Science.gov

Sample records for absolute hse abundances

  1. Absolute Quantification of Endogenous Ras Isoform Abundance

    PubMed Central

    Mageean, Craig J.; Griffiths, John R.; Smith, Duncan L.; Clague, Michael J.; Prior, Ian A.

    2015-01-01

    Ras proteins are important signalling hubs situated near the top of networks controlling cell proliferation, differentiation and survival. Three almost identical isoforms, HRAS, KRAS and NRAS, are ubiquitously expressed yet have differing biological and oncogenic properties. In order to help understand the relative biological contributions of each isoform we have optimised a quantitative proteomics method for accurately measuring Ras isoform protein copy number per cell. The use of isotopic protein standards together with selected reaction monitoring for diagnostic peptides is sensitive, robust and suitable for application to sub-milligram quantities of lysates. We find that in a panel of isogenic SW48 colorectal cancer cells, endogenous Ras proteins are highly abundant with ≥260,000 total Ras protein copies per cell and the rank order of isoform abundance is KRAS>NRAS≥HRAS. A subset of oncogenic KRAS mutants exhibit increased total cellular Ras abundance and altered the ratio of mutant versus wild type KRAS protein. These data and methodology are significant because Ras protein copy number is required to parameterise models of signalling networks and informs interpretation of isoform-specific Ras functional data. PMID:26560143

  2. Measurements of Absolute Abundances in Solar Flares

    NASA Astrophysics Data System (ADS)

    Warren, Harry P.

    2014-05-01

    We present measurements of elemental abundances in solar flares with the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory. EVE observes both high temperature Fe emission lines (Fe XV-Fe XXIV) and continuum emission from thermal bremsstrahlung that is proportional to the abundance of H. By comparing the relative intensities of line and continuum emission it is possible to determine the enrichment of the flare plasma relative to the composition of the photosphere. This is the first ionization potential or FIP bias (f). Since thermal bremsstrahlung at EUV wavelengths is relatively insensitive to the electron temperature, it is important to account for the distribution of electron temperatures in the emitting plasma. We accomplish this by using the observed spectra to infer the differential emission measure distribution and FIP bias simultaneously. In each of the 21 flares that we analyze we find that the observed composition is close to photospheric. The mean FIP bias in our sample is f = 1.17 ± 0.22. This analysis suggests that the bulk of the plasma evaporated during a flare comes from deep in the chromosphere, below the region where elemental fractionation occurs.

  3. Absolute Abundance Measurements in Solar Flares

    NASA Astrophysics Data System (ADS)

    Warren, Harry

    2014-06-01

    We present measurements of elemental abundances in solar flares with EVE/SDO and EIS/Hinode. EVE observes both high temperature Fe emission lines Fe XV-XXIV and continuum emission from thermal bremsstrahlung that is proportional to the abundance of H. By comparing the relative intensities of line and continuum emission it is possible to determine the enrichment of the flare plasma relative to the composition of the photosphere. This is the first ionization potential or FIP bias (F). Since thermal bremsstrahlung at EUV wavelengths is relatively insensitive to the electron temperature it is important to account for the distribution of electron temperatures in the emitting plasma. We accomplish this by using the observed spectra to infer the differential emission measure distribution and FIP bias simultaneously. In each of the 21 flares that we analyze we find that the observed composition is close to photospheric. The mean FIP bias in our sample is F=1.17+-0.22. Furthermore, we have compared the EVE measurements with corresponding flare observations of intermediate temperature S, Ar, Ca, and Fe emission lines taken with EIS. Our initial calculations also indicate a photospheric composition for these observations. This analysis suggests that the bulk of the plasma evaporated during a flare comes from deep in the chromosphere, below the region where elemental fractionation in the non-flaring corona occurs.

  4. MEASUREMENTS OF ABSOLUTE ABUNDANCES IN SOLAR FLARES

    SciTech Connect

    Warren, Harry P.

    2014-05-01

    We present measurements of elemental abundances in solar flares with the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory. EVE observes both high temperature Fe emission lines (Fe XV-Fe XXIV) and continuum emission from thermal bremsstrahlung that is proportional to the abundance of H. By comparing the relative intensities of line and continuum emission it is possible to determine the enrichment of the flare plasma relative to the composition of the photosphere. This is the first ionization potential or FIP bias (f). Since thermal bremsstrahlung at EUV wavelengths is relatively insensitive to the electron temperature, it is important to account for the distribution of electron temperatures in the emitting plasma. We accomplish this by using the observed spectra to infer the differential emission measure distribution and FIP bias simultaneously. In each of the 21 flares that we analyze we find that the observed composition is close to photospheric. The mean FIP bias in our sample is f = 1.17 ± 0.22. This analysis suggests that the bulk of the plasma evaporated during a flare comes from deep in the chromosphere, below the region where elemental fractionation occurs.

  5. Neon and Oxygen Absolute Abundances in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Landi, E.; Feldman, U.; Doschek, G. A.

    2007-04-01

    In the present work we use the UV spectrum of a solar flare observed with SOHO SUMER to measure the absolute abundance of Ne in the solar atmosphere. The measurement is carried out using the intensity ratio between the allowed 1s2s3S1-1s2p3P2 Ne IX line at 1248.28 Å and the free-free continuum radiation observed close to the Ne IX line. We find a value of the absolute Ne abundance ANe=8.11+/-0.12, in agreement with previous estimates but substantially higher than the very recent estimate by Asplund et al. based on the oxygen photospheric abundance and the Ne/O relative abundance. Considering our measured ANe value, we argue that the absolute oxygen abundance of Asplund et al. is too low by a factor 1.9. This result has important consequences for models of the solar interior based on helioseismology measurements, as well as on the FIP bias determination of the solar upper atmosphere, solar wind, and solar energetic particles.

  6. A SOLAR SPECTROSCOPIC ABSOLUTE ABUNDANCE OF ARGON FROM RESIK

    SciTech Connect

    Sylwester, J.; Sylwester, B.; Phillips, K. J. H.; Kuznetsov, V. D. E-mail: kjhp@mssl.ucl.ac.u

    2010-09-10

    Observations of He-like and H-like Ar (Ar XVII and Ar XVIII) lines at 3.949 A and 3.733 A, respectively, with the RESIK X-ray spectrometer on the CORONAS-F spacecraft, together with temperatures and emission measures from the two channels of GOES, have been analyzed to obtain the abundance of Ar in flare plasmas in the solar corona. The line fluxes per unit emission measure show a temperature dependence like that predicted from theory and lead to spectroscopically determined values for the absolute Ar abundance, A(Ar) = 6.44 {+-} 0.07 (Ar XVII) and 6.49 {+-} 0.16 (Ar XVIII), which are in agreement to within uncertainties. The weighted mean is 6.45 {+-} 0.06, which is between two recent compilations of the solar Ar abundance and suggests that the photospheric and coronal abundances of Ar are very similar.

  7. The Absolute Abundance of Iron in the Solar Corona.

    PubMed

    White; Thomas; Brosius; Kundu

    2000-05-10

    We present a measurement of the abundance of Fe relative to H in the solar corona using a technique that differs from previous spectroscopic and solar wind measurements. Our method combines EUV line data from the Coronal Diagnostic Spectrometer (CDS) on the Solar and Heliospheric Observatory with thermal bremsstrahlung radio data from the VLA. The coronal Fe abundance is derived by equating the thermal bremsstrahlung radio emission calculated from the EUV Fe line data to that observed with the VLA, treating the Fe/H abundance as the sole unknown. We apply this technique to a compact cool active region and find Fe&solm0;H=1.56x10-4, or about 4 times its value in the solar photosphere. Uncertainties in the CDS radiometric calibration, the VLA intensity measurements, the atomic parameters, and the assumptions made in the spectral analysis yield net uncertainties of approximately 20%. This result implies that low first ionization potential elements such as Fe are enhanced in the solar corona relative to photospheric values.

  8. Absolute abundance of southern bluefin tuna estimated by close-kin mark-recapture

    PubMed Central

    Bravington, Mark V.; Grewe, Peter M.; Davies, Campbell R.

    2016-01-01

    Southern bluefin tuna is a highly valuable, severely depleted species, whose abundance and productivity have been difficult to assess with conventional fishery data. Here we use large-scale genotyping to look for parent–offspring pairs among 14,000 tissue samples of juvenile and adult tuna collected from the fisheries, finding 45 pairs in total. Using a modified mark-recapture framework where ‘recaptures' are kin rather than individuals, we can estimate adult abundance and other demographic parameters such as survival, without needing to use contentious fishery catch or effort data. Our abundance estimates are substantially higher and more precise than previously thought, indicating a somewhat less-depleted and more productive stock. More broadly, this technique of ‘close-kin mark-recapture' has widespread utility in fisheries and wildlife conservation. It estimates a key parameter for management—the absolute abundance of adults—while avoiding the expense of independent surveys or tag-release programmes, and the interpretational problems of fishery catch rates. PMID:27841264

  9. Absolute Isotopic Abundance Ratios and Atomic Weight of a Reference Sample of Nickel

    PubMed Central

    Gramlich, J. W.; Machlan, L. A.; Barnes, I. L.; Paulsen, P. J.

    1989-01-01

    Absolute values have been obtained for the isotopic abundance ratios of a reference sample of nickel (Standard Reference Material 986), using thermal ionization mass spectrometry. Samples of known isotopic composition, prepared from nearly isotopically pure separated nickel isotopes, were used to calibrate the mass spectrometers. The resulting absolute isotopic ratios are: 58Ni/60Ni=2.596061±0.000728, 61Ni/60Ni=0.043469±0.000015,62Ni/60Ni=0.138600±0.000045, and 64Ni/60Ni=0.035295±0.000024, which yield atom percents of 58Ni=68.076886 ±0.005919, 60Ni = 26.223146±0.005144,61Ni=1.139894±0.000433, 62Ni =3.634528±0.001142, and 64Ni =0.925546±0.000599. The atomic weight calculated from this isotopic composition is 58.693353 ±0.000147. The indicated uncertainties are overall limits of error based on two standard deviations of the mean and allowances for the effects of known sources of possible systematic error. PMID:28053421

  10. Absolute Proper Motions and Chemical Abundances of Stars Along the Sagittarius Trailing Tidal Tail

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Majewski, S. R.; Casetti-Dinescu, D. I.; Patterson, R. J.

    2010-01-01

    We show results from our deep proper-motion survey of Kapteyn's Selected Areas (SAs; Casetti-Dinescu et al. 2006, AJ,132,2082), with a focus on fields that intersect the Sagittarius (Sgr) trailing tidal stream. Our data set, derived from matched, deep photographic plate pairs taken nearly 100 years apart, provides a unique window on the motions of stars in these SA fields. We find the signature of a common-motion population among our accurate proper motions of stars in five of these fields, as well as corresponding stellar excesses which are identified as stellar debris from the disrupted Sgr dwarf. Spectroscopic follow-up confirms that these stars are Sgr members, and the resultant radial velocities and spectroscopic parallaxes are combined with proper motions to derive full space motions of 30-100 tidal stream members per field. These kinematical data are compared to the predictions of the Law et al. (2009, ApJL,703,67) models of Sgr disruption, which have thus far reproduced most observed features of the Sgr stream, and have also constrained the triaxial shape of the Milky Way's dark matter halo. We also derive low-resolution spectroscopic abundances along this stretch of the Sgr stream, and explore the stream metallicity gradient reported by Chou et al. (2007, ApJ,670,346). Majewski et al. (2006, ApJL,627,25) showed that because the Sgr debris plane is nearly coincident with the Galactic X-Z Cartesian plane, proper motions in the portion of the Sgr trailing tail in our study almost entirely reflect the solar motion, and can be used to make a direct measurement of the rotation speed at the Solar circle (the "Local Standard of Rest") almost completely independent of the Sun's distance from the Galactic center. Here, we report our derived constraints on the solar motion from absolute proper motions of Sgr debris in our SA fields.

  11. Parametric scaling from species relative abundances to absolute abundances in the computation of biological diversity: a first proposal using Shannon's entropy.

    PubMed

    Ricotta, Carlo

    2003-01-01

    Traditional diversity measures such as the Shannon entropy are generally computed from the species' relative abundance vector of a given community to the exclusion of species' absolute abundances. In this paper, I first mention some examples where the total information content associated with a given community may be more adequate than Shannon's average information content for a better understanding of ecosystem functioning. Next, I propose a parametric measure of statistical information that contains both Shannon's entropy and total information content as special cases of this more general function.

  12. Delineating the major KREEP-bearing terranes on the moon with global measurements of absolute thorium abundances

    SciTech Connect

    Lawrence, D.J.; Feldman, W.C.; Barraclough, B.L.; Elphic, R.C.; Prettyman, T.H.; Binder, A.B.; Maurice, S.; Miller, M.C.

    1999-03-01

    The Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) has been used to map the global composition of thorium on the lunar surface. Previous LP results of relative thorium abundances demonstrated that thorium is highly concentrated in and around the nearside western maria and less so in the South Pole Aitken (SPA) basin. Using new detector modeling results and a larger data set, the authors present here a global map of absolute thorium abundances on a 2{degree} by 2{degree} equal-area pixel scale. Because thorium is a tracer of KREEP-rich material, these data provide fundamental information regarding the locations and importance of terranes that are rich in KREEP bearing materials.

  13. Estimating stellar atmospheric parameters, absolute magnitudes and elemental abundances from the LAMOST spectra with Kernel-based principal component analysis

    NASA Astrophysics Data System (ADS)

    Xiang, M.-S.; Liu, X.-W.; Shi, J.-R.; Yuan, H.-B.; Huang, Y.; Luo, A.-L.; Zhang, H.-W.; Zhao, Y.-H.; Zhang, J.-N.; Ren, J.-J.; Chen, B.-Q.; Wang, C.; Li, J.; Huo, Z.-Y.; Zhang, W.; Wang, J.-L.; Zhang, Y.; Hou, Y.-H.; Wang, Y.-F.

    2017-01-01

    Accurate determination of stellar atmospheric parameters and elemental abundances is crucial for Galactic archaeology via large-scale spectroscopic surveys. In this paper, we estimate stellar atmospheric parameters - effective temperature Teff, surface gravity log g and metallicity [Fe/H], absolute magnitudes MV and MKs, α-element to metal (and iron) abundance ratio [α/M] (and [α/Fe]), as well as carbon and nitrogen abundances [C/H] and [N/H] from the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) spectra with a multivariate regression method based on kernel-based principal component analysis, using stars in common with other surveys (Hipparcos, Kepler, Apache Point Observatory Galactic Evolution Experiment) as training data sets. Both internal and external examinations indicate that given a spectral signal-to-noise ratio (SNR) better than 50, our method is capable of delivering stellar parameters with a precision of ˜100 K for Teff, ˜0.1 dex for log g, 0.3-0.4 mag for MV and MKs, 0.1 dex for [Fe/H], [C/H] and [N/H], and better than 0.05 dex for [α/M] ([α/Fe]). The results are satisfactory even for a spectral SNR of 20. The work presents first determinations of [C/H] and [N/H] abundances from a vast data set of LAMOST, and, to our knowledge, the first reported implementation of absolute magnitude estimation directly based on a vast data set of observed spectra. The derived stellar parameters for millions of stars from the LAMOST surveys will be publicly available in the form of value-added catalogues.

  14. Absolute isotopic composition of molybdenum and the solar abundances of the p-process nuclides Mo92,94

    NASA Astrophysics Data System (ADS)

    Wieser, M. E.; de Laeter, J. R.

    2007-05-01

    The isotopic composition of molybdenum has been measured with high precision using a thermal ionization mass spectrometer, the linearity of which has been verified by measuring the isotopically-certified reference material for strontium (NIST 987). The abundance sensitivity of the mass spectrometer in the vicinity of the molybdenum ion beams has been carefully examined to ensure the absence of tailing effects. Particular care was given to ensuring that potential isobaric interferences from zirconium and ruthenium did not affect the measurement of the isotopic composition of molybdenum. Gravimetric mixtures of two isotopically enriched isotopes, Mo92 and Mo98, were analyzed mass spectrometrically to calibrate the mass spectrometer, in order to establish the isotope fractionation of the spectrometer for the molybdenum isotopes. This enabled the “absolute” isotopic composition of molybdenum to be determined. An accurate determination of the isotopic composition is required in order to calculate the atomic weight of molybdenum, which is one of the least accurately known values of all the elements. The absolute isotope abundances (in atom %) of molybdenum measured in this experiment are as follows: Mo92=14.5246±0.0015; Mo94=9.1514±0.0074; Mo95=15.8375±0.0098; Mo96=16.672±0.019; Mo97=9.5991±0.0073; Mo98=24.391±0.018; and Mo100=9.824±0.050, with uncertainties at the 1s level. These values enable an atomic weight Ar(Mo) of 95.9602±0.0023 (1s) to be calculated, which is slightly higher than the current Standard Atomic Weight Ar(Mo) =95.94±0.02 and with a much improved uncertainty interval. These “absolute” isotope abundances also enable the Solar System abundances of molybdenum to be calculated for astrophysical purposes. Of particular interest are the Solar System abundances of the two p-process nuclides—Mo92 and Mo94, which are present in far greater abundance than p-process theory suggests. The Solar System abundances for Mo92 and Mo94 of 0.364±0

  15. Absolute oscillator strengths for lines of neutral cobalt between 2276 A and 9357 A and a redetermination of the solar cobalt abundance

    NASA Astrophysics Data System (ADS)

    Cardon, B. L.; Smith, P. L.; Scalo, J. M.; Testerman, L.; Whaling, W.

    1982-09-01

    Absolute oscillator strengths of neutral cobalt have been determined from hook measurements for 159 transitions and emission intensity measurements for 314 transitions between 2276 Å and 9357 Å. Ninety-five of these transitions were subjected to the procedure developed by Cardon, Smith, and Whaling which fits combined absorption and emission data to a set of consistent, optimum, relative oscillator strengths and upper level lifetimes. These relative values were normalized to the radiative lifetimes of Figger et al. and of Marek and Vogt obtained by pulsed laser fluorescence. Absolute oscillator strengths for 362 transitions and 36 lifetimes were determined. Typical uncertainties in the reported absolute oscillator strengths are ±15-25% (2/3 confidence level). Equivalent widths were obtained for nineteen solar cobalt lines with the McMath solar telescope at Kitt Peak National Observatory. These widths were used to redetermine the solar cobalt abundance, assuming the photospheric model of Holweger and a microturbulence velocity of 1.0 km s-1. The adopted solar cobalt abundance is the mean value log Co/NH> + 12 = 4.92 ± 0.08 (±19%), from the 19 cobalt transitions. This value is in excellent agreement with the solar values of Ross and Aller, of Biemont, and of Holweger and that of Cameron for carbonaceous chondrites.

  16. Absolute oscillator strengths for lines of neutral cobalt between 2276 A and 9357 A and a redetermination of the solar cobalt abundance

    SciTech Connect

    Cardon, B.L.; Smith, P.L.; Scalo, J.M.; Testerman, L.; Whaling, W.

    1982-09-01

    Absolute oscillator strengths of neutral cobalt have been determined from hook measurements for 159 transitions and emission intensity measurements for 314 transitions between 2276 A and 9357 A. Ninety-five of these transitions were subjected to the procedure developed by Cardon, Smith, and Whaling which fits combined absorption and emission data to a set of consistent, optimum, relative oscillator strengths and upper level lifetimes. These relative values were normalized to the radiative lifetimes of Figger et al. and of Marek and Vogt obtained by pulsed laser fluorescence. Absolute oscillator strengths for 362 transitions and 36 lifetimes were determined. Typical uncertainties in the reported absolute oscillator strengths are +- 15-25% (2/3 confidence level). Equivalent widths were obtained for nineteen solar cobalt lines with the McMath solar telescope at Kitt Peak National Observatory. These widths were used to redetermine the solar cobalt abundance, assuming the photospheric model of Holweger and a microturbulence velocity of 1.0 km s/sup -1/. The adopted solar cobalt abundance is the mean value log +12 = 4.92 +- 0.08 ( +- 19%), from the 19 cobalt transitions. This value is in excellent agreement with the solar values of Ross and Aller, of Biemont, and of Holweger and that of Cameron for carbonaceous chondrites.

  17. HSE's safety assessment principles for criticality safety.

    PubMed

    Simister, D N; Finnerty, M D; Warburton, S J; Thomas, E A; Macphail, M R

    2008-06-01

    The Health and Safety Executive (HSE) published its revised Safety Assessment Principles for Nuclear Facilities (SAPs) in December 2006. The SAPs are primarily intended for use by HSE's inspectors when judging the adequacy of safety cases for nuclear facilities. The revised SAPs relate to all aspects of safety in nuclear facilities including the technical discipline of criticality safety. The purpose of this paper is to set out for the benefit of a wider audience some of the thinking behind the final published words and to provide an insight into the development of UK regulatory guidance. The paper notes that it is HSE's intention that the Safety Assessment Principles should be viewed as a reflection of good practice in the context of interpreting primary legislation such as the requirements under site licence conditions for arrangements for producing an adequate safety case and for producing a suitable and sufficient risk assessment under the Ionising Radiations Regulations 1999 (SI1999/3232 www.opsi.gov.uk/si/si1999/uksi_19993232_en.pdf).

  18. Re-Evaluation of HSE DATA in Light of High P-T Partitioning Data: Late Chondritic Addition to Inner Solar System Bodies Not Always Required for HSE

    NASA Technical Reports Server (NTRS)

    Righter, K.

    2015-01-01

    Studies of terrestrial peridotite and martian and achondritic meteorites have led to the conclusion that addition of chondritic material to growing planets or planetesimals, after core formation, occurred on Earth, Moon, Mars, asteroid 4 Vesta, and the parent body of the angritic meteorites. One study even proposed that this was a common process in the final stages of growth. These conclusions are based al-most entirely on the 8 highly siderophile elements (HSE; Re, Au, Pt, Pd, Rh, Ru, Ir, Os), which have been used to argue for late accretion of chondritic material to the Earth after core formation was complete. This idea was originally proposed because the D(metal/silicate) values for the HSE are very high (greater than 10,000), yet their concentration in the terrestrial mantle is too high to be consistent with such high Ds. The HSE in the terrestrial mantle also are present in chondritic relative abundances and hence require similar Ds if this was the result of core-mantle equilibration. The conclusion that late chondritic additions are required for all five of these bodies is based on the chondritic relative abundances of the HSE, as well as their elevated concentrations in the samples. An easy solution is to call upon addition of chondritic material to the mantle of each body, just after core formation; however, in practice this means similar additions of chondritic materials to each body just after core formation which ranges from approximately 4-5 Ma after T(sub 0) for 4 Vesta and the angrites, to 10-25 Ma for Mars, to 35 to 60 Ma for Moon and perhaps the Earth. Since the work of there has been a realization that high PT conditions can lower the partition coefficients of many siderophile elements, indicating that high PT conditions (magma ocean stage) can potentially explain elevated siderophile element abundances. However, detailed high PT partitioning data have been lacking for many of the HSE to evaluate whether such ideas are viable for all four bodies

  19. Novel concept for the mass spectrometric determination of absolute isotopic abundances with improved measurement uncertainty: Part 1 - theoretical derivation and feasibility study

    NASA Astrophysics Data System (ADS)

    Rienitz, Olaf; Pramann, Axel; Schiel, Detlef

    2010-01-01

    The development of a new method for the experimental determination of absolute isotopic abundances using a modified isotope dilution mass spectrometry (IDMS) technique is described. The intention and thus main application will be the quantification of molar masses M of highly enriched materials with improved measurement uncertainty (Urel(M) [approximate] 10-8 with k = 2). In part 1 of the current work, the theoretical foundation of the new method and its mathematical derivation is shown in detail, while part 2 will cover the experiments based on the new method described. Its core idea is the introduction of a virtual element (VE) consisting of all isotopes but the one having the largest or smallest abundance. IDMS is used to determine the mass fraction of this VE in its matrix, namely the element itself. A new set of equations serve to calculate all isotopic abundances (even the large one omitted with the introduction of the VE) merely from the mass fraction of the VE. A comprehensive uncertainty budget according to the Guide to the Expression of Uncertainty in Measurement (GUM) was set up in order to discuss and validate the novel concept. The hypothetical input data of the uncertainty budget were estimated to resemble a silicon material highly enriched with respect to 28Si used in the context of the international Avogadro Project. Considering the calculated results, the experimental determination of the molar mass of the above mentioned silicon seems very promising. As far as the authors know, this will be the first time IDMS was applied to determine a molar mass.

  20. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  1. Pt-Re-Os and Sm-Nd isotope and HSE and REE systematics of the 2.7 Ga Belingwe and Abitibi komatiites

    NASA Astrophysics Data System (ADS)

    Puchtel, I. S.; Walker, R. J.; Brandon, A. D.; Nisbet, E. G.

    2009-10-01

    High-precision Pt-Re-Os and Sm-Nd isotope and highly siderophile element (HSE) and rare earth element (REE) abundance data are reported for two 2.7 b.y. old komatiite lava flows, Tony's flow (TN) from the Belingwe greenstone belt, Zimbabwe, and the PH-II flow (PH) from Munro Township in the Abitibi greenstone belt, Canada. The emplaced lavas are calculated to have contained ˜25% (TN) and ˜28% (PH) MgO. These lavas were derived from mantle sources characterized by strong depletions in highly incompatible lithophile trace elements, such as light REE (Ce/Sm N = 0.64 ± 0.02 (TN) and 0.52 ± 0.01 (PH), ɛ 143Nd(T) = +2.9 ± 0.2 in both sources). 190Pt- 186Os and 187Re- 187Os isochrons generated for each flow yield ages consistent with respective emplacement ages obtained using other chronometers. The calculated precise initial 186Os/ 188Os = 0.1198318 ± 3 (TN) and 0.1198316 ± 5 (PH) and 187Os/ 188Os = 0.10875 ± 17 (TN) and 0.10873 ± 15 (PH) require time-integrated 190Pt/ 188Os and 187Re/ 188Os of 0.00178 ± 11 and 0.407 ± 8 (TN) and 0.00174 ± 18 and 0.415 ± 5 (PH). These parameters, which by far represent the most precise and accurate estimates of time-integrated Pt/Os and Re/Os of the Archean mantle, are best matched by those of enstatite chondrites. The data also provide evidence for a remarkable similarity in the composition of the sources of these komatiites with respect to both REE and HSE. The calculated absolute HSE abundances in the TN and PH komatiite sources are within or slightly below the range of estimates for the terrestrial Primitive Upper Mantle (PUM). Assuming a chondritic composition of the bulk silicate Earth, the strong depletions in LREE, yet chondritic Re/Os in the komatiite sources are apparently problematic because early Earth processes capable of fractionating the LREE might also be expected to fractionate Re/Os. This apparent discrepancy could be reconciled via a two-stage model, whereby the moderate LREE depletion in the sources of

  2. Chemical Exchange Between the Core and the Convecting Mantle of the Earth: Evidence from Highly Siderophile Elements (HSE)

    NASA Astrophysics Data System (ADS)

    Schmidt, G.; Palme, H.; Kratz, K. L.

    1995-09-01

    Core formation is a major physical and chemical event in the evolution of a differentiated planet. The core is the dominant repository of HSE in the Earth. Element ratios of HSE in peridotites provide insights into the accretion processes of the Earth and the effect of core formation. Depletion of HSE in the Earth's mantle results from core formation. Refractory siderophile elements are about a factor of > 100 depleted in the Earth's mantle compared to CI carbonaceous chondrites. Nevertheless, the concentrations of PGE, Re and Au (7.1 +/- 0.8 x 10^-3 CI chondrite abundances) are higher than would be expected from metal-silicate partitioning during core formation [1]. Several different explanations have been suggested to explain the low absolute abundances of these elements. (1) Os, Re, Ir, Ru, Rh, Pd, Pt, and Au were added with a late chondritic veneer containing less than 1% of a CI component [2-9]. (2) Insufficient core formation, i.e. some metallic Fe-Ni was retained in the upper mantle during core formation [10]. (3) Disequilibrium during core formation; Segregation of metal from the upper mantle in later stages of accretion was so rapid that equilibrium was not attained [4,11,12]. (4) There was continuous formation of the core during accretion; Equilibrium between sinking metal grains and a molten magma ocean at high temperatures (3000-3500 K) [13]. (5) Increase in silicate/metal partition coefficients by pressure, temperature, or high f(O2) [5,14]; Solution of FeO in the core raises the f(O2) conditions at the core-mantle interface sufficiently to increase the equilibrium concentrations of the siderophile elements in the mantle [15]. Studies of mantle-derived samples such as massif peridotites and peridotite xenoliths provide direct information on the nature and composition of the upper mantle. Massive peridotitic rocks from Zabargad island (Red Sea), Lanzo (Italy), Ronda (Spain) and peridotitic xenoliths from Mongolia were analysed for Os, Re, Ir, Ru, Rh, Pd

  3. Re-Os Systematics and HSE Distribution in Metal from Ochansk (H4) Chondrite

    NASA Technical Reports Server (NTRS)

    Smoliar, M. I.; Horan, M. F.; Alexander, C. M. OD.; Walker, R. J.

    2003-01-01

    Previous studies of the Re-Os systematics of chondrites have documented considerable variation in the Re/Os ratios of whole rock samples. For some whole rock chondrites, Re-Os systematics display large deviations from the primitive isochron that are considerably larger than deviations in other isotope systems. Possible interpretation of these facts is that the Re-Os system in chondrites is particularly sensitive to post-formation alteration processes, thus providing a useful tool to examine such processes. Significant variations that have been detected in highly siderophile element (HSE) patterns for ordinary chondrites support this conclusion. We report Re-Os isotope data for metal separates from the Ochansk H4 chondrite coupled with abundance data for Ru, Pd, Ir, and Pt, determined in the same samples by isotope dilution. We chose this meteorite mainly because it is an observed fall with minimal signs of weathering, and its low metamorphic grade (H4) and shock stage (S3).

  4. Eclipsing Binaries as Astrophysical Laboratories: CM Draconis - Accurate Absolute Physical Properties of Low Mass Stars and an Independent Estimate of the Primordial Helium Abundance

    NASA Astrophysics Data System (ADS)

    McCook, G. P.; Guinan, E. F.; Saumon, D.; Kang, Y. W.

    1997-05-01

    CM Draconis (Gl 630.1; Vmax = +12.93) is an important eclipsing binary consisting of two dM4.5e stars with an orbital period of 1.2684 days. This binary is a high velocity star (s= 164 km/s) and the brighter member of a common proper motion pair with a cool faint white dwarf companion (LP 101-16). CM Dra and its white dwarf companion were once considered by Zwicky to belong to a class of "pygmy stars", but they turned out to be ordinary old, cool white dwarfs or faint red dwarfs. Lacy (ApJ 218,444L) determined the first orbital and physical properties of CM Dra from the analysis of his light and radial velocity curves. In addition to providing directly measured masses, radii, and luminosities for low mass stars, CM Dra was also recognized by Lacy and later by Paczynski and Sienkiewicz (ApJ 286,332) as an important laboratory for cosmology, as a possible old Pop II object where it may be possible to determine the primordial helium abundance. Recently, Metcalfe et al.(ApJ 456,356) obtained accurate RV measures for CM Dra and recomputed refined elements along with its helium abundance. Starting in 1995, we have been carrying out intensive RI photoelectric photometry of CM Dra to obtain well defined, accurate light curves so that its fundamental properties can be improved, and at the same time, to search for evidence of planets around the binary from planetary transit eclipses. During 1996 and 1997 well defined light curves were secured and these were combined with the RV measures of Metcalfe et al. (1996) to determine the orbital and physical parameters of the system, including a refined orbital period. A recent version of the Wilson-Devinney program was used to analyze the data. New radii, masses, mean densities, Teff, and luminosities were found as well as a re-determination of the helium abundance (Y). The results of the recent analyses of the light and RV curves will be presented and modelling results discussed. This research is supported by NSF grants AST-9315365

  5. Low Abundances of Highly Siderophile Elements in the Lunar Mantle: Evidence for Prolonged Late Accretion

    NASA Technical Reports Server (NTRS)

    Walker, R. J.; Horan, M. F.; Shearer, C. K.; Papike, J. J.

    2004-01-01

    The highly siderophile elements (HSE: including Re, Au, Ir, Os, Ru, Pt, Pd, Rh) are strongly partitioned into metal relative to silicates. In the terrestrial planets these elements are concentrated in metallic cores. Earth s mantle has sufficiently high abundances of the HSE (0.008 times CI abundances) that it has been hypothesized approximately 0.1-0.5% of the mass of the Earth was added following the last major interaction between the core and mantle [e.g. 1]. The additional material added to the Earth and Moon has been termed a late veneer , and the process has often been termed late accretion [2]. The timing of the dominant late accretionary period of the Earth and Moon is still poorly known. The abundances of HSE in the lunar mantle could provide important constraints on when the late veneer was added. The material that ultimately became the silicate portion of the Moon was likely stripped of most of its HSE prior to and during coalescence of the Moon. Consequently the initial lunar mantle likely had very low concentrations of the HSE. Unlike Earth, the generation of permanent lunar crust by 4.4 Ga prevented subsequent additions of HSE to the lunar mantle via continued accretion. Thus, if a substantial portion of the late veneer was added after 4.4 Ga, the lunar mantle should have retained very low HSE concentrations. Conversely, if the late veneer was mostly added prior to 4.4 Ga, HSE abundances in the lunar mantle may be roughly similar to abundances in the terrestrial mantle.

  6. Changes in protein abundance between tender and tough meat from bovine longissimus thoracis muscle assessed by isobaric Tag for Relative and Absolute Quantitation (iTRAQ) and 2-dimensional gel electrophoresis analysis.

    PubMed

    Bjarnadóttir, S G; Hollung, K; Høy, M; Bendixen, E; Codrea, M C; Veiseth-Kent, E

    2012-06-01

    The aim of this study was to find potential biomarkers for meat tenderness in bovine Longissimus thoracis muscle and to compare results from isobaric Tag for Relative and Absolute Quantitation (iTRAQ) and 2-dimensional gel electrophoresis (2-DE) analysis. The experiment included 4 tender and 4 tough samples, based on shear force measurements at 7 d postmortem, from young Norwegian red (NRF) bulls, taken at 1 h postmortem. A number of the proteins which have previously been related to tenderness were found to change in abundance between tender and tough samples, both in iTRAQ (P < 0.1) and 2-DE analysis (P < 0.05). Furthermore, 3 proteins that have not previously been related to tenderness were found to change significantly in abundance between tender and tough meat samples in the present study. These include proteins related to control of flux through the tricarboxylate cycle [2-oxoglutarate dehydrogenase complex component E2 (OGDC-E2)], apoptosis (galectin-1) and regulatory role in the release of Ca(2+) from intracellular stores (annexin A6). Even though the overlap in significantly changing proteins was relatively low between iTRAQ and 2-DE analysis, certain proteins predicted to have the same function were found in both analyses and showed similar changes between the groups, such as structural proteins and proteins related to apoptosis and energy metabolism.

  7. Molecular determinants of the interaction between Doa1 and Hse1 involved in endosomal sorting.

    PubMed

    Han, Seungsu; Shin, Donghyuk; Choi, Hoon; Lee, Sangho

    2014-03-28

    Yeast Doa1/Ufd3 is an adaptor protein for Cdc48 (p97 in mammal), an AAA type ATPase associated with endoplasmic reticulum-associated protein degradation pathway and endosomal sorting into multivesicular bodies. Doa1 functions in the endosomal sorting by its association with Hse1, a component of endosomal sorting complex required for transport (ESCRT) system. The association of Doa1 with Hse1 was previously reported to be mediated between PFU domain of Doa1 and SH3 of Hse1. However, it remains unclear which residues are specifically involved in the interaction. Here we report that Doa1/PFU interacts with Hse1/SH3 with a moderate affinity of 5 μM. Asn-438 of Doa1/PFU and Trp-254 of Hse1/SH3 are found to be critical in the interaction while Phe-434, implicated in ubiquitin binding via a hydrophobic interaction, is not. Small-angle X-ray scattering measurements combined with molecular docking and biochemical analysis yield the solution structure of the Doa1/PFU:Hse1/SH3 complex. Taken together, our results suggest that hydrogen bonding is a major determinant in the interaction of Doa1/PFU with Hse1/SH3.

  8. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  9. Precise determination of the absolute isotopic abundance ratio and the atomic weight of chlorine in three international reference materials by the positive thermal ionization mass spectrometer-Cs2Cl+-graphite method.

    PubMed

    Wei, Hai-Zhen; Jiang, Shao-Yong; Xiao, Ying-Kai; Wang, Jun; Lu, Hai; Wu, Bin; Wu, He-Pin; Li, Qing; Luo, Chong-Guang

    2012-12-04

    Because the variation in chlorine isotopic abundances of naturally occurring chlorine bearing substances is significant, the IUPAC Inorganic Chemistry Division, Commission on Isotopic Abundances and Atomic Weights (CIAAW-IUPAC) decided that the uncertainty of atomic weight of chlorine (A(r)(Cl)) should be increased so that the implied range was related to terrestrial variability in 1999 (Coplen, T. B. Atomic weights of the elements 1999 (IUPAC Technical Report), Pure Appl. Chem.2001, 73(4), 667-683; and then, it emphasized that the standard atomic weights of ten elements including chlorine were not constants of nature but depend upon the physical, chemical, and nuclear history of the materials in 2009 (Wieser, M. E.; Coplen, T. B. Pure Appl. Chem.2011, 83(2), 359-396). According to the agreement by CIAAW that an atomic weight could be defined for one specified sample of terrestrial origin (Wieser, M. E.; Coplen, T. B. Pure Appl. Chem.2011, 83(2), 359-396), the absolute isotope ratios and atomic weight of chlorine in standard reference materials (NIST 975, NIST 975a, ISL 354) were accurately determined using the high-precision positive thermal ionization mass spectrometer (PTIMS)-Cs(2)Cl(+)-graphite method. After eliminating the weighing error caused from evaporation by designing a special weighing container and accurately determining the chlorine contents in two highly enriched Na(37)Cl and Na(35)Cl salts by the current constant coulometric titration, one series of gravimetric synthetic mixtures prepared from two highly enriched Na(37)Cl and Na(35)Cl salts was used to calibrate two thermal ionization mass spectrometers in two individual laboratories. The correction factors (i.e., K(37/35) = R(37/35meas)/R(37/35calc)) were obtained from five cycles of iterative calculations on the basis of calculated and determined R((37)Cl/(35)Cl) values in gravimetric synthetic mixtures. The absolute R((37)Cl/(35)Cl) ratios for NIST SRM 975, NIST 975a, and ISL 354 by the precise

  10. Crystal Field Effects and Siderophile Element Partitioning: Implications for Mars HSE Geochemistry

    NASA Technical Reports Server (NTRS)

    Jones, John H.; Malavergne, V.; Neal, C. R.

    2007-01-01

    Analyses of martian (SNC) meteorites indicate that Pt abundances do not vary much compared to other highly siderophile elements (HSE). Therefore, Jones et al. [1] inferred that D(Pt) during basalt petrogenesis was of order unity. This inference was at odds with previously published experiments that gave a D(sub ol/liq) for Pt of approx. 0.01 [2]. Because olivine is likely to be an important constituent of any reasonable martian mantle, the implication of these findings is that minor minerals must have D(Pt) much greater than 1, which seemed improbable. However, not only did the SNC evidence point to a D(sub ol/liq) approx. equal to 1, but so did plots of D(sub ol/liq) vs. ionic radius (Onuma diagram). The ionic radius of Pt(2+) suggested that D(sub ol/liq) for Pt was of order unity, in agreement with the inferences from SNC meteorites. New experiments have failed to detect measurable Pt in olivine, even at high oxygen fugacities [3]. Therefore, some other parameter, other than ionic charge and radius, must hold sway during olivine liquid partitioning of Pt.

  11. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  12. Absolute Photometry

    NASA Astrophysics Data System (ADS)

    Hartig, George

    1990-12-01

    The absolute sensitivity of the FOS will be determined in SV by observing 2 stars at 3 epochs, first in 3 apertures (1.0", 0.5", and 0.3" circular) and then in 1 aperture (1.0" circular). In cycle 1, one star, BD+28D4211 will be observed in the 1.0" aperture to establish the stability of the sensitivity and flat field characteristics and improve the accuracy obtained in SV. This star will also be observed through the paired apertures since these are not calibrated in SV. The stars will be observed in most detector/grating combinations. The data will be averaged to form the inverse sensitivity functions required by RSDP.

  13. An experimental study on the geochemical behavior of highly siderophile elements (HSE) and metalloids (As, Se, Sb, Te, Bi) in a mss-iss-pyrite system at 650 °C: A possible magmatic origin for Co-HSE-bearing pyrite and the role of metalloid-rich phases in the fractionation of HSE

    NASA Astrophysics Data System (ADS)

    Cafagna, Fabio; Jugo, Pedro J.

    2016-04-01

    Pyrite, the most abundant sulfide in the Earth's crust, is an accessory mineral in several magmatic sulfide deposits. Although most pyrite is hydrothermal, previous experimental studies have shown that pyrite can also have a primary magmatic origin, by exsolving from monosulfide solid solution (mss) during cooling of a sulfide melt, if sulfur fugacity is sufficiently high. Pyrite from some localities has significant amounts of Co, and complex zonation in some low-melting-point chalcophile elements (LMCE), such as As, Se, Sb, Te, Bi (henceforth referred to as metalloids) and some platinum-group elements (PGE: Ru, Rh, Pd, Os, Ir, Pt). However, the origin of such pyrite and the causes of zonation are not clear. Because the distribution of some of these elements is heterogeneous and seems to be developed in concentric zones, the zonation has been interpreted to represent growth stages, some of them secondary and caused partly by hydrothermal fluids. Better constraints on the origin of Co-PGE-bearing pyrite could help unravel the geochemical processes affecting the sulfide assemblages in which it is found; thus, an experimental study was undertaken to characterize pyrite formation in magmatic sulfide environments and its relationship with metalloids and highly siderophile elements (HSE: PGE, Re, Au). Natural pyrrhotite, chalcopyrite, pentlandite and elemental S were mixed and doped with approximately 50 ppm of each HSE. A mixture of metalloids was added at 0.2 wt.% or 3 wt.% to aliquots of sulfide mixtures. Starting materials were sealed in evacuated silica tubes and fused at 1200 °C. The temperature was subsequently reduced to 750 °C (at 60 °C/h), then to 650 °C (at 0.5 °C/h) to produce relatively large euhedral pyrite crystals, then quenched. The experiments were analyzed using reflected light, SEM, EPMA and LA-ICP-MS. Experimental products contained euhedral pyrite, mss, intermediate solid solution (iss) and metalloid-rich phases, interpreted as quench product

  14. New insights from old spherules: Os-W isotope and HSE evidence for Paleoarchean meteorite bombardment of the Earth

    NASA Astrophysics Data System (ADS)

    Schulz, T.; Luguet, A. A.; Koeberl, C.

    2014-12-01

    Introduction: Although still debated, spherule beds in the Barberton Mountain Land (~3.4 Ga) are suspected to represent remnants of impact-generated and ballistically emplaced silicate melt droplets [e.g. 1]. Such deposits provide the only window into the late stages of the heavy meteorite bombardment on Earth as their source craters have long since been obliterated. In order to identify a possible meteoritic component and, if successful, to discuss potential projectile materials, we are performing a detailed Os-W isotope as well as HSE abundance study on spherule layers from the recently drilled ICDP BARB5 core (grid location 25°30`50.76``S, 31°33`10.08``E). Samples and Methods: Samples were taken from a spherule-containing meta-sedimentary core section discovered between 510 and 512 m depth. About 100 mg of homogenized sample powders were spiked with a mixed 190Os, 185Re, 191Ir and 194Pt tracer and treated in a high pressure asher using inverse aqua regia, followed by conventional extraction schemes for Os and the other HSEs [4]. Chemical and Os isotope measurements (via N-TIMS) were performed in Vienna, whereas HSE measurements were undertaken via ICP MS in Bonn. Results and Discussion: Our preliminary Os isotope data reveal a trend between samples exhibiting high spherule to matrix ratios (187Os/188Os ~0.106 and Os ~0.4 ppm) and samples with lower ones (187Os/188Os up to ~0.304 and Os ~0.008 ppm). Notably, the most unradiogenic samples exhibit carbonaceous-chondrite-like initial 187Os/188Os and HSE ratios, whereas all other samples are clear non-chondritic. These findings support an extraterrestrial contribution in the spherules and can be interpreted compared to conclusions drawn from a Cr isotope study performed on similar samples [3], possibly representing a different impact event and favouring a chondritic projectile. However, further considerations based on precise Os/W ratio determinations and high-precision 182W isotope data, will be presented at the

  15. Understanding electronic and optical properties of strontium titanate at both PBE and HSE06 levels

    NASA Astrophysics Data System (ADS)

    Yang, Jianhui; Fan, Qiang

    2017-01-01

    The structural parameters, electronic structure and optical properties of strontium titanate have been investigated by the first-principles. Exchange–correlation effects are treated by the generalized gradient approximation(GGA) employing Perdew–Burke–Ernzerhof (PBE) functional and hybrid density functional Heyd-Scuseria-Ernzerhof(HSE06). The direct-band gaps are equal to 2.06 and 3.73 eV under PBE and HSE06 level, respectively. The indirect-band gaps are equal to 1.67 and 3.33 eV under PBE and HSE06 level, respectively. The optical properties including complex dielectric function, absorption coefficient, refractivity and reflectivity index have been calculated. Meanwhile, the origin of the spectral peaks on the basis of the electronic band structures has been interpreted.

  16. Comparing LDA-1/2, HSE03, HSE06 and G 0 W 0 approaches for band gap calculations of alloys

    NASA Astrophysics Data System (ADS)

    Pela, R. R.; Marques, M.; Teles, L. K.

    2015-12-01

    It has long been known that the local density approximation and the generalized gradient approximation do not furnish reliable band gaps, and one needs to go beyond these approximations to reliably describe these properties. Among alternatives are the use of hybrid functionals (HSE03 and HSE06 being popular), the GW approximation or the recently proposed LDA-1/2 method. In this work, we compare rigorously the performance of these four methods in describing the band gaps of alloys, employing the generalized quasi-chemical approach to treat the disorder of the alloy and to obtain judiciously the band gap for the entire compositional range. Zincblende InGaAs and InGaN were chosen as prototypes due to their importance in optoelectronic applications. The comparison between these four approaches was guided both by the agreement between the predicted band gap and the experimental one, and by the demanded computational effort (time and memory). We observed that the HSE06 method provided the most accurate results (in comparison with experiments), whereas, surprisingly, the LDA-1/2 method gave the best compromise between accuracy and computational resources. Due to its low computational cost and good accuracy, we decided to double the supercell used to describe the alloys, and employing LDA-1/2 we observed that the bowing parameter changed remarkably, only agreeing with the measured one for the larger supercell, where LDA-1/2 plays an important role.

  17. Ecological policy in oil-gas complexes, HSE MS implementation in oil and gas company

    NASA Astrophysics Data System (ADS)

    Kochetkova, O. P.; Glyzina, T. S.; Vazim, A. A.; Tugutova, S. S.

    2016-09-01

    The paper considers the following issues: HSE MS international standard implementation in oil and gas industry, taking into account international practices; implementation of standards in oil and gas companies; policy in the field of environmental protection and occupational health and safety; achievement of planned indicators and targets in environmental protection and occupational health and safety.

  18. Significance of the whole rock Re-Os ages in cryptically and modally metasomatised cratonic peridotites: Constraints from HSE-Se-Te systematics

    NASA Astrophysics Data System (ADS)

    Luguet, Ambre; Behrens, Melanie; Pearson, D. Graham; König, Stephan; Herwartz, Daniel

    2015-09-01

    The Re-Os isotopic system is the geochronometer of choice to constrain the timing of lithospheric mantle root formation and reconstruct the evolution of Earth's dynamics from the "mantle" perspective. In order to constrain the effects of metasomatic processes on the Re-Os isotopic system, eleven peridotites from the Letlhakane kimberlite pipe were investigated for whole rock major and trace elements, highly siderophile elements (HSE), Se, Te and 187Os/188Os signatures. These spinel peridotites (SP), garnet peridotites (GP), garnet-phlogopite peridotites (GPP) and phlogopite peridotites (PP) experienced cryptic metasomatism and the GP-GPP-PP additionally constitute a sequence of increasing modal metasomatism. The cryptically metasomatised SP appear devoid of base metal sulphides (BMS) and show suprachondritic Se/Te ratios (15-40) and extremely Pd- and Pt-depleted HSE patterns. These features are characteristic of high-degree partial melting residues. Their 187Os/188Os signatures are thus considered to be inherited from the partial melting event. This implies a Neoarchean (2.5-2.8 Ga, TRD eruption) stabilisation of the Letlhakane mantle root and supports the Letlhakane mantle root being a westerly extension of the Zimbabwe cratonic root. The modally metasomatised peridotites contain BMS whose abundance significantly increases from the GPP to the GP and PP. The BMS-poor GPP are only slightly richer in Pt and Pd than the BMS-free SP but have similarly high Se/Te ratios. The BMS-rich GP and PP exhibit significant enrichments in Pt, Pd, Se, Te resulting in HSE-Se-Te signatures similar to that of the Primitive Upper Mantle (PUM). Addition of 0.001-0.05 wt.% metasomatic BMS ± PGM (platinum group minerals, i.e., Pt-tellurides) to highly refractory residues, such as the Letlhakane SP, reproduce well the HSE-Se-Te systematics observed in the BMS-poor and BMS-rich modally metasomatised peridotites. In the GPP, the negligible addition of metasomatic BMS ± PGM did not disturb

  19. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  20. A Bioengineered Human Skin Equivalent (HSE) for the Evaluation of Protectants

    DTIC Science & Technology

    2006-11-01

    full thickness skin equivalent that has been optimized by addition of various growth factors, such as ascorbic acid, lipids and a PPAR-α agonist. It...has been characterized for morphology, lipid composition and barrier properties and compared to the commercially available skin equivalents...Compared to these, the HSE possesses closer lipid composition and barrier properties to human skin . The morphology shows a highly differentiated epidermis

  1. The synthesis and crystal structure of LaHSe2O6, a layered, anhydrous selenite

    NASA Astrophysics Data System (ADS)

    Morris, Russell E.; Harrison, William T.; Stucky, Galen D.; Cheetham, Anthony K.

    1992-05-01

    Lanthanum hydrogen selenite, LaHSe2O6, M(sub r), = 393.83, orthorhombic, P(sub c)2(sub 1)b (No. 29), a = 7.139(6) A, b = 19.008(9) A, c = 8.469(9) A, (alpha = 90 deg, beta = 90 deg, gamma = 90 deg, V = 1149.24 cu A, Z = 8, D(sub x) = 4.55 g cu cm, mu = 199.7 cm(-1), lambda (Mo Ka, graphite monochromator) = 0.71073 A, F(000) = 1392, room temperature 298(2) K. Final R = 3.61 percent, wR = 4.21 percent for 1701 observed reflections with I greater than 3 sigma(I)). LaHSe2O6 has been prepared using hydrothermal synthetic techniques and its crystal structure elucidated by single crystal X-ray diffraction. This new structure consists of layers of LaOl0, HSeO3 and SeO3 polyhedra parallel to the ac-place; the layers are interconnected by Se-OH...O-(Se,La) hydrogen bonds.

  2. Absolutely classical spin states

    NASA Astrophysics Data System (ADS)

    Bohnet-Waldraff, F.; Giraud, O.; Braun, D.

    2017-01-01

    We introduce the concept of "absolutely classical" spin states, in analogy to absolutely separable states of bipartite quantum systems. Absolutely classical states are states that remain classical (i.e., a convex sum of projectors on coherent states of a spin j ) under any unitary transformation applied to them. We investigate the maximal size of the ball of absolutely classical states centered on the maximally mixed state and derive a lower bound for its radius as a function of the total spin quantum number. We also obtain a numerical estimate of this maximal radius and compare it to the case of absolutely separable states.

  3. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  4. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  5. Formation of Apollo 16 impactites and the composition of late accreted material: Constraints from Os isotopes, highly siderophile elements and sulfur abundances

    NASA Astrophysics Data System (ADS)

    Gleißner, Philipp; Becker, Harry

    2017-03-01

    Fe-Ni metal-schreibersite-troilite intergrowths in Apollo 16 impact melt rocks and new highly siderophile element (HSE) and S abundance data indicate that millimeter-scale closed-system fractional crystallization processes during cooling of impactor-derived metal melt droplets in impact-melts are the main reason for compositional variations and strong differences in abundances and ratios of HSE in multiple aliquots from Apollo 16 impact melt rocks. Element ratios obtained from linear regression of such data are therefore prone to error, but weighted averages take into account full element budgets in the samples and thus represent a more accurate estimate of their impactor contributions. Modeling of solid metal-liquid metal partitioning in the Fe-Ni-S-P system and HSE patterns in impactites from different landing sites suggest that bulk compositions of ancient lunar impactites should be representative of impact melt compositions and that large-scale fractionation of the HSE by in situ segregation of solid metal or sulfide liquid in impact melt sheets most likely did not occur. The compositional record of lunar impactites indicates accretion of variable amounts of chondritic and non-chondritic impactor material and the mixing of these components during remelting of earlier ejecta deposits. The non-chondritic composition appears most prominently in some Apollo 16 impactites and is characterized by suprachondritic HSE/Ir ratios which increase from refractory to moderately volatile HSE and exhibit a characteristic enrichment of Ru relative to Pt. Large-scale fractional crystallization of solid metal from sulfur and phosphorous rich metallic melt with high P/S in planetesimal or embryo cores is currently the most likely process that may have produced these compositions. Similar materials or processes may have contributed to the HSE signature of the bulk silicate Earth (BSE).

  6. Actinide abundances in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Hagee, B.; Bernatowicz, T. J.; Podosek, F. A.; Johnson, M. L.; Burnett, D. S.

    1990-01-01

    Measurements of actinide and light REE (LREE) abundances and of phosphate abundances in equilibrated ordinary chondrites were obtained and were used to define the Pu abundance in the solar system and to determine the degree of variation of actinide and LREE abundances. The results were also used to compare directly the Pu/U ratio with the earlier obtained ratio determined indirectly, as (Pu/Nd)x(Nd/U), assuming that Pu behaves chemically as a LREE. The data, combined with high-accuracy isotope-dilution data from the literature, show that the degree of gram-scale variability of the Th, U, and LREE abundances for equilibrated ordinary chondrites is a factor of 2-3 for absolute abundances and up to 50 percent for relative abundances. The observed variations are interpreted as reflecting the differences in the compositions and/or proportions of solar nebula components accreted to ordinary chondrite parent bodies.

  7. Absolute and relative blindsight.

    PubMed

    Balsdon, Tarryn; Azzopardi, Paul

    2015-03-01

    The concept of relative blindsight, referring to a difference in conscious awareness between conditions otherwise matched for performance, was introduced by Lau and Passingham (2006) as a way of identifying the neural correlates of consciousness (NCC) in fMRI experiments. By analogy, absolute blindsight refers to a difference between performance and awareness regardless of whether it is possible to match performance across conditions. Here, we address the question of whether relative and absolute blindsight in normal observers can be accounted for by response bias. In our replication of Lau and Passingham's experiment, the relative blindsight effect was abolished when performance was assessed by means of a bias-free 2AFC task or when the criterion for awareness was varied. Furthermore, there was no evidence of either relative or absolute blindsight when both performance and awareness were assessed with bias-free measures derived from confidence ratings using signal detection theory. This suggests that both relative and absolute blindsight in normal observers amount to no more than variations in response bias in the assessment of performance and awareness. Consideration of the properties of psychometric functions reveals a number of ways in which relative and absolute blindsight could arise trivially and elucidates a basis for the distinction between Type 1 and Type 2 blindsight.

  8. Nanoscale variations in 187Os isotopic composition and HSE systematics in a Bultfontein peridotite

    NASA Astrophysics Data System (ADS)

    Wainwright, A. N.; Luguet, A.; Schreiber, A.; Fonseca, R. O. C.; Nowell, G. M.; Lorand, J.-P.; Wirth, R.; Janney, P. E.

    2016-08-01

    Understanding the mineralogical controls on radiogenic chronometers is a fundamental aspect of all geochronological tools. As with other common dating tools, it has become increasingly clear that the Re-Os system can be impacted by multiple mineral formation events. The accessory and micrometric nature of the Re-Os-bearing minerals has made assessing this influence complex. This is especially evident in cratonic peridotites, where long residence times and multiple metasomatic events have created a complex melting and re-enrichment history. Here we investigate a harzburgitic peridotite from the Bultfontein kimberlite (South Africa) which contains sub-micron Pt-Fe-alloy inclusions within base metal sulphides (BMS). Through the combination of the focused ion beam lift-out technique and low blank mass spectrometry we were able to remove and analyse the Pt-Fe-alloy inclusions for their Re-Os composition and highly siderophile element (HSE) systematics. Six repeats of the whole-rock yield 187Os/188Os compositions of 0.10893-0.10965, which correspond to Re depletion model ages (TRD) of 2.69-2.79 Ga. The Os, Ir and Pt concentrations are slightly variable across the different digestions, whilst Pd and Re remain constant. The resulting HSE pattern is typical of cratonic peridotites displaying depleted Pt and Pd. The Pt-Fe-alloys have PUM-like 187Os/188Os compositions of 0.1294 ± 24 (2-s.d.) and 0.1342 ± 38, and exhibit a saw-tooth HSE pattern with enriched Re and Pt. In contrast, their BMS hosts have unradiogenic 187Os/188Os of 0.1084 ± 6 and 0.1066 ± 3, with TRD ages of 2.86 and 3.09 Ga, similar to the whole-rock systematics. The metasomatic origin of the BMS is supported by (i) the highly depleted nature of the mantle peridotite and (ii) their Ni-rich sulphide assemblage. Occurrence of Pt-Fe-alloys as inclusions within BMS grains demonstrates the genetic link between the BMS and Pt-Fe-alloys and argues for formation during a single but continuous event of silicate melt

  9. Absolute neutrino mass scale

    NASA Astrophysics Data System (ADS)

    Capelli, Silvia; Di Bari, Pasquale

    2013-04-01

    Neutrino oscillation experiments firmly established non-vanishing neutrino masses, a result that can be regarded as a strong motivation to extend the Standard Model. In spite of being the lightest massive particles, neutrinos likely represent an important bridge to new physics at very high energies and offer new opportunities to address some of the current cosmological puzzles, such as the matter-antimatter asymmetry of the Universe and Dark Matter. In this context, the determination of the absolute neutrino mass scale is a key issue within modern High Energy Physics. The talks in this parallel session well describe the current exciting experimental activity aiming to determining the absolute neutrino mass scale and offer an overview of a few models beyond the Standard Model that have been proposed in order to explain the neutrino masses giving a prediction for the absolute neutrino mass scale and solving the cosmological puzzles.

  10. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  11. 187Re-187Os systematics, highly siderophile element, S-Se-Te abundances in the components of unequilibrated L chondrites

    NASA Astrophysics Data System (ADS)

    Kadlag, Yogita; Becker, Harry

    2016-01-01

    The 187Re-187Os systematics, abundances of highly siderophile elements (HSE: Re, platinum group elements and Au), Te, Se and S as well as major and minor elements were determined in separated components of two unequilibrated L chondrites QUE 97008 (L3.05) and Ceniceros (L3.7). The 187Re-187Os systematics are disturbed in the components of both meteorites, most likely due to open system behavior of Re during terrestrial weathering of QUE 97008 and alteration on the L chondrite parent body as indicated by an internal errorchron generated for components of Ceniceros. The HSE abundance patterns suggest that the bulk rock abundances were mainly controlled by two different end members. Non-magnetic fractions display lower Re/Os and HSE/Ir than CI chondrites. Chondrules, metal-troilite spherules and fine magnetic fractions, are depleted in refractory HSE and show higher Rh/Ir, Pd/Ir and Au/Ir than in CI chondrites. The different HSE compositions indicate the presence of unequilibrated alloys and loss of refractory HSE-rich carrier phases from the precursors of some L chondrite components. Gold is decoupled from other HSE in magnetic fractions and shows chalcophile affinities with a grain size dependent variation similar to S and Se, presumably inherited from preaccretionary processes. Tellurium is depleted in all components compared to other analysed siderophile elements, and its abundance was most likely controlled by fractional condensation and different geochemical affinities. The volatility dependent depletion of Te requires different physical and chemical conditions than typical for the canonical condensation sequence as represented by carbonaceous chondrites. Tellurium also shows variable geochemical behavior, siderophile in Ceniceros, predominantly chalcophile in QUE 97008. These differences may have been inherited from element partitioning during chondrule formation. Selenium and S on the other hand are almost unfractionated from each other and only show

  12. Establishing ion ratio thresholds based on absolute peak area for absolute protein quantification using protein cleavage isotope dilution mass spectrometry.

    PubMed

    Loziuk, Philip L; Sederoff, Ronald R; Chiang, Vincent L; Muddiman, David C

    2014-11-07

    Quantitative mass spectrometry has become central to the field of proteomics and metabolomics. Selected reaction monitoring is a widely used method for the absolute quantification of proteins and metabolites. This method renders high specificity using several product ions measured simultaneously. With growing interest in quantification of molecular species in complex biological samples, confident identification and quantitation has been of particular concern. A method to confirm purity or contamination of product ion spectra has become necessary for achieving accurate and precise quantification. Ion abundance ratio assessments were introduced to alleviate some of these issues. Ion abundance ratios are based on the consistent relative abundance (RA) of specific product ions with respect to the total abundance of all product ions. To date, no standardized method of implementing ion abundance ratios has been established. Thresholds by which product ion contamination is confirmed vary widely and are often arbitrary. This study sought to establish criteria by which the relative abundance of product ions can be evaluated in an absolute quantification experiment. These findings suggest that evaluation of the absolute ion abundance for any given transition is necessary in order to effectively implement RA thresholds. Overall, the variation of the RA value was observed to be relatively constant beyond an absolute threshold ion abundance. Finally, these RA values were observed to fluctuate significantly over a 3 year period, suggesting that these values should be assessed as close as possible to the time at which data is collected for quantification.

  13. An integrated experiment for identification of best decision styles and teamworks with respect to HSE and ergonomics program: The case of a large oil refinery.

    PubMed

    Azadeh, A; Mokhtari, Z; Sharahi, Z Jiryaei; Zarrin, M

    2015-12-01

    Decision making failure is a predominant human error in emergency situations. To demonstrate the subject model, operators of an oil refinery were asked to answer a health, safety and environment HSE-decision styles (DS) questionnaire. In order to achieve this purpose, qualitative indicators in HSE and ergonomics domain have been collected. Decision styles, related to the questions, have been selected based on Driver taxonomy of human decision making approach. Teamwork efficiency has been assessed based on different decision style combinations. The efficiency has been ranked based on HSE performance. Results revealed that efficient decision styles resulted from data envelopment analysis (DEA) optimization model is consistent with the plant's dominant styles. Therefore, improvement in system performance could be achieved using the best operator for critical posts or in team arrangements. This is the first study that identifies the best decision styles with respect to HSE and ergonomics factors.

  14. Formation and migration energies of the vacancy in Si calculated using the HSE06 range-separated hybrid functional

    NASA Astrophysics Data System (ADS)

    Śpiewak, Piotr; Kurzydłowski, Krzysztof J.

    2013-11-01

    To overcome deficiencies of conventional density functional theory (DFT) utilizing the standard approximation for the exchange-correlation, the revised Heyd-Scuseria-Ernzerhof screened hybrid functional (HSE06) has been used for calculating the formation and migration energies of the vacancy in Si. It is demonstrated that the hybrid approach gives a much more accurate electronic description of the bulk and the vacancy. The correct description of the band gap and the donor transition levels obtained with the HSE06 functional builds confidence in predictions of the vacancy acceptor states. The calculated migration energies of the vacancy with different charge states agree well with low-temperature annealing measurements and, together with formation energies, provide an excellent estimate of the activation energy of vacancy-mediated self-diffusion in silicon.

  15. Development and implementation of an HSE management system in E and P companies

    SciTech Connect

    Bentley, P.D.; Mundhenk, D.L.; Jones, M.G.; Jong, G. de; Visser, J.P. )

    1995-01-01

    This paper describes the experience to date with safety management systems (SMS's) and describes their implementation after the Piper Alpha disaster and Lord Cullen's report. It also shows the gradual expansion of these systems toward fully integrated health, safety, and environment (HSE) management systems. The authors' company policy, which was clearly stated before publication of Lord Cullen's report, is that work should not start until the appropriate controls are in place. Work based on this policy and on objective-setting SMS's within Shell Intl. Petroleum Mij. (SIPM) E and P coordination started in earnest soon after the publication of the report in Nov. 1990 and has continued without interruption since that time. Objective-setting systems may be defined as systems where the company management sets its own objectives or goals on the basis of functional rather than prescriptive requirements and then goes on to demonstrate how such goals have been, or are being, met. The paper ends with a projection of what may be expected in the future.

  16. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  17. Absolute airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  18. Absolute-structure reports.

    PubMed

    Flack, Howard D

    2013-08-01

    All the 139 noncentrosymmetric crystal structures published in Acta Crystallographica Section C between January 2011 and November 2012 inclusive have been used as the basis of a detailed study of the reporting of absolute structure. These structure determinations cover a wide range of space groups, chemical composition and resonant-scattering contribution. Defining A and D as the average and difference of the intensities of Friedel opposites, their level of fit has been examined using 2AD and selected-D plots. It was found, regardless of the expected resonant-scattering contribution to Friedel opposites, that the Friedel-difference intensities are often dominated by random uncertainty and systematic error. An analysis of data collection strategy is provided. It is found that crystal-structure determinations resulting in a Flack parameter close to 0.5 may not necessarily be from crystals twinned by inversion. Friedifstat is shown to be a robust estimator of the resonant-scattering contribution to Friedel opposites, very little affected by the particular space group of a structure nor by the occupation of special positions. There is considerable confusion in the text of papers presenting achiral noncentrosymmetric crystal structures. Recommendations are provided for the optimal way of treating noncentrosymmetric crystal structures for which the experimenter has no interest in determining the absolute structure.

  19. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  20. Absolute multilateration between spheres

    NASA Astrophysics Data System (ADS)

    Muelaner, Jody; Wadsworth, William; Azini, Maria; Mullineux, Glen; Hughes, Ben; Reichold, Armin

    2017-04-01

    Environmental effects typically limit the accuracy of large scale coordinate measurements in applications such as aircraft production and particle accelerator alignment. This paper presents an initial design for a novel measurement technique with analysis and simulation showing that that it could overcome the environmental limitations to provide a step change in large scale coordinate measurement accuracy. Referred to as absolute multilateration between spheres (AMS), it involves using absolute distance interferometry to directly measure the distances between pairs of plain steel spheres. A large portion of each sphere remains accessible as a reference datum, while the laser path can be shielded from environmental disturbances. As a single scale bar this can provide accurate scale information to be used for instrument verification or network measurement scaling. Since spheres can be simultaneously measured from multiple directions, it also allows highly accurate multilateration-based coordinate measurements to act as a large scale datum structure for localized measurements, or to be integrated within assembly tooling, coordinate measurement machines or robotic machinery. Analysis and simulation show that AMS can be self-aligned to achieve a theoretical combined standard uncertainty for the independent uncertainties of an individual 1 m scale bar of approximately 0.49 µm. It is also shown that combined with a 1 µm m‑1 standard uncertainty in the central reference system this could result in coordinate standard uncertainty magnitudes of 42 µm over a slender 1 m by 20 m network. This would be a sufficient step change in accuracy to enable next generation aerospace structures with natural laminar flow and part-to-part interchangeability.

  1. On phase transitions in NH_{4HSeO4} and ND{4}DSeO{4}

    NASA Astrophysics Data System (ADS)

    Dvořák, V.; Quilichini, M.; Le Calvé, N.; Pasquier, B.; Heger, G.; Schweiss, P.

    1991-10-01

    We propose a hypothetical prototype phase (space group Imm) from which all observed phases in NH{4}HSeO{4} and ND{4}DSeO{4} can be deduced by introducing order parameters of definite symmetries. Following this hypothesis the symmetry of the superionic phase should be P2/n in disagreement with recent experimental results. Free energies of Landau type are derived by means of which particular phase transitions could be described. The large dielectric anomaly near 252 K in NH{4}HSeO{4} is discussed in some detail. The first order phase transition in ND{4}DSeO{4} from the room temperature phase P2{1}2121 into commensurate lock-in phase (with the wave-vector k {z}(0,0, frac{π}{c})) has been investigated by neutron elastic scattering and the symmetry of the latter has been found to be P112{1} in agreement with our theoretical prediction. Nous proposons une phase prototype hypothétique (de groupe d'espace Immm) à partir de laquelle on peut déduire toutes les phases observées dans NH{4}HSeO{4} et ND{4}DSeO{4} par l'introduction de paramètres d'ordre ayant une symétrie définie. D'après cette hypothèse le groupe d'espace de la phase superionique doit être P2/n ce qui est en désaccord avec des résultats expérimentaux récents. Pour chaque transition de phase on écrit l'énergie libre de type Landau à partir de laquelle elle peut être décrite. La grande anomalie diélectrique au voisinage de 252 K dans le composé NH{4}HSeO{4} est discutée de façon détaillée. Dans le composé ND{4}DSeO{4}, nous avons étudié par diffusion élastique de neutrons la transition de phase du premier ordre qui transforme le cristal de la structure P2{1}2121 dans la phase commensurable d'accrochage (de vecteur d'onde k {z}(0,0, frac{π}{c})). Nous avons montré que la symétrie de cette phase est P112{1}, ce qui en accord avec nos prévisions théoriques.

  2. Estimating Absolute Site Effects

    SciTech Connect

    Malagnini, L; Mayeda, K M; Akinci, A; Bragato, P L

    2004-07-15

    The authors use previously determined direct-wave attenuation functions as well as stable, coda-derived source excitation spectra to isolate the absolute S-wave site effect for the horizontal and vertical components of weak ground motion. They used selected stations in the seismic network of the eastern Alps, and find the following: (1) all ''hard rock'' sites exhibited deamplification phenomena due to absorption at frequencies ranging between 0.5 and 12 Hz (the available bandwidth), on both the horizontal and vertical components; (2) ''hard rock'' site transfer functions showed large variability at high-frequency; (3) vertical-motion site transfer functions show strong frequency-dependence, and (4) H/V spectral ratios do not reproduce the characteristics of the true horizontal site transfer functions; (5) traditional, relative site terms obtained by using reference ''rock sites'' can be misleading in inferring the behaviors of true site transfer functions, since most rock sites have non-flat responses due to shallow heterogeneities resulting from varying degrees of weathering. They also use their stable source spectra to estimate total radiated seismic energy and compare against previous results. they find that the earthquakes in this region exhibit non-constant dynamic stress drop scaling which gives further support for a fundamental difference in rupture dynamics between small and large earthquakes. To correct the vertical and horizontal S-wave spectra for attenuation, they used detailed regional attenuation functions derived by Malagnini et al. (2002) who determined frequency-dependent geometrical spreading and Q for the region. These corrections account for the gross path effects (i.e., all distance-dependent effects), although the source and site effects are still present in the distance-corrected spectra. The main goal of this study is to isolate the absolute site effect (as a function of frequency) by removing the source spectrum (moment-rate spectrum) from

  3. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound.

  4. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  5. Screening and ranking framework (SRF) for geologic CO2 storagesite selection on the basis of HSE risk

    SciTech Connect

    Oldenburg, Curtis M.

    2006-11-27

    A screening and ranking framework (SRF) has been developedto evaluate potential geologic carbon dioxide (CO2) storage sites on thebasis of health, safety, and environmental (HSE) risk arising from CO2leakage. The approach is based on the assumption that CO2 leakage risk isdependent on three basic characteristics of a geologic CO2 storage site:(1) the potential for primary containment by the target formation; (2)the potential for secondary containment if the primary formation leaks;and (3) the potential for attenuation and dispersion of leaking CO2 ifthe primary formation leaks and secondary containment fails. Theframework is implemented in a spreadsheet in which users enter numericalscores representing expert opinions or published information along withestimates of uncertainty. Applications to three sites in Californiademonstrate the approach. Refinements and extensions are possible throughthe use of more detailed data or model results in place of propertyproxies.

  6. Development of risk filter and risk assessment worksheets for HSE guidance--'Upper Limb Disorders in the Workplace' 2002.

    PubMed

    Graves, Rod J; Way, Kïrsten; Riley, David; Lawton, Clare; Morris, Len

    2004-09-01

    Upper limb disorders (ULDs) in the workplace represent a significant cause of ill health in Great Britain. As part of the Health and Safety Commission's strategy for the prevention of musculoskeletal disorders (MSDs), the well known guidance document on ULDs--"Work-related Upper Limb Disorders: a Guide to Prevention" (HSG60), (HMSO, London.), has been extensively revised. This revision (Upper limb disorders in the workplace. HSG60 (rev), HSE Books, Sudbury.) includes the development of new risk assessment tools that can be used by employers to identify ULD risk factors in work activities and more importantly to take action to reduce or eliminate ULD risks. The risk assessment tools form part of a seven stage management approach that underpins the new guidance. This paper outlines the development of the risk assessment tools contained in the revised guidance.

  7. Database applicaton for absolute spectrophotometry

    NASA Astrophysics Data System (ADS)

    Bochkov, Valery V.; Shumko, Sergiy

    2002-12-01

    32-bit database application with multidocument interface for Windows has been developed to calculate absolute energy distributions of observed spectra. The original database contains wavelength calibrated observed spectra which had been already passed through apparatus reductions such as flatfielding, background and apparatus noise subtracting. Absolute energy distributions of observed spectra are defined in unique scale by means of registering them simultaneously with artificial intensity standard. Observations of sequence of spectrophotometric standards are used to define absolute energy of the artificial standard. Observations of spectrophotometric standards are used to define optical extinction in selected moments. FFT algorithm implemented in the application allows performing convolution (deconvolution) spectra with user-defined PSF. The object-oriented interface has been created using facilities of C++ libraries. Client/server model with Windows Socket functionality based on TCP/IP protocol is used to develop the application. It supports Dynamic Data Exchange conversation in server mode and uses Microsoft Exchange communication facilities.

  8. Absolute classification with unsupervised clustering

    NASA Technical Reports Server (NTRS)

    Jeon, Byeungwoo; Landgrebe, D. A.

    1992-01-01

    An absolute classification algorithm is proposed in which the class definition through training samples or otherwise is required only for a particular class of interest. The absolute classification is considered as a problem of unsupervised clustering when one cluster is known initially. The definitions and statistics of the other classes are automatically developed through the weighted unsupervised clustering procedure, which is developed to keep the cluster corresponding to the class of interest from losing its identity as the class of interest. Once all the classes are developed, a conventional relative classifier such as the maximum-likelihood classifier is used in the classification.

  9. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  10. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  11. Absolute Standards for Climate Measurements

    NASA Astrophysics Data System (ADS)

    Leckey, J.

    2016-10-01

    In a world of changing climate, political uncertainty, and ever-changing budgets, the benefit of measurements traceable to SI standards increases by the day. To truly resolve climate change trends on a decadal time scale, on-orbit measurements need to be referenced to something that is both absolute and unchanging. One such mission is the Climate Absolute Radiance and Refractivity Observatory (CLARREO) that will measure a variety of climate variables with an unprecedented accuracy to definitively quantify climate change. In the CLARREO mission, we will utilize phase change cells in which a material is melted to calibrate the temperature of a blackbody that can then be observed by a spectrometer. A material's melting point is an unchanging physical constant that, through a series of transfers, can ultimately calibrate a spectrometer on an absolute scale. CLARREO consists of two primary instruments: an infrared (IR) spectrometer and a reflected solar (RS) spectrometer. The mission will contain orbiting radiometers with sufficient accuracy to calibrate other space-based instrumentation and thus transferring the absolute traceability. The status of various mission options will be presented.

  12. Toward The Absolute Age of M92 With MIST

    NASA Astrophysics Data System (ADS)

    Choi, Jieun; Conroy, Charlie; Dotter, Aaron; Weisz, Daniel; Rosenfield, Philip; Dolphin, Andrew

    2016-08-01

    Globular clusters provide a fundamental link between stars and galaxies. For example, it has been suggested that ultra faint dwarf galaxies formed all of their stars prior to the epoch of reionization, but this conclusion hinges entirely on the striking similarity of their stellar populations to the ancient, metal-poor globular cluster M92. The accurate measurement of absolute ages of ancient globular clusters therefore has direct implications for the formation histories of the smallest galaxies in the Universe. However, a reliable determination of the absolute ages of globular clusters has proven to be a challenge due to uncertainties in stellar physics and complications in how the models are compared to observations. I will present preliminary results from a comprehensive study to measure the absolute age of M92 using high-quality HST archival imaging data. We pair our new MESA Isochrones and Stellar Tracks (MIST) models with a full CMD fitting framework to jointly fit multi-color CMDs, taking into account the uncertainties in abundances, distance, and stellar physics. The goal of this project is two-fold. First, we aim to provide the most secure absolute age of M92 to date with robustly estimated uncertainties. Second, we explore and quantify the degeneracies between uncertain physical quantities and model variables, such as the distance, mixing-length-alpha parameter, and helium abundance, with the ultimate goal of better constraining these unknowns with data from ongoing and future surveys such as K2, Gaia, TESS, JWST, and WFIRST.

  13. Osmium Isotope and Highly Siderophile Element Compositions of Lunar Orange and Green Glasses

    NASA Technical Reports Server (NTRS)

    Walker, R. J.; Horan, M. F.; Shearer, C. K.; Papike, J. J.

    2003-01-01

    The absolute and relative abundances of the highly siderophile elements (HSE) present in planetary mantles are primarily controlled by: 1) silicate-metal partitioning during core-mantle differentiation, 2) the subsequent addition of HSE to mantles via continued planetary accretion. Consequently, constraints on the absolute and relative abundances of the HSE in the lunar mantle will provide unique insights to the formation and late accretionary history of not only the Moon, but also Earth. Determining the HSE content of the lunar mantle, however, has proven difficult, because no bona fide mantle rocks have been collected from the moon. The only materials presently available for constraining mantle abundances are lunar volcanic rocks. Lunar basalts typically have very low concentrations of HSE and highly fractionated HSE patterns. Because of our extremely limited understanding of mantle melt partitioning of the HSE, even for terrestrial systems, extrapolations to mantle compositions from basaltic compositions are difficult, except possibly for the less compatible HSE Pt and Pd. Primitive, presumably less fractionated materials, such as picritic glasses are potentially more diagnostic of the lunar interior. Here we report Os isotopic composition data and Re, Os, Ir, Ru, Pt and Pd concentration data for green glass (15426,164) and orange glass (74001,1217). As with previous studies utilizing neutron activation analysis, we are examining different size fractions of the spherules to assess the role of surface condensation in the generation of the HSE abundances.

  14. Cleaning validation 1: development and validation of a chromatographic method for the detection of traces of LpHse detergent.

    PubMed

    Zayas, José; Colón, Héctor; Garced, Omar; Ramos, Leyda M

    2006-05-03

    A high performance liquid chromatography (HPLC) method for the detection of traces of LpHse (4-tert-amylphenol and 2-phenylphenol) has been developed and validated. The method was shown to be linear in the range from 0.5 to 10.00 ppm in solution. The method was also shown to be accurate with a recovery of up to 95% by area response for amylphenol and up to 94% by area response for phenylphenol from metal surfaces (4''x4'' un-polished 304 stainless steel plates) by means of swab material. The reproducibility of the method was determined to be 1.61% by area response and 1.52% by height response for amylphenol and 5.40% by area response and 13.77% by height response for phenylphenol from solutions reported as the pooled relative standard deviation. The developed method was also shown to be rugged by comparisons of different preparations by different analysts. The limit of detection was established to be 0.076 ppm by peak area, 0.079 ppm by peak height for amylphenol and 0.34 ppm by peak area, 0.82 ppm by peak height for phenylphenol from solution, and 1.77 ppb by peak area, 1.23 ppm by peak height for amylphenol and 1.23 ppm by peak area, 1.44 ppm by peak height for phenylphenol from recovery from metal studies. The limit of quantitation was established to be 0.25 ppm by peak area, 0.26 ppm by peak height for amylphenol and 1.14 ppm by peak area, 2.73 ppm by peak height for phenylphenol from solution, and 3.89 ppm by peak area, 4.11 ppm by peak height for amylphenol and 4.11 ppm by peak area, 4.79 ppm by peak height for phenylphenol from recovery from metal plates studies. This method can be employed to determine the presence of LpHse residues in cleaned equipments where the detergent was used.

  15. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; ,

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  16. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  17. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  18. Physics of negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Abraham, Eitan; Penrose, Oliver

    2017-01-01

    Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.

  19. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  20. Actinide abundances in ordinary chondrites

    USGS Publications Warehouse

    Hagee, B.; Bernatowicz, T.J.; Podosek, F.A.; Johnson, M.L.; Burnett, D.S.; Tatsumoto, M.

    1990-01-01

    Measurements of 244Pu fission Xe, U, Th, and light REE (LREE) abundances, along with modal petrographic determinations of phosphate abundances, were carried out on equilibrated ordinary chondrites in order to define better the solar system Pu abundance and to determine the degree of variation of actinide and LREE abundances. Our data permit comparison of the directly measured Pu/ U ratio with that determined indirectly as (Pu/Nd) ?? (Nd/U) assuming that Pu behaves chemically as a LREE. Except for Guaren??a, and perhaps H chondrites in general, Pu concentrations are similar to that determined previously for St. Se??verin, although less precise because of higher trapped Xe contents. Trapped 130Xe 136Xe ratios appear to vary from meteorite to meteorite, but, relative to AVCC, all are similar in the sense of having less of the interstellar heavy Xe found in carbonaceous chondrite acid residues. The Pu/U and Pu/Nd ratios are consistent with previous data for St. Se??verin, but both tend to be slightly higher than those inferred from previous data on Angra dos Reis. Although significant variations exist, the distribution of our Th/U ratios, along with other precise isotope dilution data for ordinary chondrites, is rather symmetric about the CI chondrite value; however, actinide/(LREE) ratios are systematically lower than the CI value. Variations in actinide or LREE absolute and relative abundances are interpreted as reflecting differences in the proportions and/or compositions of more primitive components (chondrules and CAI materials?) incorporated into different regions of the ordinary chondrite parent bodies. The observed variations of Th/U, Nd/U, or Ce/U suggest that measurements of Pu/U on any single equilibrated ordinary chondrite specimen, such as St. Se??verin, should statistically be within ??20-30% of the average solar system value, although it is also clear that anomalous samples exist. ?? 1990.

  1. Absolute calibration of optical tweezers

    SciTech Connect

    Viana, N.B.; Mazolli, A.; Maia Neto, P.A.; Nussenzveig, H.M.; Rocha, M.S.; Mesquita, O.N.

    2006-03-27

    As a step toward absolute calibration of optical tweezers, a first-principles theory of trapping forces with no adjustable parameters, corrected for spherical aberration, is experimentally tested. Employing two very different setups, we find generally very good agreement for the transverse trap stiffness as a function of microsphere radius for a broad range of radii, including the values employed in practice, and at different sample chamber depths. The domain of validity of the WKB ('geometrical optics') approximation to the theory is verified. Theoretical predictions for the trapping threshold, peak position, depth variation, multiple equilibria, and 'jump' effects are also confirmed.

  2. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < -1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  3. [Implementation and validation in the Italian context of the HSE management standards: a contribution to provide a practical model for the assessment of work-related stress].

    PubMed

    Iavicoli, S; Natali, E; Rondinone, B M; Castaldi, T; Persechino, B

    2010-01-01

    Over the last years, stress has been recognized as a potential work-related risk factor. Unfortunately, work-related stress is a very delicate subject, especially because it is difficult to assess it objectively and in broadly acceptable terms. In fact, work-related stress is a subjective personal response to a specific work environment, ad is of a multifactorial origin. In order to provide a practical tool for the assessment of work-related stress, the authors carried out a thorough benchmarking analysis of the various models to manage work stress problems adopted by EU countries. As a result, the authors have chosen to apply and implement the Health and Safety Executive (HSE) Management Standards approach in the Italian context. In compliance with the European Framework Agreement signed on October 8, 2004, HSE Management Standards ask for the coordinated and integrated involvement of workers and safety personnel and represent a valid assessment approach based on principles widely acknowledged in the scientific literature.

  4. Systematic study of the effect of HSE functional internal parameters on the electronic structure and band gap of a representative set of metal oxides.

    PubMed

    Viñes, Francesc; Lamiel-García, Oriol; Chul Ko, Kyoung; Yong Lee, Jin; Illas, Francesc

    2017-04-30

    The effect of the amount of Hartree-Fock mixing parameter (α) and of the screening parameter (w) defining the range separated HSE type hybrid functional is systematically studied for a series of seven metal oxides: TiO2 , ZrO2 , CuO2 , ZnO, MgO, SnO2 , and SrTiO3 . First, reliable band gap values were determined by comparing the optimal α reproducing the experiment with the inverse of the experimental dielectric constant. Then, the effect of the w in the HSE functional on the calculated band gap was explored in detail. Results evidence the existence of a virtually infinite number of combinations of the two parameters which are able to reproduce the experimental band gap, without a unique pair able to describe the full studied set of materials. Nevertheless, the results point out the possibility of describing the electronic structure of these materials through a functional including a screened HF exchange and an appropriate correlation contribution. © 2017 Wiley Periodicals, Inc.

  5. Synthesis, crystal structure determination, thermal and magnetic properties of the new Cu0.73Ni0.27(HSeO3)2 compound

    NASA Astrophysics Data System (ADS)

    Hentech, I.; Zehani, K.; Kabadou, A.; Ben Salah, A.; Loukil, M.; Bessais, L.

    2017-01-01

    A novel three-dimensional Cu0.73Ni0.27(HSeO3)2 compound was prepared from an aqueous solution. This compound crystallizes in the monoclinic system with P21/n space group and with the following cell parameters: a=6.4379(3) Å; b=7.3555(3) Å; c=5.7522(3) Å; β=93.4341(1)°; V=271.90(2) Å3 and Z=2. The reported material has been structurally characterized by X-ray powder diffraction and confirmed by scanning electron microscope and energy dispersive spectroscopy (MEB/EDS) analysis. The copper/nickel atom is surrounded by an octahedron coordination of oxygen atoms from sex hydrogenoselenites anions. The presence of (HSeO3)- has been further confirmed by IR spectroscopy and this compound exhibits a phase transition at 356 K, this transition has been detected by differential scanning calorimetry and TG-DTA measurement. The magnetic property of this material was determined. The ferromagnetic ordering is further confirmed by the magnetic field dependence of the magnetization (Hysteresis loop) at 10 K. The substitution of Cu by Ni induces a ferro-paramagnetic transition at T=31 K. Field cooled (FC) and Zero field cooled (ZFC) magnetization measurements under an applied field of 100 Oe in the temperature range of 10-300 K were performed. These measurements have been resulted the blocking temperature (TB) at around 25 K.

  6. Abundances in Przybylski's star

    NASA Astrophysics Data System (ADS)

    Cowley, C. R.; Ryabchikova, T.; Kupka, F.; Bord, D. J.; Mathys, G.; Bidelman, W. P.

    2000-09-01

    We have derived abundances for 54 elements in the extreme roAp star HD101065. ESO spectra with a resolution of about 80000, and S/N of 200 or more were employed. The adopted model has Teff=6600K, and log(g)=4.2. Because of the increased line opacity and consequent low gas pressure, convection plays no significant role in the temperature structure. Lighter elemental abundances through the iron group scatter about standard abundance distribution (SAD) (solar) values. Iron and nickel are about one order of magnitude deficient while cobalt is enhanced by 1.5dex. Heavier elements, including the lanthanides, generally follow the solar pattern but enhanced by 3 to 4dex. Odd-Z elements are generally less abundant than their even-Z neighbours. With a few exceptions (e.g. Yb), the abundance pattern among the heavy elements is remarkably coherent, and resembles a displaced solar distribution.

  7. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  8. ON A SUFFICIENT CONDITION FOR ABSOLUTE CONTINUITY.

    DTIC Science & Technology

    The formulation of a condition which yields absolute continuity when combined with continuity and bounded variation is the problem considered in the...Briefly, the formulation is achieved through a discussion which develops a proof by contradiction of a sufficiently theorem for absolute continuity which uses in its hypothesis the condition of continuity and bounded variation .

  9. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  10. Monolithically integrated absolute frequency comb laser system

    SciTech Connect

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  11. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  12. Abundances in the metal poor dwarf Ross 451

    NASA Technical Reports Server (NTRS)

    Spiesman, William J.

    1990-01-01

    High dispersion echelle spectra of the high velocity subdwarf Ross 451 (= G236-080) were obtained using the 4-m telescope at Kitt Peak. Initial abundance determinations for six elements are presented, using absolute oscillator strengths and metal-poor stellar-atmosphere models.

  13. Absolute quantitation of protein posttranslational modification isoform.

    PubMed

    Yang, Zhu; Li, Ning

    2015-01-01

    Mass spectrometry has been widely applied in characterization and quantification of proteins from complex biological samples. Because the numbers of absolute amounts of proteins are needed in construction of mathematical models for molecular systems of various biological phenotypes and phenomena, a number of quantitative proteomic methods have been adopted to measure absolute quantities of proteins using mass spectrometry. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with internal peptide standards, i.e., the stable isotope-coded peptide dilution series, which was originated from the field of analytical chemistry, becomes a widely applied method in absolute quantitative proteomics research. This approach provides more and more absolute protein quantitation results of high confidence. As quantitative study of posttranslational modification (PTM) that modulates the biological activity of proteins is crucial for biological science and each isoform may contribute a unique biological function, degradation, and/or subcellular location, the absolute quantitation of protein PTM isoforms has become more relevant to its biological significance. In order to obtain the absolute cellular amount of a PTM isoform of a protein accurately, impacts of protein fractionation, protein enrichment, and proteolytic digestion yield should be taken into consideration and those effects before differentially stable isotope-coded PTM peptide standards are spiked into sample peptides have to be corrected. Assisted with stable isotope-labeled peptide standards, the absolute quantitation of isoforms of posttranslationally modified protein (AQUIP) method takes all these factors into account and determines the absolute amount of a protein PTM isoform from the absolute amount of the protein of interest and the PTM occupancy at the site of the protein. The absolute amount of the protein of interest is inferred by quantifying both the absolute amounts of a few PTM

  14. Absolute realization of low BRDF value

    NASA Astrophysics Data System (ADS)

    Liu, Zilong; Liao, Ningfang; Li, Ping; Wang, Yu

    2010-10-01

    Low BRDF value is widespread used in many critical domains such as space and military fairs. These values below 0.1 Sr-1 . So the Absolute realization of these value is the most critical issue in the absolute measurement of BRDF. To develop the Absolute value realization theory of BRDF , defining an arithmetic operators of BRDF , achieving an absolute measurement Eq. of BRDF based on radiance. This is a new theory method to solve the realization problem of low BRDF value. This theory method is realized on a self-designed common double orientation structure in space. By designing an adding structure to extend the range of the measurement system and a control and processing software, Absolute realization of low BRDF value is achieved. A material of low BRDF value is measured in this measurement system and the spectral BRDF value are showed within different angles allover the space. All these values are below 0.4 Sr-1 . This process is a representative procedure about the measurement of low BRDF value. A corresponding uncertainty analysis of this measurement data is given depend on the new theory of absolute realization and the performance of the measurement system. The relative expand uncertainty of the measurement data is 0.078. This uncertainty analysis is suitable for all measurements using the new theory of absolute realization and the corresponding measurement system.

  15. OXYGEN ABUNDANCES IN CEPHEIDS

    SciTech Connect

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.; Kovtyukh, V. V. E-mail: serkor@skyline.od.ua E-mail: scan@deneb1.odessa.ua

    2013-07-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.

  16. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  17. Magnifying absolute instruments for optically homogeneous regions

    SciTech Connect

    Tyc, Tomas

    2011-09-15

    We propose a class of magnifying absolute optical instruments with a positive isotropic refractive index. They create magnified stigmatic images, either virtual or real, of optically homogeneous three-dimensional spatial regions within geometrical optics.

  18. The Simplicity Argument and Absolute Morality

    ERIC Educational Resources Information Center

    Mijuskovic, Ben

    1975-01-01

    In this paper the author has maintained that there is a similarity of thought to be found in the writings of Cudworth, Emerson, and Husserl in his investigation of an absolute system of morality. (Author/RK)

  19. Algal Assemblages for Large River Monitoring: Comparison Among Biovolume, Absolute and Relative Abundance Metrics

    EPA Science Inventory

    Periphyton and phytoplankton samples were collected and analyzed from 393 locations in three mid-continent (US) great rivers: the Upper Mississippi, Missouri and Ohio rivers. From the 410 taxa identified, 303 taxa were common enough for multivariate analyses. Algae assemblages we...

  20. Absolute cross sections of compound nucleus reactions

    NASA Astrophysics Data System (ADS)

    Capurro, O. A.

    1993-11-01

    The program SEEF is a Fortran IV computer code for the extraction of absolute cross sections of compound nucleus reactions. When the evaporation residue is fed by its parents, only cumulative cross sections will be obtained from off-line gamma ray measurements. But, if one has the parent excitation function (experimental or calculated), this code will make it possible to determine absolute cross sections of any exit channel.

  1. Kelvin and the absolute temperature scale

    NASA Astrophysics Data System (ADS)

    Erlichson, Herman

    2001-07-01

    This paper describes the absolute temperature scale of Kelvin (William Thomson). Kelvin found that Carnot's axiom about heat being a conserved quantity had to be abandoned. Nevertheless, he found that Carnot's fundamental work on heat engines was correct. Using the concept of a Carnot engine Kelvin found that Q1/Q2 = T1/T2. Thermometers are not used to obtain absolute temperatures since they are calculated temperatures.

  2. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed.

  3. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  4. Selected Reaction Monitoring Mass Spectrometry for Absolute Protein Quantification.

    PubMed

    Manes, Nathan P; Mann, Jessica M; Nita-Lazar, Aleksandra

    2015-08-17

    Absolute quantification of target proteins within complex biological samples is critical to a wide range of research and clinical applications. This protocol provides step-by-step instructions for the development and application of quantitative assays using selected reaction monitoring (SRM) mass spectrometry (MS). First, likely quantotypic target peptides are identified based on numerous criteria. This includes identifying proteotypic peptides, avoiding sites of posttranslational modification, and analyzing the uniqueness of the target peptide to the target protein. Next, crude external peptide standards are synthesized and used to develop SRM assays, and the resulting assays are used to perform qualitative analyses of the biological samples. Finally, purified, quantified, heavy isotope labeled internal peptide standards are prepared and used to perform isotope dilution series SRM assays. Analysis of all of the resulting MS data is presented. This protocol was used to accurately assay the absolute abundance of proteins of the chemotaxis signaling pathway within RAW 264.7 cells (a mouse monocyte/macrophage cell line). The quantification of Gi2 (a heterotrimeric G-protein α-subunit) is described in detail.

  5. Quantitative standards for absolute linguistic universals.

    PubMed

    Piantadosi, Steven T; Gibson, Edward

    2014-01-01

    Absolute linguistic universals are often justified by cross-linguistic analysis: If all observed languages exhibit a property, the property is taken to be a likely universal, perhaps specified in the cognitive or linguistic systems of language learners and users. In many cases, these patterns are then taken to motivate linguistic theory. Here, we show that cross-linguistic analysis will very rarely be able to statistically justify absolute, inviolable patterns in language. We formalize two statistical methods--frequentist and Bayesian--and show that in both it is possible to find strict linguistic universals, but that the numbers of independent languages necessary to do so is generally unachievable. This suggests that methods other than typological statistics are necessary to establish absolute properties of human language, and thus that many of the purported universals in linguistics have not received sufficient empirical justification.

  6. Absolute Distance Measurement with the MSTAR Sensor

    NASA Technical Reports Server (NTRS)

    Lay, Oliver P.; Dubovitsky, Serge; Peters, Robert; Burger, Johan; Ahn, Seh-Won; Steier, William H.; Fetterman, Harrold R.; Chang, Yian

    2003-01-01

    The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. The sensor uses a single laser in conjunction with fast phase modulators and low frequency detectors. We describe the design of the system - the principle of operation, the metrology source, beamlaunching optics, and signal processing - and show results for target distances up to 1 meter. We then demonstrate how the system can be scaled to kilometer-scale distances.

  7. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed.

  8. Ammonia abundances in comets

    NASA Astrophysics Data System (ADS)

    Wyckoff, S.; Tegler, S.; Engel, L.

    The emission band strengths of the NH2 bands of Comets Halley, Hartley-Good, Thiele, and Borrelly were measured to determine the NH2 column densities for the comets. Production rates obtained using the Haser and vectorial models are in agreement within the observational errors, suggesting that a simple two-step decay model may be used to approximate the NH2 distribution in a comet's coma. Ammonia-to-water abundance ratios from 0.01 to 0.4 percent were found for the four comets. The ratio in Comet Halley is found to be Q(NH3)/Q(H2O) = 0.002 + or - 0.001. No significant difference in the ammonia abundance was found before or after perihelion in Comet Halley.

  9. Comparative vs. Absolute Judgments of Trait Desirability

    ERIC Educational Resources Information Center

    Hofstee, Willem K. B.

    1970-01-01

    Reversals of trait desirability are studied. Terms indicating conservativw behavior appeared to be judged relatively desirable in comparative judgement, while traits indicating dynamic and expansive behavior benefited from absolute judgement. The reversal effect was shown to be a general one, i.e. reversals were not dependent upon the specific…

  10. New Techniques for Absolute Gravity Measurements.

    DTIC Science & Technology

    1983-01-07

    Hammond, J.A. (1978) Bollettino Di Geofisica Teorica ed Applicata Vol. XX. 8. Hammond, J. A., and Iliff, R. L. (1979) The AFGL absolute gravity system...International Gravimetric Bureau, No. L:I-43. 7. Hammond. J.A. (1978) Bollettino Di Geofisica Teorica ed Applicata Vol. XX. 8. Hammond, J.A., and

  11. An Absolute Electrometer for the Physics Laboratory

    ERIC Educational Resources Information Center

    Straulino, S.; Cartacci, A.

    2009-01-01

    A low-cost, easy-to-use absolute electrometer is presented: two thin metallic plates and an electronic balance, usually available in a laboratory, are used. We report on the very good performance of the device that allows precise measurements of the force acting between two charged plates. (Contains 5 footnotes, 2 tables, and 6 figures.)

  12. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  13. Absolute Positioning Using the Global Positioning System

    DTIC Science & Technology

    1994-04-01

    Global Positioning System ( GPS ) has becom a useful tool In providing relativ survey...Includes the development of a low cost navigator for wheeled vehicles. ABSTRACT The Global Positioning System ( GPS ) has become a useful tool In providing...technique of absolute or point positioning involves the use of a single Global Positioning System ( GPS ) receiver to determine the three-dimenslonal

  14. Absolute Radiation Thermometry in the NIR

    NASA Astrophysics Data System (ADS)

    Bünger, L.; Taubert, R. D.; Gutschwager, B.; Anhalt, K.; Briaudeau, S.; Sadli, M.

    2017-04-01

    A near infrared (NIR) radiation thermometer (RT) for temperature measurements in the range from 773 K up to 1235 K was characterized and calibrated in terms of the "Mise en Pratique for the definition of the Kelvin" (MeP-K) by measuring its absolute spectral radiance responsivity. Using Planck's law of thermal radiation allows the direct measurement of the thermodynamic temperature independently of any ITS-90 fixed-point. To determine the absolute spectral radiance responsivity of the radiation thermometer in the NIR spectral region, an existing PTB monochromator-based calibration setup was upgraded with a supercontinuum laser system (0.45 μm to 2.4 μm) resulting in a significantly improved signal-to-noise ratio. The RT was characterized with respect to its nonlinearity, size-of-source effect, distance effect, and the consistency of its individual temperature measuring ranges. To further improve the calibration setup, a new tool for the aperture alignment and distance measurement was developed. Furthermore, the diffraction correction as well as the impedance correction of the current-to-voltage converter is considered. The calibration scheme and the corresponding uncertainty budget of the absolute spectral responsivity are presented. A relative standard uncertainty of 0.1 % (k=1) for the absolute spectral radiance responsivity was achieved. The absolute radiometric calibration was validated at four temperature values with respect to the ITS-90 via a variable temperature heatpipe blackbody (773 K ...1235 K) and at a gold fixed-point blackbody radiator (1337.33 K).

  15. Crystal structure, magnetic, thermal behavior, and spectroscopic studies of two new bimetallic hydrogenselenites: [Cu2-xNix (HSeO3)2Cl2.4H2O], (x = 0.62; 0.91)

    NASA Astrophysics Data System (ADS)

    Hentech, I.; Zehani, K.; Kabadou, A.; Ben Salah, A.; Loukil, M.; Bessais, L.

    2016-08-01

    Two new iso-structural bimetallic hydrogenselenites [Cu2-xNix(HSeO3)2Cl2.4H2O] (x = 0.62; 0.91) have been synthesized from solution and characterized by single-crystal and powder X-ray diffraction. They crystallized in the orthorhombic Pnma space group with the following lattice parameters: for Cu1.09Ni0.91(HSeO3)2Cl2.4H2O: a = 9.0931 (2) Å, b = 17.7717 (4) Å, c = 7.1620 (2) Å, Z = 4, and for Cu1.38Ni0.62(HSeO3)2Cl2.4H2O: a = 9.0931 (4) Å, b = 17.7467 (7) Å, c = 7.1717 (3) Å; Z = 4. The crystal structure of this compound consists by a three-dimensional framework, but it may be described as a bi-dimensional structure consisting of layers, parallel to the (010) plane formed by two types of (Cu/Ni) octahedral and (HSeO3)- trigonal pyramids. The magnetic measurement, thermal and spectroscopic studies were performed for these compounds. The magnetic results reveal the appearance of a weak ferromagnetic behavior at low temperature (Tc = 16 K for x = 0.91 and 18.8 K for x = 0.62). The DSC analysis enabled us to locate two endothermic peaks. The first peak can be attributed to a completely dehydration of the material, in this transformation, the compounds undergo a structural phase transition which can favor a non-centrosymmetric phase at high temperature confirmed by the thermodiffractograms measurement. The second peak for these samples is due to the ferro-paraelectric phase transition which can be explained by an order- disorder transition.

  16. Flare Plasma Iron Abundance

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  17. Synthesis and X-ray structural investigation of K{sub 2}(H{sub 5}O{sub 2})[UO{sub 2}(C{sub 2}O{sub 4}){sub 2}(HSeO{sub 3})

    SciTech Connect

    Pushkin, D. V.; Peresypkina, E. V.; Serezhkina, L. B.; Marukhnov, A. V.; Virovets, A. V.

    2011-05-15

    The synthesis and X-ray diffraction analysis of K{sub 2}(H{sub 5}O{sub 2})[UO{sub 2}(C{sub 2}O{sub 4}){sub 2}(HSeO{sub 3})] single crystals have been performed. This compound crystallizes in the triclinic system with the unit-cell parameters a = 6.7665(4) Angstrom-Sign , b = 8.8850(4) Angstrom-Sign , c = 12.3147(7) Angstrom-Sign , {alpha} = 94.73 Degree-Sign , {beta} = 90.16 Degree-Sign , {gamma} = 92.11 Degree-Sign , sp. gr. P1-bar, Z = 2, and R = 0.019. The basic structural units are island [UO{sub 2}(C{sub 2}O{sub 4}){sub 2}(HSeO{sub 3})]{sup 3-} groups, which belong to the AB{sub 2}{sup 01}M{sup 1} crystallochemical group of uranyl complexes (A = UO{sub 2}{sup 2+}, B{sup 01} = C{sub 2}O{sub 4}{sup 2-}, and M{sub 1} = HSeO{sub 3}{sup -}). Uraniumcontaining complexes are linked through K{sup +} and H{sub 5}O{sub 2}{sup +} ions and via a system of hydrogen bonds with the participation of oxonium hydrogen atoms in this structure.

  18. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  19. Consistent thermostatistics forbids negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Hilbert, Stefan

    2014-01-01

    Over the past 60 years, a considerable number of theories and experiments have claimed the existence of negative absolute temperature in spin systems and ultracold quantum gases. This has led to speculation that ultracold gases may be dark-energy analogues and also suggests the feasibility of heat engines with efficiencies larger than one. Here, we prove that all previous negative temperature claims and their implications are invalid as they arise from the use of an entropy definition that is inconsistent both mathematically and thermodynamically. We show that the underlying conceptual deficiencies can be overcome if one adopts a microcanonical entropy functional originally derived by Gibbs. The resulting thermodynamic framework is self-consistent and implies that absolute temperature remains positive even for systems with a bounded spectrum. In addition, we propose a minimal quantum thermometer that can be implemented with available experimental techniques.

  20. Absolute measurement of length with nanometric resolution

    NASA Astrophysics Data System (ADS)

    Apostol, D.; Garoi, F.; Timcu, A.; Damian, V.; Logofatu, P. C.; Nascov, V.

    2005-08-01

    Laser interferometer displacement measuring transducers have a well-defined traceability route to the definition of the meter. The laser interferometer is de-facto length scale for applications in micro and nano technologies. However their physical unit -half lambda is too large for nanometric resolution. Fringe interpolation-usual technique to improve the resolution-lack of reproducibility could be avoided using the principles of absolute distance measurement. Absolute distance refers to the use of interferometric techniques for determining the position of an object without the necessity of measuring continuous displacements between points. The interference pattern as produced by the interference of two point-like coherent sources is fitted to a geometric model so as to determine the longitudinal location of the target by minimizing least square errors. The longitudinal coordinate of the target was measured with accuracy better than 1 nm, for a target position range of 0.4μm.

  1. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  2. Computer processing of spectrograms for absolute intensities.

    PubMed

    Guttman, A; Golden, J; Galbraith, H J

    1967-09-01

    A computer program was developed to process photographically recorded spectra for absolute intensity. Test and calibration films are subjected to densitometric scans that provide digitally recorded densities on magnetic tapes. The nonlinear calibration data are fitted by least-squares cubic polynomials to yield a good approximation to the monochromatic H&D curves for commonly used emulsions (2475 recording film, Royal-X, Tri-X, 4-X). Several test cases were made. Results of these cases show that the machine processed absolute intensities are accurate to within 15%o. Arbitrarily raising the sensitivity threshold by 0.1 density units above gross fog yields cubic polynomial fits to the H&D curves that are radiometrically accurate within 10%. In addition, curves of gamma vs wavelength for 2475, Tri-X, and 4-X emulsions were made. These data show slight evidence of the photographic Purkinje effect in the 2475 emulsion.

  3. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  4. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum.

  5. Absolute and relative dosimetry for ELIMED

    NASA Astrophysics Data System (ADS)

    Cirrone, G. A. P.; Cuttone, G.; Candiano, G.; Carpinelli, M.; Leonora, E.; Lo Presti, D.; Musumarra, A.; Pisciotta, P.; Raffaele, L.; Randazzo, N.; Romano, F.; Schillaci, F.; Scuderi, V.; Tramontana, A.; Cirio, R.; Marchetto, F.; Sacchi, R.; Giordanengo, S.; Monaco, V.

    2013-07-01

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  6. Silicon Absolute X-Ray Detectors

    SciTech Connect

    Seely, John F.; Korde, Raj; Sprunck, Jacob; Medjoubi, Kadda; Hustache, Stephanie

    2010-06-23

    The responsivity of silicon photodiodes having no loss in the entrance window, measured using synchrotron radiation in the 1.75 to 60 keV range, was compared to the responsivity calculated using the silicon thickness measured using near-infrared light. The measured and calculated responsivities agree with an average difference of 1.3%. This enables their use as absolute x-ray detectors.

  7. Negative absolute temperature for mobile particles

    NASA Astrophysics Data System (ADS)

    Braun, Simon; Ronzheimer, Philipp; Schreiber, Michael; Hodgman, Sean; Bloch, Immanuel; Schneider, Ulrich

    2013-05-01

    Absolute temperature is usually bound to be strictly positive. However, negative absolute temperature states, where the occupation probability of states increases with their energy, are possible in systems with an upper energy bound. So far, such states have only been demonstrated in localized spin systems with finite, discrete spectra. We realized a negative absolute temperature state for motional degrees of freedom with ultracold bosonic 39K atoms in an optical lattice, by implementing the attractive Bose-Hubbard Hamiltonian. This new state strikingly revealed itself by a quasimomentum distribution that is peaked at maximum kinetic energy. The measured kinetic energy distribution and the extracted negative temperature indicate that the ensemble is close to degeneracy, with coherence over several lattice sites. The state is as stable as a corresponding positive temperature state: The negative temperature stabilizes the system against mean-field collapse driven by negative pressure. Negative temperatures open up new parameter regimes for cold atoms, enabling fundamentally new many-body states. Additionally, they give rise to several counterintuitive effects such as heat engines with above unity efficiency.

  8. Measurement of absolute gravity acceleration in Firenze

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  9. System for absolute measurements by interferometric sensors

    NASA Astrophysics Data System (ADS)

    Norton, Douglas A.

    1993-03-01

    The most common problem of interferometric sensors is their inability to measure absolute path imbalance. Presented in this paper is a signal processing system that gives absolute, unambiguous reading of optical path difference for almost any style of interferometric sensor. Key components are a wide band (incoherent) optical source, a polychromator, and FFT electronics. Advantages include no moving parts in the signal processor, no active components at the sensor location, and the use of standard single mode fiber for sensor illumination and signal transmission. Actual absolute path imbalance of the interferometer is determined without using fringe counting or other inferential techniques. The polychromator extracts the interference information that occurs at each discrete wavelength within the spectral band of the optical source. The signal processing consists of analog and digital filtering, Fast Fourier analysis, and a peak detection and interpolation algorithm. This system was originally designed for use in a remote pressure sensing application that employed a totally passive fiber optic interferometer. A performance qualification was made using a Fabry-Perot interferometer and a commercially available laser interferometer to measure the reference displacement.

  10. Constrained Least Absolute Deviation Neural Networks

    PubMed Central

    Wang, Zhishun; Peterson, Bradley S.

    2008-01-01

    It is well known that least absolute deviation (LAD) criterion or L1-norm used for estimation of parameters is characterized by robustness, i.e., the estimated parameters are totally resistant (insensitive) to large changes in the sampled data. This is an extremely useful feature, especially, when the sampled data are known to be contaminated by occasionally occurring outliers or by spiky noise. In our previous works, we have proposed the least absolute deviation neural network (LADNN) to solve unconstrained LAD problems. The theoretical proofs and numerical simulations have shown that the LADNN is Lyapunov-stable and it can globally converge to the exact solution to a given unconstrained LAD problem. We have also demonstrated its excellent application value in time-delay estimation. More generally, a practical LAD application problem may contain some linear constraints, such as a set of equalities and/or inequalities, which is called constrained LAD problem, whereas the unconstrained LAD can be considered as a special form of the constrained LAD. In this paper, we present a new neural network called constrained least absolute deviation neural network (CLADNN) to solve general constrained LAD problems. Theoretical proofs and numerical simulations demonstrate that the proposed CLADNN is Lyapunov stable and globally converges to the exact solution to a given constrained LAD problem, independent of initial values. The numerical simulations have also illustrated that the proposed CLADNN can be used to robustly estimate parameters for nonlinear curve fitting, which is extensively used in signal and image processing. PMID:18269958

  11. Oxygen abundance and convection

    NASA Astrophysics Data System (ADS)

    Van't Veer, C.; Cayrel, R.

    The triplet IR lines of O I near 777 nm are computed with the Kurucz's code, modified to accept several convection models. The program has been run with the MLT algorithm, with l/H = 1.25 and 0.5, and with the Canuto-Mazzitelli and Canuto-Goldman-Mazzitelli approaches, on a metal-poor turnoff-star model atmosphere with Teff=6200 K, log g = 4.3, [Fe/H]= -1.5. The results show that the differences in equivalent widths for the 4 cases do not exceed 2 per cent (0.3 mA). The convection treatment is therefore not an issue for the oxygen abundance derived from the permitted lines.

  12. NEON AND OXYGEN ABUNDANCES AND ABUNDANCE RATIO IN THE SOLAR CORONA

    SciTech Connect

    Landi, E.; Testa, P.

    2015-02-20

    In this work we determine the Ne/O abundance ratio from Solar and Heliospheric Observatory (SOHO)/Solar Ultraviolet Measurement of Emitted Radiation (SUMER) off-disk observations of quiescent streamers over the 1996-2008 period. We find that the Ne/O ratio is approximately constant over solar cycle 23 from 1996 to 2005, at a value of 0.099 ± 0.017; this value is lower than the transition region determinations from the quiet Sun used to infer the neon photospheric abundance from the oxygen photospheric abundance. Also, the Ne/O ratio we determined from SUMER is in excellent agreement with in situ determinations from ACE/SWICS. In 2005-2008, the Ne/O abundance ratio increased with time and reached 0.25 ± 0.05, following the same trend found in the slowest wind analyzed by ACE/SWICS. Further, we measure the absolute abundance in the corona for both oxygen and neon from the data set of 1996 November 22, obtaining A {sub o} = 8.99 ± 0.04 and A {sub Ne} = 7.92 ± 0.03, and we find that both elements are affected by the first ionization potential (FIP) effect, with oxygen being enhanced by a factor of 1.4-2.1 over its photospheric abundance, and neon being changed by a factor of 0.75-1.20. We conclude that the Ne/O ratio is not constant in the solar atmosphere, both in time and at different heights, and that it cannot be reliably used to infer the neon abundance in the photosphere. Also, we argue that the FIP effect was less effective during the minimum of solar cycle 24, and that the Ne/O = 0.25 ± 0.05 value measured at that time is closer to the true photospheric value, leading to a neon photospheric abundance larger than assumed by ≈40%. We discuss the implications of these results for the solar abundance problem, for the FIP effect, and for the identification of the source regions of the solar wind.

  13. Capella: Structure and Abundances

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy S.

    1999-01-01

    This grant covers the analysis of EUVE spectra of the cool star binary system Capella. This project has also required the analysis of simultaneous Advanced Satellite for Cosmology and Astrophysics (ASCA) data. The ASCA spectrum of Capella could not be fit with standard models; by imposing models based on strong lines observed with EUVE, a problem wavelength region was identified. Correcting the problem required calculations of atomic collision strengths of higher principal quantum number than had ever been calculated. With these new models applied to the ASCA spectrum, better fits were obtained. Findings are that: (1) ASCA and EUVE spectra are both dominated by a region at 6 x 10(exp 6) K. (2) The high energy cut-off of the ASCA spectrum is consistent with emission from the highest ionization stages of EUVE, namely Fe XXIV. (3) EUVE requires a continuous emission measure distribution with more than two temperatures. (4) The ASCA spectra are of such high statistical significance that systematic uncertainties dominate, including atomic physics issues and calibration issues. (5) While the ASCA spectral fits achieve lower Chi(exp 2 with two-temperature fits, the EUVE-derived emission measure distribution models are also consistent with the spectra. (6) The Fe/H ratio obtained from the ASCA fit is within 20 % of the Fe/H abundance obtained from the summed spectra of Capella over 5 EUVE pointings, as well as the 1996 EUVE data. This result confirms our claims that quasi-continua composed of weak emission lines in the short wavelength spectrometer of EUVE are not major contributors to the measured Capella continuum. Other abundance ratios are also determined from the ASCA data, using models derived with EUVE. Si, Si, and Mg appear to be close to solar photospheric values, while the ratio of Ne/Fe is three to four times lower than solar photospheric values. Whether there is a general First Ionization Potential (FIP) effect or a specific neon anomaly cannot be determined

  14. Parameters and abundances in luminous stars

    SciTech Connect

    Earle Luck, R.

    2014-06-01

    Parameters and abundances for 451 stars of spectral types F, G, and K of luminosity classes I and II have been derived. Absolute magnitudes and E(B – V) have been derived for the warmer stars in order to investigate the galactic abundance gradient. The value found here: d[Fe/H]/dR ∼ –0.06 dex kpc{sup –1}, agrees well with previous determinations. Stellar evolution indicators have also been investigated with the derived C/O ratios indicating that standard CN processing has been operating. Perhaps the most surprising result found in these supposedly relatively young intermediate-mass stars is that both [O/Fe] and [C/Fe] show a correlation with [Fe/H] much the same as found in older populations. While the stars were selected based on luminosity class, there does exist a significant [Fe/H] range in the sample. The likely explanation of this is that there is a significant range in age in the sample; that is, some of the sample are low-mass red-giant stars with types that place them within the selection criteria.

  15. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  16. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  17. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  18. Brownian motion: Absolute negative particle mobility

    NASA Astrophysics Data System (ADS)

    Ros, Alexandra; Eichhorn, Ralf; Regtmeier, Jan; Duong, Thanh Tu; Reimann, Peter; Anselmetti, Dario

    2005-08-01

    Noise effects in technological applications, far from being a nuisance, can be exploited with advantage - for example, unavoidable thermal fluctuations have found application in the transport and sorting of colloidal particles and biomolecules. Here we use a microfluidic system to demonstrate a paradoxical migration mechanism in which particles always move in a direction opposite to the net acting force (`absolute negative mobility') as a result of an interplay between thermal noise, a periodic and symmetric microstructure, and a biased alternating-current electric field. This counterintuitive phenomenon could be used for bioanalytical purposes, for example in the separation and fractionation of colloids, biological molecules and cells.

  19. Arbitrary segments of absolute negative mobility

    NASA Astrophysics Data System (ADS)

    Chen, Ruyin; Nie, Linru; Chen, Chongyang; Wang, Chaojie

    2017-01-01

    In previous research work, investigators have reported only one or two segments of absolute negative mobility (ANM) in a periodic potential. In fact, many segments of ANM also occur in the system considered here. We investigate transport of an inertial particle in a gating ratchet periodic potential subjected to a constant bias force. Our numerical results show that its mean velocity can decrease with the bias force increasing, i.e. ANM phenomenon. Furthermore, the ANM can take place arbitrary segments, even up to more than thirty. Intrinsic physical mechanism and conditions for arbitrary segments of ANM to occur are discussed in detail.

  20. Absolute quantification of myocardial blood flow.

    PubMed

    Yoshinaga, Keiichiro; Manabe, Osamu; Tamaki, Nagara

    2016-07-21

    With the increasing availability of positron emission tomography (PET) myocardial perfusion imaging, the absolute quantification of myocardial blood flow (MBF) has become popular in clinical settings. Quantitative MBF provides an important additional diagnostic or prognostic information over conventional visual assessment. The success of MBF quantification using PET/computed tomography (CT) has increased the demand for this quantitative diagnostic approach to be more accessible. In this regard, MBF quantification approaches have been developed using several other diagnostic imaging modalities including single-photon emission computed tomography, CT, and cardiac magnetic resonance. This review will address the clinical aspects of PET MBF quantification and the new approaches to MBF quantification.

  1. An absolute radius scale for Saturn's rings

    NASA Technical Reports Server (NTRS)

    Nicholson, Philip D.; Cooke, Maren L.; Pelton, Emily

    1990-01-01

    Radio and stellar occultation observations of Saturn's rings made by the Voyager spacecraft are discussed. The data reveal systematic discrepancies of almost 10 km in some parts of the rings, limiting some of the investigations. A revised solution for Saturn's rotation pole has been proposed which removes the discrepancies between the stellar and radio occultation profiles. Corrections to previously published radii vary from -2 to -10 km for the radio occultation, and +5 to -6 km for the stellar occultation. An examination of spiral density waves in the outer A Ring supports that the revised absolute radii are in error by no more than 2 km.

  2. Absolute Rate Theories of Epigenetic Stability

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.; Onuchic, Jose N.; Wolynes, Peter G.

    2006-03-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape, and the transmission factor, depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic and strictly adiabatic regimes, characterized by the relative values of those input rates.

  3. Absolute rate theories of epigenetic stability

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.; Onuchic, José N.; Wolynes, Peter G.

    2005-12-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape and the transmission factor depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic, and strictly adiabatic regimes, characterized by the relative values of those input rates. rate theory | stochastic gene expression | gene switches

  4. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  5. Absolute Priority for a Vehicle in VANET

    NASA Astrophysics Data System (ADS)

    Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad

    In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.

  6. Capella: Structure and Abundances

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy S.

    1999-01-01

    This grant covers the analysis of ASCA spectra of the cool star binary system Capella. This project has also required the analysis of simultaneous EUVE data. The ASCA spectrum of Capella could not be fit with standard models; by imposing models based on strong lines observed with EUVE, a problem wavelength region was identified. Correcting the problem required calculations of atomic collision strengths of higher principal quantum number than had ever been calculated, resulting in a paper in process by Liedahl and Brickhouse. With these new models applied to the ASCA spectrum, better fits were obtained. While solar abundance ratios are generally consistent with the ASCA data, the ratio of Ne/Fe is three to four times lower than solar photospheric values. Whether there is a general First Ionization Potential (FIP) effect or a specific neon anomaly cannot be determined from these data. Detailed discussion has been provided to NASA in the most recent annual report (1997). Two poster presentations have been made regarding modeling requirements. A substantial paper is in the final revision form, following review by six co-authors. The results of this work have wide implications, since the newly calculated emission lines almost certainly contribute to other problems in fitting not only other stellar spectra, but also composite supernova remnants, galaxies, and cooling flow clusters of galaxies. Furthermore, Liedahl and Brickhouse have identified other species for which lines of a similar nature (high principal quantum number) will contribute significant flux. For moderate resolution X-ray spectra, lines left out of the models in relatively isolated bands, will be attributed to continuum flux by spectral fitting engines, causing errors in line-to-continuum ratios. Thus addressing the general theoretical problem is of crucial importance.

  7. Absolute Spectrophotometry of 237 Open Cluster Stars

    NASA Astrophysics Data System (ADS)

    Clampitt, L.; Burstein, D.

    1994-12-01

    We present absolute spectrophotometry of 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M 39. The observations were taken using the Wampler single-channel scanner (Wampler 1966) on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. 21 bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwiths ranging from 32Angstroms to 64 Angstroms. Data are standardized to the Hayes--Latham (1975) system. Our measurements are compared to filter colors on the Johnson BV, Stromgren ubvy, and Geneva U V B_1 B_2 V_1 G systems, as well as to spectrophotometry of a few stars published by Gunn, Stryker & Tinsley and in the Spectrophotometric Standards Catalog (Adelman; as distributed by the NSSDC). Both internal and external comparisons to the filter systems indicate a formal statistical accuracy per bandpass of 0.01 to 0.02 mag, with apparent larger ( ~ 0.03 mag) differences in absolute calibration between this data set and existing spectrophotometry. These data will comprise part of the spectrophotometry that will be used to calibrate the Beijing-Arizona-Taipei-Connecticut Color Survey of the Sky (see separate paper by Burstein et al. at this meeting).

  8. Linear ultrasonic motor for absolute gravimeter.

    PubMed

    Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V

    2017-02-01

    Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters.

  9. Why to compare absolute numbers of mitochondria.

    PubMed

    Schmitt, Sabine; Schulz, Sabine; Schropp, Eva-Maria; Eberhagen, Carola; Simmons, Alisha; Beisker, Wolfgang; Aichler, Michaela; Zischka, Hans

    2014-11-01

    Prompted by pronounced structural differences between rat liver and rat hepatocellular carcinoma mitochondria, we suspected these mitochondrial populations to differ massively in their molecular composition. Aiming to reveal these mitochondrial differences, we came across the issue on how to normalize such comparisons and decided to focus on the absolute number of mitochondria. To this end, fluorescently stained mitochondria were quantified by flow cytometry. For rat liver mitochondria, this approach resulted in mitochondrial protein contents comparable to earlier reports using alternative methods. We determined similar protein contents for rat liver, heart and kidney mitochondria. In contrast, however, lower protein contents were determined for rat brain mitochondria and for mitochondria from the rat hepatocellular carcinoma cell line McA 7777. This result challenges mitochondrial comparisons that rely on equal protein amounts as a typical normalization method. Exemplarily, we therefore compared the activity and susceptibility toward inhibition of complex II of rat liver and hepatocellular carcinoma mitochondria and obtained significant discrepancies by either normalizing to protein amount or to absolute mitochondrial number. Importantly, the latter normalization, in contrast to the former, demonstrated a lower complex II activity and higher susceptibility toward inhibition in hepatocellular carcinoma mitochondria compared to liver mitochondria. These findings demonstrate that solely normalizing to protein amount may obscure essential molecular differences between mitochondrial populations.

  10. The absolute threshold of cone vision

    PubMed Central

    Koeing, Darran; Hofer, Heidi

    2013-01-01

    We report measurements of the absolute threshold of cone vision, which has been previously underestimated due to sub-optimal conditions or overly strict subjective response criteria. We avoided these limitations by using optimized stimuli and experimental conditions while having subjects respond within a rating scale framework. Small (1′ fwhm), brief (34 msec), monochromatic (550 nm) stimuli were foveally presented at multiple intensities in dark-adapted retina for 5 subjects. For comparison, 4 subjects underwent similar testing with rod-optimized stimuli. Cone absolute threshold, that is, the minimum light energy for which subjects were just able to detect a visual stimulus with any response criterion, was 203 ± 38 photons at the cornea, ∼0.47 log units lower than previously reported. Two-alternative forced-choice measurements in a subset of subjects yielded consistent results. Cone thresholds were less responsive to criterion changes than rod thresholds, suggesting a limit to the stimulus information recoverable from the cone mosaic in addition to the limit imposed by Poisson noise. Results were consistent with expectations for detection in the face of stimulus uncertainty. We discuss implications of these findings for modeling the first stages of human cone vision and interpreting psychophysical data acquired with adaptive optics at the spatial scale of the receptor mosaic. PMID:21270115

  11. [Estimation of absolute risk for fracture].

    PubMed

    Fujiwara, Saeko

    2009-03-01

    Osteoporosis treatment aims to prevent fractures and maintain the QOL of the elderly. However, persons at high risk of future fracture cannot be effectively identified on the basis of bone density (BMD) alone, although BMD is used as an diagnostic criterion. Therefore, the WHO recommended that absolute risk for fracture (10-year probability of fracture) for each individual be evaluated and used as an index for intervention threshold. The 10-year probability of fracture is calculated based on age, sex, BMD at the femoral neck (body mass index if BMD is not available), history of previous fractures, parental hip fracture history, smoking, steroid use, rheumatoid arthritis, secondary osteoporosis and alcohol consumption. The WHO has just announced the development of a calculation tool (FRAX: WHO Fracture Risk Assessment Tool) in February this year. Fractures could be prevented more effectively if, based on each country's medical circumstances, an absolute risk value for fracture to determine when to start medical treatment is established and persons at high risk of fracture are identified and treated accordingly.

  12. Absolute stereochemistry of altersolanol A and alterporriols.

    PubMed

    Kanamaru, Saki; Honma, Miho; Murakami, Takanori; Tsushima, Taro; Kudo, Shinji; Tanaka, Kazuaki; Nihei, Ken-Ichi; Nehira, Tatsuo; Hashimoto, Masaru

    2012-02-01

    The absolute stereochemistry of altersolanol A (1) was established by observing a positive exciton couplet in the circular dichroism (CD) spectrum of the C3,C4-O-bis(2-naphthoyl) derivative 10 and by chemical correlations with known compound 8. Before the discussion, the relative stereochemistry of 1 was confirmed by X-ray crystallographic analysis. The shielding effect at C7'-OMe group by C1-O-benzoylation established the relative stereochemical relationship between the C8-C8' axial bonding and the C1-C4/C1'-C4' polyol moieties of alterporriols E (3), an atropisomer of the C8-C8' dimer of 1. As 3 could be obtained by dimerization of 1 in vitro, the absolute configuration of its central chirality elements (C1-C4) must be identical to those of 1. Spectral comparison between the experimental and theoretical CD spectra supported the above conclusion. Axial stereochemistry of novel C4-O-deoxy dimeric derivatives, alterporriols F (4) and G (5), were also revealed by comparison of their CD spectra to those of 2 and 3.

  13. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  14. Standardization of the cumulative absolute velocity

    SciTech Connect

    O'Hara, T.F.; Jacobson, J.P. )

    1991-12-01

    EPRI NP-5930, A Criterion for Determining Exceedance of the Operating Basis Earthquake,'' was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.

  15. Swarm's Absolute Scalar Magnetometers Burst Mode Results

    NASA Astrophysics Data System (ADS)

    Coisson, P.; Vigneron, P.; Hulot, G.; Crespo Grau, R.; Brocco, L.; Lalanne, X.; Sirol, O.; Leger, J. M.; Jager, T.; Bertrand, F.; Boness, A.; Fratter, I.

    2014-12-01

    Each of the three Swarm satellites embarks an Absolute Scalar Magnetometer (ASM) to provide absolute scalar measurements of the magnetic field with high accuracy and stability. Nominal data acquisition of these ASMs is 1 Hz. But they can also run in a so-called "burst mode" and provide data at 250 Hz. During the commissioning phase of the mission, seven burst mode acquisition campaigns have been run simultaneously for all satellites, obtaining a total of ten days of burs-mode data. These campaigns allowed the identification of issues related to the operations of the piezo-electric motor and the heaters connected to the ASM, that do not impact the nominal 1 Hz scalar data. We analyze the burst mode data to identify high frequency geomagnetic signals, focusing the analysis in two regions: the low latitudes, where we seek signatures of ionospheric irregularities, and the high latitudes, to identify high frequency signals related to polar region currents. Since these campaigns have been conducted during the initial months of the mission, the three satellites where still close to each other, allowing to analyze the spatial coherency of the signals. Wavelet analysis have revealed 31 Hz signals appearing in the night-side in the equatorial region.

  16. Extracting infrared absolute reflectance from relative reflectance measurements.

    PubMed

    Berets, Susan L; Milosevic, Milan

    2012-06-01

    Absolute reflectance measurements are valuable to the optics industry for development of new materials and optical coatings. Yet, absolute reflectance measurements are notoriously difficult to make. In this paper, we investigate the feasibility of extracting the absolute reflectance from a relative reflectance measurement using a reference material with known refractive index.

  17. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  18. Measuring Solar Abundances with Seismology

    NASA Astrophysics Data System (ADS)

    Mussack, K.; Gough, D.

    2009-12-01

    The revision of the photospheric abundances proferred by Asplund et al. (2005) has rendered opacity theory inconsistent with the seismologically determined opacity through the Sun. This highlights the need for a direct seismological measurement of solar abundances. Here we describe the technique used to measure abundances with seismology, examine our ability to detect differences between solar models using this technique, and discuss its application in the Sun.

  19. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  20. Absolute nonlocality via distributed computing without communication

    NASA Astrophysics Data System (ADS)

    Czekaj, Ł.; Pawłowski, M.; Vértesi, T.; Grudka, A.; Horodecki, M.; Horodecki, R.

    2015-09-01

    Understanding the role that quantum entanglement plays as a resource in various information processing tasks is one of the crucial goals of quantum information theory. Here we propose an alternative perspective for studying quantum entanglement: distributed computation of functions without communication between nodes. To formalize this approach, we propose identity games. Surprisingly, despite no signaling, we obtain that nonlocal quantum strategies beat classical ones in terms of winning probability for identity games originating from certain bipartite and multipartite functions. Moreover we show that, for a majority of functions, access to general nonsignaling resources boosts success probability two times in comparison to classical ones for a number of large enough outputs. Because there are no constraints on the inputs and no processing of the outputs in the identity games, they detect very strong types of correlations: absolute nonlocality.

  1. In vivo absorption spectroscopy for absolute measurement.

    PubMed

    Furukawa, Hiromitsu; Fukuda, Takashi

    2012-10-01

    In in vivo spectroscopy, there are differences between individual subjects in parameters such as tissue scattering and sample concentration. We propose a method that can provide the absolute value of a particular substance concentration, independent of these individual differences. Thus, it is not necessary to use the typical statistical calibration curve, which assumes an average level of scattering and an averaged concentration over individual subjects. This method is expected to greatly reduce the difficulties encountered during in vivo measurements. As an example, for in vivo absorption spectroscopy, the method was applied to the reflectance measurement in retinal vessels to monitor their oxygen saturation levels. This method was then validated by applying it to the tissue phantom under a variety of absorbance values and scattering efficiencies.

  2. Determining Absolute Zero Using a Tuning Fork

    NASA Astrophysics Data System (ADS)

    Goldader, Jeffrey D.

    2008-04-01

    The Celsius and Kelvin temperature scales, we tell our students, are related. We explain that a change in temperature of 1°C corresponds to a change of 1 Kelvin and that atoms and molecules have zero kinetic energy at zero Kelvin, -273°C. In this paper, we will show how students can derive the relationship between the Celsius and Kelvin temperature scales using a simple, well-known physics experiment. By making multiple measurements of the speed of sound at different temperatures, using the classic physics experiment of determining the speed of sound with a tuning fork and variable-length tube, they can determine the temperature at which the speed of sound is zero—absolute zero.

  3. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  4. An estimate of global absolute dynamic topography

    NASA Technical Reports Server (NTRS)

    Tai, C.-K.; Wunsch, C.

    1984-01-01

    The absolute dynamic topography of the world ocean is estimated from the largest scales to a short-wavelength cutoff of about 6700 km for the period July through September, 1978. The data base consisted of the time-averaged sea-surface topography determined by Seasat and geoid estimates made at the Goddard Space Flight Center. The issues are those of accuracy and resolution. Use of the altimetric surface as a geoid estimate beyond the short-wavelength cutoff reduces the spectral leakage in the estimated dynamic topography from erroneous small-scale geoid estimates without contaminating the low wavenumbers. Comparison of the result with a similarly filtered version of Levitus' (1982) historical average dynamic topography shows good qualitative agreement. There is quantitative disagreement, but it is within the estimated errors of both methods of calculation.

  5. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  6. Absolute measurements of fast neutrons using yttrium.

    PubMed

    Roshan, M V; Springham, S V; Rawat, R S; Lee, P; Krishnan, M

    2010-08-01

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f(n) approximately 4.1x10(-4) with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10(8) neutrons per discharge.

  7. Measured and modelled absolute gravity in Greenland

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Forsberg, R.; Strykowski, G.

    2012-12-01

    Present day changes in the ice volume in glaciated areas like Greenland will change the load on the Earth and to this change the lithosphere will respond elastically. The Earth also responds to changes in the ice volume over a millennial time scale. This response is due to the viscous properties of the mantle and is known as Glaical Isostatic Adjustment (GIA). Both signals are present in GPS and absolute gravity (AG) measurements and they will give an uncertainty in mass balance estimates calculated from these data types. It is possible to separate the two signals if both gravity and Global Positioning System (GPS) time series are available. DTU Space acquired an A10 absolute gravimeter in 2008. One purpose of this instrument is to establish AG time series in Greenland and the first measurements were conducted in 2009. Since then are 18 different Greenland GPS Network (GNET) stations visited and six of these are visited more then once. The gravity signal consists of three signals; the elastic signal, the viscous signal and the direct attraction from the ice masses. All of these signals can be modelled using various techniques. The viscous signal is modelled by solving the Sea Level Equation with an appropriate ice history and Earth model. The free code SELEN is used for this. The elastic signal is modelled as a convolution of the elastic Greens function for gravity and a model of present day ice mass changes. The direct attraction is the same as the Newtonian attraction and is calculated as this. Here we will present the preliminary results of the AG measurements in Greenland. We will also present modelled estimates of the direct attraction, the elastic and the viscous signals.

  8. Absolute bioavailability of quinine formulations in Nigeria.

    PubMed

    Babalola, C P; Bolaji, O O; Ogunbona, F A; Ezeomah, E

    2004-09-01

    This study compared the absolute bioavailability of quinine sulphate as capsule and as tablet against the intravenous (i.v.) infusion of the drug in twelve male volunteers. Six of the volunteers received intravenous infusion over 4 h as well as the capsule formulation of the drug in a cross-over manner, while the other six received the tablet formulation. Blood samples were taken at predetermined time intervals and plasma analysed for quinine (QN) using reversed-phase HPLC method. QN was rapidly absorbed after the two oral formulations with average t(max) of 2.67 h for both capsule and tablet. The mean elimination half-life of QN from the i.v. and oral dosage forms varied between 10 and 13.5 hr and were not statistically different (P > 0.05). On the contrary, the maximum plasma concentration (C(max)) and area under the curve (AUC) from capsule were comparable to those from i.v. (P > 0.05), while these values were markedly higher than values from tablet formulation (P < 0.05). The therapeutic QN plasma levels were not achieved with the tablet formulation. The absolute bioavailability (F) were 73% (C.l., 53.3 - 92.4%) and 39 % (C.I., 21.7 - 56.6%) for the capsule and tablet respectively and the difference was significant (P < 0.05). The subtherapeutic levels obtained from the tablet form used in this study may cause treatment failure during malaria and caution should be taken when predictions are made from results obtained from different formulations of QN.

  9. Absolute GPS Positioning Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Ramillien, G.

    A new inverse approach for restoring the absolute coordinates of a ground -based station from three or four observed GPS pseudo-ranges is proposed. This stochastic method is based on simulations of natural evolution named genetic algorithms (GA). These iterative procedures provide fairly good and robust estimates of the absolute positions in the Earth's geocentric reference system. For comparison/validation, GA results are compared to the ones obtained using the classical linearized least-square scheme for the determination of the XYZ location proposed by Bancroft (1985) which is strongly limited by the number of available observations (i.e. here, the number of input pseudo-ranges must be four). The r.m.s. accuracy of the non -linear cost function reached by this latter method is typically ~10-4 m2 corresponding to ~300-500-m accuracies for each geocentric coordinate. However, GA can provide more acceptable solutions (r.m.s. errors < 10-5 m2), even when only three instantaneous pseudo-ranges are used, such as a lost of lock during a GPS survey. Tuned GA parameters used in different simulations are N=1000 starting individuals, as well as Pc=60-70% and Pm=30-40% for the crossover probability and mutation rate, respectively. Statistical tests on the ability of GA to recover acceptable coordinates in presence of important levels of noise are made simulating nearly 3000 random samples of erroneous pseudo-ranges. Here, two main sources of measurement errors are considered in the inversion: (1) typical satellite-clock errors and/or 300-metre variance atmospheric delays, and (2) Geometrical Dilution of Precision (GDOP) due to the particular GPS satellite configuration at the time of acquisition. Extracting valuable information and even from low-quality starting range observations, GA offer an interesting alternative for high -precision GPS positioning.

  10. Solar Flare Abundances of Potassium, Argon, and Sulphur

    NASA Technical Reports Server (NTRS)

    Oegerle, William (Technical Monitor); Phillips, K. J. H.; Sylwester, J.; Sylwester, B.; Landi, E.

    2003-01-01

    The absolute coronal abundances of potassium has been determined for the first time from X-ray solar flare line and continuous spectra together with absolute and relative abundances of Ar and S. Potassium is of importance in the continuing debate concerning the nature of the coronal/photospheric element abundance ratios which are widely considered to depend on first ionization potential since it has the lowest FIP of any common element in the Sun. The measurements were obtained with the RESIK crystal spectrometer on the Coronas-F spacecraft. A differential emission measure DEM = const. x exp (-(beta)T(sub e) was found to be the most consistent with the data out of three models considered. We find that the coronal ratio [K/H] = 3.7 x 10(exp - 7), a factor 3 times photospheric, in agreement with other observations using line-to-line ratios. Our measured value for the coronal ratio [Ar/H] = 1.5 x 10(exp -6) is significantly less than photospheric, indicating that there is a slight depletion of this high-FIP element in the corona. For S (an intermediate-FIP element) we obtained [S/H] = 2.2 x 10(exp - 5), approximately the same as in previous work.

  11. THE ABSOLUTE MAGNITUDE OF RRc VARIABLES FROM STATISTICAL PARALLAX

    SciTech Connect

    Kollmeier, Juna A.; Burns, Christopher R.; Thompson, Ian B.; Preston, George W.; Crane, Jeffrey D.; Madore, Barry F.; Morrell, Nidia; Prieto, José L.; Shectman, Stephen; Simon, Joshua D.; Villanueva, Edward; Szczygieł, Dorota M.; Gould, Andrew; Sneden, Christopher; Dong, Subo

    2013-09-20

    We present the first definitive measurement of the absolute magnitude of RR Lyrae c-type variable stars (RRc) determined purely from statistical parallax. We use a sample of 242 RRc variables selected from the All Sky Automated Survey for which high-quality light curves, photometry, and proper motions are available. We obtain high-resolution echelle spectra for these objects to determine radial velocities and abundances as part of the Carnegie RR Lyrae Survey. We find that M{sub V,RRc} = 0.59 ± 0.10 at a mean metallicity of [Fe/H] = –1.59. This is to be compared with previous estimates for RRab stars (M{sub V,RRab} = 0.76 ± 0.12) and the only direct measurement of an RRc absolute magnitude (RZ Cephei, M{sub V,RRc} = 0.27 ± 0.17). We find the bulk velocity of the halo relative to the Sun to be (W{sub π}, W{sub θ}, W{sub z} ) = (12.0, –209.9, 3.0) km s{sup –1} in the radial, rotational, and vertical directions with dispersions (σ{sub W{sub π}},σ{sub W{sub θ}},σ{sub W{sub z}}) = (150.4, 106.1, 96.0) km s{sup -1}. For the disk, we find (W{sub π}, W{sub θ}, W{sub z} ) = (13.0, –42.0, –27.3) km s{sup –1} relative to the Sun with dispersions (σ{sub W{sub π}},σ{sub W{sub θ}},σ{sub W{sub z}}) = (67.7,59.2,54.9) km s{sup -1}. Finally, as a byproduct of our statistical framework, we are able to demonstrate that UCAC2 proper-motion errors are significantly overestimated as verified by UCAC4.

  12. Absolute calibration of forces in optical tweezers

    NASA Astrophysics Data System (ADS)

    Dutra, R. S.; Viana, N. B.; Maia Neto, P. A.; Nussenzveig, H. M.

    2014-07-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past 15 years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spot, adapting frequently employed video microscopy techniques. Combined with interface spherical aberration, it reveals a previously unknown window of instability for trapping. Comparison with experimental data leads to an overall agreement within error bars, with no fitting, for a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Besides signaling full first-principles theoretical understanding of optical tweezers operation, the results may lead to improved instrument design and control over experiments, as well as to an extended domain of applicability, allowing reliable force measurements, in principle, from femtonewtons to nanonewtons.

  13. Elevation correction factor for absolute pressure measurements

    NASA Technical Reports Server (NTRS)

    Panek, Joseph W.; Sorrells, Mark R.

    1996-01-01

    With the arrival of highly accurate multi-port pressure measurement systems, conditions that previously did not affect overall system accuracy must now be scrutinized closely. Errors caused by elevation differences between pressure sensing elements and model pressure taps can be quantified and corrected. With multi-port pressure measurement systems, the sensing elements are connected to pressure taps that may be many feet away. The measurement system may be at a different elevation than the pressure taps due to laboratory space or test article constraints. This difference produces a pressure gradient that is inversely proportional to height within the interface tube. The pressure at the bottom of the tube will be higher than the pressure at the top due to the weight of the tube's column of air. Tubes with higher pressures will exhibit larger absolute errors due to the higher air density. The above effect is well documented but has generally been taken into account with large elevations only. With error analysis techniques, the loss in accuracy from elevation can be easily quantified. Correction factors can be applied to maintain the high accuracies of new pressure measurement systems.

  14. What is Needed for Absolute Paleointensity?

    NASA Astrophysics Data System (ADS)

    Valet, J. P.

    2015-12-01

    Many alternative approaches to the Thellier and Thellier technique for absolute paleointensity have been proposed during the past twenty years. One reason is the time consuming aspect of the experiments. Another reason is to avoid uncertainties in determinations of the paleofield which are mostly linked to the presence of multidomain grains. Despite great care taken by these new techniques, there is no indication that they always provide the right answer and in fact sometimes fail. We are convinced that the most valid approach remains the original double heating Thellier protocol provided that natural remanence is controlled by pure magnetite with a narrow distribution of small grain sizes, mostly single domains. The presence of titanium, even in small amount generates biases which yield incorrect field values. Single domain grains frequently dominate the magnetization of glass samples, which explains the success of this selective approach. They are also present in volcanic lava flows but much less frequently, and therefore contribute to the low success rate of most experiments. However the loss of at least 70% of the magnetization at very high temperatures prior to the Curie point appears to be an essential prerequisite that increases the success rate to almost 100% and has been validated from historical flows and from recent studies. This requirement can easily be tested by thermal demagnetization while low temperature experiments can document the detection of single domain magnetite using the δFC/δZFC parameter as suggested (Moskowitz et al, 1993) for biogenic magnetite.

  15. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    SciTech Connect

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  16. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  17. Absolute flux measurements for swift atoms

    NASA Technical Reports Server (NTRS)

    Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.

    1987-01-01

    While a torsion balance in vacuum can easily measure the momentum transfer from a gas beam impinging on a surface attached to the balance, this measurement depends on the accommodation coefficients of the atoms with the surface and the distribution of the recoil. A torsion balance is described for making absolute flux measurements independent of recoil effects. The torsion balance is a conventional taut suspension wire design and the Young modulus of the wire determines the relationship between the displacement and the applied torque. A compensating magnetic field is applied to maintain zero displacement and provide critical damping. The unique feature is to couple the impinging gas beam to the torsion balance via a Wood's horn, i.e., a thin wall tube with a gradual 90 deg bend. Just as light is trapped in a Wood's horn by specular reflection from the curved surfaces, the gas beam diffuses through the tube. Instead of trapping the beam, the end of the tube is open so that the atoms exit the tube at 90 deg to their original direction. Therefore, all of the forward momentum of the gas beam is transferred to the torsion balance independent of the angle of reflection from the surfaces inside the tube.

  18. The boron abundance of Procyon

    NASA Technical Reports Server (NTRS)

    Lemke, Michael; Lambert, David L.; Edvardsson, Bengt

    1993-01-01

    The B I 2496.8 A resonance line and HST/GHRS echelle spectra are used with model atmospheres and synthetic spectra to derive the B abundance of the F dwarfs Procyon (Alpha Canis Minoris), Theta Ursae Majoris, and Iota Pegasi. The B abundance of Theta UMa and Iota Peg is similar to that derived by Boesgaard and Heacox (1978) from the B II resonance line in spectra of A- and B-type stars. These two dwarfs show normal abundances of Li, Be, and B. Procyon, which is highly depleted in Li and Be, is depleted in B by a factor of at least 3. Comparison of the spectra of Procyon and the halo dwarf HD 140283 shows that the B abundance assigned by Duncan et al. (1992) to three halo dwarfs is not greatly overestimated as a result of contamination of the B I line by an unidentified line.

  19. Ammonia abundances in four comets

    NASA Astrophysics Data System (ADS)

    Wyckoff, S.; Tegler, S. C.; Engel, L.

    1991-02-01

    NH2 emission band strengths were measured in four comets and the NH2 column densities were determined in order to measure the ammonia content of the comets. The mean ammonia/water abundance ratio derived for the four comets is found to be 0.13 + or - 0.06 percent, with no significant variation among the comets. The uniformity of this abundance attests to a remarkable degree of chemical homogeneity over large scales in the comet-forming region of the primordial solar nebula, and contrasts with the CO abundance variations found previously in comets. The N2 and NH3 abundances indicate a condensation temperature in the range 20-160 K, consistent with virtually all comet formation hypotheses.

  20. The boron abundance of Procyon

    NASA Astrophysics Data System (ADS)

    Lemke, Michael; Lambert, David L.; Edvardsson, Bengt

    1993-05-01

    The B I 2496.8 A resonance line and HST/GHRS echelle spectra are used with model atmospheres and synthetic spectra to derive the B abundance of the F dwarfs Procyon (Alpha Canis Minoris), Theta Ursae Majoris, and Iota Pegasi. The B abundance of Theta UMa and Iota Peg is similar to that derived by Boesgaard and Heacox (1978) from the B II resonance line in spectra of A- and B-type stars. These two dwarfs show normal abundances of Li, Be, and B. Procyon, which is highly depleted in Li and Be, is depleted in B by a factor of at least 3. Comparison of the spectra of Procyon and the halo dwarf HD 140283 shows that the B abundance assigned by Duncan et al. (1992) to three halo dwarfs is not greatly overestimated as a result of contamination of the B I line by an unidentified line.

  1. Interannual variability of Alexandrium fundyense abundance and shellfish toxicity in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    McGillicuddy, D. J.; Anderson, D. M.; Solow, A. R.; Townsend, D. W.

    2005-09-01

    Six years of oceanographic surveys of Alexandrium fundyense concentrations in the Gulf of Maine are combined with shellfish toxicity records from coastal monitoring stations to assess covariations of these quantities on seasonal to interannual time scales. Annual mean gulf-wide cell abundance varies by less than one order of magnitude during the time interval examined (1993-2002). Fluctuations in gulf-wide annual mean cell abundance and shellfish toxicity are not related in a consistent manner. This suggests that interannual variations in toxicity may be regulated by transport and delivery of offshore cell populations, rather than the absolute abundance of the source populations themselves.

  2. VizieR Online Data Catalog: Abundances of microlensed Bulge dwarf stars. V. (Bensby+, 2013)

    NASA Astrophysics Data System (ADS)

    Bensby, T.; Yee, J. C.; Feltzing, S.; Johnson, J. A.; Gould, A.; Cohen, J. G.; Asplund, M.; Melendez, J.; Lucatello, S.; Han, C.; Thompson, I.; Gal-Yam, A.; Udalski, A.; Benett, D. P.; Bond, I. A.; Kohei, W.; Sumi, T.; Suzuki, D.; Suzuki, K.; Takino, S.; Tristram, P.; Yamai, N.; Yonehara, A.

    2012-11-01

    For each spectral line we give the lower excitation potential, measured equivalent widths, and derived absolute abundances. We also give median abundances for each star, normalised to the Sun, and errors in the median abundances. These tables contain data for all so far 58 microlensed dwarf stars, and superseeds the tables in Bensby+ (2009, Cat. J/A+A/499/737), Bensby+ (2010, Cat. J/A+A/512/A41), and Bensby+ (2011, Cat. J/A+A/533/A134). (4 data files).

  3. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  4. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  5. Positioning, alignment and absolute pointing of the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Fehr, F.; Distefano, C.; Antares Collaboration

    2010-01-01

    A precise detector alignment and absolute pointing is crucial for point-source searches. The ANTARES neutrino telescope utilises an array of hydrophones, tiltmeters and compasses for the relative positioning of the optical sensors. The absolute calibration is accomplished by long-baseline low-frequency triangulation of the acoustic reference devices in the deep-sea with a differential GPS system at the sea surface. The absolute pointing can be independently verified by detecting the shadow of the Moon in cosmic rays.

  6. Chlorine Abundances in Cool Stars

    NASA Astrophysics Data System (ADS)

    Maas, Z. G.; Pilachowski, C. A.; Hinkle, K.

    2016-12-01

    Chlorine abundances are reported in 15 evolved giants and 1 M dwarf in the solar neighborhood. The Cl abundance was measured using the vibration-rotation 1-0 P8 line of H35Cl at 3.69851 μm. The high-resolution L-band spectra were observed using the Phoenix infrared spectrometer on the Kitt Peak Mayall 4 m telescope. The average [35Cl/Fe] abundance in stars with -0.72 < [Fe/H] < 0.20 is [35Cl/Fe] = (-0.10 ± 0.15) dex. The mean difference between the [35Cl/Fe] ratios measured in our stars and chemical evolution model values is (0.16 ± 0.15) dex. The [35Cl/Ca] ratio has an offset of ˜0.35 dex above model predictions, suggesting that chemical evolution models are underproducing Cl at the high metallicity range. Abundances of C, N, O, Si, and Ca were also measured in our spectral region and are consistent with F and G dwarfs. The Cl versus O abundances from our sample match Cl abundances measured in planetary nebula and H ii regions. In one star where both H35Cl and H37Cl could be measured, a 35Cl/37Cl isotope ratio of 2.2 ± 0.4 was found, consistent with values found in the Galactic ISM and predicted chemical evolution models.

  7. Absolute and Convective Instability of a Liquid Jet

    NASA Technical Reports Server (NTRS)

    Lin, S. P.; Hudman, M.; Chen, J. N.

    1999-01-01

    The existence of absolute instability in a liquid jet has been predicted for some time. The disturbance grows in time and propagates both upstream and downstream in an absolutely unstable liquid jet. The image of absolute instability is captured in the NASA 2.2 sec drop tower and reported here. The transition from convective to absolute instability is observed experimentally. The experimental results are compared with the theoretical predictions on the transition Weber number as functions of the Reynolds number. The role of interfacial shear relative to all other relevant forces which cause the onset of jet breakup is explained.

  8. Absolute Plate Velocities from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kreemer, Corné; Zheng, Lin; Gordon, Richard

    2015-04-01

    The orientation of seismic anisotropy inferred beneath plate interiors may provide a means to estimate the motions of the plate relative to the sub-asthenospheric mantle. Here we analyze two global sets of shear-wave splitting data, that of Kreemer [2009] and an updated and expanded data set, to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. We also explore the effect of using geologically current plate velocities (i.e., the MORVEL set of angular velocities [DeMets et al. 2010]) compared with geodetically current plate velocities (i.e., the GSRM v1.2 angular velocities [Kreemer et al. 2014]). We demonstrate that the errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. The SKS-MORVEL absolute plate angular velocities (based on the Kreemer [2009] data set) are determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11° Ma-1 (95% confidence limits) right-handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2° ) differs insignificantly from that for continental lithosphere (σ=21.6° ). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4° ) than for continental

  9. Orion Absolute Navigation System Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2012-01-01

    The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.

  10. Evaluation of the Absolute Regional Temperature Potential

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.

    2012-01-01

    The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  11. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  12. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  13. Remembrance of things past: modelling the relationship between species' abundances in living communities and death assemblages.

    PubMed

    Olszewski, Thomas D

    2012-02-23

    Accumulations of dead skeletal material are a valuable archive of past ecological conditions. However, such assemblages are not equivalent to living communities because they mix the remains of multiple generations and are altered by post-mortem processes. The abundance of a species in a death assemblage can be quantitatively modelled by successively integrating the product of an influx time series and a post-mortem loss function (a decay function with a constant half-life). In such a model, temporal mixing increases expected absolute dead abundance relative to average influx as a linear function of half-life and increases variation in absolute dead abundance values as a square-root function of half-life. Because typical abundance distributions of ecological communities are logarithmically distributed, species' differences in preservational half-life would have to be very large to substantially alter species' abundance ranks (i.e. make rare species common or vice-versa). In addition, expected dead abundances increase at a faster rate than their range of variation with increased time averaging, predicting greater consistency in the relative abundance structure of death assemblages than their parent living community.

  14. Hexapeptide libraries for enhanced protein PTM identification and relative abundance profiling in whole human saliva.

    PubMed

    Bandhakavi, Sricharan; Van Riper, Susan K; Tawfik, Pierre N; Stone, Matthew D; Haddad, Tufia; Rhodus, Nelson L; Carlis, John V; Griffin, Timothy J

    2011-03-04

    Dynamic range compression (DRC) by hexapeptide libraries increases MS/MS-based identification of lower-abundance proteins in complex mixtures. However, two unanswered questions impede fully realizing DRC's potential in shotgun proteomics. First, does DRC enhance identification of post-translationally modified proteins? Second, can DRC be incorporated into a workflow enabling relative protein abundance profiling? We sought to answer both questions analyzing human whole saliva. Addressing question one, we coupled DRC with covalent glycopeptide enrichment and MS/MS. With DRC we identified ∼2 times more N-linked glycoproteins and their glycosylation sites than without DRC, dramatically increasing the known salivary glycoprotein catalog. Addressing question two, we compared differentially stable isotope-labeled saliva samples pooled from healthy and metastatic breast cancer women using a multidimensional peptide fractionation-based workflow, analyzing in parallel one sample portion with DRC and one portion without. Our workflow categorizes proteins with higher absolute abundance, whose relative abundance ratios are altered by DRC, from proteins of lower absolute abundance detected only after DRC. Within each of these salivary protein categories, we identified novel abundance changes putatively associated with breast cancer, demonstrating feasibility and benefits of DRC for relative abundance profiling. Collectively, our results bring us closer to realizing the full potential of DRC for proteomic studies.

  15. Highly siderophile elements in chondrites

    USGS Publications Warehouse

    Horan, M.F.; Walker, R.J.; Morgan, J.W.; Grossman, J.N.; Rubin, A.E.

    2003-01-01

    The abundances of the highly siderophile elements (HSE), Re, Os, Ir, Ru, Pt and Pd, were determined by isotope dilution mass spectrometry for bulk samples of 13 carbonaceous chondrites, 13 ordinary chondrites and 9 enstatite chondrites. These data are coupled with corresponding 187Re-187Os isotopic data reported by Walker et al. [Geochim. Cosmochim. Acta, 2002] in order to constrain the nature and timing of chemical fractionation relating to these elements in the early solar system. The suite of chondrites examined displays considerable variations in absolute abundances of the HSE, and in the ratios of certain HSE. Absolute abundances of the HSE vary by nearly a factor of 80 among the chondrite groups, although most vary within a factor of only 2. Variations in concentration largely reflect heterogeneities in the sample aliquants. Different aliquants of the same chondrite may contain variable proportions of metal and/or refractory inclusions that are HSE-rich, and sulfides that are HSE-poor. The relatively low concentrations of the HSE in CI1 chondrites likely reflect dilution by the presence of volatile components. Carbonaceous chondrites have Re/Os ratios that are, on average, approximately 8% lower than ratios for ordinary and enstatite chondrites. This is also reflected in 187Os/188Os ratios that are approximately 3% lower for carbonaceous chondrites than for ordinary and enstatite chondrites. Given the similarly refractory natures of Re and Os, this fractionation may have occurred within a narrow range of high temperatures, during condensation of these elements from the solar nebula. Superimposed on this major fractionation are more modest movements of Re or Os that occurred within the last 0-2 Ga, as indicated by minor open-system behavior of the Re-Os isotope systematics of some chondrites. The relative abundances of other HSE can also be used to discriminate among the major classes of chondrites. For example, in comparison to the enstatite chondrites

  16. Absolute protein quantification of the yeast chaperome under conditions of heat shock

    PubMed Central

    Mackenzie, Rebecca J.; Lawless, Craig; Holman, Stephen W.; Lanthaler, Karin; Beynon, Robert J.; Grant, Chris M.; Hubbard, Simon J.

    2016-01-01

    Chaperones are fundamental to regulating the heat shock response, mediating protein recovery from thermal‐induced misfolding and aggregation. Using the QconCAT strategy and selected reaction monitoring (SRM) for absolute protein quantification, we have determined copy per cell values for 49 key chaperones in Saccharomyces cerevisiae under conditions of normal growth and heat shock. This work extends a previous chemostat quantification study by including up to five Q‐peptides per protein to improve confidence in protein quantification. In contrast to the global proteome profile of S. cerevisiae in response to heat shock, which remains largely unchanged as determined by label‐free quantification, many of the chaperones are upregulated with an average two‐fold increase in protein abundance. Interestingly, eight of the significantly upregulated chaperones are direct gene targets of heat shock transcription factor‐1. By performing absolute quantification of chaperones under heat stress for the first time, we were able to evaluate the individual protein‐level response. Furthermore, this SRM data was used to calibrate label‐free quantification values for the proteome in absolute terms, thus improving relative quantification between the two conditions. This study significantly enhances the largely transcriptomic data available in the field and illustrates a more nuanced response at the protein level. PMID:27252046

  17. Determination of Absolute Zero Using a Computer-Based Laboratory

    ERIC Educational Resources Information Center

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  18. A Global Forecast of Absolute Poverty and Employment.

    ERIC Educational Resources Information Center

    Hopkins, M. J. D.

    1980-01-01

    Estimates are made of absolute poverty and employment under the hypothesis that existing trends continue. Concludes that while the number of people in absolute poverty is not likely to decline by 2000, the proportion will fall. Jobs will have to grow 3.9% per year in developing countries to achieve full employment. (JOW)

  19. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  20. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  1. Solar and stellar photospheric abundances

    NASA Astrophysics Data System (ADS)

    Allende Prieto, Carlos

    2016-12-01

    The determination of photospheric abundances in late-type stars from spectroscopic observations is a well-established field, built on solid theoretical foundations. Improving those foundations to refine the accuracy of the inferred abundances has proven challenging, but progress has been made. In parallel, developments on instrumentation, chiefly regarding multi-object spectroscopy, have been spectacular, and a number of projects are collecting large numbers of observations for stars across the Milky Way and nearby galaxies, promising important advances in our understanding of galaxy formation and evolution. After providing a brief description of the basic physics and input data involved in the analysis of stellar spectra, a review is made of the analysis steps, and the available tools to cope with large observational efforts. The paper closes with a quick overview of relevant ongoing and planned spectroscopic surveys, and highlights of recent research on photospheric abundances.

  2. Robust Abundance Estimation in Animal Abundance Surveys with Imperfect Detection

    EPA Science Inventory

    Surveys of animal abundance are central to the conservation and management of living natural resources. However, detection uncertainty complicates the sampling process of many species. One sampling method employed to deal with this problem is depletion (or removal) surveys in whi...

  3. Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs

    PubMed Central

    Smits, Arne H.; Lindeboom, Rik G.H.; Perino, Matteo; van Heeringen, Simon J.; Veenstra, Gert Jan C.; Vermeulen, Michiel

    2014-01-01

    While recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells, single cell proteomics has thus far been restricted to targeted studies. Here, we perform global absolute protein quantification of fertilized Xenopus laevis eggs using mass spectrometry-based proteomics, quantifying over 5800 proteins in the largest single cell proteome characterized to date. Absolute protein amounts in single eggs are highly consistent, thus indicating a tight regulation of global protein abundance. Protein copy numbers in single eggs range from tens of thousands to ten trillion copies per cell. Comparison between the single-cell proteome and transcriptome reveal poor expression correlation. Finally, we identify 439 proteins that significantly change in abundance during early embryogenesis. Downregulated proteins include ribosomal proteins and upregulated proteins include basal transcription factors, among others. Many of these proteins do not show regulation at the transcript level. Altogether, our data reveal that the transcriptome is a poor indicator of the proteome and that protein levels are tightly controlled in X. laevis eggs. PMID:25056316

  4. Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs.

    PubMed

    Smits, Arne H; Lindeboom, Rik G H; Perino, Matteo; van Heeringen, Simon J; Veenstra, Gert Jan C; Vermeulen, Michiel

    2014-09-01

    While recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells, single cell proteomics has thus far been restricted to targeted studies. Here, we perform global absolute protein quantification of fertilized Xenopus laevis eggs using mass spectrometry-based proteomics, quantifying over 5800 proteins in the largest single cell proteome characterized to date. Absolute protein amounts in single eggs are highly consistent, thus indicating a tight regulation of global protein abundance. Protein copy numbers in single eggs range from tens of thousands to ten trillion copies per cell. Comparison between the single-cell proteome and transcriptome reveal poor expression correlation. Finally, we identify 439 proteins that significantly change in abundance during early embryogenesis. Downregulated proteins include ribosomal proteins and upregulated proteins include basal transcription factors, among others. Many of these proteins do not show regulation at the transcript level. Altogether, our data reveal that the transcriptome is a poor indicator of the proteome and that protein levels are tightly controlled in X. laevis eggs.

  5. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  6. A developmental study of latent absolute pitch memory.

    PubMed

    Jakubowski, Kelly; Müllensiefen, Daniel; Stewart, Lauren

    2017-03-01

    The ability to recall the absolute pitch level of familiar music (latent absolute pitch memory) is widespread in adults, in contrast to the rare ability to label single pitches without a reference tone (overt absolute pitch memory). The present research investigated the developmental profile of latent absolute pitch (AP) memory and explored individual differences related to this ability. In two experiments, 288 children from 4 to12 years of age performed significantly above chance at recognizing the absolute pitch level of familiar melodies. No age-related improvement or decline, nor effects of musical training, gender, or familiarity with the stimuli were found in regard to latent AP task performance. These findings suggest that latent AP memory is a stable ability that is developed from as early as age 4 and persists into adulthood.

  7. A Comparison of Stellar Elemental Abundance Techniques and Measurements

    NASA Astrophysics Data System (ADS)

    Hinkel, Natalie R.; Young, Patrick A.; Pagano, Michael D.; Desch, Steven J.; Anbar, Ariel D.; Adibekyan, Vardan; Blanco-Cuaresma, Sergi; Carlberg, Joleen K.; Delgado Mena, Elisa; Liu, Fan; Nordlander, Thomas; Sousa, Sergio G.; Korn, Andreas; Gruyters, Pieter; Heiter, Ulrike; Jofré, Paula; Santos, Nuno C.; Soubiran, Caroline

    2016-09-01

    Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond the quoted error for the same elements within the same stars. The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We invited a number of participants from around the world (Australia, Portugal, Sweden, Switzerland, and the United States) to calculate 10 element abundances (C, O, Na, Mg, Al, Si, Fe, Ni, Ba, and Eu) using the same stellar spectra for four stars (HD 361, HD 10700, HD 121504, and HD 202206). Each group produced measurements for each star using (1) their own autonomous techniques, (2) standardized stellar parameters, (3) a standardized line list, and (4) both standardized parameters and a line list. We present the resulting stellar parameters, absolute abundances, and a metric of data similarity that quantifies the homogeneity of the data. We conclude that standardization of some kind, particularly stellar parameters, improves the consistency between methods. However, because results did not converge as more free parameters were standardized, it is clear there are inherent issues within the techniques that need to be reconciled. Therefore, we encourage more conversation and transparency within the community such that stellar abundance determinations can be reproducible as well as accurate and precise.

  8. The solar abundance of beryllium

    NASA Technical Reports Server (NTRS)

    Ross, J. E.; Aller, L. H.

    1974-01-01

    The solar abundance of beryllium is deduced from high-resolution Kitt Peak observations of the 3130.43- and 3131.08-A lines of Be II interpreted by the method of spectrum synthesis. The results are in good agreement with those previously obtained by Grevesse (1968) and by Hauge and Engvold (1968) and indicate that in the photospheric layers, beryllium is depleted below the chondritic value by a factor of about two. It is found that the beryllium abundance is equal to logN(Be)/N(H) + 12 = 1.08 plus or minus 0.05.

  9. Estimation of Absolute Protein Quantities of Unlabeled Samples by Selected Reaction Monitoring Mass Spectrometry*

    PubMed Central

    Ludwig, Christina; Claassen, Manfred; Schmidt, Alexander; Aebersold, Ruedi

    2012-01-01

    For many research questions in modern molecular and systems biology, information about absolute protein quantities is imperative. This information includes, for example, kinetic modeling of processes, protein turnover determinations, stoichiometric investigations of protein complexes, or quantitative comparisons of different proteins within one sample or across samples. To date, the vast majority of proteomic studies are limited to providing relative quantitative comparisons of protein levels between limited numbers of samples. Here we describe and demonstrate the utility of a targeting MS technique for the estimation of absolute protein abundance in unlabeled and nonfractionated cell lysates. The method is based on selected reaction monitoring (SRM) mass spectrometry and the “best flyer” hypothesis, which assumes that the specific MS signal intensity of the most intense tryptic peptides per protein is approximately constant throughout a whole proteome. SRM-targeted best flyer peptides were selected for each protein from the peptide precursor ion signal intensities from directed MS data. The most intense transitions per peptide were selected from full MS/MS scans of crude synthetic analogs. We used Monte Carlo cross-validation to systematically investigate the accuracy of the technique as a function of the number of measured best flyer peptides and the number of SRM transitions per peptide. We found that a linear model based on the two most intense transitions of the three best flying peptides per proteins (TopPep3/TopTra2) generated optimal results with a cross-correlated mean fold error of 1.8 and a squared Pearson coefficient R2 of 0.88. Applying the optimized model to lysates of the microbe Leptospira interrogans, we detected significant protein abundance changes of 39 target proteins upon antibiotic treatment, which correlate well with literature values. The described method is generally applicable and exploits the inherent performance advantages of SRM

  10. Self-digitization microfluidic chip for absolute quantification of mRNA in single cells.

    PubMed

    Thompson, Alison M; Gansen, Alexander; Paguirigan, Amy L; Kreutz, Jason E; Radich, Jerald P; Chiu, Daniel T

    2014-12-16

    Quantification of mRNA in single cells provides direct insight into how intercellular heterogeneity plays a role in disease progression and outcomes. Quantitative polymerase chain reaction (qPCR), the current gold standard for evaluating gene expression, is insufficient for providing absolute measurement of single-cell mRNA transcript abundance. Challenges include difficulties in handling small sample volumes and the high variability in measurements. Microfluidic digital PCR provides far better sensitivity for minute quantities of genetic material, but the typical format of this assay does not allow for counting of the absolute number of mRNA transcripts samples taken from single cells. Furthermore, a large fraction of the sample is often lost during sample handling in microfluidic digital PCR. Here, we report the absolute quantification of single-cell mRNA transcripts by digital, one-step reverse transcription PCR in a simple microfluidic array device called the self-digitization (SD) chip. By performing the reverse transcription step in digitized volumes, we find that the assay exhibits a linear signal across a wide range of total RNA concentrations and agrees well with standard curve qPCR. The SD chip is found to digitize a high percentage (86.7%) of the sample for single-cell experiments. Moreover, quantification of transferrin receptor mRNA in single cells agrees well with single-molecule fluorescence in situ hybridization experiments. The SD platform for absolute quantification of single-cell mRNA can be optimized for other genes and may be useful as an independent control method for the validation of mRNA quantification techniques.

  11. THE SOLAR FLARE IRON ABUNDANCE

    SciTech Connect

    Phillips, K. J. H.; Dennis, B. R. E-mail: Brian.R.Dennis@nasa.gov

    2012-03-20

    The abundance of iron is measured from emission line complexes at 6.65 keV (Fe line) and 8 keV (Fe/Ni line) in RHESSI X-ray spectra during solar flares. Spectra during long-duration flares with steady declines were selected, with an isothermal assumption and improved data analysis methods over previous work. Two spectral fitting models give comparable results, viz., an iron abundance that is lower than previous coronal values but higher than photospheric values. In the preferred method, the estimated Fe abundance is A(Fe) = 7.91 {+-} 0.10 (on a logarithmic scale, with A(H) = 12) or 2.6 {+-} 0.6 times the photospheric Fe abundance. Our estimate is based on a detailed analysis of 1898 spectra taken during 20 flares. No variation from flare to flare is indicated. This argues for a fractionation mechanism similar to quiet-Sun plasma. The new value of A(Fe) has important implications for radiation loss curves, which are estimated.

  12. Measurements of absolute delayed neutron yield and group constants in the fast fission of {sup 235}U and {sup 237}Np

    SciTech Connect

    Loaiza, D.J.; Brunson, G.; Sanchez, R.; Butterfield, K.

    1998-03-01

    The delayed neutron activity resulting from the fast induced fission of {sup 235}U and {sup 237}Np has been studied. The six-group decay constants, relative abundances, and absolute yield of delayed neutrons from fast fission of {sup 235}U and {sup 237}Np were measured using the Godiva IV fast assembly at the Los Alamos Critical Experiments Facility. The absolute yield measured for {sup 235}U was 0.0163 {+-} 0.0008 neutron/fission. This value compares very well with the well-established Keepin absolute yield of 0.0165 {+-} 0.0005. The absolute yield value measured for {sup 237}Np was 0.0126 {+-} 0.0007. The measured delayed neutron parameters for {sup 235}U are corroborated with period (e-folding time) versus reactivity calculations.

  13. Abundance estimation and conservation biology

    USGS Publications Warehouse

    Nichols, J.D.; MacKenzie, D.I.

    2004-01-01

    Abundance is the state variable of interest in most population–level ecological research and in most programs involving management and conservation of animal populations. Abundance is the single parameter of interest in capture–recapture models for closed populations (e.g., Darroch, 1958; Otis et al., 1978; Chao, 2001). The initial capture–recapture models developed for partially (Darroch, 1959) and completely (Jolly, 1965; Seber, 1965) open populations represented efforts to relax the restrictive assumption of population closure for the purpose of estimating abundance. Subsequent emphases in capture–recapture work were on survival rate estimation in the 1970’s and 1980’s (e.g., Burnham et al., 1987; Lebreton et al.,1992), and on movement estimation in the 1990’s (Brownie et al., 1993; Schwarz et al., 1993). However, from the mid–1990’s until the present time, capture–recapture investigators have expressed a renewed interest in abundance and related parameters (Pradel, 1996; Schwarz & Arnason, 1996; Schwarz, 2001). The focus of this session was abundance, and presentations covered topics ranging from estimation of abundance and rate of change in abundance, to inferences about the demographic processes underlying changes in abundance, to occupancy as a surrogate of abundance. The plenary paper by Link & Barker (2004) is provocative and very interesting, and it contains a number of important messages and suggestions. Link & Barker (2004) emphasize that the increasing complexity of capture–recapture models has resulted in large numbers of parameters and that a challenge to ecologists is to extract ecological signals from this complexity. They offer hierarchical models as a natural approach to inference in which traditional parameters are viewed as realizations of stochastic processes. These processes are governed by hyperparameters, and the inferential approach focuses on these hyperparameters. Link & Barker (2004) also suggest that our attention

  14. Mini-implants and miniplates generate sub-absolute and absolute anchorage.

    PubMed

    Consolaro, Alberto

    2014-01-01

    The functional demand imposed on bone promotes changes in the spatial properties of osteocytes as well as in their extensions uniformly distributed throughout the mineralized surface. Once spatial deformation is established, osteocytes create the need for structural adaptations that result in bone formation and resorption that happen to meet the functional demands. The endosteum and the periosteum are the effectors responsible for stimulating adaptive osteocytes in the inner and outer surfaces. Changes in shape, volume and position of the jaws as a result of skeletal correction of the maxilla and mandible require anchorage to allow bone remodeling to redefine morphology, esthetics and function as a result of spatial deformation conducted by orthodontic appliances. Examining the degree of changes in shape, volume and structural relationship of areas where mini-implants and miniplates are placed allows us to classify mini-implants as devices of subabsolute anchorage and miniplates as devices of absolute anchorage.

  15. Examining changes in bacterial abundance in complex communities using next-generation sequencing is enhanced with quantitative PCR.

    PubMed

    Stokell, Joshua R; Hamp, Timothy J; Steck, Todd R

    2016-08-01

    Changes in the composition of microbial communities are often examined using high-throughput sequencing (HTS). Here we analyzed bar-coded Illumina sequencing data from a previous work describing the microbial community found in the sputum of a cystic fibrosis patient by itself or in combination with qPCR to measure the absolute abundance of Pseudomonas aeruginosa and Burkholderia multivorans. Through this comparison we were able to determine the computational analysis accuracy of sequencing data to measure the relative abundance of specific taxa. While no correlation was found between relative abundance and absolute abundance of P. aeruginosa or B. multivorans, we did find conclusions derived from HTS data alone differed from those derived from a combination of HTS and qPCR. Our results highlight the importance of using qPCR with HTS when characterizing organisms in microbial communities having a dominant taxon.

  16. Absolute dose verifications in small photon fields using BANGTM gel

    NASA Astrophysics Data System (ADS)

    Scheib, S. G.; Schenkel, Y.; Gianolini, S.

    2004-01-01

    Polymer gel dosimeters change their magnetic resonance (MR) and optical properties with the absorbed dose when irradiated and are suitable for narrow photon beam dosimetry in radiosurgery. Such dosimeters enable relative and absolute 3D dose verifications in order to check the entire treatment chain from imaging to dose application during commissioning and quality assurance. For absolute 3D dose verifications in radiosurgery using Gamma Knife B, commercially available BANGTM Gels (BANG 25 Gy and BANG 3 Gy) together with dedicated phantoms were chosen in order to determine the potential of absolute gel dosimetry in radiosurgery.

  17. Measuring the absolute magnetic field using high-Tc SQUID

    NASA Astrophysics Data System (ADS)

    He, D. F.; Itozaki, H.

    2006-06-01

    SQUID normally can only measure the change of magnetic field instead of the absolute value of magnetic field. Using a compensation method, a mobile SQUID, which could keep locked when moving in the earth's magnetic field, was developed. Using the mobile SQUID, it was possible to measure the absolute magnetic field. The absolute value of magnetic field could be calculated from the change of the compensation output when changing the direction of the SQUID in a magnetic field. Using this method and the mobile SQUID, we successfully measured the earth's magnetic field in our laboratory.

  18. Absolute Antenna Calibration at the US National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.

    2012-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO

  19. Element abundances at high redshift

    NASA Technical Reports Server (NTRS)

    Meyer, David M.; Welty, D. E.; York, D. G.

    1989-01-01

    Abundances of Si(+), S(+), Cr(+), Mn(+), Fe(_), and Zn(+) are considered for two absorption-line systems in the spectrum of the QSO PKS 0528 - 250. Zinc and sulfur are underabundant, relative to H, by a factor of 10 compared to their solar and Galactic interstellar abundances. The silicon-, chromium-, iron-, and nickel-to-hydrogen ratios are less than the solar values and comparable to the local interstellar ratios. A straightforward interpretation is that nucleosynthesis in these high-redshift systems has led to only about one-tenth as much heavy production as in the gas clouds around the sun, and that the amount of the observed underabundances attributable to grain depletion is small. The dust-to-gas ratio in these clouds is less than 8 percent of the Galactic value.

  20. Coronal abundances and their variation

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.

    1994-01-01

    This contract supports the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution software X-ray spectra from the Flat Crystal Spectrometer on NASA's Solar Maximum Mission. The goals of the study are a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This report is a summation of the data analysis and reporting activities which occurred since the last report, submitted two months early, in April 1994, to facilitate evaluation of the first year's progress for contract renewal. Hence this report covers the period 15 April 1994 - 15 December 1994. A list of publications resulting from this research is included.

  1. The CALIFA survey: Oxygen abundances

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Aff001

    We present here the last results we obtained on the spatial resolved analysis of the ionized gas of disk-dominated galaxies based on CALIFA data. CALIFA is an ongoing IFS survey of galaxies in the Local Univese (0.005 < z < 0.03) that has already obtained spectroscopic information up to ~2.5r e with a spatial resolution better than ~1 kpc for a total number of an statiscal sample of galaxies of different morphological types, covering the CM-diagram up to Mr<-18 mag. With nearly 2000 spectra obtained for each galaxy, CALIFA offer one of the best IFU data to study the starformation histories and chemical enrichment of galaxies. In this article we focus on the main results based on the analysis of the oxygen abundances based on the study of ionized gas in H ii regions and individual spaxels, and their relations with the global properties of galaxies. In summary we have found that: (1) the -Z relation does not present a secondary relation with the star-formation rate, when the abundance is measured at the effective radius; (2) the oxygen abundance present a strong correlation with the stellar surface density (Σ-Z relation); (3) the oxygen abundance profiles present three well defined regimes, (a) an overall negative radial gradient, between 0.5-2 r e , with a characteristic slope of α O/H ~-0.1 dex/r e , (b) an universal flatenning beyond >2r e and (c) an inner drop at <0.5r e which presence depends on the mass. All these results indicates that disk-galaxies present an overall inside-out growth, although with clear deviations from this simple scenario.

  2. The solar abundance of thulium

    NASA Technical Reports Server (NTRS)

    Ross, J. E.; Aller, L. H.

    1974-01-01

    Consideration of one relatively unblended line of the solar spectrum, namely, the 3131.258-A line of Tm II, which yields a thulium abundance of 0.80 plus or minus 0.10 with the Corliss and Bozman (1962) f-value. The uncertainty of this figure is discussed in conjunction with the contradictory findings of some other investigators. The need for further detailed study of the lanthanides by the method of spectrum synthesis is pointed out.

  3. Monochromator-Based Absolute Calibration of Radiation Thermometers

    NASA Astrophysics Data System (ADS)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Hartmann, J.

    2011-08-01

    A monochromator integrating-sphere-based spectral comparator facility has been developed to calibrate standard radiation thermometers in terms of the absolute spectral radiance responsivity, traceable to the PTB cryogenic radiometer. The absolute responsivity calibration has been improved using a 75 W xenon lamp with a reflective mirror and imaging optics to a relative standard uncertainty at the peak wavelength of approximately 0.17 % ( k = 1). Via a relative measurement of the out-of-band responsivity, the spectral responsivity of radiation thermometers can be fully characterized. To verify the calibration accuracy, the absolutely calibrated radiation thermometer is used to measure Au and Cu freezing-point temperatures and then to compare the obtained results with the values obtained by absolute methods, resulting in T - T 90 values of +52 mK and -50 mK for the gold and copper fixed points, respectively.

  4. Gibbs Paradox Revisited from the Fluctuation Theorem with Absolute Irreversibility

    NASA Astrophysics Data System (ADS)

    Murashita, Yûto; Ueda, Masahito

    2017-02-01

    The inclusion of the factor ln (1 /N !) in the thermodynamic entropy proposed by Gibbs is shown to be equivalent to the validity of the fluctuation theorem with absolute irreversibility for gas mixing.

  5. Absolute Value Boundedness, Operator Decomposition, and Stochastic Media and Equations

    NASA Technical Reports Server (NTRS)

    Adomian, G.; Miao, C. C.

    1973-01-01

    The research accomplished during this period is reported. Published abstracts and technical reports are listed. Articles presented include: boundedness of absolute values of generalized Fourier coefficients, propagation in stochastic media, and stationary conditions for stochastic differential equations.

  6. Chlorine Abundances in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Bogard, D.D.; Garrison, D.H.; Park, J.

    2009-01-01

    Chlorine measurements made in martian surface rocks by robotic spacecraft typically give Chlorine (Cl) abundances of approximately 0.1-0.8%. In contrast, Cl abundances in martian meteorites appear lower, although data is limited, and martian nakhlites were also subjected to Cl contamination by Mars surface brines. Chlorine abundances reported by one lab for whole rock (WR) samples of Shergotty, ALH77005, and EET79001 range 108-14 ppm, whereas Cl in nakhlites range 73-1900 ppm. Measurements of Cl in various martian weathering phases of nakhlites varied 0.04-4.7% and reveal significant concentration of Cl by martian brines Martian meteorites contain much lower Chlorine than those measured in martian surface rocks and give further confirmation that Cl in these surface rocks was introduced by brines and weathering. It has been argued that Cl is twice as effective as water in lowering the melting point and promoting melting at shallower martian depths, and that significant Cl in the shergottite source region would negate any need for significant water. However, this conclusion was based on experiments that utilized Cl concentrations more analogous to martian surface rocks than to shergottite meteorites, and may not be applicable to shergottites.

  7. Absolute flux calibration of optical spectrophotometric standard stars

    NASA Technical Reports Server (NTRS)

    Colina, Luis; Bohlin, Ralph C.

    1994-01-01

    A method based on Landolt photometry in B and V is developed to correct for a wavelength independent offset of the absolute flux level of optical spectrophotometric standards. The method is based on synthetic photometry techniques in B and V and is accurate to approximately 1%. The correction method is verified by Hubble Space Telescope Faint Object Spectrograph absolute fluxes for five calibration stars, which agree with Landolt photometry to 0.5% in B and V.

  8. Elemental Abundances from Very Low Abundance HII Regions

    NASA Astrophysics Data System (ADS)

    Skillman, Evan D.; Terlevich, Roberto J.; Terlevich, Elena

    1992-12-01

    In 1987 we initiated a program to mitigate the deficiency of known low metallicity galaxies. Following our discoveries of very low abundance H II regions in nearby dwarf galaxies (Skillman et al. 1988, 1989a,b), we used the IDS on the INT to to collect spectra of dwarf galaxies in the Second Byurakan Survey (SBS) of UV excess galaxies. Our survey of over 40 SBS galaxies was completed in January 1990 and we have identified roughly one dozen very low metallicity H II galaxies. Now, with a significant sample of these galaxies, several observational programs are possible; foremost of these is the measurement of the primordial helium abundance (eg., Pagel et al. 1992). We report here on observations from March 1991 and 1992 using the ISIS spectrograph on the WHT to obtain very high quality spectra of 8 of these newly discovered metal-poor galaxies. The ISIS double spectrograph allows simultaneous observations of the blue (3600 - 5100 Angstroms) and red (6300 - 6800 Angstroms). Thus, He, N, O, Ne and S abundances can be derived with relatively small observational uncertainties. We compare our new observations with those in the literature. Our preliminary analysis indicates a slightly larger scatter in He/H at low O/H than had been seen previously. The small scatter may have been due simply to the paucity of observations at low metallicity. References: Pagel, B.E.J., Simonson, E.A., Terlevich, R.J., & Edmunds, M.G. 1992, MNRAS, 255, 325 Skillman, E.D., Kennicutt, R.C., & Hodge, P.W. 1989a, ApJ, 347, 875 Skillman, E.D., Melnick, J., Terlevich, R., & Moles, M. 1988, A&A, 196, 31 Skillman, E.D., Terlevich, R., & Melnick, J. 1989b, MNRAS, 240, 563

  9. The Abundance of Interstellar Fluorine

    NASA Technical Reports Server (NTRS)

    Lauroesch, James T.

    2005-01-01

    The primary objective of this program was to obtain FUSE observations of the interstellar absorption lines of F I at 951 and 954 Angstroms to derive the abundance of fluorine toward the star HD 164816. The nucleosynthetic source(s) of fluorine are still a matter of debate - the present day abundance of fluorine can potentially constrain models for pulsationally driven dredge-up in asymptotic giant branch stars. An accurate measure for the depletion behavior of fluorine will determine whether it may be detectable in QSO absorption line systems - an unambiguous detection of fluorine at suitably high redshifts would provide the best evidence to date for the neutrino process in massive stars. Furthermore, due to its extreme reactivity, measurement of the gas-phase interstellar fluorine abundance is important for models of grain chemistry. Despite the importance of measuring the interstellar fluorine abundance, at the time of our proposal only one previous detection has been made due to the low relative abundance of fluorine, the lack of lines outside the far-UV, and the blending of the available F I transitions with lines of Hz. The star HD 164816 is associated with the Lagoon nebula (M8), and at a distance of approximately 1.5 kpc probes both distant and local gas. Beginning April 8th, 2004 FUSE FP-Split observations of the star HD 164816 were obtained for this program. This data became available in the FUSE data archive May 21, 2004, and these observations were then downloaded and we began our analysis. Our analysis procedure has involved (1) fitting stellar models to the FUSE spectra, (2) using the multiple lines of Hz and N I at other wavelengths in the FUSE bandpass to derive column densities for the lines of H2 and N I which are blended with the F I features at 951 and 954 angstroms (3) the measurement of the column densities of F I and the species O I and C1 I which are important species for the dis-entangling of dust and nucleosynthetic effects. As discussed in

  10. Abundance measurements in stellar environments

    SciTech Connect

    Leone, F.

    2014-05-09

    Most of what we know about stars, and systems of stars, is derived from the analysis of their electromagnetic radiation. This lesson is an attempt to describe to Physicists, without any Astrophysical background, the framework to understand the present status of abundance determination in stellar environments and its limit. These notes are dedicated to the recently passed, November 21, 2013, Prof. Dimitri Mihalas who spent his life confuting the 19th century positivist philosopher Auguste Comte who stated that we shall not at all be able to determine the chemical composition of stars.

  11. Abundance measurements in stellar environments

    NASA Astrophysics Data System (ADS)

    Leone, F.

    2014-05-01

    Most of what we know about stars, and systems of stars, is derived from the analysis of their electromagnetic radiation. This lesson is an attempt to describe to Physicists, without any Astrophysical background, the framework to understand the present status of abundance determination in stellar environments and its limit. These notes are dedicated to the recently passed, November 21, 2013, Prof. Dimitri Mihalas who spent his life confuting the 19th century positivist philosopher Auguste Comte who stated that we shall not at all be able to determine the chemical composition of stars.

  12. The solar abundance of Oxygen

    NASA Astrophysics Data System (ADS)

    Grevesse, N.

    2009-07-01

    With Martin Asplund (Max Planck Institute of Astrophysics, Garching) and Jacques Sauval (Observatoire Royal de Belgique, Brussels) I recently published detailed reviews on the solar chemical composition ({Asplund et al. 2005}, {Grevesse et al. 2007}). A new one, with Pat Scott (Stockholm University) as additional co-author, will appear in Annual Review of Astronomy and Astrophysics ({Asplund et al. 2009}). Here we briefly analyze recent works on the solar abundance of Oxygen and recommend a value of 8.70 in the usual astronomical scale.

  13. Auditory working memory predicts individual differences in absolute pitch learning.

    PubMed

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  14. Influence of Coronal Abundance Variations

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph (Technical Monitor); DeLuca, Edward

    2005-01-01

    During the final year of this program we concentrated on understanding the how to constrain the models with the best available observations. Work on developing accurate temperature and density diagnostics fkom TRACE and CDS together with constrained fits of non-potential force free fields will be extremely useful in the guiding the next generation of coronal models. The program has produced three fully operation numerical codes that model multi-species of ions in coronal loops: Static models and constant flow models. The time dependent numerical models have not been completed. We have extended the steady flow investigations to study the effect these flows have on coronal structure as observed with TRACE. Coronal observations derive from heavy-ion emission; thus, we focus on the extent to which flow may modify coronal abundances by examining the heavy-ion abundance stratification within long-lived loops. We discuss the magnitudes of the physical effects modeled and compare simulated results with TRACE observations. These results can have a profound effect on the interpretation of TRACE observations.

  15. Abundances in Hot Evolved Stars

    NASA Astrophysics Data System (ADS)

    Werner, Klaus; Rauch, Thomas; Kruk, Jeffrey W.

    2009-05-01

    The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric element abundances of these stars allow us to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted element abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. Almost all of the chemical trace elements in these hot stars can only be identified in the UV spectral range. The Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope played a crucial role for this research.

  16. Isotopic abundances - Inferences on solar system and planetary evolution

    NASA Astrophysics Data System (ADS)

    Wasserburg, G. J.

    1987-12-01

    For matter that has been removed from a region of nucleosynthetic activity and the effects of interactions with nuclear active particles, the only changes in nuclear abundances that can occur in an isolated system derive from the decay of radioactive nuclei of an element to yield the nucleus of another element. These two related nuclei furnish the absolute chronometers of geologic and cosmic time, through the decay of spontaneously radioactive parent nuclei and the accumulation of daughter nuclei. For systems related to such cosmic processes as the formation of the solar system from the precursor interstellar medium, and involving the very early evolution of the sun, there may arise considerable complexity, due to the intrinsic isotopic heterogeneity of the medium and the presence of short-lived nuclei.

  17. Absolute and relative family affluence and psychosomatic symptoms in adolescents.

    PubMed

    Elgar, Frank J; De Clercq, Bart; Schnohr, Christina W; Bird, Phillippa; Pickett, Kate E; Torsheim, Torbjørn; Hofmann, Felix; Currie, Candace

    2013-08-01

    Previous research on the links between income inequality and health and socioeconomic differences in health suggests that relative differences in affluence impact health and well-being more than absolute affluence. This study explored whether self-reported psychosomatic symptoms in adolescents relate more closely to relative affluence (i.e., relative deprivation or rank affluence within regions or schools) than to absolute affluence. Data on family material assets and psychosomatic symptoms were collected from 48,523 adolescents in eight countries (Austria, Belgium, Canada, Norway, Scotland, Poland, Turkey, and Ukraine) as part of the 2009/10 Health Behaviour in School-aged Children study. Multilevel regression analyses of the data showed that relative deprivation (Yitzhaki Index, calculated in regions and in schools) and rank affluence (in regions) (1) related more closely to symptoms than absolute affluence, and (2) related to symptoms after differences in absolute affluence were held constant. However, differences in family material assets, whether they are measured in absolute or relative terms, account for a significant variation in adolescent psychosomatic symptoms. Conceptual and empirical issues relating to the use of material affluence indices to estimate socioeconomic position are discussed.

  18. High speed image acquisition system of absolute encoder

    NASA Astrophysics Data System (ADS)

    Liao, Jianxiang; Chen, Xin; Chen, Xindu; Zhang, Fangjian; Wang, Han

    2017-01-01

    Absolute optical encoder as a product of optical, mechanical and electronic integration has been widely used in displacement measuring fields. However, how to improve the measurement velocity and reduce the manufacturing cost of absolute optical encoder is the key problem to be solved. To improve the measurement speed, a novel absolute optical encoder image acquisition system is proposed. The proposed acquisition system includes a linear CCD sensor is applied for capturing coding pattern images, an optical magnifying system is used for enlarging the grating stripes, an analog-digital conversion(ADC) module is used for processing the CCD analogy signal, a field programmable gate array(FPGA) device and other peripherals perform driving task. An absolute position measurement experiment was set up to verify and evaluate the proposed image acquisition system. The experimental result indicates that the proposed absolute optical encoder image acquisition system has the image acquisition speed of more than 9500fp/s with well reliability and lower manufacture cost.

  19. Accurate absolute GPS positioning through satellite clock error estimation

    NASA Astrophysics Data System (ADS)

    Han, S.-C.; Kwon, J. H.; Jekeli, C.

    2001-05-01

    An algorithm for very accurate absolute positioning through Global Positioning System (GPS) satellite clock estimation has been developed. Using International GPS Service (IGS) precise orbits and measurements, GPS clock errors were estimated at 30-s intervals. Compared to values determined by the Jet Propulsion Laboratory, the agreement was at the level of about 0.1 ns (3 cm). The clock error estimates were then applied to an absolute positioning algorithm in both static and kinematic modes. For the static case, an IGS station was selected and the coordinates were estimated every 30 s. The estimated absolute position coordinates and the known values had a mean difference of up to 18 cm with standard deviation less than 2 cm. For the kinematic case, data obtained every second from a GPS buoy were tested and the result from the absolute positioning was compared to a differential GPS (DGPS) solution. The mean differences between the coordinates estimated by the two methods are less than 40 cm and the standard deviations are less than 25 cm. It was verified that this poorer standard deviation on 1-s position results is due to the clock error interpolation from 30-s estimates with Selective Availability (SA). After SA was turned off, higher-rate clock error estimates (such as 1 s) could be obtained by a simple interpolation with negligible corruption. Therefore, the proposed absolute positioning technique can be used to within a few centimeters' precision at any rate by estimating 30-s satellite clock errors and interpolating them.

  20. Absolute Instability in Swept Leading-Edge Boundary Layers

    NASA Astrophysics Data System (ADS)

    Lin, R.-S.; Li, F.; Malik, M. R.

    1997-11-01

    Absolute instabilities in the swept Hiemenz flow and flows over Poll's swept cylinder are studied. It is assumed that the span is infinite and the laminar flow field is subjected to a line impulsive excitation so that the spanwise wavenumber (β) is taken to be real, which is akin to the rotating disk study made by Lingwood.footnote Lingwood, R. J., J. Fluid Mech., 299, 17, 1995. We found that these flows can be absolutely unstable in the chordwise (x) direction. The pinch-point singularities formed by the coalescence of two distinct spatial branches can lie either below or above the real α-axis. The pinch points with a positive αi imply the existence of an unstable disturbance propagating against the mainstream, which has never been observed before. It is found that singularities of pinch type occur in a region very close to the leading edge, therefore the attachment-line Reynolds number is used to correlate the onset of absolute instability. The critical Reynolds number for absolute instability is found to be about R=540 compared to 583 for the attachment-line instability. Provided the non-linear behavior of this absolute instability is sufficient to trigger the laminar to turbulent transition, then it would cause a complete loss of laminar flow on a swept wing as does the attachment-line instability.

  1. Dissociative Recombination and Excitation of CH+5: Absolute Cross Sections and Branching Fractions

    NASA Astrophysics Data System (ADS)

    Semaniak, J.; Larson, Å.; Le Padellec, A.; Strömholm, C.; Larsson, M.; Rosén, S.; Peverall, R.; Danared, H.; Djuric, N.; Dunn, G. H.; Datz, S.

    1998-05-01

    The heavy-ion storage ring CRYRING was used to measure the absolute dissociative recombination and dissociative excitation cross sections for collision energies below 50 eV. Deduced thermal rates coefficients are consistent with previous beams data but are lower by a factor of 3 than the rates measured by means of the flowing afterglow Langmuir probe technique. A resonant structure in dissociative recombination cross section was found at 9 eV. We have determined the branching fractions in DR of CH+5 below 0.2 eV. The branching is dominated by three-body CH3 + H + H and CH2 + H2 + H dissociation channels, which occur with branching ratios of ~0.7 and ~0.2, respectively; thus methane is a minor species among dissociation products. Both the measured absolute cross sections and branching in dissociative recombination of CH+5 can have important implications for the models of dense interstellar clouds and abundance of CH2, CH3 and CH4 in these media.

  2. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  3. Absolute distance sensing by two laser optical interferometry.

    PubMed

    Thurner, Klaus; Braun, Pierre-François; Karrai, Khaled

    2013-11-01

    We have developed a method for absolute distance sensing by two laser optical interferometry. A particularity of this technique is that a target distance is determined in absolute and is no longer limited to within an ambiguity range affecting usually multiple wavelength interferometers. We implemented the technique in a low-finesse Fabry-Pérot miniature fiber based interferometer. We used two diode lasers, both operating in the 1550 nm wavelength range. The wavelength difference is chosen to create a 25 μm long periodic beating interferometric pattern allowing a nanometer precise position measurement but limited to within an ambiguity range of 25 μm. The ambiguity is then eliminated by scanning one of the wavelengths over a small range (3.4 nm). We measured absolute distances in the sub-meter range and this with just few nanometer repeatability.

  4. Method and apparatus for two-dimensional absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2004-01-01

    This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.

  5. Solar-system abundances of the elements

    NASA Technical Reports Server (NTRS)

    Anders, E.; Ebihara, M.

    1982-01-01

    Elemental analyses of the Ogueil Cl meteorite and all previous Cl chondrite analyses were employed to develop a new solar system abundance table, including the standard deviation and number of analyses for each element. The table also comprises the abundances of radioactive and radiogenic nuclides at the present and 4.55 AE ago, as well as abundances by weight in a typical Cl chondrite. The new abundances were within 20% of those determined by Cameron (1982), except for 14 cases in the range 20-50%, and 5 over 50%. The solar abundances were compared with the Cl abundances, showing a total of only 7 disagreements. No significant discrepancies were detected in the major cosmochemical groups, and a smooth trend was found in the abundances of odd-A nuclides. The new set is interpreted as accurate to 10%, with the Cl chondrites matching the primordial solar system abundances to at most 10% deviation.

  6. Hematite Abundance Map at Echo

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows the hematite abundance map for a portion of the Meridiani Planum rock outcrop near where the Mars Exploration Rover Opportunity landed. It was acquired by the rover's miniature thermal emission spectrometer instrument from a spot called 'Echo.' Portions of the inner crater wall in this region appear rich in hematite (red). The sharp boundary from hematite-rich to hematite-poor (yellow and green) surfaces corresponds to a change in the surface texture and color. The hematite-rich surfaces have ripple-like forms suggesting wind transported hematite to these surfaces. The bounce marks produced during landing at the base of the slope on the left are low in hematite (blue). The hematite grains that originally covered the surface were pushed below the surface by the lander, exposing a soil that has less hematite.

  7. The Absolute Gravimeter FG5 - Adjustment and Residual Data Evaluation

    NASA Astrophysics Data System (ADS)

    Orlob, M.; Braun, A.; Henton, J.; Courtier, N.; Liard, J.

    2009-05-01

    The most widely used method of direct terrestrial gravity determination is performed by using a ballistic absolute gravimeter. Today, the FG5 (Micro-g LaCoste; Lafayette, CO) is the most common free-fall absolute gravimeter. It uses the Michelson-type interferometer to determine the absolute gravity value with accuracies up to one part- per-billion of g. Furthermore, absolute gravimeter measurements can be used to assist in the validation and interpretation of temporal variations of the global gravity field, e.g. from the GRACE mission. In addition, absolute gravimetry allows for monitoring gravity changes which are caused by subsurface mass redistributions and/or vertical displacements. In this study,adjustment software was developed and applied to the raw data sets of FG5#106 and FG5#236, made available by Natural Resources Canada. Both data sets have been collected at the same time and place which leads to an intercomparison of the instruments performance. The adjustment software was validated against the official FG5 software package developed by Micro-g Lacoste. In order to identify potential environmental or instrument disturbances in the observed time series, a Lomb- Scargle periodogram analysis was employed. The absolute gravimeter FG5 is particularly sensitive to low frequencies between 0-3Hz. Hence, the focus of the analysis is to detect signals in the band of 0-100 Hz. An artificial signal was added to the measurements for demonstration purposes. Both the performance of the adjustment software and the Lomb-Scargle analysis will be discussed.

  8. Measurements of the reactor neutron power in absolute units

    SciTech Connect

    Lebedev, G. V.

    2015-12-15

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  9. STS-9 Shuttle grow - Ram angle effect and absolute intensities

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.; Mende, S. B.; Clifton, K. S.

    1986-01-01

    Visible imagery from Space Shuttle mission STS-9 (Spacelab 1) has been analyzed for the ram angle effect and the absolute intensity of glow. The data are compared with earlier measurements and the anomalous high intensities at large ram angles are confirmed. Absolute intensities of the ram glow on the shuttle tile, at 6563 A, are observed to be about 20 times more intense than those measured on the AE-E spacecraft. Implications of these observations for an existing theory of glow involving NO2 are presented.

  10. Absolute integrated intensity for the nu-1 sulfur dioxide band

    NASA Technical Reports Server (NTRS)

    Pilon, P. J.; Young, C.

    1976-01-01

    The absolute integrated intensity of the IR vibration-rotation nu-1 SO2 band was measured using the linear portion of the curve of growth. Infrared spectroscopic-absorption cell measurements were performed on sulfur dioxide at partial pressures less than 0.15 torr with nitrogen added to give a total pressure of 705 torr, the path length being 4 mm. The absolute integrated intensity was determined to be 112.0 plus or minus 2.6/cm/sq (atm cm) at 296 K at the 95% confidence level.

  11. From Hubble's Next Generation Spectral Library (NGSL) to Absolute Fluxes

    NASA Astrophysics Data System (ADS)

    Heap, S. R.; Lindler, D.

    2016-05-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R˜1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.03 μ. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsl/. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We have therefore developed an observing procedure, data-reduction procedure, and correction algorithms that should yield fluxes with uncertainties less than 1%.

  12. Absolute configuration determination of angular dihydrocoumarins from Peucedanum praeruptorum.

    PubMed

    Lou, Hong-Xiang; Sun, Long-Ru; Yu, Wen-Tao; Fan, Pei-Hong; Cui, Lei; Gao, Yan-Hui; Ma, Bin; Ren, Dong-Mei; Ji, Mei

    2004-09-01

    From Peucedanum praeruptorum, one new khellactone ester (3'R)-O-acetyl-(4'S)-O-angeloylkhellactone (3), as well as four known angular dihydropyranocoumarins (1, 2, 4, 5) have been isolated. On the basis of NMR spectra and X-ray crystallography, their structures were determined. We have elucidated their absolute configuration by either chiral separation of their alkaline hydrolysis products with Rp-18 HPLC eluted with 5% hydroxypropyl-beta-cyclodextrin (beta-HCD) or by measurement of their CD spectra. A general rule relating the position and absolute streochemistry of the khellactone esters to the sign of their Cotton effects in CD curves is proposed.

  13. Absolute, Extreme-Ultraviolet, Solar Spectral Irradiance Monitor (AESSIM)

    NASA Technical Reports Server (NTRS)

    Huber, Martin C. E.; Smith, Peter L.; Parkinson, W. H.; Kuehne, M.; Kock, M.

    1988-01-01

    AESSIM, the Absolute, Extreme-Ultraviolet, Solar Spectral Irradiance Monitor, is designed to measure the absolute solar spectral irradiance at extreme-ultraviolet (EUV) wavelengths. The data are required for studies of the processes that occur in the earth's upper atmosphere and for predictions of atmospheric drag on space vehicles. AESSIM is comprised of sun-pointed spectrometers and newly-developed, secondary standards of spectral irradiance for the EUV. Use of the in-orbit standard sources will eliminate the uncertainties caused by changes in spectrometer efficiency that have plagued all previous measurements of the solar spectral EUV flux.

  14. Large-Scale Measurement of Absolute Protein Glycosylation Stoichiometry.

    PubMed

    Sun, Shisheng; Zhang, Hui

    2015-07-07

    Protein glycosylation is one of the most important protein modifications. Glycosylation site occupancy alteration has been implicated in human diseases and cancers. However, current glycoproteomic methods focus on the identification and quantification of glycosylated peptides and glycosylation sites but not glycosylation occupancy or glycoform stoichiometry. Here we describe a method for large-scale determination of the absolute glycosylation stoichiometry using three independent relative ratios. Using this method, we determined 117 absolute N-glycosylation occupancies in OVCAR-3 cells. Finally, we investigated the possible functions and the determinants for partial glycosylation.

  15. Non-Invasive Method of Determining Absolute Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor); Hargens, Alan E. (Inventor)

    2004-01-01

    A method is presented for determining absolute intracranial pressure (ICP) in a patient. Skull expansion is monitored while changes in ICP are induced. The patient's blood pressure is measured when skull expansion is approximately zero. The measured blood pressure is indicative of a reference ICP value. Subsequently, the method causes a known change in ICP and measured the change in skull expansion associated therewith. The absolute ICP is a function of the reference ICP value, the known change in ICP and its associated change in skull expansion; and a measured change in skull expansion.

  16. Absolute gain measurement by the image method under mismatched condition

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Baddour, Maurice F.

    1987-01-01

    Purcell's image method for measuring the absolute gain of an antenna is particularly attractive for small test antennas. The method is simple to use and utilizes only one antenna with a reflecting plane to provide an image for the receiving antenna. However, the method provides accurate results only if the antenna is matched to its waveguide. In this paper, a waveguide junction analysis is developed to determine the gain of an antenna under mismatched condition. Absolute gain measurements for two standard gain horn antennas have been carried out. Experimental results agree closely with published data.

  17. Absolute photon-flux measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Haddad, G. N.

    1974-01-01

    Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

  18. Nonexistence of equilibrium states at absolute negative temperatures

    NASA Astrophysics Data System (ADS)

    Romero-Rochín, Víctor

    2013-08-01

    We show that states of macroscopic systems with purported absolute negative temperatures are not stable under small, yet arbitrary, perturbations. We prove the previous statement using the fact that, in equilibrium, the entropy takes its maximum value. We discuss that, while Ramsey theoretical reformulation of the second law for systems with negative temperatures is logically correct, it must be a priori assumed that those states are in thermodynamic equilibrium. Since we argue that those states cannot occur, reversible processes are impossible, and, thus, Ramsey identification of absolute negative temperatures is untenable.

  19. Absolute Stability Analysis of a Phase Plane Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol

    2010-01-01

    Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.

  20. Bayesian change point analysis of abundance trends for pelagic fishes in the upper San Francisco Estuary

    USGS Publications Warehouse

    Thompson, James R.; Kimmerer, Wim J.; Brown, Larry R.; Newman, Ken B.; Mac Nally, Ralph; Bennett, William A.; Feyrer, Frederick; Fleishman, Erica

    2010-01-01

    We examined trends in abundance of four pelagic fish species (delta smelt, longfin smelt, striped bass, and threadfin shad) in the upper San Francisco Estuary, California, USA, over 40 years using Bayesian change point models. Change point models identify times of abrupt or unusual changes in absolute abundance (step changes) or in rates of change in abundance (trend changes). We coupled Bayesian model selection with linear regression splines to identify biotic or abiotic covariates with the strongest associations with abundances of each species. We then refitted change point models conditional on the selected covariates to explore whether those covariates could explain statistical trends or change points in species abundances. We also fitted a multispecies change point model that identified change points common to all species. All models included hierarchical structures to model data uncertainties, including observation errors and missing covariate values. There were step declines in abundances of all four species in the early 2000s, with a likely common decline in 2002. Abiotic variables, including water clarity, position of the 2‰ isohaline (X2), and the volume of freshwater exported from the estuary, explained some variation in species' abundances over the time series, but no selected covariates could explain statistically the post-2000 change points for any species.

  1. Surface abundances of ON stars

    NASA Astrophysics Data System (ADS)

    Martins, F.; Simón-Díaz, S.; Palacios, A.; Howarth, I.; Georgy, C.; Walborn, N. R.; Bouret, J.-C.; Barbá, R.

    2015-06-01

    Context. Massive stars burn hydrogen through the CNO cycle during most of their evolution. When mixing is efficient or when mass transfer in binary systems occurs, chemically processed material is observed at the surface of O and B stars. Aims: ON stars show stronger lines of nitrogen than morphologically normal counterparts. Whether this corresponds to the presence of material processed through the CNO cycle is not known. Our goal is to answer this question. Methods: We performed a spectroscopic analysis of a sample of ON stars with atmosphere models. We determined the fundamental parameters as well as the He, C, N, and O surface abundances. We also measured the projected rotational velocities. We compared the properties of the ON stars to those of normal O stars. Results: We show that ON stars are usually rich in helium. Their CNO surface abundances are fully consistent with predictions of nucleosynthesis. ON stars are more chemically evolved and rotate - on average - faster than normal O stars. Evolutionary models including rotation cannot account for the extreme enrichment observed among ON main sequence stars. Some ON stars are members of binary systems, but others are single stars as indicated by stable radial velocities. Mass transfer is therefore not a simple explanation for the observed chemical properties. Conclusions: We conclude that ON stars show extreme chemical enrichment at their surface, consistent with nucleosynthesis through the CNO cycle. Its origin is not clear at present. Based on observations obtained 1) at the Anglo-Australian Telescope; 2) at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii; 3) at the ESO/La Silla Observatory under programs 081.D-2008, 083.D-0589, 086.D-0997; 4) the Nordic Optical Telescope, operated on the island of La

  2. Predicting abundance of desert riparian birds: validation and calibration of the Effective Area Model.

    PubMed

    Brand, L Arriana; Noon, Barry R; Sisk, Thomas D

    2006-06-01

    Reliable prediction of the effects of landscape change on species abundance is critical to land managers who must make frequent, rapid decisions with long-term consequences. However, due to inherent temporal and spatial variability in ecological systems, previous attempts to predict species abundance in novel locations and/or time frames have been largely unsuccessful. The Effective Area Model (EAM) uses change in habitat composition and geometry coupled with response of animals to habitat edges to predict change in species abundance at a landscape scale. Our research goals were to validate EAM abundance predictions in new locations and to develop a calibration framework that enables absolute abundance predictions in novel regions or time frames. For model validation, we compared the EAM to a null model excluding edge effects in terms of accurate prediction of species abundance. The EAM outperformed the null model for 83.3% of species (N=12) for which it was possible to discern a difference when considering 50 validation sites. Likewise, the EAM outperformed the null model when considering subsets of validation sites categorized on the basis of four variables (isolation, presence of water, region, and focal habitat). Additionally, we explored a framework for producing calibrated models to decrease prediction error given inherent temporal and spatial variability in abundance. We calibrated the EAM to new locations using linear regression between observed and predicted abundance with and without additional habitat covariates. We found that model adjustments for unexplained variability in time and space, as well as variability that can be explained by incorporating additional covariates, improved EAM predictions. Calibrated EAM abundance estimates with additional site-level variables explained a significant amount of variability (P < 0.05) in observed abundance for 17 of 20 species, with R2 values >25% for 12 species, >48% for six species, and >60% for four species

  3. Two methods for absolute calibration of dynamic pressure transducers

    NASA Astrophysics Data System (ADS)

    Swift, G. W.; Migliori, A.; Garrett, S. L.; Wheatley, J. C.

    1982-12-01

    Two techniques are described for absolute calibration of a dynamic pressure transducer from 0 to 400 Hz in 1-MPa helium gas. One technique is based on a comparison to a mercury manometer; the other is based on the principle of reciprocity. The two techniques agree within the instrumental uncertainties of 1%.

  4. Individual Differences in Absolute and Relative Metacomprehension Accuracy

    ERIC Educational Resources Information Center

    Maki, Ruth H.; Shields, Micheal; Wheeler, Amanda Easton; Zacchilli, Tammy Lowery

    2005-01-01

    The authors investigated absolute and relative metacomprehension accuracy as a function of verbal ability in college students. Students read hard texts, revised texts, or a mixed set of texts. They then predicted their performance, took a multiple-choice test on the texts, and made posttest judgments about their performance. With hard texts,…

  5. Absolute Value Inequalities: High School Students' Solutions and Misconceptions

    ERIC Educational Resources Information Center

    Almog, Nava; Ilany, Bat-Sheva

    2012-01-01

    Inequalities are one of the foundational subjects in high school math curricula, but there is a lack of academic research into how students learn certain types of inequalities. This article fills part of the research gap by presenting the findings of a study that examined high school students' methods of approaching absolute value inequalities,…

  6. Is There a Rule of Absolute Neutralization in Nupe?

    ERIC Educational Resources Information Center

    Krohn, Robert

    1975-01-01

    A previously prosed rule of absolute neutralization (merging underlying low vowels) is eliminated in an alternative analysis including instead a rule that "breaks" the feature matrix of certain low vowels and redistributes the features of each vowel as a sequence of vowel-like transition plus (a). (Author/RM)

  7. A mathematical biologist's guide to absolute and convective instability.

    PubMed

    Sherratt, Jonathan A; Dagbovie, Ayawoa S; Hilker, Frank M

    2014-01-01

    Mathematical models have been highly successful at reproducing the complex spatiotemporal phenomena seen in many biological systems. However, the ability to numerically simulate such phenomena currently far outstrips detailed mathematical understanding. This paper reviews the theory of absolute and convective instability, which has the potential to redress this inbalance in some cases. In spatiotemporal systems, unstable steady states subdivide into two categories. Those that are absolutely unstable are not relevant in applications except as generators of spatial or spatiotemporal patterns, but convectively unstable steady states can occur as persistent features of solutions. The authors explain the concepts of absolute and convective instability, and also the related concepts of remnant and transient instability. They give examples of their use in explaining qualitative transitions in solution behaviour. They then describe how to distinguish different types of instability, focussing on the relatively new approach of the absolute spectrum. They also discuss the use of the theory for making quantitative predictions on how spatiotemporal solutions change with model parameters. The discussion is illustrated throughout by numerical simulations of a model for river-based predator-prey systems.

  8. Ophthalmoplegic migraine. Two patients with an absolute response to indomethacin.

    PubMed

    Pareja, J A; Churruca, J; de la Casa Fages, B; de Silanes, C López; Sánchez, C; Barriga, F J

    2010-06-01

    Two patients suffering from ophthalmoplegic migraine had a strictly unilateral headache absolutely responsive to indomethacin, but not to other non-steroidal anti-inflammatory drugs, analgesics or corticosteroids. Such observations raise a therapeutic alternative and suggest that ophthalmoplegic migraine may present with different headache phenotypes.

  9. Absolute Interrogative Intonation Patterns in Buenos Aires Spanish

    ERIC Educational Resources Information Center

    Lee, Su Ar

    2010-01-01

    In Spanish, each uttered phrase, depending on its use, has one of a variety of intonation patterns. For example, a phrase such as "Maria viene manana" "Mary is coming tomorrow" can be used as a declarative or as an absolute interrogative (a yes/no question) depending on the intonation pattern that a speaker produces. …

  10. Absolute configurations of zingiberenols isolated from ginger (Zingiber officinale) rhizomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sesquiterpene alcohol zingiberenol, or 1,10-bisaboladien-3-ol, was isolated some time ago from ginger, Zingiber officinale, rhizomes, but its absolute configuration had not been determined. With three chiral centers present in the molecule, zingiberenol can exist in eight stereoisomeric forms. ...

  11. Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Reichmann, Edwin J.

    1987-01-01

    Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.

  12. Urey: to measure the absolute age of Mars

    NASA Technical Reports Server (NTRS)

    Randolph, J. E.; Plescia, J.; Bar-Cohen, Y.; Bartlett, P.; Bickler, D.; Carlson, R.; Carr, G.; Fong, M.; Gronroos, H.; Guske, P. J.; Herring, M.; Javadi, H.; Johnson, D. W.; Larson, T.; Malaviarachchi, K.; Sherrit, S.; Stride, S.; Trebi-Ollennu, A.; Warwick, R.

    2003-01-01

    UREY, a proposed NASA Mars Scout mission will, for the first time, measure the absolute age of an identified igneous rock formation on Mars. By extension to relatively older and younger rock formations dated by remote sensing, these results will enable a new and better understanding of Martian geologic history.

  13. Relative versus Absolute Stimulus Control in the Temporal Bisection Task

    ERIC Educational Resources Information Center

    de Carvalho, Marilia Pinhiero; Machado, Armando

    2012-01-01

    When subjects learn to associate two sample durations with two comparison keys, do they learn to associate the keys with the short and long samples (relational hypothesis), or with the specific sample durations (absolute hypothesis)? We exposed 16 pigeons to an ABA design in which phases A and B corresponded to tasks using samples of 1 s and 4 s,…

  14. Mechanism for an absolute parametric instability of an inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Arkhipenko, V. I.; Budnikov, V. N.; Gusakov, E. Z.; Romanchuk, I. A.; Simonchik, L. V.

    1984-05-01

    The structure of plasma oscillations in a region of parametric spatial amplification has been studied experimentally for the first time. A new mechanism for an absolute parametric instability has been observed. This mechanism operates when a pump wave with a spatial structure more complicated than a plane wave propagates through a plasma which is inhomogeneous along more than one dimension.

  15. Absolute calibration in the 1750 - 3350 A region

    NASA Technical Reports Server (NTRS)

    Strongylis, G. J.; Bohlin, R. C.

    1977-01-01

    The absolute flux measurements in the rocket ultraviolet made by Bohlin, Frimout, and Lillie (BFL) are revised using a more correct treatment of the air extinction that enters the air calibration of their instrument. The absorption by molecular oxygen and ozone, Rayleigh scattering, and extinction by aerosols is tabulated for general use in ultraviolet calibrations performed in air. The revised absolute flux of eta UMa and final fluxes for alpha Lyr and zeta Oph are presented in the 1750-3350 A region. The absolute flux of the star eta UMa is compared to four other independent determinations in the 1200-3400 A region and a maximum difference of 35% is found near 1500 A between the OAO-2 and Apollo 17 fluxes. The rocket measurements of BFL, the ANS and TD-1 satellite data, and the Apollo 17 data are compared to the ultraviolet fluxes from the OAO-2, demonstrating a photometric reproducibility of about + or - 3 percent. Therefore, all four sets of spectrophotometry can be reduced to a common absolute scale.

  16. Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna

    2015-09-01

    Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.

  17. Series that Converge Absolutely but Don't Converge

    ERIC Educational Resources Information Center

    Kantrowitz, Robert; Schramm, Michael

    2012-01-01

    If a series of real numbers converges absolutely, then it converges. The usual proof requires completeness in the form of the Cauchy criterion. Failing completeness, the result is false. We provide examples of rational series that illustrate this point. The Cantor set appears in connection with one of the examples.

  18. Analysis of standard reference materials by absolute INAA

    SciTech Connect

    Heft, R.E.; Koszykowski, R.F.

    1981-07-01

    Three standard reference materials, flyash, soil, and ASI 4340 steel, were analyzed by a method of absolute instrumental neutron activation analysis (INAA). Two different light water pool-type reactors were used to produce equivalent analytical results even though the epithermal to thermal flux ratio in one reactor was higher than that in the other by a factor of two.

  19. Comparison and applications of label-free absolute proteome quantification methods on Escherichia coli.

    PubMed

    Arike, L; Valgepea, K; Peil, L; Nahku, R; Adamberg, K; Vilu, R

    2012-09-18

    Three different label-free proteome quantification methods--APEX, emPAI and iBAQ--were evaluated to measure proteome-wide protein concentrations in the cell. All the methods were applied to a sample from Escherichia coli chemostat culture. A Pearson squared correlation of approximately 0.6 among the three quantification methods was demonstrated. Importantly, the sum of quantified proteins by iBAQ and emPAI corresponded with the Lowry total protein quantification, demonstrating applicability of label-free methods for an accurate calculation of protein concentrations at the proteome level. The iBAQ method showed the best correlation between biological replicates, a normal distribution among all protein abundances, and the lowest variation among ribosomal protein abundances, which are expected to have equal amounts. Absolute quantitative proteome data enabled us to evaluate metabolic cost for protein synthesis and apparent catalytic activities of enzymes by integration with flux analysis. All the methods demonstrated similar ATP costs for protein synthesis for different cellular processes and that costs for expressing biomass synthesis related proteins were higher than those for energy generation. Importantly, catalytic activities of energy metabolism enzymes were an order or two higher than those of monomer synthesis. Interestingly, a staircase-like protein expression was demonstrated for most of the transcription units.

  20. Volatile Abundance and Distribution in the Tempel 1 Ejecta Cloud

    NASA Astrophysics Data System (ADS)

    Moretto, Mark J.; Feaga, Lori M.; A'Hearn, Michael F.; Protopapa, Silvia; Sunshine, Jessica M.; Farnham, Tony L.

    2015-11-01

    On 4 Jul 2005 the Deep Impact Impactor Spacecraft collided with comet Tempel 1, creating an ejecta cloud that was observed by the Deep Impact Flyby Spacecraft (DIF) as well as Earth and space based observatories. The High Resolution Instrument Infrared Spectrometer (HRI-IR) onboard DIF acquired several spectral scans of this ejecta cloud in the minutes immediately after impact. HRI-IR has a spectral range of 1.05 to 4.85 microns. This spectral range allows for water vapor, water ice, organics, CO2 and CO to be detected simultaneously, if each species is sufficiently abundant.We present an analysis of the quantity and spatial distribution of water, organics and CO2 in the Tempel 1 ejecta cloud. Variation in abundance, either absolute or relative, will be compared to morphological features in the ejecta cloud present in visible images acquired by the Medium and High Resolution Imagers onboard DIF. The composition of the ejecta cloud will also be compared with that of the 2 Jul 2005 natural outburst and quiescent activity levels at Tempel 1.

  1. Oxygen abundances in low surface-brightness galaxies

    NASA Technical Reports Server (NTRS)

    Roennback, Jari

    1993-01-01

    Recent theories predict that some protogalaxies, in low-density environments of the field, are contracting and interacting so slowly that global star formation can be delayed until today. These systems should be gas rich and have low surface-brightness. Blue compact galaxies (BCG's) and other compact HII region galaxies currently experiencing a burst of star formation are good candidates of truly young galaxies (in the sense that global star formation recently has been initiated). If they really are young, they ought to have a recent phase when their brightness was much lower than in the bursting phase. No claims of observations of such proto-BCG's exist. Observations of galaxies in their juvenile phases would undoubtedly be of great interest, e.g. the determination of the primordial helium abundance would improve. A proper place to search for young nearby galaxies could be among blue low surface-brightness galaxies (BLSBG's) in the local field. The study of low surface-brightness galaxies (LSBG's) as a group began relatively recently. They are galaxies with extraordinary properties both as individuals and as a group. A few years ago we started an optical study of a sample of BLSBG's selected from the ESO/Uppsala catalogue. Results of spectroscopic observations obtained on a subsample - 8 galaxies - of our selection are reported. The HII region oxygen chemical abundances and its relation to the blue absolute magnitude and surface-brightness is investigated.

  2. Observing chemical abundances in comets

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1981-01-01

    The atomic resonance lines of the major elements were observed in the atmospheres of a few comets, by using vacuum ultraviolet spectrographs on board rockets or orbiting observatories. Dust-to-gas ratios were also deduced for two comets through a Finson-Probstein's analysis of their dust-tail isophotes. The geometric albedo of the dust for the phase angle alpha of the observations is not accurately known but, the dust-to-gas ratio is not overly sensitive to the actual value of this albedo. Infrared observations of the dust head of some comets show that the bulk of cometary dust must be silicates, although a minor component (5-10 percent) of carbon compounds is rather likely, because of poor dielectric properties of the grains. This interpretation is confirmed by the fact that interplanetary dust probably of cometary origin, that was collected in the stratosphere by NASA-U2 Spacecraft, is chondritic in nature. Metal abundances in the head of a sungrazing comet support the chondritic hypothesis.

  3. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant

  4. The EM-POGO: A simple, absolute velocity profiler

    NASA Astrophysics Data System (ADS)

    Terker, S. R.; Sanford, T. B.; Dunlap, J. H.; Girton, J. B.

    2013-01-01

    Electromagnetic current instrumentation has been added to the Bathy Systems, Inc. POGO transport sondes to produce a free-falling absolute velocity profiler called EM-POGO. The POGO is a free-fall profiler that measures a depth-averaged velocity using GPS fixes at the beginning and end of a round trip to the ocean floor (or a preset depth). The EM-POGO adds a velocity profile determined from measurements of motionally induced electric fields generated by the ocean current moving through the vertical component of the Earth's magnetic field. In addition to providing information about the vertical structure of the velocity, the depth-dependent measurements improve transport measurements by correcting for the non-constant fall-rate. Neglecting the variable fall rate results in errors O (1 cm s-1). The transition from POGO to EM-POGO included electrically isolating the POGO and electric-field-measuring circuits, installing a functional GPS receiver, finding a pressure case that provided an optimal balance among crush-depth, price and size, and incorporating the electrodes, electrode collar, and the circuitry required for the electric field measurement. The first EM-POGO sea-trial was in July 1999. In August 2006 a refurbished EM-POGO collected 15 absolute velocity profiles; relative and absolute velocity uncertainty was ˜1cms-1 and 0.5-5 cm s-1, respectively, at a vertical resolution of 25 m. Absolute velocity from the EM-POGO compared to shipboard ADCP measurements differed by ˜ 1-2 cm s-1, comparable to the uncertainty in absolute velocity from the ADCP. The EM-POGO is thus a low-cost, easy to deploy and recover, and accurate velocity profiler.

  5. Networks of Absolute Calibration Stars for SST, AKARI, and WISE

    NASA Astrophysics Data System (ADS)

    Cohen, M.

    2007-04-01

    I describe the Cohen-Walker-Witteborn (CWW) network of absolute calibration stars built to support ground-based, airborne, and space-based sensors, and how they are used to calibrate instruments on the SPITZER Space Telescope (SST and Japan's AKARI (formerly ASTRO-F), and to support NASA's planned MidEx WISE (the Wide-field Infrared Survey Explorer). All missions using this common calibration share a self-consistent framework embracing photometry and low-resolution spectroscopy. CWW also underpins COBE/DIRBE several instruments used on the Kuiper Airborne Observatory ({KAO}), the joint Japan-USA ``IR Telescope in Space" (IRTS) Near-IR and Mid-IR spectrometers, the European Space Agency's IR Space Observatory (ISO), and the US Department of Defense's Midcourse Space eXperiment (MSX). This calibration now spans the far-UV to mid-infrared range with Sirius (one specific Kurucz synthetic spectrum) as basis, and zero magnitude defined from another Kurucz spectrum intended to represent an ideal Vega (not the actual star with its pole-on orientation and mid-infrared dust excess emission). Precision 4-29 μm radiometric measurements on MSX validate CWW's absolute Kurucz spectrum of Sirius, the primary, and a set of bright K/MIII secondary standards. Sirius is measured to be 1.0% higher than predicted. CWW's definitions of IR zero magnitudes lie within 1.1% absolute of MSX measurements. The US Air Force Research Laboratory's independent analysis of on-orbit {MSX} stellar observations compared with emissive reference spheres show CWW primary and empirical secondary spectra lie well within the ±1.45% absolute uncertainty associated with this 15-year effort. Our associated absolute calibration for the InfraRed Array Camera (IRAC) on the SST lies within ˜2% of the recent extension of the calibration of the Hubble Space Telescope's STIS instrument to NICMOS (Bohlin, these Proceedings), showing the closeness of these two independent approaches to calibration.

  6. Abundances, Stellar Parameters, and Spectra from the SDSS-III/APOGEE Survey

    NASA Astrophysics Data System (ADS)

    Holtzman, Jon A.; Shetrone, Matthew; Johnson, Jennifer A.; Allende Prieto, Carlos; Anders, Friedrich; Andrews, Brett; Beers, Timothy C.; Bizyaev, Dmitry; Blanton, Michael R.; Bovy, Jo; Carrera, Ricardo; Chojnowski, S. Drew; Cunha, Katia; Eisenstein, Daniel J.; Feuillet, Diane; Frinchaboy, Peter M.; Galbraith-Frew, Jessica; García Pérez, Ana E.; García-Hernández, D. A.; Hasselquist, Sten; Hayden, Michael R.; Hearty, Fred R.; Ivans, Inese; Majewski, Steven R.; Martell, Sarah; Meszaros, Szabolcs; Muna, Demitri; Nidever, David; Nguyen, Duy Cuong; O'Connell, Robert W.; Pan, Kaike; Pinsonneault, Marc; Robin, Annie C.; Schiavon, Ricardo P.; Shane, Neville; Sobeck, Jennifer; Smith, Verne V.; Troup, Nicholas; Weinberg, David H.; Wilson, John C.; Wood-Vasey, W. M.; Zamora, Olga; Zasowski, Gail

    2015-11-01

    The SDSS-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey operated from 2011-2014 using the APOGEE spectrograph, which collects high-resolution (R ˜ 22,500), near-IR (1.51-1.70 μm) spectra with a multiplexing (300 fiber-fed objects) capability. We describe the survey data products that are publicly available, which include catalogs with radial velocity, stellar parameters, and 15 elemental abundances for over 150,000 stars, as well as the more than 500,000 spectra from which these quantities are derived. Calibration relations for the stellar parameters ({T}{eff}, {log} g, [M/H], [α/M]) and abundances (C, N, O, Na, Mg, Al, Si, S, K, Ca, Ti, V, Mn, Fe, Ni) are presented and discussed. The internal scatter of the abundances within clusters indicates that abundance precision is generally between 0.05 and 0.09 dex across a broad temperature range; it is smaller for some elemental abundances within more limited ranges and at high signal-to-noise ratio. We assess the accuracy of the abundances using comparison of mean cluster metallicities with literature values, APOGEE observations of the solar spectrum and of Arcturus, comparison of individual star abundances with other measurements, and consideration of the locus of derived parameters and abundances of the entire sample, and find that it is challenging to determine the absolute abundance scale; external accuracy may be good to 0.1-0.2 dex. Uncertainties may be larger at cooler temperatures ({T}{eff} \\lt 4000 {{K}}). Access to the public data release and data products is described, and some guidance for using the data products is provided.

  7. Gaia FGK benchmark stars: abundances of α and iron-peak elements

    NASA Astrophysics Data System (ADS)

    Jofré, P.; Heiter, U.; Soubiran, C.; Blanco-Cuaresma, S.; Masseron, T.; Nordlander, T.; Chemin, L.; Worley, C. C.; Van Eck, S.; Hourihane, A.; Gilmore, G.; Adibekyan, V.; Bergemann, M.; Cantat-Gaudin, T.; Delgado-Mena, E.; González Hernández, J. I.; Guiglion, G.; Lardo, C.; de Laverny, P.; Lind, K.; Magrini, L.; Mikolaitis, S.; Montes, D.; Pancino, E.; Recio-Blanco, A.; Sordo, R.; Sousa, S.; Tabernero, H. M.; Vallenari, A.

    2015-10-01

    Context. In the current era of large spectroscopic surveys of the Milky Way, reference stars for calibrating astrophysical parameters and chemical abundances are of paramount importance. Aims: We determine elemental abundances of Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co, and Ni for our predefined set of Gaia FGK benchmark stars. Methods: By analysing high-resolution spectra with a high signal-to-noise ratio taken from several archive datasets, we combined results of eight different methods to determine abundances on a line-by-line basis. We performed a detailed homogeneous analysis of the systematic uncertainties, such as differential versus absolute abundance analysis. We also assessed errors that are due to non-local thermal equilibrium and the stellar parameters in our final abundances. Results: Our results are provided by listing final abundances and the different sources of uncertainties, as well as line-by-line and method-by-method abundances. Conclusions: The atmospheric parameters of the Gaia FGK benchmark stars are already being widely used for calibration of several pipelines that are applied to different surveys. With the added reference abundances of ten elements, this set is very suitable for calibrating the chemical abundances obtained by these pipelines. Based on NARVAL and HARPS data obtained within the Gaia DPAC (Data Processing and Analysis Consortium) and coordinated by the GBOG (Ground-Based Observations for Gaia) working group and on data retrieved from the ESO-ADP database.Tables C.1-C.35 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A81

  8. TOWARD A REMOVAL OF TEMPERATURE DEPENDENCIES FROM ABUNDANCE DETERMINATIONS: NGC 628

    SciTech Connect

    Croxall, Kevin V.; Smith, J. D.; Pellegrini, E.; Brandl, B. R.; Groves, B. A.; Kreckel, K.; Sandstrom, K. M.; Walter, F.; Schinnerer, E.; Kennicutt, R. C.; Galametz, M.; Johnson, B. D.; Armus, L.; Beirão, P.; Calzetti, D.; Dale, D. A.; Hinz, J. L.; Hunt, L. K.; Koda, J.

    2013-11-10

    The metal content of a galaxy, a key property for distinguishing between viable galaxy evolutionary scenarios, strongly influences many of the physical processes in the interstellar medium. An absolute and robust determination of extragalactic metallicities is essential in constraining models of chemical enrichment and chemical evolution. Current gas-phase abundance determinations, however, from optical fine-structure lines are uncertain to 0.8 dex as conversion of these optical line fluxes to abundances is strongly dependent on the electron temperature of the ionized gas. In contrast, the far-infrared (far-IR) emission lines can be used to derive an O{sup ++} abundance that is relatively insensitive to temperature, while the ratio of the optical to far-IR lines provides a consistent temperature to be used in the derivation of an O{sup +} abundance. We present observations of the [O III] 88 μm fine-structure line in NGC 628 that were obtained as part of the Key Insights on Nearby Galaxies: a Far Infared Survey with Herschel program. These data are combined with optical integrated field unit data to derive oxygen abundances for seven H II regions. We find the abundance of these regions to all lie between the high and low values of strong-line calibrations and to be in agreement with estimates that assume temperature fluctuations are present in the H II regions.

  9. Primordial abundance of 40Ar

    NASA Astrophysics Data System (ADS)

    Sripada, V. S. Murty

    Primordial abundance of the isotope (40) Ar is still not known accurately. Recent results from Genesis could also not provide (40) Ar/ (36) Ar value of solar wind, due mainly to the overwhelming (40) Ar blank. A major part of (40) Ar is contributed by the radioactive decay of (40) K (half life = 1.25 Ga), even in the nebula, as the nebula grew old. Any attempt to determine this quantity needs a sample that satisfies the following criteria: A primitive mineral/phase that formed very early in the nebula, that can trap a large amount of noble gas (Ar); and a phase that acquires minimum amount (or total absence) of in situ produced components (cosmogenic and radiogenic) of Ar. Carbon phases in the ureilite meteorites and Phase Q from chondrites best fit this criteria. The minimum (40) Ar/ (36) Ar value so far observed in Phase Q is 0.2. Also, the relatively lower value of 1.035±±0.002 for trapped (129) Xe/ (132) Xe in ureilites, as compared to 1.042±±0.002 in Phase Q suggests that trapping of gases in ureilites might have predated that of Phase Q. If this interpretation is valid, ureilites are a better host of most primitive nebular Ar. Earlier attempts on ureilite studies in 1970s have yielded the lowest (40) Ar/ (36) Ar ratio in the meteorite Dayalpur, the major uncertainty for this value mostly coming from blank correction for (40) Ar/ (36) Ar. Recent developments in low blank extraction systems and more sensitive multi-collector noble gas mass spectrometers, as compared to 1970s have prompted us to make a fresh attempt in measuring this important quantity. We have analysed a number of ureilite acid residues by stepwise temperature extraction, using both pyrolysis and combustion techniques, for Ar to ascertain the trapped (40) Ar/ (36) Ar ratio in the solar nebula. These acid residues are mostly made of C rich phases, with only trace amounts of K (radiogenic parent of (40) Ar) and target elements for the production of cosmogenic Ar component. They mostly contain

  10. Origin of central abundances in the hot intra-cluster medium. I. Individual and average abundance ratios from XMM-Newton EPIC

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Pinto, C.; Kaastra, J. S.; Kosec, P.; Zhang, Y.-Y.; Mao, J.; Werner, N.

    2016-08-01

    The hot intra-cluster medium (ICM) is rich in metals, which are synthesised by supernovae (SNe) explosions and accumulate over time into the deep gravitational potential well of clusters of galaxies. Since most of the elements visible in X-rays are formed by type Ia (SNIa) and/or core-collapse (SNcc) supernovae, measuring their abundances gives us direct information on the nucleosynthesis products of billions of SNe since the epoch of the star formation peak (z ~ 2-3). In this study, we use the EPIC and RGS instruments on board XMM-Newton to measure the abundances of nine elements (O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni) from a sample of 44 nearby cool-core galaxy clusters, groups, and elliptical galaxies. We find that the Fe abundance shows a large scatter (~20-40%) over the sample, within 0.2r500 and especially 0.05r500. Unlike the absolute Fe abundance, the abundance ratios (X/Fe) are uniform over the considered temperature range (~0.6-8 keV) and with a limited scatter. In addition to an unprecedented treatment of systematic uncertainties, we provide the most accurate abundance ratios measured so far in the ICM, including Cr/Fe and Mn/Fe which we firmly detected (>4σ with MOS and pn independently). We find that Cr/Fe, Mn/Fe, and Ni/Fe differ significantly from the proto-solar values. However, the large uncertainties in the proto-solar abundances prevent us from making a robust comparison between the local and the intra-cluster chemical enrichments. We also note that, interestingly, and despite the large net exposure time (~4.5 Ms) of our dataset, no line emission feature is seen around ~3.5 keV.

  11. Absolute calibration of vacuum ultraviolet spectrograph system for plasma diagnostics

    SciTech Connect

    Yoshikawa, M.; Kubota, Y.; Kobayashi, T.; Saito, M.; Numada, N.; Nakashima, Y.; Cho, T.; Koguchi, H.; Yagi, Y.; Yamaguchi, N.

    2004-10-01

    A space- and time-resolving vacuum ultraviolet (VUV) spectrograph system has been applied to diagnose impurity ions behavior in plasmas produced in the tandem mirror GAMMA 10 and the reversed field pinch TPE-RX. We have carried out ray tracing calculations for obtaining the characteristics of the VUV spectrograph and calibration experiments to measure the absolute sensitivities of the VUV spectrograph system for the wavelength range from 100 to 1100 A. By changing the incident angle, 50.6 deg. -51.4 deg., to the spectrograph whose nominal incident angle is 51 deg., we can change the observing spectral range of the VUV spectrograph. In this article, we show the ray tracing calculation results and absolute sensitivities when the angle of incidence into the VUV spectrograph is changed, and the results of VUV spectroscopic measurement in both GAMMA 10 and TPE-RX plasmas.

  12. Consistent set of nuclear parameters values for absolute INAA

    SciTech Connect

    Heft, R.E.

    1980-01-01

    Gamma spectral analysis of irradiated material can be used to determine absolute disintegration rates for specific radionuclides. These data, together with measured values for the thermal and epithermal neutron fluxes, and irradiation, cooling and counting time values, are all the experimental information required to do absolute Instrumental Neutron Activation Analysis. The calculations required to go from product photon emission rate to target nuclide amount depend upon values used for the thermal neutron capture cross-section, the resonance absorption integral, the half-life and photon branching ratios. Values for these parameters were determined by irradiating and analyzing a series of elemental standards. The results of these measurements were combined with values reported by other workers to arrive at a set of recommended values for the constants. Values for 114 nuclides are listed.

  13. Enantiomers of a nonylphenol isomer: absolute configurations and estrogenic potencies.

    PubMed

    Zhang, Haifeng; Oppel, Iris M; Spiteller, Michael; Guenther, Klaus; Boehmler, Gabriele; Zuehlke, Sebastian

    2009-02-01

    Enantiomers of 4-(1,1,2-trimethylhexyl)phenol, a chiral isomer of the endocrine disrupting chemical nonylphenol, have been resolved and isolated by preparative chiral HPLC. The absolute configurations of the enantiomers were then determined by an X-ray crystallographic study of the (-)-camphanoyl derivative of the first eluted enantiomer NP(35)E1. The first enantiomer (NP(35)E1) and the second enantiomer (NP(35)E2) eluted were found to have the S and R absolute configurations, respectively. The estrogenic potencies of the S and R enantiomers were tested by the E-screen assay. A slight difference was observed in the relative proliferative effect between the S enantiomer and R enantiomer in the E-screen assay.

  14. The importance and attainment of accurate absolute radiometric calibration

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1984-01-01

    The importance of accurate absolute radiometric calibration is discussed by reference to the needs of those wishing to validate or use models describing the interaction of electromagnetic radiation with the atmosphere and earth surface features. The in-flight calibration methods used for the Landsat Thematic Mapper (TM) and the Systeme Probatoire d'Observation de la Terre, Haute Resolution visible (SPOT/HRV) systems are described and their limitations discussed. The questionable stability of in-flight absolute calibration methods suggests the use of a radiative transfer program to predict the apparent radiance, at the entrance pupil of the sensor, of a ground site of measured reflectance imaged through a well characterized atmosphere. The uncertainties of such a method are discussed.

  15. System for controlling absolute humidity in a work area

    SciTech Connect

    Norris, P.K.; Oliver, P.S.

    1987-05-05

    A system is described for controlling absolute humidity of air which is removed from an area, passed through an air washer and returned through a duct to the area. The system comprises: a first sensor located within the area for generating a first signal representative of the absolute humidity of air within the area; a second sensor located in a discharge air plenum portion of the washer for generating a second signal representative of the dry bulb temperature of air discharged from the washer; and control means responsive to the first and second signals for producing a third signal which is applied to the washer to control the dry bulb temperature of air discharged from the washer.

  16. Automated absolute phase retrieval in across-track interferometry

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Zebker, Howard A.

    1992-01-01

    Discussed is a key element in the processing of topographic radar maps acquired by the NASA/JPL airborne synthetic aperture radar configured as an across-track interferometer (TOPSAR). TOPSAR utilizes a single transmit and two receive antennas; the three-dimensional target location is determined by triangulation based on a known baseline and two measured slant ranges. The slant range difference is determined very accurately from the phase difference between the signals received by the two antennas. This phase is measured modulo 2pi, whereas it is the absolute phase which relates directly to the difference in slant range. It is shown that splitting the range bandwidth into two subbands in the processor and processing each individually allows for the absolute phase. The underlying principles and system errors which must be considered are discussed, together with the implementation and results from processing data acquired during the summer of 1991.

  17. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  18. Absolute concentration measurements inside a jet plume using video digitization

    NASA Astrophysics Data System (ADS)

    Vauquelin, O.

    An experimental system based on digitized video image analysis is used to measure the local value of the concentration inside a plume. Experiments are carried out in a wind-tunnel for a smoke-seeded turbulent jet plume illuminated with a laser beam. Each test is filmed, subsequently video images are digitized and analysed in order to determine the smoke absolute concentration corresponding to each pixel gray level. This non-intrusive measurement technique is first calibrated and different laws connecting gray level to concentration are established. As a first application, concentration measurements are made inside a turbulent jet plume and compared with measurements conducted using a classic gas analysis method. We finally present and discuss the possibilities offered for the measurements of absolute concentration fluctuations.

  19. Remote ultrasound palpation for robotic interventions using absolute elastography.

    PubMed

    Schneider, Caitlin; Baghani, Ali; Rohling, Robert; Salcudean, Septimiu

    2012-01-01

    Although robotic surgery has addressed many of the challenges presented by minimally invasive surgery, haptic feedback and the lack of knowledge of tissue stiffness is an unsolved problem. This paper presents a system for finding the absolute elastic properties of tissue using a freehand ultrasound scanning technique, which utilizes the da Vinci Surgical robot and a custom 2D ultrasound transducer for intraoperative use. An external exciter creates shear waves in the tissue, and a local frequency estimation method computes the shear modulus. Results are reported for both phantom and in vivo models. This system can be extended to any 6 degree-of-freedom tracking method and any 2D transducer to provide real-time absolute elastic properties of tissue.

  20. Absolute limit on rotation of gravitationally bound stars

    SciTech Connect

    Glendenning, N.K.

    1994-03-01

    The authors seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein`s theory of relativity, Le Chatelier`s principle, causality and a low-density equation of state, uncertainties which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass-shedding would occur, is 0.33 ms for a M = 1.442 M{circle_dot} neutron star (the mass of PSR1913+16). If the limit were found to be broken by any pulsar, it would signal that the confined hadronic phase of ordinary nucleons and nuclei is only metastable, an extraordinary conclusion.

  1. Absolute limit on rotation of gravitationally bound stars

    NASA Astrophysics Data System (ADS)

    Glendenning, N. K.

    1994-03-01

    The authors seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass-shedding would occur, is 0.33 ms for a M = 1.442 solar mass neutron star (the mass of PSR1913+16). If the limit were found to be broken by any pulsar, it would signal that the confined hadronic phase of ordinary nucleons and nuclei is only metastable.

  2. Absolute configuration of labdane diterpenoids from Physalis nicandroides.

    PubMed

    Maldonado, Emma; Pérez-Castorena, Ana L; Romero, Yunuen; Martínez, Mahinda

    2015-02-27

    A mixture of the new epimeric labdenetriols 1 and 2 was isolated from the aerial parts of Physalis nicandroides. The structures of 1 and 2, including their absolute configurations, were established by analyses of their spectroscopic data, together with the X-ray diffraction analysis of acetonide 3 and chemical correlation with (-)-(13E)-labd-13-ene-8α,15-diol (6), whose absolute configuration was also confirmed by X-ray analysis of its dibromo derivative 7. The epimeric labdenediols 8 and 9, the known labdanes 6 and 11, and the acylsucroses 12 and 13 were also isolated. Labdanes 6 and 11 showed moderate anti-inflammatory activities in the induced ear edema model.

  3. Simultaneously improving the sensitivity and absolute accuracy of CPT magnetometer.

    PubMed

    Liang, Shang-Qing; Yang, Guo-Qing; Xu, Yun-Fei; Lin, Qiang; Liu, Zhi-Heng; Chen, Zheng-Xiang

    2014-03-24

    A new method to improve the sensitivity and absolute accuracy simultaneously for coherent population trapping (CPT) magnetometer based on the differential detection method is presented. Two modulated optical beams with orthogonal circular polarizations are applied, in one of which two magnetic resonances are excited simultaneously by modulating a 3.4GHz microwave with Larmor frequency. When a microwave frequency shift is introduced, the difference in the power transmitted through the cell in each beam shows a low noise resonance. The sensitivity of 2pT/Hz @ 10Hz is achieved. Meanwhile, the absolute accuracy of ± 0.5nT within the magnetic field ranging from 20000nT to 100000nT is realized.

  4. A direct way to observe absolute molecular handedness

    NASA Astrophysics Data System (ADS)

    Vager, Zeev

    2014-07-01

    We claim that the polarization of electrons tunneling through the molecular electric dipole direction uniquely determines the handedness of chiral centers. Unique labeling of chiral stereo-centers must include their handedness. The conventional method is formally known as the R, S nomenclature or the Ingold-Prelog priority (CIP) rules. It requires knowledge of the spatial absolute configuration of that center. Traditionally, experimental methods of extracting handedness go through the absolute configuration and only then would the CIP convention be applied. Here we show that a direct experimental method of determination of the natural molecular handedness by the polarization of tunneling electrons is almost always compatible with the CIP convention. By the sole use of symmetry arguments we show that the chiral molecular symmetry eliminates the need of fine structure splitting. As a consequence, the polarization of electrons tunneling through the molecular electric dipole direction uniquely determines their handedness.

  5. Age and forgetfulness: absolute versus comparison decisions about capability.

    PubMed

    Erber, J T; Prager, I G

    1997-01-01

    Perceivers were assigned to one of two decision conditions. In an absolute decision condition, perceivers rated how likely they would be to allow a young or old highly forgetful, slightly forgetful, or nonforgetful target to perform a challenging task. In a comparison decision condition, perceivers rated two targets, one young and one old, who had a similar level of forgetfulness. Separate Decision Type x Target Forgetfulness analyses of variance were conducted on ratings of the two target age groups. Young targets received higher ratings in the comparison than in the absolute condition, whereas old targets were rated the same in the two conditions. There was some preference for young targets in a comparison situation, but it was concluded that forgetfulness was a more important factor than age in perceivers' ratings.

  6. Oblique-incidence sounder measurements with absolute propagation delay timing

    SciTech Connect

    Daehler, M.

    1990-05-03

    Timing from the Global Position Satellite (GPS) system has been applied to HF oblique incidence sounder measurements to produce ionograms whose propagation delay time scale is absolutely calibrated. Such a calibration is useful for interpreting ionograms in terms of the electron density true-height profile for the ionosphere responsible for the propagation. Use of the time variations in the shape of the electron density profile, in conjunction with an HF propagation model, is expected to provide better near-term (1-24 hour) HF propagation forecasts than are available from current updating systems, which use only the MUF. Such a capability may provide the basis for HF frequency management techniques which are more efficient than current methods. Absolute timing and other techniques applicable to automatic extraction of the electron-density profile from an ionogram will be discussed.

  7. Comparisons of absolute gravimeters (COOMET.M.G-S1)

    NASA Astrophysics Data System (ADS)

    Vinnichenko, Mr Alexander; Germak, Alessandro, Dr

    2017-01-01

    This report describes the results of the RMO supplementary comparison COOMET.M.G-S1 (also known as bilateral comparison COOMET 634/UA/14). The comparison measurements between the two participants NSC 'IM' (pilot laboratory) and INRIM were started in December 2015 and finished in January 2016. Participants of comparisons were conducted at their national standards the measurements of the free fall acceleration in gravimetric point laboratory of absolute gravimetry of INRIM named INRiM.2. Absolute measurements of gravimetric acceleration were conducted by ballistic gravimeters. The agreement between the two participants is good. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  8. Self consistent, absolute calibration technique for photon number resolving detectors.

    PubMed

    Avella, A; Brida, G; Degiovanni, I P; Genovese, M; Gramegna, M; Lolli, L; Monticone, E; Portesi, C; Rajteri, M; Rastello, M L; Taralli, E; Traina, P; White, M

    2011-11-07

    Well characterized photon number resolving detectors are a requirement for many applications ranging from quantum information and quantum metrology to the foundations of quantum mechanics. This prompts the necessity for reliable calibration techniques at the single photon level. In this paper we propose an innovative absolute calibration technique for photon number resolving detectors, using a pulsed heralded photon source based on parametric down conversion. The technique, being absolute, does not require reference standards and is independent upon the performances of the heralding detector. The method provides the results of quantum efficiency for the heralded detector as a function of detected photon numbers. Furthermore, we prove its validity by performing the calibration of a Transition Edge Sensor based detector, a real photon number resolving detector that has recently demonstrated its effectiveness in various quantum information protocols.

  9. Determination of absolute internal conversion coefficients using the SAGE spectrometer

    NASA Astrophysics Data System (ADS)

    Sorri, J.; Greenlees, P. T.; Papadakis, P.; Konki, J.; Cox, D. M.; Auranen, K.; Partanen, J.; Sandzelius, M.; Pakarinen, J.; Rahkila, P.; Uusitalo, J.; Herzberg, R.-D.; Smallcombe, J.; Davies, P. J.; Barton, C. J.; Jenkins, D. G.

    2016-03-01

    A non-reference based method to determine internal conversion coefficients using the SAGE spectrometer is carried out for transitions in the nuclei of 154Sm, 152Sm and 166Yb. The Normalised-Peak-to-Gamma method is in general an efficient tool to extract internal conversion coefficients. However, in many cases the required well-known reference transitions are not available. The data analysis steps required to determine absolute internal conversion coefficients with the SAGE spectrometer are presented. In addition, several background suppression methods are introduced and an example of how ancillary detectors can be used to select specific reaction products is given. The results obtained for ground-state band E2 transitions show that the absolute internal conversion coefficients can be extracted using the methods described with a reasonable accuracy. In some cases of less intense transitions only an upper limit for the internal conversion coefficient could be given.

  10. Absolute measurement of the extreme UV solar flux

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Ogawa, H. S.; Judge, D. L.; Phillips, E.

    1984-01-01

    A windowless rare-gas ionization chamber has been developed to measure the absolute value of the solar extreme UV flux in the 50-575-A region. Successful results were obtained on a solar-pointing sounding rocket. The ionization chamber, operated in total absorption, is an inherently stable absolute detector of ionizing UV radiation and was designed to be independent of effects from secondary ionization and gas effusion. The net error of the measurement is + or - 7.3 percent, which is primarily due to residual outgassing in the instrument, other errors such as multiple ionization, photoelectron collection, and extrapolation to the zero atmospheric optical depth being small in comparison. For the day of the flight, Aug. 10, 1982, the solar irradiance (50-575 A), normalized to unit solar distance, was found to be 5.71 + or - 0.42 x 10 to the 10th photons per sq cm sec.

  11. Diagnostic Application of Absolute Neutron Activation Analysis in Hematology

    SciTech Connect

    Zamboni, C.B.; Oliveira, L.C.; Dalaqua, L. Jr.

    2004-10-03

    The Absolute Neutron Activation Analysis (ANAA) technique was used to determine element concentrations of Cl and Na in blood of healthy group (male and female blood donators), select from Blood Banks at Sao Paulo city, to provide information which can help in diagnosis of patients. This study permitted to perform a discussion about the advantages and limitations of using this nuclear methodology in hematological examinations.

  12. Progress Report of CNES Activities Regarding the Absolute Calibration Method

    DTIC Science & Technology

    2010-11-01

    several receivers (Ashtech Z12-T, Septentrio PolaRx2, and Dicom GTR50) and a GNSS signal simulator (Spirent 4760) according to the temperature and...laboratories, Ashtech Z12- T, Septentrio PolaRx2, and Dicom GTR50, can be calibrated with the absolute method [6,8]. The last works concerned the...Ashtech, Septentrio, and Dicom receiver calibrations. Table 2. Uncertainty of the different receiver calibrations. Uncertainty Source

  13. On the Absolutely Continuous Spectrum of Stark Operators

    NASA Astrophysics Data System (ADS)

    Perelman, Galina

    The stability of the absolutely continuous spectrum of the one-dimensional Stark operator under perturbations of the potential is discussed. The focus is on proving this stability under minimal assumptions on smoothness of the perturbation. A general criterion is presented together with some applications. These include the case of periodic perturbations where we show that any perturbation vL1()∩H-1/2() preserves the a.c. spectrum.

  14. Absolute intensity of radiation emitted by uranium plasmas

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Lee, J. H.; Mcfarland, D. R.

    1975-01-01

    The absolute intensity of radiation emitted by fissioning and nonfissioning uranium plasmas in the spectral range from 350 nm to 1000 nm was measured. The plasma was produced in a plasma-focus apparatus and the plasma properties are simular to those anticipated for plasma-core nuclear reactors. The results are expected to contribute to the establishment of design criteria for the development of plasma-core reactors.

  15. THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET

    SciTech Connect

    Brown, Peter J.; Roming, Peter W. A.; Ciardullo, Robin; Gronwall, Caryl; Hoversten, Erik A.; Pritchard, Tyler; Milne, Peter; Bufano, Filomena; Mazzali, Paolo; Elias-Rosa, Nancy; Filippenko, Alexei V.; Li Weidong; Foley, Ryan J.; Hicken, Malcolm; Kirshner, Robert P.; Gehrels, Neil; Holland, Stephen T.; Immler, Stefan; Phillips, Mark M.; Still, Martin

    2010-10-01

    We examine the absolute magnitudes and light-curve shapes of 14 nearby (redshift z = 0.004-0.027) Type Ia supernovae (SNe Ia) observed in the ultraviolet (UV) with the Swift Ultraviolet/Optical Telescope. Colors and absolute magnitudes are calculated using both a standard Milky Way extinction law and one for the Large Magellanic Cloud that has been modified by circumstellar scattering. We find very different behavior in the near-UV filters (uvw1{sub rc} covering {approx}2600-3300 A after removing optical light, and u {approx} 3000-4000 A) compared to a mid-UV filter (uvm2 {approx}2000-2400 A). The uvw1{sub rc} - b colors show a scatter of {approx}0.3 mag while uvm2-b scatters by nearly 0.9 mag. Similarly, while the scatter in colors between neighboring filters is small in the optical and somewhat larger in the near-UV, the large scatter in the uvm2 - uvw1 colors implies significantly larger spectral variability below 2600 A. We find that in the near-UV the absolute magnitudes at peak brightness of normal SNe Ia in our sample are correlated with the optical decay rate with a scatter of 0.4 mag, comparable to that found for the optical in our sample. However, in the mid-UV the scatter is larger, {approx}1 mag, possibly indicating differences in metallicity. We find no strong correlation between either the UV light-curve shapes or the UV colors and the UV absolute magnitudes. With larger samples, the UV luminosity might be useful as an additional constraint to help determine distance, extinction, and metallicity in order to improve the utility of SNe Ia as standardized candles.

  16. Crystal structure of meteoritic schreibersites: determination of absolute structure

    NASA Astrophysics Data System (ADS)

    Skála, Roman; Císařová, Ivana

    Minerals of the schreibersite nickelphosphide series (Fe,Ni)3P crystallize in the non-centrosymmetric space group Ibar 4. As a consequence, they can possess two different spatial arrangements of the constituting atoms within the unit cell, related by the inversion symmetry operation. Here, we present the crystal structure refinements from single crystal X-ray diffraction data for schreibersite grains from iron meteorites Acuña, Carlton, Hex River Mts. (three different crystals), Odessa (two different crystals), Sikhote Alin, and Toluca aiming for the determination of the absolute structure of the examined crystals. The crystals studied cover the composition range from 58 mol% to 80 mol% Fe3P end-member. Unit-cell parameter a and volume of the unit cell V, as well as certain topological structural parameters tightly correlate with Fe3P content. Unit-cell parameter c, on the other hand, does not show such strong correlation. Eight of the nine crystal structure refinements allowed unambiguous absolute structure assignment. The single crystal extracted from Toluca is, however, of poor quality and consequently the structure refinement did not provide as good results as the rest of the materials. Also, this crystal has only weak inversion distinguishing power to provide unequivocal absolute structure determination. Six of the eight unambiguous absolute structure determinations indicated inverted atomic arrangement compared to that reported in earlier structure refinements (here called standard). Only two grains, one taken from Odessa iron and the other from the Hex River Mts. meteorite, reveal the dominance of standard crystal structure setting.

  17. Least absolute value state estimation with equality and inequality constraints

    SciTech Connect

    Abur, A. ); Celik, M.K. )

    1993-05-01

    A least absolute value (LAV) state estimator, which can handle both equality and inequality constraints on measurements, is developed. It is shown that, the use of equality constraints will actually reduce the number of Simplex iterations and thus the overall cpu time. The constraints can be used to enhance the reliability of the state estimator without affecting the computational efficiency of the estimator. The developed estimation program is tested using 14 through 1,000 bus power systems.

  18. Absolute configuration of novel bioactive flavonoids from Tephrosia purpurea.

    PubMed

    Chang, L C; Chávez, D; Song, L L; Farnsworth, N R; Pezzuto, J M; Kinghorn, A D

    2000-02-24

    [structure: see text] Three novel flavonoids, (+)-tephrorins A (1) and B (2) and (+)-tephrosone (3), were isolated from Tephrosia purpurea. Their structures were elucidated by NMR spectral analysis, and their absolute configurations were determined by Mosher ester methodology. Compounds 1 and 2 are flavanones containing an unusual tetrahydrofuran moiety. Compounds 1-3 were evaluated for their potential cancer chemopreventive properties using a cell-based quinone reductase induction assay.

  19. Absolute configuration determination using enantiomeric pairs of molecularly imprinted polymers.

    PubMed

    Meador, Danielle S; Spivak, David A

    2014-03-07

    A new method for determination of absolute configuration (AC) is demonstrated using an enantiomeric pair of molecularly imprinted polymers, referred to as "DuoMIPs". The ratio of HPLC capacity factors (k') for the analyte on each of the DuoMIPs is defined as the γ factor and can be used to determine AC when above 1.2. A mnemonic based on the complementary binding geometry of the DuoMIPs was used to aid in understanding and prediction of AC.

  20. Absolute calibration and beam background of the Squid Polarimeter

    SciTech Connect

    Blaskiewicz, M.M.; Cameron, P.R.; Shea, T.J.

    1996-12-31

    The problem of beam background in Squid Polarimetry is not without residual benefits. The authors may deliberately generate beam background by gently kicking the beam at the spin tune frequency. This signal may be used to accomplish a simple and accurate absolute calibration of the polarimeter. The authors present details of beam background calculations and their application to polarimeter calibration, and suggest a simple proof-of-principle accelerator experiment.

  1. The Electromotive Series and Other Non-Absolute Scales

    NASA Astrophysics Data System (ADS)

    Peckham, Gavin D.

    1998-01-01

    This article describes an analogy which may be used to illustrate the principles that underlie the establishment of non-absolute scales of measurements that are evaluated relative to a chosen reference point. The analogy is interwoven with the establishment of the electromotive series, but may be extended to other parameters such as the Celsius and Fahrenheit temperature scales, potential energies, formation and reaction enthalpies, etc.

  2. Abundance of introduced species at home predicts abundance away in herbaceous communities

    USGS Publications Warehouse

    Firn, Jennifer; Moore, Joslin L.; MacDougall, Andrew S.; Borer, Elizabeth T.; Seabloom, Eric W.; HilleRisLambers, Janneke; Harpole, W. Stanley; Cleland, Elsa E.; Brown, Cynthia S.; Knops, Johannes M.H.; Prober, Suzanne M.; Pyke, David A.; Farrell, Kelly A.; Bakker, John D.; O'Halloran, Lydia R.; Adler, Peter B.; Collins, Scott L.; D'Antonio, Carla M.; Crawley, Michael J.; Wolkovich, Elizabeth M.; La Pierre, Kimberly J.; Melbourne, Brett A.; Hautier, Yann; Morgan, John W.; Leakey, Andrew D.B.; Kay, Adam; McCulley, Rebecca; Davies, Kendi F.; Stevens, Carly J.; Chu, Cheng-Jin; Holl, Karen D.; Klein, Julia A.; Fay, Phillip A.; Hagenah, Nicole; Kirkman, Kevin P.; Buckley, Yvonne M.

    2011-01-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.

  3. Abundance of introduced species at home predicts abundance away in herbaceous communities.

    PubMed

    Firn, Jennifer; Moore, Joslin L; MacDougall, Andrew S; Borer, Elizabeth T; Seabloom, Eric W; HilleRisLambers, Janneke; Harpole, W Stanley; Cleland, Elsa E; Brown, Cynthia S; Knops, Johannes M H; Prober, Suzanne M; Pyke, David A; Farrell, Kelly A; Bakker, John D; O'Halloran, Lydia R; Adler, Peter B; Collins, Scott L; D'Antonio, Carla M; Crawley, Michael J; Wolkovich, Elizabeth M; La Pierre, Kimberly J; Melbourne, Brett A; Hautier, Yann; Morgan, John W; Leakey, Andrew D B; Kay, Adam; McCulley, Rebecca; Davies, Kendi F; Stevens, Carly J; Chu, Cheng-Jin; Holl, Karen D; Klein, Julia A; Fay, Philip A; Hagenah, Nicole; Kirkman, Kevin P; Buckley, Yvonne M

    2011-03-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.

  4. Overspecification of color, pattern, and size: salience, absoluteness, and consistency

    PubMed Central

    Tarenskeen, Sammie; Broersma, Mirjam; Geurts, Bart

    2015-01-01

    The rates of overspecification of color, pattern, and size are compared, to investigate how salience and absoluteness contribute to the production of overspecification. Color and pattern are absolute and salient attributes, whereas size is relative and less salient. Additionally, a tendency toward consistent responses is assessed. Using a within-participants design, we find similar rates of color and pattern overspecification, which are both higher than the rate of size overspecification. Using a between-participants design, however, we find similar rates of pattern and size overspecification, which are both lower than the rate of color overspecification. This indicates that although many speakers are more likely to include color than pattern (probably because color is more salient), they may also treat pattern like color due to a tendency toward consistency. We find no increase in size overspecification when the salience of size is increased, suggesting that speakers are more likely to include absolute than relative attributes. However, we do find an increase in size overspecification when mentioning the attributes is triggered, which again shows that speakers tend to refer in a consistent manner, and that there are circumstances in which even size overspecification is frequently produced. PMID:26594190

  5. Bio-Inspired Stretchable Absolute Pressure Sensor Network

    PubMed Central

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X.

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  6. Absolute gravity acceleration measurement in atomic sensor laboratories

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2012-03-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the Florence University (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the measurement of forces with high spatial resolution are in progress. Both experiments require an independent knowledge on the local value of g. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are ( 980 492 160.6 ± 4.0) μGal and ( 980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  7. An absolute sensitivity calibration of the JET VUV SPRED spectrometer

    NASA Astrophysics Data System (ADS)

    Lawson, K. D.; Coffey, I. H.; Zacks, J.; Stamp, M. F.; contributors, JET-EFDA

    2009-04-01

    The determination of a good relative and absolute sensitivity calibration for wideband VUV spectrometers is challenging. On JET, the possible T and Be contamination of the VUV spectrometer precludes its removal to a synchrotron source and, consequently, a range of alternative in situ techniques have been investigated in depth. This has resulted in a reliable calibration for the complete spectral range, the relative calibration at short wavelengths being particularly accurate. At these wavelengths, a novel approach is used, in which the calibration is extended using a number of Na- and Li-like metal doublets. At longer wavelengths, the Li-like doublets of Ar and Ne have been used in conjunction with CII, CIII and CIV line intensity ratios. Unexplained discrepancies between the measured and modelled C results have meant that the exceptional short wavelength accuracy has not be repeated at these longer wavelengths. The absolute sensitivity has been determined from branching ratios to an absolutely calibrated visible spectrometer. The long term stability of the calibration is discussed.

  8. Bio-Inspired Stretchable Absolute Pressure Sensor Network.

    PubMed

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X

    2016-01-02

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4'' wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles.

  9. Absolute length measurement using manually decided stereo correspondence for endoscopy

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Koishi, T.; Nakaguchi, T.; Tsumura, N.; Miyake, Y.

    2009-02-01

    In recent years, various kinds of endoscope have been developed and widely used to endoscopic biopsy, endoscopic operation and endoscopy. The size of the inflammatory part is important to determine a method of medical treatment. However, it is not easy to measure absolute size of inflammatory part such as ulcer, cancer and polyp from the endoscopic image. Therefore, it is required measuring the size of those part in endoscopy. In this paper, we propose a new method to measure the absolute length in a straight line between arbitrary two points based on the photogrammetry using endoscope with magnetic tracking sensor which gives camera position and angle. In this method, the stereo-corresponding points between two endoscopic images are determined by the endoscopist without any apparatus of projection and calculation to find the stereo correspondences, then the absolute length can be calculated on the basis of the photogrammetry. The evaluation experiment using a checkerboard showed that the errors of the measurements are less than 2% of the target length when the baseline is sufficiently-long.

  10. Neutron activation analysis of certified samples by the absolute method

    NASA Astrophysics Data System (ADS)

    Kadem, F.; Belouadah, N.; Idiri, Z.

    2015-07-01

    The nuclear reactions analysis technique is mainly based on the relative method or the use of activation cross sections. In order to validate nuclear data for the calculated cross section evaluated from systematic studies, we used the neutron activation analysis technique (NAA) to determine the various constituent concentrations of certified samples for animal blood, milk and hay. In this analysis, the absolute method is used. The neutron activation technique involves irradiating the sample and subsequently performing a measurement of the activity of the sample. The fundamental equation of the activation connects several physical parameters including the cross section that is essential for the quantitative determination of the different elements composing the sample without resorting to the use of standard sample. Called the absolute method, it allows a measurement as accurate as the relative method. The results obtained by the absolute method showed that the values are as precise as the relative method requiring the use of standard sample for each element to be quantified.

  11. An absolute photometric system at 10 and 20 microns

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Lebofsky, M. J.; Low, F. J.

    1985-01-01

    Two new direct calibrations at 10 and 20 microns are presented in which terrestrial flux standards are referred to infrared standard stars. These measurements give both good agreement and higher accuracy when compared with previous direct calibrations. As a result, the absolute calibrations at 10 and 20 microns have now been determined with accuracies of 3 and 8 percent, respectively. A variety of absolute calibrations based on extrapolation of stellar spectra from the visible to 10 microns are reviewed. Current atmospheric models of A-type stars underestimate their fluxes by about 10 percent at 10 microns, whereas models of solar-type stars agree well with the direct calibrations. The calibration at 20 microns can probably be determined to about 5 percent by extrapolation from the more accurate result at 10 microns. The photometric system at 10 and 20 microns is updated to reflect the new absolute calibration, to base its zero point directly on the colors of A0 stars, and to improve the accuracy in the comparison of the standard stars.

  12. The new Absolute Quantum Gravimeter (AQG): first results and perspectives

    NASA Astrophysics Data System (ADS)

    Bonvalot, Sylvain; Le Moigne, Nicolas; Merlet, Sebastien; Desruelle, Bruno; Lautier-Gaud, Jean; Menoret, Vincent; Vermeulen, Pierre

    2016-04-01

    Cold atom gravimetry represents one of the most innovative evolution in gravity instrumentation since the last 20 years. The concept of measuring the gravitational acceleration by dropping atoms and the development of the first instrumental devices during this last decade quickly revealed the promising perspectives of this new generation of gravity meters enabling accurate and absolute measurements of the Earth's gravity field for a wide range of applications (geophysics, geodesy, metrology, etc.). The Absolute Quantum Gravimeter (AQG) gravity meter, developed by MUQUANS (Talence, France - http://www.muquans.com/) with the support of RESIF, the French Seismologic and Geodetic Network (http://www.resif.fr/) belongs to this new generation of instruments. It also represents the first commercial device based on the utilization of advanced matter-wave interferometry techniques, which allow to characterize precisely the vertical acceleration experienced by a cloud of cold atoms. Recently, the first operational unit (AQG01) has been achieved as a compact transportable gravimeter with the aim of satisfying absolute gravity measurements in laboratory conditions under the following specifications: measurements the μGal level at a few Hz cycling frequency, sensitivity of 50μGal/√Hz, immunity to ground vibrations, easy and quickness of operation, automated continuous data acquisition for several months, etc. In order to evaluate the current performances of the AQG01, several experiments are carried out in collaboration between RESIF user's teams and the MUQUANS manufacturer on different reference gravity sites and laboratories in France. These measurements performed in indoor conditions including simultaneous observations with classical reference gravity instruments (corner-cube absolute gravity meters, relative superconducting meters) as well with the Cold Atom Gravity meter (CAG) developed by LNE-SYRTE, lead to a first objective characterization of the performances of

  13. Absolute determination of the Na22(p,γ)Mg23 reaction rate in novae

    NASA Astrophysics Data System (ADS)

    Sallaska, A. L.; Wrede, C.; García, A.; Storm, D. W.; Brown, T. A. D.; Ruiz, C.; Snover, K. A.; Ottewell, D. F.; Buchmann, L.; Vockenhuber, C.; Hutcheon, D. A.; Caggiano, J. A.; José, J.

    2011-03-01

    Gamma-ray telescopes in orbit around the earth are searching for evidence of the elusive radionuclide Na22 produced in novae. Previously published uncertainties in the dominant destructive reaction, Na22(p,γ)Mg23, indicated new measurements in the proton energy range of 150 to 300 keV were needed to constrain predictions. We have measured the resonance strengths, energies, and branches directly and absolutely by using protons from the University of Washington accelerator with a specially designed beam line, which included beam rastering and cold vacuum protection of the Na22 implanted targets. The targets, fabricated at TRIUMF-ISAC, displayed minimal degradation over a ~20 C bombardment as a result of protective layers. We avoided the need to know the absolute stopping power, and hence the target composition, by extracting resonance strengths from excitation functions integrated over proton energy. Our measurements revealed that resonance strengths for Ep=213, 288, 454, and 610 keV are stronger by factors of 2.4-3.2 than previously reported. Upper limits have been placed on proposed resonances at 198, 209, and 232 keV. These substantially reduce the uncertainty in the reaction rate. We have re-evaluated the Na22(p,γ) reaction rate, and our measurements indicate the resonance at 213 keV makes the most significant contribution to Na22 destruction in novae. Hydrodynamic simulations including our rate indicate that the expected abundance of Na22 ejecta from a classical nova is reduced by factors between 1.5 and 2, depending on the mass of the white-dwarf star hosting the nova explosion.

  14. Os-187/Os-188 and Highly Siderophile Element Systematics of Apollo 17 Aphanitic Melt Rocks

    NASA Technical Reports Server (NTRS)

    Puchtel, I. S.; Walker, R. J.; James, O. B.

    2005-01-01

    Introduction: Generally chondritic relative abundances and high absolute abundances of the highly siderophile elements (HSE: Ru, Rh, Pd, Re, Os, Ir, Pt, Au) in Earth s upper mantle provide strong evidence that these elements were added to the Earth following the last major interaction between its metallic core and silicate fraction. So called "late accretion" may have added materials comprising as much as 0.8% of the total mass of the Earth and possibly a similar proportion of mass to the Moon. We have begun to study the chemical nature of late accreted materials to the Earth - Moon system by examining the HSE contained in lunar impact-melt rocks. The HSE contained in melt rocks were largely added to the Moon during the period of time from the origin of the lunar highlands crust (4.4- 4.5 Ga) to the end of the late bombardment period (ca. 3.9 Ga). These materials provide the only direct chemical link to the late accretionary period. The chemical fingerprints of the HSE in late accreted materials may enable us to ascertain under what conditions and where in the solar system the late accreted materials formed. The Os-187/Os-188 ratios (reflecting long-term Re/Os), coupled with ratios of other HSE, can be diagnostic for identifying the nature of the impactor. A critical issue, however, will be deconvolving the exogenous from indigenous components.

  15. Chalcophile and Siderophile Element Abundances in Kilbourne Hole Lherzolites: Distinguishing the Signature of Melt Depleted Primitive Mantle from Metasomatic Overprints

    NASA Astrophysics Data System (ADS)

    Harvey, J.; König, S.; Luguet, A.

    2013-12-01

    Selenium, tellurium and the highly siderophile elements in peridotites have the potential to illustrate planetary scale processes that are opaque to lithophile elements. However, the interpretation of chalcophile and siderophile element abundances relies heavily on the selection of representative mantle material and the determination of what processes have affected these elements since melt depletion. Whole rock and in-situ sulfide data demonstrate that chalcophile and HSE systematics of the upper mantle could be significantly modified through sulfide-metasomatism, particularly by C-O-H-S × Cl fluids[1] or sulfide melts[2] i.e., chalcophile and siderophile element abundances result from a complex interplay between sulfide addition and alteration of pre-existing sulfide. Here we present new bulk-rock S-Se-Te-PGE abundances on a suite (n = 17) of lherzolite and harzburgite xenoliths from Kilbourne Hole, USA[3, 4]. Mineral modal abundances, major element contents and LREE/HREE ratios for 10 of these xenoliths are consistent with varying degrees of melt depletion (≤ 20 %) whereas the remainder appear to have been affected by cryptic metasomatism, refertilization, or melt-rock interaction which affected lithophile element abundances [4]. While sulfur, Se and PGE budgets are primarily controlled by sulfides, 50 × 30% of Te in peridotite may be accounted for by Pt-Pd tellurides[5]. Although most Kilbourne Hole peridotite xenoliths have PGE characteristics consistent with varying degrees of melt depletion and somewhat scattered Se/Te ratios, KH96-24 has Pt-Pd-Te abundances consistent with Pt-Pd-telluride precipitation, in addition to petrographic evidence for alteration by secondary processes[4]. S/Se are well correlated within the suite. However, lherzolites that retain a strong melt-depletion signature have distinctly lower abundances of both S and Se (<65 ppm and <31 ppm respectively) compared to peridotites that have had their lithophile element budgets perturbed

  16. Climate and local abundance in freshwater fishes

    PubMed Central

    Knouft, Jason H.; Anthony, Melissa M.

    2016-01-01

    Identifying factors regulating variation in numbers of individuals among populations across a species' distribution is a fundamental goal in ecology. A common prediction, often referred to as the abundant-centre hypothesis, suggests that abundance is highest near the centre of a species' range. However, because of the primary focus on the geographical position of a population, this framework provides little insight into the environmental factors regulating local abundance. While range-wide variation in population abundance associated with environmental conditions has been investigated in terrestrial species, the relationship between climate and local abundance in freshwater taxa across species' distributions is not well understood. We used GIS-based temperature and precipitation data to determine the relationships between climatic conditions and range-wide variation in local abundance for 19 species of North American freshwater fishes. Climate predicted a portion of the variation in local abundance among populations for 18 species. In addition, the relationship between climatic conditions and local abundance varied among species, which is expected as lineages partition the environment across geographical space. The influence of local habitat quality on species persistence is well documented; however, our results also indicate the importance of climate in regulating population sizes across a species geographical range, even in aquatic taxa. PMID:27429769

  17. Climate and local abundance in freshwater fishes.

    PubMed

    Knouft, Jason H; Anthony, Melissa M

    2016-06-01

    Identifying factors regulating variation in numbers of individuals among populations across a species' distribution is a fundamental goal in ecology. A common prediction, often referred to as the abundant-centre hypothesis, suggests that abundance is highest near the centre of a species' range. However, because of the primary focus on the geographical position of a population, this framework provides little insight into the environmental factors regulating local abundance. While range-wide variation in population abundance associated with environmental conditions has been investigated in terrestrial species, the relationship between climate and local abundance in freshwater taxa across species' distributions is not well understood. We used GIS-based temperature and precipitation data to determine the relationships between climatic conditions and range-wide variation in local abundance for 19 species of North American freshwater fishes. Climate predicted a portion of the variation in local abundance among populations for 18 species. In addition, the relationship between climatic conditions and local abundance varied among species, which is expected as lineages partition the environment across geographical space. The influence of local habitat quality on species persistence is well documented; however, our results also indicate the importance of climate in regulating population sizes across a species geographical range, even in aquatic taxa.

  18. Abundances of the elements - Meteoritic and solar

    NASA Technical Reports Server (NTRS)

    Anders, Edward; Grevesse, Nicolas

    1989-01-01

    New abundance tables have been compiled for C1 chondrites and the solar photosphere and corona, based on a critical review of the literature to mid-1988. The meteorite data are generally accurate to + or - 5-10 percent. Significant discrepancies between the sun and meteorites occur only for Fe, Mn, Ge, Pb, and W; other well-determined elements agree to + or - 9 percent on the average. There is no evidence for group fractionations in C1 chondrites of cosmochemically similar elements (refractories, siderophiles, volatiles, etc.), but a selective fractionation of Fe cannot be ruled out. Abundances of odd-A nuclides between A = 65 and 209 show a generally smooth trend, with elemental abundances conforming to the slope defined by isotopic abundances. Significant irregularities occur in the Nd-Sm-Eu region, however, suggesting that the abundance curve is dependably smooth only down to about 20 percent level.

  19. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway

    SciTech Connect

    Shi, T.; Niepel, M.; McDermott, J. E.; Gao, Y.; Nicora, C. D.; Chrisler, W. B.; Markillie, L. M.; Petyuk, V. A.; Smith, R. D.; Rodland, K. D.; Sorger, P. K.; Qian, W. -J.; Wiley, H. S.

    2016-07-12

    It is not known whether cancer cells generally show quantitative differences in the expression of signaling pathway proteins that could dysregulate signal transduction. To explore this issue, we first defined the primary components of the EGF-MAPK pathway in normal human mammary epithelial cells, identifying 16 core proteins and 10 feedback regulators. We then quantified their absolute abundance across a panel of normal and cancer cell lines. We found that core pathway proteins were expressed at very similar levels across all cell types. In contrast, the EGFR and transcriptionally controlled feedback regulators were expressed at highly variable levels. The absolute abundance of most core pathway proteins was between 50,000- 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower levels (2,000-5,000 per cell). MAPK signaling showed saturation in all cells between 3,000-10,000 occupied EGFR, consistent with the idea that low adaptor levels limit signaling. Our results suggest that the core MAPK pathway is essentially invariant across different cell types, with cell- specific differences in signaling likely due to variable levels of feedback regulators. The low abundance of adaptors relative to the EGFR could be responsible for previous observation of saturable signaling, endocytosis, and high affinity EGFR.

  20. Chlamydia caviae infection alters abundance but not composition of the guinea pig vaginal microbiota

    PubMed Central

    Neuendorf, Elizabeth; Gajer, Pawel; Bowlin, Anne K.; Marques, Patricia X.; Ma, Bing; Yang, Hongqiu; Fu, Li; Humphrys, Michael S.; Forney, Larry J.; Myers, Garry S.A.; Bavoil, Patrik M.; Rank, Roger G.; Ravel, Jacques

    2015-01-01

    In humans, the vaginal microbiota is thought to be the first line of defense again pathogens including Chlamydia trachomatis. The guinea pig has been extensively used as a model to study chlamydial infection because it shares anatomical and physiological similarities with humans, such as a squamous vaginal epithelium as well as some of the long-term outcomes caused by chlamydial infection. In this study, we aimed to evaluate the guinea pig-C. caviae model of genital infection as a surrogate for studying the role of the vaginal microbiota in the early steps of C. trachomatis infection in humans. We used culture-independent molecular methods to characterize the relative and absolute abundance of bacterial phylotypes in the guinea pig vaginal microbiota in animals non-infected, mock-infected or infected by C. caviae. We showed that the guinea pig and human vaginal microbiotas are of different bacterial composition and abundance. Chlamydia caviae infection had a profound effect on the absolute abundance of bacterial phylotypes but not on the composition of the guinea pig vaginal microbiota. Our findings compromise the validity of the guinea pig-C. caviae model to study the role of the vaginal microbiota during the early steps of sexually transmitted infection. PMID:25761873

  1. Influence of Coronal Abundance Variations

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D. (Technical Monitor); Kashyap, Vinay

    2005-01-01

    The PI of this project was Jeff Scargle of NASA/Ames. Co-I's were Alma Connors of Eureka Scientific/Wellesley, and myself. Part of the work was subcontracted to Eureka Scientific via SAO, with Vinay Kashyap as PI. This project was originally assigned grant number NCC2-1206, and was later changed to NCC2-1350 for administrative reasons. The goal of the project was to obtain, derive, and develop statistical and data analysis tools that would be of use in the analyses of high-resolution, high-sensitivity data that are becoming available with new instruments. This is envisioned as a cross-disciplinary effort with a number of "collaborators" including some at SA0 (Aneta Siemiginowska, Peter Freeman) and at the Harvard Statistics department (David van Dyk, Rostislav Protassov, Xiao-li Meng, Epaminondas Sourlas, et al). We have developed a new tool to reliably measure the metallicities of thermal plasma. It is unfeasible to obtain high-resolution grating spectra for most stars, and one must make the best possible determination based on lower-resolution, CCD-type spectra. It has been noticed that most analyses of such spectra have resulted in measured metallicities that were significantly lower than when compared with analyses of high- resolution grating data where available (see, e.g., Brickhouse et al., 2000, ApJ 530,387). Such results have led to the proposal of the existence of so-called Metal Abundance Deficient, or "MAD" stars (e.g., Drake, J.J., 1996, Cool Stars 9, ASP Conf.Ser. 109, 203). We however find that much of these analyses may be systematically underestimating the metallicities, and using a newly developed method to correctly treat the low-counts regime at the high-energy tail of the stellar spectra (van Dyk et al. 2001, ApJ 548,224), have found that the metallicities of these stars are generally comparable to their photospheric values. The results were reported at the AAS (Sourlas, Yu, van Dyk, Kashyap, and Drake, 2000, BAAS 196, v32, #54.02), and at the

  2. Jasminum sambac flower absolutes from India and China--geographic variations.

    PubMed

    Braun, Norbert A; Sim, Sherina

    2012-05-01

    Seven Jasminum sambac flower absolutes from different locations in the southern Indian state of Tamil Nadu were analyzed using GC and GC-MS. Focus was placed on 41 key ingredients to investigate geographic variations in this species. These seven absolutes were compared with an Indian bud absolute and commercially available J. sambac flower absolutes from India and China. All absolutes showed broad variations for the 10 main ingredients between 8% and 96%. In addition, the odor of Indian and Chinese J. sambac flower absolutes were assessed.

  3. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway

    PubMed Central

    Shi, Tujin; Niepel, Mario; McDermott, Jason E.; Gao, Yuqian; Nicora, Carrie D.; Chrisler, William B.; Markillie, Lye M.; Petyuk, Vladislav A.; Smith, Richard D.; Rodland, Karin D.; Sorger, Peter K.; Qian, Wei-Jun; Wiley, H. Steven

    2016-01-01

    Various genetic mutations associated with cancer are known to alter cell signaling, but it is not clear whether they dysregulate signaling pathways by altering the abundance of pathway proteins. Using a combination of RNA sequencing and ultrasensitive targeted proteomics, we defined the primary components—16 core proteins and 10 feedback regulators—of the epidermal growth factor receptor (EGFR)–mitogen-activated protein kinase (MAPK) pathway in normal human mammary epithelial cells and then quantified their absolute abundance across a panel of normal and breast cancer cell lines as well as fibroblasts. We found that core pathway proteins were present at very similar concentrations across all cell types, with a variance similar to that of proteins previously shown to display conserved abundances across species. In contrast, EGFR and transcriptionally controlled feedback regulators were present at highly variable concentrations. The absolute abundance of most core proteins was between 50,000 and 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower amounts (2000 to 5000 copies per cell). MAPK signaling showed saturation in all cells between 3000 and 10,000 occupied EGFRs, consistent with the idea that adaptors limit signaling. Our results suggest that the relative stoichiometry of core MAPK pathway proteins is very similar across different cell types, with cell-specific differences mostly restricted to variable amounts of feedback regulators and receptors. The low abundance of adaptors relative to EGFR could be responsible for previous observations that only a fraction of total cell surface EGFR is capable of rapid endocytosis, high-affinity binding, and mitogenic signaling. PMID:27405981

  4. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway.

    PubMed

    Shi, Tujin; Niepel, Mario; McDermott, Jason E; Gao, Yuqian; Nicora, Carrie D; Chrisler, William B; Markillie, Lye M; Petyuk, Vladislav A; Smith, Richard D; Rodland, Karin D; Sorger, Peter K; Qian, Wei-Jun; Wiley, H Steven

    2016-07-12

    Various genetic mutations associated with cancer are known to alter cell signaling, but it is not clear whether they dysregulate signaling pathways by altering the abundance of pathway proteins. Using a combination of RNA sequencing and ultrasensitive targeted proteomics, we defined the primary components-16 core proteins and 10 feedback regulators-of the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway in normal human mammary epithelial cells and then quantified their absolute abundance across a panel of normal and breast cancer cell lines as well as fibroblasts. We found that core pathway proteins were present at very similar concentrations across all cell types, with a variance similar to that of proteins previously shown to display conserved abundances across species. In contrast, EGFR and transcriptionally controlled feedback regulators were present at highly variable concentrations. The absolute abundance of most core proteins was between 50,000 and 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower amounts (2000 to 5000 copies per cell). MAPK signaling showed saturation in all cells between 3000 and 10,000 occupied EGFRs, consistent with the idea that adaptors limit signaling. Our results suggest that the relative stoichiometry of core MAPK pathway proteins is very similar across different cell types, with cell-specific differences mostly restricted to variable amounts of feedback regulators and receptors. The low abundance of adaptors relative to EGFR could be responsible for previous observations that only a fraction of total cell surface EGFR is capable of rapid endocytosis, high-affinity binding, and mitogenic signaling.

  5. Absolute Memory for Tempo in Musicians and Non-Musicians

    PubMed Central

    Brandimonte, Maria A.; Bruno, Nicola

    2016-01-01

    The ability to remember tempo (the perceived frequency of musical pulse) without external references may be defined, by analogy with the notion of absolute pitch, as absolute tempo (AT). Anecdotal reports and sparse empirical evidence suggest that at least some individuals possess AT. However, to our knowledge, no systematic assessments of AT have been performed using laboratory tasks comparable to those assessing absolute pitch. In the present study, we operationalize AT as the ability to identify and reproduce tempo in the absence of rhythmic or melodic frames of reference and assess these abilities in musically trained and untrained participants. We asked 15 musicians and 15 non-musicians to listen to a seven-step `tempo scale’ of metronome beats, each associated to a numerical label, and then to perform two memory tasks. In the first task, participants heard one of the tempi and attempted to report the correct label (identification task), in the second, they saw one label and attempted to tap the correct tempo (production task). A musical and visual excerpt was presented between successive trials as a distractor to prevent participants from using previous tempi as anchors. Thus, participants needed to encode tempo information with the corresponding label, store the information, and recall it to give the response. We found that more than half were able to perform above chance in at least one of the tasks, and that musical training differentiated between participants in identification, but not in production. These results suggest that AT is relatively wide-spread, relatively independent of musical training in tempo production, but further refined by training in tempo identification. We propose that at least in production, the underlying motor representations are related to tactus, a basic internal rhythmic period that may provide a body-based reference for encoding tempo. PMID:27760198

  6. Absolute Memory for Tempo in Musicians and Non-Musicians.

    PubMed

    Gratton, Irene; Brandimonte, Maria A; Bruno, Nicola

    2016-01-01

    The ability to remember tempo (the perceived frequency of musical pulse) without external references may be defined, by analogy with the notion of absolute pitch, as absolute tempo (AT). Anecdotal reports and sparse empirical evidence suggest that at least some individuals possess AT. However, to our knowledge, no systematic assessments of AT have been performed using laboratory tasks comparable to those assessing absolute pitch. In the present study, we operationalize AT as the ability to identify and reproduce tempo in the absence of rhythmic or melodic frames of reference and assess these abilities in musically trained and untrained participants. We asked 15 musicians and 15 non-musicians to listen to a seven-step `tempo scale' of metronome beats, each associated to a numerical label, and then to perform two memory tasks. In the first task, participants heard one of the tempi and attempted to report the correct label (identification task), in the second, they saw one label and attempted to tap the correct tempo (production task). A musical and visual excerpt was presented between successive trials as a distractor to prevent participants from using previous tempi as anchors. Thus, participants needed to encode tempo information with the corresponding label, store the information, and recall it to give the response. We found that more than half were able to perform above chance in at least one of the tasks, and that musical training differentiated between participants in identification, but not in production. These results suggest that AT is relatively wide-spread, relatively independent of musical training in tempo production, but further refined by training in tempo identification. We propose that at least in production, the underlying motor representations are related to tactus, a basic internal rhythmic period that may provide a body-based reference for encoding tempo.

  7. Summer Abundance and Distribution of Proteorhodopsin Genes in the Western Arctic Ocean

    PubMed Central

    Boeuf, Dominique; Lami, Raphaël; Cunnington, Emelyne; Jeanthon, Christian

    2016-01-01

    Proteorhodopsins (PR) are phylogenetically diverse and highly expressed proton pumps in marine bacterial communities. The phylogenetic diversity and in situ expression of the main PR groups in polar off-shore, coastal and estuarine waters is poorly known and their abundance has not yet been reported. Here, we show that PR gene sequences of the southern Beaufort Sea including MacKenzie shelf and estuary are mainly affiliated to Gammaproteobacteria, Alphaproteobacteria, and Bacteroidetes. Substantial overlap (78%) between DNA- and cDNA-based librairies indicated in situ PR transcription within a large fraction of PR-containing community. Sets of specific qPCR primers were designed to measure the absolute abundances of the major PR types. Spatial and depth profiles showed that PR-containing bacteria were abundant throughout the photic zone, comprising up to 45% of total bacteria. Although their abundance varied greatly with location and depth, Alphaproteobacteria predominated in the PR community in all water masses, with SAR11 as the major PR type. Low nutrient concentrations rather than light were the environmental drivers that best explained the abundance and distribution of arctic PR types. Together, our data suggests that PR-based phototrophy could be the major phototrophic prokaryotic process during the Arctic Ocean summer. PMID:27790192

  8. Modeling void abundance in modified gravity

    NASA Astrophysics Data System (ADS)

    Voivodic, Rodrigo; Lima, Marcos; Llinares, Claudio; Mota, David F.

    2017-01-01

    We use a spherical model and an extended excursion set formalism with drifting diffusive barriers to predict the abundance of cosmic voids in the context of general relativity as well as f (R ) and symmetron models of modified gravity. We detect spherical voids from a suite of N-body simulations of these gravity theories and compare the measured void abundance to theory predictions. We find that our model correctly describes the abundance of both dark matter and galaxy voids, providing a better fit than previous proposals in the literature based on static barriers. We use the simulation abundance results to fit for the abundance model free parameters as a function of modified gravity parameters, and show that counts of dark matter voids can provide interesting constraints on modified gravity. For galaxy voids, more closely related to optical observations, we find that constraining modified gravity from void abundance alone may be significantly more challenging. In the context of current and upcoming galaxy surveys, the combination of void and halo statistics including their abundances, profiles and correlations should be effective in distinguishing modified gravity models that display different screening mechanisms.

  9. Measurement of the absolute solar UV irradiance and variability

    NASA Technical Reports Server (NTRS)

    Mentall, James E.

    1990-01-01

    Radiation in the wavelength interval 150-350 nm initiates chemical reactions in the lower mesosphere and the stratosphere through the photodissociation of ambient molecular species. This experiment measures the total solar irradiance, above the Earth's atmosphere, in this wavelength interval, using three spectrometers. Measurements are made from rockets on a once-a-year basis and are used with satellite observations to determine both the absolute irradiance and the long term variability of the sun in the UV. A fourth spectrometer is being added to the payload to measure the emission in the hydrogen Lyman-alpha emission at 121.67 nm.

  10. Absolute efficiency measurements with the 10B based Jalousie detector

    NASA Astrophysics Data System (ADS)

    Modzel, G.; Henske, M.; Houben, A.; Klein, M.; Köhli, M.; Lennert, P.; Meven, M.; Schmidt, C. J.; Schmidt, U.; Schweika, W.

    2014-04-01

    The 10B based Jalousie detector is a replacement for 3He counter tubes, which are nowadays less affordable for large area detectors due to the 3He crisis. In this paper we investigate and verify the performance of the new 10B based detector concept and its adoption for the POWTEX diffractometer, which is designed for the detection of thermal neutrons with predicted detection efficiencies of 75-50% for neutron energies of 10-100 meV, respectively. The predicted detection efficiency has been verified by absolute measurements using neutrons with a wavelength of 1.17 Å (59 meV).

  11. Absolute distance measurement based on multiple self-mixing interferometry

    NASA Astrophysics Data System (ADS)

    Duan, Zhiwei; Yu, Yangyang; Gao, Bingkun; Jiang, Chunlei

    2017-04-01

    To improve the precision of distance measurement using laser Self-Mixing Interferometry (SMI) and compute short distance, we propose a method of Multiple Self-Mixing Interferometry (MSMI) that is modulated with a triangular wave. The principle of this method has been described in this paper. Experiments at different distances and amplitudes of modulation current are based on the proposed method. Low-priced and easily operated experimental devices are built. Experimental results show that a resolution of 2.7 mm can be achieved for absolute distance ranging from 2.2 to 23 cm.

  12. Absolute measurement of hadronic branching fractions of the Ds+ meson.

    PubMed

    Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Lopez, A; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L

    2008-04-25

    The branching fractions of D(s)(+/-) meson decays serve to normalize many measurements of processes involving charm quarks. Using 298 pb(-1) of e(+)e(-) collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for eight D(s)(+/-) decays with a double tag technique. In particular we determine the branching fraction B(D(s)(+)-->K(-)K(+}pi(+))=(5.50+/-0.23+/-0.16)%, where the uncertainties are statistical and systematic, respectively. We also provide partial branching fractions for kinematic subsets of the K(-)K(+)pi(+) decay mode.

  13. On the convective-absolute nature of river bedform instabilities

    NASA Astrophysics Data System (ADS)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca; Chomaz, Jean Marc

    2014-12-01

    River dunes and antidunes are induced by the morphological instability of stream-sediment boundary. Such bedforms raise a number of subtle theoretical questions and are crucial for many engineering and environmental problems. Despite their importance, the absolute/convective nature of the instability has never been addressed. The present work fills this gap as we demonstrate, by the cusp map method, that dune instability is convective for all values of the physical control parameters, while the antidune instability exhibits both behaviors. These theoretical predictions explain some previous experimental and numerical observations and are important to correctly plan flume experiments, numerical simulations, paleo-hydraulic reconstructions, and river works.

  14. Absolute Photoionization Cross Sections of Two Cyclic Ketones: Cyclopentanone & Cyclohexanone.

    PubMed

    Price, Chelsea; Fathi, Yasmin; Meloni, Giovanni

    2017-02-23

    Absolute photoionization cross sections for cyclopentanone and cyclohexanone, as well as partial ionization cross sections for the dissociative ionized fragments, are presented in this investigation. Experiments are performed via a multiplexed photoionization mass spectrometer utilizing VUV synchrotron radiation supplied by the Advanced Light Source of Lawrence Berkeley National Laboratory. These results allow the quantification of these species that is relevant to investigate the kinetics and combustion reactions of potential biofuels. The CBS-QB3 calculated values for the adiabatic ionization energies agree well with the experimental values and the identification of possible dissociative fragments is discussed for both systems.

  15. Optimized replica gas estimation of absolute integrals and partition functions

    NASA Astrophysics Data System (ADS)

    Minh, David D. L.

    2010-09-01

    In contrast with most Monte Carlo integration algorithms, which are used to estimate ratios, the replica gas identities recently introduced by Adib enable the estimation of absolute integrals and partition functions using multiple copies of a system and normalized transition functions. Here, an optimized form is presented. After generalizing a replica gas identity with an arbitrary weighting function, we obtain a functional form that has the minimal asymptotic variance for samples from two replicas and is provably good for a larger number. This equation is demonstrated to improve the convergence of partition function estimates in a two-dimensional Ising model.

  16. Optimized replica gas estimation of absolute integrals and partition functions.

    SciTech Connect

    Minh, D.

    2010-01-01

    In contrast with most Monte Carlo integration algorithms, which are used to estimate ratios, the replica gas identities recently introduced by Adib enable the estimation of absolute integrals and partition functions using multiple copies of a system and normalized transition functions. Here, an optimized form is presented. After generalizing a replica gas identity with an arbitrary weighting function, we obtain a functional form that has the minimal asymptotic variance for samples from two replicas and is provably good for a larger number. This equation is demonstrated to improve the convergence of partition function estimates in a two-dimensional Ising model.

  17. Absolute continuity on paths of spatial open discrete mappings

    NASA Astrophysics Data System (ADS)

    Golberg, Anatoly; Sevost'yanov, Evgeny

    2016-12-01

    We prove that open discrete mappings of Sobolev classes W_loc^{1, p}, p>n-1, with locally integrable inner dilatations admit ACP_p^{ -1} -property, which means that these mappings are absolutely continuous on almost all preimage paths with respect to p-module. In particular, our results extend the well-known Poletskiĭ lemma for quasiregular mappings. We also establish the upper bounds for p-module of such mappings in terms of integrals depending on the inner dilatations and arbitrary admissible functions.

  18. Faraday cup: absolute dosimetry for ELIMED beam line

    NASA Astrophysics Data System (ADS)

    Leanza, R.; Romano, F.; Scuderi, V.; Amico, A. G.; Cuttone, G.; Larosa, G.; Margarone, D.; Milluzzo, G.; Petringa, G.; Pipek, J.; Schillaci, F.; Cirrone, G. A. P.

    2017-03-01

    The scientific community has shown a growing interest towards multidisciplinary applications of laser-driven beams. In this framework, the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline will be the first transport beamline dedicated to the medical and multidisciplinary studies with laser-accelerated ion beams. Detectors for dosimetry represent one of key-element of the ELIMED beamline, allowing a dose delivering with good result as required in the clinical applications. In this contribution, a Faraday Cup for absolute dosimetry, designed and realized at INFN-LNS, is described.

  19. 3D measurement of absolute radiation dose in grid therapy

    NASA Astrophysics Data System (ADS)

    Trapp, J. V.; Warrington, A. P.; Partridge, M.; Philps, A.; Leach, M. O.; Webb, S.

    2004-01-01

    Spatially fractionated radiotherapy through a grid is a concept which has a long history and was routinely used in orthovoltage radiation therapy in the middle of last century to minimize damage to the skin and subcutaneous tissue. With the advent of megavoltage radiotherapy and its skin sparing effects the use of grids in radiotherapy declined in the 1970s. However there has recently been a revival of the technique for use in palliative treatments with a single fraction of 10 to 20 Gy. In this work the absolute 3D dose distribution in a grid irradiation is measured for photons using a combination of film and gel dosimetry.

  20. Absolute spectrophotometry of Neptune - 3390 to 7800 A

    NASA Astrophysics Data System (ADS)

    Bergstralh, J. T.; Neff, J. S.

    1983-07-01

    Absolute spectrophotometry of Neptune from 3390 to 7800 Å, with spectral resolution of 10 Å in the interval 3390 - 6055 and 20 Å in the interval 6055 - 7800 Å, is reported. The results are compared with filter photometry (Appleby, 1973; Wamsteker, 1973; Savage et al., 1980) and with synthetic spectra computed on the basis of a parameterization proposed by Podolak and Danielson (1977) for aerosol scattering and absorption. A CH4/H2 ratio is derived for the convectively mixed part of Neptune's atmosphere, and constrains optical properties of hypothetical aerosol layers.

  1. Strategy for the absolute neutron emission measurement on ITER.

    PubMed

    Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S

    2010-10-01

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  2. Absolute Emission Spectroscopy of Electronically Excited Products of Dissociative Recombination

    NASA Astrophysics Data System (ADS)

    Skrzypkowski, M. P.; Gougousi, T.; Golde, M. F.; Johnsen, R.

    1997-10-01

    We have employed spatially-resolved optical emission spectroscopy in a flowing afterglow plasma to investigate radiations in the 200-400 nm range resulting from electron-ion dissociative recombination. Calibrated emission data combined with Langmuir probe electron-density measurements are analyzed to obtain branching ratios for electronically excited recombination products. In particular, we will report absolute yields of CO(a^3Π) resulting from recombining CO_2^+ ions, NO(B^2Π) from N_2O^+, OH(A^2Σ^+) from HCO_2^+, as well as NH(A^3Π_i), and OH(A^2Σ^+) from the recombination of N_2OH^+ ions.

  3. Lens transmission measurement for an absolute radiation thermometer

    SciTech Connect

    Hao, X.; Yuan, Z.; Lu, X.

    2013-09-11

    The lens transmission for the National Institute of Metrology of China absolute radiation thermometer is measured by a hybrid method. The results of the lens transmission measurements are 99.002% and 86.792% for filter radiometers with center wavelengths 633 nm and 900 nm, respectively. These results, after correcting for diffraction factors and the size-of-source effect when the lens is incorporated within the radiometer, can be used for measurement of thermodynamic temperature. The expanded uncertainty of the lens transmission measurement system has been evaluated. It is 1.3×10{sup −3} at 633 nm and 900 nm, respectively.

  4. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2008-10-21

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  5. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-03

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  6. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-10-02

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  7. Method of differential-phase/absolute-amplitude QAM

    SciTech Connect

    Dimsdle, Jeffrey William

    2009-09-01

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  8. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-17

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  9. Absolute magnetic helicity and the cylindrical magnetic field

    SciTech Connect

    Low, B. C.

    2011-05-15

    The different magnetic helicities conserved under conditions of perfect electrical conductivity are expressions of the fundamental property that every evolving fluid surface conserves its net magnetic flux. This basic hydromagnetic point unifies the well known Eulerian helicities with the Lagrangian helicity defined by the conserved fluxes frozen into a prescribed set of disjoint toroidal tubes of fluid flowing as a permanent partition of the entire fluid [B. C. Low, Astrophys. J. 649, 1064 (2006)]. This unifying theory is constructed from first principles, beginning with an analysis of the Eulerian and Lagrangian descriptions of fluids, separating the ideas of fluid and magnetic-flux tubes and removing the complication of the magnetic vector potential's free gauge from the concept of helicity. The analysis prepares for the construction of a conserved Eulerian helicity, without that gauge complication, to describe a 3D anchored flux in an upright cylindrical domain, this helicity called absolute to distinguish it from the well known relative helicity. In a version of the Chandrasekhar-Kendall representation, the evolving field at any instant is a unique superposition of a writhed, untwisted axial flux with a circulating flux of field lines all closed and unlinked within the cylindrical domain. The absolute helicity is then a flux-weighted sum of the writhe of that axial flux and its mutual linkage with the circulating flux. The absolute helicity is also conserved if the frozen-in field and its domain are continuously deformed by changing the separation between the rigid cylinder-ends with no change of cylinder radius. This hitherto intractable cylindrical construction closes a crucial conceptual gap for the fundamentals to be complete at last. The concluding discussion shows the impact of this development on our understanding of helicity, covering (i) the helicities of wholly contained and anchored fields; (ii) the Eulerian and Lagrangian descriptions of field

  10. The absolute energy flux envelopes of B type stars.

    NASA Technical Reports Server (NTRS)

    Underhill, A. B.

    1972-01-01

    Absolute energy flux envelopes covering the region of 1100 to 6000 A for main-sequence stars of types B3, B7 and A0 derived from published, ground-based observations and from spectrum scans with OAO-II are presented. These flux envelopes are compared with the predicted flux envelopes from lightly line-blanketed model atmospheres. The line blanketing at wavelengths shorter than 3000 A is severe, about one-half the predicted light being observed at 1600 A. These results demonstrate that a model which represents well the observed visible spectrum of a star may fail seriously for representing the ultraviolet spectrum.

  11. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  12. Absolute cross-section normalization of magnetic neutron scattering data.

    PubMed

    Xu, Guangyong; Xu, Zhijun; Tranquada, J M

    2013-08-01

    We discuss various methods to obtain the resolution volume for neutron scattering experiments, in order to perform absolute normalization on inelastic magnetic neutron scattering data. Examples from previous experiments are given. We also try to provide clear definitions of a number of physical quantities which are commonly used to describe neutron magnetic scattering results, including the dynamic spin correlation function and the imaginary part of the dynamic susceptibility. Formulas that can be used for general purposes are provided and the advantages of the different normalization processes are discussed.

  13. Absolute cross-section normalization of magnetic neutron scattering data

    NASA Astrophysics Data System (ADS)

    Xu, Guangyong; Xu, Zhijun; Tranquada, J. M.

    2013-08-01

    We discuss various methods to obtain the resolution volume for neutron scattering experiments, in order to perform absolute normalization on inelastic magnetic neutron scattering data. Examples from previous experiments are given. We also try to provide clear definitions of a number of physical quantities which are commonly used to describe neutron magnetic scattering results, including the dynamic spin correlation function and the imaginary part of the dynamic susceptibility. Formulas that can be used for general purposes are provided and the advantages of the different normalization processes are discussed.

  14. Absolute negative mobility in a one-dimensional overdamped system

    NASA Astrophysics Data System (ADS)

    Chen, Ru-Yin; Nie, Lin-Ru; Pan, Wan-Li; Zhang, Jian-Qiang

    2015-10-01

    A one-dimensional overdamped system consisting of a symmetric periodic potential, a constant bias force and a trichotomous noise was investigated. In the frame of master equations, we derived analytical expression of its current. By means of numerical calculations, the results indicate that the current first increases, then decreases and finally increases with the bias force increasing, i.e., an absolute negative mobility (ANM) phenomenon. Our further investigations presented dependence of the ANM phenomenon on parameters of the noise. Its intrinsic physical mechanism was also open up, and a minimal model with ANM phenomenon is demonstrated.

  15. Game theory and evolution: finite size and absolute fitness measures.

    PubMed

    Demetrius, L; Gundlach, V M

    2000-11-01

    This article is concerned with the characterization and existence of evolutionarily stable strategies (ESS) in Games against Nature, a class of models described by finite size populations and absolute fitness measures. We address these problems in terms of a new formalism which revolves around the concept evolutionary entropy, a measure of the diversity of options associated with a strategy pure - strategies have zero entropy, mixed strategies positive entropy. We invoke this formalism to show that ESS are characterized by extremal states of entropy. We illustrate this characterization of ESS by an analysis of the evolution of the sex ratio and the evolution of seed size.

  16. Quantum bath refrigeration towards absolute zero: challenging the unattainability principle.

    PubMed

    Kolář, M; Gelbwaser-Klimovsky, D; Alicki, R; Kurizki, G

    2012-08-31

    A minimal model of a quantum refrigerator, i.e., a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T→0 for certain realistic quantized baths, e.g., phonons in strongly disordered media (fractons) or quantized spin waves in ferromagnets (magnons). This result challenges Nernst's third-law formulation known as the unattainability principle.

  17. Oxygen abundance maps of CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    Zinchenko, I. A.; Pilyugin, L. S.; Grebel, E. K.; Sánchez, S. F.; Vílchez, J. M.

    2016-11-01

    We construct maps of the oxygen abundance distribution across the discs of 88 galaxies using Calar Alto Legacy Integral Field Area survey (CALIFA) Data Release 2 (DR2) spectra. The position of the centre of a galaxy (coordinates on the plate) was also taken from the CALIFA DR2. The galaxy inclination, the position angle of the major axis, and the optical radius were determined from the analysis of the surface brightnesses in the Sloan Digital Sky Survey (SDSS) g and r bands of the photometric maps of SDSS Data Release 9. We explore the global azimuthal abundance asymmetry in the discs of the CALIFA galaxies and the presence of a break in the radial oxygen abundance distribution. We found that there is no significant global azimuthal asymmetry for our sample of galaxies, i.e. the asymmetry is small, usually lower than 0.05 dex. The scatter in oxygen abundances around the abundance gradient has a comparable value, ≲0.05 dex. A significant (possibly dominant) fraction of the asymmetry can be attributed to the uncertainties in the geometrical parameters of these galaxies. There is evidence for a flattening of the radial abundance gradient in the central part of 18 galaxies. We also estimated the geometric parameters (coordinates of the centre, the galaxy inclination and the position angle of the major axis) of our galaxies from the analysis of the abundance map. The photometry-map-based and the abundance-map-based geometrical parameters are relatively close to each other for the majority of the galaxies but the discrepancy is large for a few galaxies with a flat radial abundance gradient.

  18. Abundance fluctuations in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1982-01-01

    The determination of abundances within the interstellar medium is reviewed. It appears that interstellar abundances within 1 kpc of the Sun are uniform to within a factor of two or three, but it is not yet possible to determine whether there are real fluctuations at this level except for deuterium for which the factor of two variations appear to be real. Establishing the level of local fluctuations in the abundances is of considerable importance for understanding the history of nucleosynthesis in the solar neighborhood, the evolution of the interstellar medium and the formation of stars.

  19. Interstellar Abundances Toward X Per, Revisited

    NASA Technical Reports Server (NTRS)

    Valencic, Lynne A.; Smith, Randall K.

    2012-01-01

    The nearby X-ray binary X Per (HD 24534) provides a useful beacon with which to measure elemental abundances in the local ISM. We examine absorption features of O, Mg, and Si along this line of sight using spectra from the Chandra Observatory's LETG/ACIS-S and XMM-Newton's RGS instruments. In general, we find that the abundances and their ratios are similar to those of young F and G stars and the most recent solar values. We compare our results with abundances required by dust grain models.

  20. Interstellar Abundances Toward X Per, Revisited

    NASA Technical Reports Server (NTRS)

    Valencic, Lynne A.; Smith, Randall K.

    2014-01-01

    The nearby X-ray binary X Per (HD 24534) provides a useful beacon with which to measure elemental abundances in the local ISM. We examine absorption features of 0, Mg, and Si along this line of sight using spectra from the Chandra Observatory's LETG/ ACIS-S and XMM-Newton's RGS instruments. In general, we find that the abundances and their ratios are similar to those of young F and G stars and the most recent solar values. We compare our results with abundances required by dust grain models.

  1. CAMSS: A spectroscopic survey of meteoroid elemental abundances

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Gural, P.; Berdeu, A.

    2014-07-01

    The main element abundances (Mg, Fe, Na, ...) of some Near Earth Objects can be measured by meteor spectroscopy. The Cameras for All-sky Meteor Surveillance (CAMS) Spectrograph project aims to scale up meteor spectroscopy in the same way as CAMS scaled up the measurement of precise meteoroid trajectories from multi-station video observations. Spectra are recorded with sixteen low-light video cameras, each equipped with a high 1379 lines/mm objective transmission grating. The cameras are operated in survey mode and have recorded spectra in the San Francisco Bay Area every clear night since March 12, 2013. An interactive software tool is being developed to calibrate the wavelength alignments projected on the focal plane and extract the meteor spectra. Because the meteoroid trajectory and pre-atmospheric orbit are also independently measured, the absolute abundances of elements in the meteoroid plasma can be calculated as a function of altitude, while the orbital information can tie the meteoroid back to its parent object. % 2007AdSpR..39..538A Berezhnoy, A. A., Borovička, J. 2012, ACM 2012, Abstract 6142 1993A&A...279..627B 1994A&AS..103...83B 2005Icar..174...15B 2011pimo.conf...28G Gural, P. S. 2012, M&PS, 47, 1405 1997ApJ...479..441J 2007AdSpR..39..491J 2011Icar..216...40J Gomez, N., Madiedo, J. M., & Trigo-Rodriguez, J. M. 2013, 44th LPSC, Abstract 1239 2007AdSpR..39..513K 2004AJ....128.2564M 2007AdSpR..39..583R 2007AdSpR..39..517T 2011A&A...526A.126W

  2. Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification

    EPA Science Inventory

    Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...

  3. Absolute poverty measures for the developing world, 1981-2004.

    PubMed

    Chen, Shaohua; Ravallion, Martin

    2007-10-23

    We report new estimates of measures of absolute poverty for the developing world for the period 1981-2004. A clear trend decline in the percentage of people who are absolutely poor is evident, although with uneven progress across regions. We find more mixed success in reducing the total number of poor. Indeed, the developing world outside China has seen little or no sustained progress in reducing the number of poor, with rising poverty counts in some regions, notably sub-Saharan Africa. There are encouraging signs of progress in all regions after 2000, although it is too early to say whether this is a new trend. We also summarize results from estimating a new series incorporating an allowance for the higher cost of living facing poor people in urban areas. This reveals a marked urbanization of poverty in the developing world, which is stronger in some regions than others, although it remains that three-quarters of the poor live in rural areas.

  4. Absolute counting of neutrophils in whole blood using flow cytometry.

    PubMed

    Brunck, Marion E G; Andersen, Stacey B; Timmins, Nicholas E; Osborne, Geoffrey W; Nielsen, Lars K

    2014-12-01

    Absolute neutrophil count (ANC) is used clinically to monitor physiological dysfunctions such as myelosuppression or infection. In the research laboratory, ANC is a valuable measure to monitor the evolution of a wide range of disease states in disease models. Flow cytometry (FCM) is a fast, widely used approach to confidently identify thousands of cells within minutes. FCM can be optimised for absolute counting using spiked-in beads or by measuring the sample volume analysed. Here we combine the 1A8 antibody, specific for the mouse granulocyte protein Ly6G, with flow cytometric counting in straightforward FCM assays for mouse ANC, easily implementable in the research laboratory. Volumetric and Trucount™ bead assays were optimized for mouse neutrophils, and ANC values obtained with these protocols were compared to ANC measured by a dual-platform assay using the Orphee Mythic 18 veterinary haematology analyser. The single platform assays were more precise with decreased intra-assay variability compared with ANC obtained using the dual protocol. Defining ANC based on Ly6G expression produces a 15% higher estimate than the dual protocol. Allowing for this difference in ANC definition, the flow cytometry counting assays using Ly6G can be used reliably in the research laboratory to quantify mouse ANC from a small volume of blood. We demonstrate the utility of the volumetric protocol in a time-course study of chemotherapy induced neutropenia using four drug regimens.

  5. Absolute Temperature Monitoring Using RF Radiometry in the MRI Scanner

    PubMed Central

    El-Sharkawy, AbdEl-Monem M.; Sotiriadis, Paul P.; Bottomley, Paul A.; Atalar, Ergin

    2007-01-01

    Temperature detection using microwave radiometry has proven value for noninvasively measuring the absolute temperature of tissues inside the body. However, current clinical radiometers operate in the gigahertz range, which limits their depth of penetration. We have designed and built a noninvasive radiometer which operates at radio frequencies (64 MHz) with ∼100-kHz bandwidth, using an external RF loop coil as a thermal detector. The core of the radiometer is an accurate impedance measurement and automatic matching circuit of 0.05 Ω accuracy to compensate for any load variations. The radiometer permits temperature measurements with accuracy of ±0.1°K, over a tested physiological range of 28° C–40° C in saline phantoms whose electric properties match those of tissue. Because 1.5 T magnetic resonance imaging (MRI) scanners also operate at 64 MHz, we demonstrate the feasibility of integrating our radiometer with an MRI scanner to monitor RF power deposition and temperature dosimetry, obtaining coarse, spatially resolved, absolute thermal maps in the physiological range. We conclude that RF radiometry offers promise as a direct, noninvasive method of monitoring tissue heating during MRI studies and thereby providing an independent means of verifying patient-safe operation. Other potential applications include titration of hyper- and hypo-therapies. PMID:18026562

  6. Standardization of the cumulative absolute velocity. Final report

    SciTech Connect

    O`Hara, T.F.; Jacobson, J.P.

    1991-12-01

    EPRI NP-5930, ``A Criterion for Determining Exceedance of the Operating Basis Earthquake,`` was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.

  7. Automatic section thickness determination using an absolute gradient focus function.

    PubMed

    Elozory, D T; Kramer, K A; Chaudhuri, B; Bonam, O P; Goldgof, D B; Hall, L O; Mouton, P R

    2012-12-01

    Quantitative analysis of microstructures using computerized stereology systems is an essential tool in many disciplines of bioscience research. Section thickness determination in current nonautomated approaches requires manual location of upper and lower surfaces of tissue sections. In contrast to conventional autofocus functions that locate the optimally focused optical plane using the global maximum on a focus curve, this study identified by two sharp 'knees' on the focus curve as the transition from unfocused to focused optical planes. Analysis of 14 grey-scale focus functions showed, the thresholded absolute gradient function, was best for finding detectable bends that closely correspond to the bounding optical planes at the upper and lower tissue surfaces. Modifications to this function generated four novel functions that outperformed the original. The 'modified absolute gradient count' function outperformed all others with an average error of 0.56 μm on a test set of images similar to the training set; and, an average error of 0.39 μm on a test set comprised of images captured from a different case, that is, different staining methods on a different brain region from a different subject rat. We describe a novel algorithm that allows for automatic section thickness determination based on just out-of-focus planes, a prerequisite for fully automatic computerized stereology.

  8. Communication: The absolute shielding scales of oxygen and sulfur revisited

    NASA Astrophysics Data System (ADS)

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Ruud, Kenneth; Gauss, Jürgen

    2015-03-01

    We present an updated semi-experimental absolute shielding scale for the 17O and 33S nuclei. These new shielding scales are based on accurate rotational microwave data for the spin-rotation constants of H217O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)], C17O [Cazzoli et al., Phys. Chem. Chem. Phys. 4, 3575 (2002)], and H233S [Helgaker et al., J. Chem. Phys. 139, 244308 (2013)] corrected both for vibrational and temperature effects estimated at the CCSD(T) level of theory as well as for the relativistic corrections to the relation between the spin-rotation constant and the absolute shielding constant. Our best estimate for the oxygen shielding constants of H217O is 328.4(3) ppm and for C17O -59.05(59) ppm. The relativistic correction for the sulfur shielding of H233S amounts to 3.3%, and the new sulfur shielding constant for this molecule is 742.9(4.6) ppm.

  9. Absolute Measurements of Radiation Damage in Nanometer Thick Films

    PubMed Central

    Alizadeh, Elahe; Sanche, Léon

    2013-01-01

    We address the problem of absolute measurements of radiation damage in films of nanometer thicknesses. Thin films of DNA (~ 2–160nm) are deposited onto glass substrates and irradiated with varying doses of 1.5 keV X-rays under dry N2 at atmospheric pressure and room temperature. For each different thickness, the damage is assessed by measuring the loss of the supercoiled configuration as a function of incident photon fluence. From the exposure curves, the G-values are deduced, assuming that X-ray photons interacting with DNA, deposit all of their energy in the film. The results show that the G-value (i.e., damage per unit of deposited energy) increases with film thickness and reaches a plateau at 30±5 nm. This thickness dependence provides a correction factor to estimate the actual G-value for films with thicknesses below 30nm thickness. Thus, the absolute values of damage can be compared with that of films of any thickness under different experimental conditions. PMID:22562941

  10. Simulation of absolute amplitudes of ultrasound signals using equivalent circuits.

    PubMed

    Johansson, Jonny; Martinsson, Pär-Erik; Delsing, Jerker

    2007-10-01

    Equivalent circuits for piezoelectric devices and ultrasonic transmission media can be used to cosimulate electronics and ultrasound parts in simulators originally intended for electronics. To achieve efficient system-level optimization, it is important to simulate correct, absolute amplitude of the ultrasound signal in the system, as this determines the requirements on the electronics regarding dynamic range, circuit noise, and power consumption. This paper presents methods to achieve correct, absolute amplitude of an ultrasound signal in a simulation of a pulse-echo system using equivalent circuits. This is achieved by taking into consideration loss due to diffraction and the effect of the cable that connects the electronics and the piezoelectric transducer. The conductive loss in the transmission line that models the propagation media of the ultrasound pulse is used to model the loss due to diffraction. Results show that the simulated amplitude of the echo follows measured values well in both near and far fields, with an offset of about 10%. The use of a coaxial cable introduces inductance and capacitance that affect the amplitude of a received echo. Amplitude variations of 60% were observed when the cable length was varied between 0.07 m and 2.3 m, with simulations predicting similar variations. The high precision in the achieved results show that electronic design and system optimization can rely on system simulations alone. This will simplify the development of integrated electronics aimed at ultrasound systems.

  11. Absolute rotation detection by Coriolis force measurement using optomechanics

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar; Li, Yong

    2016-10-01

    In this article, we present an application of the optomechanical cavities for absolute rotation detection. Two optomechanical cavities, one in each arm, are placed in a Michelson interferometer. The interferometer is placed on a rotating table and is moved with a uniform velocity of \\dot{\\bar{y}} with respect to the rotating table. The Coriolis force acting on the interferometer changes the length of the optomechanical cavity in one arm, while the length of the optomechanical cavity in the other arm is not changed. The phase shift corresponding to the change in the optomechanical cavity length is measured at the interferometer output to estimate the angular velocity of the absolute rotation. An analytic expression for the minimum detectable rotation rate corresponding to the standard quantum limit of measurable Coriolis force in the interferometer is derived. Squeezing technique is discussed to improve the rotation detection sensitivity by a factor of \\sqrt{{γ }m/{ω }m} at 0 K temperature, where {γ }m and {ω }m are the damping rate and angular frequency of the mechanical oscillator. The temperature dependence of the rotation detection sensitivity is studied.

  12. Communication: The absolute shielding scales of oxygen and sulfur revisited.

    PubMed

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Ruud, Kenneth; Gauss, Jürgen

    2015-03-07

    We present an updated semi-experimental absolute shielding scale for the (17)O and (33)S nuclei. These new shielding scales are based on accurate rotational microwave data for the spin-rotation constants of H2(17)O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)], C(17)O [Cazzoli et al., Phys. Chem. Chem. Phys. 4, 3575 (2002)], and H2(33)S [Helgaker et al., J. Chem. Phys. 139, 244308 (2013)] corrected both for vibrational and temperature effects estimated at the CCSD(T) level of theory as well as for the relativistic corrections to the relation between the spin-rotation constant and the absolute shielding constant. Our best estimate for the oxygen shielding constants of H2(17)O is 328.4(3) ppm and for C(17)O -59.05(59) ppm. The relativistic correction for the sulfur shielding of H2(33)S amounts to 3.3%, and the new sulfur shielding constant for this molecule is 742.9(4.6) ppm.

  13. Communication: The absolute shielding scales of oxygen and sulfur revisited

    SciTech Connect

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Ruud, Kenneth; Gauss, Jürgen

    2015-03-07

    We present an updated semi-experimental absolute shielding scale for the {sup 17}O and {sup 33}S nuclei. These new shielding scales are based on accurate rotational microwave data for the spin–rotation constants of H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)], C{sup 17}O [Cazzoli et al., Phys. Chem. Chem. Phys. 4, 3575 (2002)], and H{sub 2}{sup 33}S [Helgaker et al., J. Chem. Phys. 139, 244308 (2013)] corrected both for vibrational and temperature effects estimated at the CCSD(T) level of theory as well as for the relativistic corrections to the relation between the spin–rotation constant and the absolute shielding constant. Our best estimate for the oxygen shielding constants of H{sub 2}{sup 17}O is 328.4(3) ppm and for C{sup 17}O −59.05(59) ppm. The relativistic correction for the sulfur shielding of H{sub 2}{sup 33}S amounts to 3.3%, and the new sulfur shielding constant for this molecule is 742.9(4.6) ppm.

  14. Abundances of Elements in Stellar Coronae

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy

    1998-01-01

    Interest in stellar coronal abundances was piqued several years ago by the launch of satellites that were able to study the compositions of coronae on stars other than the sun. Motivated by the possibility that other stellar coronae might share the First Ionization Potential (FIP) Effect solar abundance anomaly, we have in recent years been attempting to determine coronal element abundances in other stars. I will review these results, together with similar results reported in the literature, from a critical perspective of understanding the true uncertainties involved in the measurements. The importance of element abundances for coronal physics will be highlighted, and it will be shown that the differences in the chemical compositions of active stars allow us to draw new conclusions regarding the nature of stellar coronae and coronal heating.

  15. The lithium abundance in extreme halo stars

    SciTech Connect

    Hobbs, L.M.; Thorburn, J.A. )

    1991-07-01

    New observations are reported of atmospheric Li abundances for six extremely metal-poor dwarfs with Fe-H ratios not higher than {minus}2.59 and T(e) not lower than 5950 K. The spectra were obtained in 1990 at Kitt Peak National Observatory, using the echelle spectrograph with the UV Fast camera. The resulting Li abundances for these stars range between N(Li) values of 1.99 and 2.24, where N(Li) = 12 + log (Li/H). These results agree with the abundances reported previously for five other metal-poor dwarfs with the Fe/H ratios not above {minus}2.60. The invariance of Li abundance in these 11 stars indicates a primordial origin for most of the Li observed in these Galactic stars. 23 refs.

  16. Constraint on Absolute Accuracy of Metacomprehension Assessments: The Anchoring and Adjustment Model vs. the Standards Model

    ERIC Educational Resources Information Center

    Kwon, Heekyung

    2011-01-01

    The objective of this study is to provide a systematic account of three typical phenomena surrounding absolute accuracy of metacomprehension assessments: (1) the absolute accuracy of predictions is typically quite low; (2) there exist individual differences in absolute accuracy of predictions as a function of reading skill; and (3) postdictions…

  17. Essential Oils, Part VI: Sandalwood Oil, Ylang-Ylang Oil, and Jasmine Absolute.

    PubMed

    de Groot, Anton C; Schmidt, Erich

    In this article, some aspects of sandalwood oil, ylang-ylang oil, and jasmine absolute are discussed including their botanical origin, uses of the plants and the oils and absolute, chemical composition, contact allergy to and allergic contact dermatitis from these essential oils and absolute, and their causative allergenic ingredients.

  18. A Special Application of Absolute Value Techniques in Authentic Problem Solving

    ERIC Educational Resources Information Center

    Stupel, Moshe

    2013-01-01

    There are at least five different equivalent definitions of the absolute value concept. In instances where the task is an equation or inequality with only one or two absolute value expressions, it is a worthy educational experience for learners to solve the task using each one of the definitions. On the other hand, if more than two absolute value…

  19. Coronae of Stars with Supersolar Elemental Abundances

    NASA Technical Reports Server (NTRS)

    Peretz, Uria; Behar, Ehud; Drake, Stephen A.

    2015-01-01

    Coronal elemental abundances are known to deviate from the photospheric values of their parent star, with the degree of deviation depending on the first ionization potential (FIP). This study focuses on the coronal composition of stars with supersolar photospheric abundances. We present the coronal abundances of six such stars: 11 LMi, iota Hor, HR 7291, tau Boo, and alpha Cen A and B. These stars all have high-statistics X-ray spectra, three of which are presented for the first time. The abundances we measured were obtained using the line-resolved spectra of the Reflection Grating Spectrometer (RGS) in conjunction with the higher throughput EPIC-pn camera spectra onboard the XMM-Newton observatory. A collisionally ionized plasma model with two or three temperature components is found to represent the spectra well. All elements are found to be consistently depleted in the coronae compared to their respective photospheres. For 11 LMi and tau Boo no FIP effect is present, while iota Hor, HR 7291, and alpha Cen A and B show a clear FIP trend. These conclusions hold whether the comparison is made with solar abundances or the individual stellar abundances. Unlike the solar corona, where low-FIP elements are enriched, in these stars the FIP effect is consistently due to a depletion of high-FIP elements with respect to actual photospheric abundances. A comparison with solar (instead of stellar) abundances yields the same fractionation trend as on the Sun. In both cases, a similar FIP bias is inferred, but different fractionation mechanisms need to be invoked.

  20. Absolute Ages and Distances of 22 GCs Using Monte Carlo Main-sequence Fitting

    NASA Astrophysics Data System (ADS)

    O'Malley, Erin M.; Gilligan, Christina; Chaboyer, Brian

    2017-04-01

    The recent Gaia Data Release 1 of stellar parallaxes provides ample opportunity to find metal-poor main-sequence stars with precise parallaxes. We select 21 such stars with parallax uncertainties better than σ π /π ≤ 0.10 and accurate abundance determinations suitable for testing metal-poor stellar evolution models and determining the distance to Galactic globular clusters (GCs). A Monte Carlo analysis was used, taking into account uncertainties in the model construction parameters, to generate stellar models and isochrones to fit to the calibration stars. The isochrones that fit the calibration stars best were then used to determine the distances and ages of 22 GCs with metallicities ranging from ‑2.4 dex to ‑0.7 dex. We find distances with an average uncertainty of 0.15 mag and absolute ages ranging from 10.8 to 13.6 Gyr with an average uncertainty of 1.6 Gyr. Using literature proper motion data, we calculate orbits for the clusters, finding six that reside within the Galactic disk/bulge, while the rest are considered halo clusters. We find no strong evidence for a relationship between age and Galactocentric distance, but we do find a decreasing age–[Fe/H] relation.

  1. Element Abundances in High-temperature Solar Flare Plasma from MESSENGER SAX Observations

    NASA Astrophysics Data System (ADS)

    Dennis, Brian R.; Nittler, Larry R.; Phillips, Kenneth; Schwartz, Richard A.; Starr, Richard D.; Tolbert, Anne K

    2014-06-01

    X-ray spectral measurements of many solar flares made with the MESSENGER SAX instrument have been used to determine the abundances of Fe, Ca, Ar, S, and Si in the high temperature plasma. All available data from launch in 2004 to date have been used to obtain spectral fits to the SAX data from 2.3 to 8.5 keV for all time intervals with a detectable count rate in the Fe-line complex at 6.7 keV. For each time interval, OSPEX, our object-oriented IDL spectral analysis program, is used to obtain values of the emission measure, temperature distribution, and abundances that give the best-fit of the corresponding CHIANTI photon spectrum folded through the instrument response matrix to the measured count-rate spectrum above background. Distributions will be presented of element abundances for each flare and for all flares detected during each year of observations. Variations in measured abundances will be discussed as to whether they reflect real differences from the mean or differences due to statistical and/or systematic uncertainties. Comparisons will be made with abundance measurements made from other data sets, in particular by Phillips and Dennis (2012) using data from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and by Warren et al. (2013) using data from the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO).Phillips, K. J. H. and Dennis, B. R., “The Solar Flare Iron Abundance,” 2012, ApJ, 748, 52.Warren, H. “Measurements of Absolute Abundances in Solar Flares,” 2013, arXiv, 2013arXiv1310.4765W

  2. Aromatic organosulfates in atmospheric aerosols: synthesis, characterization, and abundance.

    PubMed

    Staudt, Sean; Kundu, Shuvashish; Lehmler, Hans-Joachim; He, Xianran; Cui, Tianqu; Lin, Ying-Hsuan; Kristensen, Kasper; Glasius, Marianne; Zhang, Xiaolu; Weber, Rodney J; Surratt, Jason D; Stone1, Elizabeth A

    2014-09-01

    Aromatic organosulfates are identified and quantified in fine particulate matter (PM2.5) from Lahore, Pakistan, Godavari, Nepal, and Pasadena, California. To support detection and quantification, authentic standards of phenyl sulfate, benzyl sulfate, 3-and 4-methylphenyl sulfate and 2-, 3-, and 4-methylbenzyl sulfate were synthesized. Authentic standards and aerosol samples were analyzed by ultra-performance liquid chromatography (UPLC) coupled to negative electrospray ionization (ESI) quadrupole time-of-flight (ToF) mass spectrometry. Benzyl sulfate was present in all three locations at concentrations ranging from 4 - 90 pg m(-3). Phenyl sulfate, methylphenyl sulfates and methylbenzyl sulfates were observed intermittently with abundances of 4 pg m(-3), 2-31 pg m(-3), 109 pg m(-3), respectively. Characteristic fragment ions of aromatic organosulfates include the sulfite radical ((•)SO3(-), m/z 80) and the sulfate radical ((•)SO4(-),m/z 96). Instrumental response factors of phenyl and benzyl sulfates varied by a factor of 4.3, indicating that structurally-similar organosulfates may have significantly different instrumental responses and highlighting the need to develop authentic standards for absolute quantitation organosulfates. In an effort to better understand the sources of aromatic organosulfates to the atmosphere, chamber experiments with the precursor toluene were conducted under conditions that form biogenic organosulfates. Aromatic organosulfates were not detected in the chamber samples, suggesting that they form through different pathways, have different precursors (e.g. naphthalene or methylnaphthalene), or are emitted from primary sources.

  3. Aromatic organosulfates in atmospheric aerosols: Synthesis, characterization, and abundance

    NASA Astrophysics Data System (ADS)

    Staudt, Sean; Kundu, Shuvashish; Lehmler, Hans-Joachim; He, Xianran; Cui, Tianqu; Lin, Ying-Hsuan; Kristensen, Kasper; Glasius, Marianne; Zhang, Xiaolu; Weber, Rodney J.; Surratt, Jason D.; Stone, Elizabeth A.

    2014-09-01

    Aromatic organosulfates are identified and quantified in fine particulate matter (PM2.5) from Lahore, Pakistan, Godavari, Nepal, and Pasadena, California. To support detection and quantification, authentic standards of phenyl sulfate, benzyl sulfate, 3- and 4-methylphenyl sulfate and 2-, 3-, and 4-methylbenzyl sulfate were synthesized. Authentic standards and aerosol samples were analyzed by ultra-performance liquid chromatography (UPLC) coupled to negative electrospray ionization (ESI) quadrupole time-of-flight (ToF) mass spectrometry. Benzyl sulfate was present in all three locations at concentrations ranging from 4 to 90 pg m-3. Phenyl sulfate, methylphenyl sulfates and methylbenzyl sulfates were observed intermittently with abundances of 4 pg m-3, 2-31 pg m-3, 109 pg m-3, respectively. Characteristic fragment ions of aromatic organosulfates include the sulfite radical (rad SO3-, m/z 80) and the sulfate radical (rad SO4-, m/z 96). Instrumental response factors of phenyl and benzyl sulfates varied by a factor of 4.3, indicating that structurally-similar organosulfates have significantly different instrumental responses and highlighting the need to develop authentic standards for absolute quantitation organosulfates. In an effort to better understand the sources of aromatic organosulfates to the atmosphere, chamber experiments with the precursor toluene were conducted under conditions that form biogenic organosulfates. Aromatic organosulfates were not detected in the chamber samples, suggesting that they form through different pathways, have different precursors (e.g. naphthalene or methylnaphthalene), or are emitted from primary sources.

  4. Lightest sterile neutrino abundance within the νMSM

    NASA Astrophysics Data System (ADS)

    Asaka, Takehiko; Shaposhnikov, Mikhail; Laine, Mikko

    2007-01-01

    We determine the abundance of the lightest (dark matter) sterile neutrinos created in the Early Universe due to active-sterile neutrino transitions from the thermal plasma. Our starting point is the field-theoretic formula for the sterile neutrino production rate, derived in our previous work [JHEP 06(2006)053], which allows to systematically incorporate all relevant effects, and also to analyse various hadronic uncertainties. Our numerical results differ moderately from previous computations in the literature, and lead to an absolute upper bound on the mixing angles of the dark matter sterile neutrino. Comparing this bound with existing astrophysical X-ray constraints, we find that the Dodelson-Widrow scenario, which proposes sterile neutrinos generated by active-sterile neutrino transitions to be the sole source of dark matter, is only possible for sterile neutrino masses lighter than 3.5 keV (6 keV if all hadronic uncertainties are pushed in one direction and the most stringent X-ray bounds are relaxed by a factor of two). This upper bound may conflict with a lower bound from structure formation, but a definitive conclusion necessitates numerical simulations with the non-equilibrium momentum distribution function that we derive. If other production mechanisms are also operative, no upper bound on the sterile neutrino mass can be established.

  5. Modeling abundance effects in distance sampling

    USGS Publications Warehouse

    Royle, J. Andrew; Dawson, D.K.; Bates, S.

    2004-01-01

    Distance-sampling methods are commonly used in studies of animal populations to estimate population density. A common objective of such studies is to evaluate the relationship between abundance or density and covariates that describe animal habitat or other environmental influences. However, little attention has been focused on methods of modeling abundance covariate effects in conventional distance-sampling models. In this paper we propose a distance-sampling model that accommodates covariate effects on abundance. The model is based on specification of the distance-sampling likelihood at the level of the sample unit in terms of local abundance (for each sampling unit). This model is augmented with a Poisson regression model for local abundance that is parameterized in terms of available covariates. Maximum-likelihood estimation of detection and density parameters is based on the integrated likelihood, wherein local abundance is removed from the likelihood by integration. We provide an example using avian point-transect data of Ovenbirds (Seiurus aurocapillus) collected using a distance-sampling protocol and two measures of habitat structure (understory cover and basal area of overstory trees). The model yields a sensible description (positive effect of understory cover, negative effect on basal area) of the relationship between habitat and Ovenbird density that can be used to evaluate the effects of habitat management on Ovenbird populations.

  6. TEA: A Code Calculating Thermochemical Equilibrium Abundances

    NASA Astrophysics Data System (ADS)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows & Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  7. Report on carbon and nitrogen abundance studies

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika

    1991-01-01

    The aim of the proposal was to determine the nitrogen to carbon abundance ratios from transition layer lines in stars with different T(sub eff) and luminosities. The equations which give the surface emission line fluxes and the measured ratio of the NV to CIV emission line fluxes are presented and explained. The abundance results are compared with those of photospheric abundance studies for stars in common with the photospheric investigations. The results show that the analyses are at least as accurate as the photospheric determinations. These studies can be extended to F and early G stars for which photospheric abundance determinations for giants are hard to do because molecular bands become too weak. The abundance determination in the context of stellar evolution is addressed. The N/C abundance ratio increases steeply at the point of evolution for which the convection zone reaches deepest. Looking at the evolution of the rotation velocities v sin i, a steep decrease in v sin i is related to the increasing depth of the convection zone. It is concluded that the decrease in v sin i for T(sub eff) less than or approximately = 5800 K is most probably due to the rearrangement of the angular momentum in the stars due to deep convective mixing. It appears that the convection zone is rotating with nearly depth independent angular momentum. Other research results and ongoing projects are discussed.

  8. Solar Models with New Low Metal Abundances

    NASA Astrophysics Data System (ADS)

    Yang, Wuming

    2016-04-01

    In the past decade, the photospheric abundances of the Sun had been revised several times by many observers. The standard solar models constructed with the new low-metal abundances disagree with helioseismic results and detected neutrino fluxes. The solar model problem has puzzled some stellar physicists for more than 10 years. Rotation, enhanced diffusion, convection overshoot, and magnetic fields are used to reconcile the new abundances with helioseismology. The too low helium subsurface abundance in enhanced diffusion models can be improved by the mixing caused by rotation and magnetic fields. The problem of the depth of the convective zone in rotating models can be resolved by convection overshoot. Consequently, the Asplund-Grevesse-Sauval rotation model including overshooting (AGSR) reproduces the seismically inferred sound-speed and density profiles and the convection zone depth as well as the Grevesse & Sauval model computed before. But this model fails to reproduce the surface helium abundance, which is 0.2393 (2.6σ away from the seismic value), and neutrino fluxes. The magnetic model called AGSM keeps the agreement of the AGSR and improves the prediction of the surface helium abundance. The observed separation ratios r02 and r13 are reasonably reproduced by AGSM. Moreover, neutrino fluxes calculated by this model are not far from the detected neutrino fluxes and the predictions of previous works.

  9. 186Os-187Os and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Walker, Richard J.; Warren, Jessica M.

    2017-03-01

    Abyssal peridotites are oceanic mantle fragments that were recently processed through ridges and represent residues of both modern and ancient melting. To constrain the nature and timing of melt depletion processes, and the composition of the mantle, we report high-precision Os isotope data for abyssal peridotites from three ocean basins, as well as for Os-rich alloys, primarily from Mesozoic ophiolites. These data are complemented by whole-rock highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re), trace- and major-element abundances for the abyssal peridotites, which are from the Southwest Indian (SWIR), Central Indian (CIR), Mid-Atlantic (MAR) and Gakkel Ridges. The results reveal a limited role for melt refertilization or secondary alteration processes in modifying abyssal peridotite HSE compositions. The abyssal peridotites examined have experienced variable melt depletion (2% to >16%), which occurred >0.5 Ga ago for some samples. Abyssal peridotites typically exhibit low Pd/Ir and, combined with high-degrees of estimated total melt extraction, imply that they were relatively refractory residues prior to incorporation into their present ridge setting. Recent partial melting processes and mid-ocean ridge basalt (MORB) generation therefore played a limited role in the chemical evolution of their precursor mantle domains. The results confirm that many abyssal peridotites are not simple residues of recent MORB source melting, having a more complex and long-lived depletion history. Peridotites from the Gakkel Ridge, SWIR, CIR and MAR indicate that the depleted MORB mantle has 186Os/188Os of 0.1198356 ± 21 (2SD). The Phanerozoic Os-rich alloys yield an average 186Os/188Os within uncertainty of abyssal peridotites (0.1198361 ± 20). Melt depletion trends defined between Os isotopes and melt extraction indices (e.g., Al2O3) allow an estimate of the primitive mantle (PM) composition, using only abyssal peridotites. This yields 187Os/188Os (0.1292 ± 25), and 186Os

  10. Regional absolute conductivity reconstruction using projected current density in MREIT.

    PubMed

    Sajib, Saurav Z K; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2012-09-21

    Magnetic resonance electrical impedance tomography (MREIT) is a non-invasive technique for imaging the internal conductivity distribution in tissue within an MRI scanner, utilizing the magnetic flux density, which is introduced when a current is injected into the tissue from external electrodes. This magnetic flux alters the MRI signal, so that appropriate reconstruction can provide a map of the additional z-component of the magnetic field (B(z)) as well as the internal current density distribution that created it. To extract the internal electrical properties of the subject, including the conductivity and/or the current density distribution, MREIT techniques use the relationship between the external injection current and the z-component of the magnetic flux density B = (B(x), B(y), B(z)). The tissue studied typically contains defective regions, regions with a low MRI signal and/or low MRI signal-to-noise-ratio, due to the low density of nuclear magnetic resonance spins, short T(2) or T*(2) relaxation times, as well as regions with very low electrical conductivity, through which very little current traverses. These defective regions provide noisy B(z) data, which can severely degrade the overall reconstructed conductivity distribution. Injecting two independent currents through surface electrodes, this paper proposes a new direct method to reconstruct a regional absolute isotropic conductivity distribution in a region of interest (ROI) while avoiding the defective regions. First, the proposed method reconstructs the contrast of conductivity using the transversal J-substitution algorithm, which blocks the propagation of severe accumulated noise from the defective region to the ROI. Second, the proposed method reconstructs the regional projected current density using the relationships between the internal current density, which stems from a current injection on the surface, and the measured B(z) data. Combining the contrast conductivity distribution in the entire

  11. Swarm Absolute Scalar Magnetometers first in-orbit results

    NASA Astrophysics Data System (ADS)

    Fratter, Isabelle; Léger, Jean-Michel; Bertrand, François; Jager, Thomas; Hulot, Gauthier; Brocco, Laura; Vigneron, Pierre

    2016-04-01

    The ESA Swarm mission will provide the best ever survey of the Earth's magnetic field and its temporal evolution. This will be achieved by a constellation of three identical satellites, launched together on the 22nd of November 2013. In order to observe the magnetic field thoroughly, each satellite carries two magnetometers: a Vector Field Magnetometer (VFM) coupled with a star tracker camera, to measure the direction of the magnetic field in space, and an Absolute Scalar Magnetometer (ASM), to measure its intensity. The ASM is the French contribution to the Swarm mission. This new generation instrument was designed by CEA-Leti and developed in close partnership with CNES, with scientific support from IPGP. Its operating principle is based on the atomic spectroscopy of the helium 4 metastable state. It makes use of the Zeeman's effect to transduce the magnetic field into a frequency, the signal being amplified by optical pumping. The primary role of the ASM is to provide absolute measurements of the magnetic field's strength at 1 Hz, for the in-flight calibration of the VFM. As the Swarm magnetic reference, the ASM scalar performance is crucial for the mission's success. Thanks to its innovative design, the ASM offers the best precision, resolution and absolute accuracy ever attained in space, with similar performance all along the orbit. In addition, thanks to an original architecture, the ASM implements on an experimental basis a capacity for providing simultaneously vector measurements at 1 Hz. This new feature makes it the first instrument capable of delivering both scalar and vector measurements simultaneously at the same point. Swarm offers a unique opportunity to validate the ASM vector data in orbit by comparison with the VFM's. Furthermore, the ASM can provide scalar data at a much higher sampling rate, when run in "burst" mode at 250 Hz, with a 100 Hz measurement bandwidth. An analysis of the spectral content of the magnetic field above 1 Hz becomes thus

  12. Landsat-7 ETM+ radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Barker, J.L.; Barsi, J.A.; Kaita, E.; Thome, K.J.; Helder, D.L.; Palluconi, Frank Don; Schott, J.R.; Scaramuzza, P.; ,

    2002-01-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than ??1%, reflective band absolute calibration to better than ??5%, and thermal band absolute calibration to better than ??0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m 2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of ??0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  13. Absolute Calibration of the AXAF Telescope Effective Area

    NASA Technical Reports Server (NTRS)

    Kellogg, E.; Cohen, L.; Edgar, R.; Evans, I.; Freeman, M.; Gaetz, T.; Jerius, D.; McDermott, W. C.; McKinnon, P.; Murray, S.; Podgorski, W.; Schwartz, D.; VanSpeybroeck, L.; Wargelin, B.; Zombeck, M.; Weisskopf, M.; Elsner, R.; ODell, S.; Tennant, A.; Kolodziejczak, J.

    1997-01-01

    The prelaunch calibration of AXAF encompasses many aspects of the telescope. In principle, all that is needed is the complete point response function. This is, however, a function of energy, off-axis angle of the source, and operating mode of the facility. No single measurement would yield the entire result. Also, any calibration made prior to launch will be affected by changes in conditions after launch, such as the change from one g to zero g. The reflectivity of the mirror and perhaps even the detectors can change as well, for example by addition or removal of small amounts of material deposited on their surfaces. In this paper, we give a broad view of the issues in performing such a calibration, and discuss how they are being addressed in prelaunch preparation of AXAF. As our title indicates, we concentrate here on the total throughput of the observatory. This can be thought of as the integral of the point response function, i.e. the encircled energy, out ot the largest practical solid angle for an observation. Since there is no standard x-ray source in the sky whose flux is known to the -1% accuracy we are trying to achieve, we must do this calibration on the ground. we also must provide a means for monitoring any possible changes in this calibration from pre-launch until on-orbit operation can transfer the calibration to a celestial x-ray source whose emission is stable. In this paper, we analyze the elements of the absolute throughput calibration, which we call Effective Area. We review the requirements for calibrations of components or subsystems of the AXAF facility, including mirror, detectors, and gratings. We show how it is necessary to calibrate this ground-based detection system at standard man-made x-ray sources, such as electron storage rings. We present the status of all these calibrations, with indications of the measurements remaining to be done, even though the measurements on the AXAF flight optics and detectors will have been completed by the

  14. The elemental abundances in interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    Arndt, Peter; Bohsung, Jörg; Maetz, Mischa; Jessberger, Elmar K.

    1996-11-01

    We compiled a table of all major, minor, and trace-element abundances in 89 interplanetary dust particles (IDPs) that includes data obtained with proton-induced x-ray emission (PIXE), synchroton x-ray fluorescence (SXRF), and secondary ion mass spectrometry (SIMS). For the first time, the reliability of the trace-element abundances in IDPs is tested by various crosschecks. We also report on the results of cluster analyses that we performed on IDP compositions. Because of the incompleteness of the data set, we included only the elements Cr, Mn, Ni, Cu, and Zn, normalized to Fe and CI chondrite abundances, that are determined in 73 IDPs. The data arrange themselves in four rather poorly defined groups that we discuss in relation to CI chondrites following the assumption that on the average CI abundances are most probable. The largest group (chondritic), with 44 members, has close to CI abundances for many refractory and moderately refractory elements (Na, Al, Si, P, K, Sc, Ti, V, Cr, Co, Ge, Sr). It is slightly depleted in Fe and more in Ca and S, while the volatile elements (Cl, Cu, Zn, Ga, Se, Rb) are enriched by =1.7 × CI and Br by 21 × CI. The low-Zn group, with 12 members, is very similar to the chondritic group except for its Zn-depletion, stronger Ca-depletion and Fe-enrichment. The low-Ni group, with 11 members, has Ni/Fe = 0.03 × CI and almost CI-like Ca, but its extraterrestrial origin is not established. The last group (6 members) contains non-systematic particles of unknown origin. We found that Fe is inhomogeneously distributed on a micron scale. Furthermore, the abundances of elements that are measured near their limits of detection are easily overestimated. These biases involved, the incomplete data set and possible contaminating processes prevent us from obtaining information on the specific origin(s) of IDPs from elemental abundances.

  15. Clonal growth and plant species abundance

    PubMed Central

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-01-01

    Background and Aims Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf–height–seed) traits and by actual performance in the botanical garden. Methods Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area – height – seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. Key Results After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Conclusions Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially

  16. Absolute and geometric parameters of contact binary GW Cnc

    NASA Astrophysics Data System (ADS)

    Gürol, B.; Gökay, G.; Saral, G.; Gürsoytrak, S. H.; Cerit, S.; Terzioğlu, Z.

    2016-07-01

    We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system GW Cnc. We analyzed the photometric data obtained in 2010 and 2011 at Ankara University Observatory (AUO) and the spectroscopic data obtained in 2010 at TUBITAK National Observatory (TUG) by using the Wilson-Devinney (2013 revision) code to obtain the absolute and geometrical parameters. We derived masses and radii of the eclipsing system to be M1 = 0.257M⊙ , M2 = 0.971M⊙ , R1 = 0.526R⊙ and R2 = 0.961R⊙ with an orbital inclination i(∘) = 83.38 ± 0.25 and we determined the GW Cnc system to be a W-type W UMa over-contact binary with a mass ratio of q = 3.773 ± 0.007 .

  17. Absolute and geometric parameters of contact binary BO Arietis

    NASA Astrophysics Data System (ADS)

    Gürol, B.; Gürsoytrak, S. H.; Bradstreet, D. H.

    2015-08-01

    We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system BO Ari from analyzed CCD (BVRI) light curves and radial velocity data. The photometric data were obtained in 2009 and 2010 at Ankara University Observatory (AUO) and the spectroscopic observations were made in 2007 and 2010 at TUBITAK National Observatory (TUG). These light and radial velocity observations were analyzed simultaneously by using the Wilson-Devinney (2013 revision) code to obtain absolute and geometrical parameters. The system was determined to be an A-type W UMa system. Combining our photometric solution with the spectroscopic data we derived masses and radii of the eclipsing system to be M1 = 0.995M⊙,M2 = 0.189M⊙,R1 = 1.090R⊙ and R2 = 0.515R⊙ . Finally, we discuss the evolutionary status of the system.

  18. Absolute Measurement of Tilts via Fourier Analysis of Interferograms

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.

    2004-01-01

    The Fourier method of interferogram analysis requires the introduction of a constant tilt into the interferogram to serve as a carrier signal for information on the figure of the surface under test. This tilt is usually removed in the first steps of analysis and ignored thereafter. However, in the problem of aligning optical components and systems, knowledge of part orientation is crucial to proper instrument performance. This paper outlines an algorithm which uses the normally ignored carrier signal in Fourier analysis to compute an absolute tilt (orientation) of the test surface. We also provide a brief outline of how this technique, incorporated in a rotating Twyman-Green interferometer, can be used in alignment and metrology of optical systems.

  19. Absolute Measurement of Tilts via Fourier Analysis of Interferograms

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.

    2004-01-01

    The Fourier method of interferogram analysis requires the introduction of a constant tilt into the inteferogram to serve as a 'carrier signal' for information on the figure of the surface under test. This tilt is usually removed in the first steps of analysis and ignored thereafter. However, in the problem of aligning optical components and systems, knowledge of part orientation is crucial to proper instrument performance. This paper outlines an algorithm which uses the normally ignored carrier signal in Fourier analysis to compute an absolute tilt (orientation) of the test surface. We also provide a brief outline of how this technique, incorporated in a rotating Twyman-Green interferometer, can be used in alignment and metrology of optical systems.

  20. Absolute properties of the triple star HP Aurigae

    SciTech Connect

    Lacy, Claud H. Sandberg; Burks, Charles L.; Torres, Guillermo; Wolf, Marek E-mail: clburks@email.uark.edu E-mail: wolf@cesnet.cz

    2014-01-01

    New photometric, spectroscopic, and eclipse timing observations of the eclipsing binary star HP Aur allow for very accurate orbital determinations, even in the presence of a third body and transient starspot activity. The eclipsing binary masses are determined to an accuracy of ±0.4% and the radii to ±0.6%. The masses are 0.9543 ± 0.0041 and 0.8094 ± 0.0036 solar masses, and the radii are 1.0278 ± 0.0042 and 0.7758 ± 0.0034 solar radii, respectively. The orbital period in the outer orbit is accurately determined for the first time: 4.332 ± 0.011 yr. A comparison with current theories of stellar evolution shows that the components' absolute properties can be well-matched by the current models at an age of about 7 billion years.

  1. Full field imaging based instantaneous hyperspectral absolute refractive index measurement

    SciTech Connect

    Baba, Justin S; Boudreaux, Philip R

    2012-01-01

    Multispectral refractometers typically measure refractive index (RI) at discrete monochromatic wavelengths via a serial process. We report on the demonstration of a white light full field imaging based refractometer capable of instantaneous multispectral measurement of absolute RI of clear liquid/gel samples across the entire visible light spectrum. The broad optical bandwidth refractometer is capable of hyperspectral measurement of RI in the range 1.30 1.70 between 400nm 700nm with a maximum error of 0.0036 units (0.24% of actual) at 414nm for a = 1.50 sample. We present system design and calibration method details as well as results from a system validation sample.

  2. Lunar eclipse photometry: absolute luminance measurements and modeling.

    PubMed

    Hernitschek, Nina; Schmidt, Elmar; Vollmer, Michael

    2008-12-01

    The Moon's time-dependent luminance was determined during the 9 February 1990 and 3 March 2007 total lunar eclipses by using calibrated, industry standard photometers. After the results were corrected to unit air mass and to standard distances for both Moon and Sun, an absolute calibration was accomplished by using the Sun's known luminance and a pre-eclipse lunar albedo of approximately 13.5%. The measured minimum level of brightness in the total phase of both eclipses was relatively high, namely -3.32 m(vis) and -1.7 m(vis), which hints at the absence of pronounced stratospheric aerosol. The light curves were modeled in such a way as to let the Moon move through an artificial Earth shadow composed of a multitude of disk and ring zones, containing a relative luminance data set from an atmospheric radiative transfer calculation.

  3. ABSOLUTE PROPERTIES OF THE ECLIPSING BINARY STAR V335 SERPENTIS

    SciTech Connect

    Lacy, Claud H. Sandberg; Fekel, Francis C.; Claret, Antonio E-mail: fekel@evans.tsuniv.edu

    2012-08-15

    V335 Ser is now known to be an eccentric double-lined A1+A3 binary star with fairly deep (0.5 mag) partial eclipses. Previous studies of the system are improved with 7456 differential photometric observations from the URSA WebScope and 5666 from the NFO WebScope, and 67 high-resolution spectroscopic observations from the Tennessee State University 2 m automatic spectroscopic telescope. From dates of minima, the apsidal period is about 880 years. Accurate (better than 2%) masses and radii are determined from analysis of the two new light curves and the radial velocity curve. Theoretical models match the absolute properties of the stars at an age of about 380 Myr, though the age agreement for the two components is poor. Tidal theory correctly confirms that the orbit should still be eccentric, but we find that standard tidal theory is unable to match the observed asynchronous rotation rates of the components' surface layers.

  4. ABSOLUTE PROPERTIES OF THE ECLIPSING BINARY STAR HY VIRGINIS

    SciTech Connect

    Sandberg Lacy, Claud H.; Fekel, Francis C. E-mail: fekel@evans.tsuniv.edu

    2011-12-15

    HY Vir is found to be a double-lined F0m+F5 binary star with relatively shallow (0.3 mag) partial eclipses. Previous studies of the system are improved with 7509 differential photometric observations from the URSA WebScope and 8862 from the NFO WebScope, and 68 high-resolution spectroscopic observations from the Tennessee State University 2 m automatic spectroscopic telescope, and the 1 m coude-feed spectrometer at Kitt Peak National Observatory. Very accurate (better than 0.5%) masses and radii are determined from analysis of the new light curves and radial velocity curves. Theoretical models match the absolute properties of the stars at an age of about 1.35 Gy.

  5. ABSOLUTE PROPERTIES OF THE TRIPLE STAR CF TAURI

    SciTech Connect

    Lacy, Claud H. Sandberg; Torres, Guillermo; Claret, Antonio E-mail: gtorres@cfa.harvard.edu

    2012-12-01

    CF Tau is now known to be an eclipsing triple star with relatively deep total and annular eclipses. New light and radial velocity curves as well as new times of minima were obtained and used for further modeling of the system. Very accurate (better than 0.9%) masses and radii of the eclipsing pair are determined from analysis of the two new light curves, the radial velocity curve, and the times of minimum light. The mass and luminosity of the distant third component is accurately determined as well. Theoretical models of the detached, evolved eclipsing pair match the observed absolute properties of the stars at an age of about 4.3 Gyr and [Fe/H] = -0.14.

  6. Upgrade of absolute extreme ultraviolet diagnostic on J-TEXT.

    PubMed

    Zhang, X L; Cheng, Z F; Hou, S Y; Zhuang, G; Luo, J

    2014-11-01

    The absolute extreme ultraviolet (AXUV) diagnostic system is used for radiation observation on J-TEXT tokamak [J. Zhang, G. Zhuang, Z. J. Wang, Y. H. Ding, X. Q. Zhang, and Y. J. Tang, Rev. Sci. Instrum. 81, 073509 (2010)]. The upgrade of the AXUV system is aimed to improve the spatial resolution and provide a three-dimensional image on J-TEXT. The new system consists of 12 AXUV arrays (4 AXUV16ELG arrays, 8 AXUV20ELG arrays). The spatial resolution in the cross-section is 21 mm for the AXUV16ELG arrays and 17 mm for the AXUV20ELG arrays. The pre-amplifier is also upgraded for a higher signal to noise ratio. By upgrading the AXUV imaging system, a more accurate observation on the radiation information is obtained.

  7. Superfast 3D absolute shape measurement using five binary patterns

    NASA Astrophysics Data System (ADS)

    Hyun, Jae-Sang; Zhang, Song

    2017-03-01

    This paper presents a method that recovers high-quality 3D absolute coordinates point by point with only five binary patterns. Specifically, three dense binary dithered patterns are used to compute the wrapped phase; and the average intensity is combined with two additional binary patterns to determine fringe order pixel by pixel in phase domain. The wrapped phase is temporarily unwrapped point by point by referring to the fringe order. We further developed a computational framework to reduce random noise impact due to dithering, defocusing and random noise. Since only five binary fringe patterns are required to recover one 3D frame, extremely high speed 3D shape measurement can be achieved. For example, we developed a system that captures 2D images at 3333 Hz, and thus performs 3D shape measurement at 667 Hz.

  8. Method and apparatus for making absolute range measurements

    DOEpatents

    Earl, Dennis D [Knoxville, TN; Allison, Stephen W [Knoxville, TN; Cates, Michael R [Oak Ridge, TN; Sanders, Alvin J [Knoxville, TN

    2002-09-24

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through a screen at least partially opaque at the wavelength. The screen has an aperture sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector spaced some distance from the screen. The detector detects the central intensity of the beam as well as a set of intensities displaced from a center of the aperture. The distance from the source to the target can then be calculated based upon the known wavelength, aperture radius, and beam intensity.

  9. Absolute positioning using DORIS tracking of the SPOT-2 satellite

    NASA Technical Reports Server (NTRS)

    Watkins, M. M.; Ries, J. C.; Davis, G. W.

    1992-01-01

    The ability of the French DORIS system operating on the SPOT-2 satellite to provide absolute site positioning at the 20-30-centimeter level using 80 d of data is demonstrated. The accuracy of the vertical component is comparable to that of the horizontal components, indicating that residual troposphere error is not a limiting factor. The translation parameters indicate that the DORIS network realizes a geocentric frame to about 50 nm in each component. The considerable amount of data provided by the nearly global, all-weather DORIS network allowed this complex parameterization required to reduce the unmodeled forces acting on the low-earth satellite. Site velocities with accuracies better than 10 mm/yr should certainly be possible using the multiyear span of the SPOT series and Topex/Poseidon missions.

  10. Measurement of absolute hadronic branching fractions of D mesons

    NASA Astrophysics Data System (ADS)

    Shi, Xin

    Using 818 pb-1 of e +e- collisions recorded at the psi(3770) resonance with the CLEO-c detector at CESR, we determine absolute hadronic branching fractions of charged and neutral D mesons using a double tag technique. Among measurements for three D 0 and six D+ modes, we obtain reference branching fractions B (D0 → K -pi+) = (3.906 +/- 0.021 +/- 0.062)% and B (D+ → K -pi+pi+) = (9.157 +/- 0.059 +/- 0.125)%, where the first uncertainty is statistical, the second is systematic errors. Using an independent determination of the integrated luminosity, we also extract the cross sections sigma(e +e- → D 0D¯0) = (3.650 +/- 0.017 +/- 0.083) nb and sigma(e+ e- → D+ D-) = (2.920 +/- 0.018 +/- 0.062) nb at a center of mass energy, Ecm = 3774 +/- 1 MeV.

  11. Absolute blood velocity measured with a modified fundus camera

    NASA Astrophysics Data System (ADS)

    Duncan, Donald D.; Lemaillet, Paul; Ibrahim, Mohamed; Nguyen, Quan Dong; Hiller, Matthias; Ramella-Roman, Jessica

    2010-09-01

    We present a new method for the quantitative estimation of blood flow velocity, based on the use of the Radon transform. The specific application is for measurement of blood flow velocity in the retina. Our modified fundus camera uses illumination from a green LED and captures imagery with a high-speed CCD camera. The basic theory is presented, and typical results are shown for an in vitro flow model using blood in a capillary tube. Subsequently, representative results are shown for representative fundus imagery. This approach provides absolute velocity and flow direction along the vessel centerline or any lateral displacement therefrom. We also provide an error analysis allowing estimation of confidence intervals for the estimated velocity.

  12. Absolute stellar photometry on moderate-resolution FPA images

    USGS Publications Warehouse

    Stone, T.C.

    2009-01-01

    An extensive database of star (and Moon) images has been collected by the ground-based RObotic Lunar Observatory (ROLO) as part of the US Geological Survey program for lunar calibration. The stellar data are used to derive nightly atmospheric corrections for the observations from extinction measurements, and absolute calibration of the ROLO sensors is based on observations of Vega and published reference flux and spectrum data. The ROLO telescopes were designed for imaging the Moon at moderate resolution, thus imposing some limitations for the stellar photometry. Attaining accurate stellar photometry with the ROLO image data has required development of specialized processing techniques. A key consideration is consistency in discriminating the star core signal from the off-axis point spread function. The analysis and processing methods applied to the ROLO stellar image database are described. ?? 2009 BIPM and IOP Publishing Ltd.

  13. Upgrade of absolute extreme ultraviolet diagnostic on J-TEXT

    SciTech Connect

    Zhang, X. L.; Cheng, Z. F. Hou, S. Y.; Zhuang, G.; Luo, J.

    2014-11-15

    The absolute extreme ultraviolet (AXUV) diagnostic system is used for radiation observation on J-TEXT tokamak [J. Zhang, G. Zhuang, Z. J. Wang, Y. H. Ding, X. Q. Zhang, and Y. J. Tang, Rev. Sci. Instrum. 81, 073509 (2010)]. The upgrade of the AXUV system is aimed to improve the spatial resolution and provide a three-dimensional image on J-TEXT. The new system consists of 12 AXUV arrays (4 AXUV16ELG arrays, 8 AXUV20ELG arrays). The spatial resolution in the cross-section is 21 mm for the AXUV16ELG arrays and 17 mm for the AXUV20ELG arrays. The pre-amplifier is also upgraded for a higher signal to noise ratio. By upgrading the AXUV imaging system, a more accurate observation on the radiation information is obtained.

  14. Structure and Absolute Configuration of Diterpenoids from Hymenaea stigonocarpa.

    PubMed

    Monteiro, Afif F; Batista, João M; Machado, Michelle A; Severino, Richele P; Blanch, Ewan W; Bolzani, Vanderlan S; Vieira, Paulo C; Severino, Vanessa G P

    2015-06-26

    Chemical investigations of the ethanolic extracts from the flowers and leaves of Hymenaea stigonocarpa Mart. ex Hayne afforded one new ent-halimane diterpenoid, 18-hydroxy-ent-halima-1(10),13-(E)-dien-15-oic acid (1), together with five known compounds (2-6). The structural elucidation was performed by means of NMR (COSY, HSQC, HMBC, and NOESY) and MS analyses. Complete (1)H and (13)C NMR data assignments are also reported for labd-13-en-8β-ol-15-oic (2) and labd-7,13-dien-15-oic (3) acids. The absolute configurations of 1 and 2 were established by comparison of experimental and calculated Raman optical activity spectra.

  15. Negative absolute temperature for motional degrees of freedom.

    PubMed

    Braun, S; Ronzheimer, J P; Schreiber, M; Hodgman, S S; Rom, T; Bloch, I; Schneider, U

    2013-01-04

    Absolute temperature is usually bound to be positive. Under special conditions, however, negative temperatures-in which high-energy states are more occupied than low-energy states-are also possible. Such states have been demonstrated in localized systems with finite, discrete spectra. Here, we prepared a negative temperature state for motional degrees of freedom. By tailoring the Bose-Hubbard Hamiltonian, we created an attractively interacting ensemble of ultracold bosons at negative temperature that is stable against collapse for arbitrary atom numbers. The quasimomentum distribution develops sharp peaks at the upper band edge, revealing thermal equilibrium and bosonic coherence over several lattice sites. Negative temperatures imply negative pressures and open up new parameter regimes for cold atoms, enabling fundamentally new many-body states.

  16. Absolute measurement of undulator radiation in the extreme ultraviolet

    NASA Astrophysics Data System (ADS)

    Maezawa, H.; Mitani, S.; Suzuki, Y.; Kanamori, H.; Tamamushi, S.; Mikuni, A.; Kitamura, H.; Sasaki, T.

    1983-04-01

    The spectral brightness of undulator radiation emitted by the model PMU-1 incorporated in the SOR-RING, the dedicated synchrotron radiation source in Tokyo, has been studied in the extreme ultraviolet region from 21.6 to 72.9 eV as a function of the electron energy γ, the field parameter K, and the angle of observation ϴ in the absolute scale. A series of measurements covering the first and the second harmonic component of undulator radiation was compared with the fundamental formula λ n= {λ 0}/{2nγ 2}( {1+K 2}/{2}+γϴ 2 and the effects of finite emittance were studied. The brightness at the first peak was smaller than the theoretical value, while an enhanced second harmonic component was observed.

  17. A three-axis SQUID-based absolute vector magnetometer.

    PubMed

    Schönau, T; Zakosarenko, V; Schmelz, M; Stolz, R; Anders, S; Linzen, S; Meyer, M; Meyer, H-G

    2015-10-01

    We report on the development of a three-axis absolute vector magnetometer suited for mobile operation in the Earth's magnetic field. It is based on low critical temperature dc superconducting quantum interference devices (LTS dc SQUIDs) with sub-micrometer sized cross-type Josephson junctions and exhibits a white noise level of about 10 fT/Hz(1/2). The width of superconducting strip lines is restricted to less than 6 μm in order to avoid flux trapping during cool-down in magnetically unshielded environment. The long-term stability of the flux-to-voltage transfer coefficients of the SQUID electronics is investigated in detail and a method is presented to significantly increase their reproducibility. We further demonstrate the long-term operation of the setup in a magnetic field varying by about 200 μT amplitude without the need for recalibration.

  18. Market entry decisions: effects of absolute and relative confidence.

    PubMed

    Bolger, Fergus; Pulford, Briony D; Colman, Andrew M

    2008-01-01

    In a market entry game, the number of entrants usually approaches game-theoretic equilibrium quickly, but in real-world markets business start-ups typically exceed market capacity, resulting in chronically high failure rates and suboptimal industry profits. Excessive entry has been attributed to overconfidence arising when expected payoffs depend partly on skill. In an experimental test of this hypothesis, 96 participants played 24 rounds of a market entry game, with expected payoffs dependent partly on skill on half the rounds, after their confidence was manipulated and measured. The results provide direct support for the hypothesis that high levels of confidence are largely responsible for excessive entry, and they suggest that absolute confidence, independent of interpersonal comparison, rather than confidence about one's abilities relative to others, drives excessive entry decisions when skill is involved.

  19. Landsat-5 TM reflective-band absolute radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Markham, B.L.; Dewald, J.D.; Kaita, E.; Thome, K.J.; Micijevic, E.; Ruggles, T.A.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) sensor provides the longest running continuous dataset of moderate spatial resolution remote sensing imagery, dating back to its launch in March 1984. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset of each detector. Due to observed degradations in the IC, a new procedure was implemented for U.S.-processed data in May 2003. This new calibration procedure is based on a lifetime radiometric calibration model for the instrument's reflective bands (1-5 and 7) and is derived, in part, from the IC response without the related degradation effects and is tied to the cross calibration with the Landsat-7 Enhanced Thematic Mapper Plus. Reflective-band absolute radiometric accuracy of the instrument tends to be on the order of 7% to 10%, based on a variety of calibration methods.

  20. Absolute Radiation Measurements in Earth and Mars Entry Conditions

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2014-01-01

    This paper reports on the measurement of radiative heating for shock heated flows which simulate conditions for Mars and Earth entries. Radiation measurements are made in NASA Ames' Electric Arc Shock Tube at velocities from 3-15 km/s in mixtures of N2/O2 and CO2/N2/Ar. The technique and limitations of the measurement are summarized in some detail. The absolute measurements will be discussed in regards to spectral features, radiative magnitude and spatiotemporal trends. Via analysis of spectra it is possible to extract properties such as electron density, and rotational, vibrational and electronic temperatures. Relaxation behind the shock is analyzed to determine how these properties relax to equilibrium and are used to validate and refine kinetic models. It is found that, for some conditions, some of these values diverge from non-equilibrium indicating a lack of similarity between the shock tube and free flight conditions. Possible reasons for this are discussed.

  1. Absolute calibration of Apollo lunar orbital mass spectrometer.

    NASA Technical Reports Server (NTRS)

    Yeager, P. R.; Smith, A.; Jackson, J. J.; Hoffman, J. H.

    1973-01-01

    Recent experiments were conducted in Langley Research Center's molecular beam system to perform an absolute calibration of the lunar orbital mass spectrometer which was flown on the Apollo 15 and 16 missions. Tests were performed with several models of the instrument using two test gases, argon and neon, in the 1 ntorr to .1 picotorr range. Sensitivity to argon at spacecraft orbital velocity was .00028 A/torr enabling partial pressures in the .01-picotorr range to be measured at the spacecraft altitude. Neon sensitivity was nearly a factor of 5 less. Test data support the feasibility of using the lunar orbital mass spectrometer as a tool to gather information about the lunar atmosphere.

  2. Active radiometric calorimeter for absolute calibration of radioactive sources

    SciTech Connect

    Stump, K.E.; DeWerd, L.A.; Rudman, D.A.; Schima, S.A.

    2005-03-01

    This report describes the design and initial noise floor measurements of a radiometric calorimeter designed to measure therapeutic medical radioactive sources. The instrument demonstrates a noise floor of approximately 2 nW. This low noise floor is achieved by using high temperature superconducting (HTS) transition edge sensor (TES) thermometers in a temperature-control feedback loop. This feedback loop will be used to provide absolute source calibrations based upon the electrical substitution method. Other unique features of the calorimeter are (a) its ability to change sources for calibration without disrupting the vacuum of the instrument, and (b) the ability to measure the emitted power of a source in addition to the total contained source power.

  3. Sub-nanometer periodic nonlinearity error in absolute distance interferometers.

    PubMed

    Yang, Hongxing; Huang, Kaiqi; Hu, Pengcheng; Zhu, Pengfei; Tan, Jiubin; Fan, Zhigang

    2015-05-01

    Periodic nonlinearity which can result in error in nanometer scale has become a main problem limiting the absolute distance measurement accuracy. In order to eliminate this error, a new integrated interferometer with non-polarizing beam splitter is developed. This leads to disappearing of the frequency and/or polarization mixing. Furthermore, a strict requirement on the laser source polarization is highly reduced. By combining retro-reflector and angel prism, reference and measuring beams can be spatially separated, and therefore, their optical paths are not overlapped. So, the main cause of the periodic nonlinearity error, i.e., the frequency and/or polarization mixing and leakage of beam, is eliminated. Experimental results indicate that the periodic phase error is kept within 0.0018°.

  4. Absolute stress measurements at the rangely anticline, Northwestern Colorado

    USGS Publications Warehouse

    de la Cruz, R. V.; Raleigh, C.B.

    1972-01-01

    Five different methods of measuring absolute state of stress in rocks in situ were used at sites near Rangely, Colorado, and the results compared. For near-surface measurements, overcoring of the borehole-deformation gage is the most convenient and rapid means of obtaining reliable values for the magnitude and direction of the state of stress in rocks in situ. The magnitudes and directions of the principal stresses are compared to the geologic features of the different areas of measurement. The in situ stresses are consistent in orientation with the stress direction inferred from the earthquake focal-plane solutions and existing joint patterns but inconsistent with stress directions likely to have produced the Rangely anticline. ?? 1972.

  5. Orion Exploration Flight Test-1 (EFT-1) Absolute Navigation Performance

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2015-01-01

    The Orion vehicle, being design to take men back to the Moon and beyond, successfully completed its first flight test, EFT-1 (Exploration Flight Test-1), on December 5th, 2014. The main objective of the test was to demonstrate the capability of re-enter into the Earth's atmosphere and safely splash-down into the pacific ocean. This un-crewed mission completes two orbits around Earth, the second of which is highly elliptical with an apogee of approximately 5908 km, higher than any vehicle designed for humans has been since the Apollo program. The trajectory was designed in order to test a high-energy re-entry similar to those crews will undergo during lunar missions. The mission overview is shown in Figure 1. The objective of this paper is to document the performance of the absolute navigation system during EFT-1 and to present its design.

  6. An absolute scale for measuring the utility of money

    NASA Astrophysics Data System (ADS)

    Thomas, P. J.

    2010-07-01

    Measurement of the utility of money is essential in the insurance industry, for prioritising public spending schemes and for the evaluation of decisions on protection systems in high-hazard industries. Up to this time, however, there has been no universally agreed measure for the utility of money, with many utility functions being in common use. In this paper, we shall derive a single family of utility functions, which have risk-aversion as the only free parameter. The fact that they return a utility of zero at their low, reference datum, either the utility of no money or of one unit of money, irrespective of the value of risk-aversion used, qualifies them to be regarded as absolute scales for the utility of money. Evidence of validation for the concept will be offered based on inferential measurements of risk-aversion, using diverse measurement data.

  7. A three-axis SQUID-based absolute vector magnetometer

    SciTech Connect

    Schönau, T.; Schmelz, M.; Stolz, R.; Anders, S.; Linzen, S.; Meyer, H.-G.; Zakosarenko, V.; Meyer, M.

    2015-10-15

    We report on the development of a three-axis absolute vector magnetometer suited for mobile operation in the Earth’s magnetic field. It is based on low critical temperature dc superconducting quantum interference devices (LTS dc SQUIDs) with sub-micrometer sized cross-type Josephson junctions and exhibits a white noise level of about 10 fT/Hz{sup 1/2}. The width of superconducting strip lines is restricted to less than 6 μm in order to avoid flux trapping during cool-down in magnetically unshielded environment. The long-term stability of the flux-to-voltage transfer coefficients of the SQUID electronics is investigated in detail and a method is presented to significantly increase their reproducibility. We further demonstrate the long-term operation of the setup in a magnetic field varying by about 200 μT amplitude without the need for recalibration.

  8. Control of absolute negative mobility via noise recycling procedure

    NASA Astrophysics Data System (ADS)

    Zeng, C. H.; Wang, H.; Qing, S.; Hu, J. H.; Li, K. Z.

    2012-10-01

    Absolute negative mobility (ANM) is investigated in a spatially-periodic symmetric system under the influence of noise consisting of the superposition of a white Gaussian noise with the same noise delayed by time τ. The effects of the noise intensity σ, the time delay τ and feedback intensity ɛ in the noise recycling are discussed. It is found that the noise intensity σ and time delay τ can induce the phenomenon of ANM, while the feedback intensity ɛ can not induce it. This phenomenon of ANM can be tested in the setup consisting of a resistively and capacitively shunted Josephson junction device by using a vertical cavity surface emitting laser to generate the noise recycling procedure.

  9. Absolute negative mobility induced by white Poissonian noise

    NASA Astrophysics Data System (ADS)

    Spiechowicz, J.; Łuczka, J.; Hänggi, P.

    2013-02-01

    We study the transport properties of inertial Brownian particles which move in a symmetric periodic potential and are subjected to both a symmetric, unbiased time-periodic external force and a biased Poissonian white shot noise (of non-zero average F) which is composed of a random sequence of δ-shaped pulses with random amplitudes. Upon varying the parameters of the white shot noise, one can conveniently manipulate the transport direction and the overall nonlinear response behavior. We find that within tailored parameter regimes the response is opposite to the applied average bias F of such white shot noise. This particular transport characteristic thus mimics that of a nonlinear absolute negative mobility (ANM) regime. Moreover, such white shot noise driven ANM is robust with respect to the statistics of the shot noise spikes. Our findings can be checked and corroborated experimentally by the use of a setup that consists of a single resistively and capacitively shunted Josephson junction device.

  10. Upgrade of absolute extreme ultraviolet diagnostic on J-TEXTa)

    NASA Astrophysics Data System (ADS)

    Zhang, X. L.; Cheng, Z. F.; Hou, S. Y.; Zhuang, G.; Luo, J.

    2014-11-01

    The absolute extreme ultraviolet (AXUV) diagnostic system is used for radiation observation on J-TEXT tokamak [J. Zhang, G. Zhuang, Z. J. Wang, Y. H. Ding, X. Q. Zhang, and Y. J. Tang, Rev. Sci. Instrum. 81, 073509 (2010)]. The upgrade of the AXUV system is aimed to improve the spatial resolution and provide a three-dimensional image on J-TEXT. The new system consists of 12 AXUV arrays (4 AXUV16ELG arrays, 8 AXUV20ELG arrays). The spatial resolution in the cross-section is 21 mm for the AXUV16ELG arrays and 17 mm for the AXUV20ELG arrays. The pre-amplifier is also upgraded for a higher signal to noise ratio. By upgrading the AXUV imaging system, a more accurate observation on the radiation information is obtained.

  11. Partial avoidance contingencies: Absolute omission and punishment probabilities1

    PubMed Central

    Flye, Barbaba L.; Gibbon, John

    1979-01-01

    Avoidance contingencies were defined by the absolute probability of the conjunction of responding or not responding with shock or no shock. The “omission” probability (ρ00) is the probability of no response and no shock. The “punishment” probability (ρ11) is the probability of both a response and a shock. The traditional avoidance contingency never omits shock on nonresponse trials (ρ00=0) and never presents shock on response trials (ρ11=0). Rats were trained on a discrete-trial paradigm with no intertrial interval. The first lever response changed an auditory stimulus for the remainder of the trial. Shocks were delivered only at the end of each trial cycle. After initial training under the traditional avoidance contingency, one group of rats experienced changes in omission probability (ρ00>0), holding punishment probability at zero. The second group of rats were studied under different punishment probability values (ρ11>0), holding omission probability at zero. Data from subjects in the omission group looked similar, showing graded decrements in responding with increasing probability of omission. These subjects approximately “matched” their nonresponse frequencies to the programmed probability of shock omission on nonresponse trials, producing a very low and approximately constant conditional probability of shock given no response. Subjects in the punishment group showed different sensitivity to increasing absolute punishment probability. Some subjects decreased responding to low values as punishment probability increased, while others continued to respond at substantial levels even when shock was inevitable on all trials (noncontingent shock schedule). These results confirm an asymmetry between two dimensions of partial avoidance contingencies. When the consequences of not responding included occasional omission of shock, all subjects showed graded sensitivity to changes in omission frequency. When the consequences of responding included

  12. Absolute calibration of the EnviSat-1 radar altimeter

    NASA Astrophysics Data System (ADS)

    Roca, Monica; Francis, Richard

    1998-12-01

    The EnviSat-1 satellite will embark an innovative radar altimeter. The calibration of the measurements of range from this instrument will be performed using novel techniques. The range measurement will be calibrated absolutely by establishing the actual geocentric sea-level along the sub- satellite tracks. These tracks are located in a limited and well-controlled region in the western Mediterranean and will include a number of fully-equipped individual sites which will provide higher confidence in the overall analysis, combined with data from the whole area at lower weight. The determination of the geocentric sea-level is performed using tide gauges and geodetic means such as leveling and floating GPS receivers. The altimeter sea-level is derived from the altimeter range corrected for propagation effects and sea- state bias, and a precise restitution of the trajectory of the satellite. These measurements comprise three vectors: range, orbital height and sea-surface height. The difference between orbital-height minus range, and sea-surface height provides the bias. The backscatter coefficient measured by previous altimeters has not been absolutely calibrated. An emerging application of the RA-2 in investigation of surface properties has identified the need to perform this calibration. A number of techniques are under study to determine the feasibility of meeting this need, including the use of well-controlled natural targets, the use of the altimeter receiver as a passive radiometer in order to determine its gain and the use of a transponder to return a precisely known return echo power to the radar.

  13. On measuring the absolute scale of baryon acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Sutherland, Will

    2012-10-01

    The baryon acoustic oscillation (BAO) feature in the distribution of galaxies provides a fundamental standard ruler which is widely used to constrain cosmological parameters. In most analyses, the comoving length of the ruler is inferred from a combination of cosmic microwave background (CMB) observations and theory. However, this inferred length may be biased by various non-standard effects in early universe physics; this can lead to biased inferences of cosmological parameters such as H0, Ωm and w, so it would be valuable to measure the absolute BAO length by combining a galaxy redshift survey and a suitable direct low-z distance measurement. One obstacle is that low-redshift BAO surveys mainly constrain the ratio rS/DV(z), where DV is a dilation scale which is not directly observable by standard candles. Here, we find a new approximation DV(z)≃34DL(43z)(1+43z)-1(1-0.02455 z3+0.0105 z4) which connects DV to the standard luminosity distance DL at a somewhat higher redshift; this is shown to be very accurate (relative error <0.2 per cent) for all Wilkinson Microwave Anisotropy Probe compatible Friedmann models at z < 0.4, with very weak dependence on cosmological parameters H0, Ωm, Ωk, w. This provides a route to measure the absolute BAO length using only observations at z ≲ 0.3, including Type Ia supernovae, and potentially future H0-free physical distance indicators such as gravitational lenses or gravitational wave standard sirens. This would provide a zero-parameter check of the standard cosmology at 103 ≲ z ≲ 105, and can constrain the number of relativistic species Neff with fewer degeneracies than the CMB.

  14. Absolute parameters for AI Phoenicis using WASP photometry

    NASA Astrophysics Data System (ADS)

    Kirkby-Kent, J. A.; Maxted, P. F. L.; Serenelli, A. M.; Turner, O. D.; Evans, D. F.; Anderson, D. R.; Hellier, C.; West, R. G.

    2016-06-01

    Context. AI Phe is a double-lined, detached eclipsing binary, in which a K-type sub-giant star totally eclipses its main-sequence companion every 24.6 days. This configuration makes AI Phe ideal for testing stellar evolutionary models. Difficulties in obtaining a complete lightcurve mean the precision of existing radii measurements could be improved. Aims: Our aim is to improve the precision of the radius measurements for the stars in AI Phe using high-precision photometry from the Wide Angle Search for Planets (WASP), and use these improved radius measurements together with estimates of the masses, temperatures and composition of the stars to place constraints on the mixing length, helium abundance and age of the system. Methods: A best-fit ebop model is used to obtain lightcurve parameters, with their standard errors calculated using a prayer-bead algorithm. These were combined with previously published spectroscopic orbit results, to obtain masses and radii. A Bayesian method is used to estimate the age of the system for model grids with different mixing lengths and helium abundances. Results: The radii are found to be R1 = 1.835 ± 0.014 R⊙, R2 = 2.912 ± 0.014 R⊙ and the masses M1 = 1.1973 ± 0.0037 M⊙, M2 = 1.2473 ± 0.0039 M⊙. From the best-fit stellar models we infer a mixing length of 1.78, a helium abundance of YAI = 0.26 +0.02-0.01 and an age of 4.39 ± 0.32 Gyr. Times of primary minimum show the period of AI Phe is not constant. Currently, there are insufficient data to determine the cause of this variation. Conclusions: Improved precision in the masses and radii have improved the age estimate, and allowed the mixing length and helium abundance to be constrained. The eccentricity is now the largest source of uncertainty in calculating the masses. Further work is needed to characterise the orbit of AI Phe. Obtaining more binaries with parameters measured to a similar level of precision would allow us to test for relationships between helium

  15. Abundances in Eight M31 Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry G.; Kwitter, Karen B.; Corradi, Romano; Galera-Rosillo, R.; Balick, Bruce; Henry, Richard B. C.

    2014-06-01

    As part of a continuing project using planetary nebulae (PNe) to study the chemical evolution and formation history of M31 (see accompanying poster by Balick et al.), we obtained spectra of eight PNe in the fall of 2013 with the OSIRIS spectrograph on the GTC. All of these PNe are located outside M31’s inner disk and bulge. Spectral coverage extended from 3700-7800Å with a resolution of ~6 Å. Especially important in abundance determinations is the detection of the weak, temperature-sensitive auroral line of [O III], at 4363Å, which is often contaminated by Hg I 4358Å from streetlights; the remoteness of the GTC eliminated this difficulty. We reduced and measured the spectra using IRAF, and derived nebular diagnostics and abundances with ELSA, our in-house five-level-atom program. Here we report the chemical abundances determined from these spectra. The bottom line is that the oxygen abundances in these PNe are all within a factor of 2-3 of the solar value, (as are all the other M31 PNe our team has previously measured) despite the significant range of galactocentric distance. Future work will use these abundances to constrain models of the central star to estimate progenitor masses and ages. In particular we will use the results to investigate the hypothesis that these PNe might represent a population related to the encounter between M31 and M33 ~3 Gy ago. We gratefully acknowledge support from Williams College.

  16. Why is Trichodesmium abundant in the Kuroshio?

    NASA Astrophysics Data System (ADS)

    Shiozaki, T.; Takeda, S.; Itoh, S.; Kodama, T.; Liu, X.; Hashihama, F.; Furuya, K.

    2015-12-01

    The genus Trichodesmium is recognized as an abundant and major diazotroph in the Kuroshio, but the reason for this remains unclear. The present study investigated the abundance of Trichodesmium spp. and nitrogen fixation together with concentrations of dissolved iron and phosphate in the Kuroshio and its marginal seas. We performed the observations near the Miyako Islands, which form part of the Ryukyu Islands, situated along the Kuroshio, since our satellite analysis suggested that material transport could occur from the islands to the Kuroshio. Trichodesmium spp. bloomed (> 20 000 filaments L-1) near the Miyako Islands, abundance was high in the Kuroshio and the Kuroshio bifurcation region of the East China Sea, but was low in the Philippine Sea. The abundance of Trichodesmium spp. was significantly correlated with the total nitrogen fixation activity. The surface concentrations of dissolved iron (0.19-0.89 nM) and phosphate (< 3-36 nM) were similar for all of the study areas, indicating that the nutrient distribution could not explain the spatial differences in Trichodesmium spp. abundance and nitrogen fixation. Numerical particle-tracking experiments simulated the transportation of water around the Ryukyu Islands to the Kuroshio. Our results indicate that Trichodesmium growing around the Ryukyu Islands could be advected into the Kuroshio.

  17. REVIEW: Can habitat selection predict abundance?

    PubMed

    Boyce, Mark S; Johnson, Chris J; Merrill, Evelyn H; Nielsen, Scott E; Solberg, Erling J; van Moorter, Bram

    2016-01-01

    Habitats have substantial influence on the distribution and abundance of animals. Animals' selective movement yields their habitat use. Animals generally are more abundant in habitats that are selected most strongly. Models of habitat selection can be used to distribute animals on the landscape or their distribution can be modelled based on data of habitat use, occupancy, intensity of use or counts of animals. When the population is at carrying capacity or in an ideal-free distribution, habitat selection and related metrics of habitat use can be used to estimate abundance. If the population is not at equilibrium, models have the flexibility to incorporate density into models of habitat selection; but abundance might be influenced by factors influencing fitness that are not directly related to habitat thereby compromising the use of habitat-based models for predicting population size. Scale and domain of the sampling frame, both in time and space, are crucial considerations limiting application of these models. Ultimately, identifying reliable models for predicting abundance from habitat data requires an understanding of the mechanisms underlying population regulation and limitation.

  18. Hierarchical models of animal abundance and occurrence

    USGS Publications Warehouse

    Royle, J. Andrew; Dorazio, R.M.

    2006-01-01

    Much of animal ecology is devoted to studies of abundance and occurrence of species, based on surveys of spatially referenced sample units. These surveys frequently yield sparse counts that are contaminated by imperfect detection, making direct inference about abundance or occurrence based on observational data infeasible. This article describes a flexible hierarchical modeling framework for estimation and inference about animal abundance and occurrence from survey data that are subject to imperfect detection. Within this framework, we specify models of abundance and detectability of animals at the level of the local populations defined by the sample units. Information at the level of the local population is aggregated by specifying models that describe variation in abundance and detection among sites. We describe likelihood-based and Bayesian methods for estimation and inference under the resulting hierarchical model. We provide two examples of the application of hierarchical models to animal survey data, the first based on removal counts of stream fish and the second based on avian quadrat counts. For both examples, we provide a Bayesian analysis of the models using the software WinBUGS.

  19. Abundance of sea kraits correlates with precipitation.

    PubMed

    Lillywhite, Harvey B; Tu, Ming-Chung

    2011-01-01

    Recent studies have shown that sea kraits (Laticauda spp.)--amphibious sea snakes--dehydrate without a source of fresh water, drink only fresh water or very dilute brackish water, and have a spatial distribution of abundance that correlates with freshwater sites in Taiwan. The spatial distribution correlates with sites where there is a source of fresh water in addition to local precipitation. Here we report six years of longitudinal data on the abundance of sea kraits related to precipitation at sites where these snakes are normally abundant in the coastal waters of Lanyu (Orchid Island), Taiwan. The number of observed sea kraits varies from year-to-year and correlates positively with previous 6-mo cumulative rainfall, which serves as an inverse index of drought. Grouped data for snake counts indicate that mean abundance in wet years is nearly 3-fold greater than in dry years, and this difference is significant. These data corroborate previous findings and suggest that freshwater dependence influences the abundance or activity of sea kraits on both spatial and temporal scales. The increasing evidence for freshwater dependence in these and other marine species have important implications for the possible impact of climate change on sea snake distributions.

  20. RELATIVE ABUNDANCE MEASUREMENTS IN PLUMES AND INTERPLUMES

    SciTech Connect

    Guennou, C.; Hahn, M.; Savin, D. W.

    2015-07-10

    We present measurements of relative elemental abundances in plumes and interplumes. Plumes are bright, narrow structures in coronal holes that extend along open magnetic field lines far out into the corona. Previous work has found that in some coronal structures the abundances of elements with a low first ionization potential (FIP) <10 eV are enhanced relative to their photospheric abundances. This coronal-to-photospheric abundance ratio, commonly called the FIP bias, is typically 1 for elements with a high-FIP (>10 eV). We have used Extreme Ultraviolet Imaging Spectrometer observations made on 2007 March 13 and 14 over a ≈24 hr period to characterize abundance variations in plumes and interplumes. To assess their elemental composition, we used a differential emission measure analysis, which accounts for the thermal structure of the observed plasma. We used lines from ions of iron, silicon, and sulfur. From these we estimated the ratio of the iron and silicon FIP bias relative to that for sulfur. From the results, we have created FIP-bias-ratio maps. We find that the FIP-bias ratio is sometimes higher in plumes than in interplumes and that this enhancement can be time dependent. These results may help to identify whether plumes or interplumes contribute to the fast solar wind observed in situ and may also provide constraints on the formation and heating mechanisms of plumes.

  1. OPTICAL SPECTROSCOPY AND NEBULAR OXYGEN ABUNDANCES OF THE SPITZER/SINGS GALAXIES

    SciTech Connect

    Moustakas, John; Kennicutt, Robert C. Jr.; Tremonti, Christy A.; Dale, Daniel A.; Smith, John-David T.; Calzetti, Daniela

    2010-10-15

    We present intermediate-resolution optical spectrophotometry of 65 galaxies obtained in support of the Spitzer Infrared Nearby Galaxies Survey (SINGS). For each galaxy we obtain a nuclear, circumnuclear, and semi-integrated optical spectrum designed to coincide spatially with mid- and far-infrared spectroscopy from the Spitzer Space Telescope. We make the reduced, spectrophotometrically calibrated one-dimensional spectra, as well as measurements of the fluxes and equivalent widths of the strong nebular emission lines, publicly available. We use optical emission-line ratios measured on all three spatial scales to classify the sample into star-forming, active galactic nuclei (AGNs), and galaxies with a mixture of star formation and nuclear activity. We find that the relative fraction of the sample classified as star forming versus AGN is a strong function of the integrated light enclosed by the spectroscopic aperture. We supplement our observations with a large database of nebular emission-line measurements of individual H II regions in the SINGS galaxies culled from the literature. We use these ancillary data to conduct a detailed analysis of the radial abundance gradients and average H II-region abundances of a large fraction of the sample. We combine these results with our new integrated spectra to estimate the central and characteristic (globally averaged) gas-phase oxygen abundances of all 75 SINGS galaxies. We conclude with an in-depth discussion of the absolute uncertainty in the nebular oxygen abundance scale.

  2. Calibration of Gephyrocapsa Coccolith Abundance in Holocene Sediments for Paleo-temperature Assessment

    NASA Astrophysics Data System (ADS)

    Bollmann, J.; Brabec, B.

    2001-12-01

    Abundance and assemblage compositions of microplankton, together with their chemical and stable isotopic composition, have been among the most successful methods in paleoceanography. One of the most frequently applied techniques for reconstruction of paleo-temperature is a transfer function using the relative abundance of planktic foraminifera in sediment samples. Here we present evidence, suggesting that absolute sea surface temperature for a given location can be also calculated from the relative abundance of Gephyrocapsa morphotypes in sediment samples with an accuracy comparable to foraminifera transfer functions. By extrapolating this finding, paleo-enviromental interpretations can be obtained for the Late Pleistocene and discrepancies between the different currently used methods (e.g., foraminifer, alkenone and Ca/Mg derived temperature estimates) might be resolved. Eighty-one Holocene sediment samples were selected from the Pacific, Indian and Atlantic Oceans covering a temperature gradient from 13.4° C to 29.4° C, a salinity gradient from 32.21 to 37.34 and a productivity gradient of 0.045 to 0.492μ g chlorophyll/L. Standard multiple linear regression analyses were applied to this data set, linking the relative abundance of Gephyrocapsa morphotypes to mean sea surface temperature. The best model revealed an r2 of 0.8 with a standard residual error of 1.8° C for calculation of the mean sea surface temperature.

  3. Dissociative Recombination and Excitation of CH{sup {plus}} {sub 5} : Absolute Cross Sections and Branching Fractions

    SciTech Connect

    Semaniak, J.; Larson, A.; Le Padellec, A.; Stroemholm, C.; Larsson, M.; Rosen, S.; Peverall, R.; Danared, H.; Djuric, N.; Dunn, G.H.; Datz, S.

    1998-05-01

    The heavy-ion storage ring CRYRING was used to measure the absolute dissociative recombination and dissociative excitation cross sections for collision energies below 50 eV. Deduced thermal rates coefficients are consistent with previous beams data but are lower by a factor of 3 than the rates measured by means of the flowing afterglow Langmuir probe technique. A resonant structure in dissociative recombination cross section was found at 9 eV. We have determined the branching fractions in DR of CH{sup {plus}} {sub 5} below 0.2 eV. The branching is dominated by three-body CH{sub 3} + H + H and CH{sub 2} + H{sub 2} + H dissociation channels, which occur with branching ratios of {approx}0.7 and {approx}0.2, respectively; thus methane is a minor species among dissociation products. Both the measured absolute cross sections and branching in dissociative recombination of CH{sup {plus}} {sub 5} can have important implications for the models of dense interstellar clouds and abundance of CH{sub 2}, CH{sub 3} and CH{sub 4} in these media. {copyright} {ital {copyright} 1998.} {ital The American Astronomical Society}

  4. A low absolute number of expanded transcripts is involved in myotonic dystrophy type 1 manifestation in muscle

    PubMed Central

    Gudde, Anke E. E. G.; González-Barriga, Anchel; van den Broek, Walther J. A. A.; Wieringa, Bé; Wansink, Derick G.

    2016-01-01

    Muscular manifestation of myotonic dystrophy type 1 (DM1), a common inheritable degenerative multisystem disorder, is mainly caused by expression of RNA from a (CTG·CAG)n-expanded DM1 locus. Here, we report on comparative profiling of expression of normal and expanded endogenous or transgenic transcripts in skeletal muscle cells and biopsies from DM1 mouse models and patients in order to help us in understanding the role of this RNA-mediated toxicity. In tissue of HSALR mice, the most intensely used ‘muscle-only’ model in the DM1 field, RNA from the α-actin (CTG)250 transgene was at least 1000-fold more abundant than that from the Dmpk gene, or the DMPK gene in humans. Conversely, the DMPK transgene in another line, DM500/DMSXL mice, was expressed ∼10-fold lower than the endogenous gene. Temporal regulation of expanded RNA expression differed between models. Onset of expression occurred remarkably late in HSALR myoblasts during in vitro myogenesis whereas Dmpk or DMPK (trans)genes were expressed throughout proliferation and differentiation phases. Importantly, quantification of absolute transcript numbers revealed that normal and expanded Dmpk/DMPK transcripts in mouse models and DM1 patients are low-abundance RNA species. Northern blotting, reverse transcriptase–quantitative polymerase chain reaction, RNA-sequencing and fluorescent in situ hybridization analyses showed that they occur at an absolute number between one and a few dozen molecules per cell. Our findings refine the current RNA dominance theory for DM1 pathophysiology, as anomalous factor binding to expanded transcripts and formation of soluble or insoluble ribonucleoprotein aggregates must be nucleated by only few expanded DMPK transcripts and therefore be a small numbers game. PMID:26908607

  5. Measuring Abundance Ratios from Integrated Light

    NASA Astrophysics Data System (ADS)

    Worthey, G.

    2010-06-01

    Age, overall abundance, and detailed, element-by-element abundances can be extracted from the integrated light of distant galaxies. The method, at its most basic, is merely the comparison of observed spectra with appropriate models. The relative ratios of elements C, N, O, Na, Mg, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Sr, and Ba can be determined to scientifically useful precision. Cases of interest that are borderline because they suffer internal degeneracies (although plenty of signal is present) are Al and the trio C, N, and O. The elements S, K, Cu, Eu, and the noble gases are too difficult to measure, and V is borderline. Changing the relative abundance ratios, even at fixed heavy-element content, changes the temperatures, luminosities, and number densities of the underlying stellar evolution, as well as more direct changes in the spectra of the stars present. The latter effects dominate the spectral shape, while the former effects render age estimation quite difficult.

  6. Chemical Abundances of Compact Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Lee, Ting-Hui; Shaw, Richard A.; Stanghellini, letizia; Riley, Ben

    2015-08-01

    We present preliminary results from an optical spectroscopic survey of compact planetary nebulae (PNe) in the Galactic disk. This is an ongoing optical+infrared spectral survey of 150 compact PNe to build a deep sample of PN chemical abundances. We obtained optical spectra of PNe with the Southern Astrophysical Research (SOAR) Telescope and Goodman High-Throughput Spectrograph between 2012 and 2015. These data were used to calculate the nebulae diagnostics such as electron temperature and density for each PN, and to derive the elemental abundances of He, N, O Ne, S and Ar. These abundances are vital to understanding the nature of the PNe, and their low- to intermediate-mass progenitor stars.

  7. Rare-earth abundances in chondritic meteorites

    NASA Technical Reports Server (NTRS)

    Evensen, N. M.; Hamilton, P. J.; Onions, R. K.

    1978-01-01

    Fifteen chondrites, including eight carbonaceous chondrites, were analyzed for rare earth element abundances by isotope dilution. Examination of REE for a large number of individual chondrites shows that only a small proportion of the analyses have flat unfractionated REE patterns within experimental error. While some of the remaining analyses are consistent with magmatic fractionation, many patterns, in particular those with positive Ce anomalies, can not be explained by known magmatic processes. Elemental abundance anomalies are found in all major chondrite classes. The persistence of anomalies in chondritic materials relatively removed from direct condensational processes implies that anomalous components are resistant to equilibrium or were introduced at a late stage of chondrite formation. Large-scale segregation of gas and condensate is implied, and bulk variations in REE abundances between planetary bodies is possible.

  8. On the abundance enigma in Ionized Regions

    NASA Astrophysics Data System (ADS)

    Bohigas, J.

    2009-04-01

    In ionized regions with temperature gradients and fluctuations, the ratio of the ion abundance obtained from a recombination line to that found from a collisionally excited line (CEL), or ADF, is smaller than observed (ADF ≥ 2). Larger ADFs are found when there is an additional component that is ≥ 30% colder. The temperature in the cold component must be ≈ 500, 200 and 100 K if the ADF found from an IR CEL is ≃2, 5 and 10. Most of the mass is in the hot region. The total H+ mass has been underestimated if it was found from the intensity of a Balmer line. [O IIII]5007/Hβ images can also render the relative distribution of cold and hot matter. The determination of accurate abundances is forestalled by the fact that observations cannot discriminate light from these components, the existence of distinct abundance sets and insufficient spectral information for the hot region.

  9. Abundance and chemistry of interstellar HOCO(+)

    NASA Technical Reports Server (NTRS)

    Minh, Y. C.; Brewer, M. K.; Irvine, W. M.; Friberg, P.; Johansson, L. E. B.

    1991-01-01

    Column densities of 10 to the 15th/sq cm toward the Galactic center and not more than 10 to the 12th/sq cm for cold dark clouds are derived from observations using an LVG model, and the chemical implications are discussed. The HOCO(+) 4(04)-3(03) line toward Sgr A is mapped. The fractional abundance of HOCO(+) in the Galactic center region was found to be three orders of magnitude larger than predicted by quiescent ion-molecule chemistry and an order of magnitude larger than predicted by an MHD shock model. It is suggested that the possibly high CO2 abundance, and consequently the observed HOCO(+) abundance in the Galactic center, may result from UV photolysis of grain mantles.

  10. INTERSTELLAR ABUNDANCES TOWARD X Per, REVISITED

    SciTech Connect

    Valencic, Lynne A.; Smith, Randall K.

    2013-06-10

    The nearby X-ray binary X Per (HD 24534) provides a useful beacon with which to examine dust grain types and measure elemental abundances in the local interstellar medium (ISM). The absorption features of O, Fe, Mg, and Si along this line of sight were measured using spectra from the Chandra X-Ray Observatory's LETG/ACIS-S and XMM-Newton's RGS instruments, and the Spex software package. The spectra were fit with dust analogs measured in the laboratory. The O, Mg, and Si abundances were compared to those from standard references, and the O abundance was compared to that along lines of sight toward other X-ray binaries. The results are as follows. First, it was found that a combination of MgSiO{sub 3} (enstatite) and Mg{sub 1.6}Fe{sub 0.4}SiO{sub 4} (olivine) provided the best fit to the O K edge, with N(MgSiO{sub 3})/N(Mg{sub 1.6}Fe{sub 0.4}SiO{sub 4}) = 3.4. Second, the Fe L edge could be fit with models that included metallic iron, but it was not well described by the laboratory spectra currently available. Third, the total abundances of O, Mg, and Si were in very good agreement with that of recently re-analyzed B stars, suggesting that they are good indicators of abundances in the local ISM, and the depletions were also in agreement with expected values for the diffuse ISM. Finally, the O abundances found from X-ray binary absorption spectra show a similar correlation with Galactocentric distances as seen in other objects.

  11. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland

    NASA Astrophysics Data System (ADS)

    Fuchslueger, L.; Kastl, E.-M.; Bauer, F.; Kienzl, S.; Hasibeder, R.; Ladreiter-Knauss, T.; Schmitt, M.; Bahn, M.; Schloter, M.; Richter, A.; Szukics, U.

    2014-06-01

    Future climate scenarios suggest an increased frequency of summer drought periods in the European Alpine Region. Drought can affect soil nitrogen (N) cycling, by altering N transformation rates, as well as the abundances of ammonia-oxidizing bacteria and archaea. However, the extent to which drought affects N cycling under in situ conditions is still controversial. The goal of this study was to analyse effects of drought on soil N turnover and ammonia-oxidizer abundances. To this end we conducted a rain-exclusion experiment at two differently managed mountain grassland sites, an annually mown and occasionally fertilized meadow and an abandoned grassland. Soils were sampled before, during and after drought and were analysed for gross rates of N mineralization, microbial uptake of inorganic N, nitrification, and the abundances of bacterial and archaeal ammonia oxidizers based on gene copy numbers of the amoA gene (AOB and AOA, respectively). Our results showed that the response to drought differed between the two sites. Effects were stronger at the managed meadow, where NH4+ immobilization rates increased and AOA abundances decreased. At the abandoned site gross nitrification and NO3- immobilization rates decreased during drought, while neither AOB, nor AOA abundances were affected. The different responses of the two sites to drought were likely related to site specific differences, such as soil organic matter content, nitrogen pools and absolute soil water content, resulting from differences in land-management. At both sites rewetting after drought had only minor short-term effects on the parameters that had been affected by drought, and seven weeks after the drought no effects of drought were detectable anymore. Thus, our findings indicate that drought can have distinct transient effects on soil nitrogen cycling and ammonia-oxidizer abundances in mountain grasslands and that the effect strength could be modulated by grassland management.

  12. OH vertical column abundance - Tropical measurements

    NASA Astrophysics Data System (ADS)

    Burnett, Clyde R.; Minschwaner, Kenneth R.; Burnett, Elizabeth B.

    1990-09-01

    Measurements of the vertical column abundance of atmospheric hydroxyl (OH) have been made during the period 1987-1989 at the National Weather Service (NWS) station at Moen, Truk, Federated States of Micronesia (7 deg N, 152 deg E). A total of 384 independent data sets was obtained. Tropical OH abundance levels average about 22 percent above corresponding mid-latitude values, with OH levels during late winter and early spring up to 50 percent above those observed at 40 deg N. Stratospheric wind and temperature data obtained from the daily NWS radiosonde data are examined for correlations with the OH results.

  13. OH vertical column abundance - Tropical measurements

    NASA Technical Reports Server (NTRS)

    Burnett, Clyde R.; Minschwaner, Kenneth R.; Burnett, Elizabeth B.

    1990-01-01

    Measurements of the vertical column abundance of atmospheric hydroxyl (OH) have been made during the period 1987-1989 at the National Weather Service (NWS) station at Moen, Truk, Federated States of Micronesia (7 deg N, 152 deg E). A total of 384 independent data sets was obtained. Tropical OH abundance levels average about 22 percent above corresponding mid-latitude values, with OH levels during late winter and early spring up to 50 percent above those observed at 40 deg N. Stratospheric wind and temperature data obtained from the daily NWS radiosonde data are examined for correlations with the OH results.

  14. Dispersion in DLA metallicities and deuterium abundances

    NASA Astrophysics Data System (ADS)

    Dvorkin, Irina; Silk, Joseph; Vangioni, Elisabeth; Petitjean, Patrick; Olive, Keith A.

    2017-03-01

    Recent chemical abundance measurements of damped Lyman-alpha absorbers (DLAs) revealed a large intrinsic scatter in their metallicities. We discuss a semi-analytic model that was specifically designed to study this scatter by tracing the chemical evolution of the interstellar matter in small regions of the Universe with different mean density, from over- to underdense regions. It is shown that different histories of structure formation in these regions are reflected in the chemical properties of the proto-galaxies. We also address deuterium abundance measurements, which constitute a complementary probe of the star formation and infall histories.

  15. Absolute calorimetric calibration of low energy brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Stump, Kurt E.

    In the past decade there has been a dramatic increase in the use of permanent radioactive source implants in the treatment of prostate cancer. A small radioactive source encapsulated in a titanium shell is used in this type of treatment. The radioisotopes used are generally 125I or 103Pd. Both of these isotopes have relatively short half-lives, 59.4 days and 16.99 days, respectively, and have low-energy emissions and a low dose rate. These factors make these sources well suited for this application, but the calibration of these sources poses significant metrological challenges. The current standard calibration technique involves the measurement of ionization in air to determine the source air-kerma strength. While this has proved to be an improvement over previous techniques, the method has been shown to be metrologically impure and may not be the ideal means of calbrating these sources. Calorimetric methods have long been viewed to be the most fundamental means of determining source strength for a radiation source. This is because calorimetry provides a direct measurement of source energy. However, due to the low energy and low power of the sources described above, current calorimetric methods are inadequate. This thesis presents work oriented toward developing novel methods to provide direct and absolute measurements of source power for low-energy low dose rate brachytherapy sources. The method is the first use of an actively temperature-controlled radiation absorber using the electrical substitution method to determine total contained source power of these sources. The instrument described operates at cryogenic temperatures. The method employed provides a direct measurement of source power. The work presented here is focused upon building a metrological foundation upon which to establish power-based calibrations of clinical-strength sources. To that end instrument performance has been assessed for these source strengths. The intent is to establish the limits of

  16. ABUNDANT OR RARE? A HYBRID APPROACH FOR DETERMINING SPECIES RELATIVE ABUNDANCE AT AN ECOREGOIONAL SCALE

    EPA Science Inventory

    Everyone knows what abundant and rare species are, but quantifying the concept proves elusive. As part of an EPA/USGS project to assess near-coastal species vulnerability to climate change affects, we designed a hybrid approach to determine species relative abundance at an ecoreg...

  17. ABUNDANT OR RARE? A HYBRID APPROACH FOR DETERMINING SPECIES RELATIVE ABUNDANCE AT AN ECOREGOIONAL SCALE - 2014

    EPA Science Inventory

    Everyone knows what abundant and rare species are, but quantifying the concept proves elusive. As part of an EPA/USGS project to assess near-coastal species vulnerability to climate change affects, we designed a hybrid approach to determine species relative abundance at an ecoreg...

  18. Empirical oxygen abundances and physical conditions for relatively low abundance H II regions

    SciTech Connect

    Skillman, E.D. )

    1989-12-01

    The utility of the emission-line ratio (3727 + 4959 + 5007 A)/H-beta as an estimate of the total oxygen abundance in H II regions of low abundance (less than 10 percent of the solar value) is discussed. Using both observational data where the 4363A line is measured and model H II regions it is concluded that, for low abundance systems, total oxygen abundances can be determined with an accuracy of + or - 0.2 dex in the absence of a 4363A measurement. An attempt is made to study the average behavior of the stellar effective temperature (Teff) and ionization parameter (U) with changing abundance in low abundance systems. It is shown that some diagnostic methods which are viable for high abundance systems are not capable of uniquely determining Teff and U in low abundance systems. The most promising method of determining Teff and U requires measuring emission lines of forbidden O II, O III, S II, and S III. 53 refs.

  19. HST Stellar Standards with 1% Accuracy in Absolute Flux

    NASA Astrophysics Data System (ADS)

    Bohlin, R. C.

    2007-04-01

    Free of any atmospheric contamination, the {Hubble Space Telescope} provides the best available spectrophotometry from the far-UV to the near-IR for stars as faint as V˜16. The HST CALSPEC standard star network is based on three standard candles: the hot, pure hydrogen white dwarf (WD) stars G 191B2B, GD 153, and GD 71, which have Hubeny NLTE flux calculations that require the atomic physics for only one atom. These model flux distributions are normalized to the absolute flux for Vega of 3.46×10-9 erg cm-2 s-1 Å-1 at 5556 Å using precise Landolt V band photometry and the V bandpass function corrected for atmospheric transmission by M. Cohen. The three primary WD standards provide absolute flux calibrations for FOS, STIS and NICMOS spectrophotometry from these instruments on the HST. About 32 stellar spectral energy distributions (SEDs) have been constructed with a primary pedigree from the STIS data, which extends from 1150 Å for the hot stars to a long wavelength limit of 1 μm. NICMOS grism spectrophotometry provides an extension to 1.9 μm in the IR for 17 of the HST standards and longward to 2.5 μm for a few of the brighter stars. Included among these HST standards are Vega, the Sloan standard BD+17 4708, three bright solar analog candidates, three cool stars of type M or later, and five hot WDs. In addition, four K giants and four main sequence A-stars have NICMOS spectrophotometry from 0.8-2.5 μm. The WD fluxes are compared to their modeled SEDs and demonstrate an internal precision of 1-2%, while the A-stars agree with the Cohen IR fluxes to ˜2%. Three solar analog candidate stars differ from the solar spectrum by up to 10% in the region of heavy line blanketing from 3000-4000 Å and show differences in shape of ˜5% in the IR around 1.8 μm.

  20. Absolute Thermal SST Measurements over the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Good, W. S.; Warden, R.; Kaptchen, P. F.; Finch, T.; Emery, W. J.

    2010-12-01

    Climate monitoring and natural disaster rapid assessment require baseline measurements that can be tracked over time to distinguish anthropogenic versus natural changes to the Earth system. Disasters like the Deepwater Horizon Oil Spill require constant monitoring to assess the potential environmental and economic impacts. Absolute calibration and validation of Earth-observing sensors is needed to allow for comparison of temporally separated data sets and provide accurate information to policy makers. The Ball Experimental Sea Surface Temperature (BESST) radiometer was designed and built by Ball Aerospace to provide a well calibrated measure of sea surface temperature (SST) from an unmanned aerial system (UAS). Currently, emissive skin SST observed by satellite infrared radiometers is validated by shipborne instruments that are expensive to deploy and can only take a few data samples along the ship track to overlap within a single satellite pixel. Implementation on a UAS will allow BESST to map the full footprint of a satellite pixel and perform averaging to remove any local variability due to the difference in footprint size of the instruments. It also enables the capability to study this sub-pixel variability to determine if smaller scale effects need to be accounted for in models to improve forecasting of ocean events. In addition to satellite sensor validation, BESST can distinguish meter scale variations in SST which could be used to remotely monitor and assess thermal pollution in rivers and coastal areas as well as study diurnal and seasonal changes to bodies of water that impact the ocean ecosystem. BESST was recently deployed on a conventional Twin Otter airplane for measurements over the Gulf of Mexico to access the thermal properties of the ocean surface being affected by the oil spill. Results of these measurements will be presented along with ancillary sensor data used to eliminate false signals including UV and Synthetic Aperture Radar (SAR

  1. The importance of calculating absolute rather than relative fracture risk.

    PubMed

    Tucker, Graeme; Metcalfe, Andrew; Pearce, Charles; Need, Allan G; Dick, Ian M; Prince, Richard L; Nordin, B E Christopher

    2007-12-01

    The relation between fracture risk and bone mineral density (BMD) is commonly expressed as a multiplicative factor which is said to represent the increase in risk for each standard deviation fall in BMD. This practice assumes that risk increases multiplicatively with each unit fall in bone density, which is not correct. Although odds increase multiplicatively, absolute risk, which lies between 0 and 1, cannot do so though it can be derived from odds by the term Odds/(1+Odds). This concept is illustrated in a prospective study of 1098 women over age 69 followed for 6 years in a calcium trial in which hip BMD was measured in the second year. 304 Women (27.6%) had prevalent fractures and 198 (18.1%) incident fractures with a significant association between them (P 0.005). Age-adjusted hip BMD and T-score were significantly lower in those with prevalent fractures than in those without (P 0.003) and significantly lower in those with incident fractures than in those without (P 0.001). When the data were analysed by univariate logistic regression, the fracture odds at zero T-score were 0.130 and the rise in odds for each unit fall in hip T-score was 1.55. When these odds were converted to risks, there was a progressive divergence between odds and risk at T-scores below zero. Multiple logistic regression yielded significant odds ratios of 1.47 for each 5-year increase in age, 1.47 for prevalent fracture and 1.49 for each unit fall in hip T-score. Calcium therapy was not significant. Poisson regression, logistic regression and Cox's proportional hazards yielded very similar outcomes when converted into absolute risks. A nomogram was constructed to enable clinicians to estimate the approximate 6-year fracture risk from hip T-score, age and prevalent fracture which can probably be applied (with appropriate correction) to men as well as to women. We conclude that multiplicative factors can be applied to odds but not to risk and that multipliers of risk tend to overstate the

  2. The Abundance of Large Arcs From CLASH

    NASA Astrophysics Data System (ADS)

    Xu, Bingxiao; Postman, Marc; Meneghetti, Massimo; Coe, Dan A.; Clash Team

    2015-01-01

    We have developed an automated arc-finding algorithm to perform a rigorous comparison of the observed and simulated abundance of large lensed background galaxies (a.k.a arcs). We use images from the CLASH program to derive our observed arc abundance. Simulated CLASH images are created by performing ray tracing through mock clusters generated by the N-body simulation calibrated tool -- MOKA, and N-body/hydrodynamic simulations -- MUSIC, over the same mass and redshift range as the CLASH X-ray selected sample. We derive a lensing efficiency of 15 ± 3 arcs per cluster for the X-ray selected CLASH sample and 4 ± 2 arcs per cluster for the simulated sample. The marginally significant difference (3.0 σ) between the results for the observations and the simulations can be explained by the systematically smaller area with magnification larger than 3 (by a factor of ˜4) in both MOKA and MUSIC mass models relative to those derived from the CLASH data. Accounting for this difference brings the observed and simulated arc statistics into full agreement. We find that the source redshift distribution does not have big impact on the arc abundance but the arc abundance is very sensitive to the concentration of the dark matter halos. Our results suggest that the solution to the "arc statistics problem" lies primarily in matching the cluster dark matter distribution.

  3. In Abundance: Networked Participatory Practices as Scholarship

    ERIC Educational Resources Information Center

    Stewart, Bonnie E.

    2015-01-01

    In an era of knowledge abundance, scholars have the capacity to distribute and share ideas and artifacts via digital networks, yet networked scholarship often remains unrecognized within institutional spheres of influence. Using ethnographic methods including participant observation, interviews, and document analysis, this study investigates…

  4. Will Abundant Natural Gas Solve Climate Change?

    NASA Astrophysics Data System (ADS)

    McJeon, H. C.; Edmonds, J.; Bauer, N.; Leon, C.; Fisher, B.; Flannery, B.; Hilaire, J.; Krey, V.; Marangoni, G.; Mi, R.; Riahi, K.; Rogner, H.; Tavoni, M.

    2015-12-01

    The rapid deployment of hydraulic fracturing and horizontal drilling technologies enabled the production of previously uneconomic shale gas resources in North America. Global deployment of these advanced gas production technologies could bring large influx of economically competitive unconventional gas resources to the energy system. It has been hoped that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions, which in turn could reduce climate forcing. Other researchers countered that the non-CO2 greenhouse gas (GHG) emissions associated with shale gas production make its lifecycle emissions higher than those of coal. In this study, we employ five state-of-the-art integrated assessment models (IAMs) of energy-economy-climate systems to assess the full impact of abundant gas on climate change. The models show large additional natural gas consumption up to +170% by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2% to +11%), and a majority of the models reported a small increase in climate forcing (from -0.3% to +7%) associated with the increased use of abundant gas. Our results show that while globally abundant gas may substantially change the future energy market equilibrium, it will not significantly mitigate climate change on its own in the absence of climate policies.

  5. Heavy element abundances and massive star formation

    NASA Technical Reports Server (NTRS)

    Wang, Boqi; Silk, Joseph

    1993-01-01

    The determination of the stellar initial mass function (IMF) remains a great challenge in astronomy. In the solar neighborhood, the IMF is reasonable well determined for stellar masses from about 0.1 to 60 solar mass. However, outside the solar neighborhood, the IMF is poorly known. Among those frequently discussed arguments favoring a different IMF outside the solar neighborhood are the estimated time to consume the remaining gas in spiral galaxies, and the high rate of forming massive stars in starburst galaxies. An interesting question then is whether there may be an independent way of testing possible variations in the IMF. Indeed, the heavy elements in the interstellar medium are mostly synthesized in massive stars, so increasing, or decreasing, the fraction of massive stars naturally leads to a variation in the heavy element yield, and thus, the metallicity. The observed abundance should severely constrain any deviations of the IMF from the locally determined IMF. We focus on element oxygen, which is the most abundant heavy element in the interstellar medium. Oxygen is ejected only by massive stars that can become Type 1 supernovae, and the oxygen abundance is, therefore, a sensitive function of the fraction of massive stars in the IMF. Adopting oxygen enables us to avoid uncertainties in Type 1 supernovae. We use the nucleosynthesis results to calculate the oxygen yield for given IMF. We then calculate the oxygen abundance in the interstellar medium assuming instantaneous recycling of oxygen.

  6. Considerations when quantitating protein abundance by immunoblot.

    PubMed

    McDonough, Alicia A; Veiras, Luciana C; Minas, Jacqueline N; Ralph, Donna Lee

    2015-03-15

    The development of the immunoblot to detect and characterize a protein with an antisera, even in a crude mixture, was a breakthrough with wide-ranging and unpredictable applications across physiology and medicine. Initially, this technique was viewed as a tool for qualitative, not quantitative, analyses of proteins because of the high number of variables between sample preparation and detection with antibodies. Nonetheless, as the immunoblot method was streamlined and improved, investigators pushed it to quantitate protein abundance in unpurified samples as a function of treatment, genotype, or pathology. This short review, geared at investigators, reviewers, and critical readers, presents a set of issues that are of critical importance for quantitative analysis of protein abundance: 1) Consider whether tissue samples are of equivalent integrity and assess how handling between collection and assay influences the apparent relative abundance. 2) Establish the specificity of the antiserum for the protein of interest by providing clear images, molecular weight markers, positive and negative controls, and vendor details. 3) Provide convincing evidence for linearity of the detection system by assessing signal density as a function of sample loaded. 4) Recognize that loading control proteins are rarely in the same linear range of detection as the protein of interest; consider protein staining of the gel or blot. In summary, with careful attention to sample integrity, antibody specificity, linearity of the detection system, and acceptable loading controls, investigators can implement quantitative immunoblots to convincingly assess protein abundance in their samples.

  7. Absolute configuration of a chiral CHD group via neutron diffraction: confirmation of the absolute stereochemistry of the enzymatic formation of malic acid

    SciTech Connect

    Bau, R.; Brewer, I.; Chiang, M.Y.; Fujita, S.; Hoffman, J.; Watkins, M.I.; Koetzle, T.F.

    1983-09-30

    Neutron diffraction has been used to monitor the absolute stereochemistry of an enzymatic reaction. (-)(2S)malic-3-d acid was prepared by the action of fumarase on fumaric acid in D/sub 2/O. After a large number of cations were screened, it was found that (+)(R)..cap alpha..-phenylethylamine forms the large crystals necessary for a neutron diffraction analysis. The subsequent structure determination showed that (+)(R)..cap alpha..-phenylethylammonium (-)(2S)malate-3-d has an absolute configuration of R at the CHD site. This result confirms the absolute stereochemistry of fumarate-to-malate transformation as catalyzed by the enzyme fumarase.

  8. Toward Reliable Estimates of Abundance: Comparing Index Methods to Assess the Abundance of a Mammalian Predator

    PubMed Central

    Güthlin, Denise; Storch, Ilse; Küchenhoff, Helmut

    2014-01-01

    Due to time and financial constraints indices are often used to obtain landscape-scale estimates of relative species abundance. Using two different field methods and comparing the results can help to detect possible bias or a non monotonic relationship between the index and the true abundance, providing more reliable results. We used data obtained from camera traps and feces counts to independently estimate relative abundance of red foxes in the Black Forest, a forested landscape in southern Germany. Applying negative binomial regression models, we identified landscape parameters that influence red fox abundance, which we then used to predict relative red fox abundance. We compared the estimated regression coefficients of the landscape parameters and the predicted abundance of the two methods. Further, we compared the costs and the precision of the two field methods. The predicted relative abundances were similar between the two methods, suggesting that the two indices were closely related to the true abundance of red foxes. For both methods, landscape diversity and edge density best described differences in the indices and had positive estimated effects on the relative fox abundance. In our study the costs of each method were of similar magnitude, but the sample size obtained from the feces counts (262 transects) was larger than the camera trap sample size (88 camera locations). The precision of the camera traps was lower than the precision of the feces counts. The approach we applied can be used as a framework to compare and combine the results of two or more different field methods to estimate abundance and by this enhance the reliability of the result. PMID:24743565

  9. Toward reliable estimates of abundance: comparing index methods to assess the abundance of a Mammalian predator.

    PubMed

    Güthlin, Denise; Storch, Ilse; Küchenhoff, Helmut

    2014-01-01

    Due to time and financial constraints indices are often used to obtain landscape-scale estimates of relative species abundance. Using two different field methods and comparing the results can help to detect possible bias or a non monotonic relationship between the index and the true abundance, providing more reliable results. We used data obtained from camera traps and feces counts to independently estimate relative abundance of red foxes in the Black Forest, a forested landscape in southern Germany. Applying negative binomial regression models, we identified landscape parameters that influence red fox abundance, which we then used to predict relative red fox abundance. We compared the estimated regression coefficients of the landscape parameters and the predicted abundance of the two methods. Further, we compared the costs and the precision of the two field methods. The predicted relative abundances were similar between the two methods, suggesting that the two indices were closely related to the true abundance of red foxes. For both methods, landscape diversity and edge density best described differences in the indices and had positive estimated effects on the relative fox abundance. In our study the costs of each method were of similar magnitude, but the sample size obtained from the feces counts (262 transects) was larger than the camera trap sample size (88 camera locations). The precision of the camera traps was lower than the precision of the feces counts. The approach we applied can be used as a framework to compare and combine the results of two or more different field methods to estimate abundance and by this enhance the reliability of the result.

  10. Thermal relics: Do we know their abundances

    NASA Technical Reports Server (NTRS)

    Kamionkowski, Marc; Turner, Michael S.

    1990-01-01

    The relic abundance of a particle species that was once in thermal equilibrium in the expanding Universe depends upon a competition between the annihilation rate of the species and the expansion rate of the Universe. Assuming that the Universe is radiation dominated at early times the relic abundance is easy to compute and well known. At times earlier than about 1 sec after the bang there is little or no evidence that the Universe had to be radiation dominated, although that is the simplest and standard assumption. Because early-Universe relics are of such importance both to particle physics and to cosmology, three nonstandard possibilities are considered in detail for the Universe at the time a species' abundance froze in: energy density dominated by shear (i.e., anisotropic expansion), energy density dominated by some other nonrelativistic species, and energy density dominated by the kinetic energy of the scalar field that sets the gravitational constant in a Brans-Dicke-Jordan cosmological mode. In the second case the relic abundance is less than the standard value, while in the other two cases it can be enhanced by a significant factor. Two other more exotic possibilities for enhancing the relic abundance of a species are also mentioned--a larger value of Newton's constant at early times (e.g., as might occur in superstring or Kaluza-Klein theories) or a component of the energy density at early times with a very stiff equation of state (p greater than rho/3), e.g., a scalar field phi with potential V(phi) = Beta /phi/ (exp n) with n greater than 4. Results have implications for dark matter searches and searches for particle relics in general.

  11. Chemical abundances and kinematics of barium stars

    NASA Astrophysics Data System (ADS)

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Sales Silva, J. V.

    2016-07-01

    In this paper, we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scaleheight, radial velocities, abundances of the Na, Al, α-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars cannot be represented by a single Gaussian distribution. The abundances of α-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anticorrelated with the metallicity. Our kinematical analysis showed that 90 per cent of the barium stars belong to the thin disc population. Based on their luminosities, none of the barium stars are luminous enough to be an asymptotic giant branch star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  12. Supercontinent Succession and the Calculation of Absolute Paleolongitude

    NASA Astrophysics Data System (ADS)

    Mitchell, R. N.; Kilian, T.; Evans, D. A.

    2010-12-01

    Where will the next supercontinent form? Traditional ‘introversion’ and ‘extraversion’ models of supercontinent succession predict that Super Asia will respectively form whence Pangea was or on the opposite side of the world. We develop the ‘orthoversion’ model whereby a succeeding supercontinent forms 90° away: somewhere along the great circle of subduction encircling its relict predecessor—a mantle topology that arises when supercontinents develop return flow beneath their mature centroids. This centroid defines the minimum moment of inertia (I_min) about which rapid and oscillatory true polar wander occurs owing to the prolate shape of nonhydrostatic Earth. Fitting great circles to each supercontinent’s true polar wander legacy, we determine that the distances between successive supercontinent centers (I_min axes) are 88° and 87° for Nuna→Rodinia and Rodinia→Pangea, respectively—both as predicted by the orthoversion model. Not only can supercontinent centers be pinned back into Precambrian time, they provide fixed points for the calculation of absolute paleolongitude.

  13. Analysis of absolute flatness testing in sub-stitching interferometer

    NASA Astrophysics Data System (ADS)

    Jia, Xin; Xu, Fuchao; Xie, Weimin; Xing, Tingwen

    2016-09-01

    Sub-aperture stitching is an effective way to extend the lateral and vertical dynamic range of a conventional interferometer. The test accuracy can be achieved by removing the error of reference surface by the absolute testing method. When the testing accuracy (repeatability and reproducibility) is close to 1nm, in addition to the reference surface, other factors will also affect the measuring accuracy such as environment, zoom magnification, stitching precision, tooling and fixture, the characteristics of optical materials and so on. In the thousand level cleanroom, we establish a good environment system. Long time stability, temperature controlled at 22°+/-0.02°.The humidity and noise are controlled in a certain range. We establish a stitching system in the clean room. The vibration testing system is used to test the vibration. The air pressure testing system is also used. In the motion system, we control the tilt error no more than 4 second to reduce the error. The angle error can be tested by the autocollimator and double grating reading head.

  14. Absolute dimensions of eclipsing binaries. XI - V 451 Ophiuchi

    NASA Astrophysics Data System (ADS)

    Clausen, J. V.; Gimenez, A.; Scarfe, C.

    1986-10-01

    V451 Oph is a detached eclipsing binary with B9 - A0 main sequence components in a slightly eccentric orbit, and this paper presents accurate absolute dimensions for the system: masses 2.78±0.06 and 2.36±0.05 M_sun;; radii 2.64±0.03 and 2.03±0.05 R_sun;; effective temperatures 10800±800 and 9800±500K. An orbital eccentricity e = 0.0125±0.0015 is obtained and the period of periastron revolution is 180±30 yr. The orbital inclination is 85°.9±0°.5, the relative radii are 0.2155±0.0020 and 0.1655±0.0020, respectively, and secondary eclipse is close to being total. The luminosity ratio between the components is found to be 0.489±0.015 (y), slightly lower than the spectroscopic result 0.60±0.05, which cannot be reproduced from the available photometric information. The components are well-represented by the theoretical evolutionary models by Hejlesen (1980) for an initial chemical composition of (X, Z) = (0.70, 0.02) and a common age of 2×108yr.

  15. Precision absolute value amplifier for a precision voltmeter

    DOEpatents

    Hearn, William E.; Rondeau, Donald J.

    1985-01-01

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  16. Precision absolute-value amplifier for a precision voltmeter

    DOEpatents

    Hearn, W.E.; Rondeau, D.J.

    1982-10-19

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resistor is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resistor. The output current through the load resistor is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resistor. A second gain determining resistor is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  17. Absolute calibration for complex-geometry biomedical diffuse optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Mastanduno, Michael A.; Jiang, Shudong; El-Ghussein, Fadi; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.

    2013-03-01

    We have presented methodology to calibrate data in NIRS/MRI imaging versus an absolute reference phantom and results in both phantoms and healthy volunteers. This method directly calibrates data to a diffusion-based model, takes advantage of patient specific geometry from MRI prior information, and generates an initial guess without the need for a large data set. This method of calibration allows for more accurate quantification of total hemoglobin, oxygen saturation, water content, scattering, and lipid concentration as compared with other, slope-based methods. We found the main source of error in the method to be derived from incorrect assignment of reference phantom optical properties rather than initial guess in reconstruction. We also present examples of phantom and breast images from a combined frequency domain and continuous wave MRI-coupled NIRS system. We were able to recover phantom data within 10% of expected contrast and within 10% of the actual value using this method and compare these results with slope-based calibration methods. Finally, we were able to use this technique to calibrate and reconstruct images from healthy volunteers. Representative images are shown and discussion is provided for comparison with existing literature. These methods work towards fully combining the synergistic attributes of MRI and NIRS for in-vivo imaging of breast cancer. Complete software and hardware integration in dual modality instruments is especially important due to the complexity of the technology and success will contribute to complex anatomical and molecular prognostic information that can be readily obtained in clinical use.

  18. Surface Characterization of pNIPAM Under Varying Absolute Humidity

    NASA Astrophysics Data System (ADS)

    Chhabra, Arnav; Kanapuram, Ravitej; Leva, Harrison; Trejo, Juan; Kim, Tae Jin; Hidrovo, Carlos

    2012-11-01

    Poly(N-isopropylacrylamide) has become ubiquitously known as a ``smart'' polymer, showing many promising applications in tissue engineering and drug delivery systems. These applications are particularly reliant on its trenchant, thermally induced hydrophilic-hydrophobic transition that occurs at the lower critical solution temperature (LCST). This feature imparts the pNIPAM programmable adsorption and release capabilities, thus eliminating the need for additional enzymes when removing cells from pNIPAM coated surfaces and leaving the extracellular matrix proteins of the cells largely untouched. The dependence of the LCST on molecular weight, solvent systems, and various salts has been studied extensively. However, what has not been explored is the effect of humidity on the characteristic properties of the polymer, specifically the LCST and the magnitude of the hydrophilic-hydrophobic transition. We studied the surface energy variation of pNIPAM as a function of humidity by altering the absolute humidity and keeping the ambient temperature constant. Our experiments were conducted inside a cuboidal environmental chamber with control over the temperature and humidity inside the chamber. A controlled needle was employed to dispense size-regulated droplets. Throughout this process, a CCD camera was used to image the droplet and the static contact angle was determined using image processing techniques. The behavior of pNIPAM as a function of humidity is presented and discussed.

  19. Dichotomy and perceptual distortions in absolute pitch ability

    PubMed Central

    Athos, E. Alexandra; Levinson, Barbara; Kistler, Amy; Zemansky, Jason; Bostrom, Alan; Freimer, Nelson; Gitschier, Jane

    2007-01-01

    Absolute pitch (AP) is the rare ability to identify the pitch of a tone without the aid of a reference tone. Understanding both the nature and genesis of AP can provide insights into neuroplasticity in the auditory system. We explored factors that may influence the accuracy of pitch perception in AP subjects both during the development of the trait and in later age. We used a Web-based survey and a pitch-labeling test to collect perceptual data from 2,213 individuals, 981 (44%) of whom proved to have extraordinary pitch-naming ability. The bimodal distribution in pitch-naming ability signifies AP as a distinct perceptual trait, with possible implications for its genetic basis. The wealth of these data has allowed us to uncover unsuspected note-naming irregularities suggestive of a “perceptual magnet” centered at the note “A.” In addition, we document a gradual decline in pitch-naming accuracy with age, characterized by a perceptual shift in the “sharp” direction. These findings speak both to the process of acquisition of AP and to its stability. PMID:17724340

  20. Dichotomy and perceptual distortions in absolute pitch ability.

    PubMed

    Athos, E Alexandra; Levinson, Barbara; Kistler, Amy; Zemansky, Jason; Bostrom, Alan; Freimer, Nelson; Gitschier, Jane

    2007-09-11

    Absolute pitch (AP) is the rare ability to identify the pitch of a tone without the aid of a reference tone. Understanding both the nature and genesis of AP can provide insights into neuroplasticity in the auditory system. We explored factors that may influence the accuracy of pitch perception in AP subjects both during the development of the trait and in later age. We used a Web-based survey and a pitch-labeling test to collect perceptual data from 2,213 individuals, 981 (44%) of whom proved to have extraordinary pitch-naming ability. The bimodal distribution in pitch-naming ability signifies AP as a distinct perceptual trait, with possible implications for its genetic basis. The wealth of these data has allowed us to uncover unsuspected note-naming irregularities suggestive of a "perceptual magnet" centered at the note "A." In addition, we document a gradual decline in pitch-naming accuracy with age, characterized by a perceptual shift in the "sharp" direction. These findings speak both to the process of acquisition of AP and to its stability.