves, or spectral and cross-spectral densities. The development is followed by a discussion on the equivalence of the cost function in the time and frequency domains, and on advantages and disadvantages of the frequency domain approach. The algorithm developed is applied in four examples to the estimation of longitudinal parameters of a general aviation airplane using computer generated and measured data in turbulent and still air. The cost functions in the time and frequency domains are shown to be equivalent; therefore, both approaches are complementary and not contradictory. Despite some computational advantages of parameter estimation in the frequency domain, this approach is limited to linear equations of motion with constant coefficients.

  18. Frequency effects on the stability of a journal bearing for periodic loading

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, D.; Brewe, D. E.

    1991-01-01

    The stability of a journal bearing is numerically predicted when a unidirectional periodic external load is applied. The analysis is performed using a cavitation algorithm, which mimics the Jakobsson-Floberg and Olsson (JFO) theory by accounting for the mass balance through the complete bearing. Hence, the history of the film is taken into consideration. The loading pattern is taken to be sinusoidal and the frequency of the load cycle is varied. The results are compared with the predictions using Reynolds boundary conditions for both film rupture and reformation. With such comparisons, the need for accurately predicting the cavitation regions for complex loading patterns is clearly demonstrated. For a particular frequency of loading, the effects of mass, amplitude of load variation and frequency of journal speed are also investigated. The journal trajectories, transient variations in fluid film forces, net surface velocity and minimum film thickness, and pressure profiles are also presented.

  19. Long term frequency stability analysis of the GPS NAVSTAR 6 Cesium clock

    NASA Technical Reports Server (NTRS)

    Mccaskill, T. B.; Stebbins, S.; Carson, C.; Buisson, J.

    1982-01-01

    Time domain measurements, taken between the NAVSTAR 6 Spacecraft Vehicle (SV) and the Vandenberg Global Positioning System (GPS) Monitor Site, by a pseudo random noise receiver, were collected over an extended period of time and analyzed to estimate the long term frequency stability of the NAVSTAR 6 onboard frequency standard, referenced to the Vandenberg MS frequency standard. The technique employed separates the clock offset from the composite signal by first applying corrections for equipment delays, ionospheric delay, tropospheric delay, Earth rotation and the relativistic effect. The data are edited and smoothed using the predicted SV ephemeris to calculate the geometric delay. Then all available passes from each of the four GPS monitor stations, are collected at 1-week intervals and used to calculate the NAVSTAR orbital elements. The procedure is then completed by subtracting the corrections and the geometric delay, using the final orbital elements, from the composite signal, thus leaving the clock offset and random error.

  20. Stability of Low-Frequency Residual Hearing in Patients Who Are Candidates for Combined Acoustic Plus Electric Hearing

    ERIC Educational Resources Information Center

    Yao, Wai Na; Turner, Christopher W.; Gantz, Bruce J.

    2006-01-01

    The purpose of this study was to investigate the stability over time of low-frequency auditory thresholds to better determine if the new technique of using a short-electrode cochlear implant that preserves residual low-frequency acoustic hearing can be a long-term solution for those with severe-to-profound hearing loss at high frequencies. The…

  1. Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters

    NASA Astrophysics Data System (ADS)

    Sun, Wenhui; Wang, Sunlong; Zhong, Xin; Liu, Jianguo; Wang, Wenting; Tong, Youwan; Chen, Wei; Yuan, Haiqing; Yu, Lijuan; Zhu, Ninghua

    2016-08-01

    An integrated wideband optical frequency comb (OFC) based on a semiconductor quantum dot laser is realized with high stability. The OFC module is packaged in our lab. A circuit which is designed to provide a low-ripple current and control the temperature regards as a servo system to enhance the stability of the OFC. The frequency stability of the OFC is 2.7×10-9 (Allan Variance). The free spectral range (FSR) of the OFC is 40 GHz and the number of comb lines is up to 55. The flatness of the OFC over span of 4 nm can be limited to 0.5 dB. Negative coefficients microwave photonic filters with multiple taps are generated based on the proposed OFC. For the 10 taps microwave photonic filter, the pass-band at 8.74 GHz has a 3 dB bandwidth of 630 MHz with 16.58 dB side-lobe suppression. Compared with the published microwave photonic filters, the proposed system is more stable, of more compact structures, and of less power consumption.

  2. Experimental Investigation of Hexagon Stability in Two Frequency Forced Faraday Waves

    NASA Astrophysics Data System (ADS)

    Ding, Yu; Umbanhowar, Paul

    2003-03-01

    We have conducted experiments on a deep layer of silicone oil vertically oscillated with an acceleration a(t) = Am sin(m ω t + φ_m) + An sin(n ω t + φ_n). The stability of hexagonal surface wave patterns is investigated as a function of the overall acceleration, the ratio m:n, and the phase of the two rationally related driving frequencies. When the ratio A_m/An is chosen so the system is near a co-dimension two point, the stability of hexagons above onset is determined by the acceleration amplitude and the relative phase. Recent results by Porter and Silver (J. Porter and M. Silber, Phys. Rev. Lett. 084501, 2002) predicts that the range of pattern stability above onset as a function of acceleration is determined by cos(Φ), where Φ = π/4 - m φn / 2- n φm /2. We have tested this prediction for a number of m:n ratios and for various values of the dimensionless damping coefficient γ. We find that the patterns exhibit the predicted functional dependence on s(Φ) but with an additional phase offset. We measure the phase offset as a function of m:n and γ for varying frequency ω and fluid viscosity 5 cS <= ν <= 30 cS.

  3. Stability and natural frequency of nonspherical mode of an encapsulated microbubble in a viscous liquid

    NASA Astrophysics Data System (ADS)

    Liu, Yunqiao; Wang, Qianxi

    2016-06-01

    The dynamics of encapsulated microbubbles (EMBs) subject to an ultrasound wave have wide and important medical applications, including sonography, drug delivery, and sonoporation. The nonspherical shape oscillation of an EMB, termed as shape modes, is one of the core mechanisms of these applications and therefore its natural frequency is a fundamentally important parameter. Based on the linear stability theory, we show that shape modes of an EMB in a viscous Newtonian liquid are stable. We derive an explicit expression for the natural frequency of shape modes, in terms of the equilibrium radius of an EMB, and the parameters of the external liquid, coating, and internal gases. The expression is validated by comparing to the numerical results obtained from the dynamic equations of shape modes of an EMB. The natural frequency of shape modes shifts appreciably due to the viscosity of the liquid, and this trend increases with the mode number. The significant viscous effects are due to the no-slip condition for the liquid flow at the surface of an EMB. Our results show that when subject to an acoustic wave, the shape instability for an EMB is prone to appear if 2ωk/ωd = n, where ωk is the natural frequency of shape modes, ωd is the driving frequency of the acoustic wave, and n is a natural number. The effects of viscosity on the natural frequency is thus critical in setting the driving frequency of ultrasound to avoid or activate shape modes of EMBs, which should be considered in the applications of medical ultrasound.

  4. Low frequency azimuthal stability of the ionization region of the Hall thruster discharge. II. Global analysis

    SciTech Connect

    Escobar, D.; Ahedo, E.

    2015-10-15

    The linear stability of the Hall thruster discharge is analysed against axial-azimuthal perturbations in the low frequency range using a time-dependent 2D code of the discharge. This azimuthal stability analysis is spatially global, as opposed to the more common local stability analyses, already afforded previously (D. Escobar and E. Ahedo, Phys. Plasmas 21(4), 043505 (2014)). The study covers both axial and axial-azimuthal oscillations, known as breathing mode and spoke, respectively. The influence on the spoke instability of different operation parameters such as discharge voltage, mass flow, and thruster size is assessed by means of different parametric variations and compared against experimental results. Additionally, simplified models are used to unveil and characterize the mechanisms driving the spoke. The results indicate that the spoke is linked to azimuthal oscillations of the ionization process and to the Bohm condition in the transition to the anode sheath. Finally, results obtained from local and global stability analyses are compared in order to explain the discrepancies between both methods.

  5. Measurement of Primary and Secondary Stability of Dental Implants by Resonance Frequency Analysis Method in Mandible

    PubMed Central

    Shokri, Mehran; Daraeighadikolaei, Arash

    2013-01-01

    Background. There is no doubt that the success of the dental implants depends on the stability. The aim of this work was to measure the stability of dental implants prior to loading the implants, using a resonance frequency analysis (RFA) by Osstell mentor device. Methods. Ten healthy and nonsmoker patients over 40 years of age with at least six months of complete or partial edentulous mouth received screw-type dental implants by a 1-stage procedure. RFA measurements were obtained at surgery and 1, 2, 3, 4, 5, 7, and 11 weeks after the implant surgery. Results. Among fifteen implants, the lowest mean stability measurement was for the 4th week after surgery in all bone types. At placement, the mean ISQ obtained with the magnetic device was 77.2 with 95% confidence interval (CI) = 2.49, and then it decreased until the 4th week to 72.13 (95% CI = 2.88), and at the last measurement, the mean implant stability significantly (P value <0.05) increased and recorded higher values to 75.6 (95% CI = 1.88), at the 11th week. Conclusions. The results may be indicative of a period of time when loading might be disadvantageous prior to the 4th week following implant placement. These suggestions need to be further assessed through future studies. PMID:23737790

  6. Convective stability in the Rayleigh-Benard and directional solidification problems - High-frequency gravity modulation

    NASA Technical Reports Server (NTRS)

    Wheeler, A. A.; Mcfadden, G. B.; Murray, B. T.; Coriell, S. R.

    1991-01-01

    The effect of vertical, sinusoidal, time-dependent gravitational acceleration on the onset of solutal convection during directional solidification is analyzed in the limit of large modulation frequency. When the unmodulated state is unstable, the modulation amplitude required to stabilize the system is determined by the method of averaging. When the unmodulated state is stable, resonant modes of instability occur at large modulation amplitude. These are analyzed using matched asymptotic expansions to elucidate the boundary-layer structure for both the Rayleigh-Benard and directional solidification configurations. Based on these analyses, a thorough examination of the dependence of the stability criteria on the unmodulated Rayleigh number, Schmidt number, and distribution coefficient, is carried out.

  7. Effect of high power low frequency ultrasound processing on the stability of lycopene.

    PubMed

    Oliveira, Valéria S; Rodrigues, Sueli; Fernandes, Fabiano A N

    2015-11-01

    The stability of lycopene was evaluated after application of high power low frequency ultrasound. The study was carried out on a solution containing pure lycopene to evaluate the direct effect of ultrasound on lycopene and on tomato purée to evaluate the direct and indirect effects of ultrasound application within a food matrix. Power densities ranging from 55 to 5000 W/L and temperatures ranging from 23°C (ambient) to 60°C were evaluated. The experiments on pure lycopene showed that the application of ultrasound did not have any direct effect over lycopene. However, the retention of lycopene in tomato puree has decreased indicating an indirect effect on lycopene stability caused by high concentration of hydrogen peroxide and the activation of peroxidase enzymes leading to the reduction of ascorbic acid and its regenerative action towards lycopene.

  8. Improvement of Laminar Lifted Flame Stability Excited by High-Frequency Acoustic Oscillation

    NASA Astrophysics Data System (ADS)

    Hirota, Mitsutomo; Hashimoto, Kota; Oso, Hiroki; Masuya, Goro

    A high-frequency (20kHz) standing wave was applied to the unburned mixture upstream of a methane-air lifted jet flame using a bolt-clamped Langevin transducer (BLT) to improve stability. The flow field near the flame was visualized using acetone planar-laser-induced fluorescence (PLIF). The standing wave decreased the lifted flame height and increased the blow-off limit. The upstream flow field of the center jet then bent. This phenomenon appeared when there was a density difference between the center jet and the surrounding secondary flow. When the density of the center jet was less than that of the co-flow, the center jet was redirected to the pressure anti-node side. Conversely, when the density of the center jet was greater than that of the co-flow, the center jet was redirected to the pressure node side. This redirection tended to stabilize the laminar lifted flame.

  9. Injection seeding of a Q-switched alexandrite laser: Study of frequency stabilization

    NASA Technical Reports Server (NTRS)

    Brown, Lamarr A.

    1992-01-01

    AlGaAs diode lasers were used to injection seed a pulsed Q-switched alexandrite laser which produces a narrowband of radiation. Injection seeding is a method for achieving linewidths of less than 500 mega-Hz in the output of the broadband, tunable solid state laser. When the laser was set at a current of 59.8 milli-A and a temperature of 14.04 C, the wavelength was 767.6 nano-m. The Q-switched alexandrite laser was injection seeded and frequency stabilization was studied. The linewidth requirement was met, but the stability requirement was not due to drifting in the feedback voltage. Improvements on injection seeding should focus on increasing the feedback voltage to the laser diode, filtering the laser diode by using temperature controlled narrowband filters, and the use of diamond (SiC) grating placed inside the alexandrite laser's resonator cavity.

  10. Relative stability of two laser frequency combs for routine operation on HARPS and FOCES

    NASA Astrophysics Data System (ADS)

    Probst, Rafael A.; Lo Curto, Gaspare; Ávila, Gerardo; Brucalassi, Anna; Canto Martins, Bruno L.; de Castro Leão, Izan; Esposito, Massimiliano; González Hernández, Jonay I.; Grupp, Frank; Hänsch, Theodor W.; Holzwarth, Ronald; Kellermann, Hanna; Kerber, Florian; Mandel, Olaf; Manescau, Antonio; Pasquini, Luca; Pozna, Eszter; Rebolo, Rafael; Renan de Medeiros, José; Stark, Sebastian P.; Steinmetz, Tilo; Suárez Mascareño, Alejandro; Udem, Thomas; Urrutia, Josefina; Wu, Yuanjie

    2016-08-01

    We report on the installation of a laser frequency comb (LFC) at the HARPS spectrograph, which we characterize relative to a second LFC that we had brought to HARPS for testing. This allowed us for the first time to probe the relative stability of two independent astronomical LFCs over an extended wavelength range. Both LFCs covered the spectral range of HARPS at least from 460 to 690 nm. After optimization of the fiber coupling to HARPS to suppress modal noise, a relative stability of the two LFCs in the low cm/s range was obtained. In combination with the results of our four earlier LFC test campaigns on HARPS, the available data now cover a time span of more than six years.

  11. Discrete- and finite-bandwidth-frequency distributions in nonlinear stability applications

    NASA Astrophysics Data System (ADS)

    Kuehl, Joseph J.

    2017-02-01

    A new "wave packet" formulation of the parabolized stability equations method is presented. This method accounts for the influence of finite-bandwidth-frequency distributions on nonlinear stability calculations. The methodology is motivated by convolution integrals and is found to appropriately represent nonlinear energy transfer between primary modes and harmonics, in particular nonlinear feedback, via a "nonlinear coupling coefficient." It is found that traditional discrete mode formulations overestimate nonlinear feedback by approximately 70%. This results in smaller maximum disturbance amplitudes than those observed experimentally. The new formulation corrects this overestimation, accounts for the generation of side lobes responsible for spectral broadening, and results in disturbance representation more consistent with the experiment than traditional formulations. A Mach 6 flared-cone example is presented.

  12. 1.55 μm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser.

    PubMed

    Yoshida, Masato; Yoshida, Kazuki; Kasai, Keisuke; Nakazawa, Masataka

    2016-10-17

    We describe a 1.55 μm hydrogen cyanide (HCN) optical frequency and repetition rate stabilized mode-locked fiber laser, where the optical frequency was locked to the P(10) HCN absorption line and the repetition rate was locked to 9.95328 GHz by using a microwave phase-locked loop. The optical frequency stability of the laser reached 5 x 10-11 with an integration time τ of 1 s. With a bidirectional pumping scheme, the laser output power reached 64.6 mW. To obtain a short pulse train, the average dispersion in the cavity was managed so that it was zero around 1.55 μm, resulting in a 0.95 ps pulse train. In addition, the stabilization of the optical frequency and the repetition rate, meant that the entire spectral profile remained the same for 24 hours.

  13. Stability of the FOCES spectrograph using an astro-frequency comb as calibrator

    NASA Astrophysics Data System (ADS)

    Brucalassi, Anna; Grupp, Frank; Kellermann, Hanna; Wang, Liang; Lang-Bardl, Florian; Baisert, Nils; Hu, Shao Ming; Hopp, Ulrich; Bender, Ralf

    2016-08-01

    We present the results of a series of measurements conducted using the upgraded Fiber Optic Cassegrain Echelle Spectrograph (FOCES)1 intended to be operated at the 2.0 m Fraunhofer Telescope at the Wendelstein Observatory (Germany) in combination with a laser frequency comb as calibrator. Details about the laboratory set-up of the system integrated with FOCES are shown. Different analysis techniques are applied to investigate the calibration precision and the medium-long term stability of the system in term of changes in stellar radial velocity.

  14. Gain, phase and frequency stability of DSS-42 and DSS-43 vor Voyage Uranus encounter

    NASA Technical Reports Server (NTRS)

    Cha, A. G.; Levy, R.

    1986-01-01

    Theoretically rigorous definitions are derived of such parameters as RF signal path length, phase delay, and phase/frequency stability in a Cassegrainian antenna applicable to a narrow bandwidth channel, as well as algorithms for evaluating these parameters. This work was performed in support of the Voyager spacecraft encounter with Uranus in January 1986. The information was needed to provide Voyager/Uranus radio science researchers with a rotational basis for deciding the best strategy to operate the three antennas involved during the crucial 5-hour occultation period of the encounter. Such recommendations are made at the end of the article.

  15. Semiconductor laser's on-line coherence calibration and testing of frequency stability

    NASA Astrophysics Data System (ADS)

    Zakharov, Yu. N.; Popov, A. Yu.; Tyurin, A. V.

    2008-05-01

    One of the main constituent parts of optical coherent measuring apparatus is laser as source with stable performance of frequency, radiation intensity, and light beam uniformity. At present time semiconductor lasers are rather attractive devices in view of there low prices, small size, serviceability. Progress in its quality leads to including them not only in lightheads, but as lighting unit in measuring apparatus. In order to guarantee accuracy of measuring instruments, all parts of them must have stable performance, and in this respect semiconductor laser demand stabilization more that one characteristic quantity at once. And frequency stability on the one hand is overwhelmingly important for constancy of optical measuring instruments, on the other hand our investigations show that its regulatory control is very arduous task. Both holographic methods and phase modulated speckle interferometry clearly recognize smooth frequency shift and frequency jumping depending on pumping current and temperature. And for repeatability it's required to return both of them. So it is necessary laser frequency testing during working. For interferometric comparison circuit it is frequency variation that exerts influence on fringes pattern generation, so just this parameter should be traced in the course of measuring. Specially prepared test object, introduced in holographic scheme, allows to uncover frequency variation, if they had have place, and to reproduce coherence function of laser source. Complicated coherence function of semiconductor lasers can destroy interference pattern or foul the interpretation of it. So this coherence calibration is also very useful for results validity. Phase modulated speckle interferometry method allows to build phase correlation portraits, analogical to interferograms, hence multiwavelength contour generation masks the picture of intrinsic object information too. Both real wavelength change and nonresolution area, when coherence length is less

  16. Self-injected semiconductor distributed feedback lasers for frequency chirp stabilization.

    PubMed

    Kechaou, Khalil; Grillot, Frédéric; Provost, Jean-Guy; Thedrez, Bruno; Erasme, Didier

    2012-11-05

    It is well known that semiconductor distributed feedback lasers (DFB) are key devices for optical communications. However direct modulation applications are limited by the frequency chirp induced by current modulation. We demonstrate that a proper external control laser operation leads to chirp-to-power ratio (CPR) stabilization over a wide range of modulation frequencies as compared to the free-running case. Under experimentally selected optical feedback conditions, the CPR decreases significantly in the adiabatic regime from about 650 MHz/mW in the solitary case down to 65 MHz/mW. Experimental results are also confirmed by numerical investigations based on the transfer matrix method. Simulations point out the possible optimization of the CPR in the adiabatic regime by considering a judicious cavity design in conjunction with a proper external control. These results demonstrate important routes for improving the transmission performance in optical telecommunication systems.

  17. A method for using a time interval counter to measure frequency stability

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1987-01-01

    It is shown how a commercial time interval counter can be used to measure the relative stability of two signals that are offset in frequency and mixed down to a beat note of about 1 Hz. To avoid the dead-time problem, the counter is set up to read the time interval between each beat note upcrossing and the next pulse of a 10 Hz reference pulse train. The actual upcrossing times are recovered by a simple algorithm whose outputs can be used for computing residuals and Allan variance. A noise floor-test yielded a delta f/f Allan deviation of 1.3 times 10 to the minus 9th power/tau relative to the beat frequency.

  18. Stabilizing effect of a nonresonant radio frequency drive on the m =1 diocotron instability

    NASA Astrophysics Data System (ADS)

    Maero, G.; Paroli, B.; Pozzoli, R.; Romé, M.

    2011-03-01

    It has been experimentally shown that the rotation radius of a non-neutral plasma column around the longitudinal axis of a Malmberg-Penning trap experiences a growth in amplitude (m =1 diocotron instability), leading to the loss of the plasma on the surface of the confining electrodes. A new stabilization mechanism has been investigated with the help of systematic experiments in the ELTRAP (ELectron TRAP) device where a high-frequency, low-amplitude drive has been applied on an azimuthally sectored electrode. An effective confining force is created, which reduces the offset of the column from the center. This interpretation and its theoretical analysis show a qualitative agreement with the experimental findings, where a net confinement effect is present for a wide range of drive amplitudes and frequencies.

  19. Dissemination stability and phase noise characteristics in a cascaded, fiber-based long-haul radio frequency dissemination network.

    PubMed

    Gao, C; Wang, B; Zhu, X; Yuan, Y B; Wang, L J

    2015-09-01

    To study the dissemination stability and phase noise characteristics of the cascaded fiber-based RF dissemination, we perform an experiment using three sets of RF modulated frequency dissemination systems. The experimental results show that the total transfer stability of the cascaded system can be given by σ(T)(2)=∑(i=1)(N)σ(i)(2) (σ(i) is the frequency dissemination stability of the ith segment and N is the quantity of segments). Furthermore, for each segment, the phase noise of recovered frequency signal is also measured. The results show that for an N-segment, cascaded dissemination system, its stability degrades only by a factor of N. This sub-linear relation makes the cascaded, RF-dissemination method a very attractive one for long-haul, time and frequency dissemination network.

  20. Frequency Stability of 1X10(sup -13) in a Compensated Sapphire Oscillator Operating Above 77 K

    NASA Technical Reports Server (NTRS)

    Santiago, D. G.; Dick, G. J.; Wang, R. T.

    1996-01-01

    We report on a frequency-stable temperature compensated sapphire oscillator (CSO) at temperatures above 77 K. Previously, high stability in sapphire oscillators had only been obtained with liquid helium cooling.

  1. Laser Frequency Stabilization Using a Calcium Ramsey-Bordé Interferometer

    NASA Astrophysics Data System (ADS)

    Olson, Judith; Fox, Richard; de Carlos-Lopez, Eduardo; Oates, Chris; Ludlow, Andrew

    2015-05-01

    Ramsey-Bordé (RB) interferometry is a powerful spectroscopic tool for the interrogation of narrow optical resonances. Even for atomic systems with broad velocity distributions, spectral features free from first-order Doppler and transit-time broadening can be resolved using two counterpropagating pairs of copropagating beams. In our system, a high-flux thermal calcium beam is excited from the 1S0 to 3P1 state using the 657 nm intercombination line. The high spectral resolution afforded by RB interferometry allows exploration of spectral features approaching the transition's natural linewidth, 400 Hz. Together with the large atom number from the continuously fed thermal beam, the optical frequency reference has considerable potential for a compact frequency standard with extremely low instability. We previously observed fractional frequency instability of 5 . 5 ×10-15 at 1s using this technique. With the addition of a laser to access the strong 431 nm cycling transition from the 3P1 to the doubly excited 3P0 state, the potential exists to achieve frequency stability below 10-16 at short times. We explore the implementation of this system and future enhancements to further improve the standard's short- and long-term performance.

  2. Stability of the translocation frequency following whole-body irradiation measured in rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Lucas, J. N.; Hill, F. S.; Burk, C. E.; Cox, A. B.; Straume, T.

    1996-01-01

    Chromosome translocations are persistent indicators of prior exposure to ionizing radiation and the development of 'chromosome painting' to efficiently detect translocations has resulted in a powerful biological dosimetry tool for radiation dose reconstruction. However, the actual stability of the translocation frequency with time after exposure must be measured before it can be used reliably to obtain doses for individuals exposed years or decades previously. Human chromosome painting probes were used here to measure reciprocal translocation frequencies in cells from two tissues of 8 rhesus monkeys (Macaca mulatta) irradiated almost three decades previously. Six of the monkeys were exposed in 1965 to whole-body (fully penetrating) radiation and two were unexposed controls. The primates were irradiated as juveniles to single doses of 0.56, 1.13, 2.00, or 2.25 Gy. Blood lymphocytes (and skin fibroblasts from one individual) were obtained for cytogenetic analysis in 1993, near the end of the animals' lifespans. Results show identical dose-response relationships 28 y after exposure in vivo and immediately after exposure in vitro. Because chromosome aberrations are induced with identical frequencies in vivo and in vitro, these results demonstrate that the translocation frequencies induced in 1965 have not changed significantly during the almost three decades since exposure. Finally, our emerging biodosimetry data for individual radiation workers are now confirming the utility of reciprocal translocations measured by FISH in radiation dose reconstruction.

  3. Tunable frequency stabilization to Zeeman sublevel transitions between an intermediate state and Rydberg states

    NASA Astrophysics Data System (ADS)

    Bao, Shanxia; Zhang, Hao; Zhou, Jian; Zhang, Linjie; Zhao, Jianming; Xiao, Liantuan; Jia, Suotang

    2017-01-01

    We demonstrate a robust method of direct laser frequency locking on the Zeeman sublevel transitions between an intermediate state and Rydberg states, with continuously tunable frequency range from  -35 MHz to  +35 MHz, which is based on electromagnetically induced transparency (EIT) spectra of nondegenerate Zeeman sublevels in a Rydberg cascade system. With a small axial magnetic field, the EIT spectrum will split into two individual sub-peaks due to the Zeeman Effect of three energy levels, including the 133Cs 6S1/2, 6P3/2 and nl Rydberg states which form the cascade system. It is shown that the coupling field, corresponding to the transitions between the Zeeman sublevels of the intermediate state and Rydberg state, can be locked arbitrarily on any one of the two EIT sub-peaks. The frequency stability of locked lasers is bounded by 0.81 MHz. The root of Allan variance of the frequency reaches a minimum of 2.06× {{10}-8} for an averaging time of 512 s.

  4. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  5. Frequency-domain L 2-stability conditions for switched linear and nonlinear SISO systems

    NASA Astrophysics Data System (ADS)

    Huang, Z. H.; Venkatesh, Y. V.; Xiang, C.; Lee, T. H.

    2014-03-01

    We consider the L 2-stability analysis of single-input-single-output (SISO) systems with periodic and nonperiodic switching gains and described by integral equations that can be specialised to the form of standard differential equations. For the latter, stability literature is mostly based on the application of quadratic forms as Lyapunov-function candidates which lead, in general, to conservative results. Exceptions are some recent results, especially for second-order linear differential equations, obtained by trajectory control or optimisation to arrive at the worst-case switching sequence of the gain. In contrast, we employ a non-Lyapunov framework to derive L 2-stability conditions for a class of (linear and) nonlinear SISO systems in integral form, with monotone, odd-monotone and relaxed monotone nonlinearities, and, in each case, with periodic or nonperiodic switching gains. The derived frequency-domain results are reminiscent of (i) the Nyquist criterion for linear time-invariant feedback systems and (ii) the Popov-criterion for time-invariant nonlinear feedback systems with the Lur'e-type nonlinearity. Although overlapping with some recent results of the literature for periodic gains, they have been derived independently in essentially the Popov framework, are different for certain classes of nonlinearities and address some of the questions left open, with respect to, for instance, the synthesis of the multipliers and numerical interpretation of the results. Apart from the novelty of the results as applied to the dwell-time problem, they reveal an interesting phenomenon of the switched systems: fast switching can lead to stability, thereby providing an alternative framework for vibrational stability analysis.

  6. Swarm's Absolute Scalar Magnetometers Burst Mode Results

    NASA Astrophysics Data System (ADS)

    Coisson, P.; Vigneron, P.; Hulot, G.; Crespo Grau, R.; Brocco, L.; Lalanne, X.; Sirol, O.; Leger, J. M.; Jager, T.; Bertrand, F.; Boness, A.; Fratter, I.

    2014-12-01

    Each of the three Swarm satellites embarks an Absolute Scalar Magnetometer (ASM) to provide absolute scalar measurements of the magnetic field with high accuracy and stability. Nominal data acquisition of these ASMs is 1 Hz. But they can also run in a so-called "burst mode" and provide data at 250 Hz. During the commissioning phase of the mission, seven burst mode acquisition campaigns have been run simultaneously for all satellites, obtaining a total of ten days of burs-mode data. These campaigns allowed the identification of issues related to the operations of the piezo-electric motor and the heaters connected to the ASM, that do not impact the nominal 1 Hz scalar data. We analyze the burst mode data to identify high frequency geomagnetic signals, focusing the analysis in two regions: the low latitudes, where we seek signatures of ionospheric irregularities, and the high latitudes, to identify high frequency signals related to polar region currents. Since these campaigns have been conducted during the initial months of the mission, the three satellites where still close to each other, allowing to analyze the spatial coherency of the signals. Wavelet analysis have revealed 31 Hz signals appearing in the night-side in the equatorial region.

  7. Note: Stability control of intermediate frequencies of a three laser far-infrared polarimeter-interferometer system.

    PubMed

    Yu, Jiang-Tao; Li, He-Ping; Nie, Qiu-Yue; Zou, Zhi-Yong; Liu, Hai-Qing; Bao, Cheng-Yu; Jie, Yin-Xian; Li, Zhan-Xian

    2016-12-01

    Stability of the intermediate frequency (IF) in the far-infrared polarimeter-interferometer diagnostic system is critically important for the long pulse discharge experiments on the EAST tokamak. In this note, a real-time remote/local IF stability control system is described. The measured plasma parameters, including the Faraday rotation angle, electron density, lower hybrid wave, and plasma current, are obtained with the aid of this newly developed IF stability control system.

  8. Note: Stability control of intermediate frequencies of a three laser far-infrared polarimeter-interferometer system

    NASA Astrophysics Data System (ADS)

    Yu, Jiang-Tao; Li, He-Ping; Nie, Qiu-Yue; Zou, Zhi-Yong; Liu, Hai-Qing; Bao, Cheng-Yu; Jie, Yin-Xian; Li, Zhan-Xian

    2016-12-01

    Stability of the intermediate frequency (IF) in the far-infrared polarimeter-interferometer diagnostic system is critically important for the long pulse discharge experiments on the EAST tokamak. In this note, a real-time remote/local IF stability control system is described. The measured plasma parameters, including the Faraday rotation angle, electron density, lower hybrid wave, and plasma current, are obtained with the aid of this newly developed IF stability control system.

  9. The Autonomous Cryocooled Sapphire Oscillator: A Reference for Frequency Stability and Phase Noise Measurements

    NASA Astrophysics Data System (ADS)

    Giordano, V.; Grop, S.; Fluhr, C.; Dubois, B.; Kersalé, Y.; Rubiola, E.

    2016-06-01

    The Cryogenic Sapphire Oscillator (CSO) is the microwave oscillator which feature the highest short-term stability. Our best units exhibit Allan deviation σy (τ) of 4.5x10-16 at 1s, ≈ 1.5x10-16 at 100 s ≤ t ≤ 5,000 s (floor), and ≤ 5x10-15 at one day. The use of a Pulse-Tube cryocooler enables full two year operation with virtually no maintenance. Starting with a short history of the CSO in our lab, we go through the architecture and we provide more details about the resonator, the cryostat, the oscillator loop, and the servo electronics. We implemented three similar oscillators, which enable the evaluation of each with the three- cornered hat method, and provide the potential for Allan deviation measurements at parts of 10-17 level. One of our CSOs (ULISS) is transportable, and goes with a small customized truck. The unique feature of ULISS is that its σy (τ) can be validated at destination by measuring before and after the roundtrip. To this extent, ULISS can be regarded as a traveling standard of frequency stability. The CSOs are a part of the Oscillator IMP project, a platform dedicated to the measurement of noise and short-term stability of oscillators and devices in the whole radio spectrum (from MHz to THz), including microwave photonics. The scope spans from routine measurements to the research on new oscillators, components, and measurement methods.

  10. Stability improvement of an operational two-way satellite time and frequency transfer system

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Jiun; Fujieda, Miho; Takiguchi, Hiroshi; Tseng, Wen-Hung; Tsao, Hen-Wai

    2016-04-01

    To keep national time accurately coherent with coordinated universal time, many national metrology institutes (NMIs) use two-way satellite time and frequency transfer (TWSTFT) to continuously measure the time difference with other NMIs over an international baseline. Some NMIs have ultra-stable clocks with stability better than 10-16. However, current operational TWSTFT can only provide frequency uncertainty of 10-15 and time uncertainty of 1 ns, which is inadequate. The uncertainty is dominated by the short-term stability and the diurnals, i.e. the measurement variation with a period of one day. The aim of this work is to improve the stability of operational TWSTFT systems without additional transmission, bandwidth or increase in signal power. A software-defined receiver (SDR) comprising a high-resolution correlator and successive interference cancellation associated with open-loop configuration as the TWSTFT receiver reduces the time deviation from 140 ps to 73 ps at averaging time of 1 h, and occasionally suppresses diurnals. To study the source of the diurnals, TWSTFT is performed using a 2  ×  2 earth station (ES) array. Consequently, some ESs sensitive to temperature variation are identified, and the diurnals are significantly reduced by employing insensitive ESs. Hence, the operational TWSTFT using the proposed SDR with insensitive ESs achieves time deviation to 41 ps at 1 h, and 80 ps for averaging times from 1 h to 20 h.

  11. Fast stabilization of a CO{sub 2} laser for a frequency standard at 10 {mu}m

    SciTech Connect

    Pisani, M.Q.; Sassi, M.P.; Zucco, M.

    1994-12-31

    A CO{sub 2} laser has been frequency stabilized to an OsO{sub 4} transition with a control bandwidth of 10 kHz. The obtained spectral purity of the laser is 100 Hz. The realization of very accurate frequency standards and experiments of high resolution spectroscopy in the 10 {mu}m region are made possible by this source.

  12. Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell

    NASA Astrophysics Data System (ADS)

    Meras, Patrick; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Spiers, Gary D.

    2010-04-01

    We have designed and built a hollow-core fiber frequency reference cell, filled it with CO2, and used it to demonstrate frequency stabilization of a 2.05 μm Tm:Ho:YLF laser using frequency modulation (FM) spectroscopy technique. The frequency reference cell is housed in a compact and robust hermetic package that contains a several meter long hollow-core photonic crystal fiber optically coupled to index-guiding fibers with a fusion splice on one end and a mechanical splice on the other end. The package has connectorized fiber pigtails and a valve used to evacuate, refill it, or adjust the gas pressure. We have demonstrated laser frequency standard deviation decreasing from >450MHz (free-running) to <2.4MHz (stabilized). The 2.05 μm laser wavelength is of particular interest for spectroscopic instruments due to the presence of many CO2 and H20 absorption lines in its vicinity. To our knowledge, this is the first reported demonstration of laser frequency stabilization at this wavelength using a hollow-core fiber reference cell. This approach enables all-fiber implementation of the optical portion of laser frequency stabilization system, thus making it dramatically more lightweight, compact, and robust than the traditional free-space version that utilizes glass or metal gas cells. It can also provide much longer interaction length of light with gas and does not require any alignment. The demonstrated frequency reference cell is particularly attractive for use in aircraft and space coherent lidar instruments for measuring atmospheric CO2 profile.

  13. Optimization of A 2-Micron Laser Frequency Stabilization System for a Double-Pulse CO2 Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Yu, Jirong; Bai, Yingsin; Koch, Grady; Petros, Mulugeta; Trieu, Bo; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey

    2010-01-01

    A carbon dioxide (CO2) Differential Absorption Lidar (DIAL) for accurate CO2 concentration measurement requires a frequency locking system to achieve high frequency locking precision and stability. We describe the frequency locking system utilizing Frequency Modulation (FM), Phase Sensitive Detection (PSD), and Proportional Integration Derivative (PID) feedback servo loop, and report the optimization of the sensitivity of the system for the feed back loop based on the characteristics of a variable path-length CO2 gas cell. The CO2 gas cell is characterized with HITRAN database (2004). The method can be applied for any other frequency locking systems referring to gas absorption line.

  14. High-frequency-stability laser at 1.5 {mu}m using Doppler-free molecular lines

    SciTech Connect

    Labachelerie, M.d.; Nakagawa, K.; Awaji, Y.; Ohtsu, M.

    1995-03-15

    An extended-cavity 1.5-{mu}m semiconductor laser was frequency stabilized to saturated-absorption lines of acetylene. Its long-term frequency stability is of the order of 10{sup --12}, with a reproducibility of {plus_minus}10 kHz. Using the lines of C{sub 2}H{sub 2} or HCN, we could obtain such a high stability with the same laser at many wavelengths covering the 1.51--1.56-{mu}m band.

  15. Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides.

    PubMed

    Klenner, Alexander; Mayer, Aline S; Johnson, Adrea R; Luke, Kevin; Lamont, Michael R E; Okawachi, Yoshitomo; Lipson, Michal; Gaeta, Alexander L; Keller, Ursula

    2016-05-16

    Silicon nitride (Si3N4) waveguides represent a novel photonic platform that is ideally suited for energy efficient and ultrabroadband nonlinear interactions from the visible to the mid-infrared. Chip-based supercontinuum generation in Si3N4 offers a path towards a fully-integrated and highly compact comb source for sensing and time-and-frequency metrology applications. We demonstrate the first successful frequency comb offset stabilization that utilizes a Si3N4 waveguide for octave-spanning supercontinuum generation and achieve the lowest integrated residual phase noise of any diode-pumped gigahertz laser comb to date. In addition, we perform a direct comparison to a standard silica photonic crystal fiber (PCF) using the same ultrafast solid-state laser oscillator operating at 1 µm. We identify the minimal role of Raman scattering in Si3N4 as a key benefit that allows to overcome the fundamental limitations of silica fibers set by Raman-induced self-frequency shift.

  16. Center Frequency Stabilization in Planar Dual-Mode Resonators during Mode-Splitting Control

    NASA Astrophysics Data System (ADS)

    Naji, Adham; Soliman, Mina H.

    2017-03-01

    Shape symmetry in dual-mode planar electromagnetic resonators results in their ability to host two degenerate resonant modes. As the designer enforces a controllable break in the symmetry, the degeneracy is removed and the two modes couple, exchanging energy and elevating the resonator into its desirable second-order resonance operation. The amount of coupling is controlled by the degree of asymmetry introduced. However, this mode coupling (or splitting) usually comes at a price. The centre frequency of the perturbed resonator is inadvertently drifted from its original value prior to coupling. Maintaining centre frequency stability during mode splitting is a nontrivial geometric design problem. In this paper, we analyse the problem and propose a novel method to compensate for this frequency drift, based on field analysis and perturbation theory, and we validate the solution through a practical design example and measurements. The analytical method used works accurately within the perturbational limit. It may also be used as a starting point for further numerical optimization algorithms, reducing the required computational time during design, when larger perturbations are made to the resonator. In addition to enabling the novel design example presented, it is hoped that the findings will inspire akin designs for other resonator shapes, in different disciplines and applications.

  17. Short-term stability improvements of an optical frequency standard based on free Ca atoms

    NASA Astrophysics Data System (ADS)

    Sherman, Jeff; Oates, Chris

    2010-03-01

    Compared to optical frequency standards featuring trapped ions or atoms in optical lattices, the strength of a standard using freely expanding neutral calcium atoms is not ultimate accuracy but rather short-term stability and experimental simplicity. Recently, a fractional frequency instability of 4 x10-15 at 1 second was demonstrated for the Ca standard at 657 nm [1]. The short cycle time (˜2 ms) combined with only a moderate interrogation duty cycle (˜15 %) is thought to introduce excess, and potentially critically limiting technical noise due to the Dick effect---high-frequency noise on the laser oscillator is not averaged away but is instead down-sampled by aliasing. We will present results of two strategies employed to minimize this effect: the reduction of clock laser noise by filtering the master clock oscillator through a high-finesse optical cavity [2], and an optimization of the interrogation cycle to match our laser's noise spectrum.[4pt] [1] Oates et al., Optics Letters, 25(21), 1603--5 (2000)[0pt] [2] Nazarova et al., J. Opt. Soc. Am. B, 5(10), 1632--8 (2008)

  18. Chronic alcohol self-administration in monkeys shows long-term quantity/frequency categorical stability

    PubMed Central

    Baker, Erich J.; Farro, Jonathan; Gonzales, Steven; Helms, Christa; Grant, Kathleen A.

    2014-01-01

    Background The current criteria for alcohol use disorders (AUD) do not include consumption (quantity/frequency) measures of alcohol intake, in part due to the difficulty of these measures in humans. Animal models of ethanol self-administration have been fundamental in advancing our understanding of the neurobiological basis of (AUD) and can address quantity/frequency measures with accurate measurements over prolonged periods of time. The non-human primate (NHP) model of voluntary oral alcohol self-administration has documented both binge drinking and drinking to dependence and can be used to test the stability of consumption measures over time. Methods and Results Here, an extensive set of alcohol intakes (g/kg/day) was analyzed from a large multi-cohort population of Rhesus (Macaca mulatta) monkeys (n=31). Daily ethanol intake was uniformly distributed over chronic (12 months) access for all animals. Underlying this distribution of intakes were subpopulations of monkeys that exhibited distinctive clustering of drinking patterns, allowing us to categorically define very heavy drinking (VHD), heavy drinking (HD), binge drinking (BD), and low drinking (LD). These categories were stable across the 12-month assessed by the protocol, but exhibited fluctuations when examined at shorter intervals. Conclusions The establishment of persistent drinking categories based on quantity/frequency suggests that consumption variables can be used to track long-term changes in behavioral, molecular or physiochemical mechanisms related to our understanding of diagnosis, prevention, intervention and treatment efficacies. PMID:25421519

  19. Center Frequency Stabilization in Planar Dual-Mode Resonators during Mode-Splitting Control

    PubMed Central

    Naji, Adham; Soliman, Mina H.

    2017-01-01

    Shape symmetry in dual-mode planar electromagnetic resonators results in their ability to host two degenerate resonant modes. As the designer enforces a controllable break in the symmetry, the degeneracy is removed and the two modes couple, exchanging energy and elevating the resonator into its desirable second-order resonance operation. The amount of coupling is controlled by the degree of asymmetry introduced. However, this mode coupling (or splitting) usually comes at a price. The centre frequency of the perturbed resonator is inadvertently drifted from its original value prior to coupling. Maintaining centre frequency stability during mode splitting is a nontrivial geometric design problem. In this paper, we analyse the problem and propose a novel method to compensate for this frequency drift, based on field analysis and perturbation theory, and we validate the solution through a practical design example and measurements. The analytical method used works accurately within the perturbational limit. It may also be used as a starting point for further numerical optimization algorithms, reducing the required computational time during design, when larger perturbations are made to the resonator. In addition to enabling the novel design example presented, it is hoped that the findings will inspire akin designs for other resonator shapes, in different disciplines and applications. PMID:28272422

  20. Absolute airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  1. Simultaneous Stabilization of Gyrotron Frequency and Power by PID Double Feedback Control on the Acceleration and Anode Voltages

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T.

    2017-03-01

    In this paper, we present the results of simultaneous stabilization of both the frequency and the output power by a double PID feedback control on the acceleration and anode voltages in the 460-GHz gyrotron FU CW GVI, also known as "Gyrotron FU CW GO-1" (according to the nomenclature adopted at Osaka University). The approach used in the experiments is based on the modulation of the cyclotron frequency and the pitch factor (velocity ratio) of the electron beam by varying the acceleration and the anode voltages, respectively. In a long-term experiment, the frequency and power stabilities were made to be better than ±10-6 and ±1%, respectively.

  2. Autonomous frequency stabilization of two extended-cavity diode lasers at the potassium wavelength on a sounding rocket

    NASA Astrophysics Data System (ADS)

    Dinkelaker, Aline N.; Schiemangk, Max; Schkolnik, Vladimir; Kenyon, Andrew; Lampmann, Kai; Wenzlawski, André; Windpassinger, Patrick; Hellmig, Ortwin; Wendrich, Thijs; Rasel, Ernst M.; Giunta, Michele; Deutsch, Christian; Kürbis, Christian; Smol, Robert; Wicht, Andreas; Krutzik, Markus; Peters, Achim

    2017-02-01

    We have developed, assembled, and flight-proven a stable, compact, and autonomous extended cavity diode laser (ECDL) system designed for atomic physics experiments in space. To that end, two micro-integrated ECDLs at 766.7 nm were frequency stabilized during a sounding rocket flight by means of frequency modulation spectroscopy (FMS) of 39^K and offset locking techniques based on the beat note of the two ECDLs. The frequency stabilization as well as additional hard- and software to test hot redundancy mechanisms were implemented as part of a state-machine, which controlled the experiment completely autonomously throughout the entire flight mission.

  3. Transient Stability and Frequency Response of the US Western Interconnection under conditions of High Wind and Solar Generation

    SciTech Connect

    Clark, Kara; Miller, Nicholas W.; Shao, Miaolei; Pajic, Slobodan; D'Aquila, Robert

    2015-04-15

    Adding large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient stability and frequency response limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. Our paper reports the results of a study that investigated the transient stability and frequency response of the WI with high penetrations of wind and solar generation. Moreover, the main goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability and frequency events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.

  4. Laser-Frequency Stabilization via a Quasimonolithic Mach-Zehnder Interferometer with Arms of Unequal Length and Balanced dc Readout

    NASA Astrophysics Data System (ADS)

    Gerberding, Oliver; Isleif, Katharina-Sophie; Mehmet, Moritz; Danzmann, Karsten; Heinzel, Gerhard

    2017-02-01

    Low-frequency high-precision laser interferometry is subject to excess laser-frequency-noise coupling via arm-length differences which is commonly mitigated by locking the frequency to a stable reference system. This approach is crucial to achieve picometer-level sensitivities in the 0.1-mHz to 1-Hz regime, where laser-frequency noise is usually high and couples into the measurement phase via arm-length mismatches in the interferometers. Here we describe the results achieved by frequency stabilizing an external cavity diode laser to a quasimonolithic unequal arm-length Mach-Zehnder interferometer readout at midfringe via balanced detection. We find this stabilization scheme to be an elegant solution combining a minimal number of optical components, no additional laser modulations, and relatively low-frequency-noise levels. The Mach-Zehnder interferometer is designed and constructed to minimize the influence of thermal couplings and to reduce undesired stray light using the optical simulation tool ifocad. We achieve frequency-noise levels below 100 Hz /√{Hz } at 1 Hz and are able to demonstrate the LISA frequency prestabilization requirement of 300 Hz /√{Hz } down to frequencies of 100 mHz by beating the stabilized laser with an iodine-locked reference.

  5. Frequency stabilization of a 1083 nm fiber laser to {sup 4}He transition lines with optical heterodyne saturation spectroscopies

    SciTech Connect

    Gong, W.; Peng, X. Li, W.; Guo, H.

    2014-07-15

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable {sup 4}He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10{sup −12}@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.

  6. Frequency stabilization of a 1083 nm fiber laser to 4He transition lines with optical heterodyne saturation spectroscopies

    NASA Astrophysics Data System (ADS)

    Gong, W.; Peng, X.; Li, W.; Guo, H.

    2014-07-01

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable 4He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10-12@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.

  7. Frequency stabilization of the zero-phonon line of a quantum dot via phonon-assisted active feedback

    SciTech Connect

    Hansom, Jack; Schulte, Carsten H. H.; Matthiesen, Clemens; Stanley, Megan J.; Atatüre, Mete

    2014-10-27

    We report on the feedback stabilization of the zero-phonon emission frequency of a single InAs quantum dot. The spectral separation of the phonon-assisted component of the resonance fluorescence provides a probe of the detuning between the zero-phonon transition and the resonant driving laser. Using this probe in combination with active feedback, we stabilize the zero-phonon transition frequency against environmental fluctuations. This protocol reduces the zero-phonon fluorescence intensity noise by a factor of 22 by correcting for environmental noise with a bandwidth of 191 Hz, limited by the experimental collection efficiency. The associated sub-Hz fluctuations in the zero-phonon central frequency are reduced by a factor of 7. This technique provides a means of stabilizing the quantum dot emission frequency without requiring access to the zero-phonon emission.

  8. Observation and Absolute Frequency Measurements of the {sup 1}S{sub 0}-{sup 3}P{sub 0} Optical Clock Transition in Neutral Ytterbium

    SciTech Connect

    Hoyt, C.W.; Barber, Z.W.; Oates, C.W.; Fortier, T.M.; Diddams, S.A.; Hollberg, L.

    2005-08-19

    We report the direct excitation of the highly forbidden (6s{sup 2}){sup 1}S{sub 0}{r_reversible}(6s6p){sup 3}P{sub 0} optical transition in two odd isotopes of neutral ytterbium. As the excitation laser frequency is scanned, absorption is detected by monitoring the depletion from an atomic cloud at {approx}70 {mu}K in a magneto-optical trap. The measured frequency in {sup 171}Yb (F=1/2) is 518 295 836 591.6{+-}4.4 kHz. The measured frequency in {sup 173}Yb (F=5/2) is 518 294 576 847.6{+-}4.4 kHz. Measurements are made with a femtosecond-laser frequency comb calibrated by the National Institute of Standards and Technology cesium fountain clock and represent nearly a 10{sup 6}-fold reduction in uncertainty. The natural linewidth of these J=0 to J=0 transitions is calculated to be {approx}10 mHz, making them well suited to support a new generation of optical atomic clocks based on confinement in an optical lattice.

  9. Stabilization and Low-Frequency Oscillation of Capillary Bridges with Modulated Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.; Marr-Lyon, Mark J.; Morse, S. F.; Thiessen, David B.

    1996-01-01

    In the work reported here it is demonstrated that acoustic radiation pressure may be used in simulated low gravity to produce stable bridges significantly beyond the Rayleigh limit with S as large as 3.6. The bridge (PDMS mixed with a dense liquid) has the same density as the surrounding water bath containing an ultrasonic standing wave. Modulation was first used to excite specific bridge modes. In the most recent work reported here the shape of the bridge is optically sensed and the ultrasonic drive is electronically adjusted such that the radiation stress distribution dynamically quenches the most unstable mode. This active control simulates passive stabilization suggested for low gravity. Feedback increases the mode frequency in the naturally stable region since the effective stiffness of the mode is increased.

  10. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions

    SciTech Connect

    Jayakumar, Anupriya Plotkin-Swing, Benjamin; Jamison, Alan O.; Gupta, Subhadeep

    2015-07-15

    We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

  11. On-chip multi spectral frequency standard replication by stabilizing a microring resonator to a molecular line

    NASA Astrophysics Data System (ADS)

    Zektzer, Roy; Stern, Liron; Mazurski, Noa; Levy, Uriel

    2016-07-01

    Stabilized laser lines are highly desired for myriad of applications ranging from precise measurements to optical communications. While stabilization can be obtained by using molecular or atomic absorption references, these are limited to specific frequencies. On the other hand, resonators can be used as wide band frequency references. Unfortunately, such resonators are unstable and inaccurate. Here, we propose and experimentally demonstrate a chip-scale multispectral frequency standard replication operating in the spectral range of the near IR. This is obtained by frequency locking a microring resonator (MRR) to an acetylene absorption line. The MRR consists of a Si3N4 waveguides with microheater on top of it. The thermo-optic effect is utilized to lock one of the MRR resonances to an acetylene line. This locked MRR is then used to stabilize other laser sources at 980 nm and 1550 nm wavelength. By beating the stabilized laser to another stabilized laser, we obtained frequency instability floor of 4 ×10-9 at around 100 s in terms of Allan deviation. Such stable and accurate chip scale sources are expected to serve as important building block in diverse fields such as communication and metrology.

  12. Far off-resonance laser frequency stabilization using multipass cells in Faraday rotation spectroscopy.

    PubMed

    Quan, Wei; Li, Yang; Li, Rujie; Shang, Huining; Fang, Zishan; Qin, Jie; Wan, Shuangai

    2016-04-01

    We propose a far off-resonance laser frequency stabilization method by using multipass cells in Rb Faraday rotation spectroscopy. Based on the detuning equation, if multipass cells with several meters optical path length are used in the conventional Faraday spectroscopy, the detuning of the lock point can be extended much further from the alkali metal resonance. A plate beam splitter was used to generate two different Faraday signals at the same time. The transmitted optical path length was L=50  mm and the reflected optical path length was 2L=100  mm. When the optical path length doubled, the detuning of the lock points moved further away from the atomic resonance. The temperature dependence of the detuning of the lock point was also analyzed. A temperature-insensitive lock point was found near resonance when the cell temperature was between 110°C and 130°C. We achieved an rms fluctuation of 0.9 MHz/23 h at a detuning of 0.5 GHz. A frequency drift of 16 MHz/h at a detuning of -5.6  GHz and 4 MHz/h at a detuning of -5.2  GHz were also obtained for the transmitted and reflected light Faraday signal.

  13. The Interannual Stability of Cumulative Frequency Distributions for Convective System Size and Intensity

    NASA Technical Reports Server (NTRS)

    Mohr, Karen I.; Molinari, John; Thorncroft, Chris D,

    2010-01-01

    The characteristics of convective system populations in West Africa and the western Pacific tropical cyclone basin were analyzed to investigate whether interannual variability in convective activity in tropical continental and oceanic environments is driven by variations in the number of events during the wet season or by favoring large and/or intense convective systems. Convective systems were defined from TRMM data as a cluster of pixels with an 85 GHz polarization-corrected brightness temperature below 255 K and with an area at least 64 km 2. The study database consisted of convective systems in West Africa from May Sep for 1998-2007 and in the western Pacific from May Nov 1998-2007. Annual cumulative frequency distributions for system minimum brightness temperature and system area were constructed for both regions. For both regions, there were no statistically significant differences among the annual curves for system minimum brightness temperature. There were two groups of system area curves, split by the TRMM altitude boost in 2001. Within each set, there was no statistically significant interannual variability. Sub-setting the database revealed some sensitivity in distribution shape to the size of the sampling area, length of sample period, and climate zone. From a regional perspective, the stability of the cumulative frequency distributions implied that the probability that a convective system would attain a particular size or intensity does not change interannually. Variability in the number of convective events appeared to be more important in determining whether a year is wetter or drier than normal.

  14. Abiotic stress leads to somatic and heritable changes in homologous recombination frequency, point mutation frequency and microsatellite stability in Arabidopsis plants.

    PubMed

    Yao, Youli; Kovalchuk, Igor

    2011-02-10

    In earlier studies, we showed that abiotic stresses, such as ionizing radiation, heavy metals, temperature and water, trigger an increase in homologous recombination frequency (HRF). We also demonstrated that many of these stresses led to inheritance of high-frequency homologous recombination, HRF. Although an increase in recombination frequency is an important indicator of genome rearrangements, it only represents a minor portion of possible stress-induced mutations. Here, we analyzed the influence of heat, cold, drought, flood and UVC abiotic stresses on two major types of mutations in the genome, point mutations and small deletions/insertions. We used two transgenic lines of Arabidopsis thaliana, one allowing an analysis of reversions in a stop codon-containing inactivated β-glucuronidase transgene and another one allowing an analysis of repeat stability in a microsatellite-interrupted β-glucuronidase transgene. The transgenic Arabidopsis line carrying the β-glucuronidase-based homologous recombination substrate was used as a positive control. We showed that the majority of stresses increased the frequency of point mutations, homologous recombination and microsatellite instability in somatic cells, with the frequency of homologous recombination being affected the most. The analysis of transgenerational changes showed an increase in HRF to be the most prominent effect observed in progeny. Significant changes in recombination frequency were observed upon exposure to all types of stress except drought, whereas changes in microsatellite instability were observed upon exposure to UVC, heat and cold. The frequency of point mutations in the progeny of stress-exposed plants was the least affected; an increase in mutation frequency was observed only in the progeny of plants exposed to UVC. We thus conclude that transgenerational changes in genome stability in response to stress primarily involve an increase in recombination frequency.

  15. Absolutely classical spin states

    NASA Astrophysics Data System (ADS)

    Bohnet-Waldraff, F.; Giraud, O.; Braun, D.

    2017-01-01

    We introduce the concept of "absolutely classical" spin states, in analogy to absolutely separable states of bipartite quantum systems. Absolutely classical states are states that remain classical (i.e., a convex sum of projectors on coherent states of a spin j ) under any unitary transformation applied to them. We investigate the maximal size of the ball of absolutely classical states centered on the maximally mixed state and derive a lower bound for its radius as a function of the total spin quantum number. We also obtain a numerical estimate of this maximal radius and compare it to the case of absolutely separable states.

  16. Absolute CF{sub 2} density and gas temperature measurements by absorption spectroscopy in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas

    SciTech Connect

    Liu, Wen-Yao; Xu, Yong Peng, Fei; Gong, Fa-Ping; Li, Xiao-Song; Zhu, Ai-Min; Liu, Yong-Xin; Wang, You-Nian

    2014-10-15

    Broadband ultraviolet absorption spectroscopy has been used to determine the CF{sub 2} radical density in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas, using the CF{sub 2} A{sup ~1}B{sub 1}←X{sup ~1}A{sub 1} system of absorption spectrum. The rotational temperature of ground state CF{sub 2} and excited state CF was also estimated by using A{sup ~1}B{sub 1}←X{sup ~1}A{sub 1} system and B{sup 2}Δ−X{sup 2}Π system, respectively. The translational gas temperature was deduced from the Doppler width of the Ar{sup *}({sup 3}P{sub 2}) and Ar{sup *}({sup 3}P{sub 0}) metastable atoms absorption line by using the tunable diode laser absorption spectroscopy. The rotational temperatures of the excited state CF are about 100 K higher than those of ground state CF{sub 2}, and about 200 K higher than the translational gas temperatures. The dependences of the radical CF{sub 2} density, electron density, electron temperature, rotational temperature, and gas temperature on the high frequency power and pressure have been analyzed. Furthermore, the production and loss mechanisms of CF{sub 2} radical and the gas heating mechanisms have also been discussed.

  17. Report on BIPM/CIPM key comparison CCAUV.U-K4: absolute calibration of medical hydrophones in the frequency range 0.5 MHz to 20 MHz

    NASA Astrophysics Data System (ADS)

    Rajagopal, S.; Fury, C. R.; Zeqiri, B.; Brandt, M.; Wilkens, V.; Koch, C.; Matsuda, Y.; Yoshioka, M.; Ping, Y.; Yan, Z.; Wenping, B.; Costa-Felix, R. P. B.; Oliveira, E. G.

    2016-01-01

    The key compariosn CCAUV.U-K4 involved measurement of end-of-cable loaded sensitivity in units of volts/pascal of two travelling standards, 1 mm element diamater medical hydrophones at medical ultrasound frequencies. This is a repetition of key comparison CCAUV.U-K2 but the scope has been extended upwards to 20 MHz and downwards to 0.5 MHz. The reduction in the lower frequency provided an overlap with the underwater acoustics key comparison CCAUV.W-K1 which covers the range 1 kHz to 0.5 MHz. The results are analysed and presented in terms of degrees of equivalence, suitable for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  18. Absolute CF2 density and gas temperature measurements by absorption spectroscopy in dual-frequency capacitively coupled CF4/Ar plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Yao; Xu, Yong; Liu, Yong-Xin; Peng, Fei; Gong, Fa-Ping; Li, Xiao-Song; Zhu, Ai-Min; Wang, You-Nian

    2014-10-01

    Broadband ultraviolet absorption spectroscopy has been used to determine the CF2 radical density in dual-frequency capacitively coupled CF4/Ar plasmas, using the CF2 A ˜ 1 B 1 ← X ˜ 1 A 1 system of absorption spectrum. The rotational temperature of ground state CF2 and excited state CF was also estimated by using A ˜ 1 B 1 ← X ˜ 1 A 1 system and B 2 Δ - X 2 Π system, respectively. The translational gas temperature was deduced from the Doppler width of the Ar*(3P2) and Ar*(3P0) metastable atoms absorption line by using the tunable diode laser absorption spectroscopy. The rotational temperatures of the excited state CF are about 100 K higher than those of ground state CF2, and about 200 K higher than the translational gas temperatures. The dependences of the radical CF2 density, electron density, electron temperature, rotational temperature, and gas temperature on the high frequency power and pressure have been analyzed. Furthermore, the production and loss mechanisms of CF2 radical and the gas heating mechanisms have also been discussed.

  19. Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance measurement.

    PubMed

    Nakajima, Yoshiaki; Minoshima, Kaoru

    2015-10-05

    An optical frequency comb interferometer with a 342-m-long fiber-based optical reference path was developed. The long fiber-based reference path was stabilized to 10(-12)-order stability by using a fiber noise cancellation technique, and small temperature changes on the millikelvin order were detected by measuring an interferometric phase signal. Pulse number differences of 30 and 61 between the measurement and reference paths were determined precisely, with slight tuning of the 53.4 MHz repetition frequency. Moreover, with pulse number difference of 61, a 6.4-m-wide scanning for the relative pulse position is possible only by 1 MHz repetition frequency tuning, which makes pulses overlapped for arbitrary distance. Such wide-range high-precision delay length scanning can be used to measure arbitrary distances by using a highly stabilized long fiber-based reference path.

  20. Accurate displacement-measuring interferometer with wide range using an I2 frequency-stabilized laser diode based on sinusoidal frequency modulation

    NASA Astrophysics Data System (ADS)

    Vu, Thanh-Tung; Higuchi, Masato; Aketagawa, Masato

    2016-10-01

    We propose the use of the sinusoidal frequency modulation technique to improve both the frequency stability of an external cavity laser diode (ECLD) and the measurement accuracy and range of a displacement-measuring interferometer. The frequency of the ECLD was modulated at 300 kHz by modulating the injection current, and it was locked to the b21 hyperfine component of the transition 6-3, P(33), 127I2 (633 nm) by the null method. A relative frequency stability of 6.5  ×  10-11 was achieved at 100 s sampling time. The stabilized ECLD was then utilized as a light source for an unbalanced Michelson interferometer. In the interferometer, the displacement and direction of the target mirror can be determined using a Lissajous diagram based on two consecutive and quadrant-phase harmonics of the interference signal. Generally, the measurement range of the interferometer by the proposed method is limited by the modulation index and the signal-to-noise ratio of the harmonics. To overcome this drawback, suitable consecutive harmonic pairs were selected for the specific measurement ranges to measure the displacement. The displacements determined in the specific ranges by the proposed method were compared with those observed by a commercial capacitive sensor. From the comparison, the proposed method has high precision to determine the displacement. The measurement range was also extended up to 10 m by selecting a suitable modulation index and suitable consecutive pairs of harmonics.

  1. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  2. Linearized blade row compression component model. Stability and frequency response analysis of a J85-3 compressor

    NASA Technical Reports Server (NTRS)

    Tesch, W. A.; Moszee, R. H.; Steenken, W. G.

    1976-01-01

    NASA developed stability and frequency response analysis techniques were applied to a dynamic blade row compression component stability model to provide a more economic approach to surge line and frequency response determination than that provided by time-dependent methods. This blade row model was linearized and the Jacobian matrix was formed. The clean-inlet-flow stability characteristics of the compressors of two J85-13 engines were predicted by applying the alternate Routh-Hurwitz stability criterion to the Jacobian matrix. The predicted surge line agreed with the clean-inlet-flow surge line predicted by the time-dependent method to a high degree except for one engine at 94% corrected speed. No satisfactory explanation of this discrepancy was found. The frequency response of the linearized system was determined by evaluating its Laplace transfer function. The results of the linearized-frequency-response analysis agree with the time-dependent results when the time-dependent inlet total-pressure and exit-flow function amplitude boundary conditions are less than 1 percent and 3 percent, respectively. The stability analysis technique was extended to a two-sector parallel compressor model with and without interstage crossflow and predictions were carried out for total-pressure distortion extents of 180 deg, 90 deg, 60 deg, and 30 deg.

  3. Laser Frequency Stabilization for Coherent Lidar Applications using Novel All-Fiber Gas Reference Cell Fabrication Technique

    NASA Technical Reports Server (NTRS)

    Meras, Patrick, Jr.; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Levin, Jason; Spiers, Gary D.

    2008-01-01

    Compact hollow-core photonic crystal fiber (HC-PCF)gas frequency reference cell was constructed using a novel packaging technique that relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers. The use of this gas cell for laser frequency stabilization was demonstrated by locking a tunable diode laser to the center of the P9 line from the (nu)1+(nu)3 band of acetylene with RMS frequency error of 2.06 MHz over 2 hours. This effort was performed in support of a task to miniaturize the laser frequency stabilization subsystem of JPL/LMCT Laser Absorption Spectrometer (LAS) instrument.

  4. Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line.

    PubMed

    Kéfélian, Fabien; Jiang, Haifeng; Lemonde, Pierre; Santarelli, Giorgio

    2009-04-01

    We report the frequency stabilization of an erbium-doped fiber distributed-feedback laser using an all-fiber-based Michelson interferometer of large arm imbalance. The interferometer uses a 1 km SMF-28 optical fiber spool and an acousto-optic modulator allowing heterodyne detection. The frequency-noise power spectral density is reduced by more than 40 dB for Fourier frequencies ranging from 1 Hz to 10 kHz, corresponding to a level well below 1 Hz2/Hz over the entire range; it reaches 10(-2) Hz2/Hz at 1 kHz. Between 40 Hz and 30 kHz, the frequency noise is shown to be comparable to the one obtained by Pound-Drever-Hall locking to a high-finesse Fabry-Perot cavity. Locking to a fiber delay line could consequently represent a reliable, simple, and compact alternative to cavity stabilization for short-term linewidth reduction.

  5. Estimating Absolute Site Effects

    SciTech Connect

    Malagnini, L; Mayeda, K M; Akinci, A; Bragato, P L

    2004-07-15

    The authors use previously determined direct-wave attenuation functions as well as stable, coda-derived source excitation spectra to isolate the absolute S-wave site effect for the horizontal and vertical components of weak ground motion. They used selected stations in the seismic network of the eastern Alps, and find the following: (1) all ''hard rock'' sites exhibited deamplification phenomena due to absorption at frequencies ranging between 0.5 and 12 Hz (the available bandwidth), on both the horizontal and vertical components; (2) ''hard rock'' site transfer functions showed large variability at high-frequency; (3) vertical-motion site transfer functions show strong frequency-dependence, and (4) H/V spectral ratios do not reproduce the characteristics of the true horizontal site transfer functions; (5) traditional, relative site terms obtained by using reference ''rock sites'' can be misleading in inferring the behaviors of true site transfer functions, since most rock sites have non-flat responses due to shallow heterogeneities resulting from varying degrees of weathering. They also use their stable source spectra to estimate total radiated seismic energy and compare against previous results. they find that the earthquakes in this region exhibit non-constant dynamic stress drop scaling which gives further support for a fundamental difference in rupture dynamics between small and large earthquakes. To correct the vertical and horizontal S-wave spectra for attenuation, they used detailed regional attenuation functions derived by Malagnini et al. (2002) who determined frequency-dependent geometrical spreading and Q for the region. These corrections account for the gross path effects (i.e., all distance-dependent effects), although the source and site effects are still present in the distance-corrected spectra. The main goal of this study is to isolate the absolute site effect (as a function of frequency) by removing the source spectrum (moment-rate spectrum) from

  6. Narrow band noise rejection technique for laser frequency and length standards: application to frequency stabilization to I2 lines near dissociation limit at 501.7 nm

    NASA Astrophysics Data System (ADS)

    du Burck, F.; Tetchewo, G.; Goncharov, A. N.; Lopez, O.

    2009-10-01

    An opto-electronic device for the stabilization of laser beam intensity in a narrow frequency band based on a numeric corrector driving the radio-frequency signal of an acousto-optic modulator is applied to improve the signal-to-noise ratio of the detected signal in saturation spectroscopy of iodine in a cell at 501.7 nm, both in the FM spectroscopy technique and in the transfer modulation technique. In the latter case, a 30 dB rejection of the amplitude noise of the probe beam is achieved and, when the laser frequency is locked to the saturation signal, the enhancement of the sensitivity of the frequency jitter detection is demonstrated in a frequency band extending up to 1 kHz. For the long term stabilization the laser is locked to a narrow line detected in a low pressure cell. A relative Allan deviation of about 10-13 is found for 1 s integration time and a deviation of 10-14 is reached for 500 s. Linewidths smaller than 40 kHz (FWHM) are also demonstrated at low saturating power for hyperfine components of the transition R(26)62-0 at 501.7 nm.

  7. Ultra-stability Yb-doped fiber optical frequency comb with 2 × 10-18/s stability in-loop.

    PubMed

    Pang, Lihui; Han, Hainian; Zhao, Zhibin; Liu, Wenjun; Wei, Zhiyi

    2016-12-12

    We demonstrate a full control ultra-stability Yb-doped fiber optical frequency comb (OFC). The carrier-envelop offset frequency (fceo) and the repetition rate (fr) are locked with the standard phase locked loop (PLL) technique. The fceo is locked to the radio frequency (RF) synthesizer, and the Allan deviation is 1.2 × 10-17/s. The fr is locked to an ultra-stability continuous wave (CW) laser at 972 nm. The beat signal (fbeat) between the Yb-doped fiber OFC and CW laser is obtained with the signal to noise ratio (SNR) of 43 dB at 300 kHz resolution bandwidth (RBW). The time jitter of the fbeat signal is 278 as, which is integrated from 1 Hz to 10 MHz. The long-term stability is 575 μHz in 3 hours, and the corresponding Allan deviation is 2 × 10-18/s, which is the best stability result in Yb-doped fiber OFC. The linewidth is narrowed from 200 kHz to subhertz magnitude limited by the instrument resolution bandwidth.

  8. Dynamic characterization and single-frequency cancellation performance of SMASH (SMA actuated stabilizing handgrip)

    NASA Astrophysics Data System (ADS)

    Pathak, Anupam; Brei, Diann; Luntz, Jonathan; LaVigna, Chris; Kwatny, Harry

    2008-03-01

    In urban combat environments where it is common to have unsupported firing positions, wobble significantly decreases shooting accuracy reducing mission effectiveness and soldier survivability. The SMASH (SMA Stabilizing Handgrip) has been developed to cancel wobble using antagonistic SMA actuators which reduce weight and size relative to conventional actuation, but lead to interesting control challenges. This paper presents the specification and design of the SMA actuation system for the SMASH platform along with experimental validation of the actuation and cancellation authority on the benchtop and on an M16 platform. Analytical dynamic weapon models and shooter experiments were conducted to define actuation frequency and amplitude specifications. The SMASH, designed to meet these, was experimentally characterized from the bounding quasi-static case up to the 3 Hz range, successfully generating the +/-2 mm amplitude requirement. To effectively cancel wobble it is critical to produce the proper output functional shape which is difficult for SMA due to inherent nonlinearities, hysteresis, etc. Three distinct electrical heating input functions (square, ramp, and preheat) were investigated to shape the actuator output to produce smooth sinusoidal motion. The effect of each of these functions on the cancellation response of the SMASH applied to the M16 platform was experimentally studied across the wobble range (1-3 Hz) demonstrating significant cancellation, between 50-97% depending on the smoothing function and frequency. These results demonstrate the feasibility of a hand-held wobble cancellation device providing an important foundation for future work in overall system optimization and the development of physically based feed-forward signals for closed-loop control.

  9. The Interannual Stability of Cumulative Frequency Distributions for Convective System Size and Intensity

    NASA Technical Reports Server (NTRS)

    Mohr, Karen I.; Molinari, John; Thorncroft, Chris

    2009-01-01

    The characteristics of convective system populations in West Africa and the western Pacific tropical cyclone basin were analyzed to investigate whether interannual variability in convective activity in tropical continental and oceanic environments is driven by variations in the number of events during the wet season or by favoring large and/or intense convective systems. Convective systems were defined from Tropical Rainfall Measuring Mission (TRMM) data as a cluster of pixels with an 85-GHz polarization-corrected brightness temperature below 255 K and with an area of at least 64 square kilometers. The study database consisted of convective systems in West Africa from May to September 1998-2007, and in the western Pacific from May to November 1998-2007. Annual cumulative frequency distributions for system minimum brightness temperature and system area were constructed for both regions. For both regions, there were no statistically significant differences between the annual curves for system minimum brightness temperature. There were two groups of system area curves, split by the TRMM altitude boost in 2001. Within each set, there was no statistically significant interannual variability. Subsetting the database revealed some sensitivity in distribution shape to the size of the sampling area, the length of the sample period, and the climate zone. From a regional perspective, the stability of the cumulative frequency distributions implied that the probability that a convective system would attain a particular size or intensity does not change interannually. Variability in the number of convective events appeared to be more important in determining whether a year is either wetter or drier than normal.

  10. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  11. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  12. Frequency stabilization of single layer graphene oscillators through optical injection locking

    NASA Astrophysics Data System (ADS)

    Houri, Samer; Cartamil Bueno, Santiago; Venstra, Warner

    Single layer graphene (SLG) drum resonators offer exciting prospects as experimental testbeds for nonlinear dynamics. Recently, photo-thermal induced feedback effects leading to self-oscillations in graphene have been demonstrated. In this paper we examine the phase jitter of self-oscillating SLG, and the means to improve the frequency stability through optical injection locking. The resonator consists of an SLG on top of a 10 micron diameter circular cavity with a cavity depth of 750 nm. By shining a 10 mW He-Ne laser the drum enters a regime of photo-thermally induced self-oscillation. The oscillating SLG suffers from a significant phase noise that can be directly observed in the time domain as random walk of the oscillation period. By applying a lock tone to the oscillator through the application of a modulated blue laser (405 nm), the SLG motion is then phase locked to the applied tone with more than an order of magnitude improvement in its coherence time. The injection locking is also studied as a function of lock signal detuning and power. Presenting author.

  13. Apparatus for using a time interval counter to measure frequency stability

    NASA Technical Reports Server (NTRS)

    Greenhall, Charles A. (Inventor)

    1989-01-01

    An apparatus for measuring the relative stability of two signals is disclosed comprising a means for mixing the two signals down to a beat note sine wave and for producing a beat note square wave whose upcrossings are the same as the sine wave. A source of reference frequency is supplied to a clock divider and interval counter to synchronize them and to generate a picket fence for providing a time reference grid of period shorter than the beat period. An interval counter is employed to make a preliminary measurement between successive upcrossings of the beat note square wave for providing an approximate time interval therebetween as a reference. The beat note square wave and the picket fence are then provided to the interval counter to provide an output consisting of the time difference between the upcrossing of each beat note square wave cycle and the next picket fence pulse such that the counter is ready for each upcrossing and dead time is avoided. A computer containing an algorithm for calculating the exact times of the beat note upcrossings then computes the upcrossing times.

  14. Motion correction and frequency stabilization for MRS of the human spinal cord.

    PubMed

    Hock, Andreas; Henning, Anke

    2016-04-01

    Subject motion is challenging for MRS, because it can falsify results. For spinal cord MRS in particular, subject movement is critical, since even a small movement > 1 mm) can lead to a voxel shift out of the desired measurement region. Therefore, the identification of motion corrupted MRS scans is essential. In this investigation, MR navigators acquired simultaneously with the MRS data are used to identify a displacement of the spinal cord due to subject motion. It is shown that navigators are able to recognize substantial subject motion (>1 mm) without impairing the MRS measurement. In addition, navigators are easy to apply to the measurement, because no additional hardware and just a minor additional user effort are needed. Moreover, no additional scan time is required, because navigators can be applied in the deadtime of the MRS sequence. Furthermore, in this work, retrospective motion correction combined with frequency stabilization is presented by combining navigators with non-water-suppressed (1)H-MRS, resulting in an improved spectral quality of the spinal cord measurements.

  15. Sub-kilohertz linewidth narrowing of a mid-infrared optical parametric oscillator idler frequency by direct cavity stabilization.

    PubMed

    Ricciardi, I; Mosca, S; Parisi, M; Maddaloni, P; Santamaria, L; De Natale, P; De Rosa, M

    2015-10-15

    We stabilize the idler frequency of a singly resonant optical parametric oscillator directly to the resonance of a mid-infrared Fabry-Perot reference cavity. This is accomplished by the Pound-Drever-Hall locking scheme, controlling either the pump laser or the resonant signal frequency. A residual relative frequency noise power spectral density below 10(3)  Hz(2)/Hz is reached on average, with a Gaussian linewidth of 920 Hz over 100 ms, which reveals the potential for reaching spectral purity down to the hertz level by locking the optical parametric oscillator against a mid-infrared cavity with state-of-the-art superior performance.

  16. Arbitrary optical frequency synthesis traced to an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Cai, Zihang; Zhang, Weipeng; Yang, Honglei; Li, Yan; Wei, Haoyun

    2016-11-01

    An arbitrary optical frequency synthesizer with a broad tuning range and high frequency accuracy is presented. The system includes an external cavity diode laser (ECDL) as the output laser, an Erbium-doped optical frequency comb being a frequency reference, and a control module. The optical frequency from the synthesizer can be continuously tuned by the large-scale trans-tooth switch and the fine intra-tooth adjustment. Robust feedback control by regulating the current and PZT voltage enables the ECDL to phase-lock to the Erbium-doped optical frequency comb, therefore to keep stable frequency output. In the meanwhile, the absolute frequency of the synthesizer is determined by the repetition rate, the offset frequency and the beat frequency. All the phase lock loops in the system are traced back to a Rubidium clock. A powerful and friendly software is developed to make the operation convenient by integrating the functions of frequency setting, tuning, tracing, locking and measuring into a LabVIEW interface. The output frequency tuning span and the uncertainty of the system are evaluated as >6 THz and <3 kHz, respectively. The arbitrary optical frequency synthesizer will be a versatile tool in diverse applications, such as synthetic wavelength based absolute distance measurement and frequency-stabilized Cavity Ring-Down Spectroscopy.

  17. Tunable frequency stabilized diode-laser-pumped Tm,Ho:YLiF4 laser at room temperature

    NASA Technical Reports Server (NTRS)

    Mcguckin, Brendan T.; Menzies, Robert T.; Esproles, Carlos

    1993-01-01

    A diode-laser-pumped single-frequency thulium holmium yttrium lithium fluoride laser that exhibits a closed-loop stability of a few megahertz and a continuous single-mode tuning range of 800 MHz is described. The laser output power is 25 mW, and is tunable over about 8/cm at 25 C.

  18. Matrix method of determining the longitudinal-stability coefficients and frequency response of an aircraft from transient flight data

    NASA Technical Reports Server (NTRS)

    Donegan, James J; Pearson, Henry A

    1952-01-01

    A matrix method is presented for determining the longitudinal-stability coefficients and frequency response of an aircraft from arbitrary maneuvers. The method is devised so that it can be applied to time-history measurements of combinations of such simple quantities as angle of attack, pitching velocity, load factor, elevator angle, and hinge moment to obtain the over-all coefficients. Although the method has been devised primarily for the evaluation of stability coefficients which are of primary interest in most aircraft loads and stability studies, it can be used also, with a simple additional computation, to determine the frequency-response characteristics. The entire procedure can be applied or extended to other problems which can be expressed by linear differential equations.

  19. Biomechanical evaluation of oversized drilling technique on primary implant stability measured by insertion torque and resonance frequency analysis

    PubMed Central

    Santamaría-Arrieta, Gorka; Brizuela-Velasco, Aritza; Fernández-González, Felipe J.; Chávarri-Prado, David; Chento-Valiente, Yelko; Solaberrieta, Eneko; Diéguez-Pereira, Markel; Yurrebaso-Asúa, Jaime

    2016-01-01

    Background This study evaluated the influence of implant site preparation depth on primary stability measured by insertion torque and resonance frequency analysis (RFA). Material and Methods Thirty-two implant sites were prepared in eight veal rib blocks. Sixteen sites were prepared using the conventional drilling sequence recommended by the manufacturer to a working depth of 10mm. The remaining 16 sites were prepared using an oversize drilling technique (overpreparation) to a working depth of 12mm. Bone density was determined using cone beam computerized tomography (CBCT). The implants were placed and primary stability was measured by two methods: insertion torque (Ncm), and RFA (implant stability quotient [ISQ]). Results The highest torque values were achieved by the conventional drilling technique (10mm). The ANOVA test confirmed that there was a significant correlation between torque and drilling depth (p<0.05). However, no statistically significant differences were obtained between ISQ values at 10 or 12 mm drilling depths (p>0.05) at either measurement direction (cortical and medullar). No statistical relation between torque and ISQ values was identified, or between bone density and primary stability (p >0.05). Conclusions Vertical overpreparation of the implant bed will obtain lower insertion torque values, but does not produce statistically significant differences in ISQ values. Key words:Implant stability quotient, overdrilling, primary stability, resonance frequency analysis, torque. PMID:27398182

  20. A C IIH II frequency-stabilized erbium-doped fiber laser and its application to coherent communication

    NASA Astrophysics Data System (ADS)

    Yoshida, Masato; Kasai, Keisuke; Hongo, Jumpei; Nakazawa, Masataka

    2007-02-01

    We have described a frequency-stabilized, polarization-maintained erbium fiber ring laser. This laser has no frequency modulation at the output beam. A tunable single-mode laser has also been newly developed by simultaneously controlling a tunable FBG with a 1.5 GHz bandwidth and a PZT in the cavity. The frequency stability reached as high as 1.3 x 10 -11 for an integration time of 1 s and the linewidth was as narrow as 4 kHz. Using this coherent laser as a light source, we successfully transmitted a 20 Msymbol/s coherent quadrature amplitude modulation (QAM) signal over 525 km and achieved error free transmission.

  1. The Effects of Ambient Temperature Fluctuations on the Long-Term Frequency Stability of a Miniature Rubidium Atomic Frequency Standard

    DTIC Science & Technology

    2007-11-02

    technologies; lasers and electro-optics, solid state laser design, micro-optics, optical communications, and fiber optic sensors ; atomic frequency standards...elastomer change could also shift the position of physics package components, thereby creating a greater sensitivity to microwave power or magnetic...applied laser spectroscopy, laser chemistry, atmospheric propagation and beam control, LEDAR/LADAR remote sensing; solar cell and array testing and

  2. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  3. Automated Performance Characterization of DSN System Frequency Stability Using Spacecraft Tracking Data

    NASA Technical Reports Server (NTRS)

    Pham, Timothy T.; Machuzak, Richard J.; Bedrossian, Alina; Kelly, Richard M.; Liao, Jason C.

    2012-01-01

    This software provides an automated capability to measure and qualify the frequency stability performance of the Deep Space Network (DSN) ground system, using daily spacecraft tracking data. The results help to verify if the DSN performance is meeting its specification, therefore ensuring commitments to flight missions; in particular, the radio science investigations. The rich set of data also helps the DSN Operations and Maintenance team to identify the trends and patterns, allowing them to identify the antennas of lower performance and implement corrective action in a timely manner. Unlike the traditional approach where the performance can only be obtained from special calibration sessions that are both time-consuming and require manual setup, the new method taps into the daily spacecraft tracking data. This new approach significantly increases the amount of data available for analysis, roughly by two orders of magnitude, making it possible to conduct trend analysis with good confidence. The software is built with automation in mind for end-to-end processing. From the inputs gathering to computation analysis and later data visualization of the results, all steps are done automatically, making the data production at near zero cost. This allows the limited engineering resource to focus on high-level assessment and to follow up with the exceptions/deviations. To make it possible to process the continual stream of daily incoming data without much effort, and to understand the results quickly, the processing needs to be automated and the data summarized at a high level. Special attention needs to be given to data gathering, input validation, handling anomalous conditions, computation, and presenting the results in a visual form that makes it easy to spot items of exception/ deviation so that further analysis can be directed and corrective actions followed.

  4. Automated Performance Characterization of DSN System Frequency Stability Using Spacecraft Tracking Data

    NASA Technical Reports Server (NTRS)

    Pham, Timothy T.; Machuzak, Richard J.; Bedrossian, Alina; Kelly, Richard M.; Liao, Jason C.

    2012-01-01

    This software provides an automated capability to measure and qualify the frequency stability performance of the Deep Space Network (DSN) ground system, using daily spacecraft tracking data. The results help to verify if the DSN performance is meeting its specification, therefore ensuring commitments to flight missions; in particular, the radio science investigations. The rich set of data also helps the DSN Operations and Maintenance team to identify the trends and patterns, allowing them to identify the antennas of lower performance and implement corrective action in a timely manner. Unlike the traditional approach where the performance can only be obtained from special calibration sessions that are both time-consuming and require manual setup, the new method taps into the daily spacecraft tracking data. This new approach significantly increases the amount of data available for analysis, roughly by two orders of magnitude, making it possible to conduct trend analysis with good confidence. The software is built with automation in mind for end-to-end processing. From the inputs gathering to computation analysis and later data visualization of the results, all steps are done automatically, making the data production at near zero cost. This allows the limited engineering resource to focus on high-level assessment and to follow up with the exceptions/deviations. To make it possible to process the continual stream of daily incoming data without much effort, and to understand the results quickly, the processing needs to be automated and the data summarized at a high level. Special attention needs to be given to data gathering, input validation, handling anomalous conditions, computation, and presenting the results in a visual form that makes it easy to spot items of exception/deviation so that further analysis can be directed and corrective actions followed.

  5. Phase-stabilization of the carrier-envelope-offset frequency of a SESAM modelocked thin disk laser.

    PubMed

    Klenner, Alexander; Emaury, Florian; Schriber, Cinia; Diebold, Andreas; Saraceno, Clara J; Schilt, Stéphane; Keller, Ursula; Südmeyer, Thomas

    2013-10-21

    We phase-stabilized the carrier-envelope-offset (CEO) frequency of a SESAM modelocked Yb:CaGdAlO₄ (CALGO) thin disk laser (TDL) generating 90-fs pulses at a center wavelength of 1051.6 nm and a repetition rate of 65 MHz. By launching only 2% of its output power into a photonic crystal fiber, we generated a coherent octave-spanning supercontinuum spectrum. Using a standard f-to-2f interferometer for CEO detection, we measured CEO beats with 33 dB signal-to-noise ratio in 100 kHz resolution bandwidth. We achieved a tight lock of the CEO frequency at 26.18 MHz by active feedback to the pump current. The residual in-loop integrated phase noise is 120 mrad (1 Hz-1 MHz). This is, to our knowledge, the first CEO-stabilized SESAM modelocked TDL. Our results show that a reliable lock of the CEO frequency can be achieved using standard techniques in spite of the strongly spatially multimode pumping scheme of TDLs. This opens the door towards fully-stabilized low-noise frequency combs with hundreds of watts of average power from table-top SESAM modelocked thin disk oscillators.

  6. Frequency stabilization of ambience-isolated internal-mirror He-Ne lasers by thermoelectric-cooling thermal compensation

    NASA Astrophysics Data System (ADS)

    Shirvani-Mahdavi, Hamidreza; Narges, Yaghoubi

    2016-12-01

    An approach for frequency stabilization of an ambience-isolated internal-mirror He-Ne laser (632.8 nm) utilizing temperature control of the laser tube with Peltier thermoelectric coolers is demonstrated. Measurements indicate that there are an optimal temperature (23 °C) and an optimal discharge current (5.5 mA) of laser tube for which the laser light power is separately maximized. To prevent the effect of fluctuation of discharge current on the laser stability, an adjustable current source is designed and fabricated so that the current is set to be optimal (5.50 ± 0.01 mA). To isolate the laser tube from the environment, the laser metallic box connected to two Peltier thermoelectric coolers is surrounded by two thermal and acoustic insulator shells. The laser has two longitudinal modes very often. Any change in the frequency of longitudinal modes at the optimal temperature is monitored by sampling the difference of longitudinal modes' intensities. Therefore, using a feedback mechanism, the current of thermoelectric coolers is so controlled that the frequency of modes stays constant on the gain profile of the laser. The frequency stability is measured equal to 1.17 × 10-9 (˜2700×) for less than 1 min and 2.57 × 10-9 (˜1200×) for more than 1 h.

  7. Arbitrary frequency stabilization of a diode laser based on visual Labview PID VI and sound card output

    NASA Astrophysics Data System (ADS)

    Feng, Guo-Sheng; Wu, Ji-Zhou; Wang, Xiao-Feng; Zheng, Ning-Xuan; Li, Yu-Qing; Ma, Jie; Xiao, Lian-Tuan; Jia, Suo-Tang

    2015-10-01

    We report a robust method of directly stabilizing a grating feedback diode laser to an arbitrary frequency in a large range. The error signal, induced from the difference between the frequency measured by a wavelength meter and the preset target frequency, is fed back to the piezoelectric transducer module of the diode laser via a sound card in the computer. A visual Labview procedure is developed to realize a feedback system. In our experiment the frequency drift of the diode laser is reduced to 8 MHz within 25 min. The robust scheme can be adapted to realize the arbitrary frequency stabilization for many other kinds of lasers. Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91436108), the National Natural Science Foundation of China (Grant Nos. 61378014, 61308023, 61378015, and 11434007), the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J1103210), the New Teacher Fund of the Ministry of Education of China (Grant No. 20131401120012), and the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2013021005-1).

  8. Stability of high-frequency periodic motions of a heavy rigid body with a horizontally vibrating suspension point

    NASA Astrophysics Data System (ADS)

    Belichenko, M. V.

    2016-11-01

    The motion of a heavy rigid body one of whose points (the suspension point) executes horizontal harmonic high-frequency vibrations with small amplitude is considered. The problem of existence of high-frequency periodic motions with period equal to the period of the suspension point vibrations is considered. The stability conditions for the revealed motions are obtained in the linear approximation. The following three special cases of mass distribution in the body are considered; a body whose center of mass lies on the principal axis of inertia, a body whose center of mass lies in the principal plane of inertia, and a dynamically symmetric body.

  9. Generation of high-energy self-phase-stabilized pulses by difference-frequency generation followed by optical parametric amplification.

    PubMed

    Manzoni, C; Vozzi, C; Benedetti, E; Sansone, G; Stagira, S; Svelto, O; De Silvestri, S; Nisoli, M; Cerullo, G

    2006-04-01

    We produce ultrabroadband self-phase-stabilized near-IR pulses by a novel approach where a seed pulse, obtained by difference-frequency generation of a hollow-fiber broadened supercontinuum, is amplified by a two-stage optical parametric amplifier. Energies up to 20 microJ with a pulse spectrum extending from 1.2 to 1.6 microm are demonstrated, and a route for substantial energy scaling is indicated.

  10. Method for wavelength stabilization of pulsed difference frequency laser at 1572 nm for CO(2) detection lidar.

    PubMed

    Gong, Wei; Ma, Xin; Han, Ge; Xiang, Chengzhi; Liang, Ailin; Fu, Weidong

    2015-03-09

    High-accuracy on-line wavelength stabilization is required for differential absorption lidar (DIAL), which is ideal for precisely measuring atmospheric CO(2) concentration. Using a difference-frequency laser, we developed a ground-based 1.57-μm pulsed DIAL for performing atmospheric CO(2) measurements. Owing to the system complexity, lacking phase, and intensity instability, the stabilization method was divided into two parts-wavelength calibration and locking-based on saturated absorption. After obtaining the on-line laser position, accuracy verification using statistical theory and locking stabilization using a one-dimensional template matching method, namely least-squares matching (LSM), were adopted to achieve wavelength locking. The resulting system is capable of generating a stable wavelength.

  11. Particle simulation of radio frequency stabilization of the flute mode in a tandem mirror. II. Perpendicular antenna

    SciTech Connect

    Abe, H.; Kadoya, Y.

    1988-10-01

    A two-and-a-half-dimensional electromagnetic particle code PS2M (J. Phys. Soc. Jpn. 56, 3899 (1987)) is used to study how an electric field applied perpendicularly to the magnetic field affects the radio frequency stabilization of flute modes in a tandem mirror plasma. The electric field perpendicular to the magnetic field stabilizes or destabilizes the flute mode through the mechanism of the ponderomotive force acting on electrons and ions and through the mechanism of sideband coupling. In the simulations two typical examples have been shown: (i) when the sideband coupling effects (in which the electron terms are dominant) stabilize the flute modes and (ii) when the perpendicular ponderomotive force acting on the electrons destabilizes the flute modes.

  12. Does Implant Design Affect Implant Primary Stability? A Resonance Frequency Analysis-Based Randomized Split-Mouth Clinical Trial.

    PubMed

    Gehrke, Sergio Alexandre; da Silva, Ulisses Tavares; Del Fabbro, Massimo

    2015-12-01

    The purpose of this study was to assess implant stability in relation to implant design (conical vs. semiconical and wide-pitch vs narrow-pitch) using resonance frequency analysis. Twenty patients with bilateral edentulous maxillary premolar region were selected. In one hemiarch, conical implants with wide pitch (group 1) were installed; in the other hemiarch, semiconical implants with narrow pitch were installed (group 2). The implant allocation was randomized. The implant stability quotient (ISQ) was measured by resonance frequency analysis immediately following implant placement to assess primary stability (time 1) and at 90 days after placement (time 2). In group 1, the mean and standard deviation ISQ for time 1 was 65.8 ± 6.22 (95% confidence interval [CI], 55 to 80), and for time 2, it was 68.0 ± 5.52 (95% CI, 57 to 77). In group 2, the mean and standard deviation ISQ was 63.6 ± 5.95 (95% CI, 52 to 78) for time 1 and 67.0 ± 5.71 (95% CI, 58 to 78) for time 2. The statistical analysis demonstrated significant difference in the ISQ values between groups at time 1 (P = .007) and no statistical difference at time 2 (P = .54). The greater primary stability of conical implants with wide pitch compared with semiconical implants with narrow pitch might suggest a preference for the former in case of the adoption of immediate or early loading protocols.

  13. Effect of frequency, magnitude and direction of translational and rotational oscillation on the postural stability of standing people

    NASA Astrophysics Data System (ADS)

    Nawayseh, Naser; Griffin, Michael J.

    2006-12-01

    Oscillatory motions can cause injury in transport when standing passengers or crew lose balance and fall. To predict the loss of balance of standing people, a model is required of the relationship between the input motion and the stability of the human body. This experimental study investigated the effect of frequency, magnitude and direction of oscillation on the postural stability of standing subjects and whether response to rotational oscillation can be predicted from knowledge of response to translational oscillation. Twelve male subjects stood on a floor that oscillated in either horizontal (fore-and-aft or lateral) or rotational (pitch or roll) directions. The oscillations were one-third octave bands of random motion centred on five preferred octave centre frequencies (0.125, 0.25, 0.5, 1.0, and 2.0 Hz). The horizontal motions were presented at each of four velocities (0.04, 0.062, 0.099, and 0.16 ms -1 rms) and the rotational motions were presented at each of four rotational angles (0.73, 1.46, 2.92, and 5.85° rms) corresponding to four accelerations (0.125, 0.25, 0.5, and 1.0 ms -2 rms), where the acceleration is that caused by rotation through the gravitational vector. Postural stability was determined by subjective methods and by measuring the displacement of the centre of pressure at the feet during horizontal oscillation. During horizontal oscillation, increases in motion magnitude increased instability and, with the same velocity at all frequencies from 0.125 to 2.0 Hz, most instability occurred in the region of 0.5 Hz. Fore-and-aft oscillation produced more instability than lateral oscillation, although displacements of the centre of pressure were similar in both directions. With the same angular displacement at all frequencies from 0.125 to 2.0 Hz, pitch oscillation caused more instability than roll oscillation, but in both directions instability increased with increased frequency of oscillation. Frequency weightings for acceleration in the plane of

  14. The study of absolute distance measurement based on the self-mixing interference in laser diode

    NASA Astrophysics Data System (ADS)

    Wang, Ting-ting; Zhang, Chuang

    2009-07-01

    In this work, an absolute distance measurement method based on the self-mixing interference is presented. The principles of the method used three-mirror cavity equivalent model are studied in this paper, and the mathematical model is given. Wavelength modulation of the laser beam is obtained by saw-tooth modulating the infection current of the laser diode. Absolute distance of the external target is determined by Fourier analysis method. The frequency of signal from PD is linearly dependent on absolute distance, but also affected by temperature and fluctuation of current source. A dual-path method which uses the reference technique for absolute distance measurement has been proposed. The theoretical analysis shows that the method can eliminate errors resulting from distance-independent variations in the setup. Accuracy and stability can be improved. Simulated results show that a resolution of +/-0.2mm can be achieved for absolute distance ranging from 250mm to 500mm. In the same measurement range, the resolution we obtained is better than other absolute distance measurement system proposed base on self-mixing interference.

  15. Absolute and relative blindsight.

    PubMed

    Balsdon, Tarryn; Azzopardi, Paul

    2015-03-01

    The concept of relative blindsight, referring to a difference in conscious awareness between conditions otherwise matched for performance, was introduced by Lau and Passingham (2006) as a way of identifying the neural correlates of consciousness (NCC) in fMRI experiments. By analogy, absolute blindsight refers to a difference between performance and awareness regardless of whether it is possible to match performance across conditions. Here, we address the question of whether relative and absolute blindsight in normal observers can be accounted for by response bias. In our replication of Lau and Passingham's experiment, the relative blindsight effect was abolished when performance was assessed by means of a bias-free 2AFC task or when the criterion for awareness was varied. Furthermore, there was no evidence of either relative or absolute blindsight when both performance and awareness were assessed with bias-free measures derived from confidence ratings using signal detection theory. This suggests that both relative and absolute blindsight in normal observers amount to no more than variations in response bias in the assessment of performance and awareness. Consideration of the properties of psychometric functions reveals a number of ways in which relative and absolute blindsight could arise trivially and elucidates a basis for the distinction between Type 1 and Type 2 blindsight.

  16. Characterization of Low-Frequency Combustion Stability of the Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin; Jones, Preston (Technical Monitor)

    2002-01-01

    A series of tests were conducted to measure the combustion performance of the Fastrac engine thrust chamber. During mainstage, the thrust chamber exhibited no large-amplitude chamber pressure oscillations that could be identified as low-frequency combustion instability or 'chug'. However, during start-up and shutdown, the thrust chamber very briefly exhibited large-amplitude chamber pressure oscillations that were identified as chug. These instabilities during start-up and shutdown were regarded as benign due to their brevity. Linear models of the thrust chamber and the propellant feed systems were formulated for both the thrust chamber component tests and the flight engine tests. These linear models determined the frequency and decay rate of chamber pressure oscillations given the design and operating conditions of the thrust chamber and feed system. The frequency of chamber pressure oscillations determined from the model closely matched the frequency of low-amplitude, low-frequency chamber pressure oscillations exhibited in some of the later thrust chamber mainstage tests. The decay rate of the chamber pressure oscillations determined from the models indicated that these low-frequency oscillations were stable. Likewise, the decay rate, determined from the model of the flight engine tests indicated that the low-frequency chamber pressure oscillations would be stable.

  17. Absolute neutrino mass scale

    NASA Astrophysics Data System (ADS)

    Capelli, Silvia; Di Bari, Pasquale

    2013-04-01

    Neutrino oscillation experiments firmly established non-vanishing neutrino masses, a result that can be regarded as a strong motivation to extend the Standard Model. In spite of being the lightest massive particles, neutrinos likely represent an important bridge to new physics at very high energies and offer new opportunities to address some of the current cosmological puzzles, such as the matter-antimatter asymmetry of the Universe and Dark Matter. In this context, the determination of the absolute neutrino mass scale is a key issue within modern High Energy Physics. The talks in this parallel session well describe the current exciting experimental activity aiming to determining the absolute neutrino mass scale and offer an overview of a few models beyond the Standard Model that have been proposed in order to explain the neutrino masses giving a prediction for the absolute neutrino mass scale and solving the cosmological puzzles.

  18. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  19. Transportable cavity-stabilized laser system for optical carrier frequency transmission experiments.

    PubMed

    Parker, B; Marra, G; Johnson, L A M; Margolis, H S; Webster, S A; Wright, L; Lea, S N; Gill, P; Bayvel, P

    2014-12-10

    We report the design and performance of a transportable laser system at 1543 nm, together with its application as the source for a demonstration of optical carrier frequency transmission over 118 km of an installed dark fiber network. The laser system is based around an optical reference cavity featuring an elastic mounting that bonds the cavity to its support, enabling the cavity to be transported without additional clamping. The cavity exhibits passive fractional frequency insensitivity to vibration along the optical axis of 2.0×10(-11)  m(-1) s(2). With active fiber noise cancellation, the optical carrier frequency transmission achieves a fractional frequency instability, measured at the user end, of 2.6×10(-16) at 1 s, averaging down to below 3×10(-18) after 20,000 s. The fractional frequency accuracy of the transfer is better than 3×10(-18). This level of performance is sufficient for comparison of state-of-the-art optical frequency standards and is achieved in an urban fiber environment.

  20. Computer-controlled system for frequency stabilization of He-Ne laser radiation with the use of a thin absorbing layer

    NASA Astrophysics Data System (ADS)

    Jankiewicz, Zdzislaw; Rutyna, K.

    1995-03-01

    In this paper the requirements for single-frequency helium-neon lasers are characterized. The system of single-frequency He-Ne laser is presented with the thin-layer CWA selector operating with the stabilization of power output. In the stabilization loop the computer has been applied, co-working with the specially made for this purpose digital system of piezoceramics control. The principle of operation of computer stabilization loop of the power of single-frequency laser is described, as well as some results of investigations.

  1. Measurement of laser quantum frequency fluctuations using a Pound-Drever stabilization system

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jen; Mussche, Paul L.; Siegman, Anthony E.

    1994-06-01

    We describe a method for measuring the frequency fluctuation spectrum of a laser oscillator, especially the weak noise contributions in the wings of the spectrum, and apply this method to confirm the existence of large excess quantum frequency fluctuations in a laser oscillator using an unstable optical resonator. Our measurement apparatus uses the Pound-Drever technique, which employs an RF phase modulator and a Fabry-Perot cavity to produce a sensitive high-speed frequency discrimination signal. We show that this signal can also be used to measure the quantum noise contributions to the frequency spectrum of a laser oscillator. Experimental measurements on a miniature diode-pumped Nd:YAG laser using a stable optical cavity closely match the predictions of the usual Schawlow-Townes theory, while the frequency fluctuations in a nearly identical laser employing an unstable optical resonator are approximately 1300 times larger. These much larger fluctuations arise in part from the larger output coupling and cavity bandwidth of the unstable cavity, but they also appear to confirm a predicted excess spontaneous emission factor (Petermann excess noise factor) of approximately = 180 times arising from the nonorthogonal transverse mode properties of the unstable cavity.

  2. Cryogenic monocrystalline silicon Fabry-Perot cavity for the stabilization of laser frequency

    NASA Technical Reports Server (NTRS)

    Richard, J.-P.; Hamilton, J. J.

    1991-01-01

    A 1.6 kg silicon monocrystal was used to make a Fabry-Perot optical cavity operated at cryogenic temperatures. High-resolution thermal expansion measurements were made as the silicon cooled to 4.2 K, in order to characterize the cavity as a length reference standard. A helium-neon laser was then locked to a transmission resonance at liquid-helium temperatures, and the laser frequency tracked the cavity resonance with error fluctuations at the level of 10 Hz/sq rt Hz in the bandwidth dc to 1 Hz. Implications of the combined set of data, thermal expansion plus frequency-tracking fluctuations, for using such a system as a frequency standard are discussed.

  3. Coupling effect and control strategies of the maglev dual-stage inertially stabilization system based on frequency-domain analysis.

    PubMed

    Lin, Zhuchong; Liu, Kun; Zhang, Li; Zeng, Delin

    2016-09-01

    Maglev dual-stage inertially stabilization (MDIS) system is a newly proposed system which combines a conventional two-axis gimbal assembly and a 5-DOF (degree of freedom) magnetic bearing with vernier tilting capacity to perform dual-stage stabilization for the LOS of the suspended optical instrument. Compared with traditional dual-stage system, maglev dual-stage system exhibits different characteristics due to the negative position stiffness of the magnetic forces, which introduces additional coupling in the dual stage control system. In this paper, the coupling effect on the system performance is addressed based on frequency-domain analysis, including disturbance rejection, fine stage saturation and coarse stage structural resonance suppression. The difference between various control strategies is also discussed, including pile-up(PU), stabilize-follow (SF) and stabilize-compensate (SC). A number of principles for the design of a maglev dual stage system are proposed. A general process is also suggested, which leads to a cost-effective design striking a balance between high performance and complexity. At last, a simulation example is presented to illustrate the arguments in the paper.

  4. Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability.

    PubMed

    Knappe, S; Gerginov, V; Schwindt, P D D; Shah, V; Robinson, H G; Hollberg, L; Kitching, J

    2005-09-15

    A novel technique for microfabricating alkali atom vapor cells is described in which alkali atoms are evaporated into a micromachined cell cavity through a glass nozzle. A cell of interior volume 1 mm3, containing 87Rb and a buffer gas, was made in this way and integrated into an atomic clock based on coherent population trapping. A fractional frequency instability of 6 x 10(-12) at 1000 s of integration was measured. The long-term drift of the F=1, mF=0-->F=2, mF=0 hyperfine frequency of atoms in these cells is below 5 x 10(-11)/day.

  5. Stability analysis of a thin liquid film on an axially oscillating cylindrical surface in the high-frequency limit.

    PubMed

    Duruk, Selin; Oron, Alexander

    2014-08-01

    We consider an axisymmetric liquid film on a horizontal cylindrical surface subjected to axial harmonic oscillation in the high-frequency limit. We derive and analyze the nonlinear evolution equation describing the nonlinear dynamics of this physical system in terms of the averaged film thickness. The method used for the derivation of the evolution equation is based on long-wave theory and the separation of the relevant fields into fast and slow components. We carry out the linear stability analysis for a film of a constant thickness which shows that axial forcing of the cylinder may result in either stabilization or destabilization of the axisymmetric flow with respect to the unforced one, depending on the choice of the parameter set. The analysis is extended to the weakly nonlinear stage and it reveals that the system bifurcates subcritically from the equilibrium.

  6. Determination of lateral-stability derivatives and transfer-function coefficients from frequency-response data for lateral motions

    NASA Technical Reports Server (NTRS)

    Donegan, James J; Robinson, Samuel W , Jr; Gates, Ordway, B , jr

    1955-01-01

    A method is presented for determining the lateral-stability derivatives, transfer-function coefficients, and the modes for lateral motion from frequency-response data for a rigid aircraft. The method is based on the application of the vector technique to the equations of lateral motion, so that the three equations of lateral motion can be separated into six equations. The method of least squares is then applied to the data for each of these equations to yield the coefficients of the equations of lateral motion from which the lateral-stability derivatives and lateral transfer-function coefficients are computed. Two numerical examples are given to demonstrate the use of the method.

  7. Frequency stabilization to a molecular line of a diode-pumped Er{endash}Yb laser at 1533-nm wavelength

    SciTech Connect

    Taccheo, S.; Longhi, S.; Pallaro, L.; Laporta, P.; Svelto, C.; Bava, E.

    1995-12-01

    Two identical diode-pumped bulk Er:Yb:glass lasers, operating at 1533-nm wavelength, have been locked independently to the {ital P}(13) vibrational{endash}rotational line of an acetylene molecule. A long-term frequency stability over a 4-h period of better than 1.5 MHz and a short-term laser linewidth narrower than 50 kHz have been obtained by measurement of the beat note between the two lasers. {copyright} {ital 1995 Optical Society of America.}

  8. Gas-lens effect and cavity design of some frequency-stabilized He-Ne lasers.

    PubMed

    Cérez, P; Felder, R

    1983-04-15

    It is shown that there exists an optimal cavity length which should minimize the frequency shifts induced by lenslike effects in intracavity saturated absorption lasers. Ideas are developed which provide a satisfactory explanation for the dispersion in modulation shifts observed in some recent laser intercomparisons.

  9. Flight-Like Optical Reference Cavity for GRACE Follow-On Laser Frequency Stabilization

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; deVine, G.; Klipstein, W. M.; McKenzie, K.; Spero, R.; Thompson, R.; Yu, N.; Stephens, M.; Leitch, J.; Pierce, R.; Shaddock, D.; Lam, T.

    2011-01-01

    We describe a prototype optical cavity and associated optics that has been developed to provide a stable frequency reference for a future space-based laser ranging system. This instrument is being considered for inclusion as a technology demonstration on the recently announced GRACE follow-on mission, which will monitor variations in the Earth's gravity field.

  10. Long-Distance Frequency Transfer Over an Urban Fiber Link Using Optical Phase Stabilization

    DTIC Science & Technology

    2008-12-01

    eliability, and the potential for phase noise cancellation. Microwave frequency transmission using amplitude odulation of an optical carrier has demonstrated...isolation box. About W of optical power, including 30% in the phase odulation sidebands, are typically sent onto the cavity ith a coupling

  11. Frequency Stabilization of a Single Mode Terahertz Quantum Cascade Laser to the Kilohertz Level

    DTIC Science & Technology

    2009-04-27

    line phase-locked quntum cascade laser in the 9.2 µm range,” Opt. Lett. 32, (2007). 14. D. W. Allan, “Statistics of atomic frequency standards...Eur. Micro. Conf. 14th, 248 – 253 (1984). 1. Introduction THz quantum cascade lasers [1] (TQCL) are a fast growing field with many potential

  12. Radio frequency induced hyperthermia mediated by dextran stabilized LSMO nanoparticles: in vitro evaluation of heat shock protein response

    NASA Astrophysics Data System (ADS)

    Bhayani, K. R.; Rajwade, J. M.; Paknikar, K. M.

    2013-01-01

    Dextran stabilized La0.7Sr0.3MnO3 (Dex-LSMO) is an alternative cancer hyperthermia agent holding considerable promise. Here, we have carried out a comparative study on radio frequency (˜264 kHz) induced Dex-LSMO mediated heating and extraneous heating (mimicking generalized hyperthermia) in terms of changes in the morphology, proliferation pattern and induction of heat shock proteins in a human melanoma cell line (A375). Our results clearly show that the cellular effects seen with extraneous heating (60 min at 43 °C) could be reproduced by just six minutes of radio frequency induced Dex-LSMO mediated heating. More importantly, the observed enhanced levels of HSP 70 and 90 (molecular markers of heat shock that trigger favorable immunological reactions) seen with Dex-LSMO mediated heating were comparable to extraneous heating. These results suggest the possible utility of Dex-LSMO as a cancer hyperthermia agent.

  13. Three-dimensional convective and absolute instabilities in pressure-driven two-layer channel flow

    NASA Astrophysics Data System (ADS)

    Sahu, Kirti; Matar, Omar

    2011-11-01

    A generalized linear stability analysis of three-dimensional disturbance in a pressure-driven two-layer channel flow, focusing on the range of parameters for which Squire's theorem does not exist is considered. Three-dimensional linear stability equations, in which both the spatial wavenumber and temporal frequency are complex, are derived and solved using an efficient spectral collocation method. A Briggs-type analysis is then carried out to delineate the boundaries between convective and absolute instabilities in m-Re space. We find that although three-dimensional disturbances are temporally more unstable than the two-dimensional disturbances, absolute modes of instability are most unstable for two-dimensional disturbances. An energy ``budget'' analysis also shows that the most dangerous modes are ``interfacial'' ones.

  14. Thermal Stabilizing of Shelf-Stable Egg Products Based on Radio Frequency Energy Technology

    DTIC Science & Technology

    2005-04-01

    based on the automatic program was determined. We produced 10 trays of RF heated scrambled eggs without any temperature tubings in the tray...stability. The new vessel was tested to heat several food products such as mashed potatoes and scrambled eggs . Relatively uniform heating pattern...Preliminary results of RF heated scrambled eggs showed greenish-black discoloration and an undesirable syneresis after processing and storage. In order

  15. Exploring Relative Thermodynamic Stabilities of Formic Acid and Formamide Dimers - Role of Low-Frequency Hydrogen-Bond Vibrations.

    PubMed

    Cato, Michael A; Majumdar, D; Roszak, Szczepan; Leszczynski, Jerzy

    2013-02-12

    The low-frequency fundamentals together with the high-frequency modes, responsible for hydrogen bonding (OH/NH stretching modes), were analyzed to correlate the intensities with the hydrogen-bond strengths/binding energies of the formic acid and formamide dimers using Møller-Plesset second-order perturbation (MP2) and coupled cluster computations with explicit anharmonicity corrections. Linear correlations were observed for both the formic acid and formamide dimers, and as consequence of such correlation an additive properties of binding energies with respect to the local hydrogen-bond energies of fragments involved (for these dimers) has been proposed. It has been further observed that (i) the nature of their six low-frequency fundamentals are very similar, and (ii) the in-plane bending and stretch-bend fundamentals of different dimers of these two species (depending on the dimer structure), in this low-frequency region, modulate their strength of hydrogen-bond/binding hence their relative stability order. These results were further verified against the results from Gaussian-G4-MP2 (G4MP2), Gaussian-G2-MP2 (G2MP2), and complete basis set (CBS-QB3) methods of high accuracy energy calculations.

  16. Active frequency stabilization of a 1.062-micron, Nd:GGG, diode-laser-pumped nonplanar ring oscillator to less than 3 Hz of relative linewidth

    NASA Technical Reports Server (NTRS)

    Day, T.; Gustafson, E. K.; Byer, R. L.

    1990-01-01

    Results are presented on the frequency stabilization of two diode-laser-pumped ring lasers that are independently locked to the same high-finesse interferometer. The relative frequency stability is measured by locking the lasers one free spectral range apart and observing the heterodyne beat note. The resultant beat note width of 2.9 Hz is consistent with the theoretical system noise-limited linewidth and is approximately 20 times that expected for shot-noise-limited performance.

  17. Frequency stabilization of diode laser on the wavelength of 5P3/2→5D5/2 of rubidium transition

    NASA Astrophysics Data System (ADS)

    Kalatskiy, A. Yu.; Afanasiev, A. E.; Melentiev, P. N.; Balykin, V. I.

    2016-12-01

    The method of frequency stabilization of diode laser on the wavelength of 5P3/2→5D5/2 of rubidium (776 nm) has been realized. The two-photon absorption spectroscopy of the rubidium vapors is underlie of the suggested scheme. The basic parameters such as the intensity of laser radiation and concentration of the vapors have been investigated. The frequency stability of radiation was about 1 MHz

  18. Frequency stabilization and transverse mode discrimination in injection-seeded unstable resonator TEA CO2 lasers

    NASA Technical Reports Server (NTRS)

    Ancellet, G. M.; Menzies, R. T.; Brothers, A. M.

    1987-01-01

    Longitudinal mode selection by injection has been demonstrated as a viable technique for TEA-CO2 lasers with pulse energies of a Joule or greater. Once reliable generation of single-longitudinal-mode (SLM) pulses is obtained, the characteristics and the causes of intrapulse frequency variation can be studied. These include the effect of the decaying plasma, the thermal gradient due to the energy dissipation associated with the laser mechanism itself, and the pressure shift of the center frequency of the laser transition. The use of the positive-branch unstable resonator as an efficient means of coupling a discharge with large spatial dimensions to an optical cavity mode introduces another concern: namely, what can be done to emphasize transverse mode discrimination in an unstable resonator cavity while maintaining high coupling efficiency. These issues are discussed in this paper, and relevant experimental results are included.

  19. The influence of length of implant on primary stability: An in vitro study using resonance frequency analysis

    PubMed Central

    Al-dakes, Ala M.

    2017-01-01

    Background Primary stabilityis not sufficientin less contact area between the implant and bone, the healing process because will be disrupted due to micro-motions and fibrous tissue affects osseointegration. Material and Methods We implemented an in vitro experimental study of total 135 XiVE® implants were inserted in 22.5 bovine cow ribs with bone quality similar to a type IV human bone. Each rib end received a group of three different implant lengths, which were 8mm, 13mm and 15mm and had the same diameter 3.8mm. Immediately after the implant placement, its primary stability was measured using Osstell Mentor equipment. ANOVA Tukey’s honest to test the significant difference were performed for data analysis between the resonance measures of the different lengths of implants. Statistical significance was assessed at a level P< 0.05. Results A total of 45 implants were inserted for each length at cortical bone level. A significant difference between the three groups in favor of implant with 15mm length group (P = 0.000). Conclusions Increasing dental implant length is considered to play a fundamental role in increasing dental implant primary stability, even in poor bone quality, through controlling the bone preparation process. Key words:Dental implants, primary stability, resonance frequency analysis. PMID:28149455

  20. Absolute Distance Measurement with the MSTAR Sensor

    NASA Technical Reports Server (NTRS)

    Lay, Oliver P.; Dubovitsky, Serge; Peters, Robert; Burger, Johan; Ahn, Seh-Won; Steier, William H.; Fetterman, Harrold R.; Chang, Yian

    2003-01-01

    The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. The sensor uses a single laser in conjunction with fast phase modulators and low frequency detectors. We describe the design of the system - the principle of operation, the metrology source, beamlaunching optics, and signal processing - and show results for target distances up to 1 meter. We then demonstrate how the system can be scaled to kilometer-scale distances.

  1. Positioning, alignment and absolute pointing of the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Fehr, F.; Distefano, C.; Antares Collaboration

    2010-01-01

    A precise detector alignment and absolute pointing is crucial for point-source searches. The ANTARES neutrino telescope utilises an array of hydrophones, tiltmeters and compasses for the relative positioning of the optical sensors. The absolute calibration is accomplished by long-baseline low-frequency triangulation of the acoustic reference devices in the deep-sea with a differential GPS system at the sea surface. The absolute pointing can be independently verified by detecting the shadow of the Moon in cosmic rays.

  2. Lipid compositions modulate fluidity and stability of bilayers: characterization by surface pressure and sum frequency generation spectroscopy.

    PubMed

    Liu, Wei; Wang, Zhuguang; Fu, Li; Leblanc, Roger M; Yan, Elsa C Y

    2013-12-03

    Cell membranes are crucial to many biological processes. Because of their complexity, however, lipid bilayers are often used as model systems. Lipid structures influence the physical properties of bilayers, but their interplay, especially in multiple-component lipid bilayers, has not been fully explored. Here, we used the Langmuir-Blodgett method to make mono- and bilayers of 1,2-dihexadecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG), and 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-L-serine (POPS) as well as their 1:1 binary mixtures. We studied the fluidity, stability, and rigidity of these structures using sum frequency generation (SFG) spectroscopy combined with analyses of surface pressure-area isotherms, compression modulus, and stability. Our results show that single-component bilayers, both saturated and unsaturated, may not be ideal membrane mimics because of their low fluidity and/or stability. However, the binary saturated and unsaturated DPPG/POPG and DPPG/POPS systems show not only high stability and fluidity but also high resistance to changes in surface pressure, especially in the range of 25-35 mN/m, the range typical of cell membranes. Because the ratio of saturated to unsaturated lipids is highly regulated in cells, our results underline the possibility of modulating biological properties using lipid compositions. Also, our use of flat optical windows as solid substrates in SFG experiments should make the SFG method more compatible with other techniques, enabling more comprehensive future surface characterizations of bilayers.

  3. An overview of DREV's activities on pulsed CO2 laser transmitters: Frequency stability and lifetime aspects

    NASA Technical Reports Server (NTRS)

    Cruickshank, James; Pace, Paul; Mathieu, Pierre

    1987-01-01

    After introducing the desired features in a transmitter for laser radar applications, the output characteristics of several configurations of frequency-stable TEA-CO2 lasers are reviewed. Based on work carried out at the Defence Research Establishment Valcartier (DREV), output pulses are examined from short cavity lasers, CW-TEA hybrid lasers, and amplifiers for low power pulses. It is concluded that the technique of injecting a low-power laser beam into a TEA laser resonator with Gaussian reflectivity mirrors should be investigated because it appears well adapted to producing high energy, single mode, low chirp pulses. Finally, a brief report on tests carried out on catalysts composed of stannic oxide and noble metals demonstrates the potential of these catalysts, operating at close to room temperature, to provide complete closed-cycle laser operation.

  4. A frequency-stabilized laser based on a hollow-core photonic crystal fiber CO2 gas cell and its application scheme

    NASA Astrophysics Data System (ADS)

    Chen, Ze-Heng; Yang, Fei; Chen, Di-Jun; Cai, Hai-Wen

    2017-04-01

    A frequency-stabilized laser system based on a hollow-core photonic crystal fiber (HC-PCF) CO2 gas cell for the space-borne CO2 light detection and ranging (LIDAR) is proposed. This system will help realize precise measurement of the global atmospheric CO2 concentrations. The relation between the frequency stability and the temperature of the HC-PCF cell was studied in detail. It is proved that accurate control of the temperature of the HC-PCF cell is very important to realize high stability of the proposed system. The laser is locked to CO2 gas R18 absorption line at 1572.0179 nm, and its peak-to-peak frequency stability is approximately 485 kHz, satisfying the requirements for the integrated path differential absorption system for CO2 measurement with an accuracy of  <1 ppm over 5 h.

  5. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  6. Frequency-Downconversion Stability of PMMA Coatings in Hybrid White Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Caruso, Fulvio; Mosca, Mauro; Rinella, Salvatore; Macaluso, Roberto; Calì, Claudio; Saiano, Filippo; Feltin, Eric

    2016-01-01

    We report on the properties of a poly(methyl methacrylate)-based coating used as a host for an organic dye in hybrid white light-emitting diodes. The device is composed by a pump source, which is a standard inorganic GaN/InGaN blue light-emitting diode (LED) emitting at around 450 nm, and a spin-coated conversion layer making use of Lumogen® F Yellow 083. Under prolonged irradiation, the coating exhibits significant bleaching, thus degrading the color rendering performance of the LED. We present experimental results that confirm that the local temperature rise of the operating diode does not affect the conversion layer. It is also proven that, during the test, the photostability of the organic dye is compromised, resulting in a chromatic shift from Commission Internationale de l'Eclairage (CIE) ( x; y) coordinates (0.30;0.39) towards the color of the pump (0.15;0.04). Besides photodegradation of the dye, we address a phenomenon attributed to modification of the polymer matrix activated by the LED's blue light energy as confirmed by ultraviolet-visible and Fourier-transform infrared spectroscopic analyses. Three methods for improving the overall stability of the organic coating are presented.

  7. Theoretical estimates of maximum fields in superconducting resonant radio frequency cavities: stability theory, disorder, and laminates

    NASA Astrophysics Data System (ADS)

    Liarte, Danilo B.; Posen, Sam; Transtrum, Mark K.; Catelani, Gianluigi; Liepe, Matthias; Sethna, James P.

    2017-03-01

    Theoretical limits to the performance of superconductors in high magnetic fields parallel to their surfaces are of key relevance to current and future accelerating cavities, especially those made of new higher-T c materials such as Nb3Sn, NbN, and MgB2. Indeed, beyond the so-called superheating field {H}{sh}, flux will spontaneously penetrate even a perfect superconducting surface and ruin the performance. We present intuitive arguments and simple estimates for {H}{sh}, and combine them with our previous rigorous calculations, which we summarize. We briefly discuss experimental measurements of the superheating field, comparing to our estimates. We explore the effects of materials anisotropy and the danger of disorder in nucleating vortex entry. Will we need to control surface orientation in the layered compound MgB2? Can we estimate theoretically whether dirt and defects make these new materials fundamentally more challenging to optimize than niobium? Finally, we discuss and analyze recent proposals to use thin superconducting layers or laminates to enhance the performance of superconducting cavities. Flux entering a laminate can lead to so-called pancake vortices; we consider the physics of the dislocation motion and potential re-annihilation or stabilization of these vortices after their entry.

  8. Absolute-structure reports.

    PubMed

    Flack, Howard D

    2013-08-01

    All the 139 noncentrosymmetric crystal structures published in Acta Crystallographica Section C between January 2011 and November 2012 inclusive have been used as the basis of a detailed study of the reporting of absolute structure. These structure determinations cover a wide range of space groups, chemical composition and resonant-scattering contribution. Defining A and D as the average and difference of the intensities of Friedel opposites, their level of fit has been examined using 2AD and selected-D plots. It was found, regardless of the expected resonant-scattering contribution to Friedel opposites, that the Friedel-difference intensities are often dominated by random uncertainty and systematic error. An analysis of data collection strategy is provided. It is found that crystal-structure determinations resulting in a Flack parameter close to 0.5 may not necessarily be from crystals twinned by inversion. Friedifstat is shown to be a robust estimator of the resonant-scattering contribution to Friedel opposites, very little affected by the particular space group of a structure nor by the occupation of special positions. There is considerable confusion in the text of papers presenting achiral noncentrosymmetric crystal structures. Recommendations are provided for the optimal way of treating noncentrosymmetric crystal structures for which the experimenter has no interest in determining the absolute structure.

  9. The stability of radio-frequency plasma-treated polydimethylsiloxane surfaces.

    PubMed

    Chen, I-Jane; Lindner, Ernö

    2007-03-13

    Polydimethylsiloxane (PDMS) is a widely used material for manufacturing lab-on-chip devices. However, the hydrophobic nature of PDMS is a disadvantage in microfluidic systems. To transform the hydrophobic PDMS surface to hydrophilic, it was treated with radio-frequency (RF) air plasma at 150, 300, and 500 mTorr pressures for up to 30 min. Following the surface treatment, the PDMS specimens were stored in air, deionized water, or 0.14 M NaCl solution at 4 degrees C, 20 degrees C, and 70 degrees C. The change in the hydrophilicity (wettability) of the PDMS surfaces was followed by contact angle measurements and Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy as a function of time. As an effect of the RF plasma treatment, the contact angles measured on PDMS surfaces dropped from 113 +/- 4 degrees to 9 +/- 3 degrees . The chamber pressure and the treatment time had no or negligible effect on the results. However, the PDMS surface gradually lost its hydrophilic properties in time. The rate of this process is influenced by the difference in the dielectric constants of the PDMS and its ambient environment. It was the smallest at low temperatures in deionized water and largest at high temperatures in air. Apparently, the OH groups generated on the PDMS surface during the plasma treatment tended toward a more hydrophilic/less hydrophobic environment during the relaxation processes. The correlation between the FTIR-ATR spectral information and the contact angle data supports this interpretation.

  10. A quality evaluation of stabilization of rotation frequency of gas-diesel engines when using an adaptive automatic control system

    NASA Astrophysics Data System (ADS)

    Zhilenkov, A. A.; Efremov, A. A.

    2017-02-01

    A possibility of quality improvement of stabilization of rotation frequency of the gas-diesels used as prime mover of generator set in the multigenerator units working for abruptly variable load of large power is considered. An evaluation is made on the condition of fuzzy controller use developed and described by the authors in a number of articles. An evaluation has shown that theoretically, the revolution range of a gas-diesel engine may be reduced 25-30 times in case of optimal settings of the controller in the whole power range. The results of modelling showing a considerable quality improvement of transient processes in the investigated system during a sharp change of loading are presented in this article.

  11. Highly Oxidized Platinum Nanoparticles Prepared through Radio-Frequency Sputtering: Thermal Stability and Reaction Probability towards CO.

    PubMed

    Svintsitskiy, Dmitry A; Kibis, Lidiya S; Stadnichenko, Andrey I; Koscheev, Sergei V; Zaikovskii, Vladimir I; Boronin, Andrei I

    2015-10-26

    Platinum-oxide nanoparticles were prepared through the radio-frequency (RF) discharge sputtering of a Pt electrode in an oxygen atmosphere. The structure, particles size, electronic properties, and surface composition of the RF-sputtered particles were studied by using transmission electron microscopy and X-ray photoelectron spectroscopy. The application of the RF discharge method resulted in the formation of highly oxidized Pt(4+) species that were stable under ultrahigh vacuum conditions up to 100 °C, indicating the capability of Pt(4+) -O species to play an important role in the oxidation catalysis under real conditions. The thermal stability and reaction probability of Pt(4+) oxide species were analyzed and compared with those of Pt(2+) species. The reaction probability of PtO2 nanoparticles at 90 °C was found to be about ten times higher than that of PtO-like structures.

  12. Optically stabilized Erbium fiber frequency comb with hybrid mode-locking and a broad tunable range of repetition rate.

    PubMed

    Yang, Honglei; Wu, Xuejian; Zhang, Hongyuan; Zhao, Shijie; Yang, Lijun; Wei, Haoyun; Li, Yan

    2016-12-01

    We present an optically stabilized Erbium fiber frequency comb with a broad repetition rate tuning range based on a hybrid mode-locked oscillator. We lock two comb modes to narrow-linewidth reference lasers in turn to investigate the best performance of control loops. The control bandwidth of fast and slow piezoelectric transducers reaches 70 kHz, while that of pump current modulation with phase-lead compensation is extended to 32 kHz, exceeding laser intrinsic response. Eventually, simultaneous lock of both loops is realized to totally phase-stabilize the comb, which will facilitate precision dual-comb spectroscopy, laser ranging, and timing distribution. In addition, a 1.8-MHz span of the repetition rate is achieved by an automatic optical delay line that is helpful in manufacturing a secondary comb with a similar repetition rate. The oscillator is housed in a homemade temperature-controlled box with an accuracy of ±0.02  K, which not only keeps high signal-to-noise ratio of the beat notes with reference lasers, but also guarantees self-starting at the same mode-locking every time.

  13. A Frequency Transfer and Cleanup System for Ultra-High Stability at Both Long and Short Times for the Cassini Ka-Band Experiment

    NASA Technical Reports Server (NTRS)

    Calhoun, M. D.; Dick, G. J.; Wang, R. T.

    1999-01-01

    New radio science experiments, including a gravitational wave search and several atmospheric occultation studies, are planned for the Cassini Ka-band experiment. These experiments are made possible by reduced solar-induced phase fluctuations at the high-frequency (32 GHZ) of the radio link between the earth and the spacecraft. In order to match the improved link performance, a significant upgrade is under way to improve the frequency stability capabilities of NASA's Deep Space Network (DSN). Significant improvements are being undertaken in many areas, including antenna vibration and (wet) tropospheric calibration, in addition to frequency generation and distribution. We describe here the design and development of a system to provide a reference signal with the highest possible frequency stability for both long-term, short-term, and phase noise, at an antenna (DSS 25) that is remote from the frequency standards room at SPC-10 at the Goldstone site. The new technologies were developed in order to meet the very tight requirements. They are: 1) a Stabilized Fiber-Optic Distribution Assembly (SFODA) that includes active compensation of thermal variations to transfer long-term stability over 16 km of ordinary fiber-optic cable, and 2) a Compensated Sapphire Oscillator (CSO) that provides short-term performance in a cryocooled sapphire oscillator with ultra-high short-term stability and low phase noise.

  14. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  15. Long-term frequency and amplitude stability of a solid-nitrogen-cooled, continuous wave THz quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Danylov, Andriy A.; Waldman, Jerry; Light, Alexander R.; Goyette, Thomas M.; Giles, Robert H.; Qian, Xifeng; Chandrayan, Neelima; Goodhue, William D.; Nixon, William E.

    2012-02-01

    Operational temperature increase of CW THz QCLs to 77 K has enabled us to employ solid nitrogen (SN2) as the cryogen. A roughing pump was used to solidify liquid nitrogen and when the residual vapor pressure in the nitrogen reservoir reached the pumping system's minimum pressure the temperature equilibrated and remained constant until all the nitrogen sublimated. The hold time compared to liquid helium has thereby increased approximately 70-fold, and at a greatly reduced cost. The milliwatt CW QCL was at a temperature of approximately 60 K, dissipating 5 W of electrical power. To measure the long-term frequency, current, and temperature stability, we heterodyned the free-running 2.31 THz QCL with a CO2 pumped far-infrared gas laser line in methanol (2.314 THz) in a corner-cube Schottky diode and recorded the IF frequency, current and temperature. Under these conditions the performance characteristics of the QCL, which will be reported, exceeded that of a device mounted in a mechanical cryocooler.

  16. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  17. Absolute multilateration between spheres

    NASA Astrophysics Data System (ADS)

    Muelaner, Jody; Wadsworth, William; Azini, Maria; Mullineux, Glen; Hughes, Ben; Reichold, Armin

    2017-04-01

    Environmental effects typically limit the accuracy of large scale coordinate measurements in applications such as aircraft production and particle accelerator alignment. This paper presents an initial design for a novel measurement technique with analysis and simulation showing that that it could overcome the environmental limitations to provide a step change in large scale coordinate measurement accuracy. Referred to as absolute multilateration between spheres (AMS), it involves using absolute distance interferometry to directly measure the distances between pairs of plain steel spheres. A large portion of each sphere remains accessible as a reference datum, while the laser path can be shielded from environmental disturbances. As a single scale bar this can provide accurate scale information to be used for instrument verification or network measurement scaling. Since spheres can be simultaneously measured from multiple directions, it also allows highly accurate multilateration-based coordinate measurements to act as a large scale datum structure for localized measurements, or to be integrated within assembly tooling, coordinate measurement machines or robotic machinery. Analysis and simulation show that AMS can be self-aligned to achieve a theoretical combined standard uncertainty for the independent uncertainties of an individual 1 m scale bar of approximately 0.49 µm. It is also shown that combined with a 1 µm m‑1 standard uncertainty in the central reference system this could result in coordinate standard uncertainty magnitudes of 42 µm over a slender 1 m by 20 m network. This would be a sufficient step change in accuracy to enable next generation aerospace structures with natural laminar flow and part-to-part interchangeability.

  18. Frequency stabilization of an Er-doped fiber laser with a collinear 2f-to-3f self-referencing interferometer

    SciTech Connect

    Hitachi, K. Ishizawa, A.; Mashiko, H.; Sogawa, T.; Gotoh, H.; Tadanaga, O.; Nishikawa, T.

    2015-06-08

    We report the stabilization of the carrier-envelope offset (CEO) frequency of an Er-doped fiber laser with a collinear 2f-to-3f self-referencing interferometer. The interferometer is implemented by a dual-pitch periodically poled lithium niobate ridge waveguide with two different quasi-phase matching pitch sizes. We obtain a 52-dB signal-to-noise ratio in the 100-kHz resolution bandwidth of a heterodyne beat signal, which is sufficient for frequency stabilization. We also demonstrate that the collinear geometry is robust against environmental perturbation by comparing in-loop and out-of-loop Allan deviations when the in-loop CEO frequency is stabilized with a phase-locked loop circuit.

  19. In situ high-frequency UV-Vis spectrometer probes for investigating runoff processes and end member stability.

    NASA Astrophysics Data System (ADS)

    Schwab, Michael; Weiler, Markus; Pfister, Laurent; Klaus, Julian

    2014-05-01

    In recent years, several limitations as to the application of end member mixing analysis with isotope and geochemical tracers have been revealed: unstable end member solutions, inputs varying in space and time, and unrealistic mixing assumptions. In addition, the necessary high-frequency sampling using conventional methods is time and resources consuming, and hence most sampling rates are not suitable for capturing the response times of the majority of observed headwater catchments. However, high-frequency observations are considered fundamental for gaining new insights into hydrological systems. In our study, we have used two portable, in situ, high-frequency UV-Vis spectrometers (spectro::lyser; scan Messtechnik GmbH) to investigate the variability of several signatures in streamflow and end member stability. The spectro::lyser measures TOC, DOC, nitrate and the light absorption spectrum from 220 to 720 nm with 2.5 nm increment. The Weierbach catchment (0.45 km2) in the Attert basin (297 km2) in Luxemburg is a small headwater research catchment (operated by the CRP Gabriel Lippmann), which is completely forested and underlain by schist bedrock. The catchment is equipped with a dense network of hydrological instruments and for this study, the outlet of the Weierbach catchment was equipped with one spectro::lyser, permanently sensing stream water at a 15 minutes time step over several months. Hydrometric and meteorologic data was compared with the high-frequency spectro::lyser time series of TOC, DOC, nitrate and the light absorption spectrum, to get a first insight into the behaviour of the catchment under different environmental conditions. As a preliminary step for a successful end member mixing analysis, the stability of rainfall, soil water, and groundwater was tested with one spectro::lyser, both temporally and spatially. Thereby, we focused on the investigation of changes and patterns of the light absorption spectrum of the different end members and the

  20. Frequency characteristics of an inherently stable Nd:YAG laser operated at liquid helium temperature

    SciTech Connect

    Scholz, Matthias; Kovalchuk, Evgeny; Peters, Achim

    2009-07-10

    We report on frequency measurements of a free-running Nd:YAG laser operating at temperatures down to 6.5 K using a femtosecond laser frequency comb. Due to lower thermal expansion and thermo-optic effects as well as reduced electron-phonon interactions in Nd:YAG at cryogenic temperatures, a laser frequency stability on the order of 10{sup -11} at {tau} < or = 30s has been achieved. Within a one-week measurement period, absolute frequency deviations were lower than 1.85 MHz. This is up to a 100-fold improvement of frequency stability compared to any existing free-running solid-state laser.

  1. Comparison of 127I2-stabilized frequency-doubled Nd:YAG lasers at the Bureau International des Poids et Mesures

    NASA Astrophysics Data System (ADS)

    Picard, Susanne; Robertsson, Lennart; Ma, Long-Sheng; Nyholm, Kaj; Merimaa, Mikko; Ahola, Tero E.; Balling, Petr; Kr̆En, Petr; Wallerand, Jean-Pierre

    2003-02-01

    A frequency comparison was carried out between iodine-stabilized Nd:YAG lasers at 532 nm from the Bureau International des Poids et Mesures, the Centre for Metrology and Accreditation, the Czech Metrology Institute, and the Bureau National de Mtrologie-Institut National de Mtrologie. The frequency differences between lasers, as well as the frequency reproducibility of each system, were investigated. Pressure-, modulation-, and power-induced shifts were studied. A frequency dispersion (1 ) of 3.5 kHz (6.2 1012 in relative terms) with an average reproducibility for each laser of the order of 0.4 kHz (7.1 1013 in relative terms) was observed over the duration of the comparison. Relative stabilities better than 1 1013 at 1 s were demonstrated for the third-harmonic systems.

  2. Low frequency AC waveform generator

    DOEpatents

    Bilharz, Oscar W.

    1986-01-01

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stabilization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform itself. The cosine is synthesized by squaring the triangular waveform, raising the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  3. On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude.

    PubMed

    Hiryu, Shizuko; Shiori, Yu; Hosokawa, Tatsuro; Riquimaroux, Hiroshi; Watanabe, Yoshiaki

    2008-09-01

    To understand complex sensory-motor behavior related to object perception by echolocating bats, precise measurements are needed for echoes that bats actually listen to during flight. Recordings of echolocation broadcasts were made from flying bats with a miniature light-weight microphone and radio transmitter (Telemike) set at the position of the bat's ears and carried during flights to a landing point on a wall. Telemike recordings confirm that flying horseshoe bats (Rhinolophus ferrumequinum nippon) adjust the frequency of their sonar broadcasts to compensate for echo Doppler shifts. Returning constant frequency echoes were maintained at the bat's reference frequency +/-83 Hz during flight, indicating that the bats compensated for frequency changes with an accuracy equivalent to that at rest. The flying bats simultaneously compensate for increases in echo amplitude as target range becomes shorter. Flying bats thus receive echoes with both stabilized frequencies and stabilized amplitudes. Although it is widely understood that Doppler-shift frequency compensation facilitates detection of fluttering insects, approaches to a landing do not involve fluttering objects. Combined frequency and amplitude compensation may instead be for optimization of successive frequency modulated echoes for target range estimation to control approach and landing.

  4. Highly Connected Populations and Temporal Stability in Allelic Frequencies of a Harvested Crab from the Southern Pacific Coast.

    PubMed

    Rojas-Hernandez, Noemi; Veliz, David; Riveros, Marcela P; Fuentes, Juan P; Pardo, Luis M

    2016-01-01

    For marine invertebrates with a benthic adult form and a planktonic larva phase, the connectivity among populations is mainly based on larval dispersal. While an extended larval phase will promote gene flow, other factors such as an intensive fishery and geographical barriers could lead to changes in genetic variability. In this study, the population genetic structure of the commercial crab Metacarcinus edwardsii was analyzed along 700 km of the Chilean coast. The analysis, based on eight microsatellite loci genotyped from megalopae and adult crabs, considered temporal and spatial patterns of genetic variation. The results showed no evidence of spatial patterns in genetic structure, suggesting high connectivity among the sampling sites. The temporal analysis showed no evidence of changes in allele frequencies and no evidence of a recent bottleneck. The lack of spatial structure and allele variation over time could be explained by the interaction of factors such as i) low reproductive variance due to the capability of females to store sperm in the seminal receptacle, which can be used for successive broods, ii) high larval dispersal and iii) high individual reproductive output. Using our data as priors, a genetic modelling approach coincided, predicting this temporal and spatial stability. The same analysis showed that a reduction in population size leads to the loss of genetic variability in populations, as well as of the genetic cohesiveness between populations, pointing out the importance management for species under exploitation, such as M. edwardsii.

  5. Highly Connected Populations and Temporal Stability in Allelic Frequencies of a Harvested Crab from the Southern Pacific Coast

    PubMed Central

    Rojas-Hernandez, Noemi; Veliz, David; Riveros, Marcela P; Fuentes, Juan P.; Pardo, Luis M.

    2016-01-01

    For marine invertebrates with a benthic adult form and a planktonic larva phase, the connectivity among populations is mainly based on larval dispersal. While an extended larval phase will promote gene flow, other factors such as an intensive fishery and geographical barriers could lead to changes in genetic variability. In this study, the population genetic structure of the commercial crab Metacarcinus edwardsii was analyzed along 700 km of the Chilean coast. The analysis, based on eight microsatellite loci genotyped from megalopae and adult crabs, considered temporal and spatial patterns of genetic variation. The results showed no evidence of spatial patterns in genetic structure, suggesting high connectivity among the sampling sites. The temporal analysis showed no evidence of changes in allele frequencies and no evidence of a recent bottleneck. The lack of spatial structure and allele variation over time could be explained by the interaction of factors such as i) low reproductive variance due to the capability of females to store sperm in the seminal receptacle, which can be used for successive broods, ii) high larval dispersal and iii) high individual reproductive output. Using our data as priors, a genetic modelling approach coincided, predicting this temporal and spatial stability. The same analysis showed that a reduction in population size leads to the loss of genetic variability in populations, as well as of the genetic cohesiveness between populations, pointing out the importance management for species under exploitation, such as M. edwardsii. PMID:27814382

  6. On-orbit frequency stability analysis of the GPS NAVSTAR-1 quartz clock and the NAVSTARs-6 and -8 rubidium clocks

    NASA Technical Reports Server (NTRS)

    Mccaskill, T. B.; Buisson, J. A.; Reid, W. G.

    1984-01-01

    An on-orbit frequency stability performance analysis of the GPS NAVSTAR-1 quartz clock and the NAVSTARs-6 and -8 rubidium clocks is presented. The clock offsets were obtained from measurements taken at the GPS monitor stations which use high performance cesium standards as a reference. Clock performance is characterized through the use of the Allan variance, which is evaluated for sample times of 15 minutes to two hours, and from one day to 10 days. The quartz and rubidium clocks' offsets were corrected for aging rate before computing the frequency stability. The effect of small errors in aging rate is presented for the NAVSTAR-8 rubidium clock's stability analysis. The analysis includes presentation of time and frequency residuals with respect to linear and quadratic models, which aid in obtaining aging rate values and identifying systematic and random effects. The frequency stability values were further processed with a time domain noise process analysis, which is used to classify random noise process and modulation type.

  7. Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors.

    PubMed

    Ohmae, Noriaki; Moriwaki, Shigenori; Mio, Norikatsu

    2010-07-01

    Second-generation gravitational wave detectors require a highly stable laser with an output power greater than 100 W to attain their target sensitivity. We have developed a frequency stabilization system for a 100-W injection-locked Nd:YAG (yttrium aluminum garnet) laser. By placing an external wideband electro-optic modulator used as a fast-frequency actuator in the optical path of the slave output, we can circumvent a phase delay in the frequency control loop originating from the pole of an injection-locked slave cavity. Thus, we have developed an electro-optic modulator made of a MgO-doped stoichiometric LiNbO(3) crystal. Using this modulator, we achieve a frequency control bandwidth of 800 kHz and a control gain of 180 dB at 1 kHz. These values satisfy the requirement for a laser frequency control loop in second-generation gravitational wave detectors.

  8. Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Ohmae, Noriaki; Moriwaki, Shigenori; Mio, Norikatsu

    2010-07-01

    Second-generation gravitational wave detectors require a highly stable laser with an output power greater than 100 W to attain their target sensitivity. We have developed a frequency stabilization system for a 100-W injection-locked Nd:YAG (yttrium aluminum garnet) laser. By placing an external wideband electro-optic modulator used as a fast-frequency actuator in the optical path of the slave output, we can circumvent a phase delay in the frequency control loop originating from the pole of an injection-locked slave cavity. Thus, we have developed an electro-optic modulator made of a MgO-doped stoichiometric LiNbO3 crystal. Using this modulator, we achieve a frequency control bandwidth of 800 kHz and a control gain of 180 dB at 1 kHz. These values satisfy the requirement for a laser frequency control loop in second-generation gravitational wave detectors.

  9. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  10. Two-stage system based on a software-defined radio for stabilizing of optical frequency combs in long-term experiments.

    PubMed

    Cížek, Martin; Hucl, Václav; Hrabina, Jan; Smíd, Radek; Mikel, Břetislav; Lazar, Josef; Cíp, Ondřej

    2014-01-20

    A passive optical resonator is a special sensor used for measurement of lengths on the nanometer and sub-nanometer scale. A stabilized optical frequency comb can provide an ultimate reference for measuring the wavelength of a tunable laser locked to the optical resonator. If we lock the repetition and offset frequencies of the comb to a high-grade radiofrequency (RF) oscillator its relative frequency stability is transferred from the RF to the optical frequency domain. Experiments in the field of precise length metrology of low-expansion materials are usually of long-term nature so it is required that the optical frequency comb stay in operation for an extended period of time. The optoelectronic closed-loop systems used for stabilization of combs are usually based on traditional analog electronic circuits processing signals from photodetectors. From an experimental point of view, these setups are very complicated and sensitive to ambient conditions, especially in the optical part, therefore maintaining long-time operation is not easy. The research presented in this paper deals with a novel approach based on digital signal processing and a software-defined radio. We describe digital signal processing algorithms intended for keeping the femtosecond optical comb in a long-time stable operation. This need arose during specialized experiments involving measurements of optical frequencies of tunable continuous-wave lasers. The resulting system is capable of keeping the comb in lock for an extensive period of time (8 days or more) with the relative stability better than 1.6 × 10(-11).

  11. An Ex Vivo Model in Human Femoral Heads for Histopathological Study and Resonance Frequency Analysis of Dental Implant Primary Stability

    PubMed Central

    Hernández-Cortés, Pedro; Galindo-Moreno, Pablo; Catena, Andrés; Ortega-Oller, Inmaculada; Salas-Pérez, José; Gómez-Sánchez, Rafael; Aguilar, Mariano; Aguilar, David

    2014-01-01

    Objective. This study was designed to explore relationships of resonance frequency analysis (RFA)—assessed implant stability (ISQ values) with bone morphometric parameters and bone quality in an ex vivo model of dental implants placed in human femoral heads and to evaluate the usefulness of this model for dental implant studies. Material and Methods. This ex vivo study included femoral heads from 17 patients undergoing surgery for femoral neck fracture due to osteoporosis (OP) (n = 7) or for total prosthesis joint replacement due to severe hip osteoarthrosis (OA) (n = 10). Sixty 4.5 × 13 mm Dentsply Astra implants were placed, followed by RFA. CD44 immunohistochemical analysis for osteocytes was also carried out. Results. As expected, the analysis yielded significant effects of femoral head type (OA versus OA) (P < 0.001), but not of the implants (P = 0.455) or of the interaction of the two factors (P = 0.848). Bonferroni post hoc comparisons showed a lower mean ISQ for implants in decalcified (50.33 ± 2.92) heads than in fresh (66.93 ± 1.10) or fixated (70.77 ± 1.32) heads (both P < 0.001). The ISQ score (fresh) was significantly higher for those in OA (73.52 ± 1.92) versus OP (67.13 ± 1.09) heads. However, mixed linear analysis showed no significant association between ISQ scores and morphologic or histomorphometric results (P > 0.5 in all cases), and no significant differences in ISQ values were found as a function of the length or area of the cortical layer (both P > 0.08). Conclusion. Although RFA-determined ISQ values are not correlated with morphometric parameters, they can discriminate bone quality (OP versus OA). This ex vivo model is useful for dental implant studies. PMID:24995307

  12. The design of delay-dependent wide-area DOFC with prescribed degree of stability α for damping inter-area low-frequency oscillations in power system.

    PubMed

    Sun, Miaoping; Nian, Xiaohong; Dai, Liqiong; Guo, Hua

    2017-03-24

    In this paper, the delay-dependent wide-area dynamic output feedback controller (DOFC) with prescribed degree of stability is proposed for interconnected power system to damp inter-area low-frequency oscillations. Here, the prescribed degree of stability α is used to maintain all the poles on the left of s=-α in the s-plane. Firstly, residue approach is adopted to select input-output control signals and the schur balanced truncation model reduction method is utilized to obtain the reduced power system model. Secondly, based on Lyapunov stability theory and transformation operation in complex plane, the sufficient condition of asymptotic stability for closed-loop power system with prescribed degree of stability α is derived. Then, a novel method based on linear matrix inequalities (LMIs) is presented to obtain the parameters of DOFC and calculate delay margin of the closed-loop system considering the prescribed degree of stability α. Finally, case studies are carried out on the two-area four-machine system, which is controlled by classical wide-area power system stabilizer (WAPSS) in reported reference and our proposed DOFC respectively. The effectiveness and advantages of the proposed method are verified by the simulation results under different operating conditions.

  13. Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-µm solid-state laser.

    PubMed

    Schilt, Stephane; Bucalovic, Nikola; Dolgovskiy, Vladimir; Schori, Christian; Stumpf, Max C; Di Domenico, Gianni; Pekarek, Selina; Oehler, Andreas E H; Südmeyer, Thomas; Keller, Ursula; Thomann, Pierre

    2011-11-21

    We report the first full stabilization of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser (DPSSL) operating in the 1.5-μm spectral region. The stability of the comb is characterized in free-running and in phase-locked operation by measuring the noise properties of the carrier-envelope offset (CEO) beat, of the repetition rate, and of a comb line at 1558 nm. The high Q-factor of the semiconductor saturable absorber mirror (SESAM)-modelocked 1.5-µm DPSSL results in a low-noise CEO-beat, for which a tight phase lock can be much more easily realized than for a fiber comb. Using a moderate feedback bandwidth of only 5.5 kHz, we achieved a residual integrated phase noise of 0.72 rad rms for the locked CEO, which is one of the smallest values reported for a frequency comb system operating in this spectral region. The fractional frequency stability of the CEO-beat is 20‑fold better than measured in a standard self-referenced commercial fiber comb system and contributes only 10(-15) to the optical carrier frequency instability at 1 s averaging time.

  14. Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs

    NASA Astrophysics Data System (ADS)

    Parra-Rivas, P.; Gomila, D.; Matías, M. A.; Coen, S.; Gelens, L.

    2014-04-01

    It has been recently uncovered that coherent structures in microresonators such as cavity solitons and patterns are intimately related to Kerr frequency combs. In this work, we present a general analysis of the regions of existence and stability of cavity solitons and patterns in the Lugiato-Lefever equation, a mean-field model that finds applications in many different nonlinear optical cavities. We demonstrate that the rich dynamics and coexistence of multiple solutions in the Lugiato-Lefever equation are of key importance to understanding frequency comb generation. A detailed map of how and where to target stable Kerr frequency combs in the parameter space defined by the frequency detuning and the pump power is provided. Moreover, the work presented also includes the organization of various dynamical regimes in terms of bifurcation points of higher codimension in regions of parameter space that were previously unexplored in the Lugiato-Lefever equation. We discuss different dynamical instabilities such as oscillations and chaotic regimes.

  15. Negative absolute temperature for mobile particles

    NASA Astrophysics Data System (ADS)

    Braun, Simon; Ronzheimer, Philipp; Schreiber, Michael; Hodgman, Sean; Bloch, Immanuel; Schneider, Ulrich

    2013-05-01

    Absolute temperature is usually bound to be strictly positive. However, negative absolute temperature states, where the occupation probability of states increases with their energy, are possible in systems with an upper energy bound. So far, such states have only been demonstrated in localized spin systems with finite, discrete spectra. We realized a negative absolute temperature state for motional degrees of freedom with ultracold bosonic 39K atoms in an optical lattice, by implementing the attractive Bose-Hubbard Hamiltonian. This new state strikingly revealed itself by a quasimomentum distribution that is peaked at maximum kinetic energy. The measured kinetic energy distribution and the extracted negative temperature indicate that the ensemble is close to degeneracy, with coherence over several lattice sites. The state is as stable as a corresponding positive temperature state: The negative temperature stabilizes the system against mean-field collapse driven by negative pressure. Negative temperatures open up new parameter regimes for cold atoms, enabling fundamentally new many-body states. Additionally, they give rise to several counterintuitive effects such as heat engines with above unity efficiency.

  16. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  17. Positional stability and radial dynamics of sonoluminescent bubbles under bi-harmonic driving: Effect of the high-frequency component and its relative phase.

    PubMed

    Rosselló, J M; Dellavale, D; Bonetto, F J

    2016-07-01

    The use of bi-frequency driving in sonoluminescence has proved to be an effective way to avoid the spatial instability (pseudo-orbits) developed by bubbles in systems with high viscous liquids like sulfuric or phosphoric acids. In this work, we present extensive experimental and numerical evidence in order to assess the effect of the high frequency component (PAc(HF)) of a bi-harmonic acoustic pressure field on the dynamic of sonoluminescent bubbles in an aqueous solution of sulfuric acid. The present study is mainly focused on the role of the harmonic frequency (Nf0) and the relative phase between the two frequency components (φb) of the acoustic field on the spatial, positional and diffusive stability of the bubbles. The results presented in this work were analyzed by means of three different approaches. First, we discussed some qualitative considerations about the changes observed in the radial dynamics, and the stability of similar bubbles under distinct bi-harmonic drivings. Later, we have investigated, through a series of numerical simulations, how the use of high frequency harmonic components of different order N, affects the positional stability of the SL bubbles. Furthermore, the influence of φb in their radius temporal evolution is systematically explored for harmonics ranging from the second to the fifteenth harmonic (N=2-15). Finally, a multivariate analysis based on the covariance method is performed to study the dependences among the parameters characterizing the SL bubble. Both experimental and numerical results indicate that the impact of PAc(HF) on the positional instability and the radial dynamics turns to be progressively negligible as the order of the high frequency harmonic component grows (i.e. N ≫ 1), however its effectiveness on the reduction of the spatial instability remains unaltered or even improved.

  18. Two-Stage System Based on a Software-Defined Radio for Stabilizing of Optical Frequency Combs in Long-Term Experiments

    PubMed Central

    Čížek, Martin; Hucl, Václav; Hrabina, Jan; Šmíd, Radek; Mikel, Břetislav; Lazar, Josef; Číp, Ondřej

    2014-01-01

    A passive optical resonator is a special sensor used for measurement of lengths on the nanometer and sub-nanometer scale. Astabilized optical frequency comb can provide an ultimate reference for measuring the wavelength of a tunable laser locked to the optical resonator. If we lock the repetition and offset frequencies of the comb to a high-grade radiofrequency (RF) oscillator its relative frequency stability is transferred from the RF to the optical frequency domain. Experiments in the field of precise length metrology of low-expansion materials are usually of long-term nature so it is required that the optical frequency comb stay in operation for an extended period of time. The optoelectronic closed-loop systems used for stabilization of combs are usually based on traditional analog electronic circuits processing signals from photodetectors. From an experimental point of view, these setups are very complicated and sensitive to ambient conditions, especially in the optical part, therefore maintaining long-time operation is not easy. The research presented in this paper deals with a novel approach based on digital signal processing and a software-defined radio. We describe digital signal processing algorithms intended for keeping the femtosecond optical comb in a long-time stable operation. This need arose during specialized experiments involving measurements of optical frequencies of tunable continuous-wave lasers. The resulting system is capable of keeping the comb in lock for an extensive period of time (8 days or more) with the relative stability better than 1.6 × 10−11. PMID:24448169

  19. Low frequency ac waveform generator

    DOEpatents

    Bilharz, O.W.

    1983-11-22

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stablization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  20. Frequency measurement of a Sr lattice clock using an SI-second-referenced optical frequency comb linked by a global positioning system (GPS).

    PubMed

    Hong, Feng-Lei; Takamoto, Masao; Higashi, Ryoichi; Fukuyama, Yasuhiro; Jiang, Jie; Katori, Hidetoshi

    2005-07-11

    We have established a transportable frequency measurement system using an optical frequency comb linked to a commercial Cs atomic clock, which is in turn linked to international atomic time (TAI) through global positioning system (GPS) time. An iodine-stabilized Nd:YAG laser is used as a flywheel in the frequency measurement system. This system is used to measure the absolute frequency of the clock transition of (87)Sr in an optical lattice. We obtained a fractional uncertainty of 2x10(-14) in the frequency measurement with a total averaging time of ~ 10(5) s over 9 days.

  1. Linear ultrasonic motor for absolute gravimeter.

    PubMed

    Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V

    2017-02-01

    Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters.

  2. The short- and long-term frequency stabilization of an injection-locked Nd:YAG laser in reference to a Fabry-Perot cavity and an iodine saturated absorption line

    NASA Astrophysics Data System (ADS)

    Musha, Mitsuru; Kanaya, Takeshi; Nakagawa, Ken'ichi; Ueda, Ken-ichi

    2000-09-01

    We have developed a wideband frequency-stabilized injection-locked Nd:YAG laser as a light source for the laser interferometric gravitational wave detector, in which short-term frequency stability of the laser improves the sensitivity of the interferometer and the long-term frequency stability aims for the stable long-time operation of the interferometer. The frequency of a 2-W injection-locked laser is locked to both a rigid Fabry-Perot cavity with ULE spacer and saturated absorption line of 127I2 simultaneously with two nested servo loops, and the long-term as well as short-term frequency stability are obtained. The drift of the resonant frequency of the rigid Fabry-Perot cavity is measured and the stability of the Fabry-Perot cavity is estimated to be 20× f-1 [Hz/√Hz]. The predicted frequency stabilities of the present dual-reference-locked laser are numerically simulated. Our wideband frequency-stabilized laser is also available for the high-resolution spectroscopy.

  3. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  4. Stabilized soliton self-frequency shift and 0.1- PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core.

    PubMed

    Liu, Bo-Wen; Hu, Ming-Lie; Fang, Xiao-Hui; Li, Yan-Feng; Chai, Lu; Wang, Ching-Yue; Tong, Weijun; Luo, Jie; Voronin, Aleksandr A; Zheltikov, Aleksei M

    2008-09-15

    Fiber dispersion and nonlinearity management strategy based on a modification of a photonic-crystal fiber (PCF) core with an air hole is shown to facilitate optimization of PCF components for a stable soliton frequency shift and subpetahertz sideband generation through four-wave mixing. Spectral recoil of an optical soliton by a red-shifted dispersive wave, generated through a soliton instability induced by high-order fiber dispersion, is shown to stabilize the soliton self-frequency shift in a highly nonlinear PCF with an air-hole-modified core relative to pump power variations. A fiber with a 2.3-microm-diameter core modified with a 0.9-microm-diameter air hole is used to demonstrate a robust soliton self-frequency shift of unamplified 50-fs Ti: sapphire laser pulses to a central wavelength of about 960 nm, which remains insensitive to variations in the pump pulse energy within the range from 60 to at least 100 pJ. In this regime of frequency shifting, intense high- and low-frequency branches of dispersive wave radiation are simultaneously observed in the spectrum of PCF output. An air-hole-modified-core PCF with appropriate dispersion and nonlinearity parameters is shown to provide efficient four-wave mixing, giving rise to Stokes and anti-Stokes sidebands whose frequency shift relative to the pump wavelength falls within the subpetahertz range, thus offering an attractive source for nonlinear Raman microspectroscopy.

  5. Database applicaton for absolute spectrophotometry

    NASA Astrophysics Data System (ADS)

    Bochkov, Valery V.; Shumko, Sergiy

    2002-12-01

    32-bit database application with multidocument interface for Windows has been developed to calculate absolute energy distributions of observed spectra. The original database contains wavelength calibrated observed spectra which had been already passed through apparatus reductions such as flatfielding, background and apparatus noise subtracting. Absolute energy distributions of observed spectra are defined in unique scale by means of registering them simultaneously with artificial intensity standard. Observations of sequence of spectrophotometric standards are used to define absolute energy of the artificial standard. Observations of spectrophotometric standards are used to define optical extinction in selected moments. FFT algorithm implemented in the application allows performing convolution (deconvolution) spectra with user-defined PSF. The object-oriented interface has been created using facilities of C++ libraries. Client/server model with Windows Socket functionality based on TCP/IP protocol is used to develop the application. It supports Dynamic Data Exchange conversation in server mode and uses Microsoft Exchange communication facilities.

  6. On the Absolutely Continuous Spectrum of Stark Operators

    NASA Astrophysics Data System (ADS)

    Perelman, Galina

    The stability of the absolutely continuous spectrum of the one-dimensional Stark operator under perturbations of the potential is discussed. The focus is on proving this stability under minimal assumptions on smoothness of the perturbation. A general criterion is presented together with some applications. These include the case of periodic perturbations where we show that any perturbation vL1()∩H-1/2() preserves the a.c. spectrum.

  7. Absolute classification with unsupervised clustering

    NASA Technical Reports Server (NTRS)

    Jeon, Byeungwoo; Landgrebe, D. A.

    1992-01-01

    An absolute classification algorithm is proposed in which the class definition through training samples or otherwise is required only for a particular class of interest. The absolute classification is considered as a problem of unsupervised clustering when one cluster is known initially. The definitions and statistics of the other classes are automatically developed through the weighted unsupervised clustering procedure, which is developed to keep the cluster corresponding to the class of interest from losing its identity as the class of interest. Once all the classes are developed, a conventional relative classifier such as the maximum-likelihood classifier is used in the classification.

  8. Two-photon frequency comb spectroscopy of the 6s-8s transition in cesium.

    PubMed

    Fendel, P; Bergeson, S D; Udem, Th; Hänsch, T W

    2007-03-15

    We report a new absolute frequency measurement of the Cs 6s-8s two-photon transition measured using frequency comb spectroscopy. The fractional frequency uncertainty is 5x10(-11), a factor of 6 better than previous results. The comb is derived from a stabilized picosecond laser and referenced to an octave-spanning femtosecond frequency comb. The relative merits of picosecond-based frequency combs are discussed, and it is shown that the AC Stark shift of the transition is determined by the average rather than the much larger peak intensity.

  9. Providing hydrogen maser timing stability to orbiting VLBI radio telescope observations by post-measurement compensation of linked frequency standard imperfections

    NASA Technical Reports Server (NTRS)

    Springett, James C.

    1994-01-01

    Orbiting VLBI (OVLBI) astronomical observations are based upon measurements acquired simultaneously from ground-based and earth-orbiting radio telescopes. By the mid-1990s, two orbiting VLBI observatories, Russia's Radioastron and Japan's VSOP, will augment the worldwide VLBI network, providing baselines to earth radio telescopes as large as 80,000 km. The challenge for OVLBI is to effectuate space to ground radio telescope data cross-correlation (the observation) to a level of integrity currently achieved between ground radio telescopes. VLBI radio telescopes require ultrastable frequency and timing references in order that long term observations may be made without serious cross-correlation loss due to frequency source drift and phase noise. For this reason, such instruments make use of hydrogen maser frequency standards. Unfortunately, space-qualified hydrogen maser oscillators are currently not available for use on OVLBI satellites. Thus, the necessary long-term stability needed by the orbiting radio telescope may only be obtained by microwave uplinking a ground-based hydrogen maser derived frequency to the satellite. Although the idea of uplinking the frequency standard intrinsically seems simple, there are many 'contaminations' which degrade both the long and short term stability of the transmitted reference. Factors which corrupt frequency and timing accuracy include additive radio and electronic circuit thermal noise, slow or systematic phase migration due to changes of electronic circuit temporal operating conditions (especially temperature), ionosphere and troposphere induced scintillations, residual Doppler-incited components, and microwave signal multipath propagation. What is important, though, is to realize that ultimate stability does not have to be achieved in real-time. Instead, information needed to produce a high degree of coherence in the subsequent cross-correlation operation may be derived from a two-way coherent radio link, recorded and later

  10. Scheme for independently stabilizing the repetition rate and optical frequency of a laser using a regenerative mode-locking technique.

    PubMed

    Nakazawa, Masataka; Yoshida, Masato

    2008-05-15

    We have succeeded in achieving independent control of the repetition rate and optical frequency of a pulse laser by employing a regenerative mode-locking technique. By adopting a voltage-controlled microwave phase shifter or an optical delay line in a regenerative feedback loop we can control the repetition rate of the laser without directly disturbing the optical frequencies. We experimentally show how this independent control can be realized by employing a 40 GHz harmonically and regeneratively mode-locked fiber laser.

  11. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  12. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  13. Absolute Standards for Climate Measurements

    NASA Astrophysics Data System (ADS)

    Leckey, J.

    2016-10-01

    In a world of changing climate, political uncertainty, and ever-changing budgets, the benefit of measurements traceable to SI standards increases by the day. To truly resolve climate change trends on a decadal time scale, on-orbit measurements need to be referenced to something that is both absolute and unchanging. One such mission is the Climate Absolute Radiance and Refractivity Observatory (CLARREO) that will measure a variety of climate variables with an unprecedented accuracy to definitively quantify climate change. In the CLARREO mission, we will utilize phase change cells in which a material is melted to calibrate the temperature of a blackbody that can then be observed by a spectrometer. A material's melting point is an unchanging physical constant that, through a series of transfers, can ultimately calibrate a spectrometer on an absolute scale. CLARREO consists of two primary instruments: an infrared (IR) spectrometer and a reflected solar (RS) spectrometer. The mission will contain orbiting radiometers with sufficient accuracy to calibrate other space-based instrumentation and thus transferring the absolute traceability. The status of various mission options will be presented.

  14. Analysis of a multi-loop temperature stabilization system for compact rubidium standard of frequency and time

    NASA Astrophysics Data System (ADS)

    Norkin, S. V.; Reshetov, V. N.

    2016-09-01

    A possible design of a thermal stabilization system for compact atomic clock based on coherent population trapping is analyzed. The feasibility of independent control of the semiconductor laser's characteristics, such as wavelength and optical power, is considered. An algorithm is suggested for choosing the performance parameters of various control circuits, eliminating the occurrence of self-oscillation mode.

  15. A microrod-resonator Brillouin laser with 240 Hz absolute linewidth

    NASA Astrophysics Data System (ADS)

    Loh, William; Becker, Joe; Cole, Daniel C.; Coillet, Aurelien; Baynes, Fred N.; Papp, Scott B.; Diddams, Scott A.

    2016-04-01

    We demonstrate an ultralow-noise microrod-resonator based laser that oscillates on the gain supplied by the stimulated Brillouin scattering optical nonlinearity. Microresonator Brillouin lasers are known to offer an outstanding frequency noise floor, which is limited by fundamental thermal fluctuations. Here, we show experimental evidence that thermal effects also dominate the close-to-carrier frequency fluctuations. The 6 mm diameter microrod resonator used in our experiments has a large optical mode area of ˜100 μm2, and hence its 10 ms thermal time constant filters the close-to-carrier optical frequency noise. The result is an absolute laser linewidth of 240 Hz with a corresponding white-frequency noise floor of 0.1 Hz2 Hz-1. We explain the steady-state performance of this laser by measurements of its operation state and of its mode detuning and lineshape. Our results highlight a mechanism for noise that is common to many microresonator devices due to the inherent coupling between intracavity power and mode frequency. We demonstrate the ability to reduce this noise through a feedback loop that stabilizes the intracavity power.

  16. Absolute Antenna Calibration at the US National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.

    2012-12-01

    format. The NGS absolute system is located in Corbin, Virginia, and uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. NGS is interested in providing calibrations for a wide variety of dual-frequency, geodetic-grade antennas, from types in use at IGS and CORS reference stations to rover antennas not normally seen in those networks. In this presentation, we describe the NGS absolute calibration facility, and discuss the observation models and strategy used to generate NGS absolute calibrations. We also demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities.

  17. Interference stabilization of atoms in a strong laser field for obtaining inversion and lasing in the visible and VUV frequency ranges

    NASA Astrophysics Data System (ADS)

    Bogatskaya, A. V.; Volkova, E. A.; Popov, A. M.

    2016-09-01

    The interference stabilization of Rydberg atoms in strong laser fields is proposed for producing a plasma channel with the inverse population. Inversion between a group of Rydberg levels and low-lying excited levels and the ground state permits amplification and lasing in the IR, visible, and VUV frequency ranges. The lasing and light amplification processes in the plasma channel are analyzed using rate equations and the efficiency of this method is compared with that in the usual method for high harmonic generation during rescattering of electrons by a parent ion.

  18. SUNLITE program. Sub-Hertz relative frequency stabilization of two diode laser pumped Nd:YAG lasers locked to a Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1990-01-01

    Two laser pumped Nd:YAG lasers were frequency stabilized to a commercial 6.327 GHz free spectral range Fabry-Perot interferometer yielding a best case beatnote linewidth of 330 MHz. In addition, a Fabry-Perot interferometer with a free spectral range of 680 MHz, a linewidth of 25 kHz, and a finesse of 27,500 was built, and when it was substituted in place of the commercial interferometer, it produced a robust and easily repeatable beatnote linewidth of 700 MHz.

  19. Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Day, Timothy; Gustafson, Eric K.; Byer, Robert L.

    1992-01-01

    Two-diode laser-pumped Nd:YAG lasers have been frequency stabilized to a commercial 6.327-GHz free spectral range Fabry-Perot interferometer yielding a best-case beatnote linewidth of 330 mHz. In addition, a Fabry-Perot interferometer with a free spectral range of 680 MHz, a linewidth of 25 kHz, and a finesse of 27,500 has been built, and when substituted in place of the commercial interferometer produced a robust and easily repeatable beatnote linewidth of 700 MHz.

  20. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  1. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  2. Physics of negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Abraham, Eitan; Penrose, Oliver

    2017-01-01

    Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.

  3. High-frequency detection of the formation and stabilization of a radiation-induced defect cluster in semiconductor structures

    SciTech Connect

    Puzanov, A. S.; Obolenskiy, S. V. Kozlov, V. A.; Volkova, E. V.; Paveliev, D. G.

    2015-12-15

    The processes of the formation and stabilization of a radiation-induced defect cluster upon the arrival of a fast neutron to the space-charge region of a semiconductor diode are analyzed. The current pulse formed by secondary electrons is calculated and the spectrum of the signal generated by the diode (detector) under the action of an instantaneous neutron flux of the fission spectrum is determined. The possibility of experimental detection of the picosecond radiation-induced transition processes is discussed.

  4. Frequency Stability of 1x10(sup -13) in a Compensated Sapphire Oscillator Operating Above 77K

    NASA Technical Reports Server (NTRS)

    Dick, G. J.; Santiago, D. G.; Wang, R. T.

    1996-01-01

    We report on the design and test of a whispering gallery sapphire resonator for which the dominant (WGH(sub n11)) microwave mode family shows frequency-stable, compensated operation for temperatures above 77 kelvin. The resonator makes possible a new ultra-stable oscillator (USO) capability that promises performance improvements over the best available crystal quartz oscillators in a compact cryogenic package.

  5. Optimization of a Frequency-Stabilized Laser Reference at 1.57μM for AN Active Laser Remote Sensing of CO2 from Space

    NASA Astrophysics Data System (ADS)

    Chen, S.; Petway, L. B.; Lee, H. R.; Harrison, F. W.; Browell, E. V.

    2011-12-01

    Several airborne flight campaigns have shown that active remote sensing of carbon dioxide mixing ratio (XCO2) in the atmosphere using either an Intensity Modulated-Continuous Wave (IM-CW) Laser Absorption Spectrometer (LAS) at 1.57 μm or a pulsed laser CO2 sounder at 1.57 μm is a promising technique for an accurate space measurement approach for the Active Sensing of CO2 over Nights, Days, and Seasons mission [1, 2]. In order to achieve a measurement accuracy of one part per million (ppmv) for CO2 column density and associated mixing ratio by volume, the frequency stability (frequency or wavelength variance) of the lasers at 1.57 μm for a space-borne active remote sensing system should be greater than 1.5e-9 (less than 300 kHz or less than 2.5e-3 pm) is required for most moderate-size instruments [3]. In this paper, we report a design and optimization of a frequency-locking laser reference with an integration of Frequency Modulation (FM), Phase Sensitive Detection (PSD) and Proportional Integration Derivation (PID) feed-back control techniques to stabilize laser frequency associated to one of CO or CO2 absorption lines at 1.57 μm. The optimized sensitivity based on PSD signals in terms of the modulation frequency, the length of the gas cell, and the pressure of the gas will be provided. The design and optimization has been demonstrated at a 2-μm CO2 absorption line and is applicable to the active remote sensing systems at 1.57 μm. [1] E. V. Browell, J. Dobler, F. W. Harrison, and B. Moore III, "Development and Validation of CO2 and O2 Laser Measurements for Future Active XCO2 Space Mission", Geophysical Research Abstracts, Vol. 13, EGU2011-12598, 2011 [2] J. B. Abshire, H. Riris, G. R. Allen, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, S. Biraud, "Pulsed Airborne Lidar Measurements of Atmospheric CO2 column Absorption", Tellus (2010), 62B, 770-783 [3] E. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, 2008: Space

  6. United time-frequency spectroscopy for dynamics and global structure.

    PubMed

    Marian, Adela; Stowe, Matthew C; Lawall, John R; Felinto, Daniel; Ye, Jun

    2004-12-17

    Ultrashort laser pulses have thus far been used in two distinct modes. In the time domain, the pulses have allowed probing and manipulation of dynamics on a subpicosecond time scale. More recently, phase stabilization has produced optical frequency combs with absolute frequency reference across a broad bandwidth. Here we combine these two applications in a spectroscopic study of rubidium atoms. A wide-bandwidth, phase-stabilized femtosecond laser is used to monitor the real-time dynamic evolution of population transfer. Coherent pulse accumulation and quantum interference effects are observed and well modeled by theory. At the same time, the narrow linewidth of individual comb lines permits a precise and efficient determination of the global energy-level structure, providing a direct connection among the optical, terahertz, and radio-frequency domains. The mechanical action of the optical frequency comb on the atomic sample is explored and controlled, leading to precision spectroscopy with an appreciable reduction in systematic errors.

  7. Revision to the humidity correction equation in the calculation formulae of the air refractive index based on a phase step interferometer with three frequency-stabilized lasers

    NASA Astrophysics Data System (ADS)

    Chen, Qianghua; Zhang, Mengce; Liu, Shuaijie; He, Yongxi; Luo, Huifu; Luo, Jun; Lv, Weiwei

    2016-12-01

    At present the formulae proposed by G Boensch and E Potulski in 1998 (Boensch and Potulski 1998 Metrologia 35 133-9) are mostly used to calculate the air refractive index. However, the humidity correction equation in the formulae is derived by using the light source of a Cd lamp whose light frequency stability is poor and at a narrow temperature range, around 20 °C. So it is no longer suitable in present optical precision measurements. To solve this problem, we propose a refractive index measurement system based on phase step interferometer with three frequency stabilized lasers (532 nm, 633 nm, 780 nm), corrected coefficients of the humidity are measured and a corresponding revised humidity correction equation is acquired. Meanwhile, the application temperature range is extended from 14.6 °C to 25.0 °C. The experiment comparison results at the temperature of 22.2-23.2 °C show the accuracy by the presented equation is better than that of Boensch and Potulski.

  8. Four Years of Absolutely Calibrated Hyperspectral Data from the Atmospheric Infrared Sounder (AIRS) on the Eos Aqua

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Broberg, Steve; Elliott, Denis; Gregorich, Dave

    2006-01-01

    This viewgraph presentation reviews four years of absolute calibration of hyperspectral data from the AIRS instrument located on the EOS AQUA spacecraft. The following topics are discussed: 1) A quick overview of AIRS; 2) What absolute calibration accuracy and stability are required for climate applications?; 3) Validating of radiance accuracy and stability: Results from four years of AIRS data; and 4) Conclusions.

  9. Computer programs for calculation of matrix stability and frequency response from a state-space system description

    NASA Technical Reports Server (NTRS)

    Seidel, R. C.

    1974-01-01

    FORTRAN computer subroutines stemming from requirements to process state variable system equations for systems of high order are presented. They find the characteristic equation of a matrix using the method of Danilevsky, the number of roots with positive real parts using the Routh-Horwitz alternate formulation, convert a state variable system description to a Laplace transfer function using the method of Bollinger, and evaluate that transfer function and obtain its frequency response. A sample problem is presented to demonstrate use of the subroutines.

  10. Stability, Bistability, and Critical Thresholds in Fire-prone Forested Landscapes: How Frequency and Intensity of Disturbance Interact and Influence Forest Cover

    NASA Astrophysics Data System (ADS)

    Miller, A. D.

    2015-12-01

    Many aspects of disturbance processes can have large impacts on the composition of plant communities, and associated changes in land cover type in turn have biogeochemical feedbacks to climate. In particular, changes to disturbance regimes can potentially change the number and stability of equilibrial states, and plant community states can differ dramatically in their carbon (C) dynamics, energy balance, and hydrology. Using the Klamath region of northern California as a model system, we present a theoretical analysis of how changes to climate and associated fire dynamics can disrupt high-carbon, long-lived conifer forests and replace them with shrub-chaparral communities that have much lower biomass and are more pyrogenic. Specifically, we develop a tractable model of plant community dynamics, structured by size class, life-history traits, lottery-type competition, and species-specific responses to disturbance. We assess the stability of different states in terms of disturbance frequency and intensity, and quantitatively partition long-term low-density population growth rates into mechanisms that influence critical transitions from stable to bistable behavior. Our findings show how different aspects of disturbance act and interact to control competitive outcomes and stable states, hence ecosystem-atmosphere C exchange. Forests tend to dominate in low frequency and intensity regimes, while shrubs dominate at high fire frequency and intensity. In other regimes, the system is bistable, and the fate of the system depends both on initial conditions and random chance. Importantly, the system can cross a critical threshold where hysteresis prevents easy return to the prior forested state. We conclude that changes in disturbance-recovery dynamics driven by projected climate change can shift this system away from forest dominated in the direction of shrub-dominated landscape. This will result in a large net C release from the landscape, and alter biophysical ecosystem

  11. Absolute calibration of optical tweezers

    SciTech Connect

    Viana, N.B.; Mazolli, A.; Maia Neto, P.A.; Nussenzveig, H.M.; Rocha, M.S.; Mesquita, O.N.

    2006-03-27

    As a step toward absolute calibration of optical tweezers, a first-principles theory of trapping forces with no adjustable parameters, corrected for spherical aberration, is experimentally tested. Employing two very different setups, we find generally very good agreement for the transverse trap stiffness as a function of microsphere radius for a broad range of radii, including the values employed in practice, and at different sample chamber depths. The domain of validity of the WKB ('geometrical optics') approximation to the theory is verified. Theoretical predictions for the trapping threshold, peak position, depth variation, multiple equilibria, and 'jump' effects are also confirmed.

  12. Stabilization and Frequency Control of a DFB Laser With a Tunable Optical Reflector Integrated in a Silicon Photonics PIC

    NASA Astrophysics Data System (ADS)

    Hauck, Johannes; Schrammen, Matthias; Romero-Garcia, Sebastian; Muller, Juliana; Shen, Bin; Richter, Jens; Merget, Florian; Witzens, Jeremy

    2016-12-01

    We investigate the effect of tunable optical feedback on a commercial DFB laser edge coupled to a Silicon Photonics planar integrated circuit in which a tunable reflector has been implemented by means of a ring resonator based add-drop multiplexer. Controlled optical feedback allows for fine-tuning of the laser oscillation frequency. Under certain conditions it also allows suppression of bifurcation modes triggered by reflections occurring elsewhere on the chip. A semi-analytical model describing laser dynamics under combined optical feedback from the input facet of the edge coupler and from the tunable on-chip reflector fits the measurements. Compensation of detrimental effects from reflections induced elsewhere on a transceiver chip may allow moving isolators downstream in future communications systems, facilitating direct hybrid laser integration in Silicon Photonics chips, provided a suitable feedback signal for a control system can be identified. Moreover, the optical frequency tuning at lower feedback levels can be used to form a rapidly tunable optical oscillator as part of an optical phase locked loop, circumventing the problem of the thermal to free carrier effect crossover in the FM response of injection current controlled semiconductor laser diodes.

  13. Occlusion of the Ribosome Binding Site Connects the Translational Initiation Frequency, mRNA Stability and Premature Transcription Termination

    PubMed Central

    Eriksen, Mette; Sneppen, Kim; Pedersen, Steen; Mitarai, Namiko

    2017-01-01

    Protein production is controlled by ribosome binding to the messenger RNA (mRNA), quantified in part by the binding affinity between the ribosome and the ribosome binding sequence on the mRNA. Using the E. coli lac operon as model, Ringquist et al. (1992) found a more than 1,000-fold difference in protein yield when varying the Shine-Dalgarno sequence and its distance to the translation start site. Their proposed model accounted for this large variation by only a variation in the binding affinity and the subsequent initiation rate. Here we demonstrate that the decrease in protein yield with weaker ribosome binding sites in addition is caused by a decreased mRNA stability, and by an increased rate of premature transcription termination. Using different ribosome binding site sequences of the E. coli lacZ gene, we found that an approximately 100-fold span in protein expression could be subdivided into three mechanisms that each affected expression 3- to 6-fold. Our experiments is consistent with a two-step ribosome initiation model, in which occlusion of the initial part of the mRNA by a ribosome simultaneously protects the mRNA from both premature transcription termination and degradation: The premature termination we suggest is coupled to the absence of occlusion that allows binding of transcription termination factor, possibly Rho. The mRNA stability is explained by occlusion that prevents binding of the degrading enzymes. In our proposed scenario, a mRNA with lower translation initiation rate would at the same time be “hit” by an increased premature termination and a shorter life-time. Our model further suggests that the transcription from most if not all natural promoters is substantially influenced by premature termination. PMID:28382022

  14. CEO stabilized frequency comb from a 1-μm Kerr-lens mode-locked bulk Yb:CYA laser.

    PubMed

    Yu, Zijiao; Han, Hainian; Xie, Yang; Peng, Yingnan; Xu, Xiaodong; Wei, Zhiyi

    2016-02-08

    We report the first Kerr-lens mode-locked (KLM) bulk frequency comb in the 1-μm spectral regime. The fundamental KLM Yb:CYA laser is pumped by a low-noise, high-bright 976-nm fiber laser and typically provides 250-mW output power and 57-fs pulse duration. Only 58-mW output pulses were launched into a 1.3-m photonic crystal fiber (PCF) for one octave-spanning supercontinuum generation. Using a simplified collinear f-2f interferometer, the free-running carrier-envelope offset (CEO) frequency was measured to be 42-dB signal-to-noise ratio (SNR) for a 100-kHz resolution and 9.6-kHz full width at half maximum (FWHM) under a 100-Hz resolution. A long-term CEO control at 23 MHz was ultimately realized by feeding the phase error signal to the pump power of the oscillator. The integrated phase noise (IPN) of the locked CEO was measured to be 316 mrad with an integrated range from 1 Hz to 10 MHz. The standard deviation and Allan deviation for more than 4-hour recording are 1.6 mHz and 5.6 × 10(-18) (for 1-s gate time), respectively. This is, to the best of our knowledge, the best stability achieved among the 1-μm solid-state frequency combs.

  15. Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna

    2015-09-01

    Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.

  16. Frequency comb metrology with an optical parametric oscillator.

    PubMed

    Balskus, K; Schilt, S; Wittwer, V J; Brochard, P; Ploetzing, T; Jornod, N; McCracken, R A; Zhang, Z; Bartels, A; Reid, D T; Südmeyer, T

    2016-04-18

    We report on the first demonstration of absolute frequency comb metrology with an optical parametric oscillator (OPO) frequency comb. The synchronously-pumped OPO operated in the 1.5-µm spectral region and was referenced to an H-maser atomic clock. Using different techniques, we thoroughly characterized the frequency noise power spectral density (PSD) of the repetition rate frep, of the carrier-envelope offset frequency fCEO, and of an optical comb line νN. The comb mode optical linewidth at 1557 nm was determined to be ~70 kHz for an observation time of 1 s from the measured frequency noise PSD, and was limited by the stability of the microwave frequency standard available for the stabilization of the comb repetition rate. We achieved a tight lock of the carrier envelope offset frequency with only ~300 mrad residual integrated phase noise, which makes its contribution to the optical linewidth negligible. The OPO comb was used to measure the absolute optical frequency of a near-infrared laser whose second-harmonic component was locked to the F = 2→3 transition of the 87Rb D2 line at 780 nm, leading to a measured transition frequency of νRb = 384,228,115,346 ± 16 kHz. We performed the same measurement with a commercial fiber-laser comb operating in the 1.5-µm region. Both the OPO comb and the commercial fiber comb achieved similar performance. The measurement accuracy was limited by interferometric noise in the fibered setup of the Rb-stabilized laser.

  17. Increasing frequency of low summer precipitation synchronizes dynamics and compromises metapopulation stability in the Glanville fritillary butterfly

    PubMed Central

    Tack, Ayco J. M.; Mononen, Tommi; Hanski, Ilkka

    2015-01-01

    Climate change is known to shift species' geographical ranges, phenologies and abundances, but less is known about other population dynamic consequences. Here, we analyse spatio-temporal dynamics of the Glanville fritillary butterfly (Melitaea cinxia) in a network of 4000 dry meadows during 21 years. The results demonstrate two strong, related patterns: the amplitude of year-to-year fluctuations in the size of the metapopulation as a whole has increased, though there is no long-term trend in average abundance; and there is a highly significant increase in the level of spatial synchrony in population dynamics. The increased synchrony cannot be explained by increasing within-year spatial correlation in precipitation, the key environmental driver of population change, or in per capita growth rate. On the other hand, the frequency of drought during a critical life-history stage (early larval instars) has increased over the years, which is sufficient to explain the increasing amplitude and the expanding spatial synchrony in metapopulation dynamics. Increased spatial synchrony has the general effect of reducing long-term metapopulation viability even if there is no change in average metapopulation size. This study demonstrates how temporal changes in weather conditions can lead to striking changes in spatio-temporal population dynamics. PMID:25854888

  18. Design and simulation of a biconic multipass absorption cell for the frequency stabilization of the reference seeder laser in IPDA lidar.

    PubMed

    Mu, Yongji; Du, Juan; Yang, Zhongguo; Sun, Yanguang; Liu, Jiqiao; Hou, Xia; Chen, Weibiao

    2016-09-01

    The design process and simulation method of a multipass absorption cell used for the frequency stabilization of the reference seeder laser in integrated path differential absorption (IPDA) lidar are presented. On the basis of the fundamental theory of the Herriott multipass cell comprising two spherical mirrors, the initial parameters of the multipass cell, which has an optical path greater than 10 m and consists of two biconic mirrors, were calculated. More than 30 light spots were distributed on each mirror, and the distance between adjacent spots was mostly optimized to greater than six times the beam waist. After optimization, the simulated transmittance spectrum and associated differential signal were obtained. The interference induced by surface scattering was also simulated, and its influence on the differential signal was analyzed. A correspondence between the simulated results and the testing data was observed.

  19. High-energy single-longitudinal mode nearly diffraction-limited optical parametric source with 3 MHz frequency stability for CO2 DIAL.

    PubMed

    Raybaut, Myriam; Schmid, Thomas; Godard, Antoine; Mohamed, Ajmal K; Lefebvre, Michel; Marnas, Fabien; Flamant, Pierre; Bohman, Axel; Geiser, Peter; Kaspersen, Peter

    2009-07-01

    We report on a 2.05 microm nanosecond master oscillator power amplifier optical parametric source for CO2 differential-absorption lidar. The master oscillator consists of an entangled-cavity nanosecond optical parametric oscillator based on a type II periodically poled lithium niobate crystal that provides highly stable single-longitudinal-mode radiation. The signal emission is amplified by a multistage parametric amplifier to generate up to 11 mJ in a nearly diffraction-limited beam with an M2 quality factor of approximately 1.5 while maintaining single-longitudinal-mode emission with a frequency stability better than 3 MHz rms. This approach can be readily applied to the detection of various greenhouse gases.

  20. Line-shape study of self-broadened O{sub 2} transitions measured by Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy

    SciTech Connect

    Wojtewicz, S.; Lisak, D.; Cygan, A.; Domyslawska, J.; Trawinski, R. S.; Ciurylo, R.

    2011-09-15

    We present high-sensitivity and high-spectral-resolution line-shape and line-intensity measurements of self-broadened O{sub 2} b {sup 1}{Sigma}{sub g}{sup +}(v=1)(leftarrow)X {sup 3}{Sigma}{sub g}{sup -}(v=0) band transitions measured using the Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy technique. We give collisional broadening parameters and take into account the line-narrowing effects described by Dicke narrowing or the speed dependence of collisional broadening. We compare line intensities measured with relative uncertainties below 0.4% to data available in the HITRAN spectroscopic database.

  1. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < -1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  2. Effects of alcohols on the stability and low-frequency local motions that control the slow changes in structural dynamics of ferrocytochrome c.

    PubMed

    Jain, Rishu; Sharma, Deepak; Kumar, Rajesh

    2013-10-01

    To determine the effects of alcohols on the low-frequency local motions that control slow changes in structural dynamics of native-like compact states of proteins, we have studied the effects of alcohols on structural fluctuation of M80-containing Ω-loop by measuring the rate of thermally driven CO dissociation from a natively folded carbonmonoxycytochrome c under varying concentrations of alcohols (methanol, ethanol, 1-propanol, 2-propanol, 3°-butanol, 2,2,2-trifluoroethanol). As alcohol is increased, the rate coefficient of CO dissociation (k(diss)) first decreases in subdenaturing region and then increases on going from subdenaturing to denaturing milieu. This decrease in k(diss) is more for 2,2,2-trifluroethanol and 1-propanol and least for methanol, indicating that the first phase of motional constraint is due to the hydrophobicity of alcohols and intramolecular protein cross-linking effect of alcohols, which results in conformational entropy loss of protein. The thermal denaturation midpoint for ferrocytochrome c decreases with increase in alcohol, indicating that alcohol decrease the global stability of protein. The stabilization free energy (ΔΔG) in alcohols' solution was calculated from the slope of the Wyman-Tanford plot and water activity. The m-values obtained from the slope of ΔΔG versus alcohols plot were found to be more negative for longer and linear chain alcohols, indicating destabilization of proteins by alcohols through disturbance of hydrophobic interactions and hydrogen bonding.

  3. The study of stability on a laser-diode-pumped high-power high-repetition-rate intracavity frequency-doubled 532-nm laser

    NASA Astrophysics Data System (ADS)

    Zhao, Shi-yong; Yao, Jian-Quan; Xu, De-gang; Zhou, Rui; Zhang, Bai-gang; Zhou, Jia-ning; Wang, Peng

    2005-01-01

    High power laser-diode-pumped 532nm laser sources (including continuous wave and high repetition rate operation) are directly used for precise processing of metals and plastics. Furthermore, high power green laser will be used in some fields such as ocean exploration, laser probe and underwater communication. Recently, we reported a 110W diode-side-pumped Nd:YAG intracavity frequency doubled high stability 532nm laser. In the experiment, we found that the average output power of second harmonic fluctuated acutely with the variety of pumping current. Moreover, the length of arms between the mirrors were very sensitive to this cavity. We consider that one of the reason is the focus length of thermal lens of Nd:YAG rod alter with the variational pumping current, which makes the cavity be unstable. We consider the KTP crystal as a thin lens for its short length. As thermal lensing effect of the Nd:YAG rod is quite severe, so we consider it as thermal lensing medium. By ray matrix methods, we have obtained the stable regions and beam waist radii distribution in the flat-concave cavity. In our experiment, we used a pump head consisting of 80 diode bars with pentagon pump model and employed flat-concave cavity structure in order to achieve high stability output and increase output power. The total cavity length is 505mm. By using an acousto-optic Q-switching with high diffraction loss and the KTP crystal which is type II phase matching, 110 W high stability 532nm laser is achieved. The experimental result is in good agreement with the calculation.

  4. Simultaneously improving the sensitivity and absolute accuracy of CPT magnetometer.

    PubMed

    Liang, Shang-Qing; Yang, Guo-Qing; Xu, Yun-Fei; Lin, Qiang; Liu, Zhi-Heng; Chen, Zheng-Xiang

    2014-03-24

    A new method to improve the sensitivity and absolute accuracy simultaneously for coherent population trapping (CPT) magnetometer based on the differential detection method is presented. Two modulated optical beams with orthogonal circular polarizations are applied, in one of which two magnetic resonances are excited simultaneously by modulating a 3.4GHz microwave with Larmor frequency. When a microwave frequency shift is introduced, the difference in the power transmitted through the cell in each beam shows a low noise resonance. The sensitivity of 2pT/Hz @ 10Hz is achieved. Meanwhile, the absolute accuracy of ± 0.5nT within the magnetic field ranging from 20000nT to 100000nT is realized.

  5. A physics package for rubidium atomic frequency standard with a short-term stability of 2.4 × 10-13 τ-1/2

    NASA Astrophysics Data System (ADS)

    Hao, Qiang; Li, Wenbing; He, Shengguo; Lv, Jianfeng; Wang, Pengfei; Mei, Ganghua

    2016-12-01

    In this article, a new type of physics package with high signal to noise ratio for a rubidium atomic frequency standard is reported. To enhance the clock transition signal, a slotted tube microwave cavity with a field orientation factor of 0.93 and an absorption cell with the diameter of 30 mm were utilized in design of the cavity-cell assembly. Based on the spectral analysis of the three commonly used rubidium spectral lamps, the spectral lamp filled with Xe gas was chosen as the optical pumping source for its small line shape distortion. To suppress the shot noise of the signal, a band pass interference filter was used to filter out Xe spectral lines from the pumping light. A desk system of the rubidium frequency standard with the physics package was realized, and the short-term stability of the system was predicted and tested. The measured result is 2.4 × 10-13 τ-1/2 up to 100 s averaging time, in good agreement with the predicted one.

  6. A physics package for rubidium atomic frequency standard with a short-term stability of 2.4 × 10(-13) τ(-1/2).

    PubMed

    Hao, Qiang; Li, Wenbing; He, Shengguo; Lv, Jianfeng; Wang, Pengfei; Mei, Ganghua

    2016-12-01

    In this article, a new type of physics package with high signal to noise ratio for a rubidium atomic frequency standard is reported. To enhance the clock transition signal, a slotted tube microwave cavity with a field orientation factor of 0.93 and an absorption cell with the diameter of 30 mm were utilized in design of the cavity-cell assembly. Based on the spectral analysis of the three commonly used rubidium spectral lamps, the spectral lamp filled with Xe gas was chosen as the optical pumping source for its small line shape distortion. To suppress the shot noise of the signal, a band pass interference filter was used to filter out Xe spectral lines from the pumping light. A desk system of the rubidium frequency standard with the physics package was realized, and the short-term stability of the system was predicted and tested. The measured result is 2.4 × 10(-13) τ(-1/2) up to 100 s averaging time, in good agreement with the predicted one.

  7. Atomically referenced 1-GHz optical parametric oscillator frequency comb.

    PubMed

    McCracken, Richard A; Balskus, Karolis; Zhang, Zhaowei; Reid, Derryck T

    2015-06-15

    The visible to mid-infrared coverage of femtosecond optical parametric oscillator (OPO) frequency combs makes them attractive resources for high-resolution spectroscopy and astrophotonic spectrograph calibration. Such applications require absolute traceability and wide comb-tooth spacing, attributes which until now have remained unavailable from any single OPO frequency comb. Here, we report a 1-GHz Ti:sapphire pumped OPO comb whose repetition and offset frequencies are referenced to Rb-stabilised microwave and laser oscillators respectively. This technique simultaneously achieves fully stabilized combs from both the Ti:sapphire laser and the OPO with sub-MHz comb-tooth linewidths, multi-hour locking stability and without the need for super-continuum generation.

  8. Absolute calibration and beam background of the Squid Polarimeter

    SciTech Connect

    Blaskiewicz, M.M.; Cameron, P.R.; Shea, T.J.

    1996-12-31

    The problem of beam background in Squid Polarimetry is not without residual benefits. The authors may deliberately generate beam background by gently kicking the beam at the spin tune frequency. This signal may be used to accomplish a simple and accurate absolute calibration of the polarimeter. The authors present details of beam background calculations and their application to polarimeter calibration, and suggest a simple proof-of-principle accelerator experiment.

  9. A technique for simultaneously improving the product of cutoff frequency-breakdown voltage and thermal stability of SOI SiGe HBT

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Zhang, Wan-Rong; Jin, Dong-Yue; Zhao, Yan-Xiao; Wang, Xiao

    2016-12-01

    The product of the cutoff frequency and breakdown voltage (fT×BVCEO) is an important figure of merit (FOM) to characterize overall performance of heterojunction bipolar transistor (HBT). In this paper, an approach to introducing a thin N+-buried layer into N collector region in silicon-on-insulator (SOI) SiGe HBT to simultaneously improve the FOM of fT×BVCEO and thermal stability is presented by using two-dimensional (2D) numerical simulation through SILVACO device simulator. Firstly, in order to show some disadvantages of the introduction of SOI structure, the effects of SOI insulation layer thickness (TBOX) on fT, BVCEO, and the FOM of fT×BVCEO are presented. The introduction of SOI structure remarkably reduces the electron concentration in collector region near SOI substrate insulation layer, obviously reduces fT, slightly increases BVCEO to some extent, but ultimately degrades the FOM of fT×BVCEO. Although the fT, BVCEO, and the FOM of fT×BVCEO can be improved by increasing SOI insulator SiO2 layer thickness TBOX in SOI structure, the device temperature and collector current are increased due to lower thermal conductivity of SiO2 layer, as a result, the self-heating effect of the device is enhanced, and the thermal stability of the device is degraded. Secondly, in order to alleviate the foregoing problem of low electron concentration in collector region near SOI insulation layer and the thermal stability resulting from thick TBOX, a thin N+-buried layer is introduced into collector region to not only improve the FOM of fT×BVCEO, but also weaken the self-heating effect of the device, thus improving the thermal stability of the device. Furthermore, the effect of the location of the thin N+-buried layer in collector region is investigated in detail. The result show that the FOM of fT×BVCEO is improved and the device temperature decreases as the N+-buried layer shifts toward SOI substrate insulation layer. The approach to introducing a thin N+-buried layer

  10. The Absolute Gravimeter FG5 - Adjustment and Residual Data Evaluation

    NASA Astrophysics Data System (ADS)

    Orlob, M.; Braun, A.; Henton, J.; Courtier, N.; Liard, J.

    2009-05-01

    The most widely used method of direct terrestrial gravity determination is performed by using a ballistic absolute gravimeter. Today, the FG5 (Micro-g LaCoste; Lafayette, CO) is the most common free-fall absolute gravimeter. It uses the Michelson-type interferometer to determine the absolute gravity value with accuracies up to one part- per-billion of g. Furthermore, absolute gravimeter measurements can be used to assist in the validation and interpretation of temporal variations of the global gravity field, e.g. from the GRACE mission. In addition, absolute gravimetry allows for monitoring gravity changes which are caused by subsurface mass redistributions and/or vertical displacements. In this study,adjustment software was developed and applied to the raw data sets of FG5#106 and FG5#236, made available by Natural Resources Canada. Both data sets have been collected at the same time and place which leads to an intercomparison of the instruments performance. The adjustment software was validated against the official FG5 software package developed by Micro-g Lacoste. In order to identify potential environmental or instrument disturbances in the observed time series, a Lomb- Scargle periodogram analysis was employed. The absolute gravimeter FG5 is particularly sensitive to low frequencies between 0-3Hz. Hence, the focus of the analysis is to detect signals in the band of 0-100 Hz. An artificial signal was added to the measurements for demonstration purposes. Both the performance of the adjustment software and the Lomb-Scargle analysis will be discussed.

  11. Space position measurement using long-path heterodyne interferometer with optical frequency comb.

    PubMed

    Wang, Xiaonan; Takahashi, Satoru; Takamasu, Kiyoshi; Matsumoto, Hirokazu

    2012-01-30

    A heterodyne interference system was developed for position measurement. A stabilized optical-frequency comb is used as the laser source. The preliminary experiment to measure a distance of 22.478 m shows a drift of 1.6 μm in 20 minutes after the temperature compensation. Comparison and frequency shift experiments have been done for a distance of about 7.493 m. The experimental results show that the drift is mainly caused by environmental condition changes and the vibration of the table and floor also has some effects. It was verified that the absolute distance measurement can be realized by fringe scanning and frequency-shifting methods.

  12. The importance and attainment of accurate absolute radiometric calibration

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1984-01-01

    The importance of accurate absolute radiometric calibration is discussed by reference to the needs of those wishing to validate or use models describing the interaction of electromagnetic radiation with the atmosphere and earth surface features. The in-flight calibration methods used for the Landsat Thematic Mapper (TM) and the Systeme Probatoire d'Observation de la Terre, Haute Resolution visible (SPOT/HRV) systems are described and their limitations discussed. The questionable stability of in-flight absolute calibration methods suggests the use of a radiative transfer program to predict the apparent radiance, at the entrance pupil of the sensor, of a ground site of measured reflectance imaged through a well characterized atmosphere. The uncertainties of such a method are discussed.

  13. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  14. ON A SUFFICIENT CONDITION FOR ABSOLUTE CONTINUITY.

    DTIC Science & Technology

    The formulation of a condition which yields absolute continuity when combined with continuity and bounded variation is the problem considered in the...Briefly, the formulation is achieved through a discussion which develops a proof by contradiction of a sufficiently theorem for absolute continuity which uses in its hypothesis the condition of continuity and bounded variation .

  15. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  16. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    increase in accuracy. Our presentation will also explore the impact of such an instrument on our theory of how to constrain the gravity datum and on how to ensure stability, repeatability, and reproducibility across different absolute gravimeter systems.

  17. Simultaneous frequency stabilization and high-power dense wavelength division multiplexing (HP-DWDM) using an external cavity based on volume Bragg gratings (VBGs)

    NASA Astrophysics Data System (ADS)

    Hengesbach, Stefan; Klein, Sarah; Holly, Carlo; Witte, Ulrich; Traub, Martin; Hoffmann, Dieter

    2016-03-01

    Multiplexing technologies enable the development of high-brightness diode lasers for direct industrial applications. We present a High-Power Dense Wavelength Division Multiplexer (HP-DWDM) with an average channel spacing of 1.7 (1.5) nm and a subsequent external cavity mirror to provide feedback for frequency stabilization and multiplexing in one step. The "self-optimizing" multiplexing unit consists of four reflective Volume Bragg Gratings (VBGs) with 99% diffraction efficiency and seven dielectric mirrors to overlay the radiation of five input channels with an adjustable channel spacing of 1-2 nm. In detail, we focus on the analysis of the overall optical efficiency, the change of the beam parameter product and the spectral width. The performance is demonstrated using five 90 μm multimode 9xx single emitters with M2<=17. Because of the feedback the lateral (multimodal) spatial and angular intensity distribution changes strongly and the beam parameter product decreases by a factor of 1.2 to 1.9. Thereby the angular intensity distribution is more affected than the width of the beam waist. The spectral width per emitter decreases to 3-200 pm (FWHM) depending on the injection current and the reflectance of the feedback mirror (0.75%, 1.5%, 4%, 6% or 8%). The overall optical multiplexing efficiency ranges between 77% and 86%. With some modifications (e.g. enhanced AR-coatings) we expect 90-95%.

  18. Remote ultrasound palpation for robotic interventions using absolute elastography.

    PubMed

    Schneider, Caitlin; Baghani, Ali; Rohling, Robert; Salcudean, Septimiu

    2012-01-01

    Although robotic surgery has addressed many of the challenges presented by minimally invasive surgery, haptic feedback and the lack of knowledge of tissue stiffness is an unsolved problem. This paper presents a system for finding the absolute elastic properties of tissue using a freehand ultrasound scanning technique, which utilizes the da Vinci Surgical robot and a custom 2D ultrasound transducer for intraoperative use. An external exciter creates shear waves in the tissue, and a local frequency estimation method computes the shear modulus. Results are reported for both phantom and in vivo models. This system can be extended to any 6 degree-of-freedom tracking method and any 2D transducer to provide real-time absolute elastic properties of tissue.

  19. Oblique-incidence sounder measurements with absolute propagation delay timing

    SciTech Connect

    Daehler, M.

    1990-05-03

    Timing from the Global Position Satellite (GPS) system has been applied to HF oblique incidence sounder measurements to produce ionograms whose propagation delay time scale is absolutely calibrated. Such a calibration is useful for interpreting ionograms in terms of the electron density true-height profile for the ionosphere responsible for the propagation. Use of the time variations in the shape of the electron density profile, in conjunction with an HF propagation model, is expected to provide better near-term (1-24 hour) HF propagation forecasts than are available from current updating systems, which use only the MUF. Such a capability may provide the basis for HF frequency management techniques which are more efficient than current methods. Absolute timing and other techniques applicable to automatic extraction of the electron-density profile from an ionogram will be discussed.

  20. Frequency comb transferred by surface plasmon resonance.

    PubMed

    Geng, Xiao Tao; Chun, Byung Jae; Seo, Ji Hoon; Seo, Kwanyong; Yoon, Hana; Kim, Dong-Eon; Kim, Young-Jin; Kim, Seungchul

    2016-02-22

    Frequency combs, millions of narrow-linewidth optical modes referenced to an atomic clock, have shown remarkable potential in time/frequency metrology, atomic/molecular spectroscopy and precision LIDARs. Applications have extended to coherent nonlinear Raman spectroscopy of molecules and quantum metrology for entangled atomic qubits. Frequency combs will create novel possibilities in nano-photonics and plasmonics; however, its interrelation with surface plasmons is unexplored despite the important role that plasmonics plays in nonlinear spectroscopy and quantum optics through the manipulation of light on a subwavelength scale. Here, we demonstrate that a frequency comb can be transformed to a plasmonic comb in plasmonic nanostructures and reverted to the original frequency comb without noticeable degradation of <6.51 × 10(-19) in absolute position, 2.92 × 10(-19) in stability and 1 Hz in linewidth. The results indicate that the superior performance of a well-defined frequency comb can be applied to nanoplasmonic spectroscopy, quantum metrology and subwavelength photonic circuits.