Science.gov

Sample records for absolute gravimeter ag

  1. Precision evaluation of calibration factor of a superconducting gravimeter using an absolute gravimeter

    NASA Astrophysics Data System (ADS)

    Feng, Jin-yang; Wu, Shu-qing; Li, Chun-jian; Su, Duo-wu; Xu, Jin-yi; Yu, Mei

    2016-01-01

    The precision of the calibration factor of a superconducting gravimeter (SG) using an absolute gravimeter (AG) is analyzed based on linear least square fitting and error propagation theory and factors affecting the accuracy are discussed. It can improve the accuracy to choose the observation period of solid tide as a significant change or increase the calibration time. Simulation is carried out based on synthetic gravity tides calculated with T-soft at observed site from Aug. 14th to Sept. 2nd in 2014. The result indicates that the highest precision using half a day's observation data is below 0.28% and the precision exponentially increases with the increase of peak-to-peak gravity change. The comparison of results obtained from the same observation time indicated that using properly selected observation data has more beneficial on the improvement of precision. Finally, the calibration experiment of the SG iGrav-012 is introduced and the calibration factor is determined for the first time using AG FG5X-249. With 2.5 days' data properly selected from solid tide period with large tidal amplitude, the determined calibration factor of iGrav-012 is (-92.54423+/-0.13616) μGal/V (1μGal=10-8m/s2), with the relative accuracy of about 0.15%.

  2. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant

  3. A general relativistic model for free-fall absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Tan, Yu-Jie; Shao, Cheng-Gang; Li, Jia; Hu, Zhong-Kun

    2016-04-01

    Although the relativistic manifestations of gravitational fields in gravimetry were first studied 40 years ago, the relativistic effects combined with free-fall absolute gravimeters have rarely been considered. In light of this, we present a general relativistic model for free-fall absolute gravimeters in a local-Fermi coordinates system, where we focus on effects related to the measuring devices: relativistic transverse Doppler effects, gravitational redshift effects and Earth’s rotation effects. Based on this model, a general relativistic expression of the measured gravity acceleration is obtained.

  4. Correction of NIM-3A absolute gravimeter for self-attraction effect

    NASA Astrophysics Data System (ADS)

    Li, Chunjian; Xu, Jin-yi; Feng, Jin-yang; SU, Duo-wu; Wu, Shu-qing

    2015-02-01

    The mass of free-fall absolute gravimeter can produce vertical gravitational attraction to the free-falling test body during the measurement of acceleration due to gravity. The vertical gravitational attraction can cause an artificial deviation to the measured value of gravitational acceleration. This paper describes the operating principle of a free-fall absolute gravimeter and the method used to determine the reference height of a gravimeter. It also describes the physical structure of NIM-3A absolute gravimeter lately developed by National Institute of Metrology (China), and studies the correction of gravimeter for Self-attraction effect.

  5. Monitoring Groundwater Variations Using a Portable Absolute Gravimeter

    NASA Astrophysics Data System (ADS)

    Fukuda, Yoichi; Nishijima, Jun; Hasegawa, Takashi; Sofyan, Yayan; Taniguchi, Makoto; Abidin, Hasanuddin Z.; Delinom, Robert M.

    2010-05-01

    In urbanized areas, one of the urgent problems is to monitor the groundwater variations especially connected with land subsidence. Although the groundwater variations are usually measured by water level meters, gravity measurements can provide us additional information about the water mass movements which should be beneficial for the analyses of groundwater flow and the managements of water resources as well. Therefore, in order to establish a new technique to monitor the groundwater variations by means of the gravity measurements, we investigated the applicability of a portable type absolute gravimeter (Micro-G LaCoste Inc. A10-017). We will report the results of some test measurements in Japan, and the outline of the surveys in Jakarta, Indonesia. As for the absolute gravity measurements, FG-5 of MGL would be more popular. FG-5 is a high precision absolute gravimeter with a 2ugal-accuracy for laboratory use, while the nominal accuracy of A-10 is 10ugal (measurement precision: ±5ugal). In spite of the disadvantage, A-10 is well suited for the field surveys because it is much smaller than FG-5 and can be operated with 12VDC power. The repeated measurements using A10-017 in Kyushu University show good correlations between the measured gravity values and the groundwater levels in nearby observation wells. In a geothermal plant of Takigami, we also observed the gravity changes associated with the cycle of the geothermal fluid. All these test measurements have proved that the gravimeter can achieve a 10ugal (10nm/s2) or better accuracy in the field surveys. In Jakarta, Indonesia, excess groundwater pumping is going on and it causes land subsidence. To reveal the associated gravity changes, we conducted the first gravity survey in August 2008 and the second survey in July 2009. Mainly due to the instrumental troubles during the 2008 surveys, we have not obtained enough reliable data yet. Nevertheless the result obtained so far suggested the gravity increases in the

  6. The new Absolute Quantum Gravimeter (AQG): first results and perspectives

    NASA Astrophysics Data System (ADS)

    Bonvalot, Sylvain; Le Moigne, Nicolas; Merlet, Sebastien; Desruelle, Bruno; Lautier-Gaud, Jean; Menoret, Vincent; Vermeulen, Pierre

    2016-04-01

    Cold atom gravimetry represents one of the most innovative evolution in gravity instrumentation since the last 20 years. The concept of measuring the gravitational acceleration by dropping atoms and the development of the first instrumental devices during this last decade quickly revealed the promising perspectives of this new generation of gravity meters enabling accurate and absolute measurements of the Earth's gravity field for a wide range of applications (geophysics, geodesy, metrology, etc.). The Absolute Quantum Gravimeter (AQG) gravity meter, developed by MUQUANS (Talence, France - http://www.muquans.com/) with the support of RESIF, the French Seismologic and Geodetic Network (http://www.resif.fr/) belongs to this new generation of instruments. It also represents the first commercial device based on the utilization of advanced matter-wave interferometry techniques, which allow to characterize precisely the vertical acceleration experienced by a cloud of cold atoms. Recently, the first operational unit (AQG01) has been achieved as a compact transportable gravimeter with the aim of satisfying absolute gravity measurements in laboratory conditions under the following specifications: measurements the μGal level at a few Hz cycling frequency, sensitivity of 50μGal/√Hz, immunity to ground vibrations, easy and quickness of operation, automated continuous data acquisition for several months, etc. In order to evaluate the current performances of the AQG01, several experiments are carried out in collaboration between RESIF user's teams and the MUQUANS manufacturer on different reference gravity sites and laboratories in France. These measurements performed in indoor conditions including simultaneous observations with classical reference gravity instruments (corner-cube absolute gravity meters, relative superconducting meters) as well with the Cold Atom Gravity meter (CAG) developed by LNE-SYRTE, lead to a first objective characterization of the performances of

  7. SHORT COMMUNICATION: Comparison between two mobile absolute gravimeters: optical versus atomic interferometers

    NASA Astrophysics Data System (ADS)

    Merlet, S.; Bodart, Q.; Malossi, N.; Landragin, A.; Pereira Dos Santos, F.; Gitlein, O.; Timmen, L.

    2010-08-01

    We report a comparison between two absolute gravimeters: the LNE-SYRTE cold atom gravimeter and FG5#220 of Leibniz Universität of Hannover. They rely on different principles of operation: atomic and optical interferometry. Both are movable which enabled them to participate in the last International Comparison of Absolute Gravimeters (ICAG'09) at BIPM. Immediately after, their bilateral comparison took place in the LNE watt balance laboratory and showed an agreement of (4.3 ± 6.4) µGal.

  8. Using absolute gravimeter data to determine vertical gravity gradients

    USGS Publications Warehouse

    Robertson, D.S.

    2001-01-01

    The position versus time data from a free-fall absolute gravimeter can be used to estimate the vertical gravity gradient in addition to the gravity value itself. Hipkin has reported success in estimating the vertical gradient value using a data set of unusually good quality. This paper explores techniques that may be applicable to a broader class of data that may be contaminated with "system response" errors of larger magnitude than were evident in the data used by Hipkin. This system response function is usually modelled as a sum of exponentially decaying sinusoidal components. The technique employed here involves combining the x0, v0 and g parameters from all the drops made during a site occupation into a single least-squares solution, and including the value of the vertical gradient and the coefficients of system response function in the same solution. The resulting non-linear equations must be solved iteratively and convergence presents some difficulties. Sparse matrix techniques are used to make the least-squares problem computationally tractable.

  9. Correction due to the finite speed of light in absolute gravimeters Correction due to the finite speed of light in absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Nagornyi, V. D.; Zanimonskiy, Y. M.; Zanimonskiy, Y. Y.

    2011-06-01

    Equations (45) and (47) in our paper [1] in this issue have incorrect sign and should read \\tilde T_i=T_i+{b\\mp S_i\\over c},\\cr\\tilde T_i=T_i\\mp {S_i\\over c}. The error traces back to our formula (3), inherited from the paper [2]. According to the technical documentation [3, 4], the formula (3) is implemented by several commercially available instruments. An incorrect sign would cause a bias of about 20 µGal not known for these instruments, which probably indicates that the documentation incorrectly reflects the implemented measurement equation. Our attention to the error was drawn by the paper [5], also in this issue, where the sign is mentioned correctly. References [1] Nagornyi V D, Zanimonskiy Y M and Zanimonskiy Y Y 2011 Correction due to the finite speed of light in absolute gravimeters Metrologia 48 101-13 [2] Niebauer T M, Sasagawa G S, Faller J E, Hilt R and Klopping F 1995 A new generation of absolute gravimeters Metrologia 32 159-80 [3] Micro-g LaCoste, Inc. 2006 FG5 Absolute Gravimeter Users Manual [4] Micro-g LaCoste, Inc. 2007 g7 Users Manual [5] Niebauer T M, Billson R, Ellis B, Mason B, van Westrum D and Klopping F 2011 Simultaneous gravity and gradient measurements from a recoil-compensated absolute gravimeter Metrologia 48 154-63

  10. Results of the first North American comparison of absolute gravimeters, NACAG-2010

    USGS Publications Warehouse

    Schmerge, David; Francis, Olvier; Henton, J.; Ingles, D.; Jones, D.; Kennedy, Jeffrey R.; Krauterbluth, K.; Liard, J.; Newell, D.; Sands, R.; Schiel, J.; Silliker, J.; van Westrum, D.

    2012-01-01

    The first North American Comparison of absolute gravimeters (NACAG-2010) was hosted by the National Oceanic and Atmospheric Administration at its newly renovated Table Mountain Geophysical Observatory (TMGO) north of Boulder, Colorado, in October 2010. NACAG-2010 and the renovation of TMGO are part of NGS’s GRAV-D project (Gravity for the Redefinition of the American Vertical Datum). Nine absolute gravimeters from three countries participated in the comparison. Before the comparison, the gravimeter operators agreed to a protocol describing the strategy to measure, calculate, and present the results. Nine sites were used to measure the free-fall acceleration of g. Each gravimeter measured the value of g at a subset of three of the sites, for a total set of 27 g-values for the comparison. The absolute gravimeters agree with one another with a standard deviation of 1.6 µGal (1 Gal = 1 cm s-2). The minimum and maximum offsets are -2.8 and 2.7 µGal. This is an excellent agreement and can be attributed to multiple factors, including gravimeters that were in good working order, good operators, a quiet observatory, and a short duration time for the experiment. These results can be used to standardize gravity surveys internationally.

  11. Set standard deviation, repeatability and offset of absolute gravimeter A10-008

    USGS Publications Warehouse

    Schmerge, D.; Francis, O.

    2006-01-01

    The set standard deviation, repeatability and offset of absolute gravimeter A10-008 were assessed at the Walferdange Underground Laboratory for Geodynamics (WULG) in Luxembourg. Analysis of the data indicates that the instrument performed within the specifications of the manufacturer. For A10-008, the average set standard deviation was (1.6 0.6) ??Gal (1Gal ??? 1 cm s -2), the average repeatability was (2.9 1.5) ??Gal, and the average offset compared to absolute gravimeter FG5-216 was (3.2 3.5) ??Gal. ?? 2006 BIPM and IOP Publishing Ltd.

  12. Continuous absolute g monitoring of the mobile LNE-SYRTE Cold Atom Gravimeter - a new tool to calibrate superconducting gravimeters -

    NASA Astrophysics Data System (ADS)

    Merlet, Sébastien; Gillot, Pierre; Cheng, Bing; Pereira Dos Santos, Franck

    2016-04-01

    Atom interferometry allows for the realization of a new generation of instruments for inertial sensing based on laser cooled atoms. We have developed an absolute gravimeter (CAG) based on this technic, which can perform continuous gravity measurements at a high cycling rate. This instrument, operating since summer 2009, is the new metrological french standard for gravimetry. The CAG has been designed to be movable, so as to participate to international comparisons and on field measurements. It took part to several comparisons since ICAG'09 and operated in both urban environments and low noise underground facilities. The atom gravimeter operates with a high cycling rate of 3 Hz. Its sensitivity is predominantly limited by ground vibration noise which is rejected thanks to isolation platforms and correlation with other sensors, such as broadband accelerometers or sismometers. These developments allow us to perform continuous gravity measurements, no matter what the sismic conditions are and even in the worst cases such as during earthquakes. At best, a sensitivity of 5.6 μGal at 1 s measurement time has been demonstrated. The long term stability averages down to 0.1 μGal for long term measurements. Presently, the measurement accuracy is 4 μGal, which we plan to reduce to 1 μGal or below. I will present the instrument, the principle of the gravity acceleration measurement and its performances. I will focus on continuous gravity measurements performed over several years and compared with our superconducting gravimeter iGrav signal. This comparison allows us to calibrate the iGrav scale factor and follow its evolution. Especially, we demonstrate that, thanks to the CAG very high cycling rate, a single day gravity measurement allows to calibrate the iGrav scaling factor with a relative uncertainty as good as 4.10-4.

  13. Final report on the Seventh International Comparison of Absolute Gravimeters (ICAG 2005)

    USGS Publications Warehouse

    Jiang, Z.; Francis, O.; Vitushkin, L.; Palinkas, V.; Germak, A.; Becker, M.; D'Agostino, G.; Amalvict, M.; Bayer, R.; Bilker-Koivula, M.; Desogus, S.; Faller, J.; Falk, R.; Hinderer, J.; Gagnon, C.; Jakob, T.; Kalish, E.; Kostelecky, J.; Lee, C.; Liard, J.; Lokshyn, Y.; Luck, B.; Makinen, J.; Mizushima, S.; Le, Moigne N.; Origlia, C.; Pujol, E.R.; Richard, P.; Robertsson, L.; Ruess, D.; Schmerge, D.; Stus, Y.; Svitlov, S.; Thies, S.; Ullrich, C.; Van Camp, M.; Vitushkin, A.; Ji, W.; Wilmes, H.

    2011-01-01

    The Bureau International des Poids et Mesures (BIPM), S??vres, France, hosted the 7th International Comparison of Absolute Gravimeters (ICAG) and the associated Relative Gravity Campaign (RGC) from August to September 2005. ICAG 2005 was prepared and performed as a metrological pilot study, which aimed: To determine the gravity comparison reference values; To determine the offsets of the absolute gravimeters; and As a pilot study to accumulate experience for the CIPM Key Comparisons. This document presents a complete and extensive review of the technical protocol and data processing procedures. The 1st ICAG-RGC comparison was held at the BIPM in 1980-1981 and since then meetings have been organized every 4 years. In this paper, we present an overview of how the meeting was organized, the conditions of BIPM gravimetric sites, technical specifications, data processing strategy and an analysis of the final results. This 7th ICAG final report supersedes all previously published reports. Readings were obtained from participating instruments, 19 absolute gravimeters and 15 relative gravimeters. Precise levelling measurements were carried out and all measurements were performed on the BIPM micro-gravity network which was specifically designed for the comparison. ?? 2011 BIPM & IOP Publishing Ltd.

  14. Surveying with the A10-20 Absolute Gravimeter for Geodesy and Geodynamics - first results

    NASA Astrophysics Data System (ADS)

    Krynski, Jan; Sekowski, Marcin

    2010-05-01

    The A10 is the first outdoor absolute gravimeter that allows for the determination of gravity with high precision. Absolute gravity survey with the A10 becomes highly competitive in terms of both efficiency and precision with traditional relative gravity survey. The portable A10-20 absolute gravimeter has been installed at the Borowa Gora Geodetic-Geophysical Observatory in September 2008. Since then a number of test measurements was conducted. Under laboratory conditions the series of gravity determination was obtained at two independent pillars at Borowa Gora as well as in Metsahovi and the BIPM gravimetric laboratories. Also a number outdoor gravity measurements with the use of mobile gravimetric laboratory was performed at the stations of gravity control in Poland and in Finland. The results obtained indicate high quality of gravity determination with the A10 under laboratory conditions and unprecedented quality under field conditions. They confirm the applicability of the A10 absolute gravimeter to the modernization of gravity control and high precision gravity survey required in modern gravity networks, but also its usefulness in microgravimetry as well as geodynamics. Some practical problems concerning the use of the A10 and its operational procedure including laser and frequency standard are discussed.

  15. Experimental assessment of the speed of light perturbation in free-fall absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Baumann, H.; Pythoud, F.; Blas, D.; Sibiryakov, S.; Eichenberger, A.; Klingelé, E. E.

    2015-10-01

    Precision absolute gravity measurements are growing in importance, especially in the context of the new definition of the kilogram. For the case of free fall absolute gravimeters with a Michelson-type interferometer tracking the position of a free falling body, one of the effects that needs to be taken into account is the ‘speed of light perturbation’ due to the finite speed of propagation of light. This effect has been extensively discussed in the past, and there is at present a disagreement between different studies. In this work, we present the analysis of new data and confirm the result expected from the theoretical analysis applied nowadays in free-fall gravimeters. We also review the standard derivations of this effect (by using phase shift or Doppler effect arguments) and show their equivalence.

  16. On the effect of distortion and dispersion in fringe signal of the FG5 absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Křen, Petr; Pálinkáš, Vojtech; Mašika, Pavel

    2016-02-01

    The knowledge of absolute gravity acceleration at the level of 1  ×  10-9 is needed in geosciences (e.g. for monitoring crustal deformations and mass transports) and in metrology for watt balance experiments related to the new SI definition of the unit of kilogram. The gravity reference, which results from the international comparisons held with the participation of numerous absolute gravimeters, is significantly affected by qualities of instruments prevailing in the comparisons (i.e. at present, FG5 gravimeters). Therefore, it is necessary to thoroughly investigate all instrumental (particularly systematic) errors. This paper deals with systematic errors of the FG5#215 coming from the distorted fringe signal and from the electronic dispersion at several electronic components including cables. In order to investigate these effects, we developed a new experimental system for acquiring and analysing the data parallel to the FG5 built-in system. The new system based on the analogue-to-digital converter with digital waveform processing using the FFT swept band pass filter is developed and tested on the FG5#215 gravimeter equipped with a new fast analogue output. The system is characterized by a low timing jitter, digital handling of the distorted swept signal with determination of zero-crossings for the fundamental frequency sweep and also for its harmonics and can be used for any gravimeter based on the laser interferometry. Comparison of the original FG5 system and the experimental systems is provided on g-values, residuals and additional measurements/models. Moreover, advanced approach for the solution of the free-fall motion is presented, which allows to take into account a non-linear gravity change with height.

  17. Design of laser system for absolute gravimeter based on 87Rb atom interferometer

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Wang, Shaokai; Zhuang, Wei; Fang, Fang; Li, Tianchu

    2015-08-01

    We present a laser system design for an absolute gravimeter based on 87Rb atom interferometer. By skillful design, lasers with 9 different frequencies are based on two diode lasers including tapered amplifier. Two electrical feedback systems are used for laser frequency stabilization and the Raman lasers generation respectively. All other lasers are based on two Raman lasers and realized with frequency shift by acoustic optical modulators. This laser system not only has the compact and simple construction, but meets all requirements for laser power and frequency controlling for the atom interferometer. It has the characteristic of reliability and integrity.

  18. First year's results and field experience with the latest JILA absolute gravimeter

    NASA Technical Reports Server (NTRS)

    Peter, G.; Moose, R. E.; Wessells, C. W.

    1989-01-01

    One of the six absolute gravity instruments developed and built by the Joint Institute for Laboratory Astrophysics (JILA) between 1982 and 1985 was tested under a variety of environmental conditions between May 1987 and 1988. Of the 30 sites visited during this period, 10 were occupied more than once. These reobservations indicate repeatability between 1 and 4 microgals.

  19. Continuous Gravity Monitoring in South America with Superconducting and Absolute Gravimeters: More than 12 years time series at station TIGO/Concepcion (Chile)

    NASA Astrophysics Data System (ADS)

    Wziontek, Hartmut; Falk, Reinhard; Hase, Hayo; Armin, Böer; Andreas, Güntner; Rongjiang, Wang

    2016-04-01

    As part of the Transportable Integrated Geodetic Observatory (TIGO) of BKG, the superconducting gravimeter SG 038 was set up in December 2002 at station Concepcion / Chile to record temporal gravity variations with highest precision. Since May 2006 the time series was supported by weekly observations with the absolute gravimeter FG5-227, proving the large seasonal variations of up to 30 μGal and establishing a gravity reference station in South America. With the move of the whole observatory to the new location near to La Plata / Argentina the series was terminated. Results of almost continuously monitoring gravity variations for more than 12 years are presented. Seasonal variations are interpreted with respect of global and local water storage changes and the impact of the 8.8 Maule Earthquake in February 2010 is discussed.

  20. Gravity change in Finland from comparison of new measurements using the outdoor absolute gravimeter A10 with legacy relative measurements - first results

    NASA Astrophysics Data System (ADS)

    Mäkinen, Jaakko; Sekowski, Marcin; Krynski, Jan; Ruotsalainen, Hannu

    2010-05-01

    Finland belongs to the Fennoscandian postglacial rebound (PGR) area, with vertical velocities of up to 1 cm/yr and corresponding surface gravity rates as large as -2 microgal/yr. Knowledge of the secular gravity change in Finland comes so far from three sources: (i) repeated absolute gravity measurements at a limited number of indoor laboratory-type sites, made by various teams and instruments (1976-), (ii) repeated relative measurements on the Fennoscandian Land Uplift Gravity Lines (1966-2003) which run in East-West direction along the approximate latitudes 61, 63 and 65 degrees N, (iii) satellite gravimetry with the GRACE (2002-). We are about to add a fourth source: In 2009 the Finnish Geodetic Institute (FGI) together with the Institute of Geodesy and Cartography (IGiK) started the re-measurement of the Finnish First Order Absolute Gravity Network (FOGN), using the A10 No. 020 outdoor absolute gravimeter of the IGiK. The FOGN consists of 50 outdoor stations, typically on the stairs of churches and other monumental buildings. The purpose of the FOGN (or its re-measurement) is not geodynamic research but the provision of easily-accessible reference sites for tasks of practical relative gravimetry, say gravity mapping for geodesy, geology and applied geophysics. However, as the FOGN was first measured in 1962-63 (with a Worden gravimeter) and re-surveyed in 1988 (with two LCR gravimeters), the time span of more than 45 years to 2009 provides the opportunity to extract a signal of gravity change from the comparison of the three campaigns. While the accuracy of the 1962-63 measurements is limited, at some FOGN stations additional data is provided by North-South traverses measured from 1966 onwards for calibration of LCR gravimeters. During the 2009 campaign with the A10-020 altogether 19 stations in the FOGN were occupied, and about 10 of them are sufficiently well-preserved from 1962-63 to make a gravity comparison meaningful. The experience with the A10 and the

  1. Gravity change in Finland 1962-2010 from the comparison of new measurements using the outdoor absolute gravimeter A10-020 with legacy relative measurements

    NASA Astrophysics Data System (ADS)

    Mäkinen, Jaakko; Sękowski, Marcin; Kryński, Jan; Kuokkanen, Jaakko; Näränen, Jyri; Raja-Halli, Arttu; Ruotsalainen, Hannu; Virtanen, Heikki

    2013-04-01

    Finland belongs to the Fennoscandian Postglacial Rebound (PGR) area, with vertical velocities of up to 1 cm/yr and corresponding surface gravity rates as large as -2 microgal/yr. Knowledge of the secular gravity change in Finland comes so far from three sources: (i) repeated absolute gravity measurements at a limited number of indoor laboratory-type sites, made by various teams and instruments (1976-), (ii) repeated relative measurements on the Fennoscandian Land Uplift Gravity Lines (1966-2003) which run in East-West direction along the approximate latitudes 61, 63 and 65 degrees N, (iii) satellite gravimetry with the GRACE (2002-). We are adding a new source: In 2009-2010 the Finnish Geodetic Institute (FGI) together with the Institute of Geodesy and Cartography (IGiK) re-measured the Finnish First Order Gravity Network (FOGN), using the A10 No. 020 outdoor absolute gravimeter of the IGiK. The FOGN consists of 50 outdoor stations, typically on the stairs of churches and other monumental buildings. The purpose of the FOGN (or its re-measurement) is not geodynamic research but the provision of easily-accessible reference sites for tasks of practical relative gravimetry, like gravity mapping for geodesy, geology and applied geophysics. However, as the FOGN was first measured in 1962 (with a Worden gravimeter) and re-surveyed in 1988 (with two LCR gravimeters), the time span 1962-2010 provides the opportunity to extract a signal of gravity change from the comparison of the three campaigns. While the accuracy of the 1962 measurements is limited, at some FOGN stations additional data is provided by North-South traverses measured from 1966 onwards for calibrating LCR gravimeters. During the 2009-2010 campaign with the A10-020 altogether 50 old and new stations in the FOGN were occupied. Some original stations had been destroyed or were not accessible with the A10, e.g. for lack of mounting space. In 2010-11 relative ties were established to connect original and new

  2. Finite-speed-of-light perturbation in atom gravimeters

    NASA Astrophysics Data System (ADS)

    Tan, Yu-Jie; Shao, Cheng-Gang; Hu, Zhong-Kun

    2016-07-01

    The finite-speed-of-light (FSL) effect is a systematic error in atom gravimeters arising from the time delay due to the propagation of the light. It includes the frequency-chirp-independent part and the frequency-chirp-dependent part, which were not considered completely. The FSL effect in atom gravimeters is different from that in corner-cube absolute gravimeters. In the past, this effect has been widely studied in corner-cube absolute gravimeters, whereas little has been discussed about and done with atom gravimeters. In this paper, we mainly propose a complete analytical study based on a coordinate transformation and on a "perturbation" approach to estimate this effect in an atom gravimeter. This also offers the potential to calculate the general relativistic effects in atom gravimeters. In addition, a comparison with a crude "average-path" analysis is given for a particular case of the FSL effect in atom gravimeters.

  3. Stability and accuracy of relative scale factor estimates for Superconducting Gravimeters

    NASA Astrophysics Data System (ADS)

    Wziontek, H.; Cordoba, B.; Crossley, D.; Wilmes, H.; Wolf, P.; Serna, J. M.; Warburton, R.

    2012-04-01

    Superconducting gravimeters (SG) are known to be the most sensitive and most stable gravimeters. However, reliably determining the scale factor calibration and its stability with the required precision of better than 0.1% is still an open issue. The relative comparison of temporal gravity variations due to the Earths tides recorded with other calibrated gravimeters is one method to obtain the SG scale factor. Usually absolute gravimeters (AG) are used for such a comparison and the stability of the scale factor can be deduced by repeated observations over a limited period, or by comparison with precise tidal models. In recent work it was shown that spring gravimeters may not be stable enough to transfer the calibration between SG. A promising alternative is to transfer the scale factor with a well calibrated, moveable SG. To assess the perspectives of such an approach, the coherence of records from dual sphere SGs and two SGs which are being operated side by side at the stations Bad Homburg and Wettzell (Germany) and other GGP sites is analysed. To determine and remove the instrumental drift, a reference time series from the combination with AG measurements is used. The reproducibility of the scale factor and the achievable precision are investigated for comparison periods of different lenght and conclusions are drawn to the use of AG and the future application of the moveable iGrav™ SG.

  4. Time stability of spring and superconducting gravimeters through the analysis of very long gravity records

    NASA Astrophysics Data System (ADS)

    Calvo, Marta; Hinderer, Jacques; Rosat, Severine; Legros, Hilaire; Boy, Jean-Paul; Ducarme, Bernard; Zürn, Walter

    2014-10-01

    Long gravity records are of great interest when performing tidal analyses. Indeed, long series enable to separate contributions of near-frequency waves and also to detect low frequency signals (e.g. long period tides and polar motion). In addition to the length of the series, the quality of the data and the temporal stability of the noise are also very important. We study in detail some of the longest gravity records available in Europe: 3 data sets recorded with spring gravimeters in Black Forest Observatory (Germany, 1980-2012), Walferdange (Luxemburg, 1980-1995) and Potsdam (Germany, 1974-1998) and several superconducting gravimeters (SGs) data sets, with at least 9 years of continuous records, at different European GGP (Global Geodynamics Project) sites (Bad Homburg, Brussels, Medicina, Membach, Moxa, Vienna, Wettzell and Strasbourg). The stability of each instrument is investigated using the temporal variations of tidal parameters (amplitude factor and phase difference) for the main tidal waves (O1, K1, M2 and S2) as well as the M2/O1 factor ratio, the later being insensitive to the instrumental calibration. The long term stability of the tidal observations is also dependent on the stability of the scale factor of the relative gravimeters. Therefore we also check the time stability of the scale factor for the superconducting gravimeter C026 installed at the J9 Gravimetric Observatory of Strasbourg (France), using numerous calibration experiments carried out by co-located absolute gravimeter (AG) measurements during the last 15 years. The reproducibility of the scale factor and the achievable precision are investigated by comparing the results of different calibration campaigns. Finally we present a spectrum of the 25 years of SG records at J9 Observatory, with special attention to small amplitude tides in the semi-diurnal and diurnal bands, as well as to the low frequency part.

  5. Educational inductive gravimeter

    NASA Astrophysics Data System (ADS)

    Nunn, John

    2014-01-01

    A simple inductive gravimeter constructed from a rigid plastic pipe and insulated copper wire is described. When a magnet is dropped through the vertically mounted pipe it induces small alternating voltages. These small signals are fed to the microphone input of a typical computer and sampled at a typical rate of 44.1 kHz using a custom computer program. Knowing the geometrical dimensions of the gravimeter and calculating the time intervals between peaks of the recorded signal it is possible to calculate the local gravitational acceleration (g). Limitations and improvements are discussed. Instructions are included throughout so that teachers and pupils can replicate the experiment in their own schools.

  6. Educational Inductive Gravimeter

    ERIC Educational Resources Information Center

    Nunn, John

    2014-01-01

    A simple inductive gravimeter constructed from a rigid plastic pipe and insulated copper wire is described. When a magnet is dropped through the vertically mounted pipe it induces small alternating voltages. These small signals are fed to the microphone input of a typical computer and sampled at a typical rate of 44.1 kHz using a custom computer…

  7. Lunar surface gravimeter experiment

    NASA Technical Reports Server (NTRS)

    Giganti, J. J.; Larson, J. V.; Richard, J. P.; Tobias, R. L.; Weber, J.

    1977-01-01

    The lunar surface gravimeter used the moon as an instrumented antenna to search for gravitational waves predicted by Einstein's general theory of relativity. Tidal deformation of the moon was measured. Gravitational radiation is a channel that is capable of giving information about the structure and evolution of the universe.

  8. Traverse gravimeter experiment

    NASA Technical Reports Server (NTRS)

    Buck, S. W.

    1973-01-01

    A semiautomatic self-leveling lunar gravimeter has been designed for the Apollo 17 mission. This traverse gravimeter, which is completely self-contained and powered by an internal battery, was used to measure gravity at predetermined stops along the route of the Lunar Rover Vehicle. The gravity sensor is a vibrating string accelerometer (VSA) enclosed in a temperature-controlled oven and gimballed leveling assembly. This instrument is capable of resolving gravity differences as small as 0.035 milligal (1 mgal = 0.001 cm/s) on the moon and yet also is able to measure the earth's gravity field of 980,000 milligals. Twenty-two measurements were taken on the moon during the Apollo 17 mission, during which the VSA temperature never varied more than 0.005 C. The flight results indicate an instrument accuracy of better than 2 mgal.

  9. Atom chip gravimeter

    NASA Astrophysics Data System (ADS)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM

  10. Optimized strategy for the calibration of superconducting gravimeters at the one per mille level

    NASA Astrophysics Data System (ADS)

    Van Camp, Michel; Meurers, Bruno; de Viron, Olivier; Forbriger, Thomas

    2016-01-01

    This paper reports on different sources of errors that occur in the calibration process of a superconducting gravimeter (SG), determined by comparison with a ballistic absolute gravimeter (AG); some of them have never been discussed in the literature. We then provide methods to mitigate the impact of those errors, to achieve a robust calibration estimate at the [InlineEquation not available: see fulltext.] level. We demonstrate that a standard deviation at the level of [InlineEquation not available: see fulltext.] can be reached within 48 h by measuring at spring tides and by increasing the AG sampling rate. This is much shorter than what is classically reported in previous empirical studies. Measuring more than 5 days around a tidal extreme does not improve the precision in the calibration factor significantly, as the variation in the error as a function of 1/√{N} does not apply, considering the decrease in signal amplitude due to the tidal modulation. However, we investigate the precision improvement up to 120 days, which can be useful if an AG is run continuously: at mid-latitude it would require 21 days to ensure a calibration factor at the [InlineEquation not available: see fulltext.] level with a 99.7 % confidence interval. We also show that restricting the AG measurement periods to tidal extrema can reduce instrument demand, while this does not affect the precision on the calibration factor significantly. Then, we quantify the effect of high microseismic noise causing aliasing in the AG time series. We eventually discuss the attenuation bias that might be induced by noisy time series of the SG. When experiments are performed at the [InlineEquation not available: see fulltext.] level, 7 are needed to ensure that the error in the calibration estimate will be at the 1 per mille level with a 99 % confidence.

  11. 300-days of parallel gravity record with the gPhone-054 spring gravimeter and the GWR-C026 superconducting gravimeter in Strasbourg (France): a comparative study

    NASA Astrophysics Data System (ADS)

    Riccardi, Umberto; Rosat, Severine; Hinderer, Jacques

    2010-05-01

    15 µGal/day, after about 1 month of operation. Moreover we tried to improve the drift modeling by using frequent (about every 5 days) absolute gravity (AG) measurements collected within about forty days; the measurements have been carried out with FG5#211, but unfortunately during that time no significant gravity changes have been detected which would have helped us to discriminate short-term drift excursions from real gravity changes by superimposing the gPhone data onto the AG points.

  12. A traverse gravimeter for the lunar surface

    NASA Technical Reports Server (NTRS)

    Mamon, G.

    1971-01-01

    A semi-automatic, self-levelling lunar gravimeter was designed for the purpose of measuring gravity at predetermined stops along the route of a lunar rover vehicle to obtain a gravity profile. The traverse gravimeter is completely self-contained and is powered by an internal battery. The gravity sensor is a vibrating string accelerometer (VSA) which is enclosed in a precision oven. Gravity data are obtained by initiating a measurement. After the gravimeter has levelled, the VSA difference frequency is counted down and a gate is generated to enable a crystal-controlled clock to a BCD counter. The BCD counter stores the data which are a measurement of gravity. These data, displayed upon command by the astronaut, are transmitted by voice back to earth. It is expected that the accuracy of the gravimeter will be better than one milligal. Low power, light weight, reliability, and simplicity of operation are major considerations in the design of the gravimeter.

  13. Gravimeter using high-temperature superconductor bearing.

    SciTech Connect

    Hull, J. R.

    1998-09-11

    We have developed a sensitive gravimeter concept that uses an extremely low-friction bearing based on a permanent magnet (PM) levitated over a high-temperature superconductor (HTS). A mass is attached to the PM by means of a cantilevered beam, and the combination of PM and HTS forms a bearing platform that has low resistance to rotational motion but high resistance to horizontal, vertical, or tilting motion. The combination acts as a low-loss torsional pendulum that can be operated in any orientation. Gravity acts on the cantilevered beam and attached mass, accelerating them. Variations in gravity can be detected by time-of-flight acceleration, or by a control coil or electrode that would keep the mass stationary. Calculations suggest that the HTS gravimeter would be as sensitive as present-day superconducting gravimeters that need cooling to liquid helium temperatures, but the HTS gravimeter needs cooling only to liquid nitrogen temperatures.

  14. Laser interferometry method for absolute measurement of the acceleration of gravity

    NASA Technical Reports Server (NTRS)

    Hudson, O. K.

    1971-01-01

    Gravimeter permits more accurate and precise absolute measurement of g without reference to Potsdam values as absolute standards. Device is basically Michelson laser beam interferometer in which one arm is mass fitted with corner cube reflector.

  15. Global absolut gravity reference system as replacement of IGSN 71

    NASA Astrophysics Data System (ADS)

    Wilmes, Herbert; Wziontek, Hartmut; Falk, Reinhard

    2015-04-01

    The determination of precise gravity field parameters is of great importance in a period in which earth sciences are achieving the necessary accuracy to monitor and document global change processes. This is the reason why experts from geodesy and metrology joined in a successful cooperation to make absolute gravity observations traceable to SI quantities, to improve the metrological kilogram definition and to monitor mass movements and smallest height changes for geodetic and geophysical applications. The international gravity datum is still defined by the International Gravity Standardization Net adopted in 1971 (IGSN 71). The network is based upon pendulum and spring gravimeter observations taken in the 1950s and 60s supported by the early free fall absolute gravimeters. Its gravity values agreed in every case to better than 0.1 mGal. Today, more than 100 absolute gravimeters are in use worldwide. The series of repeated international comparisons confirms the traceability of absolute gravity measurements to SI quantities and confirm the degree of equivalence of the gravimeters in the order of a few µGal. For applications in geosciences where e.g. gravity changes over time need to be analyzed, the temporal stability of an absolute gravimeter is most important. Therefore, the proposition is made to replace the IGSN 71 by an up-to-date gravity reference system which is based upon repeated absolute gravimeter comparisons and a global network of well controlled gravity reference stations.

  16. Observed secular gravity trend at Onsala station with the FG5 gravimeter from Hannover

    NASA Astrophysics Data System (ADS)

    Timmen, L.; Engfeldt, A.; Scherneck, H.-G.

    2015-04-01

    Annual absolute gravity measurements with a FG5 instrument were performed in Onsala Space Observatory by the Institute of Geodesy of the Leibniz Universität Hannover from 2003 to 2011 and have been continued with the upgraded meter FG5X in 2014. Lantmäteriet, Gävle, with their FG5 absolute gravimeter have visited Onsala since 2007. Because small systematic errors may be inherent in each absolute gravimeter, their measuring level and a resulting bias (offset) between the instruments must be controlled over time by means of inter-comparison. From 2007 to 2014, 8 direct comparisons took place well distributed over the time span. A complete re-processing of the absolute gravity observations with the Hannover instrument has been conducted to improve the reduction of unwanted gravity effects. A new tidal model is based on continuous time series recorded with the GWR superconducting gravimeter at Onsala since 2009. The loading effect of the Kattegat is described with a varying sea bottom pressure (water and air mass load) and has been validated with the continuous gravity measurements. For the land uplift,which is a result of the still ongoing glacial isostatic adjustment in Fennoscandia, a secular gravity trend of -0.22 μGal/yr was obtained with a standard deviation of 0.17 μGal/yr. That indicates a slight uplift but is still not significantly different from zero.

  17. Measured and modelled absolute gravity changes in Greenland

    NASA Astrophysics Data System (ADS)

    Nielsen, J. Emil; Forsberg, Rene; Strykowski, Gabriel

    2014-01-01

    In glaciated areas, the Earth is responding to the ongoing changes of the ice sheets, a response known as glacial isostatic adjustment (GIA). GIA can be investigated through observations of gravity change. For the ongoing assessment of the ice sheets mass balance, where satellite data are used, the study of GIA is important since it acts as an error source. GIA consists of three signals as seen by a gravimeter on the surface of the Earth. These signals are investigated in this study. The ICE-5G ice history and recently developed ice models of present day changes are used to model the gravity change in Greenland. The result is compared with the initial measurements of absolute gravity (AG) change at selected Greenland Network (GNET) sites.

  18. Using superconducting gravimeters as an infiltrometer

    NASA Astrophysics Data System (ADS)

    Ferre, Ty P. A.; Kennedy, Jeffrey; Güntner, Andreas; Abe, Maiko; Creutzfeldt, Benjamin

    2014-05-01

    Infiltration tests provide useful information to characterize potential recharge sites, parameterize rainfall-runoff models, and to "close the water balance" in groundwater flow models by directly measuring recharge rates. Typical infiltrometers—ring infiltrometers and tension infiltrometers that sit on the land surface, borehole permeameters, and others—sample only a relatively small area, and as spatial heterogeneity increases, so too does the number of measurements required. As an alternative, precise measurements of the time-varying gravitational field provide a direct, non-invasive, spatially-averaged measurement of infiltrated water. Unlike other methods, gravimeters are sensitive both to shallow infiltration close to the instrument and large changes far from the instrument. Using field experiments, the same gravimeter is demonstrated to accurately measure (a) water content changes of a few percent in the upper centimeters of the soil profile, and (b) infiltration rates of 20,000 cubic meters per day, to depths of tens of meters, at an artificial recharge facility. In both cases, gravity data are used to identify important parameters in one- and two-dimensional unsaturated-zone flow models.

  19. Potential causes of absolute gravity changes in Taiwan over 2004-2014

    NASA Astrophysics Data System (ADS)

    Kao, R.; Hwang, C.; Kim, J. W.; Masson, F.; Mouyen, M.

    2015-12-01

    We use absolute gravimeter (AG) and GPS observations collected from 2004 to 2014 in Taiwan to identify mass changes in connection to Moho deepening, volcanism, subsidence, earthquake and plate collision. The gravity observations are measured at sites of different geological settings under the AGTO and NGDS projects. The resulting gravity changes cannot be fully explained by vertical motions derived from GPS. Unlike previous AG gravity studies in Taiwan, we apply hydrology-induced gravity changes to raw gravity measurements using a simple model that estimates the Bouguer gravity effect due to rainfalls. Typhoon Morakot, occurring on August 8, 2009, results in torrential rainfalls and large debris flows in southern Taiwan. Morakot causes a gravity increase of 51.22 μGal near an AG site along the southern cross-island highway. The M7.0 Hengchun earthquake on December 26, 2006 causes a gravity rise of 2.32 μGal at the KDNG AG site near its epicenter. A Moho thickening rate (-0.81 μGal/yr) in central Taiwan and a deep-fault slip rate (-0.94 μGal/yr) in eastern Taiwan are postulated from the gravity changes. Other distinct gravity changes are potentially associated with the subsidence in Yunlin County (-2.73 μGal/yr), the magma coolings in Tatun Volcano Group (0.12 μGal/yr), Green Island (-2.95 μGal/yr) and Orchid Island (-0.97μGal/yr).

  20. Performances and capabilities of the mobile LNE-SYRTE Cold Atom Gravimeter

    NASA Astrophysics Data System (ADS)

    Merlet, S.; Farah, T.; Lautier, J.; Landragin, A.; Pereira Dos Santos, F.

    2013-12-01

    Atom interferometry technics allow for the realization of a new generation of instruments for inertial sensing based on laser cooled atoms. We have developped an absolute gravimeter (CAG) based on these technics, which can perform continuous gravity measurements at high cycling rate. This instrument, operating since summer 2009 is the new metrological french standard for gravimetry. The CAG has been developped to be movable to participate to international comparisons and on field measurement. It took part to several comparisons such as ICAG'09 and ECAG'11 and operated in urban environment and low noise underground laboratory. The atom gravimeter operates with a high cycling rate of 3 Hz. Its sensitivity is predominantly limited by ground vibration noise which can be rejected thanks to isolation platforms and/or correlation with other sensors such as broadband accelerometers or sismometers. These developments allow us to perform continuous gravity measurements, no matter what the sismic conditions are and even in the worst cases such as during earthquakes. At best, a sensitivity below 1 μGal after only 100 s measurement time without any ground vibration isolation system have been obtained. Presently, the measurement accuracy is 4 μGal, which we plan to reduce to 1 μGal or below. I will present the instrument, the principle of gravity acceleration measurement and its performances and results during comparisons, in different environmental conditions such as at LSBB, an underground laboratory, or during earthquakes. Comparison with our superconducting gravimeter iGrav recently installed in our laboratory will also be presented. Then I will be able to present other geometries for different applications.

  1. Measurement of the Earth tides with a MEMS gravimeter.

    PubMed

    Middlemiss, R P; Samarelli, A; Paul, D J; Hough, J; Rowan, S; Hammond, G D

    2016-03-31

    The ability to measure tiny variations in the local gravitational acceleration allows, besides other applications, the detection of hidden hydrocarbon reserves, magma build-up before volcanic eruptions, and subterranean tunnels. Several technologies are available that achieve the sensitivities required for such applications (tens of microgal per hertz(1/2)): free-fall gravimeters, spring-based gravimeters, superconducting gravimeters, and atom interferometers. All of these devices can observe the Earth tides: the elastic deformation of the Earth's crust as a result of tidal forces. This is a universally predictable gravitational signal that requires both high sensitivity and high stability over timescales of several days to measure. All present gravimeters, however, have limitations of high cost (more than 100,000 US dollars) and high mass (more than 8 kilograms). Here we present a microelectromechanical system (MEMS) device with a sensitivity of 40 microgal per hertz(1/2) only a few cubic centimetres in size. We use it to measure the Earth tides, revealing the long-term stability of our instrument compared to any other MEMS device. MEMS accelerometers--found in most smart phones--can be mass-produced remarkably cheaply, but none are stable enough to be called a gravimeter. Our device has thus made the transition from accelerometer to gravimeter. The small size and low cost of this MEMS gravimeter suggests many applications in gravity mapping. For example, it could be mounted on a drone instead of low-flying aircraft for distributed land surveying and exploration, deployed to monitor volcanoes, or built into multi-pixel density-contrast imaging arrays. PMID:27029276

  2. Measurement of the Earth tides with a MEMS gravimeter

    NASA Astrophysics Data System (ADS)

    Middlemiss, R. P.; Samarelli, A.; Paul, D. J.; Hough, J.; Rowan, S.; Hammond, G. D.

    2016-03-01

    The ability to measure tiny variations in the local gravitational acceleration allows, besides other applications, the detection of hidden hydrocarbon reserves, magma build-up before volcanic eruptions, and subterranean tunnels. Several technologies are available that achieve the sensitivities required for such applications (tens of microgal per hertz1/2): free-fall gravimeters, spring-based gravimeters, superconducting gravimeters, and atom interferometers. All of these devices can observe the Earth tides: the elastic deformation of the Earth’s crust as a result of tidal forces. This is a universally predictable gravitational signal that requires both high sensitivity and high stability over timescales of several days to measure. All present gravimeters, however, have limitations of high cost (more than 100,000 US dollars) and high mass (more than 8 kilograms). Here we present a microelectromechanical system (MEMS) device with a sensitivity of 40 microgal per hertz1/2 only a few cubic centimetres in size. We use it to measure the Earth tides, revealing the long-term stability of our instrument compared to any other MEMS device. MEMS accelerometers—found in most smart phones—can be mass-produced remarkably cheaply, but none are stable enough to be called a gravimeter. Our device has thus made the transition from accelerometer to gravimeter. The small size and low cost of this MEMS gravimeter suggests many applications in gravity mapping. For example, it could be mounted on a drone instead of low-flying aircraft for distributed land surveying and exploration, deployed to monitor volcanoes, or built into multi-pixel density-contrast imaging arrays.

  3. Absolute gravity measurements in Southeast Alaska and continuous gravity observation in Juneau by ISEA2 project

    NASA Astrophysics Data System (ADS)

    Sato, T.; Kazama, T.; Miura, S.; Ohta, Y.; Okubo, S.; Fujimoto, H.; Kaufman, M.; Herreid, S. J.; Larsen, C. F.; Freymueller, J. T.

    2012-12-01

    It is known that Southeast Alaska (SE-AK) shows a large uplift rates exceeding 32 mm/year at the maximum mainly due to the three ice changes in ages, i.e. in the Large Glacier Maximum, the Little Ice Age and the present day. Comparisons between rates of change obtained from GPS and absolute gravimeter (AG) observations and the rates predicted by model computations based on independently estimated ice mass changes indicate the existence of a very thin lithosphere (on the order of 60 km) and a low viscousity upper mantle (on the order of 1.E18 Pa s) beneath SE-AK (Larsen et al., 2005; Sato et al, 2011; Sato et al., 2012). On the other hand, it is also known that there are very large oceanic tidal loading effects in SE-AK, i.e. exceeding 2.7 cm and 8 microGals for the M2 constituent of the vertical displacement and gravity, respectively (Sato et al., 2008; Inazu et al., 2009; Sun et al., 2010; Sato et al., 2012). These regional large loading and unloading effects provide good signals to study the viscoelastic structure beneath SE-AK. A joint observation project (ISEA2) between Japan and USA groups has restarted as a five years project beginning in 2012. In June 2012, we conducted the AG measurements at the 6 sites in SE-AK at where the AG measurements were conducted by the previous ISEA1 project (Sun et al., 2010). Continuous gravity observation started also on June 2012 with a portable super conducting gravimeter (iGrav) at the EGAN library of UAS. We will introduce the results for these observations and comparisons with the previous observations and model computations. It is noted that the precipitation during the period from the winter in 2011 to the spring in 2012 was very large compared with the usual amount. We evaluate this effect on our gravity observations with a hydrological model computation (Kazama and Okubo, 2009) using the observed precipitation data as an input data. The observation with the iGrav super conducting gravimeter shall give us a useful data

  4. Fast-electron ejection from C, Ni, Ag and Au foils by 36 Ar 18 + (95 MeV/u): Measurements of absolute cross-sections

    NASA Astrophysics Data System (ADS)

    de Filippo, E.; Lanzanó, G.; Rothard, H.; Volant, C.; Aiello, S.; Anzalone, A.; Arena, N.; Geraci, M.; Giustolisi, F.; Pagano, A.

    2004-07-01

    Doubly differential electron velocity spectra induced by 36Ar18 + (95 MeV/ u) from thin target foils (C, Ni, Ag, Au) were measured at GANIL (Caen, France) by means of the ARGOS multidetector and the time-of-flight technique. The main features observed in the forward spectra are convoy electrons, binary-encounter electrons, and (for the Au target only) a high-velocity tail which we attribute to a “Fermi shuttle” acceleration mechanism. Backward spectra do not show distinct structures. The spectra allow us to determine absolute singly differential cross-sections as a function of the target material and the emission angle. The convoy electron yield increases with the target atomic number, but for C their yield is so small that our experiment is not able to detect them. Absolute doubly differential cross-sections for binary-encounter electron ejection from C targets are well described by a transport theory which is based on the relativistic electron impact approximation (EIA) for electron production and which accounts for angular deflection, energy loss and energy straggling of the transmitted electrons.

  5. Still Readings and Long-term Drift in GRAV-D's TAGS Gravimeters

    NASA Astrophysics Data System (ADS)

    Imahori, G.; Preaux, S. A.; Damiani, T.

    2013-12-01

    NOAA's National Geodetic Survey (NGS) has been acquiring airborne gravity data for the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project since 2008. The raw gravity data includes gravimeter still readings made both before and after a gravity flight. These still readings are used to account for instrument drift and to tie the measurement to an absolute gravity mark. The method used to collect still readings varies from one group or operator to another in both the length of time the gravimeter is left to settle and in whether the raw gravity value is recomputed or not. Several long-duration, stationary data sets were collected with NGS's TAGS meter, S-137. This data will be used in conjunction with the routinely collected still readings to investigate the effects of the variations in method. Additionally the routinely collected still readings will be used to examine the long term drift of both of NGS's TAGS systems, S-137 & S-161.

  6. Using Superconducting Gravimeter iGrav for detecting small mass change in field measurements (a case study)

    NASA Astrophysics Data System (ADS)

    Kao, Ricky; Neumeyer, Juergen; Kabirzadeh, Hojjat; Sideris, Michael; Kim, Jeong Woo

    2013-04-01

    A number of geophysical and geodetic measuring techniques can be used to monitor phenomena related to geohazards and geodynamics at the earth surface, but are unable to observe subsurface mass transfer of man-made or natural origins. Because of drift and low signal resolution, a spring-type gravimeter has limited applications in areas such as monitoring geological CO2 storage, hydrocarbon reservoirs, and episodic tremor and slip (ETS). The drift and resolution problems make it even more complicated to detect non-periodic gravity signals that are associated with mass change. These limitations may be overcome by deploying a superconducting gravimeter (SG) such as i'Grav. i'Grav uses a magnetically levitated sphere as a test mass, and has considerably lower drift and a higher sensitivity in the time and frequency domains than conventional spring gravimeters. With these attributes, SG is able to record precise and continuous gravity variations over a long time for monitoring gravity change caused by geohazards and geodynamics activities. Parallel GPS and gravity records are necessary to explain the surface and subsurface movement. In order to determine offsets in the gravity signals due to horizontal and vertical movement of the gravity instruments, we performed various lab experiments with iGrav (#001) and Micro-g LaCoste's absolute gravimeter A10 in a quiet indoor environment (UofC). We used a professional camera dolly with a track and an electric lift table for a controlled movement to take gravity measurements at different locations. Offsets up to a 0.68 µGals due to the 210 pounds are placed on the top of iGrav. In our simulation, we concluded that the gravimetric method can be used to monitor surface gravity change at µGal level, which ETS is found to be associated with surface deformation at a few millimeters at a site Cascadia Subduction Zone.

  7. The Austrian absolute gravity base net: 27 years of spatial and temporal acquisition of gravity data

    NASA Astrophysics Data System (ADS)

    Ullrich, Christian; Ruess, Diethard

    2014-05-01

    Since 1987 the BEV (Federal Office of Metrology and Surveying) has been operating the absolute gravimeters JILAg-6 and FG5 which are used for basic measurements to determine or review fundamental gravity stations in Austria and abroad. Overall more than 70 absolute gravity stations were installed in Austria and neighbouring countries and some of them have been regularly monitored. A few stations are part of international projects like ECGN (European Combined Geodetic network) and UNIGRACE (Unification of Gravity System in Central and Eastern Europe). As a national metrology institute (NMI) the Metrology Service of the BEV maintains the national standards for the realisation of the legal units of measurement and ensures their international equivalence and recognition. Thus the BEV maintains the national standard for gravimetry in Austria, which is validated and confirmed by international comparisons. Since 1989 the Austrian absolute gravimeters participated seven times in the ICAG's (International Comparison of Absolute Gravimeters) at the BIPM in Paris and Luxemburg and as well participated three times at the ECAG (European Comparison of Absolute Gravimeters) in Luxemburg. The results of these ICAG's and especially the performance of the Austrian absolute gravimeter are reported in this presentation. We also present some examples and interpretation of long time monitoring stations of absolute gravity in several Austrian locations. Some stations are located in large cities like Vienna and Graz and some others are situated in mountainous regions. Mountain stations are at the Conrad Observatory where a SG (Superconducting Gravimeter) is permanently monitoring and in Obergurgl (Tyrolia) at an elevation of approx. 2000 m which is very strong influenced from the glacier retreat.

  8. Combined absolute and relative gravity measurement for microgravity monitoring in Aso volcanic field

    NASA Astrophysics Data System (ADS)

    Sofyan, Yayan; Nishijima, Jun; Yoshikawa, Shin; Fujimitsu, Yasuhiro; Kagiyama, Tsuneomi; Fukuda, Yoichi

    2014-05-01

    Absolute measurement with a portable A10-017 absolute gravimeter at some benchmarks in the Aso volcanic field are valuable for reducing uncertainties of regional gravity variations and will be useful for delineating the long term trends of gravity changes. A10 absolute gravimeter is a new generation of portable absolute instrument and has accuracy 10 microGal. To further the development of a high precision gravity data, we also conducted measurement using two relative gravimeter (Scintrex CG-5 [549] and LaCoste type G-1016) to be combined with an A10 absolute gravimeter. The using absolute gravimeter along with relative gravimeter can reduce drift correction factor and improve the result of gravity change data in microgravity monitoring. Microgravity monitoring is a valued tool for mapping the redistribution of subsurface mass and for assessing changes in the fluid as a dynamic process in volcanic field. Gravity changes enable the characterization of subsurface processes: i.e., the mass of the intrusion or hydrothermal flow. A key assumption behind gravity monitoring is that changes in earth's gravity reflect mass-transport processes at depth [1]. The absolute gravity network was installed at seven benchmarks using on May 2010, which re-occupied in October 2010, and June 2011. The relative gravity measurements were performed at 28 benchmarks in one month before the eruption on May 2011 and then followed by series of gravity monitoring after the eruption in every three to five months. Gravity measurements covered the area more than 60 km2 in the west side of Aso caldera. Some gravity benchmarks were measured using both absolute and relative gravimeter and is used as the reference benchmarks. In longer time period, the combined gravity method will improve the result of gravity change data for monitoring in the Aso volcanic field. As a result, the gravity changes detected the hydrothermal flow in the subsurface which has a correlation to water level fluctuation in the

  9. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  10. A new gravimetric reference station in South America: The installation of the Superconducting Gravimeters SG038 at the Argentinian-German Geodetic Observatory AGGO

    NASA Astrophysics Data System (ADS)

    Wziontek, Hartmut; Nowak, Ilona; Hase, Hayo; Häfner, Michael; Güntner, Andreas; Reich, Marvin; Brunini, Claudio

    2016-04-01

    In April 2015, the Transportable Integrated Geodetic Observatory (TIGO) of BKG was moved from Concepcion / Chile to La Plata / Argentina and was inaugurated in July 2015 as the Argentinian-German Geodetic Observatory (AGGO). In December 2015 the superconducting gravimeter SG038 was set up. The new station is equipped with four stable pillars to serve as a reference station and comparison site for absolute gravimeters in the future. We report about the overland transportation of the SG with the sphere floating, its installation at the new site and the hydrological instrumentation to observe local water storage changes to model near field gravimetric effects. We give an outlook about the first months of gravity time series and assess the drift behaviour after transport.

  11. Superconducting gravimeter observation for identifying slow slip events at Ryukyu Trench

    NASA Astrophysics Data System (ADS)

    Imanishi, Y.; Nawa, K.; Tamura, Y.; Ikeda, H.; Miyaji, T.; Tanaka, Y.

    2012-12-01

    Analysis of the data from the dense GPS network of Japan (GEONET) revealed quasi-periodic occurrences of long-term slow slip events at the Ryukyu Trench (Heki and Kataoka, 2008). The recurrence period of the events is about half a year, much shorter than typically found in other regions where slow slips are known to take place. Therefore, this region provides an interesting field for investigating the nature of slow slip events. In February 2012, we started gravity observation using a superconducting gravimeter (SG) at the VERA Ishigakijima Station, National Astronomical Observatory of Japan. The Ishigakijima island is located slightly east off the presumed fault area of the slow slip events. Our purpose is to detect gravity changes associated with the slow slip events by making full use of the high resolution of the SG. Of particular interest is the possible effect of water on the slow slip events, which might be identified from gravity observations. In addition to the SG, we installed an FG5 absolute gravimeter at the Iriomotejima island, located about 10 km west of the Ishigakijima island. The SG used in this study (serial number CT36) is the one which was in operation at the Inuyama Seismological Observatory, Nagoya University for about ten years. Before moving it to Ishigakijima, we made a thorough examination of the instruments. Because we found a serious problem in transferring liquid helium because of the ice inside, we warmed up the Dewar to initialize it. This not only solved the ice problem but also resulted in a significant decrease of the heater power for the gravity sensor. As of this writing, we have about six months worth of data from the SG. The condition of the gravimeter is good except for the first month when temperature control was unstable. Because of the ground vibrations caused by the movement of the 20-m VLBI antenna (about 30 m apart from the SG), the noise level is significantly enhanced compared with other domestic SG stations. Also we

  12. Observing absolute gravity change in the Fennoscandian postglacial rebound area

    NASA Astrophysics Data System (ADS)

    Mäkinen, J.; Engfeldt, A.; Gitlein, O.; Kaminskis, J.; Klopping, F.; Oja, T.; Paršeliunas, E.; Pettersen, B. R.; Strykowski, G.; Wilmes, H.

    2009-04-01

    Absolute gravity measurements in the Fennoscandian postglacial rebound area started already in 1976 when a team from Istituto di Metrología "G. Colonnetti" (Torino) measured six stations with the rise-and-fall gravimeter IMGC (Cannizzo et al., 1978). In 1980 two stations were measured by the team of the AN SSSR from Novosibirsk, using the gravimeter GABL (Arnautov et al., 1982). From the beginning the goal was to establish reference values for future remeasurement in order to detect gravity change due to the postglacial rebound. The maximum uplift rates are 1 cm/yr, which implies a surface gravity change of about -2 microgal/yr. In 1988, regular repeat measurements were began by the Finnish Geodetic Institute (FGI) with the JILAg-5. An important advance was the introduction of FG5 gravimeters into the work by BKG (Frankfurt a/M) and NOAA (Boulder, CO) in 1993. In 2003 annual large-scale campaigns with FG5 gravimeters started, coordinated by the Working Group for Geodynamics of the Nordic Geodetic Commission (NKG). This was prompted by the launch of the GRACE satellite gravity mission, which made it important to collect a comprehensive set of ground-truth values of gravity change during the lifetime of the satellite pair. The initial participation by gravimeter teams of Leibniz Universität Hannover, FGI and BKG has since expanded to include the University of Life Sciences (Ås, Norway) and Lantmäteriet (Gävle, Sweden). At present some 50 sites have repeated absolute measurements and most of them are co-located with continuous GPS. We give an overview of the sites, instrumentation and campaigns, and show examples of results achieved so far.

  13. Continuous gravity observations at active volcanoes through superconducting gravimeters

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Greco, Filippo

    2016-04-01

    Continuous gravity measurements at active volcanoes are usually taken through spring gravimeters that are easily portable and do not require much power to work. However, intrinsic limitations dictate that, when used in continuous, these instruments do not provide high-quality data over periods longer than some days. Superconducting gravimeters (SG), that feature a superconducting sphere in a magnetic field as the proof mass, provide better-quality data than spring gravimeters, but are bigger and need mains electricity to work, implying that they cannot be installed close to the active structures of high volcanoes. An iGrav SG was installed on Mt. Etna (Italy) in September 2014 and has worked almost continuously since then. It was installed about 6km from the active craters in the summit zone of the volcano. Such distance is normally too much to observe gravity changes due to relatively fast (minutes to days) volcanic processes. Indeed, mass redistributions in the shallowest part of the plumbing system induce short-wavelength gravity anomalies, centered below the summit craters. Nevertheless, thanks to the high precision and long-term stability of SGs, it was possible to observe low-amplitude changes over a wide range of timescales (minutes to months), likely driven by volcanic activity. Plans are in place for the implementation of a mini-array of SGs at Etna.

  14. High tilt susceptibility of the Scintrex CG-5 relative gravimeters

    NASA Astrophysics Data System (ADS)

    Reudink, R.; Klees, R.; Francis, O.; Kusche, J.; Schlesinger, R.; Shabanloui, A.; Sneeuw, N.; Timmen, L.

    2014-06-01

    We report on the susceptibility of the Scintrex CG-5 relative gravimeters to tilting, that is the tendency of the instrument of providing incorrect readings after being tilted (even by small angles) for a moderate period of time. Tilting of the instrument can occur when in transit between sites usually on the backseat of a car even using the specially designed transport case. Based on a series of experiments with different instruments, we demonstrate that the readings may be offset by tens of Gal. In addition, it may take hours before the first reliable readings can be taken, with the actual time depending on how long the instrument had been tilted. This sensitivity to tilt in combination with the long time required for the instrument to provide reliable readings has not yet been reported in the literature and is not addressed adequately in the Scintrex CG-5 user manual. In particular, the inadequate instrument state cannot easily be detected by checking the readings during the observation or by reviewing the final data before leaving a site, precautions suggested by Scintrex Ltd. In regional surveys with car transportation over periods of tens of minutes to hours, the gravity measurements can be degraded by some 10 Gal. To obtain high-quality results in line with the CG-5 specifications, the gravimeters must remain in upright position to within a few degrees during transits. This requirement may often be unrealistic during field observations, particularly when observing in hilly terrain or when walking with the instrument in a backpack.

  15. Development of a submersible gravimeter on underwater vehicles

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Kanazawa, T.; Fujimoto, H.; Shinohara, M.; Ishihara, T.; Araya, A.; Iizasa, K.; Tsukioka, S.

    2012-12-01

    Gravity is one of the powerful indices to profile underground structures. Surface ship gravimeters are popular tool for the purpose of collecting gravity values in marine region. They enable you to obtain gravity values from large area easily, while the resolutions are relatively low because of the distance between the sea surface and bottom. Otherwise, ocean bottom gravimeters are able to be observed gravity with high resolution, but they have still covered few limited sites so that they are designed to do observation in quiet only. In some cases, such as hydrothermal deposit survey, the medium performance both in resolution and size of survey area are required. This paper describes a gravimeter we have been developing for satisfying the requirements. Our target is to detect gravity anomalies less than 1 mgal by using an underwater vehicle. This setting is roughly equivalent to find a typical hydrothermal deposit with a dimension of 0.5 km x 0.5 km x 10 m and a density contrast of 1 g/cm3 when we set the sensor at 50 m high from the seafloor. There are some issues such as noise reduction, robustness and downsizing to clear the target. A gravity sensor (Micro-g LaCoste S-174) is mounted on a gimbal control unit with an inertial navigation sensor for the problems. These are stored in a sphere vessel made of titanium alloy (125 kgf in air, 32 kgf in water) and it is available in 3500 m below sea surface. Furthermore, in order to reduce high frequency noise due to mainly the vehicle motion through a low-pass filter, data are able to be stored at sampling rates of approximately 100 Hz. The logging system and control unit for communication to/from ship is stored another canister (22 kgf in air, 10 kgf in water). We made gravity measurement experiments to examine the effectiveness of the gimbal system and filtering application. The gravimeter was set on a machine simulating pitch and roll motions with a period of 16 s and an amplitude of 7.5 degrees, which is greater

  16. Seasonal and short time gravity changes due to monsoonal rainfall in West Africa using a superconducting gravimeter

    NASA Astrophysics Data System (ADS)

    Hector, Basile; Hinderer, Jacques; Séguis, Luc; Boy, Jean-Paul; Calvo, Marta; Descloitres, Marc; Rosat, Séverine; Riccardi, Umberto

    2013-04-01

    A superconducting gravimeter (SG) has been installed since 2010 in Djougou, northern Benin, within the framework of the GHYRAF (Gravity and Hydrology in Africa) project. This site was first measured with a FG5 absolute gravimeter four times a year from 2008 to 2011. It was then decided to install a superconducting gravimeter in order to monitor in a continuous way the strong annual monsoon signal with both local and non-local hydrological contributions within the humid sudanian zone of West-Africa. The area is also part of the long-term observing system AMMA-Catch, and thus under intense hydro-meteorological monitoring (rain, soil moisture, water table level, evapotranspiration, etc…). We present here the results of the first two years relative gravity monitoring with SG-060 from GWR Instruments. FG5 absolute gravity data are used for calibration and drift estimate of the SG. As everywhere on the GGP (Global Geodynamics project) stations, the signal includes solid earth tides, ocean loading, polar motion, atmospheric pressure effects, drift and water storage changes (WSC). The barometric corrections are more complicated than for mid-latitude stations; indeed pressure effects are of major concern in the equatorial band, because they are governed by S1 and S2 thermal pressure waves. These waves dominate both the local Newtonian effect (an increase in local pressure decreases the gravity) and the smaller non-local loading effect (an increase in regional pressure decreases the gravity mostly by a subsidence effect of the elastic earth) because of their coherency at the regional scale. We focus here on two predominant frequencies: first the seasonal cycle where we compare the seasonal gravity signal left in the residuals after correction for solid Earth and ocean tides, atmosphere, polar motion and long term drift to Water Storage Changes (WSC) computed from observations in soil moisture (using neutronic measurements) and water table variations. Second we investigate

  17. The influence of transverse motion within an atomic gravimeter

    NASA Astrophysics Data System (ADS)

    Louchet-Chauvet, Anne; Farah, Tristan; Bodart, Quentin; Clairon, André; Landragin, Arnaud; Merlet, Sébastien; Pereira Dos Santos, Franck

    2011-06-01

    Limits on the long-term stability and accuracy of a second generation cold atom gravimeter are investigated. We demonstrate a measurement protocol based on four interleaved measurement configurations, which allows rejection of most of the systematic effects, but not those related to Coriolis acceleration and wave-front distortions. Both are related to the transverse motion of the atomic cloud. Carrying out measurements with opposite orientations with respect to the Earth's rotation vector direction allows us to separate the effects and correct for the Coriolis shift. Finally, measurements at different atomic temperatures are presented and analyzed. In particular, we show the difficulty of extrapolating these measurements to zero temperature, which is required in order to correct for the bias due to wave-front distortions.

  18. The Path to an Up-to-date Absolute Gravity Reference System

    NASA Astrophysics Data System (ADS)

    Wilmes, H.; Falk, R.; Wziontek, H.

    2014-12-01

    The determination of precise gravity field parameters is of great importance in a period in which earth sciences are achieving the necessary accuracy to monitor and document global change processes. This is the reason why experts from geodesy and metrology joined in a successful cooperation to make absolute gravity observations traceable to SI quantities, to improve the metrological kilogram definition and to monitor mass movements and smallest height changes for geodetic and geophysical applications. How can we determine such a gravity reference system and secure it over multiple decades? Precise knowledge of the gravity acceleration and definition of standards, models and corrections are an important prerequisite to the definition of the gravity system. Over more than three decades, the absolute gravity community cooperated successfully to obtain the gravity reference in comparisons at intervals of 4 years and to certify metrological equivalence between National Metrology Institutes. With increasing resolution of the absolute gravimeter sensors and new measurement principles it becomes obvious that such comparisons are not sufficient for all applications. Mainly for geodetic purposes it is necessary to sub-divide comparison intervals and maintain a connected network of gravity reference sites where compared absolute gravimeters operate together with superconducting gravimeters to derive a continuous gravity reference function. By means of this distributed monitoring of the gravity reference it will also be possible to relate observations of earlier absolute gravimeters to the present-day and to future instruments. It will be possible to include new sensors like atom interferometers and in future to relate the results of precise optical clocks. With co-located space geodetic sensors like GNSS, SLR and VLBI, these reference sites fulfill the conditions of a geodetic fundamental station as a component of IAG's Global Geodetic Observing System.

  19. Five years' gravity observation with the superconducting gravimeter OSG#058 at Syowa Station, East Antarctica: gravitational effects of accumulated snow mass

    NASA Astrophysics Data System (ADS)

    Aoyama, Yuichi; Doi, Koichiro; Ikeda, Hiroshi; Hayakawa, Hideaki; Shibuya, Kazuo

    2016-05-01

    Continuous gravimetric observations have been made with three successive generations of superconducting gravimeter over 20 yr at Syowa Station (39.6°E, 69.0°S), East Antarctica. The third-generation instrument, OSG#058, was installed in January 2010 and was calibrated by an absolute gravimeter during January and February, 2010. The estimated scale factor was -73.823 ± 0.053 μGal V-1 (1 μGal = 10-8 m s-2). The first 5 yr of OSG#058 data from 2010 January 7 to 2015 January 10 were decomposed into tidal waves (M3 to Ssa) and other non-tidal components by applying the Bayesian tidal analysis program BAYTAP. Long-term non-tidal gravity residuals, which were obtained by subtracting annual and 18.6 year tidal waves and the predicted gravity response to the Earth's variable rotation, showed significant correlation with the accumulated snow depth measured at Syowa Station. The greatest correlation occurred when the gravity variations lagged the accumulated snow depth by 21 d. To estimate the gravitational effect of the accumulated snow mass, we inferred a conversion factor of 3.13 ± 0.08 μGal m-1 from this relation. The accumulated snow depth at Syowa Station was found to represent an extensive terrestrial water storage (the snow accumulation) around Syowa Station, which was estimated from the Gravity Recovery and Climate Experiment satellite gravity data. The snow accumulation around Syowa Station was detectable by the superconducting gravimeter.

  20. Five years' gravity observation with the superconducting gravimeter OSG#058 at Syowa Station, East Antarctica: Gravitational effects of accumulated snow mass

    NASA Astrophysics Data System (ADS)

    Aoyama, Yuichi; Doi, Koichiro; Ikeda, Hiroshi; Hayakawa, Hideaki; Shibuya, Kazuo

    2016-02-01

    Continuous gravimetric observations have been made with three successive generations of superconducting gravimeter over 20 years at Syowa Station (39.6°E, 69.0°S), East Antarctica. The third-generation instrument, OSG#058, was installed in January 2010 and was calibrated by an absolute gravimeter during January and February, 2010. The estimated scale factor was -73.823 ± 0.053 μGal/V (1 μGal = 10-8 m/s2). The first five years of OSG#058 data from January 7, 2010 to January 10, 2015 were decomposed into tidal waves (M3 to Ssa) and other non-tidal components by applying the Bayesian tidal analysis program BAYTAP. Long-term non-tidal gravity residuals, which were obtained by subtracting annual and 18.6 year tidal waves and the predicted gravity response to the Earth's variable rotation, showed significant correlation with the accumulated snow depth measured at Syowa Station. The greatest correlation occurred when the gravity variations lagged the accumulated snow depth by 21 days. To estimate the gravitational effect of the accumulated snow mass, we inferred a conversion factor of 3.13 ± 0.08 μGal/m from this relation. The accumulated snow depth at Syowa Station was found to represent an extensive terrestrial water storage (the snow accumulation) around Syowa Station, which was estimated from the Gravity Recovery and Climate Experiment (GRACE) satellite gravity data. The snow accumulation around Syowa Station was detectable by the superconducting gravimeter.

  1. A compact laser system for the cold atom gravimeter

    NASA Astrophysics Data System (ADS)

    Wang, Qiyu; Wang, Zhaoying; Fu, Zhijie; Liu, Weiyong; Lin, Qiang

    2016-01-01

    With the rapid development of the technologies in the field of laser cooling atoms, a portable and stable laser system is urgently required for the wide applications based on the cold atoms. In this paper, we report a modular laser system for a gravimeter based on atom interferometry, which enable us to realize high-precision gravity measurements outside of laboratory. The system is based on two distributed feedback (DFB) laser diodes of 1560 nm, which are used as the master laser and the reference laser respectively. The frequency of the reference laser is locked on a rubidium transition, the master laser is frequency locked on the reference one by the method of beat locking. The master laser is power amplified firstly by the erbium-doped fiber amplifier (EDFA), and then frequency doubled by using a periodically poled lithium niobate (PPLN) crystal to obtain 1 W laser output at 780 nm. The repumping and Raman lasers are generated by adding an electro-optic modulation on the master laser, featuring extremely low phase noise. With this laser system, we obtain a cloud of 87Rb atoms with a temperature of 5 μKin a magneto-optical trapping. And a gravity resolution of 1.0 ×10-8 g within 200 s integration time is reached.

  2. Long-Term Stability of the SGA-WZ Strapdown Airborne Gravimeter

    PubMed Central

    Cai, Shaokun; Zhang, Kaidong; Wu, Meiping; Huang, Yangming

    2012-01-01

    Accelerometers are one of the most important sensors in a strapdown airborne gravimeter. The accelerometer's drift determines the long-term accuracy of the strapdown inertial navigation system (SINS), which is the primary and most critical component of the strapdown airborne gravimeter. A long-term stability test lasting 104 days was conducted to determine the characteristics of the strapdown airborne gravimeter's long-term drift. This stability test was based on the first set of strapdown airborne gravimeters built in China, the SGA-WZ. The test results reveal a quadratic drift in the strapdown airborne gravimeter data. A drift model was developed using the static data in the two end sections, and then this model was used to correct the test data. After compensating for the drift, the drift effect improved from 70 mGal to 3.46 mGal with a standard deviation of 0.63 mGal. The quadratic curve better reflects the drift's real characteristics. In comparison with other methodologies, modelling the drift as a quadratic curve was shown to be more appropriate. Furthermore, this method allows the drift to be adjusted throughout the course of the entire campaign. PMID:23112647

  3. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  4. Monitoring water storage variations in the vadose zone with gravimeters - quantifying the influence of observatory buildings

    NASA Astrophysics Data System (ADS)

    Reich, Marvin; Güntner, Andreas; Mikolaj, Michal; Blume, Theresa

    2016-04-01

    Time-lapse ground-based measurements of gravity have been shown to be sensitive to water storage variations in the surroundings of the gravimeter. They thus have the potential to serve as an integrative observation of storage changes in the vadose zone. However, in almost all cases of continuous gravity measurements, the gravimeter is located within a building which seals the soil beneath it from natural hydrological processes like infiltration and evapotranspiration. As water storage changes in close vicinity of the gravimeter have the strongest influence on the measured signal, it is important to understand the hydrology in the unsaturated soil zone just beneath the impervious building. For this reason, TDR soil moisture sensors were installed in several vertical profiles up to a depth of 2 m underneath the planned new gravimeter building at the Geodetic Observatory Wettzell (southeast Germany). In this study, we assess the influence of the observatory building on infiltration and subsurface flow patterns and thus the damping effect on gravimeter data in a two-way approach. Firstly, soil moisture time series of sensors outside of the building area are correlated with corresponding sensors of the same depth beneath the building. The resulting correlation coefficients, time lags and signal to noise relationships are used to find out how and where infiltrating water moves laterally beneath the building and towards its centre. Secondly, a physically based hydrological model (HYDRUS) with high discretization in space and time is set up for the 20 by 20 m area around and beneath the gravimeter building. The simulated spatial distribution of soil moisture in combination with the observed point data help to identify where and to what extent water storage changes and thus mass transport occurs beneath the building and how much this differs to the dynamics of the surroundings. This allows to define the umbrella space, i.e., the volume of the vadose zone where no mass

  5. Note: A three-dimension active vibration isolator for precision atom gravimeters

    SciTech Connect

    Zhou, Min-Kang; Xiong, Xin; Chen, Le-Le; Cui, Jia-Feng; Duan, Xiao-Chun; Hu, Zhong-Kun

    2015-04-15

    An ultra-low frequency active vibration isolator, simultaneously suppressing three-dimensional vibration noise, is demonstrated experimentally. The equivalent natural period of the isolator is 100 s and 12 s for the vertical and horizontal direction, respectively. The vibration noise in the vertical direction is about 50 times reduced during 0.2 and 2 Hz, and 5 times reduced in the other two orthogonal directions in the same frequency range. This isolator is designed for atom gravimeters, especially suitable for the gravimeter whose sensitivity is limited by vibration couplings.

  6. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  7. A highly accurate absolute gravimetric network for Albania, Kosovo and Montenegro

    NASA Astrophysics Data System (ADS)

    Ullrich, Christian; Ruess, Diethard; Butta, Hubert; Qirko, Kristaq; Pavicevic, Bozidar; Murat, Meha

    2016-04-01

    The objective of this project is to establish a basic gravity network in Albania, Kosovo and Montenegro to enable further investigations in geodetic and geophysical issues. Therefore the first time in history absolute gravity measurements were performed in these countries. The Norwegian mapping authority Kartverket is assisting the national mapping authorities in Kosovo (KCA) (Kosovo Cadastral Agency - Agjencia Kadastrale e Kosovës), Albania (ASIG) (Autoriteti Shtetëror i Informacionit Gjeohapësinor) and in Montenegro (REA) (Real Estate Administration of Montenegro - Uprava za nekretnine Crne Gore) in improving the geodetic frameworks. The gravity measurements are funded by Kartverket. The absolute gravimetric measurements were performed from BEV (Federal Office of Metrology and Surveying) with the absolute gravimeter FG5-242. As a national metrology institute (NMI) the Metrology Service of the BEV maintains the national standards for the realisation of the legal units of measurement and ensures their international equivalence and recognition. Laser and clock of the absolute gravimeter were calibrated before and after the measurements. The absolute gravimetric survey was carried out from September to October 2015. Finally all 8 scheduled stations were successfully measured: there are three stations located in Montenegro, two stations in Kosovo and three stations in Albania. The stations are distributed over the countries to establish a gravity network for each country. The vertical gradients were measured at all 8 stations with the relative gravimeter Scintrex CG5. The high class quality of some absolute gravity stations can be used for gravity monitoring activities in future. The measurement uncertainties of the absolute gravity measurements range around 2.5 micro Gal at all stations (1 microgal = 10-8 m/s2). In Montenegro the large gravity difference of 200 MilliGal between station Zabljak and Podgorica can be even used for calibration of relative gravimeters

  8. Mass balance monitoring of geological CO2 storage with a superconducting gravimeter - A case study

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Woo; Neumeyer, Juergen; Kao, Ricky; Kabirzadeh, Hojjat

    2015-03-01

    Although monitoring of geological carbon dioxide (CO2) storage is possible with a number of geophysical and geodetic techniques (e.g., seismic survey), gravimetric monitoring is known to be the most accurate method for measuring total mass changes. Therefore, it can be used for detection of storage pore space content changes and migration of CO2 plumes. A superconducting gravimeter (SG) installed on the Earth's surface provides precise and continuous records of gravity variations over time for periods from minutes to decades, which are required for monitoring subsurface CO2 storage. Due to the fact that gravimeter records combine the gravity effects of surface displacement and subsurface mass change, these two effects must be separated properly for observing CO2 mass balance. The Newtonian attraction gravity effect of stored CO2 is modeled as a function of reservoir depth and CO2 mass for different locations of the gravimeter over the reservoir. The gravity effect of the surface deformation is considered according to the modeled and measured displacement above the CO2 reservoir at the gravimeter's position. For estimation of the detection threshold, an assessment is carried out for the gravity corrections, which must be subtracted from the raw gravity data before obtaining the gravity signal of the stored CO2. A CO2 signal larger than about 0.5 μGal can be detected with an SG's continuous recordings. A measured gravity profile along the reservoir can support the continuous measurements. For providing objective evidence of a CO2 stored gravity signal, real measured raw SG gravity data of the MunGyung site in Korea were superimposed with an artificial uniformly continuous gravity signal up to 1.7 μGal, representing a gravity signal from a CO2 storage site with increasing injections up to about 105 kt at a depth of 600 m. These data were analyzed, and the CO2 storage signal could be clearly identified.

  9. Four Years of Absolute Gravity in the Taiwan Orogen (AGTO)

    NASA Astrophysics Data System (ADS)

    Mouyen, Maxime; Masson, Frédéric; Hwang, Cheinway; Cheng, Ching-Chung; Le Moigne, Nicolas; Lee, Chiung-Wu; Kao, Ricky; Hsieh, Nicky

    2010-05-01

    AGTO is a scientific project between Taiwanese and French institutes, which aim is to improve tectonic knowledge of Taiwan primarily using absolute gravity measurements and permanent GPS stations. Both tools are indeed useful to study vertical movements and mass transfers involved in mountain building, a major process in Taiwan located at the convergent margin between Philippine Sea plate and Eurasian plate. This convergence results in two subductions north and south of Taiwan (Ryukyu and Manilla trenches, respectively), while the center is experiencing collision. These processes make Taiwan very active tectonically, as illustrated by numerous large earthquakes and rapid uplift of the Central Range. High slopes of Taiwan mountains and heavy rains brought by typhoons together lead to high landslides and mudflows risks. Practically, absolute gravity measurements have been yearly repeated since 2006 along a transect across south Taiwan, from Penghu to Lutao islands, using FG5 absolute gravimeters. This transect contains ten sites for absolute measurements and has been densified in 2008 by incorporating 45 sites for relative gravity measurements with CG5 gravimeters. The last relative and absolute measurements have been performed in November 2009. Most of the absolute sites have been measured with a good accuracy, about 1 or 2 ?Gal. Only the site located in Tainan University has higher standard deviation, due to the city noise. We note that absolute gravity changes seem to follow a trend in every site. However, straightforward tectonic interpretation of these trends is not valuable as many non-tectonic effects are supposed to change g with time, like groundwater or erosion. Estimating and removing these effects leads to a tectonic gravity signal, which has theoretically two origins : deep mass transfers around the site and vertical movements of the station. The latter can be well constrained by permanent GPS stations located close to the measurement pillar. Deep mass

  10. Four Years of Absolute Gravity in the Taiwan Orogen (AGTO)

    NASA Astrophysics Data System (ADS)

    Mouyen, M.; Masson, F.; Hwang, C.; Cheng, C.; Le Moigne, N.; Lee, C.; Kao, R.; Hsieh, N.

    2009-12-01

    AGTO is a scientific project between Taiwanese and French institutes which aim is to improve tectonic knowledge of Taiwan primarily using absolute gravity measurements and permanent GPS stations. Both tools are indeed useful to study vertical movements and mass transfers involved in mountain building, a major process in Taiwan located at the convergent margin between Philippine Sea plate and Eurasian plate. This convergence results in two subductions north and south of Taiwan (Ryukyu and Manilla trenches, respectively), while the center is experiencing collision. These processes make Taiwan very active tectonically, as illustrated by numerous large earthquakes and rapid uplift of the Central Range. High slopes of Taiwan mountains and heavy rains brought by typhoons together lead to high landslides and mudflows risks. Practically, absolute gravity measurements have been yearly repeated since 2006 along a transect across south Taiwan, from Penghu to Lutao island, using FG5 absolute gravimeters. This transect contains ten sites for absolute measurements and has been densified in 2008 by incorporating 45 sites for relative gravity measurements with CG5 gravimeters. At the end of 2009, the relative gravity network will be densified again in its eastern part, i.e. in the Longitudinal Valley and the Central Range. A fourth set of absolute gravity measurements will also be performed at the same period. Most of the absolute sites have been measured with a good accuracy, about 1 or 2 μGal. Only the site located in Tainan University has higher standard deviation, due to the city noise. The stronger change in gravity reaches -7 μGal a -1 west of the Longitudinal Valley and might be explained by tectonic movement along a fault. A large decrease of -5 μGal a-1 is also measured in Tainan city and could be correlated with uplift of this region, also denoted by InSAR, leveling and GPS. Changes occurring in the Central Range are more difficult to interpret due to the small

  11. Information on the Earth's Deep Interior Conveyed by the 2004 Sumatra-Andaman Earthquake Using Superconducting Gravimeter Data

    NASA Astrophysics Data System (ADS)

    Rosat, S.; Watada, S.; Sato, T.; Tamura, Y.

    2005-12-01

    The recent Sumatra-Andaman earthquake of magnitude Mw > 9 on 2004 December 26th has strongly excited the low-frequency seismic modes and, in particular, the degree one 2S1 mode is observed for the first time without any stacking. This mode corresponds to the first overtone of the sub-seismic mode 1S1, the so-called Slichter triplet (Slichter, Proc. Nat. Acad. Sci., 1961). On the one hand, theoretical computations suggest that the Slichter modes could not have been excited with sufficient amplitude to be detected by superconducting gravimeters (SGs) on the Earth's surface. The maximum surface gravity effect of 1S1 after Sumatra event is 0.3 nGal, that is to say 0.3 10-12 g, where g is the mean absolute gravity value on the Earth's surface, corresponding to a free air displacement of 10-3 mm (1 nm). On the other hand, the core-sensitive mode 3S2 and the fundamental radial mode 0S0 were strongly excited, meaning that the earthquake radiated much energy toward the core. 0S0 is a radial fundamental spheroidal mode called "breathing mode" of the Earth and corresponds to changes in the Earth's circumference. The high stability of SG records has enabled us to follow the time decay of 0S0 amplitude till the second Sumatra event on March 28th 2005 and to estimate 0S0 quality factor at a value of 5513 +- 8 from the weighted mean of 12 SG record estimates. Amplitude measurements of 0S0 at most SG sites in the world reveal a latitude dependency that we try to explain by theory. The amplitude deviation of 0S0 reaches +- 2% while the calibration errors of SGs are usually less than 0.2%.

  12. Variations of absolute gravity accompanying earthquake-induced changes in subsurface pore water pressure at the Mizunami Underground Research Institute construction site, central Japan

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Salden, W.; Martin, A. J.; Saegusa, H.; Asai, Y.; Fujita, Y.; Aoki, H.

    2006-03-01

    The Tono Research Institute of Earthquake Science has been measuring gravity using an FG5 absolute gravimeter located at the Mizunami Geoscience Academy (MGA) in central Japan since January 2004. Measured gravity decreased immediately following the 2004 earthquake off the Kii peninsula (MJMA 7.4) by about 6 μGal. Here, we investigate the empirical relationship between pore water pressure change in a borehole near the MGA and gravity change measured at the MGA. We reveal that (1) gravity change correlates inversely with pore water pressure change at 81 m below the surface at a particular borehole and (2) several different sets of conversion coefficients from pressure head to gravity can be used to explain 60-70% of gravity variations with less than 2 μGal uncertainty. These newly identified relationships may suggest that an absolute gravimeter alone could be used to observe the change of groundwater quantity.

  13. Improving absolute gravity estimates by the L p -norm approximation of the ballistic trajectory

    NASA Astrophysics Data System (ADS)

    Nagornyi, V. D.; Svitlov, S.; Araya, A.

    2016-04-01

    Iteratively re-weighted least squares (IRLS) were used to simulate the L p -norm approximation of the ballistic trajectory in absolute gravimeters. Two iterations of the IRLS delivered sufficient accuracy of the approximation without a significant bias. The simulations were performed on different samplings and perturbations of the trajectory. For the platykurtic distributions of the perturbations, the L p -approximation with 3  <  p  <  4 was found to yield several times more precise gravity estimates compared to the standard least-squares. The simulation results were confirmed by processing real gravity observations performed at the excessive noise conditions.

  14. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  15. Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System.

    PubMed

    Cao, Juliang; Wang, Minghao; Cai, Shaokun; Zhang, Kaidong; Cong, Danni; Wu, Meiping

    2015-01-01

    The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01. PMID:26633407

  16. Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System

    PubMed Central

    Cao, Juliang; Wang, Minghao; Cai, Shaokun; Zhang, Kaidong; Cong, Danni; Wu, Meiping

    2015-01-01

    The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01. PMID:26633407

  17. The gravimeter "B-grave" for the in-situ surface gravity measurements of an asteroid

    NASA Astrophysics Data System (ADS)

    van Ruymbeke, Michel; karatekin, ozgur; rasson, jean; wielant, françois; dumont, Phillipe; Ritter, Birgit; zhu, Ping

    2016-04-01

    In the context of the preliminary study phase for the CubeSats supporting ESA's Asteroid Impact Mission (AIM) to the Didymos, we investigate a miniaturized gravimeter as part of the geophysical instrument package for the Asteroid Geophysical Explorer (AGEX). AGEX intends to land a CubeSat on the secondary object in the Didymos system, Didymoon in order to characterize the asteroid surface and internal structure A 3D compact gravimeter is developed at the Royal Observatory of Belgium. Its design allows to meter a weak 50 μm/sec² gravity field corresponding to 5 ppm of Earth gravity in a harsh environment. A system with three components mounted in an orthogonal geometry allows obtaining the gravity field in amplitude and in angular position without any requirement of levelling. B-GRAVES will use a in-situ calibration and multi-parameter approach for validation of the measurements. A laboratory simulation is induced with centrifugal forces applied to the pendulum set-up in a vertical position to reject the Earth gravity field. Signal treatment and uncertainties are discussed keeping in mind questions of thermal and vibration influence. The B-GRAVES can serve as a novel and robust instrument for future lander and rover missions .

  18. A Flight Test of the Strapdown Airborne Gravimeter SGA-WZ in Greenland

    PubMed Central

    Zhao, Lei; Forsberg, René; Wu, Meiping; Olesen, Arne Vestergaard; Zhang, Kaidong; Cao, Juliang

    2015-01-01

    An airborne gravimeter is one of the most important tools for gravity data collection over large areas with mGal accuracy and a spatial resolution of several kilometers. In August 2012, a flight test was carried out to determine the feasibility and to assess the accuracy of the new Chinese SGA-WZ strapdown airborne gravimeter in Greenland, in an area with good gravity coverage from earlier marine and airborne surveys. An overview of this new system SGA-WZ is given, including system design, sensor performance and data processing. The processing of the SGA-WZ includes a 160 s length finite impulse response filter, corresponding to a spatial resolution of 6 km. For the primary repeated line, a mean r.m.s. deviation of the differences was less than 1.5 mGal, with the error estimate confirmed from ground truth data. This implies that the SGA-WZ could meet standard geophysical survey requirements at the 1 mGal level. PMID:26057039

  19. A Flight Test of the Strapdown Airborne Gravimeter SGA-WZ in Greenland.

    PubMed

    Zhao, Lei; Forsberg, René; Wu, Meiping; Olesen, Arne Vestergaard; Zhang, Kaidong; Cao, Juliang

    2015-01-01

    An airborne gravimeter is one of the most important tools for gravity data collection over large areas with mGal accuracy and a spatial resolution of several kilometers. In August 2012, a flight test was carried out to determine the feasibility and to assess the accuracy of the new Chinese SGA-WZ strapdown airborne gravimeter in Greenland, in an area with good gravity coverage from earlier marine and airborne surveys. An overview of this new system SGA-WZ is given, including system design, sensor performance and data processing. The processing of the SGA-WZ includes a 160 s length finite impulse response filter, corresponding to a spatial resolution of 6 km. For the primary repeated line, a mean r.m.s. deviation of the differences was less than 1.5 mGal, with the error estimate confirmed from ground truth data. This implies that the SGA-WZ could meet standard geophysical survey requirements at the 1 mGal level. PMID:26057039

  20. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  1. Exploring the Limits of Lateral Resolution and Anomaly Precision of Marine Gravimeter Data

    NASA Astrophysics Data System (ADS)

    Scheirer, D. S.; Kinsey, J. C.; Childs, J. R.

    2011-12-01

    Unlike older beam-type marine gravimeters, axisymmetric Bell gravimeters record broadband vertical accelerations and are not subject to horizontal-to-vertical cross-coupling errors. Raw data series from a Bell gravimeter such as the BGM3 are dominated by heave variations, and they require filtering to separate vessel motions from the variations in the gravity field caused by density changes in the subsurface. Typically, a lowpass filter with a cutoff of the order of a few minutes effectively removes ship-heave with the dominant period of ocean waves - typically 5-20 seconds. This filter is effective in deep-water (>2 km) settings, but it may over-smooth gravity variations from geological structures in shallow-water and may under-smooth ship motions when steaming in following seas. Improvements to GPS data quality, including the disabling of selective availability ("dithering") and the emergence of local and global differential-correction technologies, now allow measurements of ship heave to be converted to vertical accelerations that in turn can be subtracted from the BGM3 raw series. This reduces the severity of the lowpass filter needed to remove the remaining effects of ship motions. In the deep-water North Pacific, there is significant spectral coherence between BGM3 measurements and the 2nd-derivative of GPS elevations between 5-20 seconds, and systematic variations in the admittance magnitude and phase suggest that the admittance between GPS and BGM3 variations may indeed yield a deterministic filter. The non-zero phase relationship and the non-unity magnitude of the admittance in this band suggest that properties of the BGM3 system (likely the gyro-stabilized platform that maintains a horizontal reference for the BGM3 sensor) introduce some mechanical damping. While improved GPS positioning has provided a useful, independent measure of vehicle vertical-motion, we have discovered that Eotvos-correction estimates, based on differencing GPS positions to yield

  2. Moving-mass gravimeter calibration in the Mátyáshegy Gravity and Geodynamical Observatory (Budapest)

    NASA Astrophysics Data System (ADS)

    Kis, Márta; Koppán, Andras; Kovács, Péter; Merényi, László

    2014-05-01

    A gravimeter calibration facility exists in the Mátyáshegy Gravity and Geodynamical Observatory of Geological and Geophysical Institute in Hungary. During the calibration a cylindrical ring of 3200 kg mass is vertically moving around the equipment, generating gravity variations. The effect of the moving mass can be precisely calculated from the known mass and geometrical parameters. The main target of the calibration device was to reach a relative accuracy of 0.1-0.2% for the calibration of Earth-tide registering gravimeters. The maximum theoretical gravity variation produced by the vertical movement of the mass is ab. 110 microGal, so it provides excellent possibility for the fine calibration of gravimeters in the tidal range. The instrument was out of order for many years and in 2012 and 2013 it was renovated and automatized. The calibration process is aided by intelligent controller electronics. A new PLC-based system has been developed to allow easy control of the movement of the calibrating mass and to measure the mass position. It enables also programmed steps of movements (waiting positions and waiting times) for refined gravity changes. All parameters (position of the mass, CPI data, X/Y leveling positions) are recorded with 1/sec. sampling rate. The system can be controlled remotely through the internet. As it is well known that variations of the magnetic field can influence the measurements of metal-spring gravimeters, authors carried out magnetic experiments on the pillar of the calibration device as well, in order to analyze the magnetic effect of the moving stainless steel-mass. During the movements of the mass, the observed magnetic field has been changed significantly. According to the magnetic measurements, a correction for the magnetic effect was applied on the measured gravimetric data series. In this presentation authors show the facility in details and the numerical results of tests carried out by applying LCR G gravimeters.

  3. Time dependent corrections to absolute gravity determinations in the establishment of modern gravity control

    NASA Astrophysics Data System (ADS)

    Dykowski, Przemyslaw; Krynski, Jan

    2015-04-01

    The establishment of modern gravity control with the use of exclusively absolute method of gravity determination has significant advantages as compared to the one established mostly with relative gravity measurements (e.g. accuracy, time efficiency). The newly modernized gravity control in Poland consists of 28 fundamental stations (laboratory) and 168 base stations (PBOG14 - located in the field). Gravity at the fundamental stations was surveyed with the FG5-230 gravimeter of the Warsaw University of Technology, and at the base stations - with the A10-020 gravimeter of the Institute of Geodesy and Cartography, Warsaw. This work concerns absolute gravity determinations at the base stations. Although free of common relative measurement errors (e.g. instrumental drift) and effects of network adjustment, absolute gravity determinations for the establishment of gravity control require advanced corrections due to time dependent factors, i.e. tidal and ocean loading corrections, atmospheric corrections and hydrological corrections that were not taken into account when establishing the previous gravity control in Poland. Currently available services and software allow to determine high accuracy and high temporal resolution corrections for atmospheric (based on digital weather models, e.g. ECMWF) and hydrological (based on hydrological models, e.g. GLDAS/Noah) gravitational and loading effects. These corrections are mostly used for processing observations with Superconducting Gravimeters in the Global Geodynamics Project. For the area of Poland the atmospheric correction based on weather models can differ from standard atmospheric correction by even ±2 µGal. The hydrological model shows the annual variability of ±8 µGal. In addition the standard tidal correction may differ from the one obtained from the local tidal model (based on tidal observations). Such difference at Borowa Gora Observatory reaches the level of ±1.5 µGal. Overall the sum of atmospheric and

  4. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  5. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  6. Monitoring water storage variations with a superconducting gravimeter in a field enclosure

    NASA Astrophysics Data System (ADS)

    Güntner, Andreas; Mikolaj, Michal; Reich, Marvin; Schröder, Stephan; Wziontek, Hartmut

    2016-04-01

    Water storage dynamics are notoriously difficult to monitor in a comprehensive way beyond the point scale. Superconducting gravimeters (SG) measure temporal variations of the Earth's acceleration of gravity with very high precision and temporal resolution. They have been shown to be sensitive to mass variations induced by hydrological processes in their surroundings, typically within a radius of few 100 meters around the instrument. Thus, in turn, SGs are unique instruments for monitoring water storage variations in the landscape in an integrative way, accounting for soil moisture, vadose zone and groundwater storage, snow, and surface water bodies if existent. Nevertheless, hydrological applications of SGs so far have usually been hindered by the instruments being located in observatory buildings. This infrastructure disturbs the local hydrology and causes many uncertainties due to the often poorly known geometry of the construction, non-natural flow paths of water, and unknown water storage variations below and/or on top of the infrastructure. By deploying the SG in a small enclosure, these disturbances and unknowns are minimized. We report on the first experiences with exposing a SG of the latest generation (iGrav) in a small housing of less than 1 m2 footprint to temperate hydro-meteorological conditions. The system has been set up on a grassland site at the Geodetic Observatory in Wettzell, Bavarian Forest, Germany, in early 2015. We present the technical layout and challenges in running the gravimeter system. Additionally, we report on the quality of data acquired so far and present comparisons to in-situ soil moisture monitoring with TDR and TOMST sensors, a lysimeter, and groundwater observations, and two SGs located in nearby observatory buildings. We discuss the value of SG observations for estimating water storage variations, evapotranspiration and groundwater recharge beyond the point scale.

  7. Taking the superconducting gravimeter to the field for hydrologic and other investigations

    NASA Astrophysics Data System (ADS)

    Wilson, C. R.; Wu, H.; Scanlon, B.; Sharp, J. M.

    2007-12-01

    We have adapted the GWR superconducting gravity meter to a transportable configuration for field studies in support of hydrologic and other investigations. The gravimeter has a precision in the 10-nanogal range, and a nominal drift of a few microgals per year. Although the GWR instrument has been in production for about three decades, operations have been restricted previously to laboratory and vault environments. A ground water gravity signal has often been apparent, but complex hydrologic conditions have made quantitative interpretation difficult. By making the instrument transportable, one is able to choose sites where better-defined hydrologic problems can be investigated, and to consider tectonic, volcanic, and other applications. Technical advances have reduced the size of the helium dewar and solved the helium replenishment requirement via a compact refrigeration system. With the ability to cool to 4 K, it is possible to maintain a full dewar indefinitely. With support of NSF EAR Instrumentation and Facilities, we procured a GWR gravimeter and developed the system to be transportable, self contained within two enclosures, and accessible via cell-phone internet service. A bracket system allows the helium dewar containing the gravity sensor to be locked to the frame and transported without disassembly. Initial application is to hydrologic investigations in karst and desert alluvial aquifers. The goal is to understand hydrologic signals at a level near one microgal, equivalent to the attraction of a 2cm layer of water. Instrument precision exceeds this, but the variety of sources in the atmosphere makes it difficult to identify hydrologic signals with greater precision. Companion weather and well observations are used to observe and interpret gravity variations in terms of infiltration and storage changes, and GRACE satellite gravity observations enable separation of regional and local influences.

  8. Low-Frequency Centroid Moment Tensor Inversion of the 2015 Illapel Earthquake from Superconducting-Gravimeter Data

    NASA Astrophysics Data System (ADS)

    Zábranová, Eliška; Matyska, Ctirad

    2016-04-01

    After the 2015 Illapel earthquake the radial and spheroidal modes up to 1 mHz were registered by the network of superconducting gravimeters. These data provide unique opportunity to obtain ultralow-frequency estimates of several centroid moment tensor components. We employ the superconducting-gravimeter records of 60-h lengths and perform the joint inversion for M_{rr}, (M_{\\vartheta \\vartheta }-M_{\\varphi \\varphi })/2 and M_{\\vartheta \\varphi } centroid moment tensor components from spheroidal modes up to 1 mHz. The M_{rr} component is also obtained from independent inversion of the radial modes _0S_0 and _1S_0. Our results are consistent with the published solutions obtained from higher frequency data, suggesting thus negligible slow afterslip phenomenon.

  9. Gravity change from repeated absolute measurements in Estonia, Latvia and Lithuania 1994-2008

    NASA Astrophysics Data System (ADS)

    Mäkinen, J.; Bilker-Koivula, M.; Falk, R.; Gitlein, O.; Kaminskis, J.; Lapushka, K.; Oja, T.; Paršeliunas, E.; Petroškevičius, P.; Timmen, L.

    2009-04-01

    Estonia, Latvia, and Lithuania belong to the margin of the Fennoscandian postglacial rebound (PGR) area. Vertical rates predicted by PGR models are in the range 0 to +3 mm/yr. Our first absolute gravity campaigns in the area were performed with the JILAg-5 gravimeter in 1994-1995 when three stations were measured in each country. All three stations in Lithuania were repeated with the JILAg-5 in 2002 and one of them (Vilnius) with the FG5#221 gravimeter in 2007. In Latvia one station (Riga) was remeasured with the FG5#101 and FG5#107 (D. Stizza, NIMA) in 1986 and with the FG5#221 in 2007. In Estonia two of the stations (Suurupi and Töravere) were remeasured with the FG5#220 in 2007 and with the FG5#221 in 2008, the third (Kuressaare) was only remeasured in 2008 with the FG5#221. This amounts to seven repeated stations with time spans of 8-13 years. In interpreting gravity change, special attention must be paid to subsurface water storage, as (due to inaccessibility of crystalline bedrock) many stations are on thick sediments, the repeat measurements were partly made in different seasons, and in some cases there is evidence of strong interannual variation in hydrology. We discuss the constraints to PGR implied by the observed gravity change and compare it with PGR models and with available observations of vertical motion.

  10. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  11. Estimation of the gravimetric pole tide by stacking long time-series of GGP superconducting gravimeters

    NASA Astrophysics Data System (ADS)

    Ziegler, Yann; Hinderer, Jacques; Rogister, Yves; Rosat, Séverine

    2016-04-01

    We compute the gravimetric factor at the Chandler wobble (CW) frequency using time-series from superconducting gravimeters (SG) longer than a decade. We first individually process the polar motion and data at each individual gravity station to estimate the gravimetric factor amplitude and phase, then we make a global analysis by applying a stacking method to different subsets of up to seven SG stations. The stacking is an efficient way of getting rid of local effects and improving the signal-to-noise ratio of the combined data sets. Using the stacking method, we find a gravimetric factor amplitude and phase of 1.118 ± 0.016 and -0.45 ± 0.66 deg, respectively, which is smaller in amplitude than expected. The sources of error are then carefully considered. For both local and global analyses, the uncertainties on our results are reliably constrained by computing the standard deviation of the estimates of the gravimetric factor amplitude and phase for increasing length of the time-series. Constraints on the CW anelastic dissipation can be set since any departure of the gravimetric factor from its elastic value may provide some insights into the dissipative processes that occur at the CW period. In particular, assuming given rheological models for the Earth's mantle enables us to make the link between the gravimetric factor phase and the CW quality factor.

  12. M2 tidal parameter modulation revealed by superconducting gravimeter time series

    NASA Astrophysics Data System (ADS)

    Meurers, Bruno; Van Camp, Michel; Francis, Olivier; Pálinkáš, Vojtech

    2016-04-01

    Analyzing consecutive and independent 1-yr data sets of 10 European superconducting gravimeters (SG) reveals statistically significant temporal variations of M2 tidal parameters. Both common short-term (< 2 yr) and long-term (> 2 yr) features are identified in all SG time series but one. The averaged variations of the amplitude factor are about 0.2 per mille. The path of load vector variations equivalent to the temporal changes of tidal parameters suggests the presence of an 8.85 yr modulation (lunar perigee). The tidal waves having the potential to modulate M2 with this period belong to the 3rd degree constituents. Their amplitude factors turn out to be much closer to body tide model predictions than that of the main 2nd degree M2, which indicates ocean loading for 3rd degree waves to be less prominent than for 2nd degree waves within the M2 group. These two different responses to the loading suggest that the observed long-term modulation is more due to insufficient frequency resolution of limited time series rather than to time variable loading. Presently, SG gravity time series are still too short to prove if time variable loading processes are involved too as in case of the annual M2 modulation known to appear for analysis intervals of less than 1 yr. The observed variations provide an upper accuracy limit for Earth model validation and permit estimating the temporal stability of SG scale factors and assessing the quality of gravity time series.

  13. Direct Measurement of Daily Evapotranspiration From a Deciduous Forest Using a Superconducting Gravimeter

    NASA Astrophysics Data System (ADS)

    Van Camp, M. J.; de Viron, O.; Pajot-Métivier, G.; Cazenave, F.; Watlet, A.; Dassargues, A.; Vanclooster, M.

    2015-12-01

    The conversion of liquid water into water vapor strongly controls the energy transfer between the Earth and the atmosphere, and plays one of the most important roles in the hydrological cycle. This process, called evapotranspiration (ET), deeply constraints the amount of green water in the total global water balance. However, assessing the ET from terrestrial ecosystems remains a key challenge in hydrology. We show that the liquid water mass losses can be directly inferred from continuous gravity measurements: as water evaporates and transpires from terrestrial ecosystems, the mass distribution varies through the system, changing its gravity field. Using continuous superconducting gravity measurements, we were able to identify a daily changes in gravity at the level of, or smaller than 10-10 g per day. This corresponds to 2.0 mm of water over an area of 50 ha.The strength of this method is its ability to ensure a direct, traceable and continuous monitoring of actual ET for years at the mesoscale (~50 ha) with a precision of a few tenths of mm of water. This paves the way for the development of the method in different land-use, land-cover and geological contexts, using superconducting and coming quantum gravimeters.

  14. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  15. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  16. A detailed investigation of a 25 year duration (1987-2012) superconducting gravimeter record in Strasbourg, France

    NASA Astrophysics Data System (ADS)

    Calvo, Marta; Boy, Jean-Paul; Hinderer, Jacques; Legros, Hilaire; Rosat, Severine

    2013-04-01

    Since 1987, two different Superconducting Gravimeters (SGs) have been recording in consecutive periods at the Gravimetric Observatory J9, located near Strasbourg (France). As a result, one of the longest gravity records obtained by this kind of gravimeters (1987-2012) is now available reaching more than 25 year duration. The quality improvements in the superconducting gravimeters (drift and sensitivity) allows us to launch more precise studies of the Earth's response to various excitations sources over a wide spectral range (from quart-diurnal tides to the Chandler component of Earth's rotation). Our long duration of 25 years will help the detailed investigation of the content of the gravity record in two ways: first to exhibit very low frequency terms (e.g. long period tides) and second to separate contributions of near frequencies (e.g. the annual and the Chandlerian components induced by the Earth's rotation). We use this long gravity series to present some updated analyses of SG data for the determination of the Earth's response to luni-solar tidal forces in terms of gravimetric factors (amplitude and phase lag) with special emphasis on the degree 3 and degree 4 terms, as well as on the long period tides. We also investigate the Free Core Nutation (FCN) parameters both by studying the resonance effect on diurnal tides (eigenfrequency and quality factor) and by searching the amplitude of the excited rotational eigenmode itself. We use the time stability of the diurnal waves around the liquid core resonance in order to improve the investigation of the stability of the free core nutation (FCN) eigenperiod and damping. The knowledge of these parameters gives us useful information to constrain the physical process of coupling between the mantle and core.

  17. Hydro-gravimetry in West-Africa: First results from the Djougou (Benin) superconducting gravimeter

    NASA Astrophysics Data System (ADS)

    Hector, Basile; Hinderer, Jacques; Séguis, Luc; Boy, Jean-Paul; Calvo, Marta; Descloitres, Marc; Rosat, Séverine; Galle, Sylvie; Riccardi, Umberto

    2014-10-01

    The increasing number of hydro-gravimetry studies proves the rising interest of the hydrology community toward this monitoring method. The accuracy of superconducting gravimeters (SG) potentially allows the retrieval of small water storage changes (WSC) down to a few millimeters of equivalent water thickness. However, the importance of corrections applied to SG data to achieve such a precision in gravity residuals should be recalled. The Djougou permanent gravity station presented in this paper and located in northern Benin, West-Africa, provides a good opportunity to review these considerations. This station is equipped since July 2010 with the superconducting gravimeter SG-060 aimed at deriving WSC at different time-scales, daily to inter-annual. In this area, WSC are (1) part of the control system for evapotranspiration (ET) process, a key variable of the West-African monsoon cycle and (2) the state variable for resource management, a critical issue in storage-poor hard rock basement contexts such as in northern Benin. The potential for deriving WSC from time-lapse gravity data partly depends on environmental features such as topography and the instrument shelter. Therefore, this issue is addressed first, with the background idea that such sensitivity analysis should be undertaken before setting up any new instrument. In Djougou, local topography is quite flat leading to a theoretical straightforward relationship between gravity changes and WSC, close to the standard Bouguer value. However, the shelter plays a significant masking role, which is the principal limitation to the retrieval of fast hydrological processes such as ET following a rain event. Several issues concerning classical gravity corrections are also addressed in the paper. These include gap-filling procedures during rain-events and drift estimates for short time series. Special attention is provided to atmospheric corrections, and different approaches are tested: a simple scalar admittance, a

  18. Temporal variation of tidal parameters in superconducting gravimeter time-series

    NASA Astrophysics Data System (ADS)

    Meurers, Bruno; Van Camp, Michel; Francis, Olivier; Pálinkáš, Vojtech

    2016-04-01

    Analysing independent 1-yr data sets of 10 European superconducting gravimeters (SG) reveals statistically significant temporal variations of M2 tidal parameters. Both common short-term (<2 yr) and long-term (>2 yr) features are identified in all SG time-series but one. The averaged variations of the amplitude factor are about 0.2‰. The path of load vector variations equivalent to the temporal changes of tidal parameters suggests the presence of an 8.85 yr modulation (lunar perigee). The tidal waves having the potential to modulate M2 with this period belong to the 3rd degree constituents. Their amplitude factors turn out to be much closer to body tide model predictions than that of the main 2nd degree M2, which indicates ocean loading for 3rd degree waves to be less prominent than for 2nd degree waves within the M2 group. These two different responses to the loading suggest that the observed modulation is more due to insufficient frequency resolution of limited time-series rather than to time variable loading. Presently, SG gravity time-series are still too short to prove if time variable loading processes are involved too as in case of the annual M2 modulation known to appear for analysis intervals of less than 1 yr. Whatever the variations are caused by, they provide the upper accuracy limit for earth model validation and permit estimating the temporal stability of SG scale factors and assessing the quality of gravity time-series.

  19. Earth tides observed by gravimeter and GPS in Juneau, Southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Sato, T.; Miura, S.; Ohta, Y.; Fujimoto, H.; Sun, W.; Larsen, C.; Heavner, M.; Kaufman, A. M.; Freymueller, J. T.

    2007-12-01

    We have analyzed the gravity data obtained at the Egan Library of University of Alaska, Southeast (UAS) and the GPS data obtained at a PBO site in Juneau, and we compared the obtained tidal amplitudes and phases with those estimated from the predicted tides including both effects of the body tide and ocean tide. To improve the accuracy in prediction, we also computed the regional ocean tide model in Southeastern Alaska (SE-AK). Our comparison results suggest; (1) By taking into account the ocean tide effect including the regional ocean tide model, the amplitude differences between the observation and the predicted body tide is remarkably reduced for both the gravity and displacement tides (e.g. for the M2 constituent, 8.04 microGal to 0.02 microGal (1 microGal=1E-8 m/s/s), and 2.43 cm to the order of 0.01 cm for the vertical displacement), (2) The PPP method (Zumberge et al., 1997) used to extract the tidal signals from the original GPS time series works well to recover the tidal signals. Although the GPS analysis results still contain the noises which may be considered to be the meteorological effects, we may conclude that the GPS observation surely detects the tidal signals with the sub cm accuracy or better for some of the tidal constituents. The viscoelastic effect in gravity tides is estimated to be the order of 0.05 ?Gal for the M2 constituent in Juneau. The magnitude is equivalent to the analysis error for our gravity data. Increasing the accuracy of calibration of the gravimeter and the regional ocean model in SE-AK is needed to constrain the Earth's viscoelastic response to the tidal force tightly.

  20. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  1. Mass variations of the Baltic Sea compared to superconducting gravimeter and GRACE

    NASA Astrophysics Data System (ADS)

    Virtanen, H.; Virtanen, J.; Nordman, M.; Bilker-Koivula, M.; Mäkinen, J.

    2009-04-01

    We study the gravity effect of Baltic Sea mass variations observed using different methods and time resolutions. We compare data from tide gauges, from superconductive gravimeter (SG) at Metsähovi, Finland and from the GRACE gravity satellite. The mass variation in the semi-enclosed Baltic Sea is due to both internal redistribution of the water mass and due to changes in the so-called fill level caused by water exchange with the North Sea. The monthly variation in the water mass is about 60 Gt over an area of 390000 km-2. Due to a dense network of tide gauges, the Baltic Sea is one of best monitored mass variations in this size in the world. For modeling the observed water mass, we have used both monthly PSMSL tide gauge records and hourly values from several sources. In addition, we have hydrodynamic models for comparisons. To calculate gravity effect, we have used Green's function formalism for modeled sea surface. We have previously used temporal gravity field data from GRACE satellite to show that GRACE can recover the total mass variation in the Baltic Sea on monthly scales. In addition to monthly GRACE solutions with different filters, we now also use 10-day mascon block solutions from Goddard Space Flight Center. As the GRACE solutions are already corrected for gravity changes due to oceans, we have restored the contribution due to the Baltic Sea. We have also corrected for an effect due to leakage of continental water storage using the GLDAS hydrology model. The fundamental station Metsähovi is located 10 km from the nearest bay of the Baltic Sea and 15 km from the open sea. Using a single tide gauge at the distance of 30 km from SG at Metsähovi, very clear correlation is found between gravity and sea level. Superconducting gravity data has been corrected by tides and polar motion, atmospheric mass redistribution, local groundwater and drift. Hourly mass variations of sea are clearly separable. Theoretically one-meter even-layer water cause 30 nms-2

  2. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  3. Implants as absolute anchorage.

    PubMed

    Rungcharassaeng, Kitichai; Kan, Joseph Y K; Caruso, Joseph M

    2005-11-01

    Anchorage control is essential for successful orthodontic treatment. Each tooth has its own anchorage potential as well as propensity to move when force is applied. When teeth are used as anchorage, the untoward movements of the anchoring units may result in the prolonged treatment time, and unpredictable or less-than-ideal outcome. To maximize tooth-related anchorage, techniques such as differential torque, placing roots into the cortex of the bone, the use of various intraoral devices and/or extraoral appliances have been implemented. Implants, as they are in direct contact with bone, do not possess a periodontal ligament. As a result, they do not move when orthodontic/orthopedic force is applied, and therefore can be used as "absolute anchorage." This article describes different types of implants that have been used as orthodontic anchorage. Their clinical applications and limitations are also discussed. PMID:16463910

  4. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  5. The Lunar Surface Gravimeter as a Lunar Seismometer: New Identification of Unlocated Deep Moonquakes

    NASA Astrophysics Data System (ADS)

    Kawamura, Taichi; Kobayashi, Naoki; Tanaka, Satoshi; Lognonné, Philippe; Gagnepain-Beyneix, Jeannine

    2010-05-01

    The internal structure of the Moon is an essential piece of information to investigate its origin and evolution. The seismic analyses using the data from Apollo Passive Seismic Exploration (Apollo 11, 12, 14, 15, 16) are one of the most successful methods carried out to estimate the inner structure of the Moon. From the seismic analyses, it was found that the Moon is still seismically active and the Moon has layered structure with 40~60 km crust with mantle below. However, because of the limitation of seismic network, only with 4 seismic stations all on the nearside, the experiment could not fully uncover the lunar interior, especially for the region deeper than 1000 km. This is still an important question of the lunar science and new data were desired. In our previous studies, we showed that the Lunar Surface Gravimeter on Apollo 17 can be used as a seismometer. We succeeded in relocating the known seismic event and improving its location by using the additional seismic data of the LSG. In this study, we attempted to locate deep moonquakes that could not be located with the previous data set by using the LSG data. Deep moonquakes are said to occur periodically, at certain seismic source or nests. It is known that seismic events of the same nest have almost identical waveforms at one station. This is the unique characteristic of deep moonquakes and classification by waveform cross-correlation is possible. In this way, more than 300 nests were identified. 106 of them provided sufficient data to locate their sources. Among the remaining unlocated deep moonquakes, 60 provided usable waveform data at more than one station. In this study we focused on these 60 nests and examined whether they are locatable by adding data of the LSG. First, we picked up data for seismic event whose LSG data were available. This leaves 40 nests to be examined with the additional data of LSG. We examined all the seismic events from the 40 nests and identified seismic events from 5 nests

  6. Monitoring of water storage in karstic area (Larzac, France) with a iGrav continuous superconducting gravimeter

    NASA Astrophysics Data System (ADS)

    Le Moigne, N.; Champollion, C.; chery, J.; Deville, S.; Doerflinger, E.; Collard, P.; Flores, B.

    2013-12-01

    Quantitative knowledge of groundwater storage and transfer in karstic area is crucial for water resources management and protection. As the karst hydro-geological properties are highly heterogeneous and scale dependent, geophysical observations such as gravity are necessary to fill the gap between local (based on boreholes, moisture sensors, ...) and global (based on chemistry, river flow, ...) studies. Since almost 2 years, the iGrav #002 superconducting gravimeter is continuously operating in the French GEK (Géodésie des Eaux Karstiques) observatory in the Larzac karstic plateau (south of France). First the evaluation of the iGrav data (calibration, steps and drift) will be presented. Then a careful analyze of the topographic and building effects will be done. Finally the first interpretation of the hydrogeological signal and the integration an extensive observation dataset (borehole water level, evapotranspiration and electrical resistivity) are studied.

  7. Absolute neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Wolf, Joachim

    2011-10-01

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

  8. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  9. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  10. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  11. AGS II

    SciTech Connect

    Palmer, R.B.

    1984-01-01

    Interest in rare K decays, neutrino oscillations and other fields have generated an increasing demand for running, and improved intensity and duty cycle, at the AGS. Current projects include acceleration of polarized protons and light ions (up to mass 32). Future plans are for a booster to increase intensity and allow heavy ions (up to mass 200), and a stretcher to give 100% duty cycle. A later upgrade could yield an average current of 32 ..mu.. amps. 6 figures, 2 tables.

  12. Examination of consistency of marine gravity with land gravity in and around the Japanese Islands using a helicopter-borne gravimeter

    NASA Astrophysics Data System (ADS)

    Segawa, Jiro; Komazawa, Masao; Kumar, K. Vijay; Nakayama, Eiji; Joseph, E. John; Kusumoto, Shigekazu; Onodera, Ken-ei; Kuroishi, Yuki

    2005-04-01

    This paper reports a finding that marine gravity data around the Japanese Islands are inconsistent with nearby land gravity data. The comparison between land and marine gravity was made possible by the gravity measurements from the air using a helicopter-borne gravimeter (SEGAWA Model) developed by the present authors. The ground/sea truth gravity anomaly can be checked against the gravity from the air, though it is not free air gravity anomaly but gravity disturbance. The newly-developed airborne gravimeter first manufactured in 1998 shows a good performance with a 1-2 mgal average repeatability of measurement under a 90-knot flight speed. Thus we have found disagreements between ground truth and sea truth gravity anomalies on the basis of airborne gravity data in the areas in Japan where we have so far made measurements. Among them we will report the case in the area from Saitama and Ibaraki offshore to the Kashima-Nada Sea, p]Japan. Our conclusion about this area is that the past marine gravity data obtained by surface ship gravimeters involve systematic errors of more than 10 mgals. This kind of inconsistency between marine and land gravity is expected to be found in a number of other areas around the Japanese Islands.

  13. The iGrav superconducting gravimeter as a tool to monitor and study active volcanoes. Preliminary results from Mt. Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Greco, Filippo

    2015-04-01

    Microgravity observation have been proven to be a valuable tool to monitor and study active volcanoes, thanks to their ability to detect mass redistributions induced by volcanic processes. Gravity changes are usually observed through time-lapse measurements. The latter can provide a good spatial resolution, but do not supply enough information on the rate at which the volcanic processes occur. Indeed, only changes between successive surveys (usually separated by intervals longer than 1 month) can be assessed. Continuous gravity measurements at active volcanoes are relatively rare, mainly due to the difficulty of running continuously spring instruments (the most widely used gravimeters), especially in harsh conditions. Indeed, spring gravimeters are subject to an important instrumental drift and are severely affected by ambient parameters (mainly ambient temperature). Superconducting gravimeters provide much better performances than spring instruments. In particular, the iGravTM superconducting gravimeter by GWR, more portable and easier to use than GWR Observatory Superconducting Gravimeters, features a sub-microGal precision, is practically drift-free (instrumental drift rate less than 0.5 microGal/month) and totally insensitive to local changes in ambient parameters. This instrument needs about 1kw of electricity to work, implying that it cannot be permanently installed in remote sites where mains electricity is not available. However, thanks to its stability and precision, the iGravTM meter can supply important information about volcano-related processes, over period of minutes to years, even if it is installed relatively far from the active structures. Here we report on the installation of an iGravTM meter at Mt. Etna (Italy). iGrav#16 was installed at the astrophysical observatory of Serra La Nave (southwestern flank of the volcano; 1740 m asl) in September 2014 and has acquired gravity data almost continuously even since, at a rate of 1Hz. The main features

  14. Effective velocity distribution in an atom gravimeter: Effect of the convolution with the response of the detection

    NASA Astrophysics Data System (ADS)

    Farah, T.; Gillot, P.; Cheng, B.; Landragin, A.; Merlet, S.; Pereira Dos Santos, F.

    2014-08-01

    We present here a detailed study of the influence of the transverse motion of the atoms in a free-fall gravimeter. By implementing Raman selection in the horizontal directions at the beginning of the atoms' free fall, we characterize the effective velocity distribution, i.e., the velocity distribution of the detected atom, as a function of the laser cooling and trapping parameters. In particular, we show that the response of the detection induces a pronounced asymmetry of this effective velocity distribution that depends not only on the imbalance between molasses beams but also on the initial position of the displaced atomic sample. This convolution with the detection has a strong influence on the averaging of the bias due to Coriolis acceleration. The present study allows a fairly good understanding of results previously published in [New J. Phys. 13, 065025 (2011), 10.1088/1367-2630/13/6/065025], where the mean phase shift due to Coriolis acceleration was found to have a sign different from that expected.

  15. Lunar Surface Gravimeter as a lunar seismometer: Investigation of a new source of seismic information on the Moon

    NASA Astrophysics Data System (ADS)

    Kawamura, Taichi; Kobayashi, Naoki; Tanaka, Satoshi; Lognonné, Philippe

    2015-02-01

    Lunar seismology has always suffered from the limited number of seismic stations and limited coverage of the seismic network. Additional seismic data are necessary to probe the lunar interior in depth. Instead of a costly new deployment of seismometers, the aim of this study is to investigate the possibility of using the Apollo 17 Lunar Surface Gravimeter (LSG) as a lunar seismometer. The LSG was designed to detect gravitational waves (associated to change in the curvature of spacetime) and tidal ground motion on the Moon, but the data were not investigated for seismic use partially because of a malfunction of the instrument. We first evaluated the influence of the malfunction through comparison with other Apollo seismic data and found that the effect of the malfunction is small, and the LSG detected seismic signals in a manner that was consistent with those of the other Apollo seismometers. Then we carried out source location with the additional station of the LSG. We relocated previously located deep moonquake nests to evaluate the influence of the LSG data, which are generally noisier than other Apollo seismic data. Then we located deep moonquake nests that were previously unlocatable. Forty deep moonquake nests were examined, and we located five new nests. One newly located nest, A284, was most likely to be located on the farside. This series of analyses indicates that the LSG functioned as a lunar seismometer, and that its data are useful for improving seismic analyses with the previous seismic data set of the Moon.

  16. The Implications for Higher-Accuracy Absolute Measurements for NGS and its GRAV-D Project

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Winester, D.; Roman, D. R.; Eckl, M. C.; Smith, D. A.

    2013-12-01

    Absolute and relative gravity measurements play an important role in the work of NOAA's National Geodetic Survey (NGS). When NGS decided to replace the US national vertical datum, the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project added a new dimension to the NGS gravity program. Airborne gravity collection would complement existing satellite and surface gravity data to allow the creation of a gravimetric geoid sufficiently accurate to form the basis of the new reference surface. To provide absolute gravity ties for the airborne surveys, initially new FG5 absolute measurements were made at existing absolute stations and relative measurements were used to transfer those measurements to excenters near the absolute mark and to the aircraft sensor height at the parking space. In 2011, NGS obtained a field-capable A10 absolute gravimeter from Micro-g LaCoste which became the basis of the support of the airborne surveys. Now A10 measurements are made at the aircraft location and transferred to sensor height. Absolute and relative gravity play other roles in GRAV-D. Comparison of surface data with new airborne collection will highlight surface surveys with bias or tilt errors and can provide enough information to repair or discard the data. We expect that areas of problem surface data may be re-measured. The GRAV-D project also plans to monitor the geoid in regions of rapid change and update the vertical datum when appropriate. Geoid change can result from glacial isostatic adjustment (GIA), tectonic change, and the massive drawdown of large scale aquifers. The NGS plan for monitoring these changes over time is still in its preliminary stages and is expected to rely primarily on the GRACE and GRACE Follow On satellite data in conjunction with models of GIA and tectonic change. We expect to make absolute measurements in areas of rapid change in order to verify model predictions. With the opportunities presented by rapid, highly accurate

  17. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  18. Preparation, characterization, and photocatalytic activity of porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Tian, Baozhu; Zhang, Jinlong; Xiong, Tianqing; Wang, Tingting

    2014-02-01

    Porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts were synthesized by a multistep route, including a dealloying method to prepare porous Ag, a transformation from Ag to AgBr and AgBrI, and a photo-reduction process to form Ag nanoparticles on the surface of AgBr and AgBrI. It was found that the porous structure kept unchanged during Ag was transferred into AgBr, AgBrI, AgBr@Ag, and AgBrI@Ag. Both porous AgBr@Ag and porous AgBrI@Ag showed much higher visible-light photocatalytic activity than cubic AgBr@Ag for the degradation of methyl orange, which is because the interconnected pore channels not only provide more reactive sites but also favor the transportation of photo-generated electrons and holes. For AgBrI@Ag, AgBrI solid solution formed at the interface of AgBr and AgI, and the phase junction can effectively separate the photo-generated electrons and holes, favorable to the improvement of photocatalytic activity. The optimal I content for obtaining the highest activity is ∼10 at.%.

  19. Temporal gravity variations observed with the superconducting gravimeter at Metsähovi, Finland: interpreted by local hydrological sensors

    NASA Astrophysics Data System (ADS)

    Virtanen, H.; Mäkinen, J.; Raja-Halli, A.; Hokkanen, T.; Mäkinen, R. P.

    2012-04-01

    Metsähovi is a fundamental geodetic station with multiple observation techniques, including a superconducting gravimeter (SG). The SG no. T020 has been operating continuously at Metsähovi since August 1994. After corrections for known time-variable gravity effects, such as tides, atmosphere and the Baltic Sea are made, the remaining gravity residual (8 microgals peak-to-peak) is mostly due to variation in terrestrial water storage. The detection threshold of the SG corresponds to the attraction a hypothetical Bouguer slab of water 1-2 mm thick that extends below the instrument as well. The local hydrological effects in gravity are generated by the attractions: local water storage in the fractures of the crystalline bedrock, local water storage in sediments, local snow on the ground and on the laboratory roof. In addition, by the loading and attraction by regional and global water storage. If we want to use record of the SG for discriminating between different regional/continental hydrological models, or for validating GRACE observations, physical modeling of the local effects is required. The station stands on bedrock and surrounding sediments are thin (0.2 - to 4 meters) but geologically quite complex. Since 1994 station is equipped with two borehole wells in the crystalline bedrock. In 2006 two arrays of Time Domain Reflectometer sensors of soil moisture were installed by the Finnish Environment Institute. In 2008-2009 several new instruments were installed within 100-150 m distance from the SG: Ten additional capacitive arrays for soil moisture, a 20 x 20 meter grid of 21 x 21=441 probes for soil resistivity. For observing groundwater level in the sediments, we lowered 11 tubes down to the bedrock surface. For radiometric measurements of soil moisture content and soil density we established 5 dry access tubes. We present results of 3D-hydrological model of observed local water mass changes together with gravity observations with SG.

  20. Detailed Analysis of Marine Gravity Survey Data from Panama Canal Transits: Improving Error Models and Signal Processing for BGM-3 Marine Gravimeter Survey Systems

    NASA Astrophysics Data System (ADS)

    Sailor, R. V.; Medler, C. L.; Kinsey, J. C.; Zettergren, E. W.; Insanic, E.

    2015-12-01

    Our prior work (Sailor et al., 2015) showed that the Panama Canal locking operations impart a peak vertical acceleration of about 60 mGal (6 x 10-4 m/sec2) to ships as the individual lock chambers are filled or emptied. During a period of 8 to 12 minutes the ship's elevation changes by over 8 meters. This motion is very repeatable, since it is driven by gravity-fed hydraulics backed up by a huge mass of water. The novelty of the prior work was to demonstrate that the lock-driven vertical acceleration is significant, of relatively long duration, easily observed by the BGM-3 accelerometer/gravimeter, and is equivalent tothe gravity anomaly caused by a moderately-sized seamount. Thus, the lock-induced vertical acceleration is a known external acceleration input that falls within the amplitude and time duration band of interest for marine gravity as well as airborne gravity survey systems. Here we report an extension to the prior work, using BGM-3 gravimeter data from the RV Marcus G Langseth and the RV Melville, in addition to the previously-used two datasets from the RV Knorr. The new analysis allows us to compare the quality of the gravity data from these three ships in two ways, using: 1) Differences along nearly perfectly coincident gravity anomaly data profiles collected underway, during passage through calm and narrow channels with little or no vertical ship motion; and 2) Observed vertical-motion-induced accelerations, with no horizontal motion, experienced during lock operations. We use the raw 1-Hz output of the BGM-3 gravimeter and compare various filtering methods. Furthermore, good quality vertical channel GPS is used to compare to the output of our solution of a boundary value problem: Given the observed outputs of the gravimeter, solve for h(t), the elevation of the ship vs time and also for two parameters: initial gravity value prior to vertical motion in the lock and apparent vertical gravity gradient.

  1. Analysis of AGS E880 polarimeter data at Gy = 12.5.

    SciTech Connect

    Cadman, R.; Huang, H.; Krueger, K.; Spinka, H.; Underwood, D.

    2012-02-23

    Data were collected with the AGS internal (E880) polarimeter at G{gamma} = 12.5 during the FY04 polarized proton run. Measurements were made with forward scintillation counters in coincidence with recoil counter telescopes, permitting an absolute calibration of the polarimeter for both nylon and carbon targets. The results are summarized and they will also be useful for an absolute calibration of the AGS CNI polarimeter at G{gamma} = 12.5.

  2. Analysis of AGS E880 polarimeter data at Ggamma = 12.5

    SciTech Connect

    Cadman, R. V.; Huang, H.; Krueger, K.; Spinka, H.; Underwood, D.

    2012-01-27

    Data were collected with the AGS internal (E880) polarimeter at G{gamma} = 12.5 during the FY04 polarized proton run. Measurements were made with forward scintillation counters in coincidence with recoil counter telescopes, permitting an absolute calibration of the polarimeter for both nylon and carbon targets. The results are summarized and they will also be useful for an absolute calibration of the AGS CNI polarimeter at G{gamma} = 12.5.

  3. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  4. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  5. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  6. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  7. AGS experiments - 1994, 1995, 1996

    SciTech Connect

    Depken, J.C.

    1997-01-01

    This report contains the following information on the Brookhaven AGS Accelerator complex: FY 1996 AGS schedule as run; FY 1997 AGS schedule (working copy); AGS beams 1997; AGS experimental area FY 1994 physics program; AGS experimental area FY 1995 physics program; AGS experimental area FY 1996 physics program; AGS experimental area FY 1997 physics program (in progress); a listing of experiments by number; two-phage summaries of each experiment begin here, also ordered by number; listing of publications of AGS experiments begins here; and listing of AGS experimenters begins here.

  8. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  9. Time Changes of the European Gravity Field from GRACE: A Comparison with Ground Measurements from Superconducting Gravimeters and with Hydrology Model Predictions

    NASA Technical Reports Server (NTRS)

    Hinderer, J.; Lemoine, Frank G.; Crossley, D.; Boy, J.-P.

    2004-01-01

    We investigate the time-variable gravity changes in Europe retrieved from the initial GRACE monthly solutions spanning a 18 month duration from April 2002 to October 2003. Gravity anomaly maps are retrieved in Central Europe from the monthly satellite solutions we compare the fields according to various truncation levels (typically between degree 10 and 20) of the initial fields (expressed in spherical harmonics to degree 120). For these different degrees, an empirical orthogonal function (EOF) decomposition of the time-variable gravity field leads us to its main spatial and temporal characteristics. We show that the dominant signal is found to be annual with an amplitude and a phase both in agreement with predictions in Europe modeled using snow and soil-moisture variations from recent hydrology models. We compare these GRACE gravity field changes to surface gravity observations from 6 superconducting gravimeters of the GGP (Global Geodynamics Project) European sub-network, with a special attention to loading corrections. Initial results suggest that all 3 data sets (GRACE, hydrology and GGP) are responding to annual changes in near-surface water in Europe of a few microGal (at length scales of approx.1000 km) that show a high value in winter and a summer minimum. We also point out that the GRACE gravity field evolution seems to indicate that there is a trend in gravity between summer 2002 and summer 2003 which can be related to the 2003 heatwave in Europe and its hydrological consequences (drought). Despite the limited time span of our analysis and the uncertainties in retrieving a regional solution from the network of gravimeters, the calibration and validation aspects of the GRACE data processing based on the annual hydrology cycle in Europe are in progress.

  10. Karst Water System Investigated by Absolute Gravimetry

    NASA Astrophysics Data System (ADS)

    Quinif, Y.; Meus, P.; van Camp, M.; Kaufmann, O.; van Ruymbeke, M.; Vandiepenbeeck, M.; Camelbeeck, T.

    2006-12-01

    The highly anisotropic and heterogeneous hydrogeological characteristics of karst aquifers are difficult to characterize and present challenges for modeling of storage capacities. Little is known about the surface and groundwater interconnection, about the connection between the porous formations and the draining cave and conduits, and about the variability of groundwater volume within the system. Usually, an aquifer is considered as a black box, where water fluxes are monitored as input and output. However, water inflow and outflow are highly variable and cannot be measured directly. A recent project, begun in 2006 sought to constrain the water budget in a Belgian karst aquifer and to assess the porosity and water dynamics, combining absolute gravity (AG) measurements and piezometric levels around the Rochefort cave. The advantage of gravity measurements is that they integrate all the subsystems in the karst system. This is not the case with traditional geophysical tools like boring or monitoring wells, which are soundings affected by their near environment and its heterogeneity. The investigated cave results from the meander cutoff system of the Lomme River. The main inputs are swallow holes of the river crossing the limestone massif. The river is canalized and the karst system is partly disconnected from the hydraulic system. In February and March 2006, when the river spilled over its dyke and sank into the most important swallow hole, this resulted in dramatic and nearly instantaneous increases in the piezometric levels in the cave, reaching up to 13 meters. Meanwhile, gravity increased by 50 and 90 nms-2 in February and March, respectively. A first conclusion is that during these sudden floods, the pores and fine fissures were poorly connected with the enlarged fractures, cave, and conduits. With a rise of 13 meters in the water level and a 5% porosity, a gravity change of 250 nms-2 should have been expected. This moderate gravity variation suggests either a

  11. Improving HST Pointing & Absolute Astrometry

    NASA Astrophysics Data System (ADS)

    Lallo, Matthew; Nelan, E.; Kimmer, E.; Cox, C.; Casertano, S.

    2007-05-01

    Accurate absolute astrometry is becoming increasingly important in an era of multi-mission archives and virtual observatories. Hubble Space Telescope's (HST's) Guidestar Catalog II (GSC2) has reduced coordinate error to around 0.25 arcsecond, a factor 2 or more compared with GSC1. With this reduced catalog error, special attention must be given to calibrate and maintain the Fine Guidance Sensors (FGSs) and Science Instruments (SIs) alignments in HST to a level well below this in order to ensure that the accuracy of science product's astrometry keywords and target positioning are limited only by the catalog errors. After HST Servicing Mission 4, such calibrations' improvement in "blind" pointing accuracy will allow for more efficient COS acquisitions. Multiple SIs and FGSs each have their own footprints in the spatially shared HST focal plane. It is the small changes over time in primarily the whole-body positions & orientations of these instruments & guiders relative to one another that is addressed by this work. We describe the HST Cycle 15 program CAL/OTA 11021 which, along with future variants of it, determines and maintains positions and orientations of the SIs and FGSs to better than 50 milli- arcseconds and 0.04 to 0.004 degrees of roll, putting errors associated with the alignment sufficiently below GSC2 errors. We present recent alignment results and assess their errors, illustrate trends, and describe where and how the observer sees benefit from these calibrations when using HST.

  12. Absolute oral bioavailability of ciprofloxacin.

    PubMed

    Drusano, G L; Standiford, H C; Plaisance, K; Forrest, A; Leslie, J; Caldwell, J

    1986-09-01

    We evaluated the absolute bioavailability of ciprofloxacin, a new quinoline carboxylic acid, in 12 healthy male volunteers. Doses of 200 mg were given to each of the volunteers in a randomized, crossover manner 1 week apart orally and as a 10-min intravenous infusion. Half-lives (mean +/- standard deviation) for the intravenous and oral administration arms were 4.2 +/- 0.77 and 4.11 +/- 0.74 h, respectively. The serum clearance rate averaged 28.5 +/- 4.7 liters/h per 1.73 m2 for the intravenous administration arm. The renal clearance rate accounted for approximately 60% of the corresponding serum clearance rate and was 16.9 +/- 3.0 liters/h per 1.73 m2 for the intravenous arm and 17.0 +/- 2.86 liters/h per 1.73 m2 for the oral administration arm. Absorption was rapid, with peak concentrations in serum occurring at 0.71 +/- 0.15 h. Bioavailability, defined as the ratio of the area under the curve from 0 h to infinity for the oral to the intravenous dose, was 69 +/- 7%. We conclude that ciprofloxacin is rapidly absorbed and reliably bioavailable in these healthy volunteers. Further studies with ciprofloxacin should be undertaken in target patient populations under actual clinical circumstances. PMID:3777908

  13. Absolute Instability in Coupled-Cavity TWTs

    NASA Astrophysics Data System (ADS)

    Hung, D. M. H.; Rittersdorf, I. M.; Zhang, Peng; Lau, Y. Y.; Simon, D. H.; Gilgenbach, R. M.; Chernin, D.; Antonsen, T. M., Jr.

    2014-10-01

    This paper will present results of our analysis of absolute instability in a coupled-cavity traveling wave tube (TWT). The structure mode at the lower and upper band edges are respectively approximated by a hyperbola in the (omega, k) plane. When the Briggs-Bers criterion is applied, a threshold current for onset of absolute instability is observed at the upper band edge, but not the lower band edge. The nonexistence of absolute instability at the lower band edge is mathematically similar to the nonexistence of absolute instability that we recently demonstrated for a dielectric TWT. The existence of absolute instability at the upper band edge is mathematically similar to the existence of absolute instability in a gyroton traveling wave amplifier. These interesting observations will be discussed, and the practical implications will be explored. This work was supported by AFOSR, ONR, and L-3 Communications Electron Devices.

  14. Absolute negative mobility of interacting Brownian particles

    NASA Astrophysics Data System (ADS)

    Ou, Ya-li; Hu, Cai-tian; Wu, Jian-chun; Ai, Bao-quan

    2015-12-01

    Transport of interacting Brownian particles in a periodic potential is investigated in the presence of an ac force and a dc force. From Brownian dynamic simulations, we find that both the interaction between particles and the thermal fluctuations play key roles in the absolute negative mobility (the particle noisily moves backwards against a small constant bias). When no the interaction acts, there is only one region where the absolute negative mobility occurs. In the presence of the interaction, the absolute negative mobility may appear in multiple regions. The weak interaction can be helpful for the absolute negative mobility, while the strong interaction has a destructive impact on it.

  15. Separating climate-induced mass transfers and instrumental effects from tectonic signal in repeated absolute gravity measurements

    NASA Astrophysics Data System (ADS)

    Van Camp, M.; Viron, O.; Avouac, J. P.

    2016-05-01

    We estimate the signature of the climate-induced mass transfers in repeated absolute gravity measurements based on satellite gravimetric measurements from the Gravity Recovery and Climate Experiment (GRACE) mission. We show results at the globe scale and compare them with repeated absolute gravity (AG) time behavior in three zones where AG surveys have been published: Northwestern Europe, Canada, and Tibet. For 10 yearly campaigns, the uncertainties affecting the determination of a linear gravity rate of change range 3-4 nm/s2/a in most cases, in the absence of instrumental artifacts. The results are consistent with what is observed for long-term repeated campaigns. We also discuss the possible artifact that can result from using short AG survey to determine the tectonic effects in a zone of high hydrological variability. We call into question the tectonic interpretation of several gravity changes reported from stations in Tibet, in particular the variation observed prior to the 2015 Gorkha earthquake.

  16. The AgNORs.

    PubMed

    Derenzini, M

    2000-04-01

    The structure and the function of interphase AgNORs and the importance of the "AgNOR" parameter in tumor pathology have been reviewed. Interphase AgNORs are structural-functional units of the nucleolus in which all the components necessary for ribosomal RNA synthesis are located. Two argyrophilic proteins involved in rRNA transcription and processing, nucleolin and nucleophosmin, are associated with interphase AgNORs and are responsible for their stainability with silver methods, thus allowing interphase AgNORs to be visulaized at light microscopic level, also in routine cyto-histopathological preparations. The number of interphase AgNORs is strictly related to rRNA transcriptional activity and, in continuously proliferating cells, to the rapidity of cell proliferation. Evaluation of the quantitative distribution of interphase AgNORs has been applied in tumor pathology both for diagnostic and prognostic purposes. The "AgNOR" parameter has been proved to represent a reliable tool for defining the clinical outcome of cancer disease, being an independent prognostic factor in many types of tumors. PMID:10588056

  17. AgRISTARS

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An introduction to the overall AgRISTARS program, a general statement on progress, and separate summaries of the activities of each project, with emphasis on the technical highlights are presented. Organizational and management information on AgRISTARS is included in the appendices, as is a complete bibliography of publication and reports.

  18. ISEA (International geodetic project in SouthEastern Alaska) for rapid uplifting caused by glacial retreat: (3) Absolute gravity measurements

    NASA Astrophysics Data System (ADS)

    Sun, W.; Miura, S.; Sato, T.; Kaufman, A. M.; Cross, R.; Freymueller, J. T.; Schiel, A.

    2006-12-01

    The southeast Alaska is undergoing a rapid ice-melting and land uplift due to the effect of global warming in the last three hundred years. The corresponding crustal deformation caused by the post-glacial rebound has been clearly detected by modern geodetic techniques, e.g., GPS and tidal gauge measurements (Larsen et al., 2004; Sato et al., 2005). The geodetic deformation provides us useful information in evaluating ice-melting rate, effect of global warming, and even the viscosity beneath the crust. For this purpose, however, integrated geodetic observation, especially including gravity measurement, is considered very important (Miura et al., a separate presentation at the same AGU conference; Wahr et al., 1995). Therefore, to detect the crutal deformation caused by the post-glacial rebound and to study the viscoelastic structure of the earth in the southeast Alaska, a joint team of Japanese and U.S. researchers has begun a three year project of GPS, earth tide, and absolute gravity measurements. In this presentation, results of the absolute gravity observation carried out between June 3 and June 18, 2006 are reported. During the 2006 observation campaign, a network of absolute gravity was for the first time established which is composed of five sites about 100 km around of Juneau: Bartlett Cove at Gustavus, Russell Island, Hains Fairground at Hains, UAS Egan Library at Juneau and Mendenhall Glacier Visitors Center at Juneau, Alaska. Absolute gravity data were acquired at the five sites using a Micro-LaCoste absolute gravimeter, serial number 111. A typical occupation recorded a set of 100 single measurements every half hour. At each site data were collected over a 48~62 hour period. Due to the bad ocean model in this area, ocean loading correction seems not efficient because large tidal residuals remain in the observed results. To carry out an accurate tidal correction, on site tidal observation was also performed. Detail discussions on tidal observation and

  19. AGS experiments: 1993 - 1994 - 1995

    SciTech Connect

    Depken, J.C.

    1996-04-01

    This report contains: FY 1995 AGS Schedule as Run; FY 1996-97 AGE Schedule (working copy); AGS Beams 1995; AGS Experimental Area FY 1993 Physics Program; AGS Experimental Area FY 1994 Physics Program; AGS Experimental Area FY 1995 Physics Program; AGS Experimental Area FY 1996 Physics Program (In progress); A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Listing of publications of AGS experiments begins here; and Listing of AGS experimenters begins here. This is the twelfth edition.

  20. Inequalities, Absolute Value, and Logical Connectives.

    ERIC Educational Resources Information Center

    Parish, Charles R.

    1992-01-01

    Presents an approach to the concept of absolute value that alleviates students' problems with the traditional definition and the use of logical connectives in solving related problems. Uses a model that maps numbers from a horizontal number line to a vertical ray originating from the origin. Provides examples solving absolute value equations and…

  1. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  2. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  3. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  4. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  5. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  6. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  7. Loading effect of a self-consistent equilibrium ocean pole tide on the gravimetric parameters of the gravity pole tides at superconducting gravimeter stations

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Ducarme, Bernard; Sun, Heping; Xu, Jianqiao

    2008-05-01

    The gravimetric parameters of the gravity pole tide are the amplitude factor δ, which is the ratio of gravity variations induced by polar motion for a real Earth to variations computed for a rigid one, and the phase difference κ between the observed and the rigid gravity pole tide. They can be estimated from the records of superconducting gravimeters (SGs). However, they are affected by the loading effect of the ocean pole tide. Recent results from TOPEX/Poseidon (TP) altimeter confirm that the ocean pole tide has a self-consistent equilibrium response. Accordingly, we calculate the gravity loading effects as well as their influence on the gravimetric parameters of gravity pole tide at all the 26 SG stations in the world on the assumption of a self-consistent equilibrium ocean pole tide model. The gravity loading effect is evaluated between 1 January 1997 and 31 December 2006. Numerical results show that the amplitude of the gravity loading effect reaches 10 -9 m s -2, which is larger than the accuracy (10 -10 m s -2) of a SG. The gravimetric factor δ is 1% larger at all SG stations. Then, the contribution of a self-consistent ocean pole tide to the pole tide gravimetric parameters cannot be ignored as it exceeds the current accuracy of the estimation of the pole tide gravity factors. For the nine stations studied in Ducarme et al. [Ducarme, B., Venedikov, A.P., Arnoso, J., et al., 2006. Global analysis of the GGP superconducting gravimeters network for the estimation of the pole tide gravimetric amplitude factor. J. Geodyn. 41, 334-344.], the mean of the modeled tidal factors δm = 1.1813 agrees very well with the result of a global analysis δCH = 1.1816 ± 0.0047 in that paper. On the other hand, the modeled phase difference κm varies from -0.273° to 0.351°. Comparing to the two main periods of the gravity pole tide, annual period and Chandler period, κm is too small to be considered. Therefore, The computed time difference κL induced by a self

  8. Absolute optical instruments without spherical symmetry

    NASA Astrophysics Data System (ADS)

    Tyc, Tomáš; Dao, H. L.; Danner, Aaron J.

    2015-11-01

    Until now, the known set of absolute optical instruments has been limited to those containing high levels of symmetry. Here, we demonstrate a method of mathematically constructing refractive index profiles that result in asymmetric absolute optical instruments. The method is based on the analogy between geometrical optics and classical mechanics and employs Lagrangians that separate in Cartesian coordinates. In addition, our method can be used to construct the index profiles of most previously known absolute optical instruments, as well as infinitely many different ones.

  9. Absolute magnitudes of trans-neptunian objects

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.

    2015-10-01

    Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.

  10. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  11. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed. PMID:19831037

  12. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  13. Absolute isotopic abundances of TI in meteorites

    NASA Astrophysics Data System (ADS)

    Niederer, F. R.; Papanastassiou, D. A.; Wasserburg, G. J.

    1985-03-01

    The absolute isotope abundance of Ti has been determined in Ca-Al-rich inclusions from the Allende and Leoville meteorites and in samples of whole meteorites. The absolute Ti isotope abundances differ by a significant mass dependent isotope fractionation transformation from the previously reported abundances, which were normalized for fractionation using 46Ti/48Ti. Therefore, the absolute compositions define distinct nucleosynthetic components from those previously identified or reflect the existence of significant mass dependent isotope fractionation in nature. The authors provide a general formalism for determining the possible isotope compositions of the exotic Ti from the measured composition, for different values of isotope fractionation in nature and for different mixing ratios of the exotic and normal components.

  14. Molecular iodine absolute frequencies. Final report

    SciTech Connect

    Sansonetti, C.J.

    1990-06-25

    Fifty specified lines of {sup 127}I{sub 2} were studied by Doppler-free frequency modulation spectroscopy. For each line the classification of the molecular transition was determined, hyperfine components were identified, and one well-resolved component was selected for precise determination of its absolute frequency. In 3 cases, a nearby alternate line was selected for measurement because no well-resolved component was found for the specified line. Absolute frequency determinations were made with an estimated uncertainty of 1.1 MHz by locking a dye laser to the selected hyperfine component and measuring its wave number with a high-precision Fabry-Perot wavemeter. For each line results of the absolute measurement, the line classification, and a Doppler-free spectrum are given.

  15. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record PMID:26478959

  16. Absolute calibration in vivo measurement systems

    SciTech Connect

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

  17. Precise Measurement of the Absolute Fluorescence Yield

    NASA Astrophysics Data System (ADS)

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2011-09-01

    We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.

  18. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed. PMID:26022836

  19. Monochromator-Based Absolute Calibration of a Standard Radiation Thermometer

    NASA Astrophysics Data System (ADS)

    Mantilla, J. M.; Hernanz, M. L.; Campos, J.; Martín, M. J.; Pons, A.; del Campo, D.

    2014-04-01

    Centro Español de Metrología (CEM) is disseminating the International Temperature Scale (ITS-90), at high temperatures, by using the fixed points of Ag and Cu and a standard radiation thermometer. However, the future mise-en-pratique for the definition of the kelvin ( MeP-K) will include the dissemination of the kelvin by primary methods and by indirect approximations capable of exceptionally low uncertainties or increased reliability. Primary radiometry is, at present, able to achieve uncertainties competitive with the ITS-90 above the silver point with one of the possible techniques the calibration for radiance responsivity of an imaging radiometer (radiance method). In order to carry out this calibration, IO-CSIC (Spanish Designated Institute for luminous intensity and luminous flux) has collaborated with CEM, allowing traceability to its cryogenic radiometer. A monochromator integrating sphere-based spectral comparator facility has been used to calibrate one of the CEM standard radiation thermometers. The absolute calibrated standard radiation thermometer has been used to determine the temperatures of the fixed points of Cu, Co-C, Pt-C, and Re-C. The results obtained are 1357.80 K, 1597.10 K, 2011.66 K, and 2747.64 K, respectively, with uncertainties ranging from 0.4 K to 1.1 K.

  20. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  1. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  2. Teaching Absolute Value Inequalities to Mature Students

    ERIC Educational Resources Information Center

    Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea

    2011-01-01

    This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…

  3. Increasing Capacity: Practice Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Dodds, Pennie; Donkin, Christopher; Brown, Scott D.; Heathcote, Andrew

    2011-01-01

    In most of the long history of the study of absolute identification--since Miller's (1956) seminal article--a severe limit on performance has been observed, and this limit has resisted improvement even by extensive practice. In a startling result, Rouder, Morey, Cowan, and Pfaltz (2004) found substantially improved performance with practice in the…

  4. On Relative and Absolute Conviction in Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2015-01-01

    Conviction is a central construct in mathematics education research on justification and proof. In this paper, we claim that it is important to distinguish between absolute conviction and relative conviction. We argue that researchers in mathematics education frequently have not done so and this has lead to researchers making unwarranted claims…

  5. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  6. Nonequilibrium equalities in absolutely irreversible processes

    NASA Astrophysics Data System (ADS)

    Murashita, Yuto; Funo, Ken; Ueda, Masahito

    2015-03-01

    Nonequilibrium equalities have attracted considerable attention in the context of statistical mechanics and information thermodynamics. Integral nonequilibrium equalities reveal an ensemble property of the entropy production σ as = 1 . Although nonequilibrium equalities apply to rather general nonequilibrium situations, they break down in absolutely irreversible processes, where the forward-path probability vanishes and the entropy production diverges. We identify the mathematical origins of this inapplicability as the singularity of probability measure. As a result, we generalize conventional integral nonequilibrium equalities to absolutely irreversible processes as = 1 -λS , where λS is the probability of the singular part defined based on Lebesgue's decomposition theorem. The acquired equality contains two physical quantities related to irreversibility: σ characterizing ordinary irreversibility and λS describing absolute irreversibility. An inequality derived from the obtained equality demonstrates the absolute irreversibility leads to the fundamental lower bound on the entropy production. We demonstrate the validity of the obtained equality for a simple model.

  7. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  8. Precision absolute positional measurement of laser beams.

    PubMed

    Fitzsimons, Ewan D; Bogenstahl, Johanna; Hough, James; Killow, Christian J; Perreur-Lloyd, Michael; Robertson, David I; Ward, Henry

    2013-04-20

    We describe an instrument which, coupled with a suitable coordinate measuring machine, facilitates the absolute measurement within the machine frame of the propagation direction of a millimeter-scale laser beam to an accuracy of around ±4 μm in position and ±20 μrad in angle. PMID:23669658

  9. The oscillation model of hydrothermal dynamics beneath Aso volcano, southwest Japan after small eruption on May 2011: A new understanding model using repeated absolute and relative gravity measurement

    NASA Astrophysics Data System (ADS)

    Sofyan, Yayan; Nishijima, Jun; Fujimitsu, Yasuhiro; Yoshikawa, Shin; Kagiyama, Tsuneomi; Ohkura, Takahiro

    2016-01-01

    At the end of 2010, the seismic activity in Aso volcano intensely increased and water level in the Nakadake crater decreased until early in 2011, then was followed by a small eruption in May 2011. After the eruption and heavy rain, the volcanic activity subsided to calm period, crater bottom was refilled with water, and water level increased in the Nakadake crater. The next tremor reappeared in 2014 and tracked to eruption in November 2014. This eruptive pattern and water level variation in the crater repeatedly appeared on the surface, and it should be related to the hydrothermal dynamics beneath Aso volcano. We initiated the gravity measurements in relation to hydrothermal dynamics in the subsurface of Aso volcano using Scintrex CG-5 (549) and LaCoste Romberg type G-1016 relative gravimeter at 28 benchmarks in April 2011, one month before the eruption. The repeated gravity measurements continue to monitor Aso volcano with a series of the measurement after the eruption in every three months to a half year. We analyze the gravity variation from 2011 to 2014 between the time of the phreatic and strombolian eruption. The measurements covered the area more than 60 km2 in the west side of Aso caldera. A new gravity network was also installed in May 2010 at seven benchmarks using A10-017 absolute gravimeter, which re-occupied in October 2010, June 2011 and two benchmarks in June 2014. As a result, the gravity changes distinguish hydrothermal dynamic in the subsurface, which has a direct correlation to water level fluctuation in the crater, after the first eruption and before the second discharge. The monitoring data notice large gravity changes between the surveys at benchmarks around Nakadake crater and Kusasenri area. The simple 3D inversion models of the 4-D gravity data deduce the density contrast distribution beneath Aso volcano. The inversion and mass change result generate the oscillation typical as a new understanding model. The variation of the mass shows a

  10. Combined Use of Absolute and Differential Seismic Arrival Time Data to Improve Absolute Event Location

    NASA Astrophysics Data System (ADS)

    Myers, S.; Johannesson, G.

    2012-12-01

    Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement

  11. Freeze-dried PVP-Ag+ precursors to novel AgBr/AgCl-Ag hybrid nanocrystals for visible-light-driven photodegradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Chen, Qianqian; Zhang, Wenjie; Ge, Lianfang; Shao, Gang; Fan, Bingbing; Lu, Hongxia; Zhang, Rui; Yang, Daoyuan; Shao, Guosheng

    2015-04-01

    AgBr/AgCl-Ag nanocrystals with various molar Br-to-Ag ratios (RBr/Ag = 0, 1/3, 1/2, 2/3, 1) and different photoreduction times (0-20 min) were synthesized via stepwise liquid-solid reactions using the freeze-dried PVP-Ag+ hybrid as the Ag source, followed by a photoreduction reaction. The AgBr/AgCl-Ag7.5(1:2) nanocrystals obtained take on a spherical morphology with a particle-size range of 58 ± 15 nm. The photocatalytic performance of AgBr/AgCl-Ag nanocrystals was evaluated by photodegrading organic dyes, 4-chlorophenol and isopropanol under artificial visible light (λ ⩾ 420 nm, 100 mW cm-2). For the decomposition of rhodamine B, the AgBr/AgCl-Ag7.5(1:2) nanocrystals has a photodegradation rate of ∼0.87 min-1, ∼159 times higher than that (∼0.0054 min-1) of TiO2 (P25), whereas the AgCl-Ag and AgBr-Ag nanocrystals have photodegradation rates of 0.35 min-1 and 0.45 min-1, respectively. The efficient separation of photogenerated electron-hole pairs in the ternary system consisting of AgBr, AgCl and Ag species plays a key role in the enhancement of photocatalytic performance.

  12. Ag K- and L3-edge XAFS study on Ag species in Ag/Ga2O3 photocatalysts

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.; Yoshida, T.; Yamamoto, N.; Nomoto, T.; Yamamoto, A.; Yoshida, H.; Yagi, S.

    2016-05-01

    Ag loaded Ga2O3 (Ag/Ga2O3) shows photocatalytic activity for reduction of CO2 with water. Ag L3-edge XANES and K-edge EXAFS spectra were measured for various Ag/Ga2O3 samples, which suggested that structural and chemical states of Ag species varied with the loading amount of Ag and the preparation method. The Ag species were metallic Ag particles with an AgGaO2-like interface structure in the sample with high loading amount of Ag while predominantly Ag metal clusters in the sample with low loading amount of Ag. The XANES feature just above the edge represented the interaction between the Ag species and the Ga2O3 surface, showing that the Ag metal clusters had more electrons in the d-orbitals by interacting with the Ga2O3 surface, which would contribute the high photocatalytic activity.

  13. AGS experiments -- 1995, 1996 and 1997

    SciTech Connect

    Depken, J.C.; Presti, P.L.

    1997-12-01

    This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments.

  14. AGS experiments -- 1991, 1992, 1993. Tenth edition

    SciTech Connect

    Depken, J.C.

    1994-04-01

    This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments {ge} FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments.

  15. Destabilization of Ag nanoislands on Ag(100) by adsorbed sulfur

    SciTech Connect

    Shen, Mingmin; Russell, Selena M.; Liu, Da-Jiang; Thiel, Patricia A.

    2011-10-17

    Sulfur accelerates coarsening of Ag nanoislands on Ag(100) at 300 K, and this effect is enhanced with increasing sulfur coverage over a range spanning a few hundredths of a monolayer, to nearly 0.25 monolayers. We propose that acceleration of coarsening in this system is tied to the formation of AgS{sub 2} clusters primarily at step edges. These clusters can transport Ag more efficiently than can Ag adatoms (due to a lower diffusion barrier and comparable formation energy). The mobility of isolated sulfur on Ag(100) is very low so that formation of the complex is kinetically limited at low sulfur coverages, and thus enhancement is minimal. However, higher sulfur coverages force the population of sites adjacent to step edges, so that formation of the cluster is no longer limited by diffusion of sulfur across terraces. Sulfur exerts a much weaker effect on the rate of coarsening on Ag(100) than it does on Ag(111). This is consistent with theory, which shows that the difference between the total energy barrier for coarsening with and without sulfur is also much smaller on Ag(100) than on Ag(111).

  16. AGS preinjector improvement

    SciTech Connect

    Alessi, J.G.; Brennan, J.M.; Brown, H.N.; Brodowski, J.; Gough, R.; Kponou, A.; Prelec, K.; Staples, J.; Tanabe, J.; Witkover, R.

    1987-01-01

    In 1984, a polarized H/sup -/ source was installed to permit the acceleration of polarized protons in the AGS, using a low current, 750 keV RFQ Linear Accelerator as the preinjector. This RFQ was designed by LANL and has proved to be quite satisfactory and reliable. In order to improve the reliability and simplify maintenance of the overall AGS operations, it has been decided to replace one of the two 750 keV Cockcroft-Waltons (C-W) with an RFQ. The design of a new high current RFQ has been carried out by LBL and is also being constructed there. This paper describes the preinjector improvement project, centered around that RFQ, which is underway at BNL.

  17. Absolute and relative dosimetry for ELIMED

    SciTech Connect

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  18. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum. PMID:25423049

  19. Absolute-magnitude distributions of supernovae

    SciTech Connect

    Richardson, Dean; Wright, John; Jenkins III, Robert L.; Maddox, Larry

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  20. Absolute radiometry and the solar constant

    NASA Technical Reports Server (NTRS)

    Willson, R. C.

    1974-01-01

    A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).

  1. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  2. Absolute calibration of TFTR helium proportional counters

    SciTech Connect

    Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L.; Barnes, C.W. |; Loughlin, M. |

    1995-06-01

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments.

  3. Absolute enantioselective separation: optical activity ex machina.

    PubMed

    Bielski, Roman; Tencer, Michal

    2005-11-01

    The paper describes methodology of using three independent macroscopic factors affecting molecular orientation to accomplish separation of a racemic mixture without the presence of any other chiral compounds, i. e., absolute enantioselective separation (AES) which is an extension of a concept of applying these factors to absolute asymmetric synthesis. The three factors may be applied simultaneously or, if their effects can be retained, consecutively. The resulting three mutually orthogonal or near orthogonal directors constitute a true chiral influence and their scalar triple product is the measure of the chirality of the system. AES can be executed in a chromatography-like microfluidic process in the presence of an electric field. It may be carried out on a chemically modified flat surface, a monolithic polymer column made of a mesoporous material, each having imparted directional properties. Separation parameters were estimated for these media and possible implications for the natural homochirality are discussed. PMID:16342798

  4. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  5. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  6. Metallic Magnetic Calorimeters for Absolute Activity Measurement

    NASA Astrophysics Data System (ADS)

    Loidl, M.; Leblanc, E.; Rodrigues, M.; Bouchard, J.; Censier, B.; Branger, T.; Lacour, D.

    2008-05-01

    We present a prototype of metallic magnetic calorimeters that we are developing for absolute activity measurements of low energy emitting radionuclides. We give a detailed description of the realization of the prototype, containing an 55Fe source inside the detector absorber. We present the analysis of first data taken with this detector and compare the result of activity measurement with liquid scintillation counting. We also propose some ways for reducing the uncertainty on the activity determination with this new technique.

  7. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  8. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  9. Silicon Absolute X-Ray Detectors

    SciTech Connect

    Seely, John F.; Korde, Raj; Sprunck, Jacob; Medjoubi, Kadda; Hustache, Stephanie

    2010-06-23

    The responsivity of silicon photodiodes having no loss in the entrance window, measured using synchrotron radiation in the 1.75 to 60 keV range, was compared to the responsivity calculated using the silicon thickness measured using near-infrared light. The measured and calculated responsivities agree with an average difference of 1.3%. This enables their use as absolute x-ray detectors.

  10. Blood pressure targets and absolute cardiovascular risk.

    PubMed

    Odutayo, Ayodele; Rahimi, Kazem; Hsiao, Allan J; Emdin, Connor A

    2015-08-01

    In the Eighth Joint National Committee guideline on hypertension, the threshold for the initiation of blood pressure-lowering treatment for elderly adults (≥60 years) without chronic kidney disease or diabetes mellitus was raised from 140/90 mm Hg to 150/90 mm Hg. However, the committee was not unanimous in this decision, particularly because a large proportion of adults ≥60 years may be at high cardiovascular risk. On the basis of Eighth Joint National Committee guideline, we sought to determine the absolute 10-year risk of cardiovascular disease among these adults through analyzing the National Health and Nutrition Examination Survey (2005-2012). The primary outcome measure was the proportion of adults who were at ≥20% predicted absolute cardiovascular risk and above goals for the Seventh Joint National Committee guideline but reclassified as at target under the Eighth Joint National Committee guideline (reclassified). The Framingham General Cardiovascular Disease Risk Score was used. From 2005 to 2012, the surveys included 12 963 adults aged 30 to 74 years with blood pressure measurements, of which 914 were reclassified based on the guideline. Among individuals reclassified as not in need of additional treatment, the proportion of adults 60 to 74 years without chronic kidney disease or diabetes mellitus at ≥20% absolute risk was 44.8%. This corresponds to 0.8 million adults. The proportion at high cardiovascular risk remained sizable among adults who were not receiving blood pressure-lowering treatment. Taken together, a sizable proportion of reclassified adults 60 to 74 years without chronic kidney disease or diabetes mellitus was at ≥20% absolute cardiovascular risk. PMID:26056340

  11. Relative errors can cue absolute visuomotor mappings.

    PubMed

    van Dam, Loes C J; Ernst, Marc O

    2015-12-01

    When repeatedly switching between two visuomotor mappings, e.g. in a reaching or pointing task, adaptation tends to speed up over time. That is, when the error in the feedback corresponds to a mapping switch, fast adaptation occurs. Yet, what is learned, the relative error or the absolute mappings? When switching between mappings, errors with a size corresponding to the relative difference between the mappings will occur more often than other large errors. Thus, we could learn to correct more for errors with this familiar size (Error Learning). On the other hand, it has been shown that the human visuomotor system can store several absolute visuomotor mappings (Mapping Learning) and can use associated contextual cues to retrieve them. Thus, when contextual information is present, no error feedback is needed to switch between mappings. Using a rapid pointing task, we investigated how these two types of learning may each contribute when repeatedly switching between mappings in the absence of task-irrelevant contextual cues. After training, we examined how participants changed their behaviour when a single error probe indicated either the often-experienced error (Error Learning) or one of the previously experienced absolute mappings (Mapping Learning). Results were consistent with Mapping Learning despite the relative nature of the error information in the feedback. This shows that errors in the feedback can have a double role in visuomotor behaviour: they drive the general adaptation process by making corrections possible on subsequent movements, as well as serve as contextual cues that can signal a learned absolute mapping. PMID:26280315

  12. Absolute distance measurements by variable wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Bien, F.; Camac, M.; Caulfield, H. J.; Ezekiel, S.

    1981-02-01

    This paper describes a laser interferometer which provides absolute distance measurements using tunable lasers. An active feedback loop system, in which the laser frequency is locked to the optical path length difference of the interferometer, is used to tune the laser wavelengths. If the two wavelengths are very close, electronic frequency counters can be used to measure the beat frequency between the two laser frequencies and thus to determine the optical path difference between the two legs of the interferometer.

  13. Absolute dosimetry for extreme-ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Berger, Kurt W.; Campiotti, Richard H.

    2000-06-01

    The accurate measurement of an exposure dose reaching the wafer on an extreme ultraviolet (EUV) lithographic system has been a technical challenge directly applicable to the evaluation of candidate EUV resist materials and calculating lithography system throughputs. We have developed a dose monitoring sensor system that can directly measure EUV intensities at the wafer plane of a prototype EUV lithographic system. This sensor system, located on the wafer stage adjacent to the electrostatic chuck used to grip wafers, operates by translating the sensor into the aerial image, typically illuminating an 'open' (unpatterned) area on the reticle. The absolute signal strength can be related to energy density at the wafer, and thus used to determine resist sensitivity, and the signal as a function of position can be used to determine illumination uniformity at the wafer plane. Spectral filtering to enhance the detection of 13.4 nm radiation was incorporated into the sensor. Other critical design parameters include the packaging and amplification technologies required to place this device into the space and vacuum constraints of a EUV lithography environment. We describe two approaches used to determine the absolute calibration of this sensor. The first conventional approach requires separate characterization of each element of the sensor. A second novel approach uses x-ray emission from a mildly radioactive iron source to calibrate the absolute response of the entire sensor system (detector and electronics) in a single measurement.

  14. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Ren, Yan-yu; Wang, Tao; Wang, Chuang

    Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV-Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism.

  15. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  16. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  17. The National Geodetic Survey absolute gravity program

    NASA Astrophysics Data System (ADS)

    Peter, George; Moose, Robert E.; Wessells, Claude W.

    1989-03-01

    The National Geodetic Survey absolute gravity program will utilize the high precision afforded by the JILAG-4 instrument to support geodetic and geophysical research, which involves studies of vertical motions, identification and modeling of other temporal variations, and establishment of reference values. The scientific rationale of these objectives is given, the procedures used to collect gravity and environmental data in the field are defined, and the steps necessary to correct and remove unwanted environmental effects are stated. In addition, site selection criteria, methods of concomitant environmental data collection and relative gravity observations, and schedule and logistics are discussed.

  18. An absolute radius scale for Saturn's rings

    NASA Technical Reports Server (NTRS)

    Nicholson, Philip D.; Cooke, Maren L.; Pelton, Emily

    1990-01-01

    Radio and stellar occultation observations of Saturn's rings made by the Voyager spacecraft are discussed. The data reveal systematic discrepancies of almost 10 km in some parts of the rings, limiting some of the investigations. A revised solution for Saturn's rotation pole has been proposed which removes the discrepancies between the stellar and radio occultation profiles. Corrections to previously published radii vary from -2 to -10 km for the radio occultation, and +5 to -6 km for the stellar occultation. An examination of spiral density waves in the outer A Ring supports that the revised absolute radii are in error by no more than 2 km.

  19. Characterization of the DARA solar absolute radiometer

    NASA Astrophysics Data System (ADS)

    Finsterle, W.; Suter, M.; Fehlmann, A.; Kopp, G.

    2011-12-01

    The Davos Absolute Radiometer (DARA) prototype is an Electrical Substitution Radiometer (ESR) which has been developed as a successor of the PMO6 type on future space missions and ground based TSI measurements. The DARA implements an improved thermal design of the cavity detector and heat sink assembly to minimize air-vacuum differences and to maximize thermal symmetry of measuring and compensating cavity. The DARA also employs an inverted viewing geometry to reduce internal stray light. We will report on the characterization and calibration experiments which were carried out at PMOD/WRC and LASP (TRF).

  20. Absolute calibration of the Auger fluorescence detectors

    SciTech Connect

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  1. Absolute angular positioning in ultrahigh vacuum

    SciTech Connect

    Schief, H.; Marsico, V.; Kern, K.

    1996-05-01

    Commercially available angular resolvers, which are routinely used in machine tools and robotics, are modified and adapted to be used under ultrahigh-vacuum (UHV) conditions. They provide straightforward and reliable measurements of angular positions for any kind of UHV sample manipulators. The corresponding absolute reproducibility is on the order of 0.005{degree}, whereas the relative resolution is better than 0.001{degree}, as demonstrated by high-resolution helium-reflectivity measurements. The mechanical setup and possible applications are discussed. {copyright} {ital 1996 American Institute of Physics.}

  2. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  3. Absolute Priority for a Vehicle in VANET

    NASA Astrophysics Data System (ADS)

    Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad

    In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.

  4. Ag-Air Service

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Econ, Inc.'s agricultural aerial application, "ag-air," involves more than 10,000 aircraft spreading insecticides, herbicides, fertilizer, seed and other materials over millions of acres of farmland. Difficult for an operator to estimate costs accurately and decide what to charge or which airplane can handle which assignment most efficiently. Computerized service was designed to improve business efficiency in choice of aircraft and determination of charge rates based on realistic operating cost data. Each subscriber fills out a detailed form which pertains to his needs and then receives a custom-tailored computer printout best suited to his particular business mix.

  5. Determination of the absolute contours of optical flats

    NASA Technical Reports Server (NTRS)

    Primak, W.

    1969-01-01

    Emersons procedure is used to determine true absolute contours of optical flats. Absolute contours of standard flats are determined and a comparison is then made between standard and unknown flats. Contour differences are determined by deviation of Fizeau fringe.

  6. Bimetallic Pt-Ag and Pd-Ag nanoparticles

    SciTech Connect

    Lahiri, Debdutta; Bunker, Bruce; Mishra, Bhoopesh; Zhang, Zhenyuan; Meisel, Dan; Doudna, C. M.; Bertino, M. F.; Blum, Frank D.; Tokuhiro, A. T.; Chattopadhyay, Soma; Shibata, Tomohiro; Terry, Jeff

    2005-04-19

    We report studies of bimetallic nanoparticles with 15%–16% atomic crystal parameters size mismatch. The degree of alloying was also probed in a 2-nm Pt core ssmallest attainable core sized of Pt–Ag nanoparticles scompletely immiscible in bulkd and 20-nm-diameter Pd–Ag nanowires scompletely miscible in bulkd. Particles were synthesized radiolytically, and depending on the initial parameters, they assume spherical or cylindrical snanowired morphologies. In all cases, the metals are seen to follow their bulk alloying characteristics. Also, Pt and Ag segregate in both spherical and wire forms, which indicates that strain due to crystallographic mismatch overcomes the excess surface free energy in the small particles. The Pd–Ag nanowires alloy similar to previously reported spherical Pd–Ag particles of similar diameter and composition

  7. Bimetallic Pt-Ag and Pd-Ag nanoparticles

    SciTech Connect

    Lahiri, Debdutta; Bunker, Bruce; Mishra, Bhoopesh; Zhang, Zhenyuan; Meisel, Dan; Doudna, C.M.; Bertino, M. F.; Blum, Frank D.; Tokuhiro, A.T.; Chattopadhyay, Soma; Shibata, Tomohiro; Terry, Jeff

    2005-05-01

    We report studies of bimetallic nanoparticles with 15%-16% atomic crystal parameters size mismatch. The degree of alloying was probed in a 2-nm Pt core (smallest attainable core size) of Pt-Ag nanoparticles (completely immiscible in bulk) and 20-nm-diameter Pd-Ag nanowires (completely miscible in bulk). Particles were synthesized radiolytically, and depending on the initial parameters, they assume spherical or cylindrical (nanowire) morphologies. In all cases, the metals are seen to follow their bulk alloying characteristics. Pt and Ag segregate in both spherical and wire forms, which indicates that strain due to crystallographic mismatch overcomes the excess surface free energy in the small particles. The Pd-Ag nanowires alloy similar to previously reported spherical Pd-Ag particles of similar diameter and composition.

  8. Standardization of the cumulative absolute velocity

    SciTech Connect

    O'Hara, T.F.; Jacobson, J.P. )

    1991-12-01

    EPRI NP-5930, A Criterion for Determining Exceedance of the Operating Basis Earthquake,'' was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.

  9. Absolute rates of hole transfer in DNA.

    PubMed

    Senthilkumar, Kittusamy; Grozema, Ferdinand C; Guerra, Célia Fonseca; Bickelhaupt, F Matthias; Lewis, Frederick D; Berlin, Yuri A; Ratner, Mark A; Siebbeles, Laurens D A

    2005-10-26

    Absolute rates of hole transfer between guanine nucleobases separated by one or two A:T base pairs in stilbenedicarboxamide-linked DNA hairpins were obtained by improved kinetic analysis of experimental data. The charge-transfer rates in four different DNA sequences were calculated using a density-functional-based tight-binding model and a semiclassical superexchange model. Site energies and charge-transfer integrals were calculated directly as the diagonal and off-diagonal matrix elements of the Kohn-Sham Hamiltonian, respectively, for all possible combinations of nucleobases. Taking into account the Coulomb interaction between the negative charge on the stilbenedicarboxamide linker and the hole on the DNA strand as well as effects of base pair twisting, the relative order of the experimental rates for hole transfer in different hairpins could be reproduced by tight-binding calculations. To reproduce quantitatively the absolute values of the measured rate constants, the effect of the reorganization energy was taken into account within the semiclassical superexchange model for charge transfer. The experimental rates could be reproduced with reorganization energies near 1 eV. The quantum chemical data obtained were used to discuss charge carrier mobility and hole-transport equilibria in DNA. PMID:16231945

  10. Transient absolute robustness in stochastic biochemical networks.

    PubMed

    Enciso, German A

    2016-08-01

    Absolute robustness allows biochemical networks to sustain a consistent steady-state output in the face of protein concentration variability from cell to cell. This property is structural and can be determined from the topology of the network alone regardless of rate parameters. An important question regarding these systems is the effect of discrete biochemical noise in the dynamical behaviour. In this paper, a variable freezing technique is developed to show that under mild hypotheses the corresponding stochastic system has a transiently robust behaviour. Specifically, after finite time the distribution of the output approximates a Poisson distribution, centred around the deterministic mean. The approximation becomes increasingly accurate, and it holds for increasingly long finite times, as the total protein concentrations grow to infinity. In particular, the stochastic system retains a transient, absolutely robust behaviour corresponding to the deterministic case. This result contrasts with the long-term dynamics of the stochastic system, which eventually must undergo an extinction event that eliminates robustness and is completely different from the deterministic dynamics. The transiently robust behaviour may be sufficient to carry out many forms of robust signal transduction and cellular decision-making in cellular organisms. PMID:27581485

  11. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  12. Sentinel-2/MSI absolute calibration: first results

    NASA Astrophysics Data System (ADS)

    Lonjou, V.; Lachérade, S.; Fougnie, B.; Gamet, P.; Marcq, S.; Raynaud, J.-L.; Tremas, T.

    2015-10-01

    Sentinel-2 is an optical imaging mission devoted to the operational monitoring of land and coastal areas. It is developed in partnership between the European Commission and the European Space Agency. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. It will offer a unique combination of global coverage with a wide field of view (290km), a high revisit (5 days with two satellites), a high resolution (10m, 20m and 60m) and multi-spectral imagery (13 spectral bands in visible and shortwave infra-red domains). CNES is involved in the instrument commissioning in collaboration with ESA. This paper reviews all the techniques that will be used to insure an absolute calibration of the 13 spectral bands better than 5% (target 3%), and will present the first results if available. First, the nominal calibration technique, based on an on-board sun diffuser, is detailed. Then, we show how vicarious calibration methods based on acquisitions over natural targets (oceans, deserts, and Antarctica during winter) will be used to check and improve the accuracy of the absolute calibration coefficients. Finally, the verification scheme, exploiting photometer in-situ measurements over Lacrau plain, is described. A synthesis, including spectral coherence, inter-methods agreement and temporal evolution, will conclude the paper.

  13. Absolute Spectrophotometry of 237 Open Cluster Stars

    NASA Astrophysics Data System (ADS)

    Clampitt, L.; Burstein, D.

    1994-12-01

    We present absolute spectrophotometry of 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M 39. The observations were taken using the Wampler single-channel scanner (Wampler 1966) on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. 21 bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwiths ranging from 32Angstroms to 64 Angstroms. Data are standardized to the Hayes--Latham (1975) system. Our measurements are compared to filter colors on the Johnson BV, Stromgren ubvy, and Geneva U V B_1 B_2 V_1 G systems, as well as to spectrophotometry of a few stars published by Gunn, Stryker & Tinsley and in the Spectrophotometric Standards Catalog (Adelman; as distributed by the NSSDC). Both internal and external comparisons to the filter systems indicate a formal statistical accuracy per bandpass of 0.01 to 0.02 mag, with apparent larger ( ~ 0.03 mag) differences in absolute calibration between this data set and existing spectrophotometry. These data will comprise part of the spectrophotometry that will be used to calibrate the Beijing-Arizona-Taipei-Connecticut Color Survey of the Sky (see separate paper by Burstein et al. at this meeting).

  14. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  15. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  16. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a...

  17. What Is Ag-Ed?

    ERIC Educational Resources Information Center

    Lindley, Judy

    Ag-Ed is an agricultural education project aimed at upper primary students, held in conjunction with the Toowoomba Show (similar to a county fair) in Queensland, Australia. The program achieves its purpose of helping children understand the impact and relevance that agriculture has on their everyday lives through two components, an Ag-Ed day and a…

  18. AGS Experiments: 1989, 1990, 1991

    SciTech Connect

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule ``as run``; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  19. AGS Experiments: 1989, 1990, 1991

    SciTech Connect

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  20. Atom gravimeters and gravitational redshift.

    PubMed

    Wolf, Peter; Blanchet, Luc; Bordé, Christian J; Reynaud, Serge; Salomon, Christophe; Cohen-Tannoudji, Claude

    2010-09-01

    In ref. 1 the authors present a re-interpretation of atom interferometry experiments published a decade ago. They now consider the atom interferometry experiments as a measurement of the gravitational redshift on the quantum clock operating at the Compton frequency omega(C) = mc(2)/ approximately 2pi x 3.0 x 10(25) Hz, where m is the caesium (Cs) atom rest mass. They then argue that this redshift measurement compares favourably with existing as well as projected clock tests. Here we show that this interpretation is incorrect. PMID:20811407

  1. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  2. Absolute calibration of ultraviolet filter photometry

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Fairchild, T.; Code, A. D.

    1972-01-01

    The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.

  3. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  4. Absolute geostrophic currents in global tropical oceans

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Yuan, Dongliang

    2016-03-01

    A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.

  5. Absolute Measurement of Electron Cloud Density

    SciTech Connect

    Covo, M K; Molvik, A W; Cohen, R H; Friedman, A; Seidl, P A; Logan, G; Bieniosek, F; Baca, D; Vay, J; Orlando, E; Vujic, J L

    2007-06-21

    Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 {micro}s duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.

  6. Absolute instability of a viscous hollow jet

    NASA Astrophysics Data System (ADS)

    Gañán-Calvo, Alfonso M.

    2007-02-01

    An investigation of the spatiotemporal stability of hollow jets in unbounded coflowing liquids, using a general dispersion relation previously derived, shows them to be absolutely unstable for all physical values of the Reynolds and Weber numbers. The roots of the symmetry breakdown with respect to the liquid jet case, and the validity of asymptotic models are here studied in detail. Asymptotic analyses for low and high Reynolds numbers are provided, showing that old and well-established limiting dispersion relations [J. W. S. Rayleigh, The Theory of Sound (Dover, New York, 1945); S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1961)] should be used with caution. In the creeping flow limit, the analysis shows that, if the hollow jet is filled with any finite density and viscosity fluid, a steady jet could be made arbitrarily small (compatible with the continuum hypothesis) if the coflowing liquid moves faster than a critical velocity.

  7. Stitching interferometry: recent results and absolute calibration

    NASA Astrophysics Data System (ADS)

    Bray, Michael

    2004-02-01

    Stitching Interferometry is a method of analysing large optical components using a standard "small" interferometer. This result is obtained by taking multiple overlapping images of the large component, and numerically "stitching" these sub-apertures together. We have already reported the industrial use our Stitching Interferometry systems (Previous SPIE symposia), but experimental results had been lacking because this technique is still new, and users needed to get accustomed to it before producing reliable measurements. We now have more results. We will report user comments and show new, unpublished results. We will discuss sources of error, and show how some of these can be reduced to arbitrarily small values. These will be discussed in some detail. We conclude with a few graphical examples of absolute measurements performed by us.

  8. Swarm's Absolute Scalar Magnetometer metrological performances

    NASA Astrophysics Data System (ADS)

    Leger, J.; Fratter, I.; Bertrand, F.; Jager, T.; Morales, S.

    2012-12-01

    The Absolute Scalar Magnetometer (ASM) has been developed for the ESA Earth Observation Swarm mission, planned for launch in November 2012. As its Overhauser magnetometers forerunners flown on Oersted and Champ satellites, it will deliver high resolution scalar measurements for the in-flight calibration of the Vector Field Magnetometer manufactured by the Danish Technical University. Latest results of the ground tests carried out to fully characterize all parameters that may affect its accuracy, both at instrument and satellite level, will be presented. In addition to its baseline function, the ASM can be operated either at a much higher sampling rate (burst mode at 250 Hz) or in a dual mode where it also delivers vector field measurements as a by-product. The calibration procedure and the relevant vector performances will be discussed.

  9. Absolute nonlocality via distributed computing without communication

    NASA Astrophysics Data System (ADS)

    Czekaj, Ł.; Pawłowski, M.; Vértesi, T.; Grudka, A.; Horodecki, M.; Horodecki, R.

    2015-09-01

    Understanding the role that quantum entanglement plays as a resource in various information processing tasks is one of the crucial goals of quantum information theory. Here we propose an alternative perspective for studying quantum entanglement: distributed computation of functions without communication between nodes. To formalize this approach, we propose identity games. Surprisingly, despite no signaling, we obtain that nonlocal quantum strategies beat classical ones in terms of winning probability for identity games originating from certain bipartite and multipartite functions. Moreover we show that, for a majority of functions, access to general nonsignaling resources boosts success probability two times in comparison to classical ones for a number of large enough outputs. Because there are no constraints on the inputs and no processing of the outputs in the identity games, they detect very strong types of correlations: absolute nonlocality.

  10. Long-term variations of absolute and superconducting gravity values in Southeast Alaska, observed by the ISEA2 project

    NASA Astrophysics Data System (ADS)

    Kazama, T.; Hideaki, H.; Miura, S.; Kaufman, M.; Sato, T.; Larsen, C. F.; Freymueller, J. T.

    2013-12-01

    It is well known that gravity values have been decreasing in Southeast Alaska, mainly due to glacier mass changes from the end of the Little Ice Age to the present. For example, absolute gravity measurements made by the ISEA1 project (2006-2008) showed a maximum gravity change rate of -5.6 micro-gal/year (Sun et al., 2010; Sato et al., 2012a), which was consistent with large uplift rates obtained from GPS data (Larsen et al., 2005). However, the newly-obtained absolute gravity values in 2012 were about 10 micro-gal greater than expected based on the gravity trends of Sun et al. (2010), possibly because of above-average snowfall in the winter of 2011-2012 (Sato et al., 2012b). In order to monitor spatiotemporal gravity changes associated with glacier mass changes, seasonal hydrological gravity changes should be quantified via continuous gravity observations and/or hydrological modeling. We thus installed a superconducting gravimeter iGrav (serial number: 003) at Egan Library, University of Alaska Southeast in June 2012, as part of the ISEA2 project (2011-2015). The mass position (unit: volts) and air pressure have been recorded every second since June 2012, and the gravity value was then calculated from the mass position, using the scale factor of -89.561 micro-gal/V (Sato et al., 2012b). After the removal of tidal gravity changes using the BAYTAP software (Tamura et al., 1991), a gravity change of 4 micro-gal in peak to peak was extracted from the long-term superconducting gravity data from June 2012 to July 2013. Note that this non-tidal gravity change includes the instrumental drift, although the drift rate was very small (less than 1 micro-gal/year) according to the linear regression to the gravity change. We will discuss possible physical mechanisms of the non-tidal gravity change associated with water redistribution, using a hydrological model (e.g., Kazama et al., 2012) and/or long-term weather data. In addition, we also measured absolute gravity values at 6

  11. THE AGS ELECTROSTATIC SEPTUM.

    SciTech Connect

    HOCK,J.RUSSO,T.GLEN,J.BROWN,K.

    2003-05-12

    The previous slow beam extraction electro static septum in the AGS was designed in 1981. Research documented at the Fermi Laboratory was used as the base line for this design. The septum consisted of a ground plane of .002 inch diameter wire tungsten-rhenium alloy (75%W 25%Re) with a hollow welded titanium cathode assembly. The vacuum chamber is stationary and the septum is moved with a pair of high vacuum linear feed throughs. After years of beam time, the frequency of failures increased. The vacuum system design was poor by today's standards and resulted in long pump down times after repairs. The failures ranged from broken septum wires to a twisted cathode. In addition to the failures, the mechanical drive system had too much backlash, making the operating position difficult to repeat. The new septum needed to address all of these issues in order to become a more reliable septum.

  12. EPIDAUROS Biotechnologie AG.

    PubMed

    Arnold, Hans-Peter; Kluge, Peter; Mauch, Simon

    2005-07-01

    EPIDAUROS Biotechnologie AG is a leading provider of pharmacogenetic consulting, genotyping and research services to the international pharmaceutical and biotechnology industries, contract research organizations and healthcare providers. The company's mission is to improve safety, efficacy and predictability in drug development and drug therapy. EPIDAUROS determines its customers' needs in the field of pharmacogenetics using an in-depth consultancy process. The development and conduct of genotyping assays for drug-metabolizing enzymes, drug transporters and drug targets (for example, receptors)--all performed under stringent quality standards--are a major activity at EPIDAUROS. The company offers its research services to academic and industrial partners for the development of innovative diagnostic solutions by using its intellectual property. PMID:16014003

  13. AgH, Ag/sub 2/, and AgO revisited: Basis set extensions

    SciTech Connect

    Martin, R.L.

    1987-05-01

    An extended basis set has been developed for Ag which significantly improves the agreement between theoretical and experimental spectroscopic parameters for AgH, AgO, and Ag/sub 2/. The major improvement comes about as a result of the improved treatment of electron correlation in the Ag d shell upon the introduction of f functions. Their inclusion produces very slight differences at the SCF level, but significant reductions in r/sub e/ and increases in ..omega../sub e/ and D/sub e/ in the Mo-dash-barller--Plesset perturbation theory expansion. At the MP4(SDTQ) level, typical results are 0.02 A too long for r/sub e/, 4% too low for ..omega../sub e/, and 10 kcal too small for D/sub e/. From a pragmatic standpoint, MP2 give results very similar to this at a much reduced level of effort.

  14. The AGS-Booster lattice

    SciTech Connect

    Lee, Y.Y.; Barton, D.S.; Claus, J.; Cottingham, J.G.; Courant, E.D.; Danby, G.T.; Dell, G.F.; Forsyth, E.B.; Gupta, R.C.; Kats, J.

    1987-01-01

    The AGS Booster has three objectives. They are to increase the space charge limit of the AGS, to increase the intensity of the polarized proton beam by accumulating many linac pulses (since the intensity is limited by the polarized ion source), and to reaccelerate heavy ions from the BNL Tandem Van de Graaff before injection into the AGS. The machine is capable of accelerating protons at 7.5 Hertz from 200 MeV to 1.5 GeV or to lower final energies at faster repetition rates. The machine will also be able to accelerate heavy ions from as low as 1 MeV/nucleon to a magnetic rigidity as high as 17.6 Tesla-meters with a one second repetition rate. As an accumulator for polarized protons, the Booster should be able to store the protons at 200 MeV for several seconds. We expect that the Booster will increase the AGS proton intensity by a factor of four, polarized proton intensity by a factor of twenty to thirty, and will also enable the AGS to accelerate all species of heavy ions (at present the AGS heavy ion program is limited to the elements lighter than sulfur because it can only accelerate fully stripped ions). The construction project started in FY 1985 and is expected to be completed in 1989. The purpose of this paper is to provide a future reference for the AGS Booster lattice.

  15. Gravity effect of water storage changes in a weathered hard-rock aquifer in West Africa: results from joint absolute gravity, hydrological monitoring and geophysical prospection

    NASA Astrophysics Data System (ADS)

    Hector, Basile; Séguis, Luc; Hinderer, Jacques; Descloitres, Marc; Vouillamoz, Jean-Michel; Wubda, Maxime; Boy, Jean-Paul; Luck, Bernard; Le Moigne, Nicolas

    2013-08-01

    Advances in groundwater storage monitoring are crucial for water resource management and hydrological processes understanding. The evaluation of water storage changes (WSC) often involve point measurements (observation wells, moisture probes, etc.), which may be inappropriate in heterogeneous media. Over the past few years, there has been an increasing interest in the use of gravimetry for hydrological studies. In the framework of the GHYRAF (Gravity and Hydrology in Africa) project, 3 yr of repeated absolute gravity measurements using a FG5-type gravimeter have been undertaken at Nalohou, a Sudanian site in northern Benin. Hydrological data are collected within the long-term observing system AMMA-Catch. Once corrected for solid earth tides, ocean loading, air pressure effects, polar motion contribution and non-local hydrology, seasonal gravity variations reach up to 11 μGal, equivalent to a WSC of 260-mm thick infinite layer of water. Absolute temporal gravity data are compared to WSC deduced from neutron probe and water-table variations through a direct modelling approach. First, we use neutronic measurements available for the whole vertical profile where WSC occur (the vadose zone and a shallow unconfined aquifer). The RMSD between observed and modelled gravity variations is 1.61 μGal, which falls within the error bars of the absolute gravity data. Second, to acknowledge for the spatial variability of aquifer properties, we use a 2-D model for specific yield (Sy) derived from resistivity mapping and Magnetic Resonance Soundings (MRS). The latter provides a water content (θMRS) known to be higher than the specific yield. Hence, we scaled the 2-D model of θMRS with a single factor (α). WSC are calculated from water-table monitoring in the aquifer layer and neutronic measurements in the vadose layer. The value of α is obtained with a Monte-Carlo sampling approach, minimizing the RMSD between modelled and observed gravity variations. This leads to α = Sy

  16. Spin dynamics simulations at AGS

    SciTech Connect

    Huang, H.; MacKay, W.W.; Meot, F.; Roser, T.

    2010-05-23

    To preserve proton polarization through acceleration, it is important to have a correct model of the process. It has been known that with the insertion of the two helical partial Siberian snakes in the Alternating Gradient Synchrotron (AGS), the MAD model of AGS can not deal with a field map with offset orbit. The stepwise ray-tracing code Zgoubi provides a tool to represent the real electromagnetic fields in the modeling of the optics and spin dynamics for the AGS. Numerical experiments of resonance crossing, including spin dynamics in presence of the snakes and Q-jump, have been performed in AGS lattice models, using Zgoubi. This contribution reports on various results so obtained.

  17. NMR investigation of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Son, Kwanghyo; Jang, Zeehoon

    2013-01-01

    109Ag nuclear magnetic resonance (NMR) and relaxation measurements have been performed on two powder samples of Ag nanoparticles with average sizes of 20 nm and 80 nm. The measurements have been done in an external field of 9.4 T and in the temperature range 10 K < T < 280 K. The 109Ag NMR spectra for both samples have close to Lorentzian shapes and turn out to be mixtures of homogeneous and inhomogeneous lines. The linewidth Δ ν at room temperature is 1.3 kHz for both samples and gradually increases with decreasing temperature. Both the Knight shift ( K) and the nuclear spin-lattice relaxation rate (1/ T 1) are observed to be almost identical to the values reported for the bulk Ag metal, whereby the Korringa ratio R(= K 2 T 1 T/S) is found to be 2.0 for both samples in the investigated temperature range.

  18. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    SciTech Connect

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  19. Absolute surface energy for zincblende semiconductors

    NASA Astrophysics Data System (ADS)

    Zhang, S. B.; Wei, Su-Huai

    2003-03-01

    Recent advance in nanosciences requires the determination of surface (or facet) energy of semiconductors, which is often difficult due to the polar nature of some of the most important surfaces such as the (111)A/(111)B surfaces. Several approaches have been developed in the past [1-3] to deal with the problem but an unambiguous division of the polar surface energies is yet to come [2]. Here we show that an accurate division is indeed possible for the zincblende semiconductors and will present the results for GaAs, ZnSe, and CuInSe2 [4], respectively. A general trend emerges, relating the absolute surface energy to the ionicity of the bulk materials. [1] N. Chetty and R. M. Martin, Phys. Rev. B 45, 6074 (1992). [2] N. Moll, et al., Phys. Rev. B 54, 8844 (1996). [3] S. Mankefors, Phys. Rev. B 59, 13151 (1999). [4] S. B. Zhang and S.-H. Wei, Phys. Rev. B 65, 081402 (2002).

  20. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  1. Absolute decay width measurements in 16O

    NASA Astrophysics Data System (ADS)

    Wheldon, C.; Ashwood, N. I.; Barr, M.; Curtis, N.; Freer, M.; Kokalova, Tz; Malcolm, J. D.; Spencer, S. J.; Ziman, V. A.; Faestermann, Th; Krücken, R.; Wirth, H.-F.; Hertenberger, R.; Lutter, R.; Bergmaier, A.

    2012-09-01

    The reaction 126C(63Li, d)168O* at a 6Li bombarding energy of 42 MeV has been used to populate excited states in 16O. The deuteron ejectiles were measured using the high-resolution Munich Q3D spectrograph. A large-acceptance silicon-strip detector array was used to register the recoil and break-up products. This complete kinematic set-up has enabled absolute α-decay widths to be measured with high-resolution in the 13.9 to 15.9 MeV excitation energy regime in 16O; many for the first time. This energy region spans the 14.4 MeV four-α breakup threshold. Monte-Carlo simulations of the detector geometry and break-up processes yield detection efficiencies for the two dominant decay modes of 40% and 37% for the α+12C(g.s.) and a+12C(2+1) break-up channels respectively.

  2. Absolute calibration of forces in optical tweezers

    NASA Astrophysics Data System (ADS)

    Dutra, R. S.; Viana, N. B.; Maia Neto, P. A.; Nussenzveig, H. M.

    2014-07-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past 15 years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spot, adapting frequently employed video microscopy techniques. Combined with interface spherical aberration, it reveals a previously unknown window of instability for trapping. Comparison with experimental data leads to an overall agreement within error bars, with no fitting, for a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Besides signaling full first-principles theoretical understanding of optical tweezers operation, the results may lead to improved instrument design and control over experiments, as well as to an extended domain of applicability, allowing reliable force measurements, in principle, from femtonewtons to nanonewtons.

  3. Absolute spectrophotometry of northern compact planetary nebulae

    NASA Astrophysics Data System (ADS)

    Wright, S. A.; Corradi, R. L. M.; Perinotto, M.

    2005-06-01

    We present medium-dispersion spectra and narrowband images of six northern compact planetary nebulae (PNe): BoBn 1, DdDm 1, IC 5117, M 1-5, M 1-71, and NGC 6833. From broad-slit spectra, total absolute fluxes and equivalent widths were measured for all observable emission lines. High signal-to-noise emission line fluxes of Hα, Hβ, [Oiii], [Nii], and HeI may serve as emission line flux standards for northern hemisphere observers. From narrow-slit spectra, we derive systemic radial velocities. For four PNe, available emission line fluxes were measured with sufficient signal-to-noise to probe the physical properties of their electron densities, temperatures, and chemical abundances. BoBn 1 and DdDm 1, both type IV PNe, have an Hβ flux over three sigma away from previous measurements. We report the first abundance measurements of M 1-71. NGC 6833 measured radial velocity and galactic coordinates suggest that it is associated with the outer arm or possibly the galactic halo, and its low abundance ([O/H]=1.3× 10-4) may be indicative of low metallicity within that region.

  4. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  5. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  6. Analysis of AGS polarimeter data at G{gamma}=7.5.

    SciTech Connect

    Huang, H.; Cadman, R. V.; Spinka, H. M.; Underwood, D. G.

    2003-02-18

    Data were collected with the AGS internal polarimeter at G{gamma} = 7.5 during the recent FY02 polarized proton run. The addition of new forward scintillation counters permitted an absolute calibration of the polarimeter for both nylon and carbon targets. The results are summarized, and the polarization measured at G{gamma} = 7.5 is compared to that at 200 MeV.

  7. The absolute disparity anomaly and the mechanism of relative disparities.

    PubMed

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  8. The absolute disparity anomaly and the mechanism of relative disparities

    PubMed Central

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-01-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  9. Strong magnetization damping induced by Ag nanostructures in Ag/NiFe/Ag trilayers

    NASA Astrophysics Data System (ADS)

    Ley Domínguez, D.; da Silva, G. L.; Rodríguez-Suárez, R. L.; Rezende, S. M.; Azevedo, A.

    2013-07-01

    Ferromagnetic resonance has been used to investigate the magnetization relaxation in trilayers of Ag(t)/NiFe(10 nm)/Ag(t), sputter deposited on Si(001) where the thickness of the Ag layer varied from 0 nm to 24 nm. In the first stages of formation, the Ag layers form islands that work as mold to imprint defects or inhomogeneities on the NiFe film surface. The magnetic inhomogeneities and defects imprinted on the surface of the NiFe film act as extrinsic sources of magnetization relaxation in addition to the intrinsic Gilbert damping mechanism. Weak inhomogeneities are associated to the two-magnon scattering source and the strong inhomogeneities are associated to the fluctuations of the local magnetization. By adding the three different sources of magnetization damping, we were able to explain the azimuthal dependence of the ferromagnetic resonance linewidth.

  10. Orion Absolute Navigation System Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2012-01-01

    The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.

  11. Evaluation of the Absolute Regional Temperature Potential

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.

    2012-01-01

    The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  12. Absolute optical surface measurement with deflectometry

    NASA Astrophysics Data System (ADS)

    Li, Wansong; Sandner, Marc; Gesierich, Achim; Burke, Jan

    Deflectometry utilises the deformation and displacement of a sample pattern after reflection from a test surface to infer the surface slopes. Differentiation of the measurement data leads to a curvature map, which is very useful for surface quality checks with sensitivity down to the nanometre range. Integration of the data allows reconstruction of the absolute surface shape, but the procedure is very error-prone because systematic errors may add up to large shape deviations. In addition, there are infinitely many combinations for slope and object distance that satisfy a given observation. One solution for this ambiguity is to include information on the object's distance. It must be known very accurately. Two laser pointers can be used for positioning the object, and we also show how a confocal chromatic distance sensor can be used to define a reference point on a smooth surface from which the integration can be started. The used integration algorithm works without symmetry constraints and is therefore suitable for free-form surfaces as well. Unlike null testing, deflectometry also determines radius of curvature (ROC) or focal lengths as a direct result of the 3D surface reconstruction. This is shown by the example of a 200 mm diameter telescope mirror, whose ROC measurements by coordinate measurement machine and deflectometry coincide to within 0.27 mm (or a sag error of 1.3μm). By the example of a diamond-turned off-axis parabolic mirror, we demonstrate that the figure measurement uncertainty comes close to a well-calibrated Fizeau interferometer.

  13. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  14. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  15. Synthesis of Ag(2) S-Ag nanoprisms and their use as DNA hybridization probes.

    PubMed

    Liu, Bing; Ma, Zhanfang

    2011-06-01

    A simple synthetic route to prepare Ag(2) S-Ag nanoprisms consists of the facile addition of Na(2) S to a solution of triangular Ag nanoprisms. The resulting Ag(2) S-Ag nanoparticles are more stable in solution than the original Ag nanoprisms, and two surface plasmon resonance (SPR) bands of the original Ag nanoprisms still remain. In addition, the SPR bands of the Ag(2) S-Ag nanoprisms are tunable over a wide range. The Ag(2) S-Ag nanoprisms can be directly bioconjugated via well-established stable Ag(2) S surface chemistry with readily available sulfur coupling agents. The nanoprisms are used in the hybridization of functionalized oligonucleotides, and show promise as probes for future biosensing applications. PMID:21538868

  16. Study of the oxygen transport through Ag (110), Ag (poly), and Ag 2.0 Zr

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Wu, D.; Davidson, M. R.; Hoflund, Gar B.

    1992-01-01

    The transport of oxygen through high-purity membranes of Ag (110), Ag (poly), Ag (nano), and Ag 2.0 Zr has been studied by an ultrahigh vacuum permeation method over the temperature range of 400-800 C. The data show that there are substantial deviations from ordinary diffusion-controlled transport. A surface limitation has been confirmed by glow-discharge studies where the upstream O2 supply has been partially converted to atoms, which, for the same temperature and pressure, gave rise to over an order of magnitude increase in transport flux. Further, the addition of 2.0 wt percent Zr to the Ag has provided increased dissociative adsorption rates, which, in turn, increased the transport flux by a factor of 2. It was also observed that below a temperature of 630 C, the diffusivity exhibits an increase in activation energy of over 4 kcal/mol, which has been attributed to trapping of the atomic oxygen and/or kinetic barriers at the surface and subsurface of the vacuum interface. Above 630 C, the activation barrier decreases to the accepted value of about 11 kcal/mol for Ag (poly), consistent with zero concentration at the vacuum interface.

  17. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%–0.68% (k  =  2).

  18. Supplementary and Enrichment Series: Absolute Value. Teachers' Commentary. SP-25.

    ERIC Educational Resources Information Center

    Bridgess, M. Philbrick, Ed.

    This is one in a series of manuals for teachers using SMSG high school supplementary materials. The pamphlet includes commentaries on the sections of the student's booklet, answers to the exercises, and sample test questions. Topics covered include addition and multiplication in terms of absolute value, graphs of absolute value in the Cartesian…

  19. Supplementary and Enrichment Series: Absolute Value. SP-24.

    ERIC Educational Resources Information Center

    Bridgess, M. Philbrick, Ed.

    This is one in a series of SMSG supplementary and enrichment pamphlets for high school students. This series is designed to make material for the study of topics of special interest to students readily accessible in classroom quantity. Topics covered include absolute value, addition and multiplication in terms of absolute value, graphs of absolute…

  20. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  1. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  2. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  3. Testing the quasi-absolute method in photon activation analysis

    SciTech Connect

    Sun, Z. J.; Wells, D.; Starovoitova, V.; Segebade, C.

    2013-04-19

    In photon activation analysis (PAA), relative methods are widely used because of their accuracy and precision. Absolute methods, which are conducted without any assistance from calibration materials, are seldom applied for the difficulty in obtaining photon flux in measurements. This research is an attempt to perform a new absolute approach in PAA - quasi-absolute method - by retrieving photon flux in the sample through Monte Carlo simulation. With simulated photon flux and database of experimental cross sections, it is possible to calculate the concentration of target elements in the sample directly. The QA/QC procedures to solidify the research are discussed in detail. Our results show that the accuracy of the method for certain elements is close to a useful level in practice. Furthermore, the future results from the quasi-absolute method can also serve as a validation technique for experimental data on cross sections. The quasi-absolute method looks promising.

  4. Learning in the temporal bisection task: Relative or absolute?

    PubMed

    de Carvalho, Marilia Pinheiro; Machado, Armando; Tonneau, François

    2016-01-01

    We examined whether temporal learning in a bisection task is absolute or relational. Eight pigeons learned to choose a red key after a t-seconds sample and a green key after a 3t-seconds sample. To determine whether they had learned a relative mapping (short→Red, long→Green) or an absolute mapping (t-seconds→Red, 3t-seconds→Green), the pigeons then learned a series of new discriminations in which either the relative or the absolute mapping was maintained. Results showed that the generalization gradient obtained at the end of a discrimination predicted the pattern of choices made during the first session of a new discrimination. Moreover, most acquisition curves and generalization gradients were consistent with the predictions of the learning-to-time model, a Spencean model that instantiates absolute learning with temporal generalization. In the bisection task, the basis of temporal discrimination seems to be absolute, not relational. PMID:26752233

  5. Effect of Ag Templates on the Formation of Au-Ag Hollow/Core-Shell Nanostructures

    NASA Astrophysics Data System (ADS)

    Tsai, Chi-Hang; Chen, Shih-Yun; Song, Jenn-Ming; Haruta, Mitsutaka; Kurata, Hiroki

    2015-11-01

    Au-Ag alloy nanostructures with various shapes were synthesized using a successive reduction method in this study. By means of galvanic replacement, twined Ag nanoparticles (NPs) and single-crystalline Ag nanowires (NWs) were adopted as templates, respectively, and alloyed with the same amount of Au+ ions. High angle annular dark field-scanning TEM (HAADF-STEM) images observed from different rotation angles confirm that Ag NPs turned into AuAg alloy rings with an Au/Ag ratio of 1. The shifts of surface plasmon resonance and chemical composition reveal the evolution of the alloy ring formation. On the other hand, single-crystalline Ag NWs became Ag@AuAg core-shell wires instead of hollow nanostructure through a process of galvanic replacement. It is proposed that in addition to the ratio of Ag templates and Au ion additives, the twin boundaries of the Ag templates were the dominating factor causing hollow alloy nanostructures.

  6. Effect of Ag Templates on the Formation of Au-Ag Hollow/Core-Shell Nanostructures.

    PubMed

    Tsai, Chi-Hang; Chen, Shih-Yun; Song, Jenn-Ming; Haruta, Mitsutaka; Kurata, Hiroki

    2015-12-01

    Au-Ag alloy nanostructures with various shapes were synthesized using a successive reduction method in this study. By means of galvanic replacement, twined Ag nanoparticles (NPs) and single-crystalline Ag nanowires (NWs) were adopted as templates, respectively, and alloyed with the same amount of Au(+) ions. High angle annular dark field-scanning TEM (HAADF-STEM) images observed from different rotation angles confirm that Ag NPs turned into AuAg alloy rings with an Au/Ag ratio of 1. The shifts of surface plasmon resonance and chemical composition reveal the evolution of the alloy ring formation. On the other hand, single-crystalline Ag NWs became Ag@AuAg core-shell wires instead of hollow nanostructure through a process of galvanic replacement. It is proposed that in addition to the ratio of Ag templates and Au ion additives, the twin boundaries of the Ag templates were the dominating factor causing hollow alloy nanostructures. PMID:26563266

  7. Probing the rupture of a Ag atomic junction in a Ag-Au mixed electrode

    NASA Astrophysics Data System (ADS)

    Kim, Taekyeong

    2015-09-01

    We probed that the atomic junction in Ag part ruptures during stretching of atomic sized contacts of Ag-Au mixed electrodes, resulting in Ag-Ag electrodes through a scanning tunneling microscope breaking junction (STM-BJ) technique. We observed that the conductance and tunneling decay constant for a series of amine-terminated oligophenyl molecular junctions are essentially the same for the Ag-Au mixed and the Ag-Ag electrodes. We also found the molecular plateau length and the evolution patterns with the Ag-Au mixed electrodes are similar to those with Ag-Ag electrodes rather than the Au-Au electrodes in the molecular junction elongation. This result is attributed to the smaller binding energy of Ag atoms compared to that of Au atoms, so the Ag junction part is more easily broken than that of Au part in stretching of Ag-Au mixed electrodes. Furthermore, we successfully observed that the rupture force of the atomic junction for the Ag-Au mixed electrodes was identical to that for the Ag-Ag electrodes and smaller than that for the Au-Au electrodes. This study may advance the understanding of the electrical and the mechanical properties in molecular devices with Ag and Au electrodes in future.

  8. The AGS Booster control system

    SciTech Connect

    Frankel, R.; Auerbach, E.; Culwick, B.; Clifford, T.; Mandell, S.; Mariotti, R.; Salwen, C.; Schumburg, N.

    1988-01-01

    Although moderate in size, the Booster construction project requires a comprehensive control system. There are three operational modes: as a high intensity proton injector for the AGS, as a heavy ion accelerator and injector supporting a wide range of ions and as a polarized proton storage injector. These requirements are met using a workstation based extension of the existing AGS control system. Since the Booster is joining a complex of existing accelerators, the new system will be capable of supporting multiuser operational scenarios. A short discussion of this system is discussed in this paper.

  9. Mini-implants and miniplates generate sub-absolute and absolute anchorage

    PubMed Central

    Consolaro, Alberto

    2014-01-01

    The functional demand imposed on bone promotes changes in the spatial properties of osteocytes as well as in their extensions uniformly distributed throughout the mineralized surface. Once spatial deformation is established, osteocytes create the need for structural adaptations that result in bone formation and resorption that happen to meet the functional demands. The endosteum and the periosteum are the effectors responsible for stimulating adaptive osteocytes in the inner and outer surfaces.Changes in shape, volume and position of the jaws as a result of skeletal correction of the maxilla and mandible require anchorage to allow bone remodeling to redefine morphology, esthetics and function as a result of spatial deformation conducted by orthodontic appliances. Examining the degree of changes in shape, volume and structural relationship of areas where mini-implants and miniplates are placed allows us to classify mini-implants as devices of subabsolute anchorage and miniplates as devices of absolute anchorage. PMID:25162561

  10. Photoreduction of Ag+ in Ag/Ag2S/Au memristor

    NASA Astrophysics Data System (ADS)

    Mou, N. I.; Tabib-Azar, M.

    2015-06-01

    Silver halides and chalcogenides are excellent memristor materials that have been extensively used in the past as photosensitive layers in photography. Here we examine the effect of illumination on the operating voltages and switching speed of Ag/Ag2S/Au memristors using a green laser (473-523 nm). Our results indicate that illumination decreases the average switching time from high to low resistance states by ∼19% and decreases the turn-off voltages dramatically from -0.8 V to -0.25 V that we attribute to the change in sulfur valency and a photo-induced change in its oxidation/reduction potential. Photo-induced reduction of silver in Ag2S may be used in three dimensional optical memories that can be electronically read and reset.

  11. Ag nanotubes and Ag/AgCl electrodes in nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Davenport, Matthew; Healy, Ken; Siwy, Zuzanna S.

    2011-04-01

    Miniaturization of the entire experimental setup is a key requirement for widespread application of nanodevices. For nanopore biosensing, integrating electrodes onto the nanopore membrane and controlling the pore length is important for reducing the complexity and improving the sensitivity of the system. Here we present a method to achieve these goals, which relies on electroless plating to produce Ag nanotubes in track-etched polymer nanopore templates. By plating from one side only, we create a conductive nanotube that does not span the full length of the pore, and thus can act as a nanoelectrode located inside the nanopore. To give optimal electrochemical behavior for sensing, we coat the Ag nanotube with a layer of AgCl. We characterize the behavior of this nanoelectrode by measuring its current-voltage response and find that, in most cases, the response is asymmetric. The plated nanopores have initial diameters between 100 and 300 nm, thus a range suitable for detection of viruses.

  12. Absolute brightness temperature measurements at 2.1-mm wavelength

    NASA Technical Reports Server (NTRS)

    Ulich, B. L.

    1974-01-01

    Absolute measurements of the brightness temperatures of the Sun, new Moon, Venus, Mars, Jupiter, Saturn, and Uranus, and of the flux density of DR21 at 2.1-mm wavelength are reported. Relative measurements at 3.5-mm wavelength are also preented which resolve the absolute calibration discrepancy between The University of Texas 16-ft radio telescope and the Aerospace Corporation 15-ft antenna. The use of the bright planets and DR21 as absolute calibration sources at millimeter wavelengths is discussed in the light of recent observations.

  13. Absolute Antenna Calibration at the US National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.

    2012-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO

  14. Direct comparisons between absolute and relative geomagnetic paleointensities: Absolute calibration of a relative paleointensity stack

    NASA Astrophysics Data System (ADS)

    Mochizuki, N.; Yamamoto, Y.; Hatakeyama, T.; Shibuya, H.

    2013-12-01

    Absolute geomagnetic paleointensities (APIs) have been estimated from igneous rocks, while relative paleomagnetic intensities (RPIs) have been reported from sediment cores. These two datasets have been treated separately, as correlations between APIs and RPIs are difficult on account of age uncertainties. High-resolution RPI stacks have been constructed from globally distributed sediment cores with high sedimentation rates. Previous studies often assumed that the RPI stacks have a linear relationship with geomagnetic axial dipole moments, and calibrated the RPI values to API values. However, the assumption of a linear relationship between APIs and RPIs has not been evaluated. Also, a quantitative calibration method for the RPI is lacking. We present a procedure for directly comparing API and RPI stacks, thus allowing reliable calibrations of RPIs. Direct comparisons between APIs and RPIs were conducted with virtually no associated age errors using both tephrochronologic correlations and RPI minima. Using the stratigraphic positions of tephra layers in oxygen isotope stratigraphic records, we directly compared the RPIs and APIs reported from welded tuffs contemporaneously extruded with the tephra layers. In addition, RPI minima during geomagnetic reversals and excursions were compared with APIs corresponding to the reversals and excursions. The comparison of APIs and RPIs at these exact points allowed a reliable calibration of the RPI values. We applied this direct comparison procedure to the global RPI stack PISO-1500. For six independent calibration points, virtual axial dipole moments (VADMs) from the corresponding APIs and RPIs of the PISO-1500 stack showed a near-linear relationship. On the basis of the linear relationship, RPIs of the stack were successfully calibrated to the VADMs. The direct comparison procedure provides an absolute calibration method that will contribute to the recovery of temporal variations and distributions of geomagnetic axial dipole

  15. Ag-Ag2S Hybrid Nanoprisms: Structural versus Plasmonic Evolution.

    PubMed

    Shahjamali, Mohammad M; Zhou, Yong; Zaraee, Negin; Xue, Can; Wu, Jinsong; Large, Nicolas; McGuirk, C Michael; Boey, Freddy; Dravid, Vinayak; Cui, Zhifeng; Schatz, George C; Mirkin, Chad A

    2016-05-24

    Recently, Ag-Ag2S hybrid nanostructures have attracted a great deal of attention due to their enhanced chemical and thermal stability, in addition to their morphology- and composition-dependent tunable local surface plasmon resonances. Although Ag-Ag2S nanostructures can be synthesized via sulfidation of as-prepared anisotropic Ag nanoparticles, this process is poorly understood, often leading to materials with anomalous compositions, sizes, and shapes and, consequently, optical properties. In this work, we use theory and experiment to investigate the structural and plasmonic evolution of Ag-Ag2S nanoprisms during the sulfidation of Ag precursors. The previously observed red-shifted extinction of the Ag-Ag2S hybrid nanoprism as sulfidation occurs contradicts theoretical predictions, indicating that the reaction does not just occur at the prism tips as previously speculated. Our experiments show that sulfidation can induce either blue or red shifts in the extinction of the dipole plasmon mode, depending on reaction conditions. By elucidating the correlation with the final structure and morphology of the synthesized Ag-Ag2S nanoprisms, we find that, depending on the reaction conditions, sulfidation occurs on the prism tips and/or the (111) surfaces, leading to a core(Ag)-anisotropic shell(Ag2S) prism nanostructure. Additionally, we demonstrate that the direction of the shift in the dipole plasmon is a function of the relative amounts of Ag2S at the prism tips and Ag2S shell thickness around the prism. PMID:27148792

  16. AGS experiments: 1990, 1991, 1992. Ninth edition

    SciTech Connect

    Depken, J.C.

    1993-04-01

    This report contains a description of the following: AGS Experimental Area - High Energy Physics FY 1993 and Heavy Ion Physics FY 1993; Table of Beam Parameters and Fluxes; Experiment Schedule ``as run``; Proposed 1993 Schedule; A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Publications of AGS Experiments; and List of AGS Experimenters.

  17. What Is Ag-Ed?

    ERIC Educational Resources Information Center

    Linley, Judy; Mylne, Lee

    1998-01-01

    Ag-Ed, an agricultural education project for upper elementary students, was held in conjunction with the Toowoomba Show in Queensland, Australia. Agriculture industry representatives provided 20 interactive agricultural presentations for class groups, which were supplemented with a teacher resource-package containing a directory and 13 sections of…

  18. AGS experiments, 1988, 1989, 1990

    SciTech Connect

    Depken, J.C.

    1991-04-01

    This report contains: experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; experiment long range schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS experiments; and list of experimenters.

  19. AGS experiments: 1985, 1986, 1987

    SciTech Connect

    Depken, J.C.

    1987-01-01

    This report contains: Experimental areas layout, table of beam parameters and fluxes, experiment schedule ''as run,'' experiment long range schedule, a listing of experiments by number, two-page summaries of each experiment, also ordered by number, and publications of AGS experiments, 1982-1987.

  20. AGS 20th anniversary celebration

    SciTech Connect

    Baggett, N.V.

    1980-05-22

    On May 22, 1980, a symposium was held at Brookhaven to celebrate the 20th birthday of the AGS, to recall its beginnings, and to review major discoveries that have been made with its beams. The talks at the symposium are recorded in this volume.

  1. Absolute calibration of sniffer probes on Wendelstein 7-X.

    PubMed

    Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured. PMID:27587121

  2. Absolute Value Boundedness, Operator Decomposition, and Stochastic Media and Equations

    NASA Technical Reports Server (NTRS)

    Adomian, G.; Miao, C. C.

    1973-01-01

    The research accomplished during this period is reported. Published abstracts and technical reports are listed. Articles presented include: boundedness of absolute values of generalized Fourier coefficients, propagation in stochastic media, and stationary conditions for stochastic differential equations.

  3. The conditions of absolute summability of multiple trigonometric series

    NASA Astrophysics Data System (ADS)

    Bitimkhan, Samat; Akishev, Gabdolla

    2015-09-01

    In this work necessary and sufficient conditions of absolute summability of multiple trigonometric Fourier series of functions from anisotropic spaces of Lebesque are found in terms of its best approximation, the module of smoothness and the mixed smoothness module.

  4. Absolute calibration of sniffer probes on Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  5. Search for neutrino oscillations at the Brookhaven AGS

    SciTech Connect

    Ahrens, L.A.; Aronson, S.H.; Connolly, P.L.; Gibbard, B.G.; Murtagh, M.J.; Murtagh, S.J.; Terada, S.; White, D.H.; Callas, J.L.; Cutts, D.

    1985-02-20

    We report on a search for neutrino oscillations of the type nu/sub ..mu../ ..-->.. nu/sub e/ in a detector located an effective distance of 96m from the neutrino source in the wide band neutrino beam at the Brookhaven AGS. No excess of electron events was observed. The resulting upper limit on the strength of the mixing between nu/sub ..mu../ and nu/sub e/ in the case of large mass difference ..delta..m/sup 2/ = absolute value m/sub 1//sup 2/ - m/sub 2//sup 2/ between the neutrino mass eigenstates m/sub 1/ and m/sub 2/ is sin/sup 2/2..cap alpha.. less than or equal to 3.4 x 10/sup -3/ at 90% CL. The corresponding upper limit for small mass difference is ..delta..m/sup 2/sin2..cap alpha.. < 0.43 eV/sup 2/. 9 refs.

  6. An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4-AgBr composite.

    PubMed

    Bai, Yu-Yang; Lu, Yi; Liu, Jin-Ku

    2016-04-15

    The Ag2MoO4-AgBr composite was prepared by a facile in-situ anion-exchange method, then the Ag nanoparticles were coated on this composite through photodeposition route to form a novel Ag@Ag2MoO4-AgBr composite. The in-situ Br(-) replacement in a crystal lattice node position of Ag2MoO4 crystal allows for overcoming the resistance of electron transition effectively. Meanwhile silver nano-particles on the surface of Ag@Ag2MoO4-AgBr composite could act as electron traps to intensify the photogeneration electron-hole separation and the subsequent transfer of the trapped electron to the adsorbed O2 as an electron acceptor. As an efficient visible light catalyst, the Ag@Ag2MoO4-AgBr composite exhibited superior photocatalytic activity for the degradation of various organic dyes. The experimental results demonstrated superior photocatalytic rate of Ag@Ag2MoO4-AgBr composite compared to pure AgBr and Ag2MoO4 crystals (37.6% and 348.4% enhancement respectively). The Ag@Ag2MoO4-AgBr composite cloud degraded Rhodamin B, bromophenol blue, and amino black 10b completed in 7min. PMID:26775100

  7. Absolute and Convective Instability of a Liquid Jet in Microgravity

    NASA Technical Reports Server (NTRS)

    Lin, Sung P.; Vihinen, I.; Honohan, A.; Hudman, Michael D.

    1996-01-01

    The transition from convective to absolute instability is observed in the 2.2 second drop tower of the NASA Lewis Research Center. In convective instability the disturbance grows spatially as it is convected downstream. In absolute instability the disturbance propagates both downstream and upstream, and manifests itself as an expanding sphere. The transition Reynolds numbers are determined for two different Weber numbers by use of Glycerin and a Silicone oil. Preliminary comparisons with theory are made.

  8. Absolute biphoton meter of the quantum efficiency of photomultipliers

    NASA Astrophysics Data System (ADS)

    Ginzburg, V. M.; Keratishvili, N. G.; Korzhenevich, E. L.; Lunev, G. V.; Sapritskii, V. I.

    1992-07-01

    An biphoton absolute meter of photomultiplier quantum efficiency is presented which is based on spontaneous parametric down-conversion. Calculation and experiment results were obtained which made it possible to choose the parameters of the setup that guarantee a linear dependence of wavelength on the Z coordinate (along the axicon axis). Results of a series of absolute measurements of the quantum efficiency of a specific photomultiplier (FEU-136) are presented.

  9. Absolute/convective instability of planar viscoelastic jets

    NASA Astrophysics Data System (ADS)

    Ray, Prasun K.; Zaki, Tamer A.

    2015-01-01

    Spatiotemporal linear stability analysis is used to investigate the onset of local absolute instability in planar viscoelastic jets. The influence of viscoelasticity in dilute polymer solutions is modeled with the FENE-P constitutive equation which requires the specification of a non-dimensional polymer relaxation time (the Weissenberg number, We), the maximum polymer extensibility, L, and the ratio of solvent and solution viscosities, β. A two-parameter family of velocity profiles is used as the base state with the parameter, S, controlling the amount of co- or counter-flow while N-1 sets the thickness of the jet shear layer. We examine how the variation of these fluid and flow parameters affects the minimum value of S at which the flow becomes locally absolutely unstable. Initially setting the Reynolds number to Re = 500, we find that the first varicose jet-column mode dictates the presence of absolute instability, and increasing the Weissenberg number produces important changes in the nature of the instability. The region of absolute instability shifts towards thin shear layers, and the amount of back-flow needed for absolute instability decreases (i.e., the influence of viscoelasticity is destabilizing). Additionally, when We is sufficiently large and N-1 is sufficiently small, single-stream jets become absolutely unstable. Numerical experiments with approximate equations show that both the polymer and solvent contributions to the stress become destabilizing when the scaled shear rate, η = /W e dU¯1/dx 2L ( /d U ¯ 1 d x 2 is the base-state velocity gradient), is sufficiently large. These qualitative trends are largely unchanged when the Reynolds number is reduced; however, the relative importance of the destabilizing stresses increases tangibly. Consequently, absolute instability is substantially enhanced, and single-stream jets become absolutely unstable over a sizable portion of the parameter space.

  10. Heat capacity and absolute entropy of iron phosphides

    SciTech Connect

    Dobrokhotova, Z.V.; Zaitsev, A.I.; Litvina, A.D.

    1994-09-01

    There is little or no data on the thermodynamic properties of iron phosphides despite their importance for several areas of science and technology. The information available is of a qualitative character and is based on assessments of the heat capacity and absolute entropy. In the present work, we measured the heat capacity over the temperature range of 113-873 K using a differential scanning calorimeter (DSC) and calculated the absolute entropy.

  11. Antibacterial activity and reusability of CNT-Ag and GO-Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Kim, Ji Dang; Yun, Hyosuk; Kim, Gwui Cheol; Lee, Chul Won; Choi, Hyun Chul

    2013-10-01

    A facile approach to the synthesis of novel CNT-Ag and GO-Ag antibacterial materials, in which thiol groups are utilized as linkers to secure silver (Ag) nanoparticles to the CNT and GO surfaces without agglomeration, is reported. The resulting CNT-Ag and GO-Ag samples were characterized by performing TEM, XRD, Auger, XPS, and Raman measurements, which revealed that in these antibacterial materials size-similar and quasi-spherical Ag nanoparticles are anchored to the CNT and GO surfaces. The Ag nanoparticles in CNT-Ag and GO-Ag have narrow size distributions with average diameters of 2.6 and 3.5 nm respectively. The antibacterial activities of CNT-Ag and GO-Ag against Escherichia coli were assessed with the paper-disk diffusion method and by determining the minimal inhibitory concentrations (MICs). CNT-Ag was found to have higher antibacterial activity than the reference Ag colloid. Moreover, both CNT-Ag and GO-Ag retain more than 50% of their original antibacterial activities after 20 washes with detergent, which indicates their potential as antibacterial materials for laboratory and medical purposes.

  12. Comparative Study of Antimicrobial Activity of AgBr and Ag Nanoparticles (NPs)

    PubMed Central

    Suchomel, Petr; Kvitek, Libor; Panacek, Ales; Prucek, Robert; Hrbac, Jan; Vecerova, Renata; Zboril, Radek

    2015-01-01

    The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60–70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120–130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends – the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains. PMID:25781988

  13. Revisiting absolute and relative judgments in the WITNESS model.

    PubMed

    Fife, Dustin; Perry, Colton; Gronlund, Scott D

    2014-04-01

    The WITNESS model (Clark in Applied Cognitive Psychology 17:629-654, 2003) provides a theoretical framework with which to investigate the factors that contribute to eyewitness identification decisions. One key factor involves the contributions of absolute versus relative judgments. An absolute contribution is determined by the degree of match between an individual lineup member and memory for the perpetrator; a relative contribution involves the degree to which the best-matching lineup member is a better match to memory than the remaining lineup members. In WITNESS, the proportional contributions of relative versus absolute judgments are governed by the values of the decision weight parameters. We conducted an exploration of the WITNESS model's parameter space to determine the identifiability of these relative/absolute decision weight parameters, and compared the results to a restricted version of the model that does not vary the decision weight parameters. This exploration revealed that the decision weights in WITNESS are difficult to identify: Data often can be fit equally well by setting the decision weights to nearly any value and compensating with a criterion adjustment. Clark, Erickson, and Breneman (Law and Human Behavior 35:364-380, 2011) claimed to demonstrate a theoretical basis for the superiority of lineup decisions that are based on absolute contributions, but the relationship between the decision weights and the criterion weakens this claim. These findings necessitate reconsidering the role of the relative/absolute judgment distinction in eyewitness decision making. PMID:23943556

  14. THE GSTP1 c.313A>G POLYMORPHISM MODULATES THE CARDIORESPIRATORY RESPONSE TO AEROBIC TRAINING.

    PubMed

    Zarebska, A; Jastrzebski, Z; Kaczmarczyk, M; Ficek, K; Maciejewska-Karlowska, A; Sawczuk, M; Leońska-Duniec, A; Krol, P; Cieszczyk, P; Zmijewski, P; Eynon, N

    2014-12-01

    The GSTP1 c.313A>G polymorphism is a candidate to explain some of the individual differences in cardiorespiratory fitness phenotypes' responses to aerobic exercise training. We aim to explore the association between the GSTP1 c.313A>G polymorphism and the response to low-high impact aerobic exercise training. Sixty-six Polish Caucasian women were genotyped for the GSTP1 c.313A>G polymorphism; 62 of them completed 12-week aerobic (50-75% HRmax) exercise training and were measured for selected somatic features (body mass and BMI) and cardiorespiratory fitness indices - maximal oxygen uptake (VO2max, maximum heart rate (HRmax), maximum ventilation (VEmax) and anaerobic threshold (AT) - before and after the training period. Two-factor analysis of variance revealed a main training effect for body mass reduction (p=0.007) and BMI reduction (p=0.013), improvements of absolute and relative VO2max (both p<0.001), and increased VEmax (p=0.005), but not for changes in fat-free mass (FFM) (p=0.162). However, a significant training x GSTP1 c.313A>G interaction was found only for FFM (p=0.042), absolute and relative VO2max (p=0.029 and p=0.026), and VEmax (p=0.005). As the result of training, significantly greater improvements in VO2max, VEmax and FFM were gained by the GG+GA group compared to the AA genotype group. The results support the hypothesis that heterogeneity in individual response to training stimuli is at least in part determined by genetics, and GSTP1 c.313A>G may be considered as one (of what appear to be many) target polymorphisms to influence these changes. PMID:25435667

  15. THE GSTP1 c.313A>G POLYMORPHISM MODULATES THE CARDIORESPIRATORY RESPONSE TO AEROBIC TRAINING

    PubMed Central

    Zarebska, A; Jastrzebski, Z; Kaczmarczyk, M; Ficek, K; Maciejewska-Karlowska, A; Sawczuk, M; Leońska-Duniec, A; Krol, P; Cieszczyk, P; Zmijewski, P

    2014-01-01

    The GSTP1 c.313A>G polymorphism is a candidate to explain some of the individual differences in cardiorespiratory fitness phenotypes’ responses to aerobic exercise training. We aim to explore the association between the GSTP1 c.313A>G polymorphism and the response to low-high impact aerobic exercise training. Sixty-six Polish Caucasian women were genotyped for the GSTP1 c.313A>G polymorphism; 62 of them completed 12-week aerobic (50-75% HRmax) exercise training and were measured for selected somatic features (body mass and BMI) and cardiorespiratory fitness indices – maximal oxygen uptake (VO2max, maximum heart rate (HRmax), maximum ventilation (VEmax) and anaerobic threshold (AT) – before and after the training period. Two-factor analysis of variance revealed a main training effect for body mass reduction (p=0.007) and BMI reduction (p=0.013), improvements of absolute and relative VO2max (both p<0.001), and increased VEmax (p=0.005), but not for changes in fat-free mass (FFM) (p=0.162). However, a significant training x GSTP1 c.313A>G interaction was found only for FFM (p=0.042), absolute and relative VO2max (p=0.029 and p=0.026), and VEmax (p=0.005). As the result of training, significantly greater improvements in VO2max, VEmax and FFM were gained by the GG+GA group compared to the AA genotype group. The results support the hypothesis that heterogeneity in individual response to training stimuli is at least in part determined by genetics, and GSTP1 c.313A>G may be considered as one (of what appear to be many) target polymorphisms to influence these changes. PMID:25435667

  16. Surface-enhanced Raman scattering of a Ag/oligo(phenyleneethynylene)/Ag sandwich

    NASA Astrophysics Data System (ADS)

    Fletcher, Melissa; Alexson, D. M.; Prokes, Sharka; Glembocki, Orest; Vivoni, Alberto; Hosten, Charles

    2011-02-01

    α,ω-Dithiols are a useful class of compounds in molecular electronics because of their ability to easily adsorb to two metal surfaces, producing a molecular junction. We have prepared Ag nanosphere/oligo(phenyleneethynylene)/Ag sol (AgNS/OPE/Ag sol) and Ag nanowire/oligo(phenyleneethynylene)/Ag sol (AgNW/OPE/Ag sol) sandwiches to simulate the architecture of a molecular electronic device. This was achieved by self-assembly of OPE on the silver nanosurface, deprotection of the terminal sulfur, and deposition of Ag sol atop the monolayer. These sandwiches were then characterized by surface-enhanced Raman scattering (SERS) spectroscopy. The resulting spectra were compared to the bulk spectrum of the dimer and to the Ag nanosurface/OPE SERS spectra. The intensities of the SERS spectra in both systems exhibit a strong dependence on Ag deposition time and the results are also suggestive of intense interparticle coupling of the electromagnetic fields in both the AgNW/OPE/Ag and the AgNS/OPE/Ag systems. Three previously unobserved bands (1219, 1234, 2037 cm -1) arose in the SER spectra of the sandwiches and their presence is attributed to the strong enhancement of the electromagnetic field which is predicted from the COSMOL computational package. The 544 cm -1 disulfide bond which is observed in the spectrum of solid OPE but is absent in the AgNS/OPE/Ag and AgNW/OPE/Ag spectra is indicative of chemisorption of OPE to the nanoparticles through oxidative dissociation of the disulfide bond.

  17. Visualizing Redox Dynamics of a Single Ag/AgCl Heterogeneous Nanocatalyst at Atomic Resolution.

    PubMed

    Wu, Yimin A; Li, Liang; Li, Zheng; Kinaci, Alper; Chan, Maria K Y; Sun, Yugang; Guest, Jeffrey R; McNulty, Ian; Rajh, Tijana; Liu, Yuzi

    2016-03-22

    Operando characterization of gas-solid reactions at the atomic scale is of great importance for determining the mechanism of catalysis. This is especially true in the study of heterostructures because of structural correlation between the different parts. However, such experiments are challenging and have rarely been accomplished. In this work, atomic scale redox dynamics of Ag/AgCl heterostructures have been studied using in situ environmental transmission electron microscopy (ETEM) in combination with density function theory (DFT) calculations. The reduction of Ag/AgCl to Ag is likely a result of the formation of Cl vacancies while Ag(+) ions accept electrons. The oxidation process of Ag/AgCl has been observed: rather than direct replacement of Cl by O, the Ag/AgCl nanocatalyst was first reduced to Ag, and then Ag was oxidized to different phases of silver oxide under different O2 partial pressures. Ag2O formed at low O2 partial pressure, whereas AgO formed at atmospheric pressure. By combining in situ ETEM observation and DFT calculations, this structural evolution is characterized in a distinct nanoscale environment. PMID:26937679

  18. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  19. Absolute luminosity measurements with the LHCb detector at the LHC

    NASA Astrophysics Data System (ADS)

    LHCb Collaboration

    2012-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overal precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.

  20. Visible emission from Ag+ exchanged SOD zeolites

    NASA Astrophysics Data System (ADS)

    Lin, H.; Imakita, K.; Fujii, M.; Prokof'ev, V. Yu.; Gordina, N. E.; Saïd, B.; Galarneau, A.

    2015-09-01

    Broad visible emissions dominant at green or red have been observed for the thermally-treated Ag+ exchanged SOD zeolites, determined by the Ag+ loading contents and the excitation wavelengths. Contrary to the notable reversible green/red dominant emission evolution in the Ag+ exchanged LTA zeolites upon hydration/dehydration in air (or water vapor)/vacuum, emission spectra of the Ag+ exchanged SOD zeolites are insensitive to the environmental change. This is most probably due to the difficult H2O permeation in SOD zeolites in comparison with LTA zeolites. By combining the environment dependent emission spectra of the Ag+ exchanged LTA and SOD zeolites, we proposed the following emission mechanisms for Ag+ exchanged LTA and SOD zeolites: the green emission is due to the transition from ligand-to-metal (framework O2- --> Ag+) charge transfer state to the ground state and the red emission is due to the transition from the metal-metal (Ag+-Ag+) charge transfer state to the ground state. The insensitive environment dependent emission characteristics of Ag+ exchanged SOD zeolites may have potential applications as robust phosphors.

  1. Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene.

    PubMed

    Cai, P-F; Su, C-J; Chang, W-T; Chang, F-C; Peng, C-Y; Sun, I-W; Wei, Y-L; Jou, C-J; Wang, H Paul

    2014-08-30

    Drinking water shortage has become worse in recent decades. A new capacitive deionization (CDI) method for increasing water supplies through the effective desalination of seawater has been developed. Silver as nano Ag and Ag@C which was prepared by carbonization of the Ag(+)-β-cyclodextrin complex at 573 K for 30 min can add the antimicrobial function into the CDI process. The Ag@C and Ag nanoparticles dispersed on reduced graphene oxide (Ag@C/rGO and nano Ag/rGO) were used as the CDI electrodes. The nano Ag/rGO and Ag@C/rGO electrodes can reduce the charging resistant, and enhance the electrosorption capability. Better CDI efficiencies with the nano Ag/rGO and Ag@C/rGO electrodes can therefore be obtained. When reversed the voltage, the electrodes can be recovered up to 90% within 5 min. This work presents the feasibility for the nano Ag and Ag@C on rGO electrodes applied in CDI process to produce drinking water from seawater or saline water. PMID:24928455

  2. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  3. Method and apparatus for two-dimensional absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2004-01-01

    This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.

  4. Absolute and Convective Instability in Fluid-Conveying Flexible Pipes

    NASA Astrophysics Data System (ADS)

    de Langre, E.; Ouvrard, A. E.

    1998-11-01

    The effect of internal plug flow on the lateral stability of fluid conveying flexible pipes is investigated by determining the absolute/convective nature of the instability from the analytically derived linear dispersion relation. The fluid-structure interaction is modeled following the work of Gregory and Paidoussis (1966). The different domains of stability, convective instability, and absolute instability are explicitly derived in parameter space. The effect of flow velocity, mass ratio between the fluid and the structure, stiffness of the elastic foundation and axial tension is considered. Absolute instability prevails over a wide range of parameters. Convective instability only takes place at very high mass ratio, small stiffness and small axial tension. Relation is made with previous work of Brazier-Smith & Scott (1984) and Crighton (1991), considered here as a short wave approximation.

  5. Absolute surface metrology by rotational averaging in oblique incidence interferometry.

    PubMed

    Lin, Weihao; He, Yumei; Song, Li; Luo, Hongxin; Wang, Jie

    2014-06-01

    A modified method for measuring the absolute figure of a large optical flat surface in synchrotron radiation by a small aperture interferometer is presented. The method consists of two procedures: the first step is oblique incidence measurement; the second is multiple rotating measurements. This simple method is described in terms of functions that are symmetric or antisymmetric with respect to reflections at the vertical axis. Absolute deviations of a large flat surface could be obtained when mirror antisymmetric errors are removed by N-position rotational averaging. Formulas are derived for measuring the absolute surface errors of a rectangle flat, and experiments on high-accuracy rectangle flats are performed to verify the method. Finally, uncertainty analysis is carried out in detail. PMID:24922410

  6. Ag nanotubes and Ag/AgCl electrodes in nanoporous membranes.

    PubMed

    Davenport, Matthew; Healy, Ken; Siwy, Zuzanna S

    2011-04-15

    Miniaturization of the entire experimental setup is a key requirement for widespread application of nanodevices. For nanopore biosensing, integrating electrodes onto the nanopore membrane and controlling the pore length is important for reducing the complexity and improving the sensitivity of the system. Here we present a method to achieve these goals, which relies on electroless plating to produce Ag nanotubes in track-etched polymer nanopore templates. By plating from one side only, we create a conductive nanotube that does not span the full length of the pore, and thus can act as a nanoelectrode located inside the nanopore. To give optimal electrochemical behavior for sensing, we coat the Ag nanotube with a layer of AgCl. We characterize the behavior of this nanoelectrode by measuring its current-voltage response and find that, in most cases, the response is asymmetric. The plated nanopores have initial diameters between 100 and 300 nm, thus a range suitable for detection of viruses. PMID:21389573

  7. Facile synthesis of S–Ag nanocomposites and Ag2S short nanorods by the interaction of sulfur with AgNO3 in PEG400

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Li; Xie, Xin-Yuan; Liang, Ming; Xie, Shu-Ming; Chen, Jie-Mei; Zheng, Wen-Jie

    2016-06-01

    A facile, eco-friendly and inexpensive method to prepare Ag2S short nanorods and S–Ag nanocomposites using sublimed sulfur, AgNO3, PVP and PEG400 was studied. According to x-ray diffraction and scanning electron microscopy of the Ag2S, the products are highly crystalline and pure Ag2S nanorods with diameters of 70–160 nm and lengths of 200–360 nm. X-ray diffraction of the S–Ag nanocomposites shows that we obtained cubic Ag and S nanoparticles. Transmission electron microscopy shows that the molar ratio of PVP to Ag+ plays an important role in controlling the size and morphology of the S–Ag nanocomposites. When the molar ratio of PVP to Ag+ was 10:1, smaller sizes, better dispersibility and narrower distribution of S–Ag nanocomposites with diameters of 10–40 nm were obtained. The formation mechanism of the S–Ag nanocomposites was studied by designing a series of experiments using ultraviolet–visible measurement, and it was found that S nanoparticles are produced first and act as seed crystals; then Ag+ becomes Ag nanocrystals on the surfaces of the S nanoparticles by the reduction of PVP. PEG400 acts as a catalyzer, accelerating the reaction rate, and protects the S–Ag nanocomposites from reacting to produce Ag2S. The antimicrobial experiments show that the S–Ag nanocomposites have greater antimicrobial activity on Staphylococcus aureus, Aspergillus niger and blue mold than Ag nanoparticles.

  8. Non-Invasive Method of Determining Absolute Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor); Hargens, Alan E. (Inventor)

    2004-01-01

    A method is presented for determining absolute intracranial pressure (ICP) in a patient. Skull expansion is monitored while changes in ICP are induced. The patient's blood pressure is measured when skull expansion is approximately zero. The measured blood pressure is indicative of a reference ICP value. Subsequently, the method causes a known change in ICP and measured the change in skull expansion associated therewith. The absolute ICP is a function of the reference ICP value, the known change in ICP and its associated change in skull expansion; and a measured change in skull expansion.

  9. Measurements of the reactor neutron power in absolute units

    NASA Astrophysics Data System (ADS)

    Lebedev, G. V.

    2015-12-01

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  10. In-flight absolute radiometric calibration of the thematic mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1983-01-01

    The TM multispectral scanner system was calibrated in an absolute manner before launch. To determine the temporal changes of the absolute radiometric calibration of the entire system, spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM collections over White Sands, New Mexico. By entering the measured values in an atmospheric radiative transfer program, the radiance levels of the in four of the spectral bands of the TM were determined. Tables show values for the reflectance of snow at White Sands measured by a modular 8 channel radiometer, and values for exoatmospheric irradiance within the TM passbands, calculated for the Earth-Sun distance using a solar radiometer.

  11. Absolute photon-flux measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Haddad, G. N.

    1974-01-01

    Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

  12. Notes on Van der Meer scan for absolute luminosity measurement

    NASA Astrophysics Data System (ADS)

    Balagura, Vladislav

    2011-10-01

    The absolute luminosity can be measured in an accelerator by sweeping beams transversely across each other in the so-called van der Meer scan. We prove that the method can be applied in the general case of arbitrary beam directions and a separation scan plane. A simple method to develop an image of the beam in its transverse plane from spatial distributions of interaction vertexes is also proposed. From the beam images one can determine their overlap and the absolute luminosity. This provides an alternative way of the luminosity measurement during van der Meer scan.

  13. Measurements of the reactor neutron power in absolute units

    SciTech Connect

    Lebedev, G. V.

    2015-12-15

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  14. Absolute Stability Analysis of a Phase Plane Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol

    2010-01-01

    Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.

  15. Acceleration of polarized proton at the AGS

    SciTech Connect

    Lee, Y Y

    1980-01-01

    The unexpected importance of high energy spin effects and the success of the ZGS in correcting many intrinsic and imperfection depolarizing resonances led us to attempt to accelerate polarized protons in the AGS. A collaborative effort is underway by the groups in Argonne, Michigan, Rice, Yale and Brookhaven to improve and modify the AGS to accelerate polarized protons. With the appropriate funding the first polarized proton acceleration at the AGS should be possible by 1983.

  16. The cardiovascular response to the AGS

    NASA Technical Reports Server (NTRS)

    Cardus, David; Mctaggart, Wesley G.

    1993-01-01

    This paper reports the preliminary results of experiments on human subjects conducted to study the cardiovascular response to various g-levels and exposure times using an artificial gravity simulator (AGS). The AGS is a short arm centrifuge consisting of a turntable, a traction system, a platform and four beds. Data collection hardware is part of the communication system. The AGS provides a steep acceleration gradient in subjects in the supine position.

  17. AgI/Ag{sub 3}PO{sub 4} hybrids with highly efficient visible-light driven photocatalytic activity

    SciTech Connect

    Katsumata, Hideyuki; Hayashi, Takahiro; Taniguchi, Masanao; Suzuki, Tohru; Kaneco, Satoshi

    2015-03-15

    Highlights: • AgI/Ag{sub 3}PO{sub 4} hybrid was prepared via an in situ anion-exchange method. • AgI/Ag{sub 3}PO{sub 4} displays the excellent photocatalytic activity under visible light. • AgI/Ag{sub 3}PO{sub 4} readily transforms to be Ag@AgI/Ag{sub 3}PO{sub 4} system. • h{sup +} and O{sub 2}{sup ·−} play the major role in the AO 7 decolorization over AgI/Ag{sub 3}PO{sub 4}. • The activity enhancement is ascribed to a Z-scheme system composed of Ag{sub 3}PO{sub 4}, Ag and AgI. - Abstract: Highly efficient visible-light-driven AgI/Ag{sub 3}PO{sub 4} hybrid photocatalysts with different mole ratios of AgI were prepared via an in situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) technique. Under visible light irradiation (>420 nm), the AgI/Ag{sub 3}PO{sub 4} photocatalysts displayed the higher photocatalytic activity than pure Ag{sub 3}PO{sub 4} and AgI for the decolorization of acid orange 7 (AO 7). Among the hybrid photocatalysts, AgI/Ag{sub 3}PO{sub 4} with 80% of AgI exhibited the highest photocatalytic activity for the decolorization of AO 7. X-ray photoelectron spectroscopy (XPS) results revealed that AgI/Ag{sub 3}PO{sub 4} readily transformed to be Ag@AgI/Ag{sub 3}PO{sub 4} system while the photocatalytic activity of AgI/Ag{sub 3}PO{sub 4} remained after 5 recycling runs. In addition, the quenching effects of different scavengers displayed that the reactive h{sup +} and O{sub 2}{sup ·−} play the major role in the AO 7 decolorization. The photocatalytic activity enhancement of AgI/Ag{sub 3}PO{sub 4} hybrids can be ascribed to the efficient separation of electron–hole pairs through a Z-scheme system composed of Ag{sub 3}PO{sub 4}, Ag and AgI, in which Ag nanoparticles act as the charge separation center.

  18. Visible-light-driven photocatalysts Ag/AgCl dispersed on mesoporous Al2O3 with enhanced photocatalytic performance.

    PubMed

    Feng, Zhouzhou; Yu, Jiajie; Sun, Dongping; Wang, Tianhe

    2016-10-15

    In this paper, Ag/AgCl and Ag/AgCl/Al2O3 photocatalysts were synthesized via a precipitation reaction between NaCl and CH3COOAg or Ag(NH3)2NO3, wherein Ag/AgCl was immobilized into mesoporous Al2O3 medium. The Ag/AgCl-based nanostructures were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectra, and so on. The photocatalysts displayed excellent photocatalytic activity for the degradations of methyl orange (MO) and methylene blue (MB) pollutants under visible light irradiation. The Ag/AgCl(CH3COOAg)/Al2O3 sample exhibited the best photocatalytic performance, degrading 99% MO after 9min of irradiation, which was 1.1 times, 1.22 times and 1.65 times higher than that of Ag/AgCl(Ag(NH3)2NO3)/Al2O3, Ag/AgCl(CH3COOAg) and Ag/AgCl(Ag(NH3)2NO3) photocatalyst, respectively. Meanwhile, Ag/AgCl(CH3COOAg)/Al2O3 also showed excellent capability of MB degradation. Compared to the data reported for Ag/AgCl/TiO2, the Ag/AgCl/Al2O3 prepared in this work exhibited a good performance for the degradation of methyl orange (MO). The results suggest that the dispersion of Ag/AgCl on mesoporous Al2O3 strongly affected their photocatalytic activities. O2(-), OH radicals and Cl(0) atoms are main active species during photocatalysis. PMID:27442145

  19. Multiple Partial Siberian Snakes in the AGS

    SciTech Connect

    Takano, J.; Ahrens, L. A.; Bai, M.; Brown, K.; Courant, E. D.; Gardner, C. J.; Glenn, J. W.; Huang, H.; Luccio, A. U.; MacKay, W. W.; Okamura, M.; Roser, T.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zelenski, A.; Zeno, K.; Hattori, T.; Lin, F.

    2007-06-13

    Polarized protons are accelerated up to 24.3 GeV in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). To accelerate the beam with preserving the polarization, two different types of helical dipole partial Siberian snake have been installed to the AGS. One is a superconducting magnet (Cold Snake, CSNK), and the other is a normal conducting one (Warm Snake, WSNK). With these snake magnets, the polarization at the AGS extraction achieved 65%. However, the AGS has spin mismatches at the injection and extraction. This description shows calculated results to have better spin matching with using two or three snakes.

  20. Synthesis of Cu-Ag@Ag particles using hyperbranched polyester as template

    NASA Astrophysics Data System (ADS)

    Han, Wen-Song

    2015-07-01

    In this manuscript, the third-generation hyperbranched polyester was synthesized with 2, 2-dimethylol propionic acid as AB2 monomer and pentaerythrite as core molecule by using step by step polymerization process at first. Then, the Cu-Ag particles were prepared by co-reduction of silver nitrate and copper nitrate with ascorbic acid in the aqueous solution using hyperbranched polyester as template. Finally, the Cu-Ag@Ag particles were prepared by coating silver on the surface of Cu-Ag particles by reduction of silver nitrate. The synthesized hyperbranched polyester and Cu-Ag@Ag particles were characterized by Fourier transform infrared (FT-IR) spectroscopy, UV-vis spectra, x-ray diffraction, Laser light scattering, thermogravimetric analysis (TGA) and SEM. UV-vis spectra results showed that the Cu-Ag@Ag particles had a strong absorption band at around 420 nm. Laser light scattering and SEM studies confirmed that the most frequent particle sizes of Cu-Ag@Ag particles were 1.2 um. TGA results indicated that the Cu-Ag@Ag particles had good thermal stability. [Figure not available: see fulltext.

  1. Antibacterial action of Ag-containing MFI zeolite at low Ag loadings.

    PubMed

    Lalueza, Patricia; Monzón, Marta; Arruebo, Manuel; Santamaria, Jesus

    2011-01-14

    We show that Ag-containing zeolites are highly effective against Staphylococcus aureus (SA) bacteria even at low Ag loadings and in the presence of high (10(9) CFU per mL) bacterial concentrations. At short contact times the bactericidal efficiency correlates strongly with Ag(+) release. At longer times data dispersion is higher, probably as a consequence of bacterial metabolism. PMID:21103583

  2. 78 FR 30965 - AG Valley Railroad, LLC-Operation Exemption-Ag Valley Holdings, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board AG Valley Railroad, LLC--Operation Exemption--Ag Valley Holdings, LLC AG... original and 10 copies of all pleadings, referring to Docket No. FD 35736, must be filed with the...

  3. Absolute determination of inelastic mean-free paths and surface excitation parameters by absolute reflection electron energy loss spectrum analysis

    NASA Astrophysics Data System (ADS)

    Nagatomi, T.; Goto, K.

    2005-11-01

    An analytical approach was proposed for simultaneously determining an inelastic mean-free path (IMFP) and a surface excitation parameter (SEP) with absolute units by the analysis of an absolute experimental reflection electron energy loss spectrum. The IMFPs and SEPs in Ni were deduced for electrons of 300 to 3000 eV. The obtained IMFPs were in good agreement with those calculated using the TPP-2M equation. The Chen-type empirical formula was proposed for determining the SEP. The results confirmed the applicability of the present approach for determining the IMFP and SEP for medium-energy electrons.

  4. Progress with the AGS Booster

    SciTech Connect

    Weng, W.T.

    1988-01-01

    Rare K-decay, neutrino and heavy ion physics demands that a rapid- cycling high vacuum and high intensity Booster be built for the AGS at Brookhaven. For each mode of operation there are corresponding accelerator physics and design issues needing special attention. Problems pertinent to any single mode of operation have been encountered and solved before, but putting high intensity proton requirements and high vacuum heavy ion requirements into one machine demands careful design considerations and decisions. The lattice design and magnet characteristics will be briefly reviewed. Major design issues will be discussed and design choices explained. Finally, the construction status and schedule will be presented. 6 refs., 6 figs.

  5. Polarization preservation in the AGS

    SciTech Connect

    Ratner, L.G.

    1983-01-01

    The successful operation of a high energy polarized beam at the Argonne Zero Gradient Synchrotron (ZGS) with the concommitant development of depolarizing resonance correction techniques has led to the present project of commissioning such a beam at the Brookhaven Alternating Gradient Synchrotron (AGS). A description of the project was presented at the 1981 National Accelerator Conference. I would like to now present a more detailed description of how we plan to preserve the polarization during acceleration, and to present our game plan for tuning through some 50 resonances and reaching our goal of a 26 GeV polarized proton beam with greater than 60% polarization.

  6. Hypernuclear research at the AGS

    SciTech Connect

    Chrien, R.E.

    1984-01-01

    Although the field of hypernuclear research is over 30 years old, progress in exploring the detailed behavior of hypernuclei has been slow. This fact is due mainly to the technical problems of producing and studying these strange objects. Indeed each step in the improvement of technique has been accompanied by a breakthrough in our understanding of this fascinating subject. In this paper, the aim is to describe the evolution of hypernuclear research, stressing especially the contributions of the program based on the Brookhaven AGS. 23 references, 17 figures, 1 table.

  7. New AGS fast extraction system

    SciTech Connect

    Weng, W.T.

    1980-09-01

    Both the high energy physics program and ISA injection require an improved fast extraction system from the AGS. The proposed new system consists of a fast kicker at H5 and an ejector magnet at H10. The H5 kicker is capable of producing 1.2 mrad deflection and rising up to 99% strength in 150 nsec with flat top ripple within +- 1%. It is found that the focusing strengths and positions of UQ3-UQ7 have to be modified to achieve an achromatic condition at the end of 8/sup 0/-bend. Also, the conceptual design of the H5 magnet and the pulser system are discussed.

  8. Toxicokinetics of Ag in the terrestrial isopod Porcellionides pruinosus exposed to Ag NPs and AgNO₃ via soil and food.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Morgan, A John; Kille, Peter; Svendsen, Claus; Jurkschat, Kerstin; Mosselmans, J Fred W; Soares, Amadeu M V M; Loureiro, Susana

    2016-03-01

    Silver nanoparticles (Ag NPs) have been used in numerous consumer products and may enter the soil through the land application of biosolids. However, little is known about the relationship between Ag NP exposure and their bioavailability for soil organisms. This study aims at comparing the uptake and elimination kinetics of Ag upon exposures to different Ag forms (NPs and ionic Ag (as AgNO3)) in the isopod Porcellionides pruinosus. Isopods were exposed to contaminated Lufa 2.2 soil or alder leaves as food. Uptake and elimination rate constants for soil exposure did not significantly differ between Ag NPs and ionic Ag at 30 and 60 mg Ag/kg. For dietary exposure, the uptake rate constant was up to 5 times higher for Ag NPs than for AgNO3, but this was related to feeding activity and exposure concentrations, while no difference in the elimination rate constants was found. When comparing both routes, dietary exposure resulted in lower Ag uptake rate constants but elimination rate constants did not differ. A fast Ag uptake was observed from both routes and most of the Ag taken up seemed not to be eliminated. Synchrotron X-ray fluorescence showed Ag in the S-cells of the hepatopancreas, thus supporting the observations from the kinetic experiment (i.e. low elimination). In addition, our results show that isopods have an extremely high Ag accumulation capacity, suggesting the presence of an efficient Ag storage compartment. PMID:26581474

  9. Series that Converge Absolutely but Don't Converge

    ERIC Educational Resources Information Center

    Kantrowitz, Robert; Schramm, Michael

    2012-01-01

    If a series of real numbers converges absolutely, then it converges. The usual proof requires completeness in the form of the Cauchy criterion. Failing completeness, the result is false. We provide examples of rational series that illustrate this point. The Cantor set appears in connection with one of the examples.

  10. Population-based absolute risk estimation with survey data.

    PubMed

    Kovalchik, Stephanie A; Pfeiffer, Ruth M

    2014-04-01

    Absolute risk is the probability that a cause-specific event occurs in a given time interval in the presence of competing events. We present methods to estimate population-based absolute risk from a complex survey cohort that can accommodate multiple exposure-specific competing risks. The hazard function for each event type consists of an individualized relative risk multiplied by a baseline hazard function, which is modeled nonparametrically or parametrically with a piecewise exponential model. An influence method is used to derive a Taylor-linearized variance estimate for the absolute risk estimates. We introduce novel measures of the cause-specific influences that can guide modeling choices for the competing event components of the model. To illustrate our methodology, we build and validate cause-specific absolute risk models for cardiovascular and cancer deaths using data from the National Health and Nutrition Examination Survey. Our applications demonstrate the usefulness of survey-based risk prediction models for predicting health outcomes and quantifying the potential impact of disease prevention programs at the population level. PMID:23686614

  11. Invalid phase values removal method for absolute phase recovery.

    PubMed

    Lu, Jin; Mo, Rong; Sun, Huibin; Chang, Zhiyong; Zhao, Xiaxia

    2016-01-10

    A novel approach is presented for more effectively removing invalid phase values in absolute phase recovery. The approach is based on a detailed study involving the types and cases of invalid phase values. Meanwhile, some commonalities of the existing removal algorithms also are thoroughly analyzed. It is well known that rough absolute phase and fringe order maps can very easily be obtained by temporal phase unwrapping techniques. After carefully analyzing the components and fringe order distribution of the rough fringe order map, the proposed method chiefly adopts an entirely new strategy to refine a pure fringe order map. The strategy consists of three parts: (1) the square of an image gradient, (2) subregion areas of the binary image, and (3) image decomposition and composition. In combination with the pure fringe order map and a removal criterion, the invalid phase values can be identified and filtered out from the rough absolute phase map. This new strategy not only gets rid of the limitations of traditional removal methods but also has a two-fold function. The paper also offers different metrics from the experiment to evaluate the quality of the final absolute phase. In contrast with other removal methods, experimental results have verified the feasibility, effectiveness, and superiority of the proposed method. PMID:26835776

  12. Absolute Value Inequalities: High School Students' Solutions and Misconceptions

    ERIC Educational Resources Information Center

    Almog, Nava; Ilany, Bat-Sheva

    2012-01-01

    Inequalities are one of the foundational subjects in high school math curricula, but there is a lack of academic research into how students learn certain types of inequalities. This article fills part of the research gap by presenting the findings of a study that examined high school students' methods of approaching absolute value inequalities,…

  13. Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Reichmann, Edwin J.

    1987-01-01

    Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.

  14. An improved generalized Newton method for absolute value equations.

    PubMed

    Feng, Jingmei; Liu, Sanyang

    2016-01-01

    In this paper, we suggest and analyze an improved generalized Newton method for solving the NP-hard absolute value equations [Formula: see text] when the singular values of A exceed 1. We show that the global and local quadratic convergence of the proposed method. Numerical experiments show the efficiency of the method and the high accuracy of calculation. PMID:27462490

  15. Relative versus Absolute Stimulus Control in the Temporal Bisection Task

    ERIC Educational Resources Information Center

    de Carvalho, Marilia Pinhiero; Machado, Armando

    2012-01-01

    When subjects learn to associate two sample durations with two comparison keys, do they learn to associate the keys with the short and long samples (relational hypothesis), or with the specific sample durations (absolute hypothesis)? We exposed 16 pigeons to an ABA design in which phases A and B corresponded to tasks using samples of 1 s and 4 s,…

  16. Absolute calibration of Landsat instruments using the moon.

    USGS Publications Warehouse

    Kieffer, H.H.; Wildey, R.L.

    1985-01-01

    A lunar observation by Landsat could provide improved radiometric and geometric calibration of both the Thematic Mapper and the Multispectral Scanner in terms of absolute radiometry, determination of the modulation transfer function, and sensitivity to scattered light. A pitch of the spacecraft would be required. -Authors

  17. Absence of absolutely continuous spectrum for random scattering zippers

    NASA Astrophysics Data System (ADS)

    Boumaza, Hakim; Marin, Laurent

    2015-02-01

    A scattering zipper is a system obtained by concatenation of scattering events with equal even number of incoming and outgoing channels. The associated scattering zipper operator is the unitary analog of Jacobi matrices with matrix entries. For infinite identical events and independent and identically distributed random phases, Lyapunov exponents positivity is proved and yields absence of absolutely continuous spectrum by Kotani's theory.

  18. Individual Differences in Absolute and Relative Metacomprehension Accuracy

    ERIC Educational Resources Information Center

    Maki, Ruth H.; Shields, Micheal; Wheeler, Amanda Easton; Zacchilli, Tammy Lowery

    2005-01-01

    The authors investigated absolute and relative metacomprehension accuracy as a function of verbal ability in college students. Students read hard texts, revised texts, or a mixed set of texts. They then predicted their performance, took a multiple-choice test on the texts, and made posttest judgments about their performance. With hard texts,…

  19. Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna

    2015-09-01

    Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.

  20. Absolute Radiometer for Reproducing the Solar Irradiance Unit

    NASA Astrophysics Data System (ADS)

    Sapritskii, V. I.; Pavlovich, M. N.

    1989-01-01

    A high-precision absolute radiometer with a thermally stabilized cavity as receiving element has been designed for use in solar irradiance measurements. The State Special Standard of the Solar Irradiance Unit has been built on the basis of the developed absolute radiometer. The Standard also includes the sun tracking system and the system for automatic thermal stabilization and information processing, comprising a built-in microcalculator which calculates the irradiance according to the input program. During metrological certification of the Standard, main error sources have been analysed and the non-excluded systematic and accidental errors of the irradiance-unit realization have been determined. The total error of the Standard does not exceed 0.3%. Beginning in 1984 the Standard has been taking part in a comparison with the Å 212 pyrheliometer and other Soviet and foreign standards. In 1986 it took part in the international comparison of absolute radiometers and standard pyrheliometers of socialist countries. The results of the comparisons proved the high metrological quality of this Standard based on an absolute radiometer.

  1. Multifrequency continuous wave terahertz spectroscopy for absolute thickness determination

    SciTech Connect

    Scheller, Maik; Baaske, Kai; Koch, Martin

    2010-04-12

    We present a tunable multifrequency continuous wave terahertz spectrometer based on two laser diodes, photoconductive antennas, and a coherent detection scheme. The system is employed to determine the absolute thickness of samples utilizing a proposed synthetic difference frequency method to circumvent the 2pi uncertainty known from conventional photomixing systems while preserving a high spatial resolution.

  2. Ion chambers simplify absolute intensity measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Sampson, J. A. R.

    1966-01-01

    Single or double ion chamber technique measures absolute radiation intensities in the extreme vacuum ultraviolet region of the spectrum. The ion chambers use rare gases as the ion carrier. Photon absorbed by the gas creates one ion pair so a measure of these is a measure of the number of incident photons.

  3. Urey: to measure the absolute age of Mars

    NASA Technical Reports Server (NTRS)

    Randolph, J. E.; Plescia, J.; Bar-Cohen, Y.; Bartlett, P.; Bickler, D.; Carlson, R.; Carr, G.; Fong, M.; Gronroos, H.; Guske, P. J.; Herring, M.; Javadi, H.; Johnson, D. W.; Larson, T.; Malaviarachchi, K.; Sherrit, S.; Stride, S.; Trebi-Ollennu, A.; Warwick, R.

    2003-01-01

    UREY, a proposed NASA Mars Scout mission will, for the first time, measure the absolute age of an identified igneous rock formation on Mars. By extension to relatively older and younger rock formations dated by remote sensing, these results will enable a new and better understanding of Martian geologic history.

  4. Is There a Rule of Absolute Neutralization in Nupe?

    ERIC Educational Resources Information Center

    Krohn, Robert

    1975-01-01

    A previously prosed rule of absolute neutralization (merging underlying low vowels) is eliminated in an alternative analysis including instead a rule that "breaks" the feature matrix of certain low vowels and redistributes the features of each vowel as a sequence of vowel-like transition plus (a). (Author/RM)

  5. Assignment of absolute stereochemistry by computation of optical rotation angles

    NASA Astrophysics Data System (ADS)

    Kondru, Rama Krishna

    We have developed simple wire and molecular orbital models to qualitatively and quantitatively understand optical rotation angles of molecules. We reported the first ab initio theoretical approach to determine the absolute stereochemistry of a complex natural product by calculating molar rotation angles, [M]D. We applied this method for an unambiguous assignment of the absolute stereochemistry of the hennoxazole A. A protocol analogous to population analysis was devised to analyze atomic contributions to the rotation angles for oxiranes, orthoesters, and other organic compounds. The molar rotations for an indoline, an indonone, menthol and menthone were calculated using ab inito methods and compared with experimental values. We reported the first prediction of the absolute configuration of a natural product, i.e. an a priori assignment of the relative and absolute stereochemistry of pitiamide A. Furthermore, we described a strategy that may help to establish structure-function relations for rotation angles by visualizing the electric and magnetic-field perturbations to a molecule's molecular orbitals.

  6. Hitting the target: relatively easy, yet absolutely difficult.

    PubMed

    Mapp, Alistair P; Ono, Hiroshi; Khokhotva, Mykola

    2007-01-01

    It is generally agreed that absolute-direction judgments require information about eye position, whereas relative-direction judgments do not. The source of this eye-position information, particularly during monocular viewing, is a matter of debate. It may be either binocular eye position, or the position of the viewing-eye only, that is crucial. Using more ecologically valid stimulus situations than the traditional LED in the dark, we performed two experiments. In experiment 1, observers threw darts at targets that were fixated either monocularly or binocularly. In experiment 2, observers aimed a laser gun at targets while fixating either the rear or the front gunsight monocularly, or the target either monocularly or binocularly. We measured the accuracy and precision of the observers' absolute- and relative-direction judgments. We found that (a) relative-direction judgments were precise and independent of phoria, and (b) monocular absolute-direction judgments were inaccurate, and the magnitude of the inaccuracy was predictable from the magnitude of phoria. These results confirm that relative-direction judgments do not require information about eye position. Moreover, they show that binocular eye-position information is crucial when judging the absolute direction of both monocular and binocular targets. PMID:17972479

  7. Absolute Risk Aversion and the Returns to Education.

    ERIC Educational Resources Information Center

    Brunello, Giorgio

    2002-01-01

    Uses 1995 Italian household income and wealth survey to measure individual absolute risk aversion of 1,583 married Italian male household heads. Uses this measure as an instrument for attained education in a standard-log earnings equation. Finds that the IV estimate of the marginal return to schooling is much higher than the ordinary least squares…

  8. Improved cavity-type absolute total-radiation radiometer

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Sr.; Plamondon, J. A., Jr.

    1967-01-01

    Conical cavity-type absolute radiometer measures the intensity of radiant energy to an accuracy of one to two percent in a vacuum of ten to the minus fifth torr or lower. There is a uniform response over the ultraviolet, visible, and infrared range, and it requires no calibration or comparison with a radiation standard.

  9. Absolute Interrogative Intonation Patterns in Buenos Aires Spanish

    ERIC Educational Resources Information Center

    Lee, Su Ar

    2010-01-01

    In Spanish, each uttered phrase, depending on its use, has one of a variety of intonation patterns. For example, a phrase such as "Maria viene manana" "Mary is coming tomorrow" can be used as a declarative or as an absolute interrogative (a yes/no question) depending on the intonation pattern that a speaker produces. Patterns of usage also…

  10. Absolute configurations of zingiberenols isolated from ginger (Zingiber officinale) rhizomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sesquiterpene alcohol zingiberenol, or 1,10-bisaboladien-3-ol, was isolated some time ago from ginger, Zingiber officinale, rhizomes, but its absolute configuration had not been determined. With three chiral centers present in the molecule, zingiberenol can exist in eight stereoisomeric forms. ...

  11. Negligible shift of 3Ag- potential in longer-chain carotenoids as revealed by a single persistent peak of 3Ag-→1Ag- stimulated emission followed by 3Ag-←1Ag- transient-absorption

    NASA Astrophysics Data System (ADS)

    Li, Chunyong; Miki, Takeshi; Kakitani, Yoshinori; Koyama, Yasushi; Nagae, Hiroyoshi

    2007-12-01

    Upon excitation of lycopene, anhydrorhodovibrin or spirilloxanthin to the 1Bu+(0) state, stimulated emission followed by transient-absorption was observed as a single peak with the 3Ag-(0) energy that had been determined by measurement of resonance-Raman excitation profiles. This observation was explained in terms of negligible shift of the 3Ag- potential, in reference to the 1Ag- potential, where only the 3Ag-(υ)→1Ag-(υ) emission and the 3Ag-(υ)←1Ag-(υ) absorption become allowed during the vibrational relaxation of υ = 2 → 1 → 0, starting from the 3Ag-(2) level generated by diabatic internal conversion from the 1Bu+(0) level, in anhydrorhodovibrin, for example.

  12. Picrajavanicins A-G, Quassinoids from Picrasma javanica Collected in Myanmar.

    PubMed

    Win, Nwet Nwet; Ito, Takuya; Ismail; Kodama, Takeshi; Win, Yi Yi; Tanaka, Masami; Ngwe, Hla; Asakawa, Yoshinori; Abe, Ikuro; Morita, Hiroyuki

    2015-12-24

    Seven new tetracyclic quassinoids, picrajavanicins A-G (1-7), along with three known analogues, were isolated from a CHCl3-soluble extract of the bark of Picrasma javanica collected in Myanmar. The structures of these compounds were elucidated using spectroscopic techniques, including 1D and 2D NMR. The absolute configuration at C-2 of 2 was determined to be S by the modified Mosher method. All the isolates were tested for their antiproliferative activities against a small panel of five human cancer cell lines. However, none of the isolated compounds exhibited inhibitory activity against any of the cancer cells used (IC50 values >10 μM). PMID:26606140

  13. GNSS Absolute Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.; Geoghegan, C.

    2011-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and compare absolute calibrations to the traditional NGS relative calibrations.

  14. Absolute magnitudes and phase coefficients of trans-Neptunian objects

    NASA Astrophysics Data System (ADS)

    Alvarez-Candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Duffard, R.; Morales, N.; Santos-Sanz, P.; Thirouin, A.; Silva, J. S.

    2016-02-01

    Context. Accurate measurements of diameters of trans-Neptunian objects (TNOs) are extremely difficult to obtain. Thermal modeling can provide good results, but accurate absolute magnitudes are needed to constrain the thermal models and derive diameters and geometric albedos. The absolute magnitude, HV, is defined as the magnitude of the object reduced to unit helio- and geocentric distances and a zero solar phase angle and is determined using phase curves. Phase coefficients can also be obtained from phase curves. These are related to surface properties, but only few are known. Aims: Our objective is to measure accurate V-band absolute magnitudes and phase coefficients for a sample of TNOs, many of which have been observed and modeled within the program "TNOs are cool", which is one of the Herschel Space Observatory key projects. Methods: We observed 56 objects using the V and R filters. These data, along with those available in the literature, were used to obtain phase curves and measure V-band absolute magnitudes and phase coefficients by assuming a linear trend of the phase curves and considering a magnitude variability that is due to the rotational light-curve. Results: We obtained 237 new magnitudes for the 56 objects, six of which were without previously reported measurements. Including the data from the literature, we report a total of 110 absolute magnitudes with their respective phase coefficients. The average value of HV is 6.39, bracketed by a minimum of 14.60 and a maximum of -1.12. For the phase coefficients we report a median value of 0.10 mag per degree and a very large dispersion, ranging from -0.88 up to 1.35 mag per degree.

  15. Visible light driven photocatalysis and antibacterial activity of AgVO{sub 3} and Ag/AgVO{sub 3} nanowires

    SciTech Connect

    Singh, Anamika; Dutta, Dimple P.; Ballal, A.; Tyagi, A.K.; Fulekar, M.H.

    2014-03-01

    Graphical abstract: - Highlights: • Ag/AgVO{sub 3} and pure AgVO{sub 3} nanowires synthesized by sonochemical process. • Characterization done using XRD, SEM, TEM, EDX and BET analysis. • Visible light degradation of RhB by Ag/AgVO{sub 3} within 45 min. • Antibacterial activity of Ag/AgVO{sub 3} demonstrated. - Abstract: Ag/AgVO{sub 3} nanowires and AgVO{sub 3} nanorods were synthesized in aqueous media via a facile sonochemical route. The as-synthesized products were characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The results revealed that inert atmosphere promotes the formation of Ag/AgVO{sub 3} nanowires. The photocatalytic studies revealed that the Ag/AgVO{sub 3} nanowires exhibited complete photocatalytic degradation of Rhodamine B within 45 min under visible light irradiation. The antibacterial activity of Ag/AgVO{sub 3} nanowires was tested against Escherechia coli and Bacillus subtilis. The minimum growth inhibitory concentration value was found to be 50 and 10 folds lower than for the antibiotic ciprofloxacin for E. coli and B. subtilis, respectively. The antibacterial properties of the β-AgVO{sub 3} nanorods prove that in case of the Ag dispersed Ag/AgVO{sub 3} nanowires, the enhanced antibacterial action is also due to contribution from the AgVO{sub 3} support.

  16. The AGS synchrotron with four helical magnets

    SciTech Connect

    Tsoupas N.; Huang, H.; Roser, T.; MacKay, W.W.; Trbojevic, D.

    2012-05-20

    The idea of using two partial helical magnets was applied successfully to the AGS synchrotron to preserve the proton beam polarization. In this paper we explore in details the idea of using four helical magnets placed symmetrically in the AGS ring. The placement of four helical magnets in the AGS ring provides many advantages over the present setup of the AGS which uses two partial helical magnets. First, the symmetric placement of the four helical magnets allows for a better control of the AGS optics with reduced values of the beta functions especially near beam injection, second, the vertical spin direction during beam injection and extraction is closer to vertical, and third, it provides for a larger 'spin tune gap', which allows the vertical and horizontal tunes to be placed, and prevent the horizontal and vertical intrinsic spin resonances of the AGS to occur during the acceleration cycle. Although the same spin gap can be obtained with a single or two partial helices, the required high field strength of a single helix makes its use impractical, and that of the double helix rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare these results with the present setup of the AGS that uses two partial helical magnets.

  17. Acceleration of heavy ions in the AGS

    SciTech Connect

    Barton, M.Q.

    1983-01-01

    It is possible to use the Brookhaven AGS as a heavy ion machine by adding a cyclotron to the Tandem and using this combination as injector. An intermediate step for lighter ions might consist of injecting the Tandem beam directly into the AGS. In either case, quite high intensities should be possible.

  18. Tribological properties of ag-based amphiphiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most ag-based materials are amphiphilic because they comprise polar and non-polar groups within the same molecule. One of the major categories of amphiphilic ag-based materials are seed oils, which are actively investigated as substitutes for petroleum in a wide variety of consumer and industrial a...

  19. AgRISTARS documents tracking list report

    NASA Technical Reports Server (NTRS)

    Hawkins, J. L.

    1983-01-01

    A quarterly listing of documents issued and placed in the AgRISTARS tracking system is provided. The technical publications are arranged by type of documents. The reference AgRISTARS document number, title and date of publication, the issuing organization, and the National Technical Information Service reference number is given.

  20. Recent hypernuclear research at the Brookhaven AGS

    SciTech Connect

    Chrien, R.E.

    1985-01-01

    Recent AGS experiments contributing to our knowledge of hypernuclei are reviewed. These experiments have suggested new areas of research on hypernuclei. With the proper beam line facilities, the AGS will be able to perform experiments in these areas and provide a transition to the future era of ''kaon factories''. 20 refs., 14 figs.

  1. Effects of soil and dietary exposures to Ag nanoparticles and AgNO₃ in the terrestrial isopod Porcellionides pruinosus.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Jurkschat, Kerstin; Soares, Amadeu M V M; Loureiro, Susana

    2015-10-01

    The effects of Ag-NPs and AgNO3 on the isopod Porcellionides pruinosus were determined upon soil and dietary exposures. Isopods avoided Ag in soil, with EC50 values of ∼16.0 and 14.0 mg Ag/kg for Ag-NPs and AgNO3, respectively. Feeding inhibition tests in soil showed EC50s for effects on consumption ratio of 127 and 56.7 mg Ag/kg, respectively. Although similar EC50s for effects on biomass were observed for nanoparticulate and ionic Ag (114 and 120 mg Ag/kg dry soil, respectively), at higher concentrations greater biomass loss was found for AgNO3. Upon dietary exposure, AgNO3 was more toxic, with EC50 for effects on biomass change being >1500 and 233 mg Ag/kg for Ag-NPs and AgNO3, respectively. The difference in toxicity between Ag-NPs and AgNO3 could not be explained from Ag body concentrations. This suggests that the relation between toxicity and bioavailability of Ag-NPs differs from that of ionic Ag in soils. PMID:26071943

  2. Laser generated Ag and Ag-Au composite nanoparticles for refractive index sensor

    NASA Astrophysics Data System (ADS)

    Navas, M. P.; Soni, R. K.

    2014-09-01

    Localized surface plasmon resonance (LSPR) wavelength of metal nanoparticles (NPs) is highly sensitive to size, shape and the surrounding medium. Metal targets were laser ablated in liquid for preparation of spherical Ag and Ag@Au core-shell NP colloidal solution for refractive index sensing. The LSPR peak wavelength and broadening of the NPs were monitored in different refractive index liquid. Quasi-static Mie theory simulation results show that refractive index sensitivity of Ag, Ag-Au alloy and Ag@Au core-shell NPs increases nearly linearly with size and shell thickness. However, the increased broadening of the LSPR peak with size, alloy concentration and Au shell thickness restricts the sensing resolution of these NPs. Figure-of-merit (FOM) was calculated to optimize the size of Ag NPs, concentration of Ag-Au alloy NPs and Au shell thickness of Ag@Au core-shell NPs. The refractive index sensitivity (RIS) and FOM were optimum in the size range 20-40 nm for Ag NPs. Laser generated Ag@Au NPs of Au shell thickness in the range of 1-2 nm showed optimum FOM, where thin layer of Au coating can improve the stability of Ag NPs.

  3. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film.

    PubMed

    Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei

    2016-04-22

    Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance. PMID:26939539

  4. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film

    NASA Astrophysics Data System (ADS)

    Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei

    2016-04-01

    Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance.

  5. Fabrication and characterization of AgI/Ag hollow fibers for near-infrared lasers

    NASA Astrophysics Data System (ADS)

    Zeng, Xuan; Liu, Bing-Hong; He, Yu-Jing; Sun, Bang-Shan; Iwai, Katsumasa; Miyagi, Mitsunobu; Shi, Yi-Wei

    2013-07-01

    AgI/Ag hollow fibers have found applications in mid- and far-infrared regions owing to the properties of low loss and high power capability. It has been a challenge to fabricate low-loss AgI/Ag hollow fiber in the near-infrared laser light. In this paper, we report on improvements of the fabrication technology. In order to coat a thin and smooth AgI film, ethanol was used as the solvent of iodine and the iodination process is carried out in low temperatures with high flow-rate of iodine solution. Low-loss AgI/Ag hollow fibers with various inner diameters were firstly obtained for 1 μm wavelength band. Fabrication parameters were discussed in detail and transmission properties were characterized.

  6. Atomic-level observation of Ag-ion hopping motion in AgI

    NASA Astrophysics Data System (ADS)

    Sato, W.; Komatsuda, S.; Mizuuchi, R.; Irioka, N.; Kawata, S.; Ohkubo, Y.

    2015-04-01

    Applicability of the 111mCd(→111Cd) and 111In(→111Cd) probes to the study of dynamics in polycrystalline silver iodide (AgI) was examined by means of the time-differential perturbed angular correlation technique. It was found that the 111mCd(→111Cd) probe occupies a unique site in γ-AgI and exhibits nuclear relaxation caused by dynamic perturbation arising from Ag + hopping motion in α-AgI; while the residential sites of 111In(→111Cd) vary, suggesting that 111In ions can not settle themselves in a fixed site in the AgI crystal structure. We here demonstrate that 111mCd(→111Cd) can be a potential nucleus to probe the Ag +-ion dynamic motion in α-AgI.

  7. Studies on electronic structure of interfaces between Ag and gelatin for stabilization of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Tani, Tadaaki; Uchida, Takayuki

    2015-06-01

    Extremely high stability of Ag nanoparticles in photographic materials has forced us to study the electronic structures of the interfaces between thin layers of Ag, Au, and Pt and their surface membranes in ambient atmosphere by photoelectron yield spectroscopy in air and Kelvin probe method. Owing to the Fermi level equalization between a metal layer and a membrane coming from air, the electron transfer took place from the membrane to Pt and Au layers and from an Ag layer to the membrane, giving the reason for poor stability of Ag nanoparticles in air. The control of the Fermi level of an Ag layer with respect to that of a gelatin membrane in air could be widely made according to Nernst’s equation by changing the pH and pAg values of an aqueous gelatin solution used to form the membrane, and thus available to stabilize Ag nanoparticles in a gelatin matrix.

  8. AgPO2F2 and Ag9(PO2F2)14: the first Ag(i) and Ag(i)/Ag(ii) difluorophosphates with complex crystal structures.

    PubMed

    Malinowski, Przemysław J; Kurzydłowski, Dominik; Grochala, Wojciech

    2015-12-01

    The reaction of AgF2 with P2O3F4 yields a mixed valence Ag(I)/Ag(II) difluorophosphate salt with AgAg(PO2F2)14 stoichiometry - the first Ag(ii)-PO2F2 system known. This highly moisture sensitive brown solid is thermally stable up to 120 °C, which points at further feasible extension of the chemistry of Ag(ii)-PO2F2 systems. The crystal structure shows a very complex bonding pattern, comprising of polymeric Ag(PO2F2)14(4-) anions and two types of Ag(I) cations. One particular Ag(II) site present in the crystal structure of Ag9(PO2F2)14 is the first known example of square pyramidal penta-coordinated Ag(ii) in an oxo-ligand environment. Ag(i)PO2F2 - the product of the thermal decomposition of Ag9(PO2F2)14 - has also been characterized by thermal analysis, IR spectroscopy and X-ray powder diffraction. It has a complicated crystal structure as well, which consists of infinite 1D [Ag(I)O4/2] chains which are linked to more complex 3D structures via OPO bridges. The PO2F2(-) anions bind to cations in both compounds as bidentate oxo-ligands. The terminal F atoms tend to point inside the van der Waals cavities in the crystal structure of both compounds. All important structural details of both title compounds were corroborated by DFT calculations. PMID:26200921

  9. Absolute radiometric calibration of the RapidEye multispectral imager using the reflectance-based vicarious calibration method

    NASA Astrophysics Data System (ADS)

    Naughton, Denis; Brunn, Andreas; Czapla-Myers, Jeff; Douglass, Scott; Thiele, Michael; Weichelt, Horst; Oxfort, Michael

    2011-01-01

    RapidEye AG is a commercial provider of geospatial information products and customized solutions derived from Earth observation image data. The source of the data is the RapidEye constellation consisting of five low-earth-orbit imaging satellites. We describe the rationale, methods, and results of a reflectance-based vicarious calibration campaign that was conducted between April 2009 and May 2010 at Railroad Valley Playa and Ivanpah Playa to determine the on-orbit radiometric accuracy of the RapidEye sensor. In situ surface spectral reflectance measurements of known ground targets and an assessment of the atmospheric conditions above the sites were taken during spacecraft overpasses. The ground data are used as input to a radiative transfer code to compute a band-specific top-of-atmosphere spectral radiance. A comparison of these predicted values based on absolute physical data to the measured at-sensor spectral radiance provide the absolute calibration of the sensor. Initial assessments show that the RapidEye sensor response is within 8% of the predicted values. Outcomes from this campaign are then used to update the calibration parameters in the ground segment processing system. Subsequent verification events confirmed that the measured RapidEye response improved to within 4% of the predictions based on the vicarious calibration method.

  10. Antibacterial biodegradable Mg-Ag alloys.

    PubMed

    Tie, D; Feyerabend, F; Müller, W D; Schade, R; Liefeith, K; Kainer, K U; Willumeit, R

    2013-01-01

    The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4) and aging (T6) heat treatment. The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH)₂ and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7), revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231) and Staphylococcus epidermidis (DSMZ 3269), and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials. PMID:23771512

  11. Absolute charge calibration of scintillating screens for relativistic electron detection

    SciTech Connect

    Buck, A.; Popp, A.; Schmid, K.; Karsch, S.; Krausz, F.; Zeil, K.; Jochmann, A.; Kraft, S. D.; Sauerbrey, R.; Cowan, T.; Schramm, U.; Hidding, B.; Kudyakov, T.; Sears, C. M. S.; Veisz, L.; Pawelke, J.

    2010-03-15

    We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm{sup 2}. The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm{sup 2} was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

  12. Absolute calibration for a broad range single shot electron spectrometer

    SciTech Connect

    Glinec, Y.; Faure, J.; Guemnie-Tafo, A.; Malka, V.; Monard, H.; Larbre, J. P.; De Waele, V.; Marignier, J. L.; Mostafavi, M.

    2006-10-15

    This article gives a detailed description of a single shot electron spectrometer which was used to characterize electron beams produced by laser-plasma interaction. Contrary to conventional electron sources, electron beams from laser-plasma accelerators can produce a broad range of energies. Therefore, diagnosing these electron spectra requires specific attention and experimental development. Here, we provide an absolute calibration of the Lanex Kodak Fine screen on a laser-triggered radio frequency picosecond electron accelerator. The efficiency of scintillating screens irradiated by electron beams has never been investigated so far. This absolute calibration is then compared to charge measurements from an integrating current transformer for quasimonoenergetic electron spectra from laser-plasma interaction.

  13. Absolute charge calibration of scintillating screens for relativistic electron detection

    NASA Astrophysics Data System (ADS)

    Buck, A.; Zeil, K.; Popp, A.; Schmid, K.; Jochmann, A.; Kraft, S. D.; Hidding, B.; Kudyakov, T.; Sears, C. M. S.; Veisz, L.; Karsch, S.; Pawelke, J.; Sauerbrey, R.; Cowan, T.; Krausz, F.; Schramm, U.

    2010-03-01

    We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm2. The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm2 was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

  14. From Hubble's Next Generation Spectral Library (NGSL) to Absolute Fluxes

    NASA Astrophysics Data System (ADS)

    Heap, S. R.; Lindler, D.

    2016-05-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R˜1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18–1.03 μ. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsl/. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We have therefore developed an observing procedure, data-reduction procedure, and correction algorithms that should yield fluxes with uncertainties less than 1%.

  15. Determination of absolute internal conversion coefficients using the SAGE spectrometer

    NASA Astrophysics Data System (ADS)

    Sorri, J.; Greenlees, P. T.; Papadakis, P.; Konki, J.; Cox, D. M.; Auranen, K.; Partanen, J.; Sandzelius, M.; Pakarinen, J.; Rahkila, P.; Uusitalo, J.; Herzberg, R.-D.; Smallcombe, J.; Davies, P. J.; Barton, C. J.; Jenkins, D. G.

    2016-03-01

    A non-reference based method to determine internal conversion coefficients using the SAGE spectrometer is carried out for transitions in the nuclei of 154Sm, 152Sm and 166Yb. The Normalised-Peak-to-Gamma method is in general an efficient tool to extract internal conversion coefficients. However, in many cases the required well-known reference transitions are not available. The data analysis steps required to determine absolute internal conversion coefficients with the SAGE spectrometer are presented. In addition, several background suppression methods are introduced and an example of how ancillary detectors can be used to select specific reaction products is given. The results obtained for ground-state band E2 transitions show that the absolute internal conversion coefficients can be extracted using the methods described with a reasonable accuracy. In some cases of less intense transitions only an upper limit for the internal conversion coefficient could be given.

  16. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  17. In-flight Absolute Radiometric Calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, D.; Savage, R. K.

    1984-01-01

    The Thematic Mapper (TM) multispectral scanner system was placed into Earth orbit on July 16, 1982, as part of NASA's LANDSAT 4 payload. To determine temporal changes of the absolute radiometric calibration of the entire system in flight, spectroradiometric measurements of the ground and the atmosphere are made simultaneously with TM image acquisitions over the White Sands, New Mexico area. By entering the measured values into an atmospheric radiative transfer program, the radiance levels at the entrance pupil of the TM in four of the TM spectral bands are determined. These levels are compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors. By reference to an adjacent, larger uniform area, the calibration is extended to all 16 detectors in each of the three bands.

  18. Absolute measurement of the extreme UV solar flux

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Ogawa, H. S.; Judge, D. L.; Phillips, E.

    1984-01-01

    A windowless rare-gas ionization chamber has been developed to measure the absolute value of the solar extreme UV flux in the 50-575-A region. Successful results were obtained on a solar-pointing sounding rocket. The ionization chamber, operated in total absorption, is an inherently stable absolute detector of ionizing UV radiation and was designed to be independent of effects from secondary ionization and gas effusion. The net error of the measurement is + or - 7.3 percent, which is primarily due to residual outgassing in the instrument, other errors such as multiple ionization, photoelectron collection, and extrapolation to the zero atmospheric optical depth being small in comparison. For the day of the flight, Aug. 10, 1982, the solar irradiance (50-575 A), normalized to unit solar distance, was found to be 5.71 + or - 0.42 x 10 to the 10th photons per sq cm sec.

  19. In-flight absolute radiometric calibration of the thematic mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1984-01-01

    In order to determine temporal changes of the absolute radiometric calibration of the entire TM system in flight spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM image collections over the White Sands, New Mexico area. By entering the measured values in an atmospheric radiative transfer program, the radiance levels in four of the spectral bands of the TM were determined, band 1:0.45 to 0.52 micrometers, band 2:0.53 to 0.61 micrometers band 3:0.62 to 0.70 micrometers and 4:0.78 to 0.91 micrometers. These levels were compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors.

  20. In-flight absolute radiometric calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1984-01-01

    In order to determine temporal changes of the absolute radiometric calibration of the entire TM system in flight spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM image collections over the White Sands, NM area. By entering the measured values in an atmospheric radiative transfer program, the radiance levels in four of the spectral bands of the TM were determined, band 1: 0.45 to 0.52 micrometers, band 2: 0.53 to 0.61 micrometers, band 3: 0.62 to 0.70 micrometers, and 4: 0.78 to 0.91 micrometers. These levels were compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors. Previously announced in STAR as N84-15633

  1. Absolute calibration of vacuum ultraviolet spectrograph system for plasma diagnostics

    SciTech Connect

    Yoshikawa, M.; Kubota, Y.; Kobayashi, T.; Saito, M.; Numada, N.; Nakashima, Y.; Cho, T.; Koguchi, H.; Yagi, Y.; Yamaguchi, N.

    2004-10-01

    A space- and time-resolving vacuum ultraviolet (VUV) spectrograph system has been applied to diagnose impurity ions behavior in plasmas produced in the tandem mirror GAMMA 10 and the reversed field pinch TPE-RX. We have carried out ray tracing calculations for obtaining the characteristics of the VUV spectrograph and calibration experiments to measure the absolute sensitivities of the VUV spectrograph system for the wavelength range from 100 to 1100 A. By changing the incident angle, 50.6 deg. -51.4 deg., to the spectrograph whose nominal incident angle is 51 deg., we can change the observing spectral range of the VUV spectrograph. In this article, we show the ray tracing calculation results and absolute sensitivities when the angle of incidence into the VUV spectrograph is changed, and the results of VUV spectroscopic measurement in both GAMMA 10 and TPE-RX plasmas.

  2. Absolute Configurations of Zingiberenols Isolated from Ginger (Zingiber officinale) Rhizomes.

    PubMed

    Khrimian, Ashot; Shirali, Shyam; Guzman, Filadelfo

    2015-12-24

    Two stereoisomeric zingiberenols in ginger were identified as (3R,6R,7S)-1,10-bisaboladien-3-ol (2) and (3S,6R,7S)-1,10-bisaboladien-3-ol (5). Absolute configurations were assigned by utilizing 1,10-bisaboladien-3-ol stereoisomers and two gas-chromatography columns: a 25 m Hydrodex-β-6TBDM and 60 m DB-5MS. The C-6 and C-7 absolute configurations in both zingiberenols match those of zingiberene present abundantly in ginger rhizomes. Interestingly, zingiberenol 2 has recently been identified as a male-produced sex pheromone of the rice stink bug, Oebalus poecilus, thus indicating that ginger plants may be a potential source of the sex pheromone of this bug. PMID:26606508

  3. Absolute limit on rotation of gravitationally bound stars

    SciTech Connect

    Glendenning, N.K.

    1994-03-01

    The authors seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein`s theory of relativity, Le Chatelier`s principle, causality and a low-density equation of state, uncertainties which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass-shedding would occur, is 0.33 ms for a M = 1.442 M{circle_dot} neutron star (the mass of PSR1913+16). If the limit were found to be broken by any pulsar, it would signal that the confined hadronic phase of ordinary nucleons and nuclei is only metastable, an extraordinary conclusion.

  4. Validation of GOCE by absolute and relative gravimetry

    NASA Astrophysics Data System (ADS)

    Pettersen, B. R.; Sprlak, M.; Lysaker, D. I.; Omang, O. C. D.; Sekowski, M.; Dykowski, P.

    2012-04-01

    Absolute gravimetry has been performed in 2011 by FG5 and A10 instruments in selected sites of the Norwegian first order gravity network. These observations are used as reference values to transform a large number of relative gravity values collected in 1968-1972. The outcome is a database at current epoch in a reference frame defined by the absolute gravity values. This constitutes our test field for validation of GOCE results. In the test fields, validation of GOCE-derived gravity anomalies was performed. The spectral enhancement method was applied to avoid the spectral inconsistency between the terrestrial and the satellite data. For this purpose, contributions of the EGM2008 model and a gravitational effect of a residual terrain model were calculated.

  5. Proposal for an absolute, atomic definition of mass

    NASA Astrophysics Data System (ADS)

    Wignall, J. W. G.

    1991-11-01

    It is proposed that the mass of a particle be defined absolutely as its de Broglie frequency, measured as the mean de Broglie wavelength of the particle when it has a mean speed (v) and Lorentz factor (gamma); the masses of systems too large to have a measurable de Broglie wavelength mean are then to be derived by specifying the usual inertial and additive properties of mass. This definition avoids the use of an arbitrary macroscopic standard such as the prototype kilogram, and, if present theory is correct, does not even require the choice of a specific particle as a mass standard. Suggestions are made as to how this absolute mass can be realized and measured at the macroscopic level and, finally, some comments are made on the effect of the new definition on the form of the equations of physics.

  6. Absolute phase effects on CPMG-type pulse sequences

    NASA Astrophysics Data System (ADS)

    Mandal, Soumyajit; Oh, Sangwon; Hürlimann, Martin D.

    2015-12-01

    We describe and analyze the effects of transients within radio-frequency (RF) pulses on multiple-pulse NMR measurements such as the well-known Carr-Purcell-Meiboom-Gill (CPMG) sequence. These transients are functions of the absolute RF phases at the beginning and end of the pulse, and are thus affected by the timing of the pulse sequence with respect to the period of the RF waveform. Changes in transients between refocusing pulses in CPMG-type sequences can result in signal decay, persistent oscillations, changes in echo shape, and other effects. We have explored such effects by performing experiments in two different low-frequency NMR systems. The first uses a conventional tuned-and-matched probe circuit, while the second uses an ultra-broadband un-tuned or non-resonant probe circuit. We show that there are distinct differences between the absolute phase effects in these two systems, and present simple models that explain these differences.

  7. Henry More and the development of absolute time.

    PubMed

    Thomas, Emily

    2015-12-01

    This paper explores the nature, development and influence of the first English account of absolute time, put forward in the mid-seventeenth century by the 'Cambridge Platonist' Henry More. Against claims in the literature that More does not have an account of time, this paper sets out More's evolving account and shows that it reveals the lasting influence of Plotinus. Further, this paper argues that More developed his views on time in response to his adoption of Descartes' vortex cosmology and cosmogony, providing new evidence of More's wider project to absorb Cartesian natural philosophy into his Platonic metaphysics. Finally, this paper argues that More should be added to the list of sources that later English thinkers - including Newton and Samuel Clarke - drew on in constructing their absolute accounts of time. PMID:26568082

  8. Improved Absolute Approximation Ratios for Two-Dimensional Packing Problems

    NASA Astrophysics Data System (ADS)

    Harren, Rolf; van Stee, Rob

    We consider the two-dimensional bin packing and strip packing problem, where a list of rectangles has to be packed into a minimal number of rectangular bins or a strip of minimal height, respectively. All packings have to be non-overlapping and orthogonal, i.e., axis-parallel. Our algorithm for strip packing has an absolute approximation ratio of 1.9396 and is the first algorithm to break the approximation ratio of 2 which was established more than a decade ago. Moreover, we present a polynomial time approximation scheme (mathcal{PTAS}) for strip packing where rotations by 90 degrees are permitted and an algorithm for two-dimensional bin packing with an absolute worst-case ratio of 2, which is optimal provided mathcal{P} not= mathcal{NP}.

  9. Flow rate calibration for absolute cell counting rationale and design.

    PubMed

    Walker, Clare; Barnett, David

    2006-05-01

    There is a need for absolute leukocyte enumeration in the clinical setting, and accurate, reliable (and affordable) technology to determine absolute leukocyte counts has been developed. Such technology includes single platform and dual platform approaches. Derivations of these counts commonly incorporate the addition of a known number of latex microsphere beads to a blood sample, although it has been suggested that the addition of beads to a sample may only be required to act as an internal quality control procedure for assessing the pipetting error. This unit provides the technical details for undertaking flow rate calibration that obviates the need to add reference beads to each sample. It is envisaged that this report will provide the basis for subsequent clinical evaluations of this novel approach. PMID:18770842

  10. Enumeration of absolute cell counts using immunophenotypic techniques.

    PubMed

    Mandy, F; Brando, B

    2001-05-01

    Absolute counting of cells or cell subsets has a number of significant clinical applications: monitoring the disease status of HIV-infected patients, enumerating residual white blood cells in leukoreduced blood products, and assessing immunodeficiency in a variety of situations. The single-platform method (flow cytometry alone) has emerged as the method of choice for absolute cell enumeration. This technology counts only the cells of interest in a precisely determined blood volume. Exact cell identification is accomplished by a logical electronic gating algorithm capable of identifying lineage-specific immunofluorescent markers. Exclusion of unwanted cells is automatic. This extensive and detailed unit presents protocols for both volumetric and flow-rate determination of residual white blood cells and of leukocyte subsets. PMID:18770719

  11. Absolute calibration for a broad range single shot electron spectrometer

    NASA Astrophysics Data System (ADS)

    Glinec, Y.; Faure, J.; Guemnie-Tafo, A.; Malka, V.; Monard, H.; Larbre, J. P.; De Waele, V.; Marignier, J. L.; Mostafavi, M.

    2006-10-01

    This article gives a detailed description of a single shot electron spectrometer which was used to characterize electron beams produced by laser-plasma interaction. Contrary to conventional electron sources, electron beams from laser-plasma accelerators can produce a broad range of energies. Therefore, diagnosing these electron spectra requires specific attention and experimental development. Here, we provide an absolute calibration of the Lanex Kodak Fine screen on a laser-triggered radio frequency picosecond electron accelerator. The efficiency of scintillating screens irradiated by electron beams has never been investigated so far. This absolute calibration is then compared to charge measurements from an integrating current transformer for quasimonoenergetic electron spectra from laser-plasma interaction.

  12. Absolute GNSS Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G.; Bilich, A.; Geoghegan, C.

    2012-04-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and outline future planned refinements to the system.

  13. Engine performance and the determination of absolute ceiling

    NASA Technical Reports Server (NTRS)

    Diehl, Walter S

    1924-01-01

    This report contains a brief study of the variation of engine power with temperature and pressure. The variation of propeller efficiency in standard atmosphere is obtained from the general efficiency curve which is developed in NACA report no. 168. The variation of both power available and power required are then determined and curves plotted, so that the absolute ceiling may be read directly from any known sea-level value of the ratio of power available to power required.

  14. On the Absolute Continuity of the Blackwell Measure

    NASA Astrophysics Data System (ADS)

    Bárány, Balázs; Kolossváry, István

    2015-04-01

    In 1957, Blackwell expressed the entropy of hidden Markov chains using a measure which can be characterised as an invariant measure for an iterated function system with place-dependent weights. This measure, called the Blackwell measure, plays a central role in understanding the entropy rate and other important characteristics of fundamental models in information theory. We show that for a suitable set of parameter values the Blackwell measure is absolutely continuous for almost every parameter in the case of binary symmetric channels.

  15. Electroweak absolute, meta-, and thermal stability in neutrino mass models

    NASA Astrophysics Data System (ADS)

    Lindner, Manfred; Patel, Hiren H.; Radovčić, Branimir

    2016-04-01

    We analyze the stability of the electroweak vacuum in neutrino mass models containing right-handed neutrinos or fermionic isotriplets. In addition to considering absolute stability, we place limits on the Yukawa couplings of new fermions based on metastability and thermal stability in the early Universe. Our results reveal that the upper limits on the neutrino Yukawa couplings can change significantly when the top quark mass is allowed to vary within the experimental range of uncertainty in its determination.

  16. Successful treatment of pyogenic granuloma with injection of absolute ethanol.

    PubMed

    Ichimiya, Makoto; Yoshikawa, Yoshiaki; Hamamoto, Yoshiaki; Muto, Masahiko

    2004-04-01

    Pyogenic granuloma (PG) is a small, almost always solitary, sessile or pedunculated, raspberry-like vegetation of exuberant granulation tissue. Conservative treatment by techniques such as cryosurgery, laser surgery, and electrodesiccation are usually adequate, whereas excisional treatment can often result in noticeable scars. We attempted a different approach using an injection of absolute ethanol in five patients with recurrence due to inadequate cryosurgery. This therapy is less invasive than surgical excision and appears to be an alternative therapy for PG. PMID:15187331

  17. Diagnostic Application of Absolute Neutron Activation Analysis in Hematology

    SciTech Connect

    Zamboni, C.B.; Oliveira, L.C.; Dalaqua, L. Jr.

    2004-10-03

    The Absolute Neutron Activation Analysis (ANAA) technique was used to determine element concentrations of Cl and Na in blood of healthy group (male and female blood donators), select from Blood Banks at Sao Paulo city, to provide information which can help in diagnosis of patients. This study permitted to perform a discussion about the advantages and limitations of using this nuclear methodology in hematological examinations.

  18. Absolute intensity of radiation emitted by uranium plasmas

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Lee, J. H.; Mcfarland, D. R.

    1975-01-01

    The absolute intensity of radiation emitted by fissioning and nonfissioning uranium plasmas in the spectral range from 350 nm to 1000 nm was measured. The plasma was produced in a plasma-focus apparatus and the plasma properties are simular to those anticipated for plasma-core nuclear reactors. The results are expected to contribute to the establishment of design criteria for the development of plasma-core reactors.

  19. THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET

    SciTech Connect

    Brown, Peter J.; Roming, Peter W. A.; Ciardullo, Robin; Gronwall, Caryl; Hoversten, Erik A.; Pritchard, Tyler; Milne, Peter; Bufano, Filomena; Mazzali, Paolo; Elias-Rosa, Nancy; Filippenko, Alexei V.; Li Weidong; Foley, Ryan J.; Hicken, Malcolm; Kirshner, Robert P.; Gehrels, Neil; Holland, Stephen T.; Immler, Stefan; Phillips, Mark M.; Still, Martin

    2010-10-01

    We examine the absolute magnitudes and light-curve shapes of 14 nearby (redshift z = 0.004-0.027) Type Ia supernovae (SNe Ia) observed in the ultraviolet (UV) with the Swift Ultraviolet/Optical Telescope. Colors and absolute magnitudes are calculated using both a standard Milky Way extinction law and one for the Large Magellanic Cloud that has been modified by circumstellar scattering. We find very different behavior in the near-UV filters (uvw1{sub rc} covering {approx}2600-3300 A after removing optical light, and u {approx} 3000-4000 A) compared to a mid-UV filter (uvm2 {approx}2000-2400 A). The uvw1{sub rc} - b colors show a scatter of {approx}0.3 mag while uvm2-b scatters by nearly 0.9 mag. Similarly, while the scatter in colors between neighboring filters is small in the optical and somewhat larger in the near-UV, the large scatter in the uvm2 - uvw1 colors implies significantly larger spectral variability below 2600 A. We find that in the near-UV the absolute magnitudes at peak brightness of normal SNe Ia in our sample are correlated with the optical decay rate with a scatter of 0.4 mag, comparable to that found for the optical in our sample. However, in the mid-UV the scatter is larger, {approx}1 mag, possibly indicating differences in metallicity. We find no strong correlation between either the UV light-curve shapes or the UV colors and the UV absolute magnitudes. With larger samples, the UV luminosity might be useful as an additional constraint to help determine distance, extinction, and metallicity in order to improve the utility of SNe Ia as standardized candles.

  20. Absolute partial decay branching-ratios in 16O

    NASA Astrophysics Data System (ADS)

    Wheldon, C.; Ashwood, N. I.; Barr, M.; Curtis, N.; Freer, M.; Kokalova, Tz; Malcolm, J. D.; Spencer, S. J.; Ziman, V. A.; Faestermann, Th; Krücken, R.; Wirth, H.-F.; Hertenberger, R.; Lutter, R.; Bergmaier, A.

    2013-04-01

    The a-transfer reaction 126C(63Li, d)168O* has been performed at a 6Li bombarding energy of 42 MeV to populate excited states in 13C and 16O. Absolute branching ratios have been unambiguously determined for states in the excitation energy range 13.85 to 15.87 MeV and reduced widths are extracted.

  1. The Electromotive Series and Other Non-Absolute Scales

    NASA Astrophysics Data System (ADS)

    Peckham, Gavin D.

    1998-01-01

    This article describes an analogy which may be used to illustrate the principles that underlie the establishment of non-absolute scales of measurements that are evaluated relative to a chosen reference point. The analogy is interwoven with the establishment of the electromotive series, but may be extended to other parameters such as the Celsius and Fahrenheit temperature scales, potential energies, formation and reaction enthalpies, etc.

  2. On the Absolutely Continuous Spectrum of Stark Operators

    NASA Astrophysics Data System (ADS)

    Perelman, Galina

    The stability of the absolutely continuous spectrum of the one-dimensional Stark operator under perturbations of the potential is discussed. The focus is on proving this stability under minimal assumptions on smoothness of the perturbation. A general criterion is presented together with some applications. These include the case of periodic perturbations where we show that any perturbation vL1()∩H-1/2() preserves the a.c. spectrum.

  3. Ag(I)-binding to phytochelatins.

    PubMed

    Mehra, R K; Tran, K; Scott, G W; Mulchandani, P; Saini, S S

    1996-02-01

    Phytochelatins (PCs) are glutathione-derived peptides with the general structure (gamma-Glu-Cys)nGly, where n varies from 2 to 11. A variety of metal ions such as Cu(II), Cd(II), Pb(II), Zn(II), and Ag(I) induce PC synthesis in plants and some yeasts. It has generally been assumed that the inducer metals also bind PCs. However, very little information is available on the binding of metals other than Cu(I) and Cd(II) to PCs. In this paper, we describe the Ag(I)-binding characteristics of PCs with the structure (gamma-Glu-Cys)2Gly, (gamma-Glu-Cys)3Gly, and (gamma-Glu-Cys)4Gly. The Ag(I)-binding stoichiometries of these three peptides were determined by (i) UV/VIS spectrophotometry, (ii) luminescence spectroscopy at 77 K, and (iii) reverse-phase HPLC. The three techniques yielded similar results. ApoPCs exhibit featureless absorption in the 220-340 nm range. The binding of Ag(I) to PCs induced the appearance of specific absorption shoulders. The titration end point was indicated by the flattening of the characteristic absorption shoulders. Similarly, luminescence at 77 K due to Ag(I)-thiolate clusters increased with the addition of graded Ag(I) equivalents. The luminescence declined when Ag(I) equivalents in excess of the saturating amounts were added to the peptides. At neutral pH, (gamma-Glu-Cys)2Gly, (gamma-Glu-Cys)3Gly, and (gamma-Glu-Cys)4Gly bind 1.0, 1.5, and 4.0 equivalents of Ag(I), respectively. The Ag(I)-binding capacity of (gamma-Glu-Cys)2Gly and (gamma-Glu-Cys)3Gly was increased at pH 5.0 and below so that Ag(I)/-SH ratio approached 1.0. A similar pH-dependent binding of Ag(I) to glutathione was also observed. The increased Ag(I)-binding to PCs at lower pH is of physiological significance as these peptides accumulate in acidic vacuoles. We also report lifetime data on Ag(I)-PCs. The relatively long decay-times (approximately 0.1-0.3 msec) accompanied with a large Stokes shift in the emission band are indicative of spin-forbidden phosphorescence. PMID

  4. Overspecification of color, pattern, and size: salience, absoluteness, and consistency

    PubMed Central

    Tarenskeen, Sammie; Broersma, Mirjam; Geurts, Bart

    2015-01-01

    The rates of overspecification of color, pattern, and size are compared, to investigate how salience and absoluteness contribute to the production of overspecification. Color and pattern are absolute and salient attributes, whereas size is relative and less salient. Additionally, a tendency toward consistent responses is assessed. Using a within-participants design, we find similar rates of color and pattern overspecification, which are both higher than the rate of size overspecification. Using a between-participants design, however, we find similar rates of pattern and size overspecification, which are both lower than the rate of color overspecification. This indicates that although many speakers are more likely to include color than pattern (probably because color is more salient), they may also treat pattern like color due to a tendency toward consistency. We find no increase in size overspecification when the salience of size is increased, suggesting that speakers are more likely to include absolute than relative attributes. However, we do find an increase in size overspecification when mentioning the attributes is triggered, which again shows that speakers tend to refer in a consistent manner, and that there are circumstances in which even size overspecification is frequently produced. PMID:26594190

  5. Measurement of Absolute Carbon Isotope Ratios: Mechanisms and Implications

    NASA Astrophysics Data System (ADS)

    Vogel, J. S.; Giacomo, J. A.; Dueker, S. R.

    2012-12-01

    An accelerator mass spectrometer (AMS) produced absolute isotope ratio measurements for 14C/13C as tested against >500 samples of NIST SRM-4990-C (OxII 14C standard) to an accuracy of 2.2±0.6‰ over a period of one year with measurements made to 1% counting statistics. The spectrometer is not maximized for 13C/12C, but measured ∂13C to 0.4±0.1‰ accuracy, with known methods for improvement. An AMS produces elemental anions from a sputter ion source and includes a charge-changing collision in a gas cell to isolate the rare 14C from the common isotopes and molecular isobars. Both these physical processes have been modeled to determine the parameters providing such absolute measures. Neutral resonant ionization in a cesium plasma produces mass-independent ionization, while velocity dependent charge-state distributions in gas collisions produce relative ion beam intensities that are linear in mass at specific collision energies. The mechanisms are not specific to carbon isotopes, but stand alone absolute IRMS (AIR-MS) instruments have not yet been made. Aside from the obvious applications in metrology, AIR-MS is particularly valuable in coupled separatory MS because no internal or external standards are required. Sample definition processes can be compared, even if no exact standard reference sample exists. Isotope dilution measurements do not require standards matching the dilution end-points and can be made over an extended, even extrapolated, range.

  6. Peripheral absolute threshold spectral sensitivity in retinitis pigmentosa.

    PubMed Central

    Massof, R W; Johnson, M A; Finkelstein, D

    1981-01-01

    Dark-adapted spectral sensitivities were measured in the peripheral retinas of 38 patients diagnosed as having typical retinitis pigmentosa (RP) and in 3 normal volunteers. The patients included those having autosomal dominant and autosomal recessive inheritance patterns. Results were analysed by comparisons with the CIE standard scotopic spectral visibility function and with Judd's modification of the photopic spectral visibility function, with consideration of contributions from changes in spectral transmission of preretinal media. The data show 3 general patterns. One group of patients had absolute threshold spectral sensitivities that were fit by Judd's photopic visibility curve. Absolute threshold spectral sensitivities for a second group of patients were fit by a normal scotopic spectral visibility curve. The third group of patients had absolute threshold spectral sensitivities that were fit by a combination of scotopic and photopic spectral visibility curves. The autosomal dominant and autosomal recessive modes of inheritance were represented in each group of patients. These data indicate that RP patients have normal rod and/or cone spectral sensitivities, and support the subclassification of patients described previously by Massof and Finkelstein. PMID:7459312

  7. Absolute orientations from EBSD measurements - as easy as it seems?

    NASA Astrophysics Data System (ADS)

    Kilian, Rüdiger; Bestmann, Michel; Heilbronner, Renée

    2016-04-01

    In structural geology, some problems can be addressed by inspecting the crystal orientation of grains in a rock. Deriving shear senses, kinematics of flow, information on deformation processes and recrystallization are some examples. Usually, oriented samples are taken in the field and, if inspected in an universal stage, the researcher has full control over the procedure and can make sure that the derived orientation is related to our geographic reference frame - that it is an absolute orientation. Nowadays, usage of electron backscatter diffraction (EBSD) has greatly improved the information in the derived data (fully crystal orientations, mappings, etc…), and the speed of data acquisition. However, this comes to the price of having to rely on the vendor supplied software and machine setup. Recent benchmarks and comparison of reference data revealed that for various EBSD setups around the world, the orientation data defaults to the wrong absolute orientation. The absolute orientation is not correctly derived - it commonly suffer a 180 degree rotation around the normal of the sample surface. In this contribution we will discuss the implications of such erroneous measurements and what kind of interpretations derived by orientation and texture data will be affected.

  8. Determination of absolute structure using Bayesian statistics on Bijvoet differences

    PubMed Central

    Hooft, Rob W. W.; Straver, Leo H.; Spek, Anthony L.

    2008-01-01

    A new probabilistic approach is introduced for the determination of the absolute structure of a compound which is known to be enantiopure based on Bijvoet-pair intensity differences. The new method provides relative probabilities for different models of the chiral composition of the structure. The outcome of this type of analysis can also be cast in the form of a new value, along with associated standard uncertainty, that resembles the value of the well known Flack x parameter. The standard uncertainty we obtain is often about half of the standard uncertainty in the value of the Flack x parameter. The proposed formalism is suited in particular to absolute configuration determination from diffraction data of biologically active (pharmaceutical) compounds where the strongest resonant scattering signal often comes from oxygen. It is shown that a reliable absolute configuration assignment in such cases can be made on the basis of Cu Kα data, and in some cases even with carefully measured Mo Kα data. PMID:19461838

  9. Son preference in Indian families: absolute versus relative wealth effects.

    PubMed

    Gaudin, Sylvestre

    2011-02-01

    The desire for male children is prevalent in India, where son preference has been shown to affect fertility behavior and intrahousehold allocation of resources. Economic theory predicts less gender discrimination in wealthier households, but demographers and sociologists have argued that wealth can exacerbate bias in the Indian context. I argue that these apparently conflicting theories can be reconciled and simultaneously tested if one considers that they are based on two different notions of wealth: one related to resource constraints (absolute wealth), and the other to notions of local status (relative wealth). Using cross-sectional data from the 1998-1999 and 2005-2006 National Family and Health Surveys, I construct measures of absolute and relative wealth by using principal components analysis. A series of statistical models of son preference is estimated by using multilevel methods. Results consistently show that higher absolute wealth is strongly associated with lower son preference, and the effect is 20%-40% stronger when the household's community-specific wealth score is included in the regression. Coefficients on relative wealth are positive and significant although lower in magnitude. Results are robust to using different samples, alternative groupings of households in local areas, different estimation methods, and alternative dependent variables. PMID:21302027

  10. Absolute Performance of AUSGeoid09 in Mountainous Regions

    NASA Astrophysics Data System (ADS)

    Sussanna, Vittorio; Janssen, Volker; Gibbings, Peter

    2014-09-01

    The Australian Height Datum (AHD) is the current national vertical datum for Australia, and AUSGeoid09 is the latest quasigeoid model used to compute (normal-orthometric)AHDheights fromGlobalNavigation Satellite System (GNSS) derived ellipsoidal heights. While previous studies have evaluated the AUSGeoid09 model across Australia, such studies have not focused on mountainous regions in particular. This paper investigates the performance of AUSGeoid09 in an absolute sense in the Mid Hunter and Snowy Mountains regions of New South Wales. Absolute (i.e. single point) comparisons were undertaken between AUSGeoid09-derived heights and published AHD heights. The performance of AUSGeoid09 was evaluated relative to its predecessor AUSGeoid98. In both study areas, an overall improvement is evident when applying AUSGeoid09 to compute AHD heights in an absolute sense. In the MidHunter, AUSGeoid09 provided a substantial improvement over its predecessor, clearly demonstrating the benefits of its new geometric component on GNSS-derived AHD height determination. In the Snowy Mountains, moderate improvement over AUSGeoid98 was evident. However, a slope was detected for AUSGeoid09 residuals, and it appears that the geometric component may have overcompensated for sea surface topography in this area. While this appraisal of AUSGeoid09 performance in mountainous regions is encouraging, it has been shown that some discrepancies still remain between AUSGeoid09-derived heights and AHD. Eventually, a new vertical datum will be necessary to ensure homogeneity across Australia.

  11. Neutron activation analysis of certified samples by the absolute method

    NASA Astrophysics Data System (ADS)

    Kadem, F.; Belouadah, N.; Idiri, Z.

    2015-07-01

    The nuclear reactions analysis technique is mainly based on the relative method or the use of activation cross sections. In order to validate nuclear data for the calculated cross section evaluated from systematic studies, we used the neutron activation analysis technique (NAA) to determine the various constituent concentrations of certified samples for animal blood, milk and hay. In this analysis, the absolute method is used. The neutron activation technique involves irradiating the sample and subsequently performing a measurement of the activity of the sample. The fundamental equation of the activation connects several physical parameters including the cross section that is essential for the quantitative determination of the different elements composing the sample without resorting to the use of standard sample. Called the absolute method, it allows a measurement as accurate as the relative method. The results obtained by the absolute method showed that the values are as precise as the relative method requiring the use of standard sample for each element to be quantified.

  12. Absolute length measurement using manually decided stereo correspondence for endoscopy

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Koishi, T.; Nakaguchi, T.; Tsumura, N.; Miyake, Y.

    2009-02-01

    In recent years, various kinds of endoscope have been developed and widely used to endoscopic biopsy, endoscopic operation and endoscopy. The size of the inflammatory part is important to determine a method of medical treatment. However, it is not easy to measure absolute size of inflammatory part such as ulcer, cancer and polyp from the endoscopic image. Therefore, it is required measuring the size of those part in endoscopy. In this paper, we propose a new method to measure the absolute length in a straight line between arbitrary two points based on the photogrammetry using endoscope with magnetic tracking sensor which gives camera position and angle. In this method, the stereo-corresponding points between two endoscopic images are determined by the endoscopist without any apparatus of projection and calculation to find the stereo correspondences, then the absolute length can be calculated on the basis of the photogrammetry. The evaluation experiment using a checkerboard showed that the errors of the measurements are less than 2% of the target length when the baseline is sufficiently-long.

  13. Absolute surface reconstruction by slope metrology and photogrammetry

    NASA Astrophysics Data System (ADS)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  14. Bio-Inspired Stretchable Absolute Pressure Sensor Network

    PubMed Central

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X.

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  15. Bio-Inspired Stretchable Absolute Pressure Sensor Network.

    PubMed

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4'' wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  16. Absolute Timing Calibration of the USA Experiment Using Pulsar Observations

    NASA Astrophysics Data System (ADS)

    Ray, P. S.; Wood, K. S.; Wolff, M. T.; Lovellette, M. N.; Sheikh, S.; Moon, D.-S.; Eikenberry, S. S.; Roberts, M.; Lyne, A.; Jordon, C.; Bloom, E. D.; Tournear, D.; Saz Parkinson, P.; Reilly, K.

    2003-03-01

    We update the status of the absolute time calibration of the USA Experiment as determined by observations of X-ray emitting rotation-powered pulsars. The brightest such source is the Crab Pulsar and we have obtained observations of the Crab at radio, IR, optical, and X-ray wavelengths. We directly compare arrival time determinations for 2--10 keV X-ray observations made contemporaneously with the PCA on the Rossi X-ray Timing Explorer and the USA Experiment on ARGOS. These two X-ray measurements employ very different means of measuring time and satellite position and thus have different systematic error budgets. The comparison with other wavelengths requires additional steps such as dispersion measure corrections and a precise definition of the ``peak'' of the light curve since the light curve shape varies with observing wavelength. We will describe each of these effects and quantify the magnitude of the systematic error that each may contribute. We will also include time comparison results for other pulsars, such as PSR B1509-58 and PSR B1821-24. Once the absolute time calibrations are well understood, comparing absolute arrival times at multiple energies can provide clues to the magnetospheric structure and emission region geometry. Basic research on X-ray Astronomy at NRL is funded by NRL/ONR.

  17. Absolute photoionization cross-section of the propargyl radical

    SciTech Connect

    Savee, John D.; Welz, Oliver; Taatjes, Craig A.; Osborn, David L.; Soorkia, Satchin; Selby, Talitha M.

    2012-04-07

    Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C{sub 3}H{sub 3}) radical, {sigma}{sub propargyl}{sup ion}(E), relative to the known absolute cross-section of the methyl (CH{sub 3}) radical. We generated a stoichiometric 1:1 ratio of C{sub 3}H{sub 3} : CH{sub 3} from 193 nm photolysis of two different C{sub 4}H{sub 6} isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(26.1{+-}4.2) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(23.4{+-}3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(23.6{+-}3.6) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(25.1{+-}3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations.

  18. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.; Mehdipour Moghaddam, M. J.; Sadeghi, A.

    2015-02-01

    Silver carbonate and silver nanoparticles (NPs) over of stabilizer montmorillonite (MMT) have been synthesized in aqueous and polyol solvent, respectively. Dispersions of silver nanoparticles have been prepared by the reduction of silver nitrate over of MMT in presence and absence of Na2CO3 compound in ethylene glycol. It was observed that montmorillonite was capable of stabilizing formed Ag nanoparticles through the reduction of Ag+ ions in ethylene glycol. Na2CO3 was used as carbonate source in synthesis of Ag2CO3 NPs in water solvent and also for controlling of Ag nanoparticles size in ethylene glycol medium. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The TEM images showed that Ag NPs size in presence Na2CO3 salts was smaller than without that. The results indicated intercalation of Ag and Ag2CO3 nanoparticles into the montmorillonite clay layers. The diffuse reflectance spectra exhibited a strong surface plasmon resonance (SPR) adsorption peak in the visible region, resulting from Ag nanoparticles. The antibacterial testing results showed that the Ag2CO3-MMT nanocomposite exhibited an antibacterial activity higher than Ag-MMT sample against Escherichia coli.

  19. Spectroscopic Study on Eu3+ Doped Borate Glasses Containing Ag Nanoparticles and Ag Aggregates.

    PubMed

    Fu, Shaobo; Zheng, Hui; Zhang, Jinsu; Li, Xiangping; Sun, Jiashi; Hua, Ruinian; Dong, Bin; Xia, Haiping; Chen, Baojiu

    2015-01-01

    Transparent Eu(3+)-doped borate glasses containing Ag nanoparticles and Ag aggregates with composition (40 - x) CaO-59.5B2O3-0.5Eu2O3-xAgNO3 were prepared by a simple one-step melt-quenching technique. The X-ray diffraction (XRD) patterns of the glasses reveal amorphous structural properties and no diffraction peaks belonging to metal Ag particles. Ag particles and Ag aggregates were observed from the absorption spectra. Effective energy transfers from the Ag aggregates to the Eu3+ ions were observed in the excitation spectra from monitoring the intrinsic emission of Eu3+x .5D0 --> 7F2. The glasses with higher Ag content can be effectively excited by light in a wide wavelength region, indicating that these glasses have potential application in the solid state lighting driven by semiconductor light emitting diodes (LEDs). The emission spectra of the samples with higher Ag contents exhibit plenteous spectral components covering the full visible region from violet to red, thus indicating that these glass materials possess an excellent and tunable color rendering index. The color coordinates for all the glass samples were calculated by using the intensity-corrected emission spectra and the standard data issued by the CIE (Commission International de l' Eclairage) in 1931. It was found that the color coordinates for most samples with higher Ag contents fall into the white region in the color space. PMID:26328363

  20. The AGS with four helical magnets

    SciTech Connect

    Tsoupas, N.; Huang, H.; MacKay, W.W.; Roser, T.; Trbojevic, D.

    2010-02-25

    The idea of using multiple partial helical magnets was applied successfully to the AGS synchrotron, to preserve the proton beam polarization. In this paper we explore in details the idea of using four helical magnets placed symmetrically in the AGS ring. This modification provides many advantages over the present setup of the AGS that uses two partial helical magnets. First, it provides a larger 'spin tune gap' for the placement of the vertical betatron tune of the AGS during acceleration, second, the vertical spin direction during the beam injection and extraction is closer to vertical, third, the symmetric placement of the snakes allows for a better control of the AGS optics, and for reduced values of the beta and eta functions, especially near injection, fourth, the optical properties of the helical magnets also favor the placement of the horizontal betatron tune in the 'spin tune gap', thus eliminating the horizontal spin resonances. In this paper we provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and we compare these results with the present setup of the AGS that uses two partial helical magnets.

  1. Enhancement of the visible light activity and stability of Ag2CO3 by formation of AgI/Ag2CO3 heterojunction

    NASA Astrophysics Data System (ADS)

    Yu, Changlin; Wei, Longfu; Zhou, Wanqin; Chen, Jianchai; Fan, Qizhe; Liu, Hong

    2014-11-01

    An insurmountable problem for silver-based semiconductor photocatalysts is their poor stability. Here, at room temperature, AgI with different concentrations (5%, 10%, 20% and 30%) were coupled into Ag2CO3, producing a series of novel AgI/Ag2CO3 composite photocatalysts. The effects of AgI addition on the Ag2CO3 catalyst for photocatalytic degradation of methyl orange (MO) under visible light irradiation have been investigated. Some physicochemical technologies like N2 physical adsorption/desorption, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS) were applied to characterize these products. Results show that the photocatalytic degradation activity of AgI/Ag2CO3 photocatalyst is much higher than that of pure AgI and Ag2CO3. With the optimal content of AgI (20 wt%), the AgI/Ag2CO3 exhibits the highest photocatalytic degradation efficiency. Its first order reaction rate constant (0.54 h-1) is 20 times of that of AgI (0.026 h-1) and 3.6 times of that of Ag2CO3 (0.15 h-1). The characterizations and theory calculation show that AgI and Ag2CO3 have suitably matched band gap structures. The formation of AgI/Ag2CO3 heterojunction with intimate interface could effectively increase the separation efficiency of the e-/h+ pairs and promote the production of •OH and O2•- radicals, which brings about the fast degradation rate of the dye and an increase in photocatalytic stability.

  2. Demonstration and partial characterization of 22-nm HBsAg and Dane particles of subtype HBsAg/ady.

    PubMed

    Hess, G; Shih, J W; Arnold, W; Gerin, J L; zum Büschenfelde, K H

    1979-09-01

    The present paper describes the demonstration of d, y, w, and r HBsAg determinants in one serum. It was shown that there are two populations of HBsAg particles: HBsAg/ad and HBsAg/ady. All complete Dane particles were of subtype HBsAg/ady. Further characterization of HBsAg/ady particles did not reveal morphologic differences when they were compared with HBsAg/ad and HBsAg/ay particles. An HBsAg/ady phenotype may be the result of a double infection with hepatitis B viruses or exchanges of DNA sequences that determine HBsAg/ay and HBsAg/ad to form a new genotype. PMID:89163

  3. Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Li, Tao; Chen, Qianqian; Gao, Jiabing; Fan, Bingbing; Li, Jian; Li, Xinjian; Zhang, Rui; Sun, Jing; Gao, Lian

    2012-08-01

    The hierarchical photocatalysts of Ag/AgCl@plate-WO3 have been synthesized by anchoring Ag/AgCl nanocrystals on the surfaces of single-crystalline WO3 nanoplates that were obtained via an intercalation and topochemical approach. The heterogeneous precipitation process of the PVP-Ag+-WO3 suspensions with a Cl- solution added drop-wise was developed to synthesize AgCl@WO3 composites, which were then photoreduced to form Ag/AgCl@WO3 nanostructures in situ. WO3 nanocrystals with various shapes (i.e., nanoplates, nanorods, and nanoparticles) were used as the substrates to synthesize Ag/AgCl@WO3 photocatalysts, and the effects of the WO3 contents and photoreduction times on their visible-light-driven photocatalytic performance were investigated. The techniques of TEM, SEM, XPS, EDS, XRD, N2 adsorption-desorption and UV-vis DR spectra were used to characterize the compositions, phases and microstructures of the samples. The RhB aqueous solutions were used as the model system to estimate the photocatalytic performance of the as-obtained Ag/AgCl@WO3 nanostructures under visible light (λ >= 420 nm) and sunlight. The results indicated that the hierarchical Ag/AgCl@plate-WO3 photocatalyst has a higher photodegradation rate than Ag/AgCl, AgCl, AgCl@WO3 and TiO2 (P25). The contents and morphologies of the WO3 substrates in the Ag/AgCl@plate-WO3 photocatalysts have important effects on their photocatalytic performance. The related mechanisms for the enhancement in visible-light-driven photodegradation of RhB molecules were analyzed.The hierarchical photocatalysts of Ag/AgCl@plate-WO3 have been synthesized by anchoring Ag/AgCl nanocrystals on the surfaces of single-crystalline WO3 nanoplates that were obtained via an intercalation and topochemical approach. The heterogeneous precipitation process of the PVP-Ag+-WO3 suspensions with a Cl- solution added drop-wise was developed to synthesize AgCl@WO3 composites, which were then photoreduced to form Ag/AgCl@WO3 nanostructures in

  4. Agent planning in AgScala

    NASA Astrophysics Data System (ADS)

    Tošić, Saša; Mitrović, Dejan; Ivanović, Mirjana

    2013-10-01

    Agent-oriented programming languages are designed to simplify the development of software agents, especially those that exhibit complex, intelligent behavior. This paper presents recent improvements of AgScala, an agent-oriented programming language based on Scala. AgScala includes declarative constructs for managing beliefs, actions and goals of intelligent agents. Combined with object-oriented and functional programming paradigms offered by Scala, it aims to be an efficient framework for developing both purely reactive, and more complex, deliberate agents. Instead of the Prolog back-end used initially, the new version of AgScala relies on Agent Planning Package, a more advanced system for automated planning and reasoning.

  5. A FLYING WIRE SYSTEM IN THE AGS.

    SciTech Connect

    HUANG,H.; BUXTON,W.; MAHLER,G.; MARUSIC,A.; ROSER,T.; SMITH,G.; SYPHERS,M.; WILLIAMS,N.; WITKOVER,R.

    1999-03-29

    As the AGS prepares to serve as the injector for RHIC, monitoring and control of the beam transverse emittance become a major and important topic. Before the installation of the flying wire system, the emittance was measured with ionization profile monitors in the AGS, which require correction for space charge effects. It is desirable to have a second means of measuring profile that is less depend on intensity. A flying wire system has been installed in the AGS recently to perform this task. This paper discusses the hardware and software setup and the capabilities of the system.

  6. Ag induced enhancement of perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Shern, C. S.; Su, C. W.; Wu, Y. E.; Chen, S. H.

    2001-12-01

    Some interesting magnetic properties were observed after Ag ultrathin films were deposited on Co/Pt(1 1 1). The spin reversal of Co can be prevented when Ag atoms cap Co on Pt(1 1 1). The out-of-plane magnetization has a significant enhancement after annealing at high temperature. The Curie temperature increases from 625 to 710 K as 1 ML of Ag is deposited on 1 ML Co/Pt(1 1 1). The change of surface anisotropy and the formation of a Co-Pt alloy are possible mechanisms for the magnetization enhancement.

  7. Extranuclear dynamics of 111Ag(→111Cd) doped in AgI nanoparticles

    NASA Astrophysics Data System (ADS)

    Sato, W.; Mizuuchi, R.; Irioka, N.; Komatsuda, S.; Kawata, S.; Taoka, A.; Ohkubo, Y.

    2014-08-01

    Dynamic behavior of the extranuclear field relative to the 111Ag(→111Cd) probe nucleus introduced in a superionic conductor silver iodide (AgI) was investigated by means of the time-differential perturbed angular correlation technique. For poly-N-vinyl-2-pyrrolidone (PVP)-coated AgI nanoparticles, we observed nuclear spin relaxation of the probe at room temperature. This result signifies that Ag+ ions in the polymer-coated sample make hopping motion from site to site at this low temperature. The activation energy for the dynamic motion was successfully estimated to be 46(10) meV. The first atomic-level observation of the temperature-dependent dynamic behavior of Ag+ ions in the polymer-coated AgI is reported.

  8. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms

    NASA Astrophysics Data System (ADS)

    Kumaran, R.; Alagar, M.; Dinesh Kumar, S.; Subramanian, V.; Dinakaran, K.

    2015-09-01

    We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDF matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.

  9. Highly luminescent Ag+ nanoclusters for Hg2+ ion detection

    NASA Astrophysics Data System (ADS)

    Yuan, Xun; Yeow, Teik Jin; Zhang, Qingbo; Lee, Jim Yang; Xie, Jianping

    2012-03-01

    A simple, low-cost and label-free Hg2+ ion sensor has been developed by using novel luminescent Ag+ nanoclusters (NCs) with an excellent optical property (quantum yield = 15%), an ultra-high ratio of active Ag+ species in the NC surface (~100%), and an ultra-short diffusion path length of Hg2+ ions to access the NC surface (~0.5 nm).A simple, low-cost and label-free Hg2+ ion sensor has been developed by using novel luminescent Ag+ nanoclusters (NCs) with an excellent optical property (quantum yield = 15%), an ultra-high ratio of active Ag+ species in the NC surface (~100%), and an ultra-short diffusion path length of Hg2+ ions to access the NC surface (~0.5 nm). Electronic supplementary information (ESI) available: Experimental details of the synthesis of b-Ag NCs; time-resolved evolution of photoemission spectra of the b-Ag NCs in toluene; photoexcitation spectrum of the b-Ag NCs in toluene; comparison of the luminescence of b-Ag NCs at different temperatures (4 and 25 °C) TEM image of the b-Ag NCs in toluene; optical properties of r-Ag NCs obtained by the reduction of b-Ag NCs in toluene; XPS spectra of b-Ag NCs, thiolate-Ag+ complexes, r-Ag NCs, and large Ag nanoparticles; TEM image of the Hg2+-Ag NCs; photostability of the b-Ag NCs; tolerance studies of the b-Ag NCs over other metal ions; tolerance studies of the b-Ag NCs over common thiol ligands (e.g., GSH) and anions; relative luminescence of the b-Ag NCs in different real water samples in the presence of Hg2+ ions; and relative luminescence of the b-Ag NCs in NaCl solution with different concentrations. See DOI: 10.1039/c2nr11999d

  10. Facile synthesis of S-Ag nanocomposites and Ag2S short nanorods by the interaction of sulfur with AgNO3 in PEG400.

    PubMed

    Zhang, Yan-Li; Xie, Xin-Yuan; Liang, Ming; Xie, Shu-Ming; Chen, Jie-Mei; Zheng, Wen-Jie

    2016-06-01

    A facile, eco-friendly and inexpensive method to prepare Ag2S short nanorods and S-Ag nanocomposites using sublimed sulfur, AgNO3, PVP and PEG400 was studied. According to x-ray diffraction and scanning electron microscopy of the Ag2S, the products are highly crystalline and pure Ag2S nanorods with diameters of 70-160 nm and lengths of 200-360 nm. X-ray diffraction of the S-Ag nanocomposites shows that we obtained cubic Ag and S nanoparticles. Transmission electron microscopy shows that the molar ratio of PVP to Ag(+) plays an important role in controlling the size and morphology of the S-Ag nanocomposites. When the molar ratio of PVP to Ag(+) was 10:1, smaller sizes, better dispersibility and narrower distribution of S-Ag nanocomposites with diameters of 10-40 nm were obtained. The formation mechanism of the S-Ag nanocomposites was studied by designing a series of experiments using ultraviolet-visible measurement, and it was found that S nanoparticles are produced first and act as seed crystals; then Ag(+) becomes Ag nanocrystals on the surfaces of the S nanoparticles by the reduction of PVP. PEG400 acts as a catalyzer, accelerating the reaction rate, and protects the S-Ag nanocomposites from reacting to produce Ag2S. The antimicrobial experiments show that the S-Ag nanocomposites have greater antimicrobial activity on Staphylococcus aureus, Aspergillus niger and blue mold than Ag nanoparticles. PMID:27109417

  11. Control and performance of the AGS and AGS Booster Main Magnet Power Supplies

    SciTech Connect

    Reece, R.K.; Casella, R.; Culwick, B.; Geller, J.; Marneris, I.; Sandberg, J.; Soukas, A.; Zhang, S.Y.

    1993-06-01

    Techniques for precision control of the main magnet power supplies for the AGS and AGS Booster synchrotron will be discussed. Both synchrotrons are designed to operate in a Pulse-to-Pulse Modulation (PPM) environment with a Supercycle Generator defining and distributing global timing events for the AGS Facility. Details of modelling, real-time feedback and feedforward systems, generation and distribution of real time field data, operational parameters and an overview of performance for both machines are included.

  12. Control and performance of the AGS and AGS Booster Main Magnet Power Supplies

    SciTech Connect

    Reece, R.K.; Casella, R.; Culwick, B.; Geller, J.; Marneris, I.; Sandberg, J.; Soukas, A.; Zhang, S.Y.

    1993-01-01

    Techniques for precision control of the main magnet power supplies for the AGS and AGS Booster synchrotron will be discussed. Both synchrotrons are designed to operate in a Pulse-to-Pulse Modulation (PPM) environment with a Supercycle Generator defining and distributing global timing events for the AGS Facility. Details of modelling, real-time feedback and feedforward systems, generation and distribution of real time field data, operational parameters and an overview of performance for both machines are included.

  13. Redetermination of AgPO(3).

    PubMed

    Terebilenko, Katherina V; Zatovsky, Igor V; Ogorodnyk, Ivan V; Baumer, Vyacheslav N; Slobodyanik, Nikolay S

    2011-01-01

    Single crystals of silver(I) polyphosphate(V), AgPO(3), were prepared via a phospho-ric acid melt method using a solution of Ag(3)PO(4) in H(3)PO(4). In comparison with the previous study based on single-crystal Weissenberg photographs [Jost (1961 ▶). Acta Cryst. 14, 779-784], the results were mainly confirmed, but with much higher precision and with all displacement parameters refined anisotropically. The structure is built up from two types of distorted edge- and corner-sharing [AgO(5)] polyhedra, giving rise to multidirectional ribbons, and from two types of PO(4) tetra-hedra linked into meandering chains (PO(3))(n) spreading parallel to the b axis with a repeat unit of four tetra-hedra. The calculated bond-valence sum value of one of the two Ag(I) ions indicates a significant strain of the structure. PMID:21522230

  14. Nanoporous Ag prepared from the melt-spun Cu-Ag alloys

    NASA Astrophysics Data System (ADS)

    Li, Guijing; Song, Xiaoping; Sun, Zhanbo; Yang, Shengchun; Ding, Bingjun; Yang, Sen; Yang, Zhimao; Wang, Fei

    2011-07-01

    Nanoporous Ag ribbons with different morphology and porosity were achieved by the electrochemical corrosion of the melt-spun Cu-Ag alloys. The Cu-rich phase in the alloys was removed, resulting in the formation of the nanopores distributed across the whole ribbon. It is found that the structures, morphology and porosity of the nanoporous Ag ribbons were dependent on the microstructures of the parent alloys. The most of ligaments presented a rod-like shape due to the formation of pseudoeutectic microstructure in the melt-spun Cu 55Ag 45 and Cu 70Ag 30 alloys. For nanoporous Ag prepared from Cu 85Ag 15 alloys, the ligaments were camber-like because of the appearance of the divorced microstructures. Especially, a novel bamboo-grove-like structure could be observed at the cross-section of the nanoporous Ag ribbons. The experiment reveals that nanoporous Ag ribbons exhibited excellent enhancement of surface-enhanced Raman scattering (SERS) effect, but a slight difference existed due to the discrepancy of their morphology.

  15. Surface migration and volume diffusion in the AgGaSe2-Ag2Se system

    NASA Technical Reports Server (NTRS)

    Kim, N.-H.; Feigelson, R. S.; Route, R. K.

    1992-01-01

    Surface migration and volume diffusion in the Ag2Se-AgGaSe2 system were investigated using reactive diffusion couples which were analyzed by X-ray diffraction, optical microscopy, and electron probe microanalysis. The surface diffusivities of all mobile species are found to be much larger than volume diffusivities. The results of the study suggest that Se moves together with Ag and Ga to maintain binary (Ag2Se and Ga2Se3) stoichiometry and electroneutrality. The dominance of surface migration kinetics can account for the uniform annihilation of second-phase precipitates during heat treatments.

  16. A surface plasmon model for laser ablation of Ag sup + ions from a roughened Ag surface

    SciTech Connect

    Ritchie, R.H. Tennessee Univ., Knoxville, TN . Dept. of Physics); Manson, J.R. . Dept. of Physics); Echenique, P.M. . Faculdad de Quimica)

    1991-01-01

    Experimental work by Shea and Compton suggests that Ag{sup +} ions emitted from a roughened Ag surface irradiated by a nanosecond or picosecond laser beam may absorb the full energy of the Ag surface plasmon. We have modeled this process under the assumption that it proceeds through an inverse bremsstrahlung-type absorption of the SP quantum by Ag{sup +} ion which also undergoes a small-impact parameter collision with another ion or atom in the vicinity of the surface. We give a quantitative estimate of the absorption probability and find reasonable agreement with the Shea-Compton results. 8 refs., 2 figs.

  17. Mechanical and electrical properties of ZnO/Ag nanocomposites.

    SciTech Connect

    Hayashi, Y.

    1998-08-27

    Effects of Ag particle dispersions on microstructural development and some properties were investigated for ZnO/Ag nanocomposites. They were fabricated by Pulse Electric Current Sintering (PECS) Process to achieve finer and densified microstructure. ZnO/Ag nanocomposites with novel microstructure which were prepared by a reduction process using Ag{sub 2}O fine powders were compared with microcomposites prepared by mixing of Ag and ZnO powders. SEM observation indicated that fine Ag particles were homogeneously dispersed within the ZnO matrix grains and at the grain boundaries for ZnO/Ag nanocomposites prepared by the reduction process using Ag{sub 2}O fine powder. Hardness and fracture toughness increased with increasing the Ag volume fraction. Linear resistivity was decreased with increasing Ag volume fraction. However, the mechanical and electrical properties appeared to the significantly different for composites prepared by two different powder processes.

  18. GNSS Absolute Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Bilich, A. L.; Mader, G. L.

    2009-12-01

    GNSS applications now routinely demand measurement and instrument biases at the centimeter to millimeter level in order to achieve the high precision and accuracy required for geodetic position solutions. One of these biases is the antenna phase center, the point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. As baseline lengths increase, or with antenna mixing, phase center effects on carrier phase data become more pronounced. To meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) has constructed an absolute antenna calibration facility which uses field measurements and actual GNSS satellite signals to determine antenna phase center patterns. A pan/tilt motor changes the orientation of the antenna under test; signals are received at a wide range of angles, allowing computation of a robust phase center pattern. Ultimately, this facility will be used to measure antenna phase center variations of commonly-used geodetic GNSS antennas, as well as antennas submitted by users. The phase center patterns will be publicly available and disseminated in both the ANTEX and NGS formats. We provide information on the observation models and strategy currently used to generate NGS absolute calibrations, and propose some future refinements. We discuss the multipath mitigation strategy currently in use, and provide examples of antenna calibrations from the NGS facility. These examples are compared to the NGS relative calibrations as well as absolute calibrations generated by other organizations.

  19. Morphology and Absolute Magnitudes of the SDSS DR7 QSOs

    NASA Astrophysics Data System (ADS)

    Coelho, B.; Andrei, A. H.; Antón, S.

    2014-10-01

    The ESA mission Gaia will furnish a complete census of the Milky Way, delivering astrometrics, dynamics, and astrophysics information for 1 billion stars. Operating in all-sky repeated survey mode, Gaia will also provide measurements of extra-galactic objects. Among the later there will be at least 500,000 QSOs that will be used to build the reference frame upon which the several independent observations will be combined and interpreted. Not all the QSOs are equally suited to fulfill this role of fundamental, fiducial grid-points. Brightness, morphology, and variability define the astrometric error budget for each object. We made use of 3 morphological parameters based on the PSF sharpness, circularity and gaussianity, which enable us to distinguish the "real point-like" QSOs. These parameters are being explored on the spectroscopically certified QSOs of the SDSS DR7, to compare the performance against other morphology classification schemes, as well as to derive properties of the host galaxy. We present a new method, based on the Gaia quasar database, to derive absolute magnitudes, on the SDSS filters domain. The method can be extrapolated all over the optical window, including the Gaia filters. We discuss colors derived from SDSS apparent magnitudes and colors based on absolute magnitudes that we obtained tanking into account corrections for dust extinction, either intergalactic or from the QSO host, and for the Lyman α forest. In the future we want to further discuss properties of the host galaxies, comparing for e.g. the obtained morphological classification with the color, the apparent and absolute magnitudes, and the redshift distributions.

  20. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams.

    PubMed

    Popescu, I A; Shaw, C P; Zavgorodni, S F; Beckham, W A

    2005-07-21

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 x 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 x 10(13) +/- 1.0% electrons incident on the target and a total dose of 20.87 cGy +/- 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations. PMID:16177516

  1. Absolute versus relative ascertainment of pedophilia in men.

    PubMed

    Blanchard, Ray; Kuban, Michael E; Blak, Thomas; Cantor, James M; Klassen, Philip E; Dickey, Robert

    2009-12-01

    There are at least two different criteria for assessing pedophilia in men: absolute ascertainment (their sexual interest in children is intense) and relative ascertainment (their sexual interest in children is greater than their interest in adults). The American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders, 3rd edition (DSM-III) used relative ascertainment in its diagnostic criteria for pedophilia; this was abandoned and replaced by absolute ascertainment in the DSM-III-R and all subsequent editions. The present study was conducted to demonstrate the continuing need for relative ascertainment, particularly in the laboratory assessment of pedophilia. A total of 402 heterosexual men were selected from a database of patients referred to a specialty clinic. These had undergone phallometric testing, a psychophysiological procedure in which their penile blood volume was monitored while they were presented with a standardized set of laboratory stimuli depicting male and female children, pubescents, and adults.The 130 men selected for the Teleiophilic Profile group responded substantially to prepubescent girls but even more to adult women; the 272 men selected for the Pedophilic Profile group responded weakly to prepubescent girls but even less to adult women. In terms of absolute magnitude, every patient in the Pedophilic Profile group had a lesser penile response to prepubescent girls than every patient in the Teleiophilic Profile group. Nevertheless, the Pedophilic Profile group had a significantly greater number of known sexual offenses against prepubescent girls, indicating that they contained a higher proportion of true pedophiles. These results dramatically demonstrate the utility-or perhaps necessity-of relative ascertainment in the laboratory assessment of erotic age-preference. PMID:19901237

  2. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams

    NASA Astrophysics Data System (ADS)

    Popescu, I. A.; Shaw, C. P.; Zavgorodni, S. F.; Beckham, W. A.

    2005-07-01

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 × 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 × 1013 ± 1.0% electrons incident on the target and a total dose of 20.87 cGy ± 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.

  3. Absolute Efficiency Calibration of a Beta-Gamma Detector

    SciTech Connect

    Cooper, Matthew W.; Ely, James H.; Haas, Derek A.; Hayes, James C.; McIntyre, Justin I.; Lidey, Lance S.; Schrom, Brian T.

    2013-04-10

    Abstract- Identification and quantification of nuclear events such as the Fukushima reactor failure and nuclear explosions rely heavily on the accurate measurement of radioxenon releases. One radioxenon detection method depends on detecting beta-gamma coincident events paired with a stable xenon measurement to determine the concentration of a plume. Like all measurements, the beta-gamma method relies on knowing the detection efficiency for each isotope measured. Several methods are commonly used to characterize the detection efficiency for a beta-gamma detector. The most common method is using a NIST certified sealed source to determine the efficiency. A second method determines the detection efficiencies relative to an already characterized detector. Finally, a potentially more accurate method is to use the expected sample to perform an absolute efficiency calibration; in the case of a beta-gamma detector, this relies on radioxenon gas samples. The complication of the first method is it focuses only on the gamma detectors and does not offer a solution for determining the beta efficiency. The second method listed is not similarly constrained, however it relies on another detector to have a well-known efficiency calibration. The final method using actual radioxenon samples to make an absolute efficiency determination is the most desirable, but until recently it was not possible to produce all four isotopically pure radioxenon. The production, by University of Texas (UT), of isotopically pure radioxenon has allowed the beta-gamma detectors to be calibrated using the absolute efficiency method. The first four radioxenon isotope calibration will be discussed is this paper.

  4. Plasmonic TiO2/AgBr/Ag ternary composite nanosphere with heterojunction structure for advanced visible light photocatalyst

    NASA Astrophysics Data System (ADS)

    Dai, Kai; Li, Dongpei; Lu, Luhua; Liu, Qi; Liang, Changhao; Lv, Jiali; Zhu, Guangping

    2014-09-01

    In this work, TiO2/AgBr/Ag ternary composite nanosphere photocatalyst has been synthesized by in situ deposition of AgBr onto hollow spherical TiO2 template and followed by sun light reduction of AgBr into AgBr/Ag. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images have shown that the diameter of hollow TiO2 nanospheres is 250-350 nm and AgBr/Ag nanoparticles are well dispersed on the outer surface of TiO2 nanosphere. UV-vis spectrum analysis has shown largely improved visible light absorption of this ternary composite, in comparison to pure TiO2 and AgBr. The building-in AgBr/Ag, TiO2/AgBr and TiO2/Ag junctions within the ternary composite enhanced the visible light absorption because of plasmonic resonance and narrow bandgap. The pseudo-first-order rate constant kapp of the TiO2/AgBr/Ag ternary composite for methylene blue photodegradation displays 24.5 times and 3.3 times than the pure TiO2 nanosphere and AgBr/Ag nanoparticles, respectively. Furthermore, the stability of TiO2/AgBr/Ag ternary composite is characterized through cyclic photocatalytic test. Results indicate that 92.7% of photocatalytic degradation can be achieved by TiO2/AgBr/Ag ternary composite even after five recycles.

  5. 20% PARTIAL SIBERIAN SNAKE IN THE AGS.

    SciTech Connect

    Huang, H; Bai, M; Brown, K A; Glenn, W; Luccio, A U; Mackay, W W; Montag, C; Ptitsyn, V; Roser, T; Tsoupas, N; Zeno, K; Ranjbar, V; Spinka, H; Underwood, D

    2002-11-06

    An 11.4% partial Siberian snake was used to successfully accelerate polarized proton through a strong intrinsic depolarizing spin resonance in the AGS. No noticeable depolarization was observed. This opens up the possibility of using a 20% to 30% partial Siberian snake in the AGS to overcome all weak and strong depolarizing spin resonances. Some design and operation issues of the new partial Siberian snake are discussed.

  6. AgRISTARS documents tracking list report

    NASA Technical Reports Server (NTRS)

    Hawkins, J. L.

    1982-01-01

    A quarterly listing of those documents and related publications that have been issued and placed in the AgRISTARS tracking system is presented. The Tracking List Report provides a catalog, by project, of technical publications arranged by type of document and gives the reference AgRISTARS document numbers, title and date of publication, the issuing organization, and the National Technical Information Service reference number.

  7. AGS polarized proton operation in run 8.

    SciTech Connect

    Huang,H.; Ahrens, L.; Bai, M.; Brown, K.A.; Gardner, C.; Glenn, J.W.; Lin, F.; Luccio, A.U.; MacKay, W.W.; Roser, T.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zeno, K.

    2008-06-23

    Dual partial snake scheme has been used for the Brookhaven AGS (Alternating Gradient Synchrotron) polarized proton operation for several years. It has provided polarized proton beams with 1.5 x 10{sup 11} intensity and 65% polarization for RHIC spin program. There is still residual polarization loss. Several schemes such as putting horizontal tune into the spin tune gap, and injection-on-the-fly were tested in the AGS to mitigate the loss. This paper presents the experiment results and analysis.

  8. On the convective-absolute nature of river bedform instabilities

    NASA Astrophysics Data System (ADS)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca; Chomaz, Jean Marc

    2014-12-01

    River dunes and antidunes are induced by the morphological instability of stream-sediment boundary. Such bedforms raise a number of subtle theoretical questions and are crucial for many engineering and environmental problems. Despite their importance, the absolute/convective nature of the instability has never been addressed. The present work fills this gap as we demonstrate, by the cusp map method, that dune instability is convective for all values of the physical control parameters, while the antidune instability exhibits both behaviors. These theoretical predictions explain some previous experimental and numerical observations and are important to correctly plan flume experiments, numerical simulations, paleo-hydraulic reconstructions, and river works.

  9. Strategy for the absolute neutron emission measurement on ITER

    SciTech Connect

    Sasao, M.; Bertalot, L.; Ishikawa, M.; Popovichev, S.

    2010-10-15

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10{sup 10} n/s (neutron/second) for DT and 10{sup 8} n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  10. Absolute spectrophotometry of Neptune - 3390 to 7800 A

    NASA Astrophysics Data System (ADS)

    Bergstralh, J. T.; Neff, J. S.

    1983-07-01

    Absolute spectrophotometry of Neptune from 3390 to 7800 Å, with spectral resolution of 10 Å in the interval 3390 - 6055 and 20 Å in the interval 6055 - 7800 Å, is reported. The results are compared with filter photometry (Appleby, 1973; Wamsteker, 1973; Savage et al., 1980) and with synthetic spectra computed on the basis of a parameterization proposed by Podolak and Danielson (1977) for aerosol scattering and absorption. A CH4/H2 ratio is derived for the convectively mixed part of Neptune's atmosphere, and constrains optical properties of hypothetical aerosol layers.

  11. Prelaunch absolute radiometric calibration of LANDSAT-4 protoflight Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Ball, D. L.; Leung, K. C.; Walker, J. A.

    1984-01-01

    Results are summarized and analyzed from several prelaunch tests with a 122 cm integrating sphere used as part of the absolute radiometric calibration experiments for the protoflight TM sensor carried on the LANDSAT-4 satellite. The calibration procedure is presented and the radiometric sensitivity of the TM is assessed. The internal calibrator and dynamic range after calibration are considered. Tables show dynamic range after ground processing, spectral radiance to digital number and digital number to spectral radiance values for TM bands 1, 2, 3, 4, 5, 7 and for channel 4 of band 6.

  12. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-03

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  13. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2008-10-21

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  14. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-17

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  15. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-10-02

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  16. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2009-09-01

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  17. Stability of array spectroradiometers and their suitability for absolute calibrations

    NASA Astrophysics Data System (ADS)

    Nevas, Saulius; Teuber, Annette; Sperling, Armin; Lindemann, Matthias

    2012-04-01

    An investigation of the short- and long-term stability of various low-end and high-end array spectroradiometers is presented. Potentially weak points of array spectroradiometers with respect to their suitability for absolute calibrations are pointed out. The influence of ambient conditions on relevant instrumental characteristics and their temporal stability is discussed. It is shown that the temporal stability of some instruments can be significantly affected by high ambient humidity. Most important ambient temperature effects on instrument properties are also discussed.

  18. Absolute photoionization cross-section of the methyl radical.

    SciTech Connect

    Taatjes, C. A.; Osborn, D. L.; Selby, T.; Meloni, G.; Fan, H.; Pratt, S. T.; Chemical Sciences and Engineering Division; SNL

    2008-01-01

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH{sub 3} photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; {sigma}{sub CH}(10.2 eV) = (5.7 {+-} 0.9) x 10{sup -18} cm{sup 2} and {sigma}{sub CH{sub 3}}(11.0 eV) = (6.0 {+-} 2.0) x 10{sup -18} cm{sup 2}. The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH{sub 3} and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.460 eV, (5.5 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.466 eV, and (4.9 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  19. Albendazole sulfoxide enantiomers: preparative chiral separation and absolute stereochemistry.

    PubMed

    Lourenço, Tiago C; Batista, João M; Furlan, Maysa; He, Yanan; Nafie, Laurence A; Santana, Cesar C; Cass, Quezia B

    2012-03-23

    The enantiomeric separation of albendazole sulfoxide was carried out by simulated moving bed chromatography with variable zones (VARICOL). An overall recovery of 97% was achieved and enantiomeric ratios of 99.5% for raffinate and 99.0% for extract were attained. A total of 880 mg of (+)-albendazol sulfoxide and 930 mg of its antipode were collected after 55 cycles or 11 h of process, resulting in a mass rate of 2 g/day. Furthermore the absolute configuration of the enantiopure compounds was determined for the first time by vibrational circular dichroism (VCD) with the aid of theoretical calculations as (-)-(S) and (+)-(R)-albendazole sulfoxide. PMID:22341660

  20. Absolute magnetic helicity and the cylindrical magnetic field

    NASA Astrophysics Data System (ADS)

    Low, B. C.

    2011-05-01

    The different magnetic helicities conserved under conditions of perfect electrical conductivity are expressions of the fundamental property that every evolving fluid surface conserves its net magnetic flux. This basic hydromagnetic point unifies the well known Eulerian helicities with the Lagrangian helicity defined by the conserved fluxes frozen into a prescribed set of disjoint toroidal tubes of fluid flowing as a permanent partition of the entire fluid [B. C. Low, Astrophys. J. 649, 1064 (2006)]. This unifying theory is constructed from first principles, beginning with an analysis of the Eulerian and Lagrangian descriptions of fluids, separating the ideas of fluid and magnetic-flux tubes and removing the complication of the magnetic vector potential's free gauge from the concept of helicity. The analysis prepares for the construction of a conserved Eulerian helicity, without that gauge complication, to describe a 3D anchored flux in an upright cylindrical domain, this helicity called absolute to distinguish it from the well known relative helicity. In a version of the Chandrasekhar-Kendall representation, the evolving field at any instant is a unique superposition of a writhed, untwisted axial flux with a circulating flux of field lines all closed and unlinked within the cylindrical domain. The absolute helicity is then a flux-weighted sum of the writhe of that axial flux and its mutual linkage with the circulating flux. The absolute helicity is also conserved if the frozen-in field and its domain are continuously deformed by changing the separation between the rigid cylinder-ends with no change of cylinder radius. This hitherto intractable cylindrical construction closes a crucial conceptual gap for the fundamentals to be complete at last. The concluding discussion shows the impact of this development on our understanding of helicity, covering (i) the helicities of wholly contained and anchored fields; (ii) the Eulerian and Lagrangian descriptions of field

  1. Testing and evaluation of thermal cameras for absolute temperature measurement

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Krzysztof; Fischer, Joachim; Matyszkiel, Robert

    2000-09-01

    The accuracy of temperature measurement is the most important criterion for the evaluation of thermal cameras used in applications requiring absolute temperature measurement. All the main international metrological organizations currently propose a parameter called uncertainty as a measure of measurement accuracy. We propose a set of parameters for the characterization of thermal measurement cameras. It is shown that if these parameters are known, then it is possible to determine the uncertainty of temperature measurement due to only the internal errors of these cameras. Values of this uncertainty can be used as an objective criterion for comparisons of different thermal measurement cameras.

  2. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  3. Spatially resolved absolute spectrophotometry of Saturn - 3390 to 8080 A

    NASA Technical Reports Server (NTRS)

    Bergstralh, J. T.; Diner, D. J.; Baines, K. H.; Neff, J. S.; Allen, M. A.; Orton, G. S.

    1981-01-01

    A series of spatially resolved absolute spectrophotometric measurements of Saturn was conducted for the expressed purpose of calibrating the data obtained with the Imaging Photopolarimeter (IPP) on Pioneer 11 during its recent encounter with Saturn. All observations reported were made at the Mt. Wilson 1.5-m telescope, using a 1-m Ebert-Fastie scanning spectrometer. Spatial resolution was 1.92 arcsec. Photometric errors are considered, taking into account the fixed error, the variable error, and the composite error. The results are compared with earlier observations, as well as with synthetic spectra derived from preliminary physical models, giving attention to the equatorial region and the South Temperate Zone.

  4. Verification of Absolute Calibration of Quantum Efficiency for LSST CCDs

    NASA Astrophysics Data System (ADS)

    Coles, Rebecca; Chiang, James; Cinabro, David; Gilbertson, Woodrow; Haupt, justine; Kotov, Ivan; Neal, Homer; Nomerotski, Andrei; O'Connor, Paul; Stubbs, Christopher; Takacs, Peter

    2016-01-01

    We describe a system to measure the Quantum Efficiency in the wavelength range of 300nm to 1100nm of 40x40 mm n-channel CCD sensors for the construction of the 3.2 gigapixel LSST focal plane. The technique uses a series of instruments to create a very uniform flux of photons of controllable intensity in the wavelength range of interest across the face of the sensor. This allows the absolute Quantum Efficiency to be measured with an accuracy in the 1% range. This system will be part of a production facility at Brookhaven National Lab for the basic components of the LSST camera.

  5. Lens transmission measurement for an absolute radiation thermometer

    SciTech Connect

    Hao, X.; Yuan, Z.; Lu, X.

    2013-09-11

    The lens transmission for the National Institute of Metrology of China absolute radiation thermometer is measured by a hybrid method. The results of the lens transmission measurements are 99.002% and 86.792% for filter radiometers with center wavelengths 633 nm and 900 nm, respectively. These results, after correcting for diffraction factors and the size-of-source effect when the lens is incorporated within the radiometer, can be used for measurement of thermodynamic temperature. The expanded uncertainty of the lens transmission measurement system has been evaluated. It is 1.3×10{sup −3} at 633 nm and 900 nm, respectively.

  6. Exposure-dependent Ag+ release from silver nanoparticles and its complexation in AgS2 sites in primary murine macrophages

    NASA Astrophysics Data System (ADS)

    Veronesi, G.; Aude-Garcia, C.; Kieffer, I.; Gallon, T.; Delangle, P.; Herlin-Boime, N.; Rabilloud, T.; Carrière, M.

    2015-04-01

    Silver nanoparticle (AgNP) toxicity is related to their dissolution in biological environments and to the binding of the released Ag+ ions in cellulo; the chemical environment of recombined Ag+ ions is responsible for their toxicological outcome, moreover it is indicative of the cellular response to AgNP exposure, and can therefore shed light on the mechanisms governing AgNP toxicity. This study probes the chemistry of Ag species in primary murine macrophages exposed to AgNPs by making use of X-ray Absorption Fine Structure spectroscopy under cryogenic conditions: the linear combination analysis of the near-edge region of the spectra provides the fraction of Ag+ ions released from the AgNPs under a given exposure condition and highlights their complexation with thiolate groups; the ab initio modelling of the extended spectra allows measuring the Ag-S bond length in cellulo. Dissolution rates depend on the exposure scenario, chronicity leading to higher Ag+ release than acute exposure; Ag-S bond lengths are 2.41 +/- 0.03 Å and 2.38 +/- 0.01 Å in acute and chronic exposure respectively, compatible with digonal AgS2 coordination. Glutathione is identified as the most likely putative ligand for Ag+. The proposed method offers a scope for the investigation of metallic nanoparticle dissolution and recombination in cellular models.Silver nanoparticle (AgNP) toxicity is related to their dissolution in biological environments and to the binding of the released Ag+ ions in cellulo; the chemical environment of recombined Ag+ ions is responsible for their toxicological outcome, moreover it is indicative of the cellular response to AgNP exposure, and can therefore shed light on the mechanisms governing AgNP toxicity. This study probes the chemistry of Ag species in primary murine macrophages exposed to AgNPs by making use of X-ray Absorption Fine Structure spectroscopy under cryogenic conditions: the linear combination analysis of the near-edge region of the spectra provides

  7. Near-infrared emitting AgInTe2 and Zn-Ag-In-Te colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Langevin, Marc-Antoine; Pons, Thomas; Ritcey, Anna M.; Nì. Allen, Claudine

    2015-06-01

    The synthesis of AgInTe2 nanocrystals emitting between 1095 nm and 1160 nm is presented. Evolution of the Ag:In:Te ratio shows progressive incorporation of In3+ in Ag2Te, leading to the formation of orthorhombic AgInTe2. When zinc is added to the synthesis, the photoluminescence quantum yield reaches 3.4 %.

  8. A Stretcher for the Brookhaven AGS

    SciTech Connect

    Foelsche, H.W.J.

    1989-01-01

    Brookhaven National Laboratory is proposing to add a Stretcher ring to increase the capacity and the quality of the experimental physics program at the AGS. At the present time a typical AGS cycle is about equally divided between the task of accelerating the beam to full energy and the task of distributing it on a 30 GeV flattop. The Stretcher, a 30 GeV dc storage ring, will take over from the AGS the distribution of the high energy beam with a continuous slow spill, and the AGS can then provide beam for the program at more than twice the present repetition rate. In this manner the average current delivered to the experimenters will be more than doubled, and the duty cycle of the spill will increase from the present optimum of about 40% to nearly 100%. The Stretcher proposal continues the gradual evolution of the AGS toward a high intensity hadron factory. At the present time the AGS provides about 1 ..mu..A average proton current. With the booster alone, now under construction, this is expected to increase to above 4 ..mu..A, and with the Stretcher to about 8-10 ..mu..A, an order of magnitude higher than now. 5 refs., 9 figs.

  9. Pharmacokinetics of hederacoside C, an active ingredient in AG NPP709, in rats.

    PubMed

    Kim, Ju Myung; Yoon, Ji Na; Jung, Ji Won; Choi, Hye Duck; Shin, Young June; Han, Chang Kyun; Lee, Hye Suk; Kang, Hee Eun

    2013-11-01

    1. Hederacoside C (HDC) is one of the active ingredients in Hedera helix leaf extract (Ivy Ex.) and AG NPP709, a new botanical drug to treat acute respiratory infection and chronic inflammatory bronchitis. However, information regarding its pharmacokinetic properties remains limited. 2. Here, we report the pharmacokinetics of HDC in rats after intravenous administration of HDC (3, 12.5, and 25 mg/kg) and after oral administration of HDC, Ivy Ex., and AG NPP709 (equivalent to 12.5, 25, and 50 mg/kg HDC). 3. Linear pharmacokinetics of HDC were identified upon its intravenous administration at doses of 3-25 mg/kg. Intravenous administration of HDC results in relatively slow clearance (1.46-2.08 mL/min/kg) and a small volume of distribution at steady state (138-222 mL/kg), while oral administration results in a low absolute oral bioavailability (F) of 0.118-0.250%. The extremely low F of HDC may be due to poor absorption of HDC from the gastrointestinal (GI) tract and/or its decomposition therein. 4. The oral pharmacokinetics of HDC did not differ significantly among pure HDC, Ivy Ex., and AG NPP709. PMID:23607546

  10. Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification

    EPA Science Inventory

    Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...

  11. Design and testing of the AGS Booster BPM detector

    SciTech Connect

    Thomas, R.; Ciardullo, D.J.; Van Zwienen, W.

    1991-01-01

    The AGS Booster beam position monitor system must accurately measure the position of beams and bunches over a wide range of intensity. The frequency of operation must also cover a wide range (600 kHz to 4.2 MHz) since the Booster accelerates both protons and heavy ions. Split-cylinder electrodes were chosen to monitor the position of the beam because of their good low frequency response and high linearity. The need to accelerate low-energy partially-stripped heavy ions requires the pick-up electrodes (PUEs) to operate in a 3 {times} 10{sup {minus}11} torr vacuum. The PUEs are to measure the beam position to an absolute accuracy of {plus minus}0.5 mm and must therefore be mechanically stable despite the requirements that they be vacuum fired at 950{degree}C and baked periodically to 300{degree}C. This presentation describes both the mechanical design of the PUEs and the automated test procedure used to ensure the stability, accuracy, and linearity of each unit. 3 refs., 5 figs.

  12. Association of hepatitis Be antigen (HBeAg) with the core of the hepatitis B virus (HBcAg).

    PubMed

    Slusarczyk, J; Hess, G; Meyer zum Büschenfelde, K H

    1985-02-01

    Three substances (pronase E, sodium dodecylsulfate (SDS) and guanidine hydrochloride) with different chemical actions partially convert HBcAg to HBeAg. This process retains the integrity of the HBcAg particle, which was not different between HBcAg subpopulations, and does not generate HBcAg or HBeAg sub-units. DNA polymerase activity was destroyed by SDS and guanidine hydrochloride, but not by pronase E. Serum HBeAg could not be converted into HBcAg, suggesting that this might be an irreversible process. The data are consistent with the assumption that HBcAg and HBeAg are coded for by the same gene (C gene of the HBV-DNA). PMID:3982243

  13. Ternary Ag/epoxy adhesive with excellent overall performance.

    PubMed

    Ji, Yan-Hong; Liu, Yu; Huang, Gui-Wen; Shen, Xiao-Jun; Xiao, Hong-Mei; Fu, Shao-Yun

    2015-04-22

    Excellent electrical conductivity (EC) generally conflicts with high lap shear strength (LSS) for electrically conductive adhesives (ECAs) since EC increases while LSS decreases with increasing conductive filler content. In this work, the ECAs with the excellent overall performance are developed based on the ternary hybrid of Ag microflakes (Ag-MFs), Ag nanospheres (Ag-NSs), and Ag nanowires (Ag-NWs). First, a low silver content adhesive system is determined. Then, the effects of the relative contents of Ag fillers on the EC and the LSS are studied. It is shown that a small amount of Ag-NSs or Ag-NWs can dramatically improve the EC for the Ag-MF/epoxy adhesives. The Ag-NSs and Ag-NWs with appropriate contents have a synergistic effect in improving the EC. Meanwhile, the LSS of the as-prepared adhesive with the appropriate Ag contents reaches an optimal value. Both the EC and the LSS of the as-prepared ternary hybrid ECA with a low content of 40 wt % Ag are higher than those of the commercial ECAs filled with the Ag-MF content over 60 wt %. Finally, the ternary hybrid ECA with the optimal formulation is shown to be promising for printing the radio frequency identification tag antennas as an immediate application example. PMID:25835391

  14. An Ab Initio Study of the Low-Lying Doublet States of AgO and AgS

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1990-01-01

    Spectroscopic constants (D(sub o), r(sub e), mu(sub e), T(sub e)) are determined for the doublet states of AgO and AgS below approx. = 30000/cm. Large valence basis sets are employed in conjunction with relativistic effective core potentials (RECPs). Electron correlation is included using the modified coupled-pair functional (MCPF) and multireference configuration interaction (MRCI) methods. The A(sup 2)Sigma(sup +) - X(sup 2)Pi band system is found to occur in the near infrared (approx. = 9000/cm) and to be relatively weak with a radiative lifetime of 900 microns for A(sup 2)Sigma(sup +) (upsilon = 0). The weakly bound C(sup 2)Pi state (our notation), the upper state of the blue system, is found to require high levels of theoretical treatment to determine a quantitatively accurate potential. The red system is assigned as a transition from the C(sup 2)Pi state to the previously unobserved A(sup 2)Sigma(sup +) state. Several additional transitions are identified that should be detectable experimentally. A more limited study is performed for the vertical excitation spectrum of AgS. In addition, a detailed all-electron study of the X(sup 2)Pi and A(sup 2)Sigma(sup +) states of AgO is carried out using large atomic natural orbital (ANO) basis sets. Our best calculated D(sub o) value for AgO is significantly less than the experimental value, which suggests that there may be some systematic error in the experimental determination.

  15. Absolute analytical prediction of photonic crystal guided mode resonance wavelengths

    SciTech Connect

    Hermannsson, Pétur Gordon; Vannahme, Christoph; Smith, Cameron L. C.; Kristensen, Anders

    2014-08-18

    A class of photonic crystal resonant reflectors known as guided mode resonant filters are optical structures that are widely used in the field of refractive index sensing, particularly in biosensing. For the purposes of understanding and design, their behavior has traditionally been modeled numerically with methods such as rigorous coupled wave analysis. Here it is demonstrated how the absolute resonance wavelengths of such structures can be predicted by analytically modeling them as slab waveguides in which the propagation constant is determined by a phase matching condition. The model is experimentally verified to be capable of predicting the absolute resonance wavelengths to an accuracy of within 0.75 nm, as well as resonance wavelength shifts due to changes in cladding index within an accuracy of 0.45 nm across the visible wavelength regime in the case where material dispersion is taken into account. Furthermore, it is demonstrated that the model is valid beyond the limit of low grating modulation, for periodically discontinuous waveguide layers, high refractive index contrasts, and highly dispersive media.

  16. MSTAR: an absolute metrology system with submicrometer accuracy

    NASA Astrophysics Data System (ADS)

    Lay, Oliver P.; Dubovitsky, Serge; Peters, Robert D.; Burger, Johan; Steier, Willian H.; Ahn, Seh-Won; Fetterman, Harrold R.

    2004-10-01

    Laser metrology systems are a key component of stellar interferometers, used to monitor path lengths and dimensions internal to the instrument. Most interferometers use 'relative' metrology, in which the integer number of wavelengths along the path is unknown, and the measurement of length is ambiguous. Changes in the path length can be measured relative to an initial calibration point, but interruption of the metrology beam at any time requires a re-calibration of the system. The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. We describe the design of the system, show results for target distances up to 1 meter, and demonstrate how the system can be scaled to kilometer-scale distances. In recent experiments, we have used white light interferometry to augment the 'truth' measurements and validate the zero-point of the system. MSTAR is a general-purpose tool for conveniently measuring length with much greater accuracy than was previously possible, and has a wide range of possible applications.

  17. Use of intensity quotients and differences in absolute structure refinement

    PubMed Central

    Parsons, Simon; Flack, Howard D.; Wagner, Trixie

    2013-01-01

    Several methods for absolute structure refinement were tested using single-crystal X-ray diffraction data collected using Cu Kα radiation for 23 crystals with no element heavier than oxygen: conventional refinement using an inversion twin model, estimation using intensity quotients in SHELXL2012, estimation using Bayesian methods in PLATON, estimation using restraints consisting of numerical intensity differences in CRYSTALS and estimation using differences and quotients in TOPAS-Academic where both quantities were coded in terms of other structural parameters and implemented as restraints. The conventional refinement approach yielded accurate values of the Flack parameter, but with standard uncertainties ranging from 0.15 to 0.77. The other methods also yielded accurate values of the Flack parameter, but with much higher precision. Absolute structure was established in all cases, even for a hydrocarbon. The procedures in which restraints are coded explicitly in terms of other structural parameters enable the Flack parameter to correlate with these other parameters, so that it is determined along with those parameters during refinement. PMID:23719469

  18. Absolute Temperature Monitoring Using RF Radiometry in the MRI Scanner.

    PubMed

    El-Sharkawy, Abdel-Monem M; Sotiriadis, Paul P; Bottomley, Paul A; Atalar, Ergin

    2006-11-01

    Temperature detection using microwave radiometry has proven value for noninvasively measuring the absolute temperature of tissues inside the body. However, current clinical radiometers operate in the gigahertz range, which limits their depth of penetration. We have designed and built a noninvasive radiometer which operates at radio frequencies (64 MHz) with ∼100-kHz bandwidth, using an external RF loop coil as a thermal detector. The core of the radiometer is an accurate impedance measurement and automatic matching circuit of 0.05 Ω accuracy to compensate for any load variations. The radiometer permits temperature measurements with accuracy of ±0.1°K, over a tested physiological range of 28° C-40° C in saline phantoms whose electric properties match those of tissue. Because 1.5 T magnetic resonance imaging (MRI) scanners also operate at 64 MHz, we demonstrate the feasibility of integrating our radiometer with an MRI scanner to monitor RF power deposition and temperature dosimetry, obtaining coarse, spatially resolved, absolute thermal maps in the physiological range. We conclude that RF radiometry offers promise as a direct, noninvasive method of monitoring tissue heating during MRI studies and thereby providing an independent means of verifying patient-safe operation. Other potential applications include titration of hyper- and hypo-therapies. PMID:18026562

  19. Standardization of the cumulative absolute velocity. Final report

    SciTech Connect

    O`Hara, T.F.; Jacobson, J.P.

    1991-12-01

    EPRI NP-5930, ``A Criterion for Determining Exceedance of the Operating Basis Earthquake,`` was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.

  20. Absolute cross section for recoil detection of deuterium

    NASA Astrophysics Data System (ADS)

    Besenbacher, F.; Stensgaard, I.; Vase, P.

    1986-04-01

    The D( 4He, D) 4He cross section used for recoil detection of deuterium (D) has been calibrated on an absolute scale against the cross section of the D( 3He, α)p nuclear reaction which is often used for D profiling. For 4He energies ranging from 0.8 to ~1.8 MeV. the D( 4He, D) 4He cross section varies only slightly with incident energy and recoil angle θ (for 0° ⩽ 8 ⩽ 35°) and has a value of ~ 500 mb/sr which is significantly higher than the ~ 65 mb/sr c.m.s. cross section of the D( 3He, α)p nuclear reaction. For 4He energies ranging from ~ 1.9 to ~ 2.3 MeV, the D( 4He,D) 4He cross section exhibits a fairly narrow resonance peak (fwhm ~ 70 keV), with a maximum value (for θ = 0°) of ~ 8.5 b/sr, corresponding to a 4He energy of ~ 2130 keV. The large values of the cross section in connection with the described energy dependence makes the use of forward-recoil detection of D attractive for many purposes, e.g., D Jepth profiling (with an extreme gain in sensitivity), absolute concentration or coverage measurements, and lattice-location experiments by transmission channeling.

  1. Use of intensity quotients and differences in absolute structure refinement.

    PubMed

    Parsons, Simon; Flack, Howard D; Wagner, Trixie

    2013-06-01

    Several methods for absolute structure refinement were tested using single-crystal X-ray diffraction data collected using Cu Kα radiation for 23 crystals with no element heavier than oxygen: conventional refinement using an inversion twin model, estimation using intensity quotients in SHELXL2012, estimation using Bayesian methods in PLATON, estimation using restraints consisting of numerical intensity differences in CRYSTALS and estimation using differences and quotients in TOPAS-Academic where both quantities were coded in terms of other structural parameters and implemented as restraints. The conventional refinement approach yielded accurate values of the Flack parameter, but with standard uncertainties ranging from 0.15 to 0.77. The other methods also yielded accurate values of the Flack parameter, but with much higher precision. Absolute structure was established in all cases, even for a hydrocarbon. The procedures in which restraints are coded explicitly in terms of other structural parameters enable the Flack parameter to correlate with these other parameters, so that it is determined along with those parameters during refinement. PMID:23719469

  2. Absolute Measurements of Radiation Damage in Nanometer Thick Films

    PubMed Central

    Alizadeh, Elahe; Sanche, Léon

    2013-01-01

    We address the problem of absolute measurements of radiation damage in films of nanometer thicknesses. Thin films of DNA (~ 2–160nm) are deposited onto glass substrates and irradiated with varying doses of 1.5 keV X-rays under dry N2 at atmospheric pressure and room temperature. For each different thickness, the damage is assessed by measuring the loss of the supercoiled configuration as a function of incident photon fluence. From the exposure curves, the G-values are deduced, assuming that X-ray photons interacting with DNA, deposit all of their energy in the film. The results show that the G-value (i.e., damage per unit of deposited energy) increases with film thickness and reaches a plateau at 30±5 nm. This thickness dependence provides a correction factor to estimate the actual G-value for films with thicknesses below 30nm thickness. Thus, the absolute values of damage can be compared with that of films of any thickness under different experimental conditions. PMID:22562941

  3. Closed-loop step motor control using absolute encoders

    SciTech Connect

    Hicks, J.S.; Wright, M.C.

    1997-08-01

    A multi-axis, step motor control system was developed to accurately position and control the operation of a triple axis spectrometer at the High Flux Isotope Reactor (HFIR) located at Oak Ridge National Laboratory. Triple axis spectrometers are used in neutron scattering and diffraction experiments and require highly accurate positioning. This motion control system can handle up to 16 axes of motion. Four of these axes are outfitted with 17-bit absolute encoders. These four axes are controlled with a software feedback loop that terminates the move based on real-time position information from the absolute encoders. Because the final position of the actuator is used to stop the motion of the step motors, the moves can be made accurately in spite of the large amount of mechanical backlash from a chain drive between the motors and the spectrometer arms. A modified trapezoidal profile, custom C software, and an industrial PC, were used to achieve a positioning accuracy of 0.00275 degrees of rotation. A form of active position maintenance ensures that the angles are maintained with zero error or drift.

  4. Absolute Quantification of Selected Proteins in the Human Osteoarthritic Secretome

    PubMed Central

    Peffers, Mandy J.; Beynon, Robert J.; Clegg, Peter D.

    2013-01-01

    Osteoarthritis (OA) is characterized by a loss of extracellular matrix which is driven by catabolic cytokines. Proteomic analysis of the OA cartilage secretome enables the global study of secreted proteins. These are an important class of molecules with roles in numerous pathological mechanisms. Although cartilage studies have identified profiles of secreted proteins, quantitative proteomics techniques have been implemented that would enable further biological questions to be addressed. To overcome this limitation, we used the secretome from human OA cartilage explants stimulated with IL-1β and compared proteins released into the media using a label-free LC-MS/MS-based strategy. We employed QconCAT technology to quantify specific proteins using selected reaction monitoring. A total of 252 proteins were identified, nine were differentially expressed by IL-1 β stimulation. Selected protein candidates were quantified in absolute amounts using QconCAT. These findings confirmed a significant reduction in TIMP-1 in the secretome following IL-1β stimulation. Label-free and QconCAT analysis produced equivocal results indicating no effect of cytokine stimulation on aggrecan, cartilage oligomeric matrix protein, fibromodulin, matrix metalloproteinases 1 and 3 or plasminogen release. This study enabled comparative protein profiling and absolute quantification of proteins involved in molecular pathways pertinent to understanding the pathogenesis of OA. PMID:24132152

  5. Stitching interferometry and absolute surface shape metrology: similarities

    NASA Astrophysics Data System (ADS)

    Bray, Michael

    2001-12-01

    Stitching interferometry is a method of analysing large optical components using a standard small interferometer. This result is obtained by taking multiple overlapping images of the large component, and numerically stitching these sub-apertures together by computing a correcting Tip- Tilt-Piston correction for each sub-aperture. All real-life measurement techniques require a calibration phase. By definition, a perfect surface does not exist. Methods abound for the accurate measurement of diameters (viz., the Three Flat Test). However, we need total surface knowledge of the reference surface, because the stitched overlap areas will suffer from the slightest deformation. One must not be induced into thinking that Stitching is the cause of this error: it simply highlights the lack of absolute knowledge of the reference surface, or the lack of adequate thermal control, issues which are often sidetracked... The goal of this paper is to highlight the above-mentioned calibration problems in interferometry in general, and in stitching interferometry in particular, and show how stitching hardware and software can be conveniently used to provide the required absolute surface shape metrology. Some measurement figures will illustrate this article.

  6. Absolute surface energies, fracture toughness, and cracking in nitrides

    NASA Astrophysics Data System (ADS)

    Dreyer, Cyrus E.; Janotti, Anderson; van de Walle, Chris G.

    2014-03-01

    Growth of high quality single crystals and epitaxial layers of GaN is critical for producing high-efficiency optoelectronic and power electronic devices. One of the fundamental material properties that govern growth of single crystals is the absolute surface energy of the crystallographic planes. Knowledge of these energies is required to understand and optimize growth rates of different facets in GaN, and provide fracture toughnesses for brittle fracture. By means of hybrid functional calculations, we have determined absolute surface energies for the non-polar {11-20} a and {10-10} m planes, and approximated values for polar (0001) + c and (000-1) - c planes in wurtzite GaN. For all surfaces, we consider low-energy bare and hydrogenated reconstructions under a variety of conditions relevant to experimental growth techniques. We find that the energies of the m and a planes are similar, and constant over the range of conditions studied. In contrast, the energies of the polar planes are strongly condition dependent. Even so, we find that the + c polar plane is systematically lower in energy than the - c plane. We have used our surface energies to determine brittle fracture toughnesses in AlN and GaN, as well as the critical thickness for cracking of AlGaN on GaN.

  7. Absolute and relative quantification of RNA modifications via biosynthetic isotopomers

    PubMed Central

    Kellner, Stefanie; Ochel, Antonia; Thüring, Kathrin; Spenkuch, Felix; Neumann, Jennifer; Sharma, Sunny; Entian, Karl-Dieter; Schneider, Dirk; Helm, Mark

    2014-01-01

    In the resurging field of RNA modifications, quantification is a bottleneck blocking many exciting avenues. With currently over 150 known nucleoside alterations, detection and quantification methods must encompass multiple modifications for a comprehensive profile. LC–MS/MS approaches offer a perspective for comprehensive parallel quantification of all the various modifications found in total RNA of a given organism. By feeding 13C-glucose as sole carbon source, we have generated a stable isotope-labeled internal standard (SIL-IS) for bacterial RNA, which facilitates relative comparison of all modifications. While conventional SIL-IS approaches require the chemical synthesis of single modifications in weighable quantities, this SIL-IS consists of a nucleoside mixture covering all detectable RNA modifications of Escherichia coli, yet in small and initially unknown quantities. For absolute in addition to relative quantification, those quantities were determined by a combination of external calibration and sample spiking of the biosynthetic SIL-IS. For each nucleoside, we thus obtained a very robust relative response factor, which permits direct conversion of the MS signal to absolute amounts of substance. The application of the validated SIL-IS allowed highly precise quantification with standard deviations <2% during a 12-week period, and a linear dynamic range that was extended by two orders of magnitude. PMID:25129236

  8. Absolute phase effects on CPMG-type pulse sequences.

    PubMed

    Mandal, Soumyajit; Oh, Sangwon; Hürlimann, Martin D

    2015-12-01

    We describe and analyze the effects of transients within radio-frequency (RF) pulses on multiple-pulse NMR measurements such as the well-known Carr-Purcell-Meiboom-Gill (CPMG) sequence. These transients are functions of the absolute RF phases at the beginning and end of the pulse, and are thus affected by the timing of the pulse sequence with respect to the period of the RF waveform. Changes in transients between refocusing pulses in CPMG-type sequences can result in signal decay, persistent oscillations, changes in echo shape, and other effects. We have explored such effects by performing experiments in two different low-frequency NMR systems. The first uses a conventional tuned-and-matched probe circuit, while the second uses an ultra-broadband un-tuned or non-resonant probe circuit. We show that there are distinct differences between the absolute phase effects in these two systems, and present simple models that explain these differences. PMID:26575106

  9. Selected Reaction Monitoring Mass Spectrometry for Absolute Protein Quantification.

    PubMed

    Manes, Nathan P; Mann, Jessica M; Nita-Lazar, Aleksandra

    2015-01-01

    Absolute quantification of target proteins within complex biological samples is critical to a wide range of research and clinical applications. This protocol provides step-by-step instructions for the development and application of quantitative assays using selected reaction monitoring (SRM) mass spectrometry (MS). First, likely quantotypic target peptides are identified based on numerous criteria. This includes identifying proteotypic peptides, avoiding sites of posttranslational modification, and analyzing the uniqueness of the target peptide to the target protein. Next, crude external peptide standards are synthesized and used to develop SRM assays, and the resulting assays are used to perform qualitative analyses of the biological samples. Finally, purified, quantified, heavy isotope labeled internal peptide standards are prepared and used to perform isotope dilution series SRM assays. Analysis of all of the resulting MS data is presented. This protocol was used to accurately assay the absolute abundance of proteins of the chemotaxis signaling pathway within RAW 264.7 cells (a mouse monocyte/macrophage cell line). The quantification of Gi2 (a heterotrimeric G-protein α-subunit) is described in detail. PMID:26325288

  10. Absolute uniqueness of phase retrieval with random illumination

    NASA Astrophysics Data System (ADS)

    Fannjiang, Albert

    2012-07-01

    Random illumination is proposed to enforce absolute uniqueness and resolve all types of ambiguity, trivial or nontrivial, in phase retrieval. Almost sure irreducibility is proved for any complex-valued object whose support set has rank ⩾ 2. While the new irreducibility result can be viewed as a probabilistic version of the classical result by Bruck, Sodin and Hayes, it provides a novel perspective and an effective method for phase retrieval. In particular, almost sure uniqueness, up to a global phase, is proved for complex-valued objects under general two-point conditions. Under a tight sector constraint absolute uniqueness is proved to hold with probability exponentially close to unity as the object sparsity increases. Under a magnitude constraint with random amplitude illumination, uniqueness modulo global phase is proved to hold with probability exponentially close to unity as object sparsity increases. For general complex-valued objects without any constraint, almost sure uniqueness up to global phase is established with two sets of Fourier magnitude data under two independent illuminations. Numerical experiments suggest that random illumination essentially alleviates most, if not all, numerical problems commonly associated with the standard phasing algorithms.

  11. Communication: The absolute shielding scales of oxygen and sulfur revisited

    SciTech Connect

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Ruud, Kenneth; Gauss, Jürgen

    2015-03-07

    We present an updated semi-experimental absolute shielding scale for the {sup 17}O and {sup 33}S nuclei. These new shielding scales are based on accurate rotational microwave data for the spin–rotation constants of H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)], C{sup 17}O [Cazzoli et al., Phys. Chem. Chem. Phys. 4, 3575 (2002)], and H{sub 2}{sup 33}S [Helgaker et al., J. Chem. Phys. 139, 244308 (2013)] corrected both for vibrational and temperature effects estimated at the CCSD(T) level of theory as well as for the relativistic corrections to the relation between the spin–rotation constant and the absolute shielding constant. Our best estimate for the oxygen shielding constants of H{sub 2}{sup 17}O is 328.4(3) ppm and for C{sup 17}O −59.05(59) ppm. The relativistic correction for the sulfur shielding of H{sub 2}{sup 33}S amounts to 3.3%, and the new sulfur shielding constant for this molecule is 742.9(4.6) ppm.

  12. Simulation of absolute amplitudes of ultrasound signals using equivalent circuits.

    PubMed

    Johansson, Jonny; Martinsson, Pär-Erik; Delsing, Jerker

    2007-10-01

    Equivalent circuits for piezoelectric devices and ultrasonic transmission media can be used to cosimulate electronics and ultrasound parts in simulators originally intended for electronics. To achieve efficient system-level optimization, it is important to simulate correct, absolute amplitude of the ultrasound signal in the system, as this determines the requirements on the electronics regarding dynamic range, circuit noise, and power consumption. This paper presents methods to achieve correct, absolute amplitude of an ultrasound signal in a simulation of a pulse-echo system using equivalent circuits. This is achieved by taking into consideration loss due to diffraction and the effect of the cable that connects the electronics and the piezoelectric transducer. The conductive loss in the transmission line that models the propagation media of the ultrasound pulse is used to model the loss due to diffraction. Results show that the simulated amplitude of the echo follows measured values well in both near and far fields, with an offset of about 10%. The use of a coaxial cable introduces inductance and capacitance that affect the amplitude of a received echo. Amplitude variations of 60% were observed when the cable length was varied between 0.07 m and 2.3 m, with simulations predicting similar variations. The high precision in the achieved results show that electronic design and system optimization can rely on system simulations alone. This will simplify the development of integrated electronics aimed at ultrasound systems. PMID:18019234

  13. Absolute configuration and antimicrobial activity of acylhomoserine lactones.

    PubMed

    Pomini, Armando M; Marsaioli, Anita J

    2008-06-01

    (S)-N-Heptanoylhomoserine lactone is an uncommon acyl odd-chain natural product employed by many Gram-negative bacteria as a signaling substance in chemical communication mechanisms known as quorum sensing. The absolute configuration determination of the metabolite produced by the phytopathogen Pantoea ananatis Serrano is reported herein. As with all other substances of this class, the lactone moiety possesses S configuration, corroborating the hypothesis that it shares the same biosynthetic pathway as the (S)-N-hexanoylhomoserine lactone and also that some LuxI homologues can accept both hexanoyl- and heptanoyl-ACP as precursors. Evaluation of the antimicrobial activity of enantiomeric acylhomoserine lactones against three Gram-positive bacteria (Bacillus cereus, B. subtilis, and Staphylococcus aureus) revealed important features between absolute configuration and antimicrobial activity. The N-heptanoylhomoserine lactone was considerably less active than the 3-oxo derivatives. Surprisingly, non-natural (R)-N-(3-oxo-octanoyl)homoserine lactone was as active as the S enantiomer against B. cereus, while the synthetic racemic product was less active than either enantiomer. PMID:18465897

  14. A visible-light-driven core-shell like Ag2S@Ag2CO3 composite photocatalyst with high performance in pollutants degradation.

    PubMed

    Yu, Changlin; Wei, Longfu; Zhou, Wanqin; Dionysiou, Dionysios D; Zhu, Lihua; Shu, Qing; Liu, Hong

    2016-08-01

    A series of Ag2S-Ag2CO3 (4%, 8%, 16%, 32% and 40% Ag2S), Ag2CO3@Ag2S (32%Ag2S) and Ag2S@Ag2CO3 (32%Ag2S) composite photocatalysts were fabricated by coprecipitation or successive precipitation reaction. The obtained catalysts were analyzed by N2 physical adsorption, powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and photocurrent test. Under visible light irradiation, the influences of Ag2S content and core-shell property on photocatalytic activity and stability were evaluated in studies focused on the degradation of methyl orange (MO) dye, phenol, and bisphenol A. Results showed that excellent photocatalytic performance was obtained over Ag2S/Ag2CO3 composite photocatalysts with respect to Ag2S and Ag2CO3. With optimal content of Ag2S (32 wt%), the Ag2S-Ag2CO3 showed the highest photocatalytic degradation efficiency. Moreover, the structured property of Ag2S/Ag2CO3 greatly influenced the activity. Compared with Ag2S-Ag2CO3 and Ag2CO3@Ag2S, core-shell like Ag2S@Ag2CO3 demonstrated the highest activity and stability. The main reason for the boosting of photocatalytic performance was due to the formation of Ag2S/Ag2CO3 well contacted interface and unique electron structures. Ag2S/Ag2CO3 interface could significantly increase the separation efficiency of the photo-generated electrons (e(-)) and holes (h(+)), and production of OH radicals. More importantly, the low solubility of Ag2S shell could effectively protect the core of Ag2CO3, which further guarantees the stability of Ag2CO3. PMID:27236845

  15. A Special Application of Absolute Value Techniques in Authentic Problem Solving

    ERIC Educational Resources Information Center

    Stupel, Moshe

    2013-01-01

    There are at least five different equivalent definitions of the absolute value concept. In instances where the task is an equation or inequality with only one or two absolute value expressions, it is a worthy educational experience for learners to solve the task using each one of the definitions. On the other hand, if more than two absolute value…

  16. Constraint on Absolute Accuracy of Metacomprehension Assessments: The Anchoring and Adjustment Model vs. the Standards Model

    ERIC Educational Resources Information Center

    Kwon, Heekyung

    2011-01-01

    The objective of this study is to provide a systematic account of three typical phenomena surrounding absolute accuracy of metacomprehension assessments: (1) the absolute accuracy of predictions is typically quite low; (2) there exist individual differences in absolute accuracy of predictions as a function of reading skill; and (3) postdictions…

  17. Facile synthesis of sunlight-driven AgCI:Ag plasmonic nanophotocatalyst.

    SciTech Connect

    An, C.; Peng, S.; Sun, Y.; Center for Nanoscale Materials; Univ. of Illinois

    2010-06-18

    Highly efficient plasmonic photocatalysts of AgCl:Ag hybrid nanoparticles are successfully synthesized via a one-pot synthetic approach involving a precipitation reaction followed by polyol reduction. The as-synthesized nanoparticles exhibit high catalytic performance under visible light and sunlight for decomposing organics, such as methylene blue.

  18. EXAFS Studies of Bimetallic Ag-Pt and Ag-Pd Nanorods

    SciTech Connect

    Lahiri, D.; Chattopadhyay, S.; Bunker, B.A.; Doudna, C.M.; Bertino, M.F.; Blum, F.; Tokuhiro, A.; Terry, J.

    2008-10-30

    Nanoparticles of Ag-Pt and Ag-Pd with high aspect ratios were synthesized using a radiolysis method. Gamma rays at dose rates below 0.5 kGy/h were used for irradiation. The nanoparticles were characterized by transmission electron microscopy (TEM), optical absorption spectroscopy and x-ray Absorption Fine Structure (XAFS) spectroscopy. Bright field micrographs show that Ag-Pt nanowires are composed of large particles with diameters ranging from 20-30 nm and joined by filaments of diameter between 2-5 nm. The Ag-Pd nanowires have diameters of 20-25 nm and lengths of 1.5 {micro}m. For XAFS measurements, the Pt L3 edge (11.564 keV), Ag K-edge (25.514 keV) and Pd K-edge (24.350 keV) were excited to determine the local structure around the respective atoms in the cluster. The Ag-Pt particles were found to possess a distinct core-shell structure with Pt in the core surrounded by Ag shell, with no indication of alloy formation. However, nanorods of Ag-Pd have formed an alloy for all the alloy compositions.

  19. Charge-transfer interactions between TCNQ and silver clusters Ag20 and Ag13.

    PubMed

    Chen, Jing; Zhang, Hanyu; Liu, Xianhu; Yuan, Chengqian; Jia, Meiye; Luo, Zhixun; Yao, Jiannian

    2016-03-14

    Interactions between tetracyanoquinodimethane (TCNQ) and two typical silver clusters Ag13 and Ag20 are studied by first-principles DFT calculations. Charge transfer (CT) from silver clusters to TCNQ molecules initiates the Ag-N bond formation at selective sites resulting in the formation of different isomers of Ag13-TCNQ and Ag20-TCNQ complexes. We show here a comprehensive spectroscopic analysis for the two CT complexes on the basis of Raman and infrared activities. Furthermore, frontier molecular orbital (FMO) and natural bond orbital (NBO) analysis of the complexes provides a vivid illustration of electron cloud overlap and interactions. The behavior of TCNQ adsorbed on the tetrahedral Ag20 cluster was even found in good agreement with the experimental measurement of TCNQ molecules on a single-crystal Ag(111) surface. This study not only endeavors to clarify the charge-transfer interactions of TCNQ with silver, but also presents a finding of enhanced charge transfer between Ag13 and TCNQ indicating potential for candidate building blocks of granular materials. PMID:26888771

  20. New data for AG haplotype frequencies in Caucasoid populations and selective neutrality of the AG polymorphism.

    PubMed

    Sanchez-Mazas, A; Bütler-Brunner, E; Excoffier, L; Ghanem, N; Ben Salem, M; Breguet, G; Dard, P; Pellegrini, B; Tikkanen, M J; Langaney, A

    1994-02-01

    We present the results of AG antigen typings of three Caucasoid population samples: Lebanese, Tunisians, and Finns. AG haplotype frequencies estimated by maximum-likelihood methods are compared with the frequencies observed in 13 world populations previously tested for AG specificities by computing a genetic distance matrix used in a multivariate analysis. A high degree of polymorphism characterizes the three samples, with 10 haplotypes detected in the Lebanese and 11 haplotypes detected in the Tunisians and Finns; high heterozygosity levels are also present in the three populations. The genetic distance analysis shows that the three populations possess a genetic structure intermediate between those observed in sub-Saharan Africans and in Caucasoids from the Near East and India. This tight correspondence between AG differentiation and geography is confirmed by a highly significant correlation coefficient found between genetic and geographic distances computed worldwide, suggesting that an isolation by distance model of evolution applies to the AG system. The Ewens-Watterson test for selective neutrality on all world populations tested for AG specificities also supports the hypothesis that the AG system behaves like a neutral polymorphism. Overall, the AG differentiation pattern appears to be close to the patterns observed for other serological polymorphisms, such as RH, GM, and HLA, whose evolutionary mechanisms are also discussed. PMID:8157263