Science.gov

Sample records for absolute insulin deficiency

  1. Insulin resistance in the liver: Deficiency or excess of insulin?

    PubMed Central

    Bazotte, Roberto B; Silva, Lorena G; Schiavon, Fabiana PM

    2014-01-01

    In insulin-resistant states (obesity, pre-diabetes, and type 2 diabetes), hepatic production of glucose and lipid synthesis are heightened in concert, implying that insulin deficiency and insulin excess coexists in this setting. The fact that insulin may be inadequate or excessive at any one point in differing organs and tissues has many biologic ramifications. In this context the concept of metabolic compartmentalization in the liver is offered herein as one perspective of this paradox. In particular, we focus on the hypothesis that insulin resistance accentuates differences in periportal and perivenous hepatocytes, namely periportal glucose production and perivenous lipid synthesis. Subsequently, excessive production of glucose and accumulation of lipids could be expected in the livers of patients with obesity and insulin resistance. Overall, in this review, we provide our integrative perspective regarding how excessive production of glucose in periportal hepatocytes and accumulation of lipids in perivenous hepatocytes interact in insulin resistant states. PMID:25486190

  2. Leptin Deficiency Causes Insulin Resistance Induced by Uncontrolled Diabetes

    PubMed Central

    German, Jonathan P.; Wisse, Brent E.; Thaler, Joshua P.; Oh-I, Shinsuke; Sarruf, David A.; Ogimoto, Kayoko; Kaiyala, Karl J.; Fischer, Jonathan D.; Matsen, Miles E.; Taborsky, Gerald J.; Schwartz, Michael W.; Morton, Gregory J.

    2010-01-01

    OBJECTIVE Depletion of body fat stores during uncontrolled, insulin-deficient diabetes (uDM) results in markedly reduced plasma leptin levels. This study investigated the role of leptin deficiency in the genesis of severe insulin resistance and related metabolic and neuroendocrine derangements induced by uDM. RESEARCH DESIGN AND METHODS Adult male Wistar rats remained nondiabetic or were injected with the β-cell toxin, streptozotocin (STZ) to induce uDM and subsequently underwent subcutaneous implantation of an osmotic minipump containing either vehicle or leptin at a dose (150 μg/kg/day) designed to replace leptin at nondiabetic plasma levels. To control for leptin effects on food intake, another group of STZ-injected animals were pair fed to the intake of those receiving leptin. Food intake, body weight, and blood glucose levels were measured daily, with body composition and indirect calorimetry performed on day 11, and an insulin tolerance test to measure insulin sensitivity performed on day 16. Plasma hormone and substrate levels, hepatic gluconeogenic gene expression, and measures of tissue insulin signal transduction were also measured. RESULTS Physiologic leptin replacement prevented insulin resistance in uDM via a mechanism unrelated to changes in food intake or body weight. This effect was associated with reduced total body fat and hepatic triglyceride content, preservation of lean mass, and improved insulin signal transduction via the insulin receptor substrate–phosphatidylinositol-3-hydroxy kinase pathway in the liver, but not in skeletal muscle or adipose tissue. Although physiologic leptin replacement lowered blood glucose levels only slightly, it fully normalized elevated plasma glucagon and corticosterone levels and reversed the increased hepatic expression of gluconeogenic enzymes characteristic of rats with uDM. CONCLUSIONS We conclude that leptin deficiency plays a key role in the pathogenesis of severe insulin resistance and related endocrine

  3. The effect of insulin deficiency on tau and neurofilament in the insulin knockout mouse

    SciTech Connect

    Schechter, Ruben; E-mail: ruben.schechter@okstate.edu; Beju, Delia; Miller, Kenneth E.

    2005-09-09

    Complications of diabetes mellitus within the nervous system are peripheral and central neuropathy. In peripheral neuropathy, defects in neurofilament and microtubules have been demonstrated. In this study, we examined the effects of insulin deficiency within the brain in insulin knockout mice (I(-/-)). The I(-/-) exhibited hyperphosphorylation of tau, at threonine 231, and neurofilament. In addition, we showed hyperphosphorylation of c-Jun N-terminal kinase (JNK) and glycogen synthase kinase 3 {beta} (GSK-3 {beta}) at serine 9. Extracellular signal-regulated kinase 1 (ERK 1) showed decrease in phosphorylation, whereas ERK 2 showed no changes. Ultrastructural examination demonstrated swollen mitochondria, endoplasmic reticulum, and Golgi apparatus, and dispersion of the nuclear chromatin. Microtubules showed decrease in the number of intermicrotubule bridges and neurofilament presented as bunches. Thus, lack of insulin brain stimulation induces JNK hyperphosphorylation followed by hyperphosphorylation of tau and neurofilament, and ultrastructural cellular damage, that over time may induce decrease in cognition and learning disabilities.

  4. Vitamin D deficiency is associated with insulin resistance in nondiabetics and reduced insulin production in type 2 diabetics.

    PubMed

    Esteghamati, A; Aryan, Z; Esteghamati, Ar; Nakhjavani, M

    2015-04-01

    It is not known whether the association of serum 25-hydroxyvitamin D [25(OH)D] with glycemic measurements of individuals without diabetes is similar to those with diabetes or not. This study is aimed to investigate the association of serum 25(OH)D with glycemic markers of diabetics, nondiabetics, and prediabetics. A case-control study was conducted on age and sex matched 1,195 patients with type 2 DM, 121 prediabetics, and 209 healthy controls. Anthropometric variables, lipid profile, glycemic measurements, and serum 25(OH)D levels were recorded. Serum insulin and C-peptide levels were also measured. All glycemic measurements were compared between diabetics and nondiabetics and prediabetics at different vitamin D status. Patients with DM had lower serum 25(OH)D compared to prediabetics and healthy controls. Endogenous insulin production in response to food intake and in fasting was significantly lower in vitamin D deficient patients with DM compared to those with serum 25(OH)D>40 ng/ml. Diabetic women with serum 25(OH)D<20 ng/ml had lower beta cell function as estimated by lower HOMA-B compared to their counterparts with serum 25(OH)D>40 ng/ml. Healthy individuals with serum 25(OH)D<20 ng/ml had signs of insulin resistance as estimated by significant increase of HOMA-IR, HbA1c, and fasting plasma glucose (FPG). In addition, we found that serum 25(OH)D was inversely associated with insulin resistance. Vitamin D deficiency is associated with insulin resistance in nondiabetics, which is independent of obesity. Furthermore, vitamin D deficiency is associated with reduced insulin production in type 2 diabetics, which was mainly observed in men. Accordingly, a gender disparity also exists in association of serum 25(OH)D with glycemic measurements. PMID:25230322

  5. Myostatin inhibition therapy for insulin-deficient type 1 diabetes.

    PubMed

    Coleman, Samantha K; Rebalka, Irena A; D'Souza, Donna M; Deodhare, Namita; Desjardins, Eric M; Hawke, Thomas J

    2016-01-01

    While Type 1 Diabetes Mellitus (T1DM) is characterized by hypoinsulinemia and hyperglycemia, persons with T1DM also develop insulin resistance. Recent studies have demonstrated that insulin resistance in T1DM is a primary mediator of the micro and macrovascular complications that invariably develop in this chronic disease. Myostatin acts to attenuate muscle growth and has been demonstrated to be elevated in streptozotocin-induced diabetic models. We hypothesized that a reduction in mRNA expression of myostatin within a genetic T1DM mouse model would improve skeletal muscle health, resulting in a larger, more insulin sensitive muscle mass. To that end, Akita diabetic mice were crossed with Myostatin(Ln/Ln) mice to ultimately generate a novel mouse line. Our data support the hypothesis that decreased skeletal muscle expression of myostatin mRNA prevented the loss of muscle mass observed in T1DM. Furthermore, reductions in myostatin mRNA increased Glut1 and Glut4 protein expression and glucose uptake in response to an insulin tolerance test (ITT). These positive changes lead to significant reductions in resting blood glucose levels as well as pronounced reductions in associated diabetic symptoms, even in the absence of exogenous insulin. Taken together, this study provides a foundation for considering myostatin inhibition as an adjuvant therapy in T1DM as a means to improve insulin sensitivity and blood glucose management. PMID:27581061

  6. Myostatin inhibition therapy for insulin-deficient type 1 diabetes

    PubMed Central

    Coleman, Samantha K.; Rebalka, Irena A.; D’Souza, Donna M.; Deodhare, Namita; Desjardins, Eric M.; Hawke, Thomas J.

    2016-01-01

    While Type 1 Diabetes Mellitus (T1DM) is characterized by hypoinsulinemia and hyperglycemia, persons with T1DM also develop insulin resistance. Recent studies have demonstrated that insulin resistance in T1DM is a primary mediator of the micro and macrovascular complications that invariably develop in this chronic disease. Myostatin acts to attenuate muscle growth and has been demonstrated to be elevated in streptozotocin-induced diabetic models. We hypothesized that a reduction in mRNA expression of myostatin within a genetic T1DM mouse model would improve skeletal muscle health, resulting in a larger, more insulin sensitive muscle mass. To that end, Akita diabetic mice were crossed with MyostatinLn/Ln mice to ultimately generate a novel mouse line. Our data support the hypothesis that decreased skeletal muscle expression of myostatin mRNA prevented the loss of muscle mass observed in T1DM. Furthermore, reductions in myostatin mRNA increased Glut1 and Glut4 protein expression and glucose uptake in response to an insulin tolerance test (ITT). These positive changes lead to significant reductions in resting blood glucose levels as well as pronounced reductions in associated diabetic symptoms, even in the absence of exogenous insulin. Taken together, this study provides a foundation for considering myostatin inhibition as an adjuvant therapy in T1DM as a means to improve insulin sensitivity and blood glucose management. PMID:27581061

  7. FOXO1 Mediates Vitamin D Deficiency-induced Insulin Resistance in Skeletal Muscle

    PubMed Central

    Chen, Songcang; Villalta, Armando; Agrawal, Devendra K.

    2015-01-01

    Prospective epidemiological studies have consistently shown a relationship between vitamin D deficiency, insulin resistance, and type 2 diabetes mellitus (DM2). This is supported by recent trials showing that vitamin D supplementation in prediabetic or insulin-resistant patients with inadequate vitamin D levels improves insulin sensitivity. However, the molecular mechanisms underlying vitamin D deficiency-induced insulin resistance and DM2 remain unknown. Skeletal muscle insulin resistance is a primary defect in the majority of patients with DM2. While sustained activation of forkhead box O1 (FOXO1) in skeletal muscle causes insulin resistance, a relationship between vitamin D deficiency and FOXO1 activation in muscle is unknown. We generated skeletal muscle-specific vitamin D receptor (VDR)-null mice and discovered that these mice developed insulin resistance and glucose intolerance accompanied by increased expression and activity of FOXO1. We also found sustained FOXO1 activation in the skeletal muscle of global VDR-null mice. Treatment of C2C12 muscle cells with 1,25-dihydroxyvitamin D (VD3) reduced FOXO1 expression, nuclear translocation, and activity. The VD3-dependent suppression of FOXO1 activation disappeared by knockdown of VDR, indicating that it is VDR-dependent. Taken together, these results suggest that FOXO1 is a critical target mediating VDR-null signaling in skeletal muscle. The novel findings provide the conceptual support that persistent FOXO1 activation may be responsible for insulin resistance and impaired glucose metabolism in vitamin D signaling-deficient mice, as well as evidence for the utility of vitamin D supplementation for intervention in DM2. PMID:26462119

  8. Lipodystrophy, Diabetes and Normal Serum Insulin in PPARγ-Deficient Neonatal Mice

    PubMed Central

    O’Donnell, Peter E.; Ye, Xiu Zhen; DeChellis, Melissa A.; Davis, Vannessa M.; Duan, Sheng Zhong; Mortensen, Richard M.; Milstone, David S.

    2016-01-01

    Peroxisome proliferator activated receptor gamma (PPARγ) is a pleiotropic ligand activated transcription factor that acts in several tissues to regulate adipocyte differentiation, lipid metabolism, insulin sensitivity and glucose homeostasis. PPARγ also regulates cardiomyocyte homeostasis and by virtue of its obligate role in placental development is required for embryonic survival. To determine the postnatal functions of PPARγ in vivo we studied globally deficient neonatal mice produced by epiblast-restricted elimination of PPARγ. PPARγ-rescued placentas support development of PPARγ-deficient embryos that are viable and born in near normal numbers. However, PPARγ-deficient neonatal mice show severe lipodystrophy, lipemia, hepatic steatosis with focal hepatitis, relative insulin deficiency and diabetes beginning soon after birth and culminating in failure to thrive and neonatal lethality between 4 and 10 days of age. These abnormalities are not observed with selective PPARγ2 deficiency or with deficiency restricted to hepatocytes, skeletal muscle, adipocytes, cardiomyocytes, endothelium or pancreatic beta cells. These observations suggest important but previously unappreciated functions for PPARγ1 in the neonatal period either alone or in combination with PPARγ2 in lipid metabolism, glucose homeostasis and insulin sensitivity. PMID:27505464

  9. Pathogenesis of NIDDM--a disease of deficient insulin secretion.

    PubMed

    Turner, R C; Matthews, D R; Clark, A; O'Rahilly, S; Rudenski, A S; Levy, J

    1988-05-01

    Type 2 diabetes is a familial disease and studies of both Caucasian and Japanese families have raised the possibility that a major susceptibility gene is involved. The majority of patients have both beta cell dysfunction and impaired insulin sensitivity but studies of relatives of Type 2 diabetic patients suggest that beta cell dysfunction is an early feature of the disease. Impaired insulin sensitivity, from acromegaly, Cushing's disease or steroid therapy, induces diabetes only in a small proportion of the population, and they may be those who have an inherited cell defect. We postulate that a single beta cell defect gene, on its own, may be insufficient to cause overt diabetes and would lead to life-long glucose intolerance unless associated with other defects such as impaired insulin sensitivity. The nature of such a postulated beta cell defect is uncertain. Whilst it has been reported to be specific to glucose, and not to non-glucose stimuli, this feature may be secondary to hyperglycaemia. The occurrence of islet amyloid in 70-90% of Type 2 diabetic patients, and rarely in the normal population, raises the possibility that amyloid deposition causing disruption of the islet is a factor which might affect beta cell function. Amyloid formation may be a primary abnormality or could be secondary to beta cell dysfunction induced by hyperglycaemia. A major susceptibility gene might predispose a proportion, perhaps 10-15%, of a Caucasian population towards diabetes. The subsequent development of diabetes in a particular patient is likely to depend on many factors including other genetic factors, a sedentary life style and obesity. In different populations different genetic influences may operate, including abnormalities of insulin receptor genes and glucose transporter genes, which may allow a beta cell abnormality to become expressed clinically. PMID:3075895

  10. TCPTP-deficiency in muscle does not alter insulin signalling and glucose homeostasis

    PubMed Central

    Loh, Kim; Merry, Troy L.; Galic, Sandra; Wu, Ben J.; Watt, Matthew J.; Zhang, Sheng; Zhang, Zhong-Yin; Neel, Benjamin G.; Tiganis, Tony

    2013-01-01

    Aims/Hypothesis Insulin activates the insulin receptor (IR) protein tyrosine kinase and downstream phosphatidylinositol-3-kinase (PI3K)/Akt signalling in muscle to promote glucose uptake. The IR can serve as a substrate for the protein tyrosine phosphatases (PTP) 1B and TCPTP, which share a striking 74% sequence identity in their catalytic domains. PTP1B is a validated therapeutic target for the alleviation of insulin resistance in type 2 diabetes. PTP1B dephosphorylates the IR in liver and muscle to regulate glucose homeostasis, whereas TCPTP regulates IR signalling and gluconeogenesis in the liver. In this study we have assessed for the first time the role of TCPTP in the regulation of IR signalling in muscle. Methods We generated muscle-specific TCPTP-deficient (MCK-Cre;Ptpn2lox/lox) mice and assessed the impact on glucose homeostasis and muscle IR signalling in chow versus high fat fed mice. Results Blood glucose and insulin levels, insulin and glucose tolerances and insulininduced muscle IR activation and downstream PI3K/Akt signalling remained unaltered in chow fed MCK-Cre;Ptpn2lox/lox versus Ptpn2lox/lox mice. In addition, body weight, adiposity, energy expenditure, insulin sensitivity and glucose homeostasis were not altered in high fat fed MCK-Cre;Ptpn2lox/lox versus Ptpn2lox/lox mice. Conclusions These results indicate that TCPTP deficiency in muscle has no effect on insulin signalling and glucose homeostasis and does not prevent the development of high fat diet-induced insulin resistance. Thus, despite their high degree of sequence identity, PTP1B and TCPTP differentially contribute to IR regulation in muscle. Our results are consistent with these two highly related PTPs having distinct contributions to IR regulation in different tissues. PMID:22124607

  11. Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activity and glucose uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mice deficient for zinc transporter 7 (Znt7) are mildly zinc deficient, accompanied with low body weight gain and body fat accumulation. To investigate the underlying mechanism of Znt7 deficiency in body adiposity, we investigated fatty acid composition and insulin sensitivity in visceral (epididyma...

  12. Heterozygous Deficiency of Endoglin Decreases Insulin and Hepatic Triglyceride Levels during High Fat Diet

    PubMed Central

    Beiroa, Daniel; Romero-Picó, Amparo; Langa, Carmen; Bernabeu, Carmelo; López, Miguel; López-Novoa, José M.; Nogueiras, Ruben; Diéguez, Carlos

    2013-01-01

    Endoglin is a transmembrane auxiliary receptor for transforming growth factor-beta (TGF-beta) that is predominantly expressed on proliferating endothelial cells. It plays a wide range of physiological roles but its importance on energy balance or insulin sensitivity has been unexplored. Endoglin deficient mice die during midgestation due to cardiovascular defects. Here we report for first time that heterozygous endoglin deficiency in mice decreases high fat diet-induced hepatic triglyceride content and insulin levels. Importantly, these effects are independent of changes in body weight or adiposity. At molecular level, we failed to detect relevant changes in the insulin signalling pathway at basal levels in liver, muscle or adipose tissues that could explain the insulin-dependent effect. However, we found decreased triglyceride content in the liver of endoglin heterozygous mice fed a high fat diet in comparison to their wild type littermates. Overall, our findings indicate that endoglin is a potentially important physiological mediator of insulin levels and hepatic lipid metabolism. PMID:23336009

  13. Copper deficiency in rats increases pancreatic enkephalin-containing peptides and insulin.

    PubMed

    Recant, L; Voyles, N R; Timmers, K I; Zalenski, C; Fields, M; Bhathena, S J

    1986-01-01

    Free enkephalins (enk) and higher molecular weight enkephalin-containing peptides (enk-c-p) are present in the endocrine pancreas of rats, presumably in B cells. To determine whether these opioid peptides show dynamic alterations as insulin content of pancreas changes, we utilized a copper deficient rat model, in which the exocrine pancreas atrophies and the endocrine pancreas is "intact" and insulin (IRI) content increases. Dietary copper deficiency (-C) was produced in weanling male rats for 4 and 7 weeks. The deficient and copper supplemented (+C) groups were further subdivided to receive all dietary carbohydrate as either 62% fructose (F) or 62% starch (S). -CF rats showed the most severe deficiency. After 7 weeks, total units of pancreatic IRI in -CF were 7.5 +CF 2.1, -CS 7.9 and in +CS 2.8 (p less than 0.001). Pancreatic content of Met5- and Leu5-enk was measured in extracts which were purified on C-18 Seppaks with and without prior treatment with trypsin and carboxypeptidase B. -C animals showed progressive, significant increases in pancreatic content of Leu-enk-c-p, with a decrease in free Leu- and Met-enk (p less than 0.02-0.01). The pancreatic findings are compatible with a co-localization of enkephalins and insulin in the endocrine pancreas and are suggestive of co-regulation. PMID:3550724

  14. Understanding cystic-fibrosis-related diabetes: best thought of as insulin deficiency?

    PubMed Central

    Dobson, Lee; Sheldon, Christopher D; Hattersley, Andrew T

    2004-01-01

    The limited available evidence supports the use of insulin treatment in CFRD. This fits with the dominant problem in CFRD being insulin deficiency and progressive beta cell dysfunction, making tablets that stimulate the beta cell unlikely to be a successful strategy. It is possible that patients with IGT or CFRD with moderate hyperglycaemia (e.g. relative preservation of fasting glucose) may initially respond to beta cell secretagogues. A large randomized prospective trial in the USA should answer this point in the next few years. PMID:15239291

  15. Effect of insulin deficiency on the rewarding properties of methamphetamine in streptozotocin-induced diabetic rats.

    PubMed

    Bayat, Amir-Hossein; Haghparast, Abbas

    2015-01-01

    The reward is a positive behavioural response to the pleasant stimuli that can be induced by drugs, such as psychostimulants. Furthermore, diabetes mellitus is a chronic disease that many people throughout the world suffer from. Methamphetamine (METH), as a psychostimulant, engages the dopaminergic system in the reward circuitry and the synapses of dopaminergic terminals can be modified by insulin. In this study, in order to assess the effect of insulin deficiency on reward, streptozotocin (STZ)-induced diabetic animals were used as an appropriate model. One hundred and thirty-two adult male rats were divided into nine groups (three non-diabetic and six diabetic groups) to determine the most effective dose of METH (0.25, 0.5, 1 and 2mg/kg ip), and insulin replacement (10U/kg; ip) during the acquisition period in a conditioned place preference (CPP) paradigm. The diabetes model was induced by a single injection of STZ (60mg/kg; ip). The conditioning score was considered to be the difference in time spent in drug- and saline-paired compartments. The results demonstrated that the most effective doses of METH were 1 and 2mg/kg in non-diabetic animals. Although the place preference was not shown in non-diabetic animals at the dose of 0.5mg/kg, this dose significantly induced place preference to METH in STZ-diabetic rats. Additionally, insulin replacement could reverse the METH-induced CPP in diabetic animals. Our findings suggest that the positive effect of insulin deficiency on METH rewarding properties is dependent on insulin level in part, and the replacement of the insulin in diabetic rats as a treatment can improve the rewarding properties of METH.

  16. Overexpression of the coactivator bridge-1 results in insulin deficiency and diabetes.

    PubMed

    Volinic, Jamie L; Lee, Jee H; Eto, Kazuhiro; Kaur, Varinderpal; Thomas, Melissa K

    2006-01-01

    Multiple forms of heritable diabetes are associated with mutations in transcription factors that regulate insulin gene transcription and the development and maintenance of pancreatic beta-cell mass. The coactivator Bridge-1 (PSMD9) regulates the transcriptional activation of glucose-responsive enhancers in the insulin gene in a dose-dependent manner via PDZ domain-mediated interactions with E2A transcription factors. Here we report that the pancreatic overexpression of Bridge-1 in transgenic mice reduces insulin gene expression and results in insulin deficiency and severe diabetes. Dysregulation of Bridge-1 signaling increases pancreatic apoptosis with a reduction in the number of insulin-expressing pancreatic beta-cells and an expansion of the complement of glucagon-expressing pancreatic alpha-cells in pancreatic islets. Increased expression of Bridge-1 alters pancreatic islet, acinar, and ductal architecture and disrupts the boundaries between endocrine and exocrine cellular compartments in young adult but not neonatal mice, suggesting that signals transduced through this coactivator may influence postnatal pancreatic islet morphogenesis. Signals mediated through the coactivator Bridge-1 may regulate both glucose homeostasis and pancreatic beta-cell survival. We propose that coactivator dysfunction in pancreatic beta-cells can limit insulin production and contribute to the pathogenesis of diabetes.

  17. Pathological consequences of C-peptide deficiency in insulin-dependent diabetes mellitus.

    PubMed

    Ghorbani, Ahmad; Shafiee-Nick, Reza

    2015-02-15

    Diabetes is associated with several complications such as retinopathy, nephropathy, neuropathy and cardiovascular diseases. Currently, insulin is the main used medication for management of insulin-dependent diabetes mellitus (type-1 diabetes). In this metabolic syndrome, in addition to decrease of endogenous insulin, the plasma level of connecting peptide (C-peptide) is also reduced due to beta cell destruction. Studies in the past decade have shown that C-peptide is much more than a byproduct of insulin biosynthesis and possess different biological activities. Therefore, it may be possible that C-peptide deficiency be involved, at least in part, in the development of different complications of diabetes. It has been shown that a small level of remaining C-peptide is associated with significant metabolic benefit. The purpose of this review is to describe beneficial effects of C-peptide replacement on pathological features associated with insulin-dependent diabetes. Also, experimental and clinical findings on the effects of C-peptide on whole-body glucose utilization, adipose tissue metabolism and tissues blood flow are summarized and discussed. The hypoglycemic, antilipolytic and vasodilator effects of C-peptide suggest that it may contribute to fine-tuning of the tissues metabolism under different physiologic or pathologic conditions. Therefore, C-peptide replacement together with the classic insulin therapy may prevent, retard, or ameliorate diabetic complications in patients with type-1 diabetes. PMID:25685285

  18. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice

    PubMed Central

    Zhou, Linkang; Park, Shi-Young; Xu, Li; Xia, Xiayu; Ye, Jing; Su, Lu; Jeong, Kyeong-Hoon; Hur, Jang Ho; Oh, Hyunhee; Tamori, Yoshikazu; Zingaretti, Cristina M.; Cinti, Saverio; Argente, Jesús; Yu, Miao; Wu, Lizhen; Ju, Shenghong; Guan, Feifei; Yang, Hongyuan; Choi, Cheol Soo; Savage, David B.; Li, Peng

    2015-01-01

    Fsp27 is a lipid droplet-associated protein almost exclusively expressed in adipocytes where it facilitates unilocular lipid droplet formation. In mice, Fsp27 deficiency is associated with increased basal lipolysis, ‘browning’ of white fat and a healthy metabolic profile, whereas a patient with congenital CIDEC deficiency manifested an adverse lipodystrophic phenotype. Here we reconcile these data by showing that exposing Fsp27-null mice to a substantial energetic stress by crossing them with ob/ob mice or BATless mice, or feeding them a high-fat diet, results in hepatic steatosis and insulin resistance. We also observe a striking reduction in adipose inflammation and increase in adiponectin levels in all three models. This appears to reflect reduced activation of the inflammasome and less adipocyte death. These findings highlight the importance of Fsp27 in facilitating optimal energy storage in adipocytes and represent a rare example where adipose inflammation and hepatic insulin resistance are disassociated. PMID:25565658

  19. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice.

    PubMed

    Zhou, Linkang; Park, Shi-Young; Xu, Li; Xia, Xiayu; Ye, Jing; Su, Lu; Jeong, Kyeong-Hoon; Hur, Jang Ho; Oh, Hyunhee; Tamori, Yoshikazu; Zingaretti, Cristina M; Cinti, Saverio; Argente, Jesús; Yu, Miao; Wu, Lizhen; Ju, Shenghong; Guan, Feifei; Yang, Hongyuan; Choi, Cheol Soo; Savage, David B; Li, Peng

    2015-01-07

    Fsp27 is a lipid droplet-associated protein almost exclusively expressed in adipocytes where it facilitates unilocular lipid droplet formation. In mice, Fsp27 deficiency is associated with increased basal lipolysis, 'browning' of white fat and a healthy metabolic profile, whereas a patient with congenital CIDEC deficiency manifested an adverse lipodystrophic phenotype. Here we reconcile these data by showing that exposing Fsp27-null mice to a substantial energetic stress by crossing them with ob/ob mice or BATless mice, or feeding them a high-fat diet, results in hepatic steatosis and insulin resistance. We also observe a striking reduction in adipose inflammation and increase in adiponectin levels in all three models. This appears to reflect reduced activation of the inflammasome and less adipocyte death. These findings highlight the importance of Fsp27 in facilitating optimal energy storage in adipocytes and represent a rare example where adipose inflammation and hepatic insulin resistance are disassociated.

  20. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    PubMed

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  1. Hypothalamic POMC Deficiency Improves Glucose Tolerance Despite Insulin Resistance by Increasing Glycosuria.

    PubMed

    Chhabra, Kavaljit H; Adams, Jessica M; Fagel, Brian; Lam, Daniel D; Qi, Nathan; Rubinstein, Marcelo; Low, Malcolm J

    2016-03-01

    Hypothalamic proopiomelanocortin (POMC) is essential for the physiological regulation of energy balance; however, its role in glucose homeostasis remains less clear. We show that hypothalamic arcuate nucleus (Arc)POMC-deficient mice, which develop severe obesity and insulin resistance, unexpectedly exhibit improved glucose tolerance and remain protected from hyperglycemia. To explain these paradoxical phenotypes, we hypothesized that an insulin-independent pathway is responsible for the enhanced glucose tolerance. Indeed, the mutant mice demonstrated increased glucose effectiveness and exaggerated glycosuria relative to wild-type littermate controls at comparable blood glucose concentrations. Central administration of the melanocortin receptor agonist melanotan II in mutant mice reversed alterations in glucose tolerance and glycosuria, whereas, conversely, administration of the antagonist Agouti-related peptide (Agrp) to wild-type mice enhanced glucose tolerance. The glycosuria of ArcPOMC-deficient mice was due to decreased levels of renal GLUT 2 (rGLUT2) but not sodium-glucose cotransporter 2 and was associated with reduced renal catecholamine content. Epinephrine treatment abolished the genotype differences in glucose tolerance and rGLUT2 levels, suggesting that reduced renal sympathetic nervous system (SNS) activity is the underlying mechanism for the observed glycosuria and improved glucose tolerance in ArcPOMC-deficient mice. Therefore, the ArcPOMC-SNS-rGLUT2 axis is potentially an insulin-independent therapeutic target to control diabetes.

  2. Hypothalamic POMC Deficiency Improves Glucose Tolerance Despite Insulin Resistance by Increasing Glycosuria.

    PubMed

    Chhabra, Kavaljit H; Adams, Jessica M; Fagel, Brian; Lam, Daniel D; Qi, Nathan; Rubinstein, Marcelo; Low, Malcolm J

    2016-03-01

    Hypothalamic proopiomelanocortin (POMC) is essential for the physiological regulation of energy balance; however, its role in glucose homeostasis remains less clear. We show that hypothalamic arcuate nucleus (Arc)POMC-deficient mice, which develop severe obesity and insulin resistance, unexpectedly exhibit improved glucose tolerance and remain protected from hyperglycemia. To explain these paradoxical phenotypes, we hypothesized that an insulin-independent pathway is responsible for the enhanced glucose tolerance. Indeed, the mutant mice demonstrated increased glucose effectiveness and exaggerated glycosuria relative to wild-type littermate controls at comparable blood glucose concentrations. Central administration of the melanocortin receptor agonist melanotan II in mutant mice reversed alterations in glucose tolerance and glycosuria, whereas, conversely, administration of the antagonist Agouti-related peptide (Agrp) to wild-type mice enhanced glucose tolerance. The glycosuria of ArcPOMC-deficient mice was due to decreased levels of renal GLUT 2 (rGLUT2) but not sodium-glucose cotransporter 2 and was associated with reduced renal catecholamine content. Epinephrine treatment abolished the genotype differences in glucose tolerance and rGLUT2 levels, suggesting that reduced renal sympathetic nervous system (SNS) activity is the underlying mechanism for the observed glycosuria and improved glucose tolerance in ArcPOMC-deficient mice. Therefore, the ArcPOMC-SNS-rGLUT2 axis is potentially an insulin-independent therapeutic target to control diabetes. PMID:26467632

  3. Arsenic Exposure and Glucose Intolerance/Insulin Resistance in Estrogen-Deficient Female Mice

    PubMed Central

    Huang, Chun-Fa; Yang, Ching-Yao; Chan, Ding-Cheng; Wang, Ching-Chia; Huang, Kuo-How; Wu, Chin-Ching; Tsai, Keh-Sung; Yang, Rong-Sen

    2015-01-01

    Background Epidemiological studies have reported that the prevalence of diabetes in women > 40 years of age, especially those in the postmenopausal phase, was higher than in men in areas with high levels of arsenic in drinking water. The detailed effect of arsenic on glucose metabolism/homeostasis in the postmenopausal condition is still unclear. Objectives We investigated the effects of arsenic at doses relevant to human exposure from drinking water on blood glucose regulation in estrogen-deficient female mice. Methods Adult female mice who underwent ovariectomy or sham surgery were exposed to drinking water contaminated with arsenic trioxide (0.05 or 0.5 ppm) in the presence or absence of 17β-estradiol supplementation for 2–6 weeks. Assays related to glucose metabolism were performed. Results Exposure of sham mice to arsenic significantly increased blood glucose, decreased plasma insulin, and impaired glucose tolerance, but did not induce insulin resistance. Blood glucose and insulin were higher, and glucose intolerance, insulin intolerance, and insulin resistance were increased in arsenic-treated ovariectomized mice compared with arsenic-treated sham mice. Furthermore, liver phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression was increased and liver glycogen content was decreased in arsenic-treated ovariectomized mice compared with arsenic-treated sham mice. Glucose-stimulated insulin secretion in islets isolated from arsenic-treated ovariectomized mice was also significantly decreased. Arsenic treatment significantly decreased plasma adiponectin levels in sham and ovariectomized mice. Altered glucose metabolism/homeostasis in arsenic-treated ovariectomized mice was reversed by 17β-estradiol supplementation. Conclusions Our findings suggest that estrogen deficiency plays an important role in arsenic-altered glucose metabolism/homeostasis in females. Citation Huang CF, Yang CY, Chan DC, Wang CC, Huang KH, Wu CC, Tsai KS, Yang RS, Liu SH. 2015. Arsenic

  4. Fibroblast growth factor 21 prevents glycemic deterioration in insulin deficient mouse models of diabetes.

    PubMed

    Andersen, Birgitte; Omar, Bilal A; Rakipovski, Günaj; Raun, Kirsten; Ahrén, Bo

    2015-10-01

    In type 1 diabetes, there is a rapid loss of glycemic control immediately after onset of the disease. We aimed to determine if the deterioration of glycemic control that occurs early after the onset of insulin-deficient diabetes could be blunted by treatment with recombinant fibroblast growth factor 21 (FGF21). Normal C57BL/6J mice made diabetic by a single high dose injection of streptozotocin (STZ) were randomized to receive twice daily subcutaneous injection of vehicle or recombinant human FGF21 at doses of 0.3 and 1.0 mg/kg for 10 days. Body weight was recorded daily and 5 h fasted glucose, insulin, glucagon, free fatty acids and ketones were determined at 6 and 10 days post-randomization. The increase in fasting plasma glucose induced by STZ in untreated mice was prevented with FGF21 at 0.3 mg/kg BID. In contrast, at 1.0 mg/kg BID, FGF21 did not prevent the rise in plasma glucose after STZ. At the end of the study, plasma glucagon was significantly higher in the diabetic group treated with FGF21 1.0 mg/kg BID than in the untreated group. This was not seen for the group treated with FGF21 0.3 mg/kg BID. There were significant dose dependent reductions in plasma free fatty acids with FGF21 treatment but no significant change in plasma ketones (β-hydroxybutyrate). FGF21 treatment did not have significant effects on body weight in lean insulin deficient mice. In conclusion, FGF21 prevents increases in glycaemia and has lipid lowering properties in mouse models of insulin deficient diabetes, although by increasing the dose increased glucagon levels are seen and hyperglycemia persists.

  5. Partial rescue of insulin receptor-deficient mice by transgenic complementation with an activated insulin receptor in the liver.

    PubMed

    Baudry, Anne; Jackerott, Malene; Lamothe, Betty; Kozyrev, Sergey V; Leroux, Loïc; Durel, Béatrice; Saint-Just, Susan; Joshi, Rajiv L

    2002-10-16

    Insulin receptor (IR)-deficient mice develop severe diabetes mellitus, diabetic ketoacidosis (DKA) and liver steatosis and die within 1 week after birth. We examined in this work whether the metabolic phenotype of IR(-/-) mutants could be improved by transgenic complementation with IR selectively in the liver. We first generated transgenic mice expressing a human DNA complementary to RNA encoding a truncated constitutively activated form of IR (IRdelta) under the control of liver-specific phenylalanine hydroxylase (PAH) gene promoter. These mice presented more pronounced fasting hypoglycemia and showed slightly improved glucose tolerance as compared to controls. The transgenic mice were crossed with IR(+/-) mutants to generate IR(-/-) mice carrying the PAH-IRDelta transgene. Although such mutants developed glycosuria, DKA was delayed by more than 1 week and survival was prolonged to 8-20 days in approximately 10% of mice. In these partially rescued pups, serum glucose and triglyceride levels were lowered, hepatic glycogen stores were reconstituted and liver steatosis was absent as compared with pups which developed strong DKA and died earlier. Thus, lack of insulin action in the liver is responsible in large part for the metabolic disorders seen in IR(+/-) mice. This study should stimulate interest in therapeutic strategies aimed at improving hepatic function in diabetes.

  6. Brain Insulin Resistance and Deficiency as Therapeutic Targets in Alzheimer's Disease

    PubMed Central

    de la Monte, Suzanne M

    2012-01-01

    Alzheimer's disease [AD] is the most common cause of dementia in North America. Despite 30+ years of intense investigation, the field lacks consensus regarding the etiology and pathogenesis of sporadic AD, and therefore we still do not know the best strategies for treating and preventing this debilitating and costly disease. However, growing evidence supports the concept that AD is fundamentally a metabolic disease with substantial and progressive derangements in brain glucose utilization and responsiveness to insulin and insulin-like growth factor [IGF] stimulation. Moreover, AD is now recognized to be heterogeneous in nature, and not solely the end-product of aberrantly processed, misfolded, and aggregated oligomeric amyloid-beta peptides and hyperphosphorylated tau. Other factors, including impairments in energy metabolism, increased oxidative stress, inflammation, insulin and IGF resistance, and insulin/IGF deficiency in the brain should be incorporated into all equations used to develop diagnostic and therapeutic approaches to AD. Herein, the contributions of impaired insulin and IGF signaling to AD-associated neuronal loss, synaptic disconnection, tau hyperphosphorylation, amyloid-beta accumulation, and impaired energy metabolism are reviewed. In addition, we discuss current therapeutic strategies and suggest additional approaches based on the hypothesis that AD is principally a metabolic disease similar to diabetes mellitus. Ultimately, our ability to effectively detect, monitor, treat, and prevent AD will require more efficient, accurate and integrative diagnostic tools that utilize clinical, neuroimaging, biochemical, and molecular biomarker data. Finally, it is imperative that future therapeutic strategies for AD abandon the concept of uni-modal therapy in favor of multi-modal treatments that target distinct impairments at different levels within the brain insulin/IGF signaling cascades. PMID:22329651

  7. Deficiency of the Tumor Promoter Gene wip1 Induces Insulin Resistance

    PubMed Central

    Armata, Heather L.; Chamberland, Sally; Watts, Lauren; Ko, Hwi Jin; Lee, Yongjin; Jung, Dae Young; Kim, Jason K.

    2015-01-01

    Diabetes is a growing health care issue, and prediabetes has been established as a risk factor for type 2 diabetes. Prediabetes is characterized by deregulated glucose control, and elucidating pathways which govern this process is critical. We have identified the wild-type (WT) p53-inducible phosphatase (WIP1) phosphatase as a regulator of glucose homeostasis. Initial characterization of insulin signaling in WIP1 knockout (WIP1KO) murine embryo fibroblasts demonstrated reduced insulin-mediated Ak mouse transforming activation. In order to assess the role of WIP1 in glucose homeostasis, we performed metabolic analysis on mice on a low-fat chow diet (LFD) and high fat diet (HFD). We observed increased expression of proinflammatory cytokines in WIP1KO murine embryo fibroblasts, and WIP1KO mice fed a LFD and a HFD. WIP1KO mice exhibited glucose intolerance and insulin intolerance on a LFD and HFD. However, the effects of WIP1 deficiency cause different metabolic defects in mice on a LFD and a HFD. WIP1KO mice on a LFD develop hepatic insulin resistance, whereas this is not observed in HFD-fed mice. Mouse body weights and food consumption increase slightly over time in LFD-fed WT and WIP1KO mice. Leptin levels are increased in LFD-fed WIP1KO mice, compared with WT. In contrast, HFD-fed WIP1KO mice are resistant to HFD-induced obesity, have decreased levels of food consumption, and decreased leptin levels compared with HFD-WT mice. WIP1 has been shown to regulate the nuclear factor kappa-light-chain-enhancer of activated B cells pathway, loss of which leads to increased inflammation. We propose that this increased inflammation triggers insulin resistance in WIP1KO mice on LFD and HFD. PMID:25379953

  8. Glucose-6-Phosphate Dehydrogenase Deficiency Improves Insulin Resistance With Reduced Adipose Tissue Inflammation in Obesity.

    PubMed

    Ham, Mira; Choe, Sung Sik; Shin, Kyung Cheul; Choi, Goun; Kim, Ji-Won; Noh, Jung-Ran; Kim, Yong-Hoon; Ryu, Je-Won; Yoon, Kun-Ho; Lee, Chul-Ho; Kim, Jae Bum

    2016-09-01

    Glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, plays important roles in redox regulation and de novo lipogenesis. It was recently demonstrated that aberrant upregulation of G6PD in obese adipose tissue mediates insulin resistance as a result of imbalanced energy metabolism and oxidative stress. It remains elusive, however, whether inhibition of G6PD in vivo may relieve obesity-induced insulin resistance. In this study we showed that a hematopoietic G6PD defect alleviates insulin resistance in obesity, accompanied by reduced adipose tissue inflammation. Compared with wild-type littermates, G6PD-deficient mutant (G6PD(mut)) mice were glucose tolerant upon high-fat-diet (HFD) feeding. Intriguingly, the expression of NADPH oxidase genes to produce reactive oxygen species was alleviated, whereas that of antioxidant genes was enhanced in the adipose tissue of HFD-fed G6PD(mut) mice. In diet-induced obesity (DIO), the adipose tissue of G6PD(mut) mice decreased the expression of inflammatory cytokines, accompanied by downregulated proinflammatory macrophages. Accordingly, macrophages from G6PD(mut) mice greatly suppressed lipopolysaccharide-induced proinflammatory signaling cascades, leading to enhanced insulin sensitivity in adipocytes and hepatocytes. Furthermore, adoptive transfer of G6PD(mut) bone marrow to wild-type mice attenuated adipose tissue inflammation and improved glucose tolerance in DIO. Collectively, these data suggest that inhibition of macrophage G6PD would ameliorate insulin resistance in obesity through suppression of proinflammatory responses. PMID:27284106

  9. GH Receptor Deficiency in Ecuadorian Adults Is Associated With Obesity and Enhanced Insulin Sensitivity

    PubMed Central

    Rosenbloom, Arlan L.; Balasubramanian, Priya; Teran, Enrique; Guevara-Aguirre, Marco; Guevara, Carolina; Procel, Patricio; Alfaras, Irene; De Cabo, Rafael; Di Biase, Stefano; Narvaez, Luis; Saavedra, Jannette

    2015-01-01

    Context: Ecuadorian subjects with GH receptor deficiency (GHRD) have not developed diabetes, despite obesity. Objective: We sought to determine the metabolic associations for this phenomenon. Design: Four studies were carried out: 1) glucose, lipid, adipocytokine concentrations; 2) metabolomics evaluation; 3) metabolic responses to a high-calorie meal; and 4) oral glucose tolerance tests. Setting: Clinical Research Institute in Quito, Ecuador. Subjects: Adults homozygous for the E180 splice mutation of the GH receptor (GHRD) were matched for age, gender, and body mass index with unaffected control relatives (C) as follows: study 1, 27 GHRD and 35 C; study 2, 10 GHRD and 10 C; study 3, seven GHRD and 11 C; and study 4, seven GHRD and seven C. Results: Although GHRD subjects had greater mean percentage body fat than controls, their fasting insulin, 2-hour blood glucose, and triglyceride levels were lower. The indicator of insulin sensitivity, homeostasis model of assessment 2%S, was greater (P < .0001), and the indicator of insulin resistance, homeostasis model of assessment 2-IR, was lower (P = .0025). Metabolomic differences between GHRD and control subjects were consistent with their differing insulin sensitivity, including postprandial decreases of branched-chain amino acids that were more pronounced in controls. High molecular weight and total adiponectin concentrations were greater in GHRD (P = .0004 and P = .0128, respectively), and leptin levels were lower (P = .02). Although approximately 65% the weight of controls, GHRD subjects consumed an identical high-calorie meal; nonetheless, their mean glucose concentrations were lower, with mean insulin levels one-third those of controls. Results of the 2-hour oral glucose tolerance test were similar. Main Outcome Measures: Measures of insulin sensitivity, adipocytokines, and energy metabolites. Conclusions: Without GH counter-regulation, GHRD is associated with insulin efficiency and obesity. Lower leptin levels

  10. Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice.

    PubMed

    Walji, Tezin A; Turecamo, Sarah E; Sanchez, Alejandro Coca; Anthony, Bryan A; Abou-Ezzi, Grazia; Scheller, Erica L; Link, Daniel C; Mecham, Robert P; Craft, Clarissa S

    2016-01-01

    Marrow adipose tissue (MAT) is an endocrine organ with the potential to influence skeletal remodeling and hematopoiesis. Pathologic MAT expansion has been studied in the context of severe metabolic challenge, including caloric restriction, high fat diet feeding, and leptin deficiency. However, the rapid change in peripheral fat and glucose metabolism associated with these models impedes our ability to examine which metabolic parameters precede or coincide with MAT expansion. Microfibril-associated glycoprotein-1 (MAGP1) is a matricellular protein that influences cellular processes by tethering signaling molecules to extracellular matrix structures. MAGP1-deficient (Mfap2 (-/-)) mice display a progressive excess adiposity phenotype, which precedes insulin resistance and occurs without changes in caloric intake or ambulation. Mfap2 (-/-) mice were, therefore, used as a model to associate parameters of metabolic disease, bone remodeling, and hematopoiesis with MAT expansion. Marrow adiposity was normal in Mfap2 (-/-) mice until 6 months of age; however, by 10 months, marrow fat volume had increased fivefold relative to wild-type control at the same age. Increased gonadal fat pad mass and hyperglycemia were detectable in Mfap2 (-/-) mice by 2 months, but peaked by 6 months. The development of insulin resistance coincided with MAT expansion. Longitudinal characterization of bone mass demonstrated a disconnection in MAT volume and bone volume. Specifically, Mfap2 (-/-) mice had reduced trabecular bone volume by 2 months, but this phenotype did not progress with age or MAT expansion. Interestingly, MAT expansion in the 10-month-old Mfap2 (-/-) mice was associated with modest alterations in basal hematopoiesis, including a shift from granulopoiesis to B lymphopoiesis. Together, these findings indicate MAT expansion is coincident with insulin resistance, but not excess peripheral adiposity or hyperglycemia in Mfap2 (-/-) mice; and substantial MAT accumulation does

  11. Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice.

    PubMed

    Walji, Tezin A; Turecamo, Sarah E; Sanchez, Alejandro Coca; Anthony, Bryan A; Abou-Ezzi, Grazia; Scheller, Erica L; Link, Daniel C; Mecham, Robert P; Craft, Clarissa S

    2016-01-01

    Marrow adipose tissue (MAT) is an endocrine organ with the potential to influence skeletal remodeling and hematopoiesis. Pathologic MAT expansion has been studied in the context of severe metabolic challenge, including caloric restriction, high fat diet feeding, and leptin deficiency. However, the rapid change in peripheral fat and glucose metabolism associated with these models impedes our ability to examine which metabolic parameters precede or coincide with MAT expansion. Microfibril-associated glycoprotein-1 (MAGP1) is a matricellular protein that influences cellular processes by tethering signaling molecules to extracellular matrix structures. MAGP1-deficient (Mfap2 (-/-)) mice display a progressive excess adiposity phenotype, which precedes insulin resistance and occurs without changes in caloric intake or ambulation. Mfap2 (-/-) mice were, therefore, used as a model to associate parameters of metabolic disease, bone remodeling, and hematopoiesis with MAT expansion. Marrow adiposity was normal in Mfap2 (-/-) mice until 6 months of age; however, by 10 months, marrow fat volume had increased fivefold relative to wild-type control at the same age. Increased gonadal fat pad mass and hyperglycemia were detectable in Mfap2 (-/-) mice by 2 months, but peaked by 6 months. The development of insulin resistance coincided with MAT expansion. Longitudinal characterization of bone mass demonstrated a disconnection in MAT volume and bone volume. Specifically, Mfap2 (-/-) mice had reduced trabecular bone volume by 2 months, but this phenotype did not progress with age or MAT expansion. Interestingly, MAT expansion in the 10-month-old Mfap2 (-/-) mice was associated with modest alterations in basal hematopoiesis, including a shift from granulopoiesis to B lymphopoiesis. Together, these findings indicate MAT expansion is coincident with insulin resistance, but not excess peripheral adiposity or hyperglycemia in Mfap2 (-/-) mice; and substantial MAT accumulation does

  12. ICAM-1 and β2 Integrin Deficiency Impairs Fat Oxidation and Insulin Metabolism during Fasting

    PubMed Central

    Babic, Aleksandar M; Wang, Hong-Wei; Lai, Margaret J; Daniels, Thomas G; Felbinger, Thomas W; Burger, Peter C; Stricker-Krongrad, Alain; Wagner, Denisa D

    2004-01-01

    Intercellular adhesion molecule 1 (ICAM-1) and β2 integrins play critical roles in immune responses. ICAM-1 may also participate in regulation of energy balance because ICAM-1–deficient mice become obese on a high-fat diet. We show that mice deficient in these adhesion receptors are unable to respond to fasting by up-regulation of fatty acid oxidation. Normal mice, when fasted, exhibit reduced circulating neutrophil counts and increased ICAM-1 expression and neutrophil recruitment in liver. Mice lacking ICAM-1 or β2 integrins fail to show these responses—instead they become hypoglycemic with steatotic livers. Fasting ICAM-1–deficient mice reduce insulin more slowly than wild-type mice. This produces fasting hyperinsulinemia that prevents activation of adenosine mono-phosphate (AMP)-activated protein kinase in muscles and liver, which results in decreased import of long chain fatty acids into mitochondria. Thus, we show a new role for immune cells and their adhesion receptors in regulating metabolic response to fasting. PMID:15706402

  13. Human conditions of insulin-like growth factor-I (IGF-I) deficiency

    PubMed Central

    2012-01-01

    Insulin-like growth factor I (IGF-I) is a polypeptide hormone produced mainly by the liver in response to the endocrine GH stimulus, but it is also secreted by multiple tissues for autocrine/paracrine purposes. IGF-I is partly responsible for systemic GH activities although it possesses a wide number of own properties (anabolic, antioxidant, anti-inflammatory and cytoprotective actions). IGF-I is a closely regulated hormone. Consequently, its logical therapeutical applications seems to be limited to restore physiological circulating levels in order to recover the clinical consequences of IGF-I deficiency, conditions where, despite continuous discrepancies, IGF-I treatment has never been related to oncogenesis. Currently the best characterized conditions of IGF-I deficiency are Laron Syndrome, in children; liver cirrhosis, in adults; aging including age-related-cardiovascular and neurological diseases; and more recently, intrauterine growth restriction. The aim of this review is to summarize the increasing list of roles of IGF-I, both in physiological and pathological conditions, underlying that its potential therapeutical options seem to be limited to those proven states of local or systemic IGF-I deficiency as a replacement treatment, rather than increasing its level upper the normal range. PMID:23148873

  14. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance

    PubMed Central

    Liu, Ying; Takahashi, Yoshinori; Desai, Neelam; Zhang, Jun; Serfass, Jacob M.; Shi, Yu-Guang; Lynch, Christopher J.; Wang, Hong-Gang

    2016-01-01

    Bif-1 is a membrane-curvature inducing protein that is implicated in the regulation of autophagy and tumorigenesis. Here, we report that Bif-1 plays a critical role in regulating lipid catabolism to control the size of lipid droplets and prevent the development of obesity and insulin resistance upon aging or dietary challenge. Our data show that Bif-1 deficiency promotes the expansion of adipose tissue mass without altering food intake or physical activities. While Bif-1 is dispensable for adipose tissue development, its deficiency reduces the basal rate of adipose tissue lipolysis and results in adipocyte hypertrophy upon aging. The importance of Bif-1 in lipid turnover is not limited to adipose tissue since fasting and refeeding-induced lipid droplet clearance is also attenuated by Bif-1 loss in the liver. Interestingly, obesity induced by a high fat-diet or Bif-1 deficiency downregulates the expression of proteins involved in the autophagy-lysosomal pathway, including Atg9a and Lamp1 in the adipose tissue. These findings thus identify Bif-1 as a novel regulator of lipid homeostasis to prevent the pathogenesis of obesity and its associated metabolic complications. PMID:26857140

  15. Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice

    PubMed Central

    Walji, Tezin A.; Turecamo, Sarah E.; Sanchez, Alejandro Coca; Anthony, Bryan A.; Abou-Ezzi, Grazia; Scheller, Erica L.; Link, Daniel C.; Mecham, Robert P.; Craft, Clarissa S.

    2016-01-01

    Marrow adipose tissue (MAT) is an endocrine organ with the potential to influence skeletal remodeling and hematopoiesis. Pathologic MAT expansion has been studied in the context of severe metabolic challenge, including caloric restriction, high fat diet feeding, and leptin deficiency. However, the rapid change in peripheral fat and glucose metabolism associated with these models impedes our ability to examine which metabolic parameters precede or coincide with MAT expansion. Microfibril-associated glycoprotein-1 (MAGP1) is a matricellular protein that influences cellular processes by tethering signaling molecules to extracellular matrix structures. MAGP1-deficient (Mfap2−/−) mice display a progressive excess adiposity phenotype, which precedes insulin resistance and occurs without changes in caloric intake or ambulation. Mfap2−/− mice were, therefore, used as a model to associate parameters of metabolic disease, bone remodeling, and hematopoiesis with MAT expansion. Marrow adiposity was normal in Mfap2−/− mice until 6 months of age; however, by 10 months, marrow fat volume had increased fivefold relative to wild-type control at the same age. Increased gonadal fat pad mass and hyperglycemia were detectable in Mfap2−/− mice by 2 months, but peaked by 6 months. The development of insulin resistance coincided with MAT expansion. Longitudinal characterization of bone mass demonstrated a disconnection in MAT volume and bone volume. Specifically, Mfap2−/− mice had reduced trabecular bone volume by 2 months, but this phenotype did not progress with age or MAT expansion. Interestingly, MAT expansion in the 10-month-old Mfap2−/− mice was associated with modest alterations in basal hematopoiesis, including a shift from granulopoiesis to B lymphopoiesis. Together, these findings indicate MAT expansion is coincident with insulin resistance, but not excess peripheral adiposity or hyperglycemia in Mfap2−/− mice; and substantial MAT

  16. SIRT3 Deficiency Induces Endothelial Insulin Resistance and Blunts Endothelial-Dependent Vasorelaxation in Mice and Human with Obesity

    PubMed Central

    Yang, Lu; Zhang, Julei; Xing, Wenjuan; Zhang, Xing; Xu, Jie; Zhang, Haifeng; Chen, Li; Ning, Xiaona; Ji, Gang; Li, Jia; Zhao, Qingchuan; Gao, Feng

    2016-01-01

    Recent evidence implicates the critical role of Sirtuin 3 (SIRT3) in the development of many metabolic diseases, but the contribution of SIRT3 to vascular homeostasis remains largely unknown. The aim of this study was to investigate the role of SIRT3 in endothelial insulin resistance and vascular dysfunction in obesity. We found an impaired insulin-induced mesenteric vasorelaxation and concomitant reduced vascular SIRT3 expression in morbid obese human subjects compared with the non-obese subjects. Downregulation of SIRT3 in cultured human endothelial cells increased mitochondrial reactive oxygen species (mtROS) and impaired insulin signaling as evidenced by decreased phosphorylation of Akt and endothelial nitric oxide synthase and subsequent reduced nitric oxide (NO) release. In addition, obese mice induced by 24-week high-fat diet (HFD) displayed an impaired endothelium-dependent vasorelaxation to both insulin and acetylcholine, which was further exacerbated by the gene deletion of Sirt3. Scavenging of mtROS not only restored insulin-stimulated NO production in SIRT3 knockdown cells, but also improved insulin-induced vasorelaxation in SIRT3 knockout mice fed with HFD. Taken together, our findings suggest that SIRT3 positively regulates endothelial insulin sensitivity and show that SIRT3 deficiency and resultant increased mtROS contribute to vascular dysfunction in obesity. PMID:27000941

  17. Monograph series on aging-related diseases: VIII. Non-insulin-dependent diabetes mellitus (NIDDM)

    PubMed

    Barceló, A

    1996-01-01

    Diabetes mellitus is a chronic metabolic disease characterized by hyperglycemia and by disturbances of carbohydrate, fat and protein metabolism. Diabetes mellitus is associated with absolute or relative deficiency in the secretion and/or action of the hormone insulin.

  18. Seipin deficiency alters brown adipose tissue thermogenesis and insulin sensitivity in a non-cell autonomous mode

    PubMed Central

    Dollet, L.; Magré, J.; Joubert, M.; Le May, C.; Ayer, A.; Arnaud, L.; Pecqueur, C.; Blouin, V.; Cariou, B.; Prieur, X.

    2016-01-01

    Loss-of-function mutations in BSCL2 are responsible for Berardinelli-Seip congenital lipodystrophy, a rare disorder characterized by near absence of adipose tissue associated with insulin resistance. Seipin-deficient (Bscl2−/−) mice display an almost total loss of white adipose tissue (WAT) with residual brown adipose tissue (BAT). Previous cellular studies have shown that seipin deficiency alters white adipocyte differentiation. In this study, we aimed to decipher the consequences of seipin deficiency in BAT. Using a brown adipocyte cell-line, we show that seipin knockdown had very little effect on adipocyte differentiation without affecting insulin sensitivity and oxygen consumption. However, when submitted to cold acclimation or chronic β3 agonist treatment, Bscl2−/− mice displayed altered thermogenic capacity, despite several signs of BAT remodeling. Under cold activation, Bscl2−/− mice were able to maintain their body temperature when fed ad libitum, but not under short fasting. At control temperature (i.e. 21 °C), fasting worsened Bscl2−/− BAT properties. Finally, Bscl2−/− BAT displayed obvious signs of insulin resistance. Our results in these lipodystrophic mice strongly suggest that BAT activity relies on WAT as an energetic substrate provider and adipokine-producing organ. Therefore, the WAT/BAT dialogue is a key component of BAT integrity in guaranteeing its response to insulin and cold-activated adrenergic signals. PMID:27748422

  19. Hormone-sensitive lipase deficiency suppresses insulin secretion from pancreatic islets of Lep{sup ob/ob} mice

    SciTech Connect

    Sekiya, Motohiro; Yahagi, Naoya; Tamura, Yoshiaki; Okazaki, Hiroaki; Igarashi, Masaki; Ohta, Keisuke; Takanashi, Mikio; Kumagai, Masayoshi; Takase, Satoru; Nishi, Makiko; Takeuchi, Yoshinori; Izumida, Yoshihiko; Kubota, Midori; Ohashi, Ken; Iizuka, Yoko; Yagyu, Hiroaki; Gotoda, Takanari; Nagai, Ryozo; Shimano, Hitoshi; Yamada, Nobuhiro; and others

    2009-09-25

    It has long been a matter of debate whether the hormone-sensitive lipase (HSL)-mediated lipolysis in pancreatic {beta}-cells can affect insulin secretion through the alteration of lipotoxicity. We generated mice lacking both leptin and HSL (Lep{sup ob/ob}/HSL{sup -/-}) and explored the role of HSL in pancreatic {beta}-cells in the setting of obesity. Lep{sup ob/ob}/HSL{sup -/-} developed elevated blood glucose levels and reduced plasma insulin levels compared with Lep{sup ob/ob}/HSL{sup +/+} in a fed state, while the deficiency of HSL did not affect glucose homeostasis in Lep{sup +/+} background. The deficiency of HSL exacerbated the accumulation of triglycerides in Lep{sup ob/ob} islets, leading to reduced glucose-stimulated insulin secretion. The deficiency of HSL also diminished the islet mass in Lep{sup ob/ob} mice due to decreased cell proliferation. In conclusion, HSL affects insulin secretary capacity especially in the setting of obesity.

  20. Plasminogen activator inhibitor-1 deficiency ameliorates insulin resistance and hyperlipidemia but not bone loss in obese female mice.

    PubMed

    Tamura, Yukinori; Kawao, Naoyuki; Yano, Masato; Okada, Kiyotaka; Matsuo, Osamu; Kaji, Hiroshi

    2014-05-01

    We previously demonstrated that plasminogen activator inhibitor-1 (PAI-1), an inhibitor of fibrinolysis, is involved in type 1 diabetic bone loss in female mice. PAI-1 is well known as an adipogenic factor induced by obesity. We therefore examined the effects of PAI-1 deficiency on bone and glucose and lipid metabolism in high-fat and high-sucrose diet (HF/HSD)-induced obese female mice. Female wild-type (WT) and PAI-1-deficient mice were fed with HF/HSD or normal diet for 20 weeks from 10 weeks of age. HF/HSD increased the levels of plasma PAI-1 in WT mice. PAI-1 deficiency suppressed the levels of blood glucose, plasma insulin, and total cholesterol elevated by obesity. Moreover, PAI-1 deficiency improved glucose intolerance and insulin resistance induced by obesity. Bone mineral density (BMD) at trabecular bone as well as the levels of osterix, alkaline phosphatase, and receptor activator of nuclear factor κB ligand mRNA in tibia were decreased by HF/HSD in WT mice, and those changes by HF/HSD were not affected by PAI-1 deficiency. HF/HSD increased the levels of plasma TNF-α in both WT and PAI-1-deficient mice, and the levels of plasma TNF-α were negatively correlated with trabecular BMD in tibia of female mice. In conclusion, we revealed that PAI-1 deficiency does not affect the trabecular bone loss induced by obesity despite the amelioration of insulin resistance and hyperlipidemia in female mice. Our data suggest that the changes of BMD and bone metabolism by obesity might be independent of PAI-1 as well as glucose and lipid metabolism.

  1. RGC32 deficiency protects against high-fat diet-induced obesity and insulin resistance in mice.

    PubMed

    Cui, Xiao-Bing; Luan, Jun-Na; Ye, Jianping; Chen, Shi-You

    2015-02-01

    Obesity is an important independent risk factor for type 2 diabetes, cardiovascular diseases and many other chronic diseases. Adipose tissue inflammation is a critical link between obesity and insulin resistance and type 2 diabetes and a contributor to disease susceptibility and progression. The objective of this study was to determine the role of response gene to complement 32 (RGC32) in the development of obesity and insulin resistance. WT and RGC32 knockout (Rgc32(-/-) (Rgcc)) mice were fed normal chow or high-fat diet (HFD) for 12 weeks. Metabolic, biochemical, and histologic analyses were performed. 3T3-L1 preadipocytes were used to study the role of RGC32 in adipocytes in vitro. Rgc32(-/-) mice fed with HFD exhibited a lean phenotype with reduced epididymal fat weight compared with WT controls. Blood biochemical analysis and insulin tolerance test showed that RGC32 deficiency improved HFD-induced dyslipidemia and insulin resistance. Although it had no effect on adipocyte differentiation, RGC32 deficiency ameliorated adipose tissue and systemic inflammation. Moreover, Rgc32(-/-) induced browning of adipose tissues and increased energy expenditure. Our data indicated that RGC32 plays an important role in diet-induced obesity and insulin resistance, and thus it may serve as a potential novel drug target for developing therapeutics to treat obesity and metabolic disorders.

  2. Insulin

    MedlinePlus

    ... pump is connected to your body by a flexible tube that has a tip that sticks under your skin. A cartridge of insulin is put in the pump. The insulin flows through the tube into your body. The pump controls how much insulin goes into your body. The ...

  3. Protein deficiency and nutritional recovery modulate insulin secretion and the early steps of insulin action in rats.

    PubMed

    Latorraca, M Q; Reis, M A; Carneiro, E M; Mello, M A; Velloso, L A; Saad, M J; Boschero, A C

    1998-10-01

    Maternal malnutrition was shown to affect early growth and leads to permanent alterations in insulin secretion and sensitivity of offspring. In addition, epidemiological studies showed an association between low birth weight and glucose intolerance in adult life. To understand these interactions better, we investigated the insulin secretion by isolated islets and the early events related to insulin action in the hind-limb muscle of adult rats fed a diet of 17% protein (control) or 6% protein [low (LP) protein] during fetal life, suckling and after weaning, and in rats receiving 6% protein during fetal life and suckling followed by a 17% protein diet after weaning (recovered). The basal and maximal insulin secretion by islets from rats fed LP diet and the basal release by islets from recovered rats were significantly lower than that of control rats. The dose-response curves to glucose of islets from LP and recovered groups were shifted to the right compared to control islets, with the half-maximal response (EC50) occurring at 16.9 +/- 1.3, 12.4 +/- 0.5 and 8.4 +/- 0.1 mmol/L, respectively. The levels of insulin receptor, as well as insulin receptor substrate-1 and phosphorylation and the association between insulin receptor substrate-1 and phosphatidylinositol 3-kinase were greater in rats fed a LP diet than in control rats. In recovered rats, these variables were not significantly different from those of the other two groups. These results suggest that glucose homeostasis is maintained in LP and recovered rats by an increased sensitivity to insulin as a result of alterations in the early steps of the insulin signal transduction pathway. PMID:9772130

  4. Insulin, insulin analogues and diabetic retinopathy.

    PubMed

    Chantelau, Ernst; Kimmerle, Renate; Meyer-Schwickerath, Rolf

    2008-02-01

    Insulin is absolutely vital for living beings. It is not only involved in metabolism, but also in the regulation of growth factors, e.g. IGF-1. In this review we address the role insulin has in the natural evolution of diabetic retinopathy. On the one hand, chronic deficiency of insulin and IGF-1 at the retina is thought to cause capillary degeneration, with subsequent ischaemia. On the other hand, acute abundance of (exogenously administered) insulin and IGF-1 enhances ischaemia-induced VEGF expression. A critical ratio of tissue VEGF-susceptibility: VEGF-availability triggers vascular proliferation (i.e. of micro-aneurysms and/or abnormal vessels). The patent-protected insulin analogues Lispro, Glulisine, Aspart, Glargine and Detemir are artificial insulin derivatives with altered biological responses compared to natural insulin (e.g. divergent insulin and /or IGF-1 receptor-binding characteristics, signalling patterns, and mitogenicity). Their safety profiles concerning diabetic retinopathy remain to be established by randomised controlled trials. Anecdotal reports and circumstantial evidence suggest that Lispro and Glargine might worsen diabetic retinopathy.

  5. The skeletal structure of insulin-like growth factor I-deficient mice

    NASA Technical Reports Server (NTRS)

    Bikle, D.; Majumdar, S.; Laib, A.; Powell-Braxton, L.; Rosen, C.; Beamer, W.; Nauman, E.; Leary, C.; Halloran, B.

    2001-01-01

    The importance of insulin-like growth factor I (IGF-I) for growth is well established. However, the lack of IGF-I on the skeleton has not been examined thoroughly. Therefore, we analyzed the structural properties of bone from mice rendered IGF-I deficient by homologous recombination (knockout [k/o]) using histomorphometry, peripheral quantitative computerized tomography (pQCT), and microcomputerized tomography (muCT). The k/o mice were 24% the size of their wild-type littermates at the time of study (4 months). The k/o tibias were 28% and L1 vertebrae were 26% the size of wild-type bones. Bone formation rates (BFR) of k/o tibias were 27% that of the wild-type littermates. The k/o bones responded normally to growth hormone (GH; 1.7-fold increase) and supranormally to IGF-I (5.2-fold increase) with respect to BFR. Cortical thickness of the proximal tibia was reduced 17% in the k/o mouse. However, trabecular bone volume (bone volume/total volume [BV/TV]) was increased 23% (male mice) and 88% (female mice) in the k/o mice compared with wild-type controls as a result of increased connectivity, increased number, and decreased spacing of the trabeculae. These changes were either less or not found in L1. Thus, lack of IGF-I leads to the development of a bone structure, which, although smaller, appears more compact.

  6. Surfactant Protein D Deficiency in Mice Is Associated with Hyperphagia, Altered Fat Deposition, Insulin Resistance, and Increased Basal Endotoxemia

    PubMed Central

    Rahbek, Martin K. U.; Kirketerp-Møller, Katrine L.; Hansen, Pernille B. L.; Bie, Peter; Kejling, Karin; Mandrup, Susanne; Hawgood, Samuel; Nielsen, Ole; Nielsen, Claus H.; Owens, Trevor; Holmskov, Uffe; Sørensen, Grith L.

    2012-01-01

    Pulmonary surfactant protein D (SP-D) is a host defence lectin of the innate immune system that enhances clearance of pathogens and modulates inflammatory responses. Recently it has been found that systemic SP-D is associated with metabolic disturbances and that SP-D deficient mice are mildly obese. However, the mechanism behind SP-D's role in energy metabolism is not known. Here we report that SP-D deficient mice had significantly higher ad libitum energy intake compared to wild-type mice and unchanged energy expenditure. This resulted in accumulation but also redistribution of fat tissue. Blood pressure was unchanged. The change in energy intake was unrelated to the basal levels of hypothalamic Pro-opiomelanocortin (POMC) and Agouti-related peptide (AgRP) gene expression. Neither short time systemic, nor intracereberoventricular SP-D treatment altered the hypothalamic signalling or body weight accumulation. In ad libitum fed animals, serum leptin, insulin, and glucose were significantly increased in mice deficient in SP-D, and indicative of insulin resistance. However, restricted diets eliminated all metabolic differences except the distribution of body fat. SP-D deficiency was further associated with elevated levels of systemic bacterial lipopolysaccharide. In conclusion, our findings suggest that lack of SP-D mediates modulation of food intake not directly involving hypothalamic regulatory pathways. The resulting accumulation of adipose tissue was associated with insulin resistance. The data suggest SP-D as a regulator of energy intake and body composition and an inhibitor of metabolic endotoxemia. SP-D may play a causal role at the crossroads of inflammation, obesity, and insulin resistance. PMID:22509382

  7. Neuronal Sirt1 Deficiency Increases Insulin Sensitivity in Both Brain and Peripheral Tissues*

    PubMed Central

    Lu, Min; Sarruf, David A.; Li, Pingping; Osborn, Olivia; Sanchez-Alavez, Manuel; Talukdar, Saswata; Chen, Ai; Bandyopadhyay, Gautam; Xu, Jianfeng; Morinaga, Hidetaka; Dines, Kevin; Watkins, Steven; Kaiyala, Karl; Schwartz, Michael W.; Olefsky, Jerrold M.

    2013-01-01

    Sirt1 is a NAD+-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. To assess this idea, we generated Sirt1 neuron-specific knockout (SINKO) mice. On both standard chow and HFD, SINKO mice were more insulin sensitive than Sirt1f/f mice. Thus, SINKO mice had lower fasting insulin levels, improved glucose tolerance and insulin tolerance, and enhanced systemic insulin sensitivity during hyperinsulinemic euglycemic clamp studies. Hypothalamic insulin sensitivity of SINKO mice was also increased over controls, as assessed by hypothalamic activation of PI3K, phosphorylation of Akt and FoxO1 following systemic insulin injection. Intracerebroventricular injection of insulin led to a greater systemic effect to improve glucose tolerance and insulin sensitivity in SINKO mice compared with controls. In line with the in vivo results, insulin-induced AKT and FoxO1 phosphorylation were potentiated by inhibition of Sirt1 in a cultured hypothalamic cell line. Mechanistically, this effect was traced to a reduced effect of Sirt1 to directly deacetylate and repress IRS-1 function. The enhanced central insulin signaling in SINKO mice was accompanied by increased insulin receptor signal transduction in liver, muscle, and adipose tissue. In summary, we conclude that neuronal Sirt1 negatively regulates hypothalamic insulin signaling, leading to systemic insulin resistance. Interventions that reduce neuronal Sirt1 activity have the potential to improve systemic insulin action and limit weight gain on an obesigenic diet. PMID:23457303

  8. Insulin

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The manipulation of organic materials--cells, tissues, and even living organisms--offers many exciting possibilities for the future from organic computers to improved aquaculture. Commercial researchers are using the microgravity environment to produce large near perfect protein crystals Research on insulin has yielded crystals that far surpass the quality of insulin crystals grown on the ground. Using these crystals industry partners are working to develop new and improved treatments for diabetes. Other researchers are exploring the possibility of producing antibiotics using plant cell cultures which could lead to both orbital production and the improvement of ground-based antibiotic production.

  9. Regulation of testicular insulin-like growth factor-I in pubertal growth hormone-deficient male rats.

    PubMed

    Spiteri-Grech, J; Bartlett, J M; Nieschlag, E

    1991-11-01

    GH plays a major role in pubertal growth, effects mainly mediated by stimulation of insulin-like growth factor-I (IGF-I) production by the liver. However, the role of GH in the regulation of pubertal onset, spermatogenesis and fertility is still under debate. GH and FSH have, in addition, been implicated in the regulation of IGF-I production by Sertoli cells in a number of studies, although conflicting results have been reported. The interpretation of studies using GH-deficient mutant mice has been complicated by the presence of additional defects in the hypothalamic-pituitary-gonadal axis of these animals. We have therefore used GH-deficient mutant male rats with no other documented hormonal deficiencies to study the effect of GH administration on somatic and testicular development, circulating and testicular IGF-I concentrations and testicular histology. Body weights in GH-deficient rats substituted with GH were not significantly different from untreated or GH-treated normal rats and were significantly higher than body weights in untreated dwarf rats. Similarly, circulating IGF-I concentrations in GH-treated GH-deficient rats were not significantly different from those in untreated or GH-treated normal rats but were significantly higher than circulating IGF-I concentrations in untreated dwarf rats. No differences in testicular IGF-I concentrations were observed in any of the groups studied. Testicular weights remained low in both untreated and GH-treated GH-deficient animals compared with control animals but spermatogenesis was qualitatively and quantitatively normal in all groups at the end of the observation period.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Intrauterine Growth Retardation (IUGR) as a Novel Condition of Insulin-Like Growth Factor-1 (IGF-1) Deficiency.

    PubMed

    Martín-Estal, I; de la Garza, R G; Castilla-Cortázar, I

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) is an anabolic hormone with several biological activities, such as proliferation, mitochondrial protection, cell survival, tissue growth and development, anti-inflammatory, antioxidant, antifibrogenic and antiaging. This hormone plays an important role in embryological and postnatal states, being essential for normal foetal and placental growth and differentiation. During gestation, the placenta is one of the major sources of IGF-1, among other hormones. This intrauterine organ expresses IGF-1 receptors and IGF-1 binding proteins (IGFBPs), which control IGF-1 activities. Intrauterine growth restriction (IUGR) is the second most frequent cause of perinatal morbidity and mortality, defined as the inability to achieve the expected weight for gestational age. Different studies have revealed that IUGR infants have placental dysfunction and low circulating levels of insulin, IGF-1, IGF-2 and IGFBPs. Such data suggest that IGF-1 deficiency in gestational state may be one of the major causes of foetal growth retardation. The aim of this review is to study the epidemiology, physiopathology and possible causes of IUGR. Also, it intends to study the possible role of the placenta as an IGF-1 target organ. The purpose is to establish if IUGR could be considered as a novel condition of IGF-1 deficiency and if its treatment with low doses of IGF-1 could be a suitable therapeutic strategy. PMID:26634242

  11. Chemokine-like receptor 1 deficiency does not affect the development of insulin resistance and nonalcoholic fatty liver disease in mice.

    PubMed

    Gruben, Nanda; Aparicio Vergara, Marcela; Kloosterhuis, Niels J; van der Molen, Henk; Stoelwinder, Stefan; Youssef, Sameh; de Bruin, Alain; Delsing, Dianne J; Kuivenhoven, Jan Albert; van de Sluis, Bart; Hofker, Marten H; Koonen, Debby P Y

    2014-01-01

    The adipokine chemerin and its receptor, chemokine-like receptor 1 (Cmklr1), are associated with insulin resistance and nonalcoholic fatty liver disease (NAFLD), which covers a broad spectrum of liver diseases, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). It is possible that chemerin and/or Cmklr1 exert their effects on these disorders through inflammation, but so far the data have been controversial. To gain further insight into this matter, we studied the effect of whole-body Cmklr1 deficiency on insulin resistance and NAFLD. In view of the primary role of macrophages in hepatic inflammation, we also transplanted bone marrow from Cmklr1 knock-out (Cmklr1-/-) mice and wild type (WT) mice into low-density lipoprotein receptor knock-out (Ldlr-/-) mice, a mouse model for NASH. All mice were fed a high fat, high cholesterol diet containing 21% fat from milk butter and 0.2% cholesterol for 12 weeks. Insulin resistance was assessed by an oral glucose tolerance test, an insulin tolerance test, and by measurement of plasma glucose and insulin levels. Liver pathology was determined by measuring hepatic inflammation, fibrosis, lipid accumulation and the NAFLD activity score (NAS). Whole-body Cmklr1 deficiency did not affect body weight gain or food intake. In addition, we observed no differences between WT and Cmklr1-/- mice for hepatic inflammatory and fibrotic gene expression, immune cell infiltration, lipid accumulation or NAS. In line with this, we detected no differences in insulin resistance. In concordance with whole-body Cmklr1 deficiency, the absence of Cmklr1 in bone marrow-derived cells in Ldlr-/- mice did not affect their insulin resistance or liver pathology. Our results indicate that Cmklr1 is not involved in the pathogenesis of insulin resistance or NAFLD. Thus, we recommend that the associations reported between Cmklr1 and insulin resistance or NAFLD should be interpreted with caution.

  12. Insulin deficiency induces rat renal mesangial cell dysfunction via activation of IGF-1/IGF-1R pathway

    PubMed Central

    Kong, Ya-li; Shen, Yang; Ni, Jun; Shao, De-cui; Miao, Nai-jun; Xu, Jin-lan; Zhou, Li; Xue, Hong; Zhang, Wei; Wang, Xiao-xia; Lu, Li-min

    2016-01-01

    Aim: Diabetic nephropathy is one of the major complications of diabetes and the major cause of end-stage renal disease. In this study we investigated the insulin deficiency (ID) induced changes in renal mesangial cells (MCs) and in the kidney of STZ-induced diabetic rats. Methods: Cultured rat renal MCs were incubated in ID media. Cell proliferation was analyzed using BrdU incorporation assay. The expression of insulin receptor (IR), insulin-like growth factor-1 receptor (IGF-1R), phosphorylated IGF-1R, fibronectin, and collagen IV was determined with Western blot analysis. STZ-induced diabetic rats were treated with an IGF-1R antagonist picropodophyllin (PPP, 20 mg·kg−1·d−1, po) for 8 weeks. After the rats were euthanized, plasma and kidneys were collected. IGF-1 levels in renal cortex were measured with RT-PCR or ELISA. The morphological changes in the kidneys were also examined. Results: Incubation in ID media significantly increased cell proliferation, the synthesis of fibronectin and collagen IV, and the expression of IGF-1 and IGF-1R and phosphorylated IGF-1R in renal MCs. Pretreatment of the cells with PPP (50 nmol/L) blocked ID-induced increases in cell proliferation and the synthesis of fibronectin and collagen IV; knockdown of IGF-1R showed a similar effect as PPP did. In contrast, treatment of the cells with IGF-1 (50 ng/mL) exacerbated ID-induced increases in cell proliferation. In the kidneys of diabetic rats, the expression of IGF-1, IGF-1R and phosphorylated IGF-1R were significantly elevated. Treatment of diabetic rats with PPP did not lower the blood glucose levels, but significantly suppressed the expression of TGF-β, fibronectin and collagen IV in the kidneys, the plasma levels of urinary nitrogen and creatinine, and the urinary protein excretion. Conclusion: Insulin deficiency increases the expression of IGF-1 and IGF-1R in renal MCs and the kidney of diabetic rats, which contributes to the development of diabetic nephropathy. PMID

  13. Association of Bactericidal Dysfunction of Paneth Cells in Streptozocin-Induced Diabetic Mice with Insulin Deficiency.

    PubMed

    Yu, Tao; Yang, Hong-Sheng; Lu, Xi-Ji; Xia, Zhong-Sheng; Ouyang, Hui; Shan, Ti-Dong; Huang, Can-Ze; Chen, Qi-Kui

    2016-01-01

    BACKGROUND Type 1 diabetes mellitus (T1DM) is associated with increased risks of enteric infection. Paneth cells constitute the first line of the gut defense. Little is known about the impact of T1DM on the bactericidal function of intestinal Paneth cells. MATERIAL AND METHODS A T1DM mouse model was induced by intraperitoneal injection of streptozocin. The analysis of intestinal microbiota and the mucosal bactericidal assay were conducted to evaluate intestinal innate defense. Numbers of Paneth cells and their expression of related antimicrobial peptides were analyzed. Expression of total insulin receptor (IR) mRNA and relative levels of IR-A/IR-B were analyzed. The primary mouse small intestinal crypt culture was used to analyze the effect of insulin and glucose on the expression of related antimicrobial peptides of Paneth cells. RESULTS In T1DM mice, bacterial loads were increased and there was an alteration in the composition of the intestinal microflora. Exogenous bacteria had better survival in the small bowel of the T1DM mice. The expression of Paneth cell-derived antimicrobial peptides was significantly decreased in the T1DM mice, although the number of Paneth cells was increased. Relative levels of IR-A/IR-B in Paneth cells of diabetic mice were elevated, but the total IR mRNA did not change. Insulin treatment restored the expression of antimicrobial peptides and normalized the microbiota in the gut of T1DM mice. Subsequently, in vitro culture assay demonstrated that insulin rather than glucose was essential for the optimal expression of Paneth cell-derived antimicrobial peptides. CONCLUSIONS The bactericidal function of intestinal Paneth cells was impaired in STZ-induced diabetic mice, resulting in the altered intestinal flora, and insulin was essential for the optimal expression of Paneth cell-derived antimicrobial peptides. PMID:27572949

  14. Association of Bactericidal Dysfunction of Paneth Cells in Streptozocin-Induced Diabetic Mice with Insulin Deficiency

    PubMed Central

    Yu, Tao; Yang, Hong-Sheng; Lu, Xi-Ji; Xia, Zhong-Sheng; Ouyang, Hui; Shan, Ti-Dong; Huang, Can-Ze; Chen, Qi-Kui

    2016-01-01

    Background Type 1 diabetes mellitus (T1DM) is associated with increased risks of enteric infection. Paneth cells constitute the first line of the gut defense. Little is known about the impact of T1DM on the bactericidal function of intestinal Paneth cells. Material/Methods A T1DM mouse model was induced by intraperitoneal injection of streptozocin. The analysis of intestinal microbiota and the mucosal bactericidal assay were conducted to evaluate intestinal innate defense. Numbers of Paneth cells and their expression of related antimicrobial peptides were analyzed. Expression of total insulin receptor (IR) mRNA and relative levels of IR-A/IR-B were analyzed. The primary mouse small intestinal crypt culture was used to analyze the effect of insulin and glucose on the expression of related antimicrobial peptides of Paneth cells. Results In T1DM mice, bacterial loads were increased and there was an alteration in the composition of the intestinal microflora. Exogenous bacteria had better survival in the small bowel of the T1DM mice. The expression of Paneth cell-derived antimicrobial peptides was significantly decreased in the T1DM mice, although the number of Paneth cells was increased. Relative levels of IR-A/IR-B in Paneth cells of diabetic mice were elevated, but the total IR mRNA did not change. Insulin treatment restored the expression of antimicrobial peptides and normalized the microbiota in the gut of T1DM mice. Subsequently, in vitro culture assay demonstrated that insulin rather than glucose was essential for the optimal expression of Paneth cell-derived antimicrobial peptides. Conclusions The bactericidal function of intestinal Paneth cells was impaired in STZ-induced diabetic mice, resulting in the altered intestinal flora, and insulin was essential for the optimal expression of Paneth cell-derived antimicrobial peptides. PMID:27572949

  15. Glycerol-3-phosphate acyltransferase-4-deficient mice are protected from diet-induced insulin resistance by the enhanced association of mTOR and rictor.

    PubMed

    Zhang, Chongben; Cooper, Daniel E; Grevengoed, Trisha J; Li, Lei O; Klett, Eric L; Eaton, James M; Harris, Thurl E; Coleman, Rosalind A

    2014-08-01

    Glycerol-3-phosphate acyltransferase (GPAT) activity is highly induced in obese individuals with insulin resistance, suggesting a correlation between GPAT function, triacylglycerol accumulation, and insulin resistance. We asked whether microsomal GPAT4, an isoform regulated by insulin, might contribute to the development of hepatic insulin resistance. Compared with control mice fed a high fat diet, Gpat4(-/-) mice were more glucose tolerant and were protected from insulin resistance. Overexpression of GPAT4 in mouse hepatocytes impaired insulin-suppressed gluconeogenesis and insulin-stimulated glycogen synthesis. Impaired glucose homeostasis was coupled to inhibited insulin-stimulated phosphorylation of Akt(Ser⁴⁷³) and Akt(Thr³⁰⁸). GPAT4 overexpression inhibited rictor's association with the mammalian target of rapamycin (mTOR), and mTOR complex 2 (mTORC2) activity. Compared with overexpressed GPAT3 in mouse hepatocytes, GPAT4 overexpression increased phosphatidic acid (PA), especially di16:0-PA. Conversely, in Gpat4(-/-) hepatocytes, both mTOR/rictor association and mTORC2 activity increased, and the content of PA in Gpat4(-/-) hepatocytes was lower than in controls, with the greatest decrease in 16:0-PA species. Compared with controls, liver and skeletal muscle from Gpat4(-/-)-deficient mice fed a high-fat diet were more insulin sensitive and had a lower hepatic content of di16:0-PA. Taken together, these data demonstrate that a GPAT4-derived lipid signal, likely di16:0-PA, impairs insulin signaling in mouse liver and contributes to hepatic insulin resistance. PMID:24939733

  16. Glycerol-3-phosphate acyltransferase-4-deficient mice are protected from diet-induced insulin resistance by the enhanced association of mTOR and rictor.

    PubMed

    Zhang, Chongben; Cooper, Daniel E; Grevengoed, Trisha J; Li, Lei O; Klett, Eric L; Eaton, James M; Harris, Thurl E; Coleman, Rosalind A

    2014-08-01

    Glycerol-3-phosphate acyltransferase (GPAT) activity is highly induced in obese individuals with insulin resistance, suggesting a correlation between GPAT function, triacylglycerol accumulation, and insulin resistance. We asked whether microsomal GPAT4, an isoform regulated by insulin, might contribute to the development of hepatic insulin resistance. Compared with control mice fed a high fat diet, Gpat4(-/-) mice were more glucose tolerant and were protected from insulin resistance. Overexpression of GPAT4 in mouse hepatocytes impaired insulin-suppressed gluconeogenesis and insulin-stimulated glycogen synthesis. Impaired glucose homeostasis was coupled to inhibited insulin-stimulated phosphorylation of Akt(Ser⁴⁷³) and Akt(Thr³⁰⁸). GPAT4 overexpression inhibited rictor's association with the mammalian target of rapamycin (mTOR), and mTOR complex 2 (mTORC2) activity. Compared with overexpressed GPAT3 in mouse hepatocytes, GPAT4 overexpression increased phosphatidic acid (PA), especially di16:0-PA. Conversely, in Gpat4(-/-) hepatocytes, both mTOR/rictor association and mTORC2 activity increased, and the content of PA in Gpat4(-/-) hepatocytes was lower than in controls, with the greatest decrease in 16:0-PA species. Compared with controls, liver and skeletal muscle from Gpat4(-/-)-deficient mice fed a high-fat diet were more insulin sensitive and had a lower hepatic content of di16:0-PA. Taken together, these data demonstrate that a GPAT4-derived lipid signal, likely di16:0-PA, impairs insulin signaling in mouse liver and contributes to hepatic insulin resistance.

  17. Myeloid Cell-Restricted Insulin/IGF-1 Receptor Deficiency Protects against Skin Inflammation.

    PubMed

    Knuever, Jana; Willenborg, Sebastian; Ding, Xiaolei; Akyüz, Mehmet D; Partridge, Linda; Niessen, Carien M; Brüning, Jens C; Eming, Sabine A

    2015-12-01

    Myeloid cells are key regulators of tissue homeostasis and disease. Alterations in cell-autonomous insulin/IGF-1 signaling in myeloid cells have recently been implicated in the development of systemic inflammation and insulin-resistant diabetes mellitus type 2 (DM). Impaired wound healing and inflammatory skin diseases are frequent DM-associated skin pathologies, yet the underlying mechanisms are elusive. In this study, we investigated whether myeloid cell-restricted IR/IGF-1R signaling provides a pathophysiologic link between systemic insulin resistance and the development of cutaneous inflammation. Therefore, we generated mice lacking both the insulin and IGF-1 receptor in myeloid cells (IR/IGF-1R(MKO)). Whereas the kinetics of wound closure following acute skin injury was similar in control and IR/IGF-1R(MKO) mice, in two different conditions of dermatitis either induced by repetitive topical applications of the detergent SDS or by high-dose UV B radiation, IR/IGF-1R(MKO) mice were protected from inflammation, whereas controls developed severe skin dermatitis. Notably, whereas during the early phase in both inflammatory conditions the induction of epidermal proinflammatory cytokine expression was similar in control and IR/IGF-1R(MKO) mice, during the late stage, epidermal cytokine expression was sustained in controls but virtually abrogated in IR/IGF-1R(MKO) mice. This distinct kinetic of epidermal cytokine expression was paralleled by proinflammatory macrophage activation in controls and a noninflammatory phenotype in mutants. Collectively, our findings provide evidence for a proinflammatory IR/IGF-1R-dependent pathway in myeloid cells that plays a critical role in the dynamics of an epidermal-dermal cross-talk in cutaneous inflammatory responses, and may add to the mechanistic understanding of diseases associated with disturbances in myeloid cell IR/IGF-1R signaling, including DM. PMID:26519530

  18. Myeloid cell-restricted Insulin/IGF-1 receptor deficiency protects against skin inflammation

    PubMed Central

    Ding, Xiaolei; Akyüz, Mehmet D.; Partridge, Linda; Niessen, Carien M.; Brüning, Jens C.; Eming, Sabine A.

    2016-01-01

    Myeloid cells are key regulators of tissue homeostasis and disease. Alterations in cell-autonomous Insulin/IGF-1 signaling in myeloid cells have recently been implicated in the development of systemic inflammation and insulin-resistant diabetes mellitus type 2 (DM). Impaired wound healing and inflammatory skin diseases are frequent DM-associated skin pathologies, yet the underlying mechanisms are elusive. Here we investigated whether myeloid cell-restricted IR/IGF-1R signalling provides a pathophysiological link between systemic insulin resistance and the development of cutaneous inflammation. Therefore, we generated mice lacking both the Insulin and IGF-1 receptor in myeloid cells (IR/IGF-1RMKO). Whereas the kinetics of wound closure following acute skin injury was similar in control and IR/IGF-1RMKO mice, in two different conditions of dermatitis either induced by repetitive topical applications of the detergent SDS or by high-dose UVB radiation, IR/IGF-1RMKO mice were protected from inflammation, whereas controls developed severe skin dermatitis. Notably, whereas during the early phase in both inflammatory conditions the induction of epidermal pro-inflammatory cytokine expression was similar in control and IR/IGF-1RMKO mice, during the late stage, epidermal cytokine expression was sustained in controls, however virtually abrogated in IR/IGF-1RMKO mice. This distinct kinetic of epidermal cytokine expression was paralleled by pro-inflammatory macrophage activation in controls and a non-inflammatory phenotype in mutants. Collectively, our findings provide evidence for a pro-inflammatory IR/IGF-1R-dependent pathway in myeloid cells that plays a critical role in the dynamics of an epidermal-dermal crosstalk in cutaneous inflammatory responses, and may add to the mechanistic understanding of diseases associated with disturbances in myeloid cell IR/IGF-1R signaling including DM. PMID:26519530

  19. Metabolic inflexibility impairs insulin secretion and results in MODY-like diabetes in triple FoxO-deficient mice.

    PubMed

    Kim-Muller, Ja Young; Zhao, Shangang; Srivastava, Shekhar; Mugabo, Yves; Noh, Hye-Lim; Kim, YoungJung R; Madiraju, S R Murthy; Ferrante, Anthony W; Skolnik, Edward Y; Prentki, Marc; Accili, Domenico

    2014-10-01

    Pancreatic β cell failure in type 2 diabetes is associated with functional abnormalities of insulin secretion and deficits of β cell mass. It's unclear how one begets the other. We have shown that loss of β cell mass can be ascribed to impaired FoxO1 function in different models of diabetes. Here we show that ablation of the three FoxO genes (1, 3a, and 4) in mature β cells results in early-onset, maturity-onset diabetes of the young (MODY)-like diabetes, with abnormalities of the MODY networks Hnf4α, Hnf1α, and Pdx1. FoxO-deficient β cells are metabolically inflexible, i.e., they preferentially utilize lipids rather than carbohydrates as an energy source. This results in impaired ATP generation and reduced Ca(2+)-dependent insulin secretion. The present findings demonstrate a secretory defect caused by impaired FoxO activity that antedates dedifferentiation. We propose that defects in both pancreatic β cell function and mass arise through FoxO-dependent mechanisms during diabetes progression. PMID:25264246

  20. Metabolic Inflexibility Impairs Insulin Secretion And Results In MODY-like Diabetes In Triple FoxO-deficient Mice

    PubMed Central

    Kim-Muller, Ja Young; Zhao, Shangang; Srivastava, Shekhar; Mugabo, Yves; Noh, Hye-Lim; Kim, YoungJung R.; Madiraju, S.R. Murthy; Ferrante, Anthony W.; Skolnik, Edward Y.; Prentki, Marc; Accili, Domenico

    2014-01-01

    Pancreatic β-cell failure in type 2 diabetes is associated with functional abnormalities of insulin secretion and deficits of β-cell mass. It’s unclear how one begets the other. We have shown that loss of β-cell mass can be ascribed to impaired FoxO1 function in different models of diabetes. Here we show that ablation of the three FoxO genes (1, 3a, and 4) in mature β-cells results in early-onset, maturity onset diabetes of the young (MODY)-like diabetes, with abnormalities of the MODY networks of Hnf4α, Hnf1α, and Pdx1. FoxO-deficient β-cells are metabolically inflexible, i.e., they preferentially utilize lipids rather than carbohydrates as an energy source. This results in impaired ATP generation, and reduced Ca2+-dependent insulin secretion. The present findings demonstrate a secretory defect caused by impaired FoxO activity that antedates dedifferentiation. We propose that defects in both pancreatic β–cell function and mass arise through FoxO-dependent mechanisms during diabetes progression. PMID:25264246

  1. Adipocyte-specific CD1d-deficiency mitigates diet-induced obesity and insulin resistance in mice

    PubMed Central

    Satoh, Masashi; Hoshino, Miyuki; Fujita, Koki; Iizuka, Misao; Fujii, Satoshi; Clingan, Christopher S.; Van Kaer, Luc; Iwabuchi, Kazuya

    2016-01-01

    It has been shown that CD1d expression and glycolipid-reactive, CD1d-restricted NKT cells exacerbate the development of obesity and insulin resistance in mice. However, the relevant CD1d-expressing cells that influence the effects of NKT cells on the progression of obesity remain incompletely defined. In this study, we have demonstrated that 3T3-L1 adipocytes can present endogenous ligands to NKT cells, leading to IFN-γ production, which in turn, stimulated 3T3-L1 adipocytes to enhance expression of CD1d and CCL2, and decrease expression of adiponectin. Furthermore, adipocyte-specific CD1d deletion decreased the size of the visceral adipose tissue mass and enhanced insulin sensitivity in mice fed a high-fat diet (HFD). Accordingly, NKT cells were less activated, IFN-γ production was significantly reduced, and levels of adiponectin were increased in these animals as compared with control mice on HFD. Importantly, macrophage recruitment into the adipose tissue of adipocyte-specific CD1d-deficient mice was significantly blunted. These findings indicate that interactions between NKT cells and CD1d-expressing adipocytes producing endogenous NKT cell ligands play a critical role in the induction of inflammation and functional modulation of adipose tissue that leads to obesity. PMID:27329323

  2. Short-Term, Low-Dose GH Therapy Improves Insulin Sensitivity Without Modifying Cortisol Metabolism and Ectopic Fat Accumulation in Adults With GH Deficiency

    PubMed Central

    Roberts, Charles T.; Frystyk, Jan; Rooney, William D.; Pollaro, James R.; Klopfenstein, Bethany J.; Purnell, Jonathan Q.

    2014-01-01

    Context: Low-dose GH (LGH) therapy has been reported to improve insulin sensitivity in GH-deficient adults; however, the mechanism is unclear. Hypothesis: Effects of LGH therapy on insulin sensitivity are mediated through changes in cortisol metabolism and ectopic fat accumulation. Design and Setting: This was a double-blind, placebo-controlled, parallel, 3-month study. Participants and Intervention: Seventeen GH-deficient adults were randomized to receive either daily LGH or placebo injections. Fasting blood samples were collected at baseline, and months 1 and 3, whereas hyperinsulinemic-euglycemic clamps, magnetic resonance spectroscopy scans, 24-hour cortisol production rates (CPRs), and sc abdominal fat biopsies were performed at baseline and month 3. Main Outcome Measures: Clamp glucose infusion rate, intramyocellular, extramyocellular, and intrahepatic lipid content, 24-hour CPRs, adipocyte size, and adipocyte 11β-hydroxysteroid dehydrogenase activity in adults with GH deficiency were evaluated. Results: At month 1, LGH did not alter fasting levels of glucose, insulin, C-peptide, free fatty acid, adiponectin, total IGF-1, IGF-1 bioactivity, IGF-2, IGF binding protein (IGFBP)-2, or IGF-1 to IGFBP-3 molar ratio. At month 3, LGH increased clamp glucose infusion rates (P < .01) and IGF-1 to IGFBP-3 molar ratio (P < .05), but fasting glucose, insulin, C-peptide, free fatty acid, adiponectin, IGF-1 bioactivity, IGF-2, IGFBP-2, 24-hour CPRs, adipocyte size, adipocyte 11β-hydroxysteroid dehydrogenase activity, intrahepatic lipid, extramyocellular, or intramyocellular were unchanged. In the placebo group, all within-group parameters from months 1 and 3 compared with baseline were unchanged. Conclusions: Short-term LGH therapy improves insulin sensitivity without inducing basal lipolysis and had no effect on cortisol metabolism and ectopic fat accumulation in GH-deficient adults. This may reflect an LGH-induced increase in IGF-1 to IGFBP-3 molar ratio exerting

  3. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  4. Lecithin cholesterol acyltransferase deficiency protects from diet-induced insulin resistance and obesity--novel insights from mouse models.

    PubMed

    Ng, Dominic S

    2013-01-01

    Reduced plasma level of high-density lipoprotein cholesterol is an independent risk factor for atherosclerotic heart disease and is also a major diagnostic feature for the metabolic syndrome. Lecithin cholesterol acyltransferase (LCAT), an enzyme mediating the esterification of cholesterol in circulating lipoproteins, is one of the major modulators of high-density lipoprotein levels and composition. Loss-of-function mutations of LCAT invariably results in profound HDL deficiency and also modest hypertriglyceridemia (HTG). While intense effort has been devoted to investigate the role of LCAT in atherogenesis, which remains controversial, much less is known about whether LCAT also modulates glucose and energy homeostasis. In recent years, findings from studying the LCAT knockout mice began to suggest that LCAT deficiency, in spite of its unfavorable high triglyceride/low HDL lipid phenotypes, may confer protection from the development of insulin resistance and obesity. To date, alterations in specific metabolic pathways in liver, white adipose tissue, and skeletal muscle have been implicated. A better mechanistic understanding in the metabolic linkage between the primary biochemical action of LCAT and the downstream protective phenotypes will greatly facilitate the identification of potential novel pathways and targets in the treatment of obesity and diabetes. PMID:23374720

  5. Attenuation of high sucrose diet–induced insulin resistance in tryptophan 2,3-dioxygenase deficient Drosophila melanogaster vermilion mutants

    PubMed Central

    Navrotskaya, Valeriya; Oxenkrug, Gregory; Vorobyova, Lyudmila; Summergrad, Paul

    2015-01-01

    Exposure to high sugar diet (HSD) serves as an experimental model of insulin resistance (IR) and type 2 diabetes (T2D) in mammals and insects. Peripheral IR induced by HSD delays emergence of pupae from larvae and decreases body weight of Drosophila imago. Understanding of mechanisms of IR/T2D is essential for refining T2D prevention and treatment strategies. Dysregulation of tryptophan (TRP) – kynurenine (KYN) pathway was suggested as one of the mechanisms of IR development. Rate-limiting enzyme of TRP – KYN pathway in Drosophila is TRP 2,3-dioxygenase (TDO), an evolutionary conserved ortholog of human TDO. In insects TDO is encoded by vermilion gene. TDO is not active in vermilion mutants. In order to evaluate the possible impact of deficient formation of KYN from TRP on the inducement of IR by HSD, we compared the effect of HSD in wild type (Oregon) and vermilion mutants of Drosophila melanogaster by assessing the time of white pupae emergence from larva and body weight of imago. Delay of emergence of pupae from larvae induced by high sucrose diet was less pronounced in vermilion (1.4 days) than in Oregon flies (3.3 days) in comparison with flies maintained on standard diet. Exposure to high sucrose diet decreased body weight of Oregon (but not vermilion) imago. Attenuation of high sucrose diet–induced IR/T2D in vermilion flies might depend on deficiency of TRP – KYN pathway. Besides IR/T2D, HSD induces obesity in Drosophila. Future studies of HSD-induced obesity and IR/T2D in TDO deficient vermilion mutants of Drosophila might help to understand the mechanisms of high association between IR/T2D and obesity. Modulation of TRP – KYN metabolism might be utilized for prevention and treatment of IR/T2D. PMID:26191458

  6. Attenuation of high sucrose diet–induced insulin resistance in ABC transporter deficient white mutant of Drosophila melanogaster

    PubMed Central

    Navrotskaya, Valeriya; Oxenkrug, Gregory; Vorobyova, Lyudmila; Summergrad, Paul

    2016-01-01

    Exposure to high sugar diet (HSD) is an experimental model of insulin resistance (IR) and type 2 diabetes (T2D) in mammals and insects. In Drosophila, HSD-induced IR delays emergence of pupae from larvae and eclosion of imago from pupae. Understanding of mechanisms of IR/T2D is essential for refining T2D prevention and treatment strategies. Dysregulation of tryptophan (Trp)-kynurenine (Kyn) pathway was suggested as one of the mechanisms of IR/T2D development. Rate-limiting enzyme of Trp-Kyn pathway in Drosophila is Trp 2,3-dioxygenase (TDO), an evolutionary conserved ortholog of human TDO. We previously reported attenuation of HSD-induced IR in vermilion mutants with inactive TDO. Conversion of Trp to Kyn is regulated not only by TDO activity but by intracellular Trp transport via ATP-binding cassette (ABC) transporter encoded by white gene in Drosophila. In order to evaluate the possible impact of deficient intracellular Trp transport on the inducement of IR by HSD, we compared the effect of HSD on pre-imago development in wild type flies, Canton-Special (C-S), and C-S flies containing white gene, white (C-S). Presence of white gene attenuated (by 50%) HSD-induced delay of pupae emergence from larvae and female and male imago eclosion from pupae. Present study together with our earlier report reveals that both decreased TDO activity (due to vermilion gene mutation) or deficient Trp transport into cell without affecting TDO levels (due to white gene mutation) attenuate HSD-induced development of IR in Drosophila model of T2D. Our data provide further support for hypothesis that dysregulation of Trp-Kyn pathway is one of the pathophysiological mechanisms and potential target for early diagnosis, prevention and treatment of IR/T2D. PMID:27375855

  7. Leptin recruits Creb-regulated transcriptional coactivator 1 to improve hyperglycemia in insulin-deficient diabetes

    PubMed Central

    Kim, Geun Hyang; Szabo, Andras; King, Emily M.; Ayala, Jennifer; Ayala, Julio E.; Altarejos, Judith Y.

    2014-01-01

    Objective Leptin alleviates hyperglycemia in rodent models of Type 1 diabetes by activating leptin receptors within the central nervous system. Here we delineate whether non-canonical leptin signaling through the Creb-regulated transcriptional coactivator 1 (Crtc1) contributes to leptin-dependent improvements in diabetic glucose metabolism. Methods We employed mice with a targeted genetic disruption of Crtc1, tracer dilution techniques and neuroanatomical studies to interrogate whether Crtc1 enables leptin to improve glucose metabolism in streptozotocin-induced (STZ) diabetes. Results Here we show that leptin improves diabetic glucose metabolism through Crtc1-dependent and independent mechanisms. We find that leptin reduces diabetic hyperglycemia, hepatic gluconeogenic gene expression and selectively increases glucose disposal to brown adipose tissue and heart, in STZ-diabetic Crtc1WT mice but not Crtc1+/− mice. By contrast, leptin decreases circulating glucagon levels in both STZ-diabetic Crtc1WT and Crtc1+/− mice. We also demonstrate that leptin promotes Crtc1 nuclear translocation in pro-opiomelanocortin (Pomc) and non-Pomc neurons within the hypothalamic arcuate nucleus (ARC). Accordingly, leptin's ability to induce Pomc gene expression in the ARC is blunted in STZ-diabetic Crtc1+/− mice. Conclusions Our study reveals that Crtc1 functions as a conduit for leptin's glucoregulatory actions in insulin-dependent diabetes. This study also highlights a new role for Crtc1 in modulating peripheral glucose metabolism. PMID:25737949

  8. Gsα deficiency in adipose tissue improves glucose metabolism and insulin sensitivity without an effect on body weight.

    PubMed

    Li, Yong-Qi; Shrestha, Yogendra B; Chen, Min; Chanturiya, Tatyana; Gavrilova, Oksana; Weinstein, Lee S

    2016-01-12

    Gsα, the G protein that transduces receptor-stimulated cAMP generation, mediates sympathetic nervous system stimulation of brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT), which are both potential targets for treating obesity, as well as lipolysis. We generated a mouse line with Gsα deficiency in mature BAT and WAT adipocytes (Ad-GsKO). Ad-GsKO mice had impaired BAT function, absent browning of WAT, and reduced lipolysis, and were therefore cold-intolerant. Despite the presence of these abnormalities, Ad-GsKO mice maintained normal energy balance on both standard and high-fat diets, associated with decreases in both lipolysis and lipid synthesis. In addition, Ad-GsKO mice maintained at thermoneutrality on a standard diet also had normal energy balance. Ad-GsKO mice had improved insulin sensitivity and glucose metabolism, possibly secondary to the effects of reduced lipolysis and lower circulating fatty acid binding protein 4 levels. Gsα signaling in adipose tissues may therefore affect whole-body glucose metabolism in the absence of an effect on body weight. PMID:26712027

  9. Gsα deficiency in adipose tissue improves glucose metabolism and insulin sensitivity without an effect on body weight

    PubMed Central

    Li, Yong-Qi; Shrestha, Yogendra B.; Chen, Min; Chanturiya, Tatyana; Gavrilova, Oksana; Weinstein, Lee S.

    2016-01-01

    Gsα, the G protein that transduces receptor-stimulated cAMP generation, mediates sympathetic nervous system stimulation of brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT), which are both potential targets for treating obesity, as well as lipolysis. We generated a mouse line with Gsα deficiency in mature BAT and WAT adipocytes (Ad-GsKO). Ad-GsKO mice had impaired BAT function, absent browning of WAT, and reduced lipolysis, and were therefore cold-intolerant. Despite the presence of these abnormalities, Ad-GsKO mice maintained normal energy balance on both standard and high-fat diets, associated with decreases in both lipolysis and lipid synthesis. In addition, Ad-GsKO mice maintained at thermoneutrality on a standard diet also had normal energy balance. Ad-GsKO mice had improved insulin sensitivity and glucose metabolism, possibly secondary to the effects of reduced lipolysis and lower circulating fatty acid binding protein 4 levels. Gsα signaling in adipose tissues may therefore affect whole-body glucose metabolism in the absence of an effect on body weight. PMID:26712027

  10. Streptozotocin-induced insulin deficiency leads to development of behavioral deficits in rats.

    PubMed

    Haider, Saida; Ahmed, Saara; Tabassum, Saiqa; Memon, Zahida; Ikram, Mehwish; Haleem, Darakhshan J

    2013-03-01

    Diabetes mellitus is one of the most common serious metabolic disorders in humans that develops due to diminished production of insulin (type I) or resistance to its effect (type II and gestational). The present study was designed to determine the neuropsychological deficits produced following streptozotocin-induced diabetes in rats. Rats were made diabetic by the intra-peritoneal administration of 60 mg/kg streptozotocin (STZ) which induces type-1 diabetes by the destruction "β-cells" of pancreas. Body weight, food and water intake was monitored daily. Open field test (OFT) model, forced swim test (FST) and Morris water maze (MWM) model were performed for the evaluation of ambulation, depression-like symptoms and memory effects, respectively. After 10 days of diabetes induction the exploratory activity of rats was monitored by OFT while depression-like symptoms and memory effects in rats were analyzed by FST and MWM. Results showed that there was no significant effect of STZ-induced diabetes on body weight but food and water intake of STZ-induced diabetic rats was significantly increased. Exploratory activity was significantly decreased and short-term and long-term memory was significantly impaired while the depression-like symptoms was significantly increased in STZ diabetic rats. Thus, it may be suggested that STZ-induced diabetes alters the brain functions and may play an important role in the pathophysiology of certain behavioral deficits like depression, impaired learning and memory functions related to diabetes. This finding may be of relevance in the pathophysiology and in the clinical picture, which could be related to an altered brain serotonin metabolism and neurotransmission and may possibly be related to neuropsychiatric disorders in diabetic patients.

  11. Insulin Receptor Substrate 2 (IRS2)-Deficient Mice Show Sensorineural Hearing Loss That Is Delayed by Concomitant Protein Tyrosine Phosphatase 1B (PTP1B) Loss of Function

    PubMed Central

    Murillo-Cuesta, Silvia; Camarero, Guadalupe; González-Rodríguez, Águeda; de la Rosa, Lourdes Rodríguez; Burks, Deborah J; Avendaño, Carlos; Valverde, Ángela M; Varela-Nieto, Isabel

    2012-01-01

    The insulin receptor substrate (IRS) proteins are key mediators of insulin and insulinlike growth factor 1 (IGF-1) signaling. Protein tyrosine phosphatase (PTP)-1B dephosphorylates and inactivates both insulin and IGF-1 receptors. IRS2-deficient mice present altered hepatic insulin signaling and β-cell failure and develop type 2–like diabetes. In addition, IRS2 deficiency leads to developmental defects in the nervous system. IGF1 gene mutations cause syndromic sensorineural hearing loss in humans and mice. However, the involvement of IRS2 and PTP1B, two IGF-1 downstream signaling mediators, in hearing onset and loss has not been studied. Our objective was to study the hearing function and cochlear morphology of Irs2-null mice and the impact of PTP1B deficiency. We have studied the auditory brainstem responses and the cochlear morphology of systemic Irs2−/−Ptpn1+/+, Irs2+/+Ptpn1−/−and Irs2−/−Ptpn1−/− mice at different postnatal ages. The results indicated that Irs2−/−Ptpn1+/+ mice present a profound congenital sensorineural deafness before the onset of diabetes and altered cochlear morphology with hypoinnervation of the cochlear ganglion and aberrant stria vascularis, compared with wild-type mice. Simultaneous PTP1B deficiency in Irs2−/−Ptpn1−/− mice delays the onset of deafness. We show for the first time that IRS2 is essential for hearing and that PTP1B inhibition may be useful for treating deafness associated with hyperglycemia and type 2 diabetes. PMID:22160220

  12. Low circulating insulin-like growth factor I increases atherosclerosis in ApoE-deficient mice

    PubMed Central

    Shai, Shaw-Yung; Sukhanov, Sergiy; Higashi, Yusuke; Vaughn, Charlotte; Rosen, Clifford J.

    2011-01-01

    Some clinical studies have suggested that lower IGF-I levels may be associated with an increased risk of ischemic heart disease. We generated atherosclerosis-prone apolipoprotein E-deficient (ApoE−/−) mice with 6T alleles (6T/ApoE−/− mice) with a 20% decline in circulating IGF-I and fed these mice and control ApoE−/− mice with normal chow or a Western diet for 12 wk to evaluate the effect of low serum IGF-I on atherosclerosis progression. We found that the 6T/ApoE−/− phenotype was characterized by an increased atherosclerotic burden, elevated plaque macrophages, and increased proinflammatory cytokine TNF-α levels compared with ApoE−/− controls. 6T/ApoE−/− mice had similar body weight, blood pressure, serum total cholesterol levels, total plaque and smooth muscle cell apoptosis rates, and circulating levels of endothelial progenitor cells as ApoE−/− mice. 6T/ApoE−/− mice fed with normal chow had reduced vascular endothelial nitric oxide synthase mRNA levels and a trend to increased aortic expression of chemokine (C-C motif) receptor (CCR)1, CCR2, and monocyte chemoattractant protein-1/chemokine (C-C motif) ligand 2. Western diet-fed 6T/ApoE−/− mice had a trend to increased expression of macrophage scavenger receptor-1/scavenger receptor-A, osteopontin, ATP-binding cassette (subfamily A, member 1), and angiotensin-converting enzyme and elevated circulating levels of the neutrophil chemoattractant chemokine (C-X-C motif) ligand 1 (KC). Our data establish a link between lower circulating IGF-I and increased atherosclerosis that has important clinical implications. PMID:21335474

  13. Effects of a high-calcium diet on serum insulin-like growth factor-1 levels in magnesium-deficient rats.

    PubMed

    Matsuzaki, Hiroshi; Kajita, Yasutaka; Miwa, Misao

    2012-01-01

    In order to clarify the effects of a high-calcium (Ca) diet on bone formation in magnesium (Mg)-deficient rats, this study focused on the effects of a high-Ca diet on serum insulin-like growth factor-1 (IGF-1) levels. Male rats were randomized by weight into four groups, and fed one of four experimental diets containing two different Mg concentrations (0.05% (normal-Mg) or Mg-free (Mg-deficient)), and two different Ca concentrations (0.5% (normal-Ca) or 1.0% (high-Ca)) for 14 days. Serum concentrations of osteocalcin and IGF-1 were significantly lower in rats fed the Mg-deficient diet than in rats fed the normal-Mg diet. On the other hand, dietary Ca concentration had no significant influence on serum concentrations of osteocalcin and IGF-1. This study suggested that: 1) a high-Ca diet has no preventive effects on the decreased bone formation seen in Mg-deficient rats; and 2) a high-Ca diet does not enhance serum IGF-1 levels in Mg-deficient rats. Moreover, unchanged serum IGF-1 concentrations may contribute to the decreased bone formation seen in Mg-deficient rats receiving a high-Ca diet.

  14. The melanocortin system and insulin resistance in humans: insights from a patient with complete POMC deficiency and type 1 diabetes mellitus.

    PubMed

    Aslan, I R; Ranadive, S A; Valle, I; Kollipara, S; Noble, J A; Vaisse, C

    2014-01-01

    The central melanocortin system is essential for the regulation of long-term energy homeostasis in humans. Rodent experiments suggest that this system also affects glucose metabolism, in particular by modulating peripheral insulin sensitivity independently of its effect on adiposity. Rare patients with complete genetic defects in the central melanocortin system can provide insight into the role of this system in glucose homeostasis in humans. We here describe the eighth individual with complete proopiomelanocortin (POMC) deficiency and the first with coincidental concomitant type 1 diabetes, which provides a unique opportunity to determine the role of melanocortins in glucose homeostasis in human. Direct sequencing of the POMC gene in this severely obese patient with isolated adrenocorticotropic hormone deficiency identified a homozygous 5' untranslated region mutation -11C>A, which we find to abolish normal POMC protein synthesis, as assessed in vitro. The patient's insulin requirements were as expected for his age and pubertal development. This unique patient suggests that in humans the central melanocortin system does not seem to affect peripheral insulin sensitivity, independently of its effect on adiposity. PMID:23649472

  15. Molecular mechanisms underlying fasting modulated liver insulin sensitivity and metabolism in male lipodystrophic Bscl2/Seipin-deficient mice.

    PubMed

    Chen, Weiqin; Zhou, Hongyi; Saha, Pradip; Li, Luge; Chan, Lawrence

    2014-11-01

    Bscl2(-/-) mice recapitulate many of the major metabolic manifestations in Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) individuals, including lipodystrophy, hepatomegly, hepatic steatosis, and insulin resistance. The mechanisms that underlie hepatic steatosis and insulin resistance in Bscl2(-/-) mice are poorly understood. To address this issue, we performed hyperinsulinemic-euglycemic clamp on Bscl2(-/-) and wild-type mice after an overnight (16-h) fast, and found that Bscl2(-/-) actually displayed increased hepatic insulin sensitivity. Interestingly, liver in Bscl2(-/-) mice after a short term (4-h) fast had impaired acute insulin signaling, a defect that disappeared after a 16-hour fast. Notably, fasting-dependent hepatic insulin signaling in Bscl2(-/-) mice was not associated with liver diacylglyceride and ceramide contents, but could be attributable in part to the expression of hepatic insulin signaling receptor and substrates. Meanwhile, increased de novo lipogenesis and decreased β-oxidation led to severe hepatic steatosis in fed or short-fasted Bscl2(-/-) mice whereas liver lipid accumulation and metabolism in Bscl2(-/-) mice was markedly affected by prolonged fasting. Furthermore, mice with liver-specific inactivation of Bscl2 manifested no hepatic steatosis even under high-fat diet, suggesting Bscl2 does not play a cell autonomous role in regulating liver lipid homeostasis. Overall, our results offered new insights into the metabolic adaptations of liver in response to fasting and uncovered a novel fasting-dependent regulation of hepatic insulin signaling in a mouse model of human BSCL2.

  16. Protein deficiency during pregnancy and lactation impairs glucose-induced insulin secretion but increases the sensitivity to insulin in weaned rats.

    PubMed

    Latorraca, M Q; Carneiro, E M; Boschero, A C; Mello, M A

    1998-09-01

    We studied glucose homeostasis in rat pups from dams fed on a normal-protein (170 g/kg) (NP) diet or a diet containing 60 g protein/kg (LP) during fetal life and the suckling period. At birth, total serum protein, serum albumin and serum insulin levels were similar in both groups. However, body weight and serum glucose levels in LP rats were lower than those in NP rats. At the end of the suckling period (28 d of age), total serum protein, serum albumin and serum insulin were significantly lower and the liver glycogen and serum free fatty acid levels were significantly higher in LP rats compared with NP rats. Although the fasting serum glucose level was similar in both groups, the area under the blood glucose concentration curve after a glucose load was higher for NP rats (859 (SEM 58) mmol/l per 120 min for NP rats v. 607 (SEM 52) mmol/l per 120 min for LP rats; P < 0.005). The mean post-glucose increase in insulin was higher for NP rats (30 (SEM 4.7) nmol/l per 120 min for NP rats v. 17 (SEM 3.9) nmol/l per 120 min for LP rats; P < 0.05). The glucose disappearance rate for NP rats (0.7 (SEM 0.1) %/min) was lower than that for LP rats (1.6 (SEM 0.2) %/min; P < 0.001). Insulin secretion from isolated islets (1 h incubation) in response to 16.7 mmol glucose/l was augmented 14-fold in NP rats but only 2.6-fold in LP rats compared with the respective basal secretion (2.8 mmol/l; P < 0.001). These results indicate that in vivo as well as in vitro insulin secretion in pups from dams maintained on a LP diet is reduced. This defect may be counteracted by an increase in the sensitivity of target tissues to insulin. PMID:9875069

  17. Clinical utility of insulin and insulin analogs

    PubMed Central

    Sanlioglu, Ahter D.; Altunbas, Hasan Ali; Balci, Mustafa Kemal; Griffith, Thomas S.; Sanlioglu, Salih

    2013-01-01

    Diabetes is a pandemic disease characterized by autoimmune, genetic and metabolic abnormalities. While insulin deficiency manifested as hyperglycemia is a common sequel of both Type-1 and Type-2 diabetes (T1DM and T2DM), it does not result from a single genetic defect—rather insulin deficiency results from the functional loss of pancreatic β cells due to multifactorial mechanisms. Since pancreatic β cells of patients with T1DM are destroyed by autoimmune reaction, these patients require daily insulin injections. Insulin resistance followed by β cell dysfunction and β cell loss is the characteristics of T2DM. Therefore, most patients with T2DM will require insulin treatment due to eventual loss of insulin secretion. Despite the evidence of early insulin treatment lowering macrovascular (coronary artery disease, peripheral arterial disease and stroke) and microvascular (diabetic nephropathy, neuropathy and retinopathy) complications of T2DM, controversy exists among physicians on how to initiate and intensify insulin therapy. The slow acting nature of regular human insulin makes its use ineffective in counteracting postprandial hyperglycemia. Instead, recombinant insulin analogs have been generated with a variable degree of specificity and action. Due to the metabolic variability among individuals, optimum blood glucose management is a formidable task to accomplish despite the presence of novel insulin analogs. In this article, we present a recent update on insulin analog structure and function with an overview of the evidence on the various insulin regimens clinically used to treat diabetes. PMID:23584214

  18. Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes β-cell regeneration

    PubMed Central

    Ye, Risheng; Holland, William L; Gordillo, Ruth; Wang, Miao; Wang, Qiong A; Shao, Mengle; Morley, Thomas S; Gupta, Rana K; Stahl, Andreas; Scherer, Philipp E

    2014-01-01

    As an adipokine in circulation, adiponectin has been extensively studied for its beneficial metabolic effects. While many important functions have been attributed to adiponectin under high-fat diet conditions, little is known about its essential role under regular chow. Employing a mouse model with inducible, acute β-cell ablation, we uncovered an essential role of adiponectin under insulinopenic conditions to maintain minimal lipid homeostasis. When insulin levels are marginal, adiponectin is critical for insulin signaling, endocytosis, and lipid uptake in subcutaneous white adipose tissue. In the absence of both insulin and adiponectin, severe lipoatrophy and hyperlipidemia lead to lethality. In contrast, elevated adiponectin levels improve systemic lipid metabolism in the near absence of insulin. Moreover, adiponectin is sufficient to mitigate local lipotoxicity in pancreatic islets, and it promotes reconstitution of β-cell mass, eventually reinstating glycemic control. We uncovered an essential new role for adiponectin, with major implications for type 1 diabetes. DOI: http://dx.doi.org/10.7554/eLife.03851.001 PMID:25339419

  19. Long-term deficiency of circulating and hippocampal insulin-like growth factor I induces depressive behavior in adult mice: A potential model of geriatric depression

    PubMed Central

    Mitschelen, Matthew; Yan, Han; Farley, Julie A.; Warrington, Junie P.; Han, Song; Hereñú, Claudia B.; Csiszar, Anna; Ungvari, Zoltan; Bailey-Downs, Lora C.; Bass, Caroline E.; Sonntag, William E.

    2011-01-01

    Numerous studies support the hypothesis that deficiency of insulin-like growth factor I (IGF-1) in adults contributes to depression, but direct evidence is limited. Many psychological and pro-cognitive effects have been attributed to IGF-1, but appropriate animal models of adult-onset IGF-1 deficiency are lacking. In this study, we use a viral-mediated Cre-loxP system to knockout the Igf1 gene in either the liver, neurons of the CA1 region of the hippocampus, or both. Knockout of liver Igf1 reduced serum IGF-1 levels by 40% and hippocampal IGF-1 levels by 26%. Knockout of Igf1 in CA1 reduced hippocampal IGF-1 levels by 13%. The most severe reduction in hippocampal IGF-1 occurred in the group with knockouts in both liver and CA1 (36% reduction), and was associated with a 3.5-fold increase in immobility in the forced swim test. Reduction of either circulating or hippocampal IGF-1 levels did not alter anxiety measured in an open field and elevated plus maze, nor locomotion in the open field. Furthermore, local compensation for deficiencies in circulating IGF-1 did not occur in the hippocampus, nor were serum levels of IGF-1 upregulated in response to the moderate decline of hippocampal IGF-1 caused by the knockouts in CA1. We conclude that adult-onset IGF-1 deficiency alone is sufficient to induce a depressive phenotype in mice. Furthermore, our results suggest that individuals with low brain levels of IGF-1 are at increased risk for depression and these behavioral effects are not ameliorated by increased local IGF-1 production or transport. Our study supports the hypothesis that the natural IGF-1 decline in aging humans may contribute to geriatric depression. PMID:21524689

  20. Effects of vitamin D supplementation and circuit training on indices of obesity and insulin resistance in T2D and vitamin D deficient elderly women

    PubMed Central

    Kim, Hyoung-Jun; Kang, Chang-Kyun; Park, Hyon; Lee, Man-Gyoon

    2014-01-01

    [Purpose] The purpose of this study was to investigate the effects of vitamin D supplementation and circuit training on body composition, abdominal fat, blood lipids, and insulin resistance in T2D and vitamin D deficient elderly women. [Methods] Fifty-two elderly women were randomly assigned to either the vitamin D supplementation with circuit training group (D+T: n = 15), the circuit training group (T: n = 13), the vitamin D supplementation group (D: n = 11), or the control group (CON: n = 13). The subjects in D took vitamin D supplements at 1,200 IU per day for 12 weeks; the subjects in T exercised 3 to 4 times per week, 25 to 40 minutes per session for 12 weeks; and the subjects in D+T participated in both treatments. Subjects in CON were asked to maintain normal daily life pattern for the duration of the study. Body composition, abdominal fat, blood lipids, and surrogate indices for insulin resistance were measured at pre- and post-test and the data were compared among the four groups and between two tests by utilizing two-way ANOVA with repeated measures. The main results of the present study were as follows: [Results] 1) Body weight, fat mass, percent body fat, and BMI decreased significantly in T, whereas there were no significant changes in the variables in D and CON. Lean body mass showed no significant changes in all groups. 2) TFA and SFA decreased significantly in T, whereas there were no significant changes in the variables in D and CON. The other abdominal fat related variables showed no significant changes in all groups. 3) TC, TG, HDL-C, and LDL-C showed improvements in T, whereas there were no significant changes in the variables in D and CON. 4) Fasting glucose, fasting insulin, and HOMA-IR tended to be lower in D+T. [Conclusion] It was concluded that the 12 weeks of vitamin D supplementation and circuit training would have positive effects on abdominal fat and blood lipid profiles in T2D and vitamin D deficient elderly women. Vitamin D

  1. Transient hypothermia in HIV-1 with insulin-like growth factor-1 deficiency and severe protein calorie malnutrition

    PubMed Central

    McNeal, Tresa

    2015-01-01

    Hypothermia is a multifactorial process that results from decreased heat production or increased heat loss, with the former due to, but not limited to, endocrine dysfunction, malnutrition, and central nervous system pathologies. We report an HIV-1 patient with transient hypothermia secondary to severe protein calorie malnutrition and elevated HIV viral load. In this patient, it is hypothesized that the etiology of the hypothermia was multifactorial due to severe protein calorie malnutrition, evidenced by decreased insulin-like growth factor-1 levels, severe hypothyroidism, and an elevated HIV viral load, since the patient began to improve with the initiation of highly active antiretroviral therapy, improved nutrition, and continuation of thyroid supplementation. PMID:25552791

  2. In vivo high-resolution magic angle spinning magnetic resonance spectroscopy of Drosophila melanogaster at 14.1 T shows trauma in aging and in innate immune-deficiency is linked to reduced insulin signaling

    PubMed Central

    RIGHI, VALERIA; APIDIANAKIS, YIORGOS; MINTZOPOULOS, DIONYSSIOS; ASTRAKAS, LOUKAS; RAHME, LAURENCE G.; TZIKA, A. ARIA

    2010-01-01

    In vivo magnetic resonance spectroscopy (MRS), a non-destructive biochemical tool for investigating live organisms, has yet to be used in the fruit fly Drosophila melanogaster, a useful model organism for investigating genetics and physiology. We developed and implemented a high-resolution magic-angle-spinning (HRMAS) MRS method to investigate live Drosophila at 14.1 T. We demonstrated, for the first time, the feasibility of using HRMAS MRS for molecular characterization of Drosophila with a conventional MR spectrometer equipped with an HRMAS probe. We showed that the metabolic HRMAS MRS profiles of injured, aged wild-type (wt) flies and of immune deficient (imd) flies were more similar to chico flies mutated at the chico gene in the insulin signaling pathway, which is analogous to insulin receptor substrate 1–4 (IRS1–4) in mammals and less to those of adipokinetic hormone receptor (akhr) mutant flies, which have an obese phenotype. We thus provide evidence for the hypothesis that trauma in aging and in innate immune-deficiency is linked to insulin signaling. This link may explain the mitochondrial dysfunction that accompanies insulin resistance and muscle wasting that occurs in trauma, aging and immune system deficiencies, leading to higher susceptibility to infection. Our approach advances the development of novel in vivo non-destructive research approaches in Drosophila, suggests biomarkers for investigation of biomedical paradigms, and thus may contribute to novel therapeutic development. PMID:20596596

  3. Combined Insulin Deficiency and Endotoxin Exposure Stimulate Lipid Mobilization and Alter Adipose Tissue Signaling in an Experimental Model of Ketoacidosis in Subjects With Type 1 Diabetes: A Randomized Controlled Crossover Trial.

    PubMed

    Svart, Mads; Kampmann, Ulla; Voss, Thomas; Pedersen, Steen B; Johannsen, Mogens; Rittig, Nikolaj; Poulsen, Per L; Nielsen, Thomas S; Jessen, Niels; Møller, Niels

    2016-05-01

    Most often, diabetic ketoacidosis (DKA) in adults results from insufficient insulin administration and acute infection. DKA is assumed to release proinflammatory cytokines and stress hormones that stimulate lipolysis and ketogenesis. We tested whether this perception of DKA can be reproduced in an experimental human model by using combined insulin deficiency and acute inflammation and tested which intracellular mediators of lipolysis are affected in adipose tissue. Nine subjects with type 1 diabetes were studied twice: 1) insulin-controlled euglycemia and 2) insulin deprivation and endotoxin administration (KET). During KET, serum tumor necrosis factor-α, cortisol, glucagon, and growth hormone levels increased, and free fatty acids and 3-hydroxybutyrate concentrations and the rate of lipolysis rose markedly. Serum bicarbonate and pH decreased. Adipose tissue mRNA contents of comparative gene identification-58 (CGI-58) increased and G0/G1 switch 2 gene (G0S2) mRNA decreased robustly. Neither protein levels of adipose triglyceride lipase (ATGL) nor phosphorylations of hormone-sensitive lipase were altered. The clinical picture of incipient DKA in adults can be reproduced by combined insulin deficiency and endotoxin-induced acute inflammation. The precipitating steps involve the release of proinflammatory cytokines and stress hormones, increased lipolysis, and decreased G0S2 and increased CGI-58 mRNA contents in adipose tissue, compatible with latent ATGL stimulation. PMID:26884439

  4. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  5. Growth hormone deficiency in 'little' mice results in aberrant body composition, reduced insulin-like growth factor-I and insulin-like growth factor-binding protein-3 (IGFBP-3), but does not affect IGFBP-2, -1 or -4.

    PubMed

    Donahue, L R; Beamer, W G

    1993-01-01

    Although GH is known to regulate somatic growth during development, its role in regulating adult body composition is less well defined. The effects of GH on individual body compartments--water, fat, protein and mineral--are achieved both by the action of GH and by a GH-induced hormone, insulin-like growth factor-I (IGF-I). We used a genetic model of GH deficiency, the 'little' (gene symbol lit) mouse, to determine the GH regulation of IGF-I and its insulin-like growth factor-binding proteins (IGFBPs) and to define the interaction between these hormones and each body compartment in adults. Our results showed that GH-deficient lit/lit mice had reduced levels of serum IGF-I (range 38-130 micrograms/l) compared with normal lit/+ littermates (range 432-567 micrograms/l) between 2 and 52 weeks of age. The lit/lit mice did not experience the fivefold increase in IGF-I between 2 and 4 weeks of age that was seen in lit/+ mice. In lit/lit serum, overall binding of 125I-labelled IGF-I to the four IGFBPs was reduced, solely in response to a reduced amount of IGFBP-3. No overall differences were found between lit/lit and lit/+ mice in the binding of 125I-labelled IGF-I to IGFBP-2, -1 or -4. Age-related declines in IGF-I and IGFBPs were seen in lit/lit mice. However, adult levels of IGF-I were maintained in lit/+ mice to at least 52 weeks of age, as were levels of IGFBP-1 and -4, while IGFBP-3 and -2 declined with age. With respect to body composition, comparison of lit/lit with lit/+ mice showed that the lit/lit mice were characterized by abnormally large adipose tissue stores and reduced body water, protein and mineral from 2 weeks onward. These changes occurred despite normal energy intake in lit/lit mice up to 52 weeks of age, indicating that neither undernutrition nor hyperphagia is characteristic of this GH-induced model of obesity. Furthermore, lit/lit males accrued more body fat beginning at an earlier age than lit/lit females. With advancing age, the per cent body fat

  6. Pharmacogenomics of insulin-like growth factor-I generation during GH treatment in children with GH deficiency or Turner syndrome

    PubMed Central

    Stevens, A; Clayton, P; Tatò, L; Yoo, H W; Rodriguez-Arnao, M D; Skorodok, J; Ambler, G R; Zignani, M; Zieschang, J; Della Corte, G; Destenaves, B; Champigneulle, A; Raelson, J; Chatelain, P

    2014-01-01

    Individual responses to growth hormone (GH) treatment are variable. Short-term generation of insulin-like growth factor-I (IGF-I) is recognized as a potential marker of sensitivity to GH treatment. This prospective, phase IV study used an integrated genomic analysis to identify markers associated with 1-month change in IGF-I (ΔIGF-I) following initiation of recombinant human (r-h)GH therapy in treatment-naïve children with GH deficiency (GHD) (n=166) or Turner syndrome (TS) (n=147). In both GHD and TS, polymorphisms in the cell-cycle regulator CDK4 were associated with 1-month ΔIGF-I (P<0.05). Baseline gene expression was also correlated with 1-month ΔIGF-I in both GHD and TS (r=0.3; P<0.01). In patients with low IGF-I responses, carriage of specific CDK4 alleles was associated with MAPK and glucocorticoid receptor signaling in GHD, and with p53 and Wnt signaling pathways in TS. Understanding the relationship between genomic markers and early changes in IGF-I may allow development of strategies to rapidly individualize r-hGH dose. PMID:23567489

  7. Glucose and insulin metabolism in cirrhosis.

    PubMed

    Petrides, A S; DeFronzo, R A

    1989-01-01

    Glucose intolerance, overt diabetes mellitus, and insulin resistance are characteristic features of patients with cirrhosis. Insulin secretion, although increased in absolute terms, is insufficient to offset the presence of insulin resistance. The defect in insulin-mediated glucose disposal involves peripheral tissues, primarily muscle, and most likely reflects a disturbance in glycogen synthesis. Hepatic glucose production is normally sensitive to insulin; at present, it is unknown whether hepatic glucose uptake is impaired in cirrhosis. One of the more likely candidates responsible for the insulin-resistant state is insulin itself. The hyperinsulinemia results from three abnormalities: diminished hepatic extraction, portosystemic/intrahepatic shunting, and enhanced insulin secretion. PMID:2646365

  8. Small molecule activators of the insulin receptor: potential new therapeutic agents for the treatment of diabetes mellitus.

    PubMed

    Laborde, Edgardo; Manchem, Vara Prasad

    2002-12-01

    Diabetes mellitus refers to a spectrum of syndromes characterized by abnormally high levels of glucose in blood. These syndromes are associated with an absolute (Type 1 diabetes) or relative (Type 2 diabetes) deficiency of insulin, coupled with varying degrees of peripheral resistance to the actions of insulin. Clinical studies have shown that controlling hyperglycemia significantly reduces the appearance and progression of the vascular complications associated with diabetes. Insulin's regulation of glucose homeostasis is mediated by a cascade of signaling events that take place upon insulin binding to its cell surface receptor. Autophosphorylation of the receptor and activation of its intrinsic tyrosine kinase are critical processes for transmitting these intracellular signals. Type 1 diabetes patients depend on exogenous insulin to achieve these effects, whereas Type 2 diabetes patients can accomplish a similar response through oral medications that increase the production of endogenous insulin or enhance its actions on the target tissues. Current biochemical and clinical evidence suggests that defects within the insulin receptor itself may be a cause of insulin resistance leading to Type 2 diabetes. This review focuses on the insulin receptor as a target for therapeutic intervention, and describes the recent discovery of small molecules that act on the receptor and either enhance or directly emulate the actions of insulin both in vitro and in vivo.

  9. Inactivation of Rac1 reduces Trastuzumab resistance in PTEN deficient and insulin-like growth factor I receptor overexpressing human breast cancer SKBR3 cells.

    PubMed

    Zhao, Yong; Wang, Zhishan; Jiang, Yiguo; Yang, Chengfeng

    2011-12-26

    Drug resistance remains to be a big challenge in applying anti-HER2 monoclonal antibody Trastuzumab for treating breast cancer with HER2 overexpression. Amplification of insulin-like growth factor I receptor (IGF-IR) and deletion of tumor suppressor phosphatase and tensin homolog (PTEN) are implicated in Trastuzumab resistance, however, the underlying mechanisms have not been clearly defined. Activation of Rac1, a member of Rho GTPase family, is capable of causing cytoskeleton reorganization, regulating gene expression and promoting cell proliferation. To investigate the mechanism of Trastuzumab resistance, PTEN knockdown and IGF-IR overexpressing stable cell lines were generated in HER2 overexpression human breast cancer SKBR3 cells. Rac1 was highly activated in PTEN deficient and IGF-IR overexpressing Trastuzumab-resistant cells in a HER2-independent manner. Inactivation of Rac1 by using a Rac1 inhibitor NSC23766 or siRNA knocking down the expression of Tiam1, a guanine nucleotide exchange factor for Rac, significantly reduced Trastuzumab resistance in SKBR3 cells. Inhibition of Rac1 had no effect on the levels of phosphor-HER2 and phosphor-Akt, but significantly decreased the levels of cyclin D1 in Trastuzumab-resistant cells. Inhibition of Akt with an Akt inhibitor also significantly reduced Trastuzumab resistance. However, simultaneous inhibition of both Rac1 and Akt resulted in a significantly more decrease of Trastuzumab resistance than inactivation of Rac1 or Akt alone. These results suggest that Rac1 activation is critically involved in Trastuzumab resistance caused by PTEN deletion or IGF-IR overexpression. Simultaneous inhibition of Rac1 and Akt may represent a promising strategy in reducing Trastuzumab resistance in HER2 overexpression breast cancer.

  10. Insulin and Insulin Resistance

    PubMed Central

    2005-01-01

    As obesity and diabetes reach epidemic proportions in the developed world, the role of insulin resistance and its consequences are gaining prominence. Understanding the role of insulin in wide-ranging physiological processes and the influences on its synthesis and secretion, alongside its actions from the molecular to the whole body level, has significant implications for much chronic disease seen in Westernised populations today. This review provides an overview of insulin, its history, structure, synthesis, secretion, actions and interactions followed by a discussion of insulin resistance and its associated clinical manifestations. Specific areas of focus include the actions of insulin and manifestations of insulin resistance in specific organs and tissues, physiological, environmental and pharmacological influences on insulin action and insulin resistance as well as clinical syndromes associated with insulin resistance. Clinical and functional measures of insulin resistance are also covered. Despite our incomplete understanding of the complex biological mechanisms of insulin action and insulin resistance, we need to consider the dramatic social changes of the past century with respect to physical activity, diet, work, socialisation and sleep patterns. Rapid globalisation, urbanisation and industrialisation have spawned epidemics of obesity, diabetes and their attendant co-morbidities, as physical inactivity and dietary imbalance unmask latent predisposing genetic traits. PMID:16278749

  11. New Insulins and New Aspects in Insulin Delivery.

    PubMed

    Woo, Vincent C

    2015-08-01

    The major abnormality in both type 1 and type 2 diabetes is insulin deficiency. The methods of replacing insulin have improved throughout the decades, but hypoglycemia is still the limiting factor for many individuals with diabetes, and it prevents them from achieving ideal glycemic targets. New insulin and newer delivery systems are being developed that can improve some of the limitations of current insulins or make the delivery of insulins more acceptable for some patients. Extending the duration of action of basal insulins and shortening the peak of fast-acting insulins may have advantages for individuals with diabetes. Different delivery systems may make insulin more acceptable to patients and may have other advantages, which may aid in attaining better glycemic control.

  12. New Insulins and New Aspects in Insulin Delivery.

    PubMed

    Woo, Vincent C

    2015-08-01

    The major abnormality in both type 1 and type 2 diabetes is insulin deficiency. The methods of replacing insulin have improved throughout the decades, but hypoglycemia is still the limiting factor for many individuals with diabetes, and it prevents them from achieving ideal glycemic targets. New insulin and newer delivery systems are being developed that can improve some of the limitations of current insulins or make the delivery of insulins more acceptable for some patients. Extending the duration of action of basal insulins and shortening the peak of fast-acting insulins may have advantages for individuals with diabetes. Different delivery systems may make insulin more acceptable to patients and may have other advantages, which may aid in attaining better glycemic control. PMID:26233724

  13. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  14. Yin Yang 1 deficiency in skeletal muscle protects against rapamycin-induced diabetic-like symptoms through activation of insulin/IGF signaling.

    PubMed

    Blättler, Sharon M; Cunningham, John T; Verdeguer, Francisco; Chim, Helen; Haas, Wilhelm; Liu, Huifei; Romanino, Klaas; Rüegg, Markus A; Gygi, Steven P; Shi, Yang; Puigserver, Pere

    2012-04-01

    Rapamycin and its derivatives are mTOR inhibitors used in tissue transplantation and cancer therapy. A percentage of patients treated with these inhibitors develop diabetic-like symptoms, but the molecular mechanisms are unknown. We show here that chronic rapamycin treatment in mice led to insulin resistance with suppression of insulin/IGF signaling and genes associated within this pathway, such as Igf1-2, Irs1-2, and Akt1-3. Importantly, skeletal muscle-specific YY1 knockout mice were protected from rapamycin-induced diabetic-like symptoms. This protection was caused by hyperactivation of insulin/IGF signaling with increased gene expression in this cascade that, in contrast to wild-type mice, was not suppressed by rapamycin. Mechanistically, rapamycin induced YY1 dephosphorylation and recruitment to promoters of insulin/IGF genes, which promoted interaction with the polycomb protein-2 corepressor. This was associated with H3K27 trimethylation leading to decreased gene expression and insulin signaling. These results have implications for rapamycin action in human diseases and biological processes such as longevity. PMID:22482732

  15. Folate deficiency triggers an oxidative-nitrosative stress-mediated apoptotic cell death and impedes insulin biosynthesis in RINm5F pancreatic islet β-cells: relevant to the pathogenesis of diabetes.

    PubMed

    Hsu, Hung-Chih; Chiou, Jeng-Fong; Wang, Yu-Huei; Chen, Chia-Hui; Mau, Shin-Yi; Ho, Chun-Te; Chang, Pey-Jium; Liu, Tsan-Zon; Chen, Ching-Hsein

    2013-01-01

    It has been postulated that folic acid (folate) deficiency (FD) may be a risk factor for the pathogenesis of a variety of oxidative stress-triggered chronic degenerative diseases including diabetes, however, the direct evidence to lend support to this hypothesis is scanty. For this reason, we set out to study if FD can trigger the apoptotic events in an insulin-producing pancreatic RINm5F islet β cells. When these cells were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature proceeding through a mitochondria-dependent pathway. In addition to evoke oxidative stress, FD condition could also trigger nitrosative stress through a NF-κB-dependent iNOS-mediated overproduction of nitric oxide (NO). The latter compound could then trigger depletion of endoplasmic reticulum (ER) calcium (Ca(2+)) store leading to cytosolic Ca(2+) overload and caused ER stress as evidence by the activation of CHOP expression. Furthermore, FD-induced apoptosis of RINm5F cells was found to be correlated with a time-dependent depletion of intracellular glutathione (GSH) and a severe down-regulation of Bcl-2 expression. Along the same vein, we also demonstrated that FD could severely impede RINm5F cells to synthesize insulin and their abilities to secret insulin in response to glucose stimulation were appreciably hampered. Even more importantly, we found that folate replenishment could not restore the ability of RINm5F cells to resynthesize insulin. Taken together, our data provide strong evidence to support the hypothesis that FD is a legitimate risk factor for the pathogenesis of diabetes. PMID:24223745

  16. Activation of the PI3K/Akt signal transduction pathway and increased levels of insulin receptor in protein repair-deficient mice.

    PubMed

    Farrar, Christine; Houser, Carolyn R; Clarke, Steven

    2005-02-01

    Protein L-isoaspartate (D-aspartate) O-methyltransferase is an enzyme that catalyses the repair of isoaspartyl damage in proteins. Mice lacking this enzyme (Pcmt1-/- mice) have a progressive increase in brain size compared with wild-type mice (Pcmt1+/+ mice), a phenotype that can be associated with alterations in the PI3K/Akt signal transduction pathway. Here we show that components of this pathway, including Akt, GSK3beta and PDK-1, are more highly phosphorylated in the brains of Pcmt1-/- mice, particularly in cells of the hippocampus, in comparison with Pcmt1+/+ mice. Examination of upstream elements of this pathway in the hippocampus revealed that Pcmt1-/- mice have increased activation of insulin-like growth factor-I (IGF-I) receptor and/or insulin receptor. Western blot analysis revealed an approximate 200% increase in insulin receptor protein levels and an approximate 50% increase in IGF-I receptor protein levels in the hippocampus of Pcmt1-/- mice. Higher levels of the insulin receptor protein were also found in other regions of the adult brain and in whole tissue extracts of brain, liver, heart and testes of both juvenile and adult Pcmt1-/- mice. There were no significant differences in plasma insulin levels for adult Pcmt1-/- mice during glucose tolerance tests. However, they did show higher peak levels of blood glucose, suggesting a mild impairment in glucose tolerance. We propose that Pcmt1-/- mice have altered regulation of the insulin pathway, possibly as a compensatory response to altered glucose uptake or metabolism or as an adaptive response to a general accumulation of isoaspartyl protein damage in the brain and other tissues.

  17. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  18. GDM-associated insulin deficiency hinders the dissociation of SERT from ERp44 and down-regulates placental 5-HT uptake

    PubMed Central

    Li, Yicong; Hadden, Coedy; Singh, Preeti; Mercado, Charles P.; Murphy, Pamela; Dajani, Nafisa K.; Lowery, Curtis L.; Roberts, Drucilla J.; Maroteaux, Luc; Kilic, Fusun

    2014-01-01

    Serotonin (5-HT) transporter (SERT) regulates the level of 5-HT in placenta. Initially, we found that in gestational diabetes mellitus (GDM), whereas free plasma 5-HT levels were elevated, the 5-HT uptake rates of trophoblast were significantly down-regulated, due to impairment in the translocation of SERT molecules to the cell surface. We sought to determine the factors mediating the down-regulation of SERT in GDM trophoblast. We previously reported that an endoplasmic reticulum chaperone, ERp44, binds to Cys200 and Cys209 residues of SERT to build a disulfide bond. Following this posttranslational modification, before trafficking to the plasma membrane, SERT must be dissociated from ERp44; and this process is facilitated by insulin signaling and reversed by the insulin receptor blocker AGL2263. However, the GDM-associated defect in insulin signaling hampers the dissociation of ERp44 from SERT. Furthermore, whereas ERp44 constitutively occupies Cys200/Cys209 residues, one of the SERT glycosylation sites, Asp208 located between the two Cys residues, cannot undergo proper glycosylation, which plays an important role in the uptake efficiency of SERT. Herein, we show that the decrease in 5-HT uptake rates of GDM trophoblast is the consequence of defective insulin signaling, which entraps SERT with ERp44 and impairs its glycosylation. In this regard, restoring the normal expression of SERT on the trophoblast surface may represent a novel approach to alleviating some GDM-associated complications. PMID:25512553

  19. Enhanced Nrf2 Activity Worsens Insulin Resistance, Impairs Lipid Accumulation in Adipose Tissue, and Increases Hepatic Steatosis in Leptin-Deficient Mice

    PubMed Central

    Xu, Jialin; Kulkarni, Supriya R.; Donepudi, Ajay C.; More, Vijay R.; Slitt, Angela L.

    2012-01-01

    The study herein determined the role of nuclear factor erythoid 2–related factor 2 (Nrf2) in the pathogenesis of hepatic steatosis, insulin resistance, obesity, and type 2 diabetes. Lepob/ob-Keap1-knockdown (KD) mice, which have increased Nrf2 activity, were generated. Markers of obesity and type 2 diabetes were measured in C57Bl/6J, Keap1-KD, Lepob/ob, and Lepob/ob-Keap1-KD mice. Lepob/ob-Keap1-KD mice exhibited less lipid accumulation, smaller adipocytes, decreased food intake, and reduced lipogenic gene expression. Enhanced Nrf2 activity impaired insulin signaling, prolonged hyperglycemia in response to glucose challenge, and induced insulin resistance in Lepob/ob background. Nrf2 augmented hepatic steatosis and increased lipid deposition in liver. Next, C57Bl/6J and Keap1-KD mice were fed a high-fat diet (HFD) to determine whether Keap1 and Nrf2 impact HFD-induced obesity. HFD-induced obesity and lipid accumulation in white adipose tissue was decreased in Keap1-KD mice. Nrf2 activation via Keap1-KD or sulforaphane suppressed hormone-induced differentiation and decreased peroxisome proliferator–activated receptor-γ, CCAAT/enhancer–binding protein α, and fatty acid–binding protein 4 expression in mouse embryonic fibroblasts. Constitutive Nrf2 activation inhibited lipid accumulation in white adipose tissue, suppressed adipogenesis, induced insulin resistance and glucose intolerance, and increased hepatic steatosis in Lepob/ob mice. PMID:22936178

  20. Pathophysiology of insulin secretion.

    PubMed

    Scheen, A J

    2004-02-01

    Defects in pancreatic islet beta-cell function play a major role in the development of diabetes mellitus. Type 1 diabetes is caused by a more or less rapid destruction of pancreatic beta cells, and the autoimmune process begins years before the beta-cell destruction becomes complete, thereby providing a window of opportunity for intervention. During the preclinical period and early after diagnosis, much of the insulin deficiency may be the result of functional inhibition of insulin secretion that may be at least partially and transiently reversible. Type 2 diabetes is characterized by a progressive loss of beta-cell function throughout the course of the disease. The pattern of loss is an initial (probably of genetic origin) defect in acute or first-phase insulin secretion, followed by a decreasing maximal capacity of insulin secretion. Last, a defective steady-state and basal insulin secretion develops, leading to almost complete beta-cell failure requiring insulin treatment. Because of the reciprocal relation between insulin secretion and insulin sensitivity, valid representation of beta-cell function requires interpretation of insulin responses in the context of the prevailing degree of insulin sensitivity. This appropriate approach highlights defects in insulin secretion at the various stages of the natural history of type 2 diabetes and already present in individuals at risk to develop the disease. To date none of the available therapies can stop the progressive beta-cell defect and the progression of the metabolic disorder. The better understanding of the pathophysiology of the disease should lead to the development of new strategies to preserve beta-cell function in both type 1 and type 2 diabetes mellitus.

  1. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  2. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  3. Growth hormone (GH)-transgenic insulin-like growth factor 1 (IGF1)-deficient mice allow dissociation of excess GH and IGF1 effects on glomerular and tubular growth.

    PubMed

    Blutke, Andreas; Schneider, Marlon R; Wolf, Eckhard; Wanke, Rüdiger

    2016-03-01

    Growth hormone (GH)-transgenic mice with permanently elevated systemic levels of GH and insulin-like growth factor 1 (IGF1) reproducibly develop renal and glomerular hypertrophy and subsequent progressive glomerulosclerosis, finally leading to terminal renal failure. To dissociate IGF1-dependent and -independent effects of GH excess on renal growth and lesion development in vivo, the kidneys of 75 days old IGF1-deficient (I(-/-)) and of IGF1-deficient GH-transgenic mice (I(-/-)/G), as well as of GH-transgenic (G) and nontransgenic wild-type control mice (I(+/+)) were examined by quantitative stereological and functional analyses. Both G and I(-/-)/G mice developed glomerular hypertrophy, hyperplasia of glomerular mesangial and endothelial cells, podocyte hypertrophy and foot process effacement, albuminuria, and glomerulosclerosis. However, I(-/-)/G mice exhibited less severe glomerular alterations, as compared to G mice. Compared to I(+/+) mice, G mice exhibited renal hypertrophy with a significant increase in the number without a change in the size of proximal tubular epithelial (PTE) cells. In contrast, I(-/-)/G mice did not display significant PTE cell hyperplasia, as compared to I(-/-) mice. These findings indicate that GH excess stimulates glomerular growth and induces lesions progressing to glomerulosclerosis in the absence of IGF1. In contrast, IGF1 represents an important mediator of GH-dependent proximal tubular growth in GH-transgenic mice.

  4. Does Insulin Like Growth Factor-1 (IGF-1) Deficiency Have a “Protective” Role in the Development of Diabetic Retinopathy in Thalassamia Major Patients?

    PubMed Central

    De Sanctis, Vincenzo; Incorvaia, Carlo; Soliman, Ashraf T; Candini, Giancarlo; Pepe, Alessia; Kattamis, Christos; Soliman, Nada A.; Elsedfy, Heba; Kholy, Mohamed El

    2015-01-01

    Rationale Both insulin and IGF-1 have been implicated in the control of retinal endothelial cell growth, neovascularization and diabetic retinopathy. Recent findings have established an essential role for IGF-1 in angiogenesis and demonstrated a new target for control of retinopathy that explains why diabetic retinopathy initially increases with the onset of insulin treatment Objective This cross-sectional study was designed to give insights into relationship between Insulin-Growth-Factor 1 (IGF-1) levels and diabetic retinopathy (DR) in a sample of thalassemia major (TM) patients with insulin dependent diabetes mellitus (IDDM). This relation was not previously evaluated, despite the fact that both diseases co-exist in the same patient. The study also describes the clinical and biochemical profile of the associated complications in TM patients with and without IDDM. Design A population-based cross-sectional study. Participants The study includes 19 consecutive TM patients with IDDM and 31 age- and sex-matched TM patients without IDDM who visited our out-patient clinics for an endocrine assessment Methods An extensive medical history, with data on associated complications and current medications, was obtained. Blood samples were drawn in the morning after an overnight fast to measure the serum concentrations of IGF-1, glucose, fructosamine, free thyroxine (FT4), thyrotropin (TSH) and biochemical analysis. Serologic screening assays for hepatitis C virus seropositivity (HCVab and HCV-RNA) were also evaluated; applying routine laboratory methods. Plasma total IGF-1 was measured by a chemiluminescent immunometric assay (CLIA) method. Ophthalmology evaluation was done by the same researcher using stereoscopic fundus biomicroscopy through dilated pupils. DR was graded using the scale developed by the Global Diabetic Retinopathy Group. Iron stores were assessed by direct and indirect methods. Results Eighteen TM patients with IDDM (94.7 %) and ten non-diabetic patients

  5. The role of 25-hydroxyvitamin D deficiency in promoting insulin resistance and inflammation in patients with Chronic Kidney Disease: a randomised controlled trial

    PubMed Central

    2009-01-01

    Background Approximately 50% of patients with stage 3 Chronic Kidney Disease are 25-hydroxyvitamin D insufficient, and this prevalence increases with falling glomerular filtration rate. Vitamin D is now recognised as having pleiotropic roles beyond bone and mineral homeostasis, with the vitamin D receptor and metabolising machinery identified in multiple tissues. Worryingly, recent observational data has highlighted an association between hypovitaminosis D and increased cardiovascular mortality, possibly mediated via vitamin D effects on insulin resistance and inflammation. The main hypothesis of this study is that oral Vitamin D supplementation will ameliorate insulin resistance in patients with Chronic Kidney Disease stage 3 when compared to placebo. Secondary hypotheses will test whether this is associated with decreased inflammation and bone/adipocyte-endocrine dysregulation. Methods/Design This study is a single-centre, double-blinded, randomised, placebo-controlled trial. Inclusion criteria include; estimated glomerular filtration rate 30-59 ml/min/1.73 m2; aged ≥18 on entry to study; and serum 25-hydroxyvitamin D levels <75 nmol/L. Patients will be randomised 1:1 to receive either oral cholecalciferol 2000IU/day or placebo for 6 months. The primary outcome will be an improvement in insulin sensitivity, measured by hyperinsulinaemic euglycaemic clamp. Secondary outcome measures will include serum parathyroid hormone, cytokines (Interleukin-1β, Interleukin-6, Tumour Necrosis Factor alpha), adiponectin (total and High Molecular Weight), osteocalcin (carboxylated and under-carboxylated), peripheral blood mononuclear cell Nuclear Factor Kappa-B p65 binding activity, brachial artery reactivity, aortic pulse wave velocity and waveform analysis, and indirect calorimetry. All outcome measures will be performed at baseline and end of study. Discussion To date, no randomised controlled trial has been performed in pre-dialysis CKD patients to study the correlation

  6. LC–MS Proteomics Analysis of the Insulin/IGF-1-Deficient Caenorhabditis elegans daf-2(e1370) Mutant Reveals Extensive Restructuring of Intermediary Metabolism

    SciTech Connect

    Depuydt, Geert; Xie, Fang; Petyuk, Vladislav A.; Smolders, Arne; Brewer, Heather M.; Camp, David G.; Smith, Richard D.; Braeckman, Bart P.

    2014-04-04

    The insulin/IGF-1 receptor is a major known determinant of dauer formation, stress resistance, longevity, and metabolism in Caenorhabditis elegans. In the past, whole-genome transcript profiling was used extensively to study differential gene expression in response to reduced insulin/IGF-1 signaling, including the expression levels of metabolism-associated genes. Taking advantage of the recent developments in quantitative liquid chromatography mass spectrometry (LC–MS)-based proteomics, we profiled the proteomic changes that occur in response to activation of the DAF-16 transcription factor in the germline-less glp-4(bn2);daf-2(e1370) receptor mutant. Strikingly, the daf-2 profile suggests extensive reorganization of intermediary metabolism, characterized by the upregulation of many core intermediary metabolic pathways. These include glycolysis/gluconeogenesis, glycogenesis, pentose phosphate cycle, citric acid cycle, glyoxylate shunt, fatty acid β-oxidation, one-carbon metabolism, propionate and tyrosine catabolism, and complexes I, II, III, and V of the electron transport chain. Interestingly, we found simultaneous activation of reciprocally regulated metabolic pathways, which is indicative of spatiotemporal coordination of energy metabolism and/or extensive post-translational regulation of these enzymes. Finally, this restructuring of daf-2 metabolism is reminiscent to that of hypometabolic dauers, allowing the efficient and economical utilization of internal nutrient reserves and possibly also shunting metabolites through alternative energy-generating pathways to sustain longevity.

  7. LC-MS Proteomics Analysis of the Insulin/IGF-1 Deficient Caenorhabditis elegans daf-2(e1370) Mutant Reveals Extensive Restructuring of Intermediary Metabolism

    SciTech Connect

    Depuydt, Geert G.; Xie, Fang; Petyuk, Vladislav A.; Smolders, Arne; Brewer, Heather M.; Camp, David G.; Smith, Richard D.; Braeckman, Bart P.

    2014-02-20

    The insulin/IGF-1 receptor is a major known determinant of dauer formation, stress resistance, longevity and metabolism in C. elegans. In the past, whole-genome transcript profiling was used extensively to study differential gene expression in response to reduced insulin/IGF-1 signaling, including expression levels of metabolism-associated genes. Taking advantage of the recent developments in quantitative liquid chromatography mass-spectrometry (LC-MS) based proteomics, we profiled the proteomic changes that occur in response to activation of the DAF-16 transcription factor in the germline-less glp-4(bn2); daf-2(e1370) receptor mutant. Strikingly, the daf-2 profile suggests extensive reorganization of intermediary metabolism, characterized by the up-regulation of many core intermediary metabolic pathways. These include, glycolysis/gluconeogenesis, glycogenesis, pentose phosphate cycle, citric acid cycle, glyoxylate shunt, fatty acid β-oxidation, one-carbon metabolism, propionate and tyrosine catabolism, and complex I, II, III and V of the electron transport chain. Interestingly, we found simultaneous activation of reciprocally regulated metabolic pathways, which is indicative for spatio-temporal coordination of energy metabolism and/or extensive post-translational regulation of these enzymes. This restructuring of daf-2 metabolism is reminiscent to that of hypometabolic dauers, allowing the efficient and economical utilization of internal nutrient reserves, possibly also shunting metabolites through alternative energy-generating pathways, in order to sustain longevity.

  8. LC–MS Proteomics Analysis of the Insulin/IGF-1-Deficient Caenorhabditis elegans daf-2(e1370) Mutant Reveals Extensive Restructuring of Intermediary Metabolism

    PubMed Central

    2015-01-01

    The insulin/IGF-1 receptor is a major known determinant of dauer formation, stress resistance, longevity, and metabolism in Caenorhabditis elegans. In the past, whole-genome transcript profiling was used extensively to study differential gene expression in response to reduced insulin/IGF-1 signaling, including the expression levels of metabolism-associated genes. Taking advantage of the recent developments in quantitative liquid chromatography mass spectrometry (LC–MS)-based proteomics, we profiled the proteomic changes that occur in response to activation of the DAF-16 transcription factor in the germline-less glp-4(bn2);daf-2(e1370) receptor mutant. Strikingly, the daf-2 profile suggests extensive reorganization of intermediary metabolism, characterized by the upregulation of many core intermediary metabolic pathways. These include glycolysis/gluconeogenesis, glycogenesis, pentose phosphate cycle, citric acid cycle, glyoxylate shunt, fatty acid β-oxidation, one-carbon metabolism, propionate and tyrosine catabolism, and complexes I, II, III, and V of the electron transport chain. Interestingly, we found simultaneous activation of reciprocally regulated metabolic pathways, which is indicative of spatiotemporal coordination of energy metabolism and/or extensive post-translational regulation of these enzymes. This restructuring of daf-2 metabolism is reminiscent to that of hypometabolic dauers, allowing the efficient and economical utilization of internal nutrient reserves and possibly also shunting metabolites through alternative energy-generating pathways to sustain longevity. PMID:24555535

  9. Insulin Signaling And Insulin Resistance

    PubMed Central

    Beale, Elmus G.

    2013-01-01

    Insulin resistance or its sequelae may be the common etiology of maladies associated with metabolic syndrome (e.g., hypertension, type 2 diabetes, atherosclerosis, heart attack, stroke and kidney failure). It is thus important to understand those factors that affect insulin sensitivity. This review stems from the surprising discovery that interference with angiotensin signaling improves insulin sensitivity and it provides a general overview of insulin action and factors that control insulin sensitivity. PMID:23111650

  10. A Comparative Study of Age-Related Hearing Loss in Wild Type and Insulin-Like Growth Factor I Deficient Mice

    PubMed Central

    Riquelme, Raquel; Cediel, Rafael; Contreras, Julio; Lourdes, Rodriguez-de la Rosa; Murillo-Cuesta, Silvia; Hernandez-Sanchez, Catalina; Zubeldia, Jose M.; Cerdan, Sebastian; Varela-Nieto, Isabel

    2010-01-01

    Insulin-like growth factor-I (IGF-I) belongs to the family of insulin-related peptides that fulfils a key role during the late development of the nervous system. Human IGF1 mutations cause profound deafness, poor growth and mental retardation. Accordingly, Igf1−/− null mice are dwarfs that have low survival rates, cochlear alterations and severe sensorineural deafness. Presbycusis (age-related hearing loss) is a common disorder associated with aging that causes social and cognitive problems. Aging is also associated with a decrease in circulating IGF-I levels and this reduction has been related to cognitive and brain alterations, although there is no information as yet regarding the relationship between presbycusis and IGF-I biodisponibility. Here we present a longitudinal study of wild type Igf1+/+ and null Igf1−/− mice from 2 to 12 months of age comparing the temporal progression of several parameters: hearing, brain morphology, cochlear cytoarchitecture, insulin-related factors and IGF gene expression and IGF-I serum levels. Complementary invasive and non-invasive techniques were used, including auditory brainstem-evoked response (ABR) recordings and in vivo MRI brain imaging. Igf1−/− null mice presented profound deafness at all the ages studied, without any obvious worsening of hearing parameters with aging. Igf1+/+ wild type mice suffered significant age-related hearing loss, their auditory thresholds and peak I latencies augmenting as they aged, in parallel with a decrease in the circulating levels of IGF-I. Accordingly, there was an age-related spiral ganglion degeneration in wild type mice that was not evident in the Igf1 null mice. However, the Igf1−/− null mice in turn developed a prematurely aged stria vascularis reminiscent of the diabetic strial phenotype. Our data indicate that IGF-I is required for the correct development and maintenance of hearing, supporting the idea that IGF-I-based therapies could contribute to prevent or

  11. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  12. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses.

  13. Practical Classification Guidelines for Diabetes in patients treated with insulin: a cross-sectional study of the accuracy of diabetes diagnosis

    PubMed Central

    Hope, Suzy V; Wienand-Barnett, Sophie; Shepherd, Maggie; King, Sophie M; Fox, Charles; Khunti, Kamlesh; Oram, Richard A; Knight, Bea A; Hattersley, Andrew T; Jones, Angus G; Shields, Beverley M

    2016-01-01

    Background Differentiating between type 1 and type 2 diabetes is fundamental to ensuring appropriate management of patients, but can be challenging, especially when treating with insulin. The 2010 UK Practical Classification Guidelines for Diabetes were developed to help make the differentiation. Aim To assess diagnostic accuracy of the UK guidelines against ‘gold standard’ definitions of type 1 and type 2 diabetes based on measured C-peptide levels. Design and setting In total, 601 adults with insulin-treated diabetes and diabetes duration ≥5 years were recruited in Devon, Northamptonshire, and Leicestershire. Method Baseline information and home urine sample were collected. Urinary C-peptide creatinine ratio (UCPCR) measures endogenous insulin production. Gold standard type 1 diabetes was defined as continuous insulin treatment within 3 years of diagnosis and absolute insulin deficiency (UCPCR<0.2 nmol/mmol ≥5 years post-diagnosis); all others classed as having type 2 diabetes. Diagnostic performance of the clinical criteria was assessed and other criteria explored using receiver operating characteristic (ROC) curves. Results UK guidelines correctly classified 86% of participants. Most misclassifications occurred in patients classed as having type 1 diabetes who had significant endogenous insulin levels (57 out of 601; 9%); most in those diagnosed ≥35 years and treated with insulin from diagnosis, where 37 out of 66 (56%) were misclassified. Time to insulin and age at diagnosis performed best in predicting long-term endogenous insulin production (ROC AUC = 0.904 and 0.871); BMI was a less strong predictor of diabetes type (AUC = 0.824). Conclusion Current UK guidelines provide a pragmatic clinical approach to classification reflecting long-term endogenous insulin production; caution is needed in older patients commencing insulin from diagnosis, where misclassification rates are increased. PMID:27080317

  14. Diabetes mellitus, a complex and heterogeneous disease, and the role of insulin resistance as a determinant of diabetic kidney disease.

    PubMed

    Karalliedde, Janaka; Gnudi, Luigi

    2016-02-01

    Diabetes mellitus (DM) is increasingly recognized as a heterogeneous condition. The individualization of care and treatment necessitates an understanding of the individual patient's pathophysiology of DM that underpins their DM classification and clinical presentation. Classical type-2 diabetes mellitus is due to a combination of insulin resistance and an insulin secretory defect. Type-1 diabetes is characterized by a near-absolute deficiency of insulin secretion. More recently, advances in genetics and a better appreciation of the atypical features of DM has resulted in more categories of diabetes. In the context of kidney disease, patients with DM and microalbuminuria are more insulin resistant, and insulin resistance may be a pathway that results in accelerated progression of diabetic kidney disease. This review summarizes the updated classification of DM, including more rarer categories and their associated renal manifestations that need to be considered in patients who present with atypical features. The benefits and limitations of the tests utilized to make a diagnosis of DM are discussed. We also review the putative pathways and mechanisms by which insulin resistance drives the progression of diabetic kidney disease.

  15. Insulin-Like Growth Factor-Type 1 Receptor Inhibitor NVP-AEW541 Enhances Radiosensitivity of PTEN Wild-Type but Not PTEN-Deficient Human Prostate Cancer Cells

    SciTech Connect

    Isebaert, Sofie F.; Swinnen, Johannes V.; McBride, William H.; Haustermans, Karin M.

    2011-09-01

    Purpose: During the past decade, many clinical trials with both monoclonal antibodies and small molecules that target the insulin-like growth factor-type 1 receptor (IGF-1R) have been launched. Despite the important role of IGF-1R signaling in radioresistance, studies of such agents in combination with radiotherapy are lagging behind. Therefore, the aim of this study was to investigate the effect of the small molecule IGF-1R kinase inhibitor NVP-AEW541 on the intrinsic radioresistance of prostate cancer cells. Methods and Materials: The effect of NVP-AEW541 on cell proliferation, cell viability, IGF-1R signaling, radiosensitivity, cell cycle distribution, and double strand break repair was determined in three human prostate cancer cell lines (PC3, DU145, 22Rv1). Moreover, the importance of the PTEN pathway status was explored by means of transfection experiments with constitutively active Akt or inactive kinase-dead Akt. Results: NVP-AEW541 inhibited cell proliferation and decreased cell viability in a time-and dose-dependent manner in all three cell lines. Radiosensitization was observed in the PTEN wild-type cell lines DU145 and 22Rv1 but not in the PTEN-deficient PC3 cell line. NVP-AEW541-induced radiosensitization coincided with downregulation of phospho-Akt levels and high levels of residual double strand breaks. The importance of PTEN status in the radiosensitization effect was confirmed by transfection experiments with constitutively active Akt or inactive kinase-dead Akt. Conclusions: NVP-AEW541 enhances the effect of ionizing radiation in PTEN wild-type, but not in PTEN-deficient, prostate cancer cells. Proper patient selection based on the PTEN status of the tumor will be critical to the achievement of optimal results in clinical trials in which the combination of radiotherapy and this IGF-1R inhibitor is being explored.

  16. [Novel insulins].

    PubMed

    Eriksson, Johan G; Laine, Merja K

    2016-01-01

    Novel insulins have entered the market during recent years. The ultra-long acting insulins, insulin degludek and insulin glargine, the latter having a strength of 300 U/ml, exhibit a steady and predictable action curve. Studies have indicated that significantly fewer hypoglycemiae occur when using degludek in patients with either type 1 or type 2 diabetes, whereas similar evidence about glargine (300 U/mI) has been obtained in the treatment of type 2 diabetes. The long duration of action of both insulins brings long-needed flexibility to.their dosing. PMID:27089618

  17. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  18. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  19. Biosimilar Insulins

    PubMed Central

    Hompesch, Marcus

    2014-01-01

    Until now most of the insulin used in developed countries has been manufactured and distributed by a small number of multinational companies. Beyond the established insulin manufacturers, a number of new players have developed insulin manufacturing capacities based on modern biotechnological methods. Because the patents for many of the approved insulin formulations have expired or are going to expire soon, these not yet established companies are increasingly interested in seeking market approval for their insulin products as biosimilar insulins (BI) in highly regulated markets like the EU and the United States. Differences in the manufacturing process (none of the insulin manufacturing procedures are 100% identical) can lead to insulins that to some extent may differ from the originator insulin. The key questions are if subtle differences in the structure of the insulins, purity, and so on are clinically relevant and may result in different biological effects. The aim of this article is to introduce and discuss basic aspects that may be of relevance with regard to BI. PMID:24876530

  20. Insulin oedema.

    PubMed Central

    Evans, D. J.; Pritchard-Jones, K.; Trotman-Dickenson, B.

    1986-01-01

    A 35 year old markedly underweight woman presented with uncontrolled diabetes. Following insulin therapy she developed gross fluid retention with extensive peripheral oedema, bilateral pleural effusions and weight gain of 18.8 kg in 22 days, accompanied by a fall in plasma albumin. She responded well to treatment with diuretics and salt-poor albumin, losing 10.3 kg in 6 days without recurrence of oedema. Severe insulin oedema is an uncommon complication of insulin therapy and may be due to effects of insulin on both vascular permeability and the renal tubule. Images Figure 2 PMID:3529068

  1. Iontophoresis of monomeric insulin analogues in vitro: effects of insulin charge and skin pretreatment.

    PubMed

    Langkjaer, L; Brange, J; Grodsky, G M; Guy, R H

    1998-01-23

    The aim of this study was to investigate the influence of association state and net charge of human insulin analogues on the rate of iontophoretic transport across hairless mouse skin, and the effect of different skin pretreatments on said transport. No insulin flux was observed with anodal delivery probably because of degradation at the Ag/AgCl anode. The flux during cathodal iontophoresis through intact skin was insignificant for human hexameric insulin, and only low and variable fluxes were observed for monomeric insulins. Using stripped skin on the other hand, the fluxes of monomeric insulins with two extra negative charges were 50-100 times higher than that of hexameric human insulin. Introducing three additional charges led to a further 2-3-fold increase in flux. Wiping the skin gently with absolute alcohol prior to iontophoresis resulted in a 1000-fold increase in transdermal transport of insulin relative to that across untreated skin, i.e. to almost the same level as stripping the skin. The alcohol pretreatment reduced the electrical resistance of the skin, presumably by lipid extraction. In conclusion, monomeric insulin analogues with at least two extra negative charges can be iontophoretically delivered across hairless mouse skin, whereas insignificant flux is observed with human, hexameric insulin. Wiping the skin with absolute alcohol prior to iontophoresis gave substantially improved transdermal transport of monomeric insulins resulting in clinically relevant delivery rates for basal treatment.

  2. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  3. Insulin Test

    MedlinePlus

    ... people with type 2 diabetes , polycystic ovarian syndrome (PCOS) , prediabetes or heart disease , or metabolic syndrome . A ... resistance), especially in obese individuals and those with PCOS . This test involves an IV-infusion of insulin, ...

  4. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  5. Diabetes and Insulin

    MedlinePlus

    ... years, but may eventually need insulin to maintain glucose control. What are the different types of insulin? Different ... glulisine • Short-acting: regular human insulin Basal insulin. Controls blood glucose levels between meals and throughout the night. This ...

  6. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  7. Insulin degludec does not increase antibody formation versus insulin glargine: an evaluation of phase IIIa trials

    PubMed Central

    Seufert, J.; Solberg, H.; Kinduryte, O.; Johansen, T.; Hollander, P.

    2016-01-01

    We examined insulin antibody formation in patients with type 1 (T1D) or type 2 diabetes (T2D) treated with once‐daily insulin degludec (IDeg) or insulin glargine (IGlar) to evaluate the impact of antibody formation on efficacy and safety. Insulin antibodies were measured using subtraction radioimmunoassays in six phase IIIa clinical trials using IDeg (n = 2250) and IGlar (n = 1184). Spearman's correlation coefficient was used to evaluate associations between cross‐reacting antibodies and change from baseline glycated haemoglobin (HbA1c) and insulin dose. IDeg‐ and IGlar‐specific antibodies remained low [<1% bound/total radioactivity (B/T)] and with low levels of antibodies cross‐reacting with human insulin in patients with T1D (<20% B/T) and T2D (<6% B/T). Spearman's correlation coefficients between insulin antibody levels and change in HbA1c or insulin dose were low in both treatment groups. No clinically meaningful differences in adverse event (AE) rates were observed in patients with >10% B/T or without an absolute increase in antibodies cross‐reacting with human insulin. IDeg treatment resulted in few immunogenic responses in patients with T1D and T2D; antibody formation was not associated with change in HbA1c, insulin dose or rates of AEs. PMID:26663320

  8. Insulin Injection

    MedlinePlus

    ... to control blood sugar in people who have type 1 diabetes (condition in which the body does not make insulin and therefore cannot control the amount of sugar in the blood) or in people who have type 2 diabetes (condition in which the blood sugar ...

  9. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  10. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  11. Anti-insulin antibody test

    MedlinePlus

    Insulin antibodies - serum; Insulin Ab test; Insulin resistance - insulin antibodies; Diabetes - insulin antibodies ... Normally, there are no antibodies against insulin in your blood. ... different laboratories. Some labs use different measurements or ...

  12. Chromium and Polyphenols From Cinnamon Improve Insulin Sensitivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Naturally occurring compounds that have been shown to improve insulin sensitivity include chromium and polyphenols found in cinnamon. These compounds also have similar effects on insulin signaling and glucose control. The signs of chromium deficiency are similar to those for the metabolic syndrome ...

  13. Insulin pumps.

    PubMed

    Pickup, J

    2010-02-01

    Insulin pump therapy is now more than 30 years old, and is an established part of the routine care of selected people with type 1 diabetes. Nevertheless, there are still significant areas of concern, particularly how pumps compare with modern injection therapy, whether the increasingly sophisticated pump technologies like onboard calculators and facility for computer download offer any real benefit, and whether we have a consensus on the clinical indications. The following papers offer some insight into these and other current questions.

  14. Singular perturbation of absolute stability.

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.

    1972-01-01

    It was previously shown (author, 1969) that the regions of absolute stability in the parameter space can be determined when the parameters appear on the right-hand side of the system equations, i.e., the regular case. Here, the effect on absolute stability of a small parameter attached to higher derivatives in the equations (the singular case) is studied. The Lur'e-Postnikov class of nonlinear systems is considered.

  15. Absolute requirement of glucocorticoid for expression of the casein gene in the presence of prolactin.

    PubMed Central

    Ganguly, R; Ganguly, N; Mehta, N M; Banerjee, M R

    1980-01-01

    Second thoracic mammary glands of immature BALB/c female mice were stimulated to pregnancy-like lobuloalveolar (LA) development aftr 6 days of incubation in a corticosteroid-free step I culture medium containing insulin, prolactin, estradiol, progesterone, and growth hormone. A low basal level (0.0009%) of casein mRNA (mRNAcsn) sequences was detectable in the LA glands by a specific cDNA probe. Subsequent incubation of the LA glands for 3 days in medium containing insulin and prolactin or insulin and cortisol failed to elicit mRNAcsn above the basal level, indicating that neither prolactin nor cortisol alone can support casein gene expression. However, an increase in mRNAcsn levels was observed when the 3-day incubation with insulin and cortisol or insulin and prolactin was followed by 3 days of culture in presence of insulin, prolactin, and cortisol. When a 3-day incubation with insulin and prolactin was followed by 3 days in insulin and cortisol medium, mRNAcsn levels in the gland remained similar to the basal level. However, a 20-fold increase in the mRNAcsn levels ensued when the LA glands were sequentially incubated for 3 days in insulin and cortisol and then for another 3 days in insulin and prolactin medium. After a preincubation in insulin and cortisol medium, the LA glands retained residual cortisol during subsequent incubation in insulin and prolactin medium, and the mRNAcsn levels in these glands were related to the level of residual cortisol present. When mRNAcsn and the residual cortisol level reached a minimum, addition of fresh cortisol to the medium caused a 20-fold increase in the mRNAcsn levels. This indicates that cortisol is a limiting factor in insulin and prolactin medium and its presence is absolutely required for casein gene expression. PMID:7003597

  16. Giving an insulin injection

    MedlinePlus

    ... want. Put the needle into and through the rubber top of the insulin bottle. Push the plunger ... longer-acting insulin. Put the needle into the rubber top of that insulin bottle. Push the plunger ...

  17. [Inhaled insulin, new perspective for insulin therapy].

    PubMed

    Radermecker, R P; Sélam, J L

    2005-01-01

    Since the discovery of insulin and its use in diabetes care, patients, physicians and nurses dream of another way of insulin administration than the subcutaneous injections actually used. Different types of insulin administration have been evaluated and, particularly, that using the pulmonary route. The use of this alternative method to deliver insulin may result in improved patient compliance, facilitate intensified therapies and avoid the delay of initiating insulin administration because patient's reluctance. The different insulin pulmonary delivering devices actually studied will be presented. Preliminary data comparing this way of administration and the subcutaneous injection of human regular insulin are good, but sufficient data comparing inhaled insulin with the new short-acting insulin analogues are not yet available. Among various difficulties of the pulmonary insulin delivery, the finding of an effective promoter, capable of increasing the bioavailability of insulin, is a crucial issue. The cost of such insulin administration might also be a problem. Finally, careful studies concerning the safety of this kind of administration, particularly potential long-term pulmonary toxicity, are mandatory. Nevertheless, inhaled insulin is an attractive topic in which most important pharmaceutical companies are currently involved.

  18. Concentrated insulins: the new basal insulins

    PubMed Central

    Lamos, Elizabeth M; Younk, Lisa M; Davis, Stephen N

    2016-01-01

    Introduction Insulin therapy plays a critical role in the treatment of type 1 and type 2 diabetes mellitus. However, there is still a need to find basal insulins with 24-hour coverage and reduced risk of hypoglycemia. Additionally, with increasing obesity and insulin resistance, the ability to provide clinically necessary high doses of insulin at low volume is also needed. Areas covered This review highlights the published reports of the pharmacokinetic (PK) and glucodynamic properties of concentrated insulins: Humulin-R U500, insulin degludec U200, and insulin glargine U300, describes the clinical efficacy, risk of hypoglycemic, and metabolic changes observed, and finally, discusses observations about the complexity of introducing a new generation of concentrated insulins to the therapeutic market. Conclusion Humulin-R U500 has a similar onset but longer duration of action compared with U100 regular insulin. Insulin glargine U300 has differential PK/pharmacodynamic effects when compared with insulin glargine U100. In noninferiority studies, glycemic control with degludec U200 and glargine U300 is similar to insulin glargine U100 and nocturnal hypoglycemia is reduced. Concentrated formulations appear to behave as separate molecular entities when compared with earlier U100 insulin analog compounds. In the review of available published data, newer concentrated basal insulins may offer an advantage in terms of reduced intraindividual variability as well as reducing the injection burden in individuals requiring high-dose and large volume insulin therapy. Understanding the PK and pharmacodynamic properties of this new generation of insulins is critical to safe dosing, dispensing, and administration. PMID:27022271

  19. Iron deficiency.

    PubMed

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world.

  20. Absolute flux scale for radioastronomy

    SciTech Connect

    Ivanov, V.P.; Stankevich, K.S.

    1986-07-01

    The authors propose and provide support for a new absolute flux scale for radio astronomy, which is not encumbered with the inadequacies of the previous scales. In constructing it the method of relative spectra was used (a powerful tool for choosing reference spectra). A review is given of previous flux scales. The authors compare the AIS scale with the scale they propose. Both scales are based on absolute measurements by the ''artificial moon'' method, and they are practically coincident in the range from 0.96 to 6 GHz. At frequencies above 6 GHz, 0.96 GHz, the AIS scale is overestimated because of incorrect extrapolation of the spectra of the primary and secondary standards. The major results which have emerged from this review of absolute scales in radio astronomy are summarized.

  1. The Malnutrition of Obesity: Micronutrient Deficiencies That Promote Diabetes

    PubMed Central

    Via, Michael

    2012-01-01

    Obesity and diabetes are increasing in prevalence worldwide. Despite excessive dietary consumption, obese individuals have high rates of micronutrient deficiencies. Deficiencies of specific vitamins and minerals that play important roles in glucose metabolism and insulin signaling pathways may contribute to the development of diabetes in the obese population. This paper reviews the current evidence supporting this hypothesis. PMID:22462011

  2. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  3. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  4. [The role of inositol deficiency in the etiology of polycystic ovary syndrome disorders].

    PubMed

    Jakimiuk, Artur J; Szamatowicz, Jacek

    2014-01-01

    Inositol acts as a second messenger in insulin signaling pathway Literature data suggest inositol deficiency in insulin-resistant women with the polycystic ovary syndrome. Supplementation of myo-inisitol decreases insulin resistance as it works as an insulin sensitizing agent. The positive role of myo-inositol in the treatment of polycystic ovary syndrome has been of increased evidence recently The present review presents the effects of myo-inositol on the ovarian, hormonal and metabolic parameters in women with PCOS.

  5. Insulin resistance: pathophysiology and rationale for treatment.

    PubMed

    Muntoni, Sergio; Muntoni, Sandro

    2011-01-01

    After binding to its receptor and activating the β-subunit, insulin is faced with two divergent pathways: one is phosphatidylinositol 3-kinase (PI 3-K) dependent, while another is dependent upon activation of mitogen-activated protein kinase (MAP-K). The former is absolutely necessary for mediating most metabolic and antiapoptotic effects; the latter is linked to nonmetabolic, proliferative and mitogenic effects. In obese patients, especially with type 2 diabetes mellitus (DM2), only the PI 3-K, but not the MAP-K, is resistant to insulin stimulation: hence insulin resistance is better defined as metabolic insulin resistance. The resulting 'compensatory hyperinsulinemia' is an unsuccessful attempt to overcome the inhibition of the metabolic pathway at the price of unopposed stimulation of the MAP-K pathway, and the administration of exogenous insulin might worsen the metabolic dysfunction. As the preferential activation of the MAP-K pathway in insulin-resistant patients has atherogenic and mitogenic properties, this leads to atherosclerosis and cancer. Metformin may carry out direct protective action on human β cells, inasmuch as it improves both primary and secondary endpoints through selective inhibition of fatty acyl oxidation. PMID:21304221

  6. Chromium improves insulin response to glucose in rats.

    PubMed

    Striffler, J S; Law, J S; Polansky, M M; Bhathena, S J; Anderson, R A

    1995-10-01

    The effects of chromium (Cr) supplementation on insulin secretion and glucose clearance (KG) during intravenous glucose tolerance tests (IVGTTS) were assessed in rats with impaired glucose tolerance due to dietary Cr deficiency. Male Wistar rats were maintained after weaning on a basal low-Cr diet containing 55% sucrose, 15% lard, 25% casein. American Institute of Nutrition (AIN)-recommended levels of vitamins, no added Cr, and an altered mineral content as required to produce Cr deficiency and impaired glucose tolerance. The Cr-supplemented group ([+Cr] n = 6) were provided with 5 ppm Cr as CrCl3 in the drinking water, and the Cr-deficient group ([-Cr]n = 5) received purified drinking water. At 12 weeks on the diet, both groups of rats were hyperinsulinemic (+Cr, 103 +/- 13; -Cr, 59 +/- 12 microU/mL) and normoglycemic (+Cr, 127 +/- 7; -Cr, 130 +/- 4 mg/dL), indicating insulin resistance. After 24 weeks, insulin levels were normal (+Cr, 19 +/- 5; -Cr, 21 +/- 3 microU/mL) and all rats remained normoglycemic (+Cr, 124 +/- 8; -Cr, 131 +/- 6 mg/dL). KG values during IVGTTS were lower in -Cr rats (KG = 3.58%/min) than in +Cr rats (KG = 5.29%/min), correlating with significantly greater 40-minute glucose areas in the -Cr group (P < .01). Comparisons of 40-minute insulin areas indicated marked insulin hyperresponsiveness in the -Cr group, with insulin-secretory responses increased nearly twofold in -Cr animals (P < .05). Chromium deficiency also led to significant decreases in cyclic adenosine monophosphate (cAMP)-dependent phosphodiesterase (PDE) activity in spleen and testis (P < .01). In these studies, Cr deficiency was characterized by both beta-cell hypersecretion of insulin and tissue insulin resistance that were associated with decreased tissue levels of cAMP PDE activity.

  7. Mitochondrial involvement in skeletal muscle insulin resistance: A case of imbalanced bioenergetics.

    PubMed

    Affourtit, Charles

    2016-10-01

    Skeletal muscle insulin resistance in obesity associates with mitochondrial dysfunction, but the causality of this association is controversial. This review evaluates mitochondrial models of nutrient-induced muscle insulin resistance. It transpires that all models predict that insulin resistance arises as a result of imbalanced cellular bioenergetics. The nature and precise origin of the proposed insulin-numbing molecules differ between models but all species only accumulate when metabolic fuel supply outweighs energy demand. This observation suggests that mitochondrial deficiency in muscle insulin resistance is not merely owing to intrinsic functional defects, but could instead be an adaptation to nutrient-induced changes in energy expenditure. Such adaptive effects are likely because muscle ATP supply is fully driven by energy demand. This market-economic control of myocellular bioenergetics offers a mechanism by which insulin-signalling deficiency can cause apparent mitochondrial dysfunction, as insulin resistance lowers skeletal muscle anabolism and thus dampens ATP demand and, consequently, oxidative ATP synthesis. PMID:27473535

  8. [Testosterone deficiency, metabolic syndrome and diabetes mellitus].

    PubMed

    Fernández-Miró, Mercè; Chillarón, Juan J; Pedro-Botet, Juan

    2016-01-15

    Testosterone deficiency in adult age is associated with a decrease in libido, energy, hematocrit, muscle mass and bone mineral density, as well as with depression. More recently, testosterone deficiency has also been associated with various components of the metabolic syndrome, which in turn is associated with a five-fold increase in the risk of cardiovascular disease. Low testosterone levels are associated with increased insulin resistance, increase in fat mass, low HDL cholesterol, higher triglyceride levels and hypertension. Testosterone replacement therapy in patients with testosterone deficiency and type 2 diabetes mellitus and/or metabolic syndrome has shown reductions in insulin resistance, total cholesterol, LDL cholesterol and triglycerides and improvement in glycemic control and anthropometric parameters. PMID:26433309

  9. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  10. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate.

  11. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate. PMID:11262641

  12. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  13. Classification images predict absolute efficiency.

    PubMed

    Murray, Richard F; Bennett, Patrick J; Sekuler, Allison B

    2005-02-24

    How well do classification images characterize human observers' strategies in perceptual tasks? We show mathematically that from the classification image of a noisy linear observer, it is possible to recover the observer's absolute efficiency. If we could similarly predict human observers' performance from their classification images, this would suggest that the linear model that underlies use of the classification image method is adequate over the small range of stimuli typically encountered in a classification image experiment, and that a classification image captures most important aspects of human observers' performance over this range. In a contrast discrimination task and in a shape discrimination task, we found that observers' absolute efficiencies were generally well predicted by their classification images, although consistently slightly (approximately 13%) higher than predicted. We consider whether a number of plausible nonlinearities can account for the slight under prediction, and of these we find that only a form of phase uncertainty can account for the discrepancy.

  14. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  15. CDK4 is an essential insulin effector in adipocytes

    PubMed Central

    Lagarrigue, Sylviane; Lopez-Mejia, Isabel C.; Denechaud, Pierre-Damien; Escoté, Xavier; Castillo-Armengol, Judit; Jimenez, Veronica; Chavey, Carine; Giralt, Albert; Lai, Qiuwen; Zhang, Lianjun; Martinez-Carreres, Laia; Delacuisine, Brigitte; Annicotte, Jean-Sébastien; Blanchet, Emilie; Huré, Sébastien; Abella, Anna; Tinahones, Francisco J.; Vendrell, Joan; Dubus, Pierre; Bosch, Fatima; Kahn, C. Ronald; Fajas, Lluis

    2015-01-01

    Insulin resistance is a fundamental pathogenic factor that characterizes various metabolic disorders, including obesity and type 2 diabetes. Adipose tissue contributes to the development of obesity-related insulin resistance through increased release of fatty acids, altered adipokine secretion, and/or macrophage infiltration and cytokine release. Here, we aimed to analyze the participation of the cyclin-dependent kinase 4 (CDK4) in adipose tissue biology. We determined that white adipose tissue (WAT) from CDK4-deficient mice exhibits impaired lipogenesis and increased lipolysis. Conversely, lipolysis was decreased and lipogenesis was increased in mice expressing a mutant hyperactive form of CDK4 (CDK4R24C). A global kinome analysis of CDK4-deficient mice following insulin stimulation revealed that insulin signaling is impaired in these animals. We determined that insulin activates the CCND3-CDK4 complex, which in turn phosphorylates insulin receptor substrate 2 (IRS2) at serine 388, thereby creating a positive feedback loop that maintains adipocyte insulin signaling. Furthermore, we found that CCND3 expression and IRS2 serine 388 phosphorylation are increased in human obese subjects. Together, our results demonstrate that CDK4 is a major regulator of insulin signaling in WAT. PMID:26657864

  16. Pregestational diabetes: insulin requirements throughout pregnancy.

    PubMed

    Langer, O; Anyaegbunam, A; Brustman, L; Guidetti, D; Levy, J; Mazze, R

    1988-09-01

    The management of pregestational diabetes requires tight metabolic control to reduce maternal and perinatal morbidity and mortality. It has been suggested that type I diabetes is a disorder characterized by insulin deficiency and type II diabetes is characterized by insulin resistance; however, it may be hypothesized that a difference in insulin requirements should emerge throughout pregnancy to reflect the dissimilarities in these two metabolic disturbances. The current investigation of 103 women with pregestational diabetes used a novel approach (reflectance meters with onboard memories) to uncover the actual insulin dosages required to reach and maintain optimum metabolic control throughout pregnancy. It was found that both type I and type II diabetes appear to have a triphasic insulin pattern, with the patient having type II diabetes requiring significantly higher doses of insulin during each trimester. This seems to suggest that the hormonal changes in pregnancy may have a similar effect on both type I and type II diabetes but to a different degree. Thus this should be considered in the treatment of pregestational diabetes and in the development of an algorithm for diabetes management.

  17. Alpha-1 Antitrypsin Deficiency

    MedlinePlus

    ... Liver Disease Information > Alpha-1 Antitrypsin Deficiency Alpha-1 Antitrypsin Deficiency Explore this section to learn more about alpha-1 antitrypsin deficiency, including a description of the disorder ...

  18. Dietary zinc affects concentrations of insulin, insulin-like growth factor-I and growth hormone in lambs

    SciTech Connect

    Droke, E.A.; Spears, J.W.; Armstrong, J.D. )

    1991-03-15

    Glucose tolerance and concentrations of insulin, growth hormone (GH) and insulin-like growth factor-I (IGF-I) were evaluated in lambs deficient, marginal or adequate in zinc (Zn). Lambs were fed a semipurified diet that contained either 3.7, 8.7, or 43.7 mg Zn/kg. Zinc deficiency resulted in lower serum insulin levels 1 h after feeding while levels in marginal lambs were not different from that of adequate lambs. Dietary Zn did not affect plasma glucose post feeding. One h after IV glucose administration plasma glucose concentrations were lower in deficient lambs compared to adequate lambs; marginal lambs had intermediate glucose levels. Concentration of GH before and after feeding or glucose challenge were not affected by Zn status; however, serum IGF-I was lower in deficient than in marginal or adequate lambs. A GH releasing factor (GRF) analog was given to evaluate the release of GH. Serum GH in response to GRF challenge was higher in deficient lambs and tended to be higher in marginal lambs when compared to adequate lambs. Impaired growth observed with Zn deficiency may be mediated in part by its effect on insulin, GH and IGF-I concentrations.

  19. SH2B1 in β-Cells Promotes Insulin Expression and Glucose Metabolism in Mice

    PubMed Central

    Chen, Zheng; Morris, David L.; Jiang, Lin; Liu, Yong

    2014-01-01

    Insulin deficiency drives the progression of both type 1 and type 2 diabetes. Pancreatic β-cell insulin expression and secretion are tightly regulated by nutrients and hormones; however, intracellular signaling proteins that mediate nutrient and hormonal regulation of insulin synthesis and secretion are not fully understood. SH2B1 is an SH2 domain-containing adaptor protein. It enhances the activation of the Janus tyrosine kinase 2 (JAK2)/signal transducer and activator of transcription and the phosphatidylinositol 3-kinase pathways in response to a verity of hormones, growth factors, and cytokines. Here we identify SH2B1 as a new regulator of insulin expression. In rat INS-1 832/13 β-cells, SH2B1 knockdown decreased, whereas SH2B1 overexpression increased, both insulin expression and glucose-stimulated insulin secretion. SH2B1-deficent islets also had reduced insulin expression, insulin content, and glucose-stimulated insulin secretion. Heterozygous deletion of SH2B1 decreased pancreatic insulin content and plasma insulin levels in leptin-deficient ob/ob mice, thus exacerbating hyperglycemia and glucose intolerance. In addition, overexpression of JAK2 increased insulin promoter activity, and SH2B1 enhanced the ability of JAK2 to activate the insulin promoter. Overexpression of SH2B1 also increased the expression of Pdx1 and the recruitment of Pdx1 to the insulin promoter in INS-1 832/13 cells, whereas silencing of SH2B1 had the opposite effects. Consistently, Pdx1 expression was lower in SH2B1-deficient islets. These data suggest that the SH2B1 in β-cells promotes insulin synthesis and secretion at least in part by enhancing activation of JAK2 and/or Pdx1 pathways in response to hormonal and nutritional signals. PMID:24645678

  20. SH2B1 in β-cells promotes insulin expression and glucose metabolism in mice.

    PubMed

    Chen, Zheng; Morris, David L; Jiang, Lin; Liu, Yong; Rui, Liangyou

    2014-05-01

    Insulin deficiency drives the progression of both type 1 and type 2 diabetes. Pancreatic β-cell insulin expression and secretion are tightly regulated by nutrients and hormones; however, intracellular signaling proteins that mediate nutrient and hormonal regulation of insulin synthesis and secretion are not fully understood. SH2B1 is an SH2 domain-containing adaptor protein. It enhances the activation of the Janus tyrosine kinase 2 (JAK2)/signal transducer and activator of transcription and the phosphatidylinositol 3-kinase pathways in response to a verity of hormones, growth factors, and cytokines. Here we identify SH2B1 as a new regulator of insulin expression. In rat INS-1 832/13 β-cells, SH2B1 knockdown decreased, whereas SH2B1 overexpression increased, both insulin expression and glucose-stimulated insulin secretion. SH2B1-deficent islets also had reduced insulin expression, insulin content, and glucose-stimulated insulin secretion. Heterozygous deletion of SH2B1 decreased pancreatic insulin content and plasma insulin levels in leptin-deficient ob/ob mice, thus exacerbating hyperglycemia and glucose intolerance. In addition, overexpression of JAK2 increased insulin promoter activity, and SH2B1 enhanced the ability of JAK2 to activate the insulin promoter. Overexpression of SH2B1 also increased the expression of Pdx1 and the recruitment of Pdx1 to the insulin promoter in INS-1 832/13 cells, whereas silencing of SH2B1 had the opposite effects. Consistently, Pdx1 expression was lower in SH2B1-deficient islets. These data suggest that the SH2B1 in β-cells promotes insulin synthesis and secretion at least in part by enhancing activation of JAK2 and/or Pdx1 pathways in response to hormonal and nutritional signals.

  1. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  2. Familial Aggregation of Absolute Pitch

    PubMed Central

    Baharloo, Siamak; Service, Susan K.; Risch, Neil; Gitschier, Jane; Freimer, Nelson B.

    2000-01-01

    Absolute pitch (AP) is a behavioral trait that is defined as the ability to identify the pitch of tones in the absence of a reference pitch. AP is an ideal phenotype for investigation of gene and environment interactions in the development of complex human behaviors. Individuals who score exceptionally well on formalized auditory tests of pitch perception are designated as “AP-1.” As described in this report, auditory testing of siblings of AP-1 probands and of a control sample indicates that AP-1 aggregates in families. The implications of this finding for the mapping of loci for AP-1 predisposition are discussed. PMID:10924408

  3. Insulin Human Inhalation

    MedlinePlus

    ... insulin and therefore cannot control the amount of sugar in the blood). It is also used in ... normally and, therefore, cannot control the amount of sugar in the blood) who need insulin to control ...

  4. Insulin Lispro Injection

    MedlinePlus

    ... insulin and therefore cannot control the amount of sugar in the blood). It is also used to ... normally and therefore cannot control the amount of sugar in the blood) who need insulin to control ...

  5. Insulin pump (image)

    MedlinePlus

    The catheter at the end of the insulin pump is inserted through a needle into the abdominal ... with diabetes. Dosage instructions are entered into the pump's small computer and the appropriate amount of insulin ...

  6. High-mix insulins

    PubMed Central

    Kalra, Sanjay; Farooqi, Mohammad Hamed; El-Houni, Ali E.

    2015-01-01

    Premix insulins are commonly used insulin preparations, which are available in varying ratios of different molecules. These drugs contain one short- or rapid-acting, and one intermediate- or long-acting insulin. High-mix insulins are mixtures of insulins that contain 50% or more than 50% of short-acting insulin. This review describes the clinical pharmacology of high-mix insulins, including data from randomized controlled trials. It suggests various ways, in which high-mix insulin can be used, including once daily, twice daily, thrice daily, hetero-mix, and reverse regimes. The authors provide a rational framework to help diabetes care professionals, identify indications for pragmatic high-mix use. PMID:26425485

  7. Phenotypic alterations in insulin-deficient mutant mice

    PubMed Central

    Duvillié, Bertrand; Cordonnier, Nathalie; Deltour, Louise; Dandoy-Dron, Françoise; Itier, Jean-Michel; Monthioux, Eliane; Jami, Jacques; Joshi, Rajiv L.; Bucchini, Danielle

    1997-01-01

    Two mouse insulin genes, Ins1 and Ins2, were disrupted and lacZ was inserted at the Ins2 locus by gene targeting. Double nullizygous insulin-deficient pups were growth-retarded. They did not show any glycosuria at birth but soon after suckling developed diabetes mellitus with ketoacidosis and liver steatosis and died within 48 h. Interestingly, insulin deficiency did not preclude pancreas organogenesis and the appearance of the various cell types of the endocrine pancreas. The presence of lacZ expressing β cells and glucagon-positive α cells was demonstrated by cytochemistry and immunocytochemistry. Reverse transcription-coupled PCR analysis showed that somatostatin and pancreatic polypeptide mRNAs were present, although at reduced levels, accounting for the presence also of δ and pancreatic polypeptide cells, respectively. Morphometric analysis revealed enlarged islets of Langherans in the pancreas from insulin-deficient pups, suggesting that insulin might function as a negative regulator of islet cell growth. Whether insulin controls the growth of specific islet cell types and the molecular basis for this action remain to be elucidated. PMID:9144203

  8. Adherence to Insulin Therapy.

    PubMed

    Sarbacker, G Blair; Urteaga, Elizabeth M

    2016-08-01

    IN BRIEF Six million people with diabetes use insulin either alone or in combination with an oral medication. Many barriers exist that lead to poor adherence with insulin. However, there is an underwhelming amount of data on interventions to address these barriers and improve insulin adherence. Until pharmacological advancements create easier, more acceptable insulin regimens, it is imperative to involve patients in shared decision-making. PMID:27574371

  9. Insulin therapy in pregnancy.

    PubMed

    Kalra, Sanjay; Jawad, Fatema

    2016-09-01

    Insulin is the mainstay of pharmacotherapy in pregnancy complicated by diabetes. This review covers the various insulin regimes and preparations, explaining how to use them, and decide appropriate doses in pregnancy. It approaches insulin treatment from a patient - centred, as well as physician and obstetrician friendly viewpoint, providing pragmatic guidance for management of diabetes in pregnancy. PMID:27582152

  10. Insulin influenced expression of myelin proteins in diabetic peripheral neuropathy.

    PubMed

    Rachana, Kuruvanthe S; Manu, Mallahalli S; Advirao, Gopal M

    2016-08-26

    Diabetic peripheral neuropathy (DPN) is one of the downstream complications of diabetes. This complication is caused by the deficiency of insulin action and subsequent hyperglycemia, but the details of their pathogenesis remain unclear. Hence, it is of critical importance to understand how such hormonal variation affects the expression of myelin proteins such as myelin basic protein (MBP) and myelin associated glycoprotein (MAG) in the peripheral nerve. An earlier report from our lab has demonstrated the expression of insulin receptors (IR) in Schwann cells (SCs) of sciatic nerve. To assess the neurotrophic role of insulin in diabetic neuropathy, we studied the expression of these myelin proteins under control, DPN and insulin treated DPN subjects at developmental stages. Further, the expression of these myelin proteins was correlated with the expression of insulin receptor. Expression of myelin proteins was significantly reduced in the diabetic model compared to normal, and upregulated in insulin treated diabetic rats. Similarly, an in vitro study was also carried out in SCs grown at high glucose and insulin treated conditions. The expression pattern of myelin proteins in SCs was comparable to that of in vivo samples. In addition, quantitative study of myelin genes by real time PCR has also showed the significant expression pattern change in the insulin treated and non-treated DPN subjects. Taken together, these results corroborate the critical importance of insulin as a neurotrophic factor in demyelinized neurons in diabetic neuropathy.

  11. The Role of Insulin in the Regulation of PCSK9

    PubMed Central

    Miao, Ji; Manthena, Praveen V.; Haas, Mary E.; Ling, Alisha V.; Shin, Dong-Ju; Graham, Mark J.; Crooke, Rosanne M.; Liu, Jingwen; Biddinger, Sudha B.

    2015-01-01

    Objective Proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds the low density lipoprotein (LDL) receptor and targets it for degradation, has emerged as an important regulator of serum cholesterol levels and cardiovascular disease risk. Although much work is currently focused on developing therapies for inhibiting PCSK9, the endogenous regulation of PCSK9, particularly by insulin, remains unclear. The objective of these studies was to determine the effects of insulin on PCSK9 in vitro and in vivo. Approach and Results Using rat hepatoma cells and primary rat hepatocytes, we found that insulin increased PCSK9 expression and increased LDL receptor degradation in a PCSK9-dependent manner. In parallel, hepatic Pcsk9 mRNA and plasma PCSK9 protein levels were reduced by 55-75% in mice with liver-specific knockout of the insulin receptor; 75-88% in mice made insulin deficient with streptozotocin; and 65% in ob/ob mice treated with antisense oligonucleotides against the insulin receptor. However, antisense olignonucleotide mediated knockdown of insulin receptor in lean, wildtype mice had little effect. In addition, we found that fasting was able to reduce PCSK9 expression by 80% even in mice that lack hepatic insulin signaling. Conclusions Taken together, these data indicate that though insulin induces PCSK9 expression, it is not the sole or even dominant regulator of PCSK9 under all conditions. PMID:26023080

  12. PGK deficiency.

    PubMed

    Beutler, Ernest

    2007-01-01

    Phosphoglycerate kinase (PGK) deficiency is one of the relatively uncommon causes of hereditary non-spherocytic haemolytic anaemia (HNSHA). The gene encoding the erythrocyte enzyme PGK1, is X-linked. Mutations of this gene may cause chronic haemolysis with or without mental retardation and they may cause myopathies, often with episodes of myoglobinuria, or a combination of these clinical manifestations. Twenty-six families have been described and in 20 of these the mutations are known. The reason for different clinical manifestations of mutations of the same gene remains unknown. PMID:17222195

  13. Metabolic Acidosis-Induced Insulin Resistance and Cardiovascular Risk

    PubMed Central

    Souto, Gema; Donapetry, Cristóbal; Calviño, Jesús

    2011-01-01

    Abstract Microalbuminuria has been conclusively established as an independent cardiovascular risk factor, and there is evidence of an association between insulin resistance and microalbuminuria, the former preceding the latter in prospective studies. It has been demonstrated that even the slightest degree of metabolic acidosis produces insulin resistance in healthy humans. Many recent epidemiological studies link metabolic acidosis indicators with insulin resistance and systemic hypertension. The strongly acidogenic diet consumed in developed countries produces a lifetime acidotic state, exacerbated by excess body weight and aging, which may result in insulin resistance, metabolic syndrome, and type 2 diabetes, contributing to cardiovascular risk, along with genetic causes, lack of physical exercise, and other factors. Elevated fruits and vegetables consumption has been associated with lower diabetes incidence. Diseases featuring severe atheromatosis and elevated cardiovascular risk, such as diabetes mellitus and chronic kidney failure, are typically characterized by a chronic state of metabolic acidosis. Diabetic patients consume particularly acidogenic diets, and deficiency of insulin action generates ketone bodies, creating a baseline state of metabolic acidosisworsened by inadequate metabolic control, which creates a vicious circle by inducing insulin resistance. Even very slight levels of chronic kidney insufficiency are associated with increased cardiovascular risk, which may be explained at least in part by deficient acid excretory capacity of the kidney and consequent metabolic acidosis-induced insulin resistance. PMID:21352078

  14. An adjunctive preventive treatment for heart disease and a set of diagnostic tests to detect it: insulin-like growth factor-1 deficiency and cell membrane pathology are an inevitable cause of heart disease.

    PubMed

    Eli, Robert; Fasciano, James A

    2006-01-01

    Coronary heart disease (CHD) is a preventable disease with high morbidity and mortality. Largely omitted from the efforts at detection and treatment are the contributions of the lungs, the skeletal muscles and the arteries to heart disease pathology. Also omitted are the effects of the age-related decline in insulin-like growth factor-1 (IGF-1) and the age-related increase in cell membrane pathology. The hypothesis on which this model is based postulates that growing older, over time, necessarily results in pathological changes in the heart, the lungs, the skeletal muscles and the arteries. Additionally, the age-related decline in (IGF-1) that occurs in the otherwise healthy aged population also causes similar pathological changes. The drug portion of the proposed treatment includes the use of the drug acetyl-l-carnitine (ALC) to increase the age-related decreased IGF-1 levels. The drug centrophenoxine (CPH) is used to reverse the age-related pathological changes that inevitably occur in the heart, the lungs, the skeletal muscles and the arteries. A testing procedure is included to improve the detection of heart disease and to monitor the results. It consists of five tests: the monitoring of plasma IGF-1 levels; the monitoring of blood pressure, and in particular elevated systolic blood pressure; the monitoring of blood pressure variability over time; a heart rate recovery time test and a heart rate reserve test. Heart rate reserve is defined as the difference between maximal heart rate and resting heart rate, after treadmill exercise. The changes in test results noted during treatment are an indicator of progress or deterioration in the prevention of heart disease, whatever the case may be.

  15. IRS2 and PTEN are key molecules in controlling insulin sensitivity in podocytes.

    PubMed

    Santamaria, Beatriz; Marquez, Eva; Lay, Abigail; Carew, RoseaMarie M; González-Rodríguez, Águeda; Welsh, Gavin I; Ni, Lan; Hale, Lorna J; Ortiz, Alberto; Saleem, Moin A; Brazil, Derek P; Coward, Richard J; Valverde, Ángela M

    2015-12-01

    Insulin signaling to the glomerular podocyte is important for normal kidney function and is implicated in the pathogenesis of diabetic nephropathy (DN). This study determined the role of the insulin receptor substrate 2 (IRS2) in this system. Conditionally immortalized murine podocytes were generated from wild-type (WT) and insulin receptor substrate 2-deficient mice (Irs2(-/-)). Insulin signaling, glucose transport, cellular motility and cytoskeleton rearrangement were then analyzed. Within the glomerulus IRS2 is enriched in the podocyte and is preferentially phosphorylated by insulin in comparison to IRS1. Irs2(-/-) podocytes are significantly insulin resistant in respect to AKT signaling, insulin-stimulated GLUT4-mediated glucose uptake, filamentous actin (F-actin) cytoskeleton remodeling and cell motility. Mechanistically, we discovered that Irs2 deficiency causes insulin resistance through up-regulation of the phosphatase and tensin homolog (PTEN). Importantly, suppressing PTEN in Irs2(-/-) podocytes rescued insulin sensitivity. In conclusion, this study has identified for the first time IRS2 as a critical molecule for sensitizing the podocyte to insulin actions through its ability to modulate PTEN expression. This finding reveals two potential molecular targets in the podocyte for modulating insulin sensitivity and treating DN.

  16. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  17. Apparatus for absolute pressure measurement

    NASA Technical Reports Server (NTRS)

    Hecht, R. (Inventor)

    1969-01-01

    An absolute pressure sensor (e.g., the diaphragm of a capacitance manometer) was subjected to a superimposed potential to effectively reduce the mechanical stiffness of the sensor. This substantially increases the sensitivity of the sensor and is particularly useful in vacuum gauges. An oscillating component of the superimposed potential induced vibrations of the sensor. The phase of these vibrations with respect to that of the oscillating component was monitored, and served to initiate an automatic adjustment of the static component of the superimposed potential, so as to bring the sensor into resonance at the frequency of the oscillating component. This establishes a selected sensitivity for the sensor, since a definite relationship exists between resonant frequency and sensitivity.

  18. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < -1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  19. Oral Insulin Reloaded

    PubMed Central

    Heinemann, Lutz; Plum-Mörschel, Leona

    2014-01-01

    Optimal coverage of insulin needs is the paramount aim of insulin replacement therapy in patients with diabetes mellitus. To apply insulin without breaking the skin barrier by a needle and/or to allow a more physiological provision of insulin are the main reasons triggering the continuous search for alternative routes of insulin administration. Despite numerous attempts over the past 9 decades to develop an insulin pill, no insulin for oral dosing is commercially available. By way of a structured approach, we aim to provide a systematic update on the most recent developments toward an orally available insulin formulation with a clear focus on data from clinical-experimental and clinical studies. Thirteen companies that claim to be working on oral insulin formulations were identified. However, only 6 of these companies published new clinical trial results within the past 5 years. Interestingly, these clinical data reports make up a mere 4% of the considerably high total number of publications on the development of oral insulin formulations within this time period. While this picture clearly reflects the rising research interest in orally bioavailable insulin formulations, it also highlights the fact that the lion’s share of research efforts is still allocated to the preclinical stages. PMID:24876606

  20. Insulin-derived amyloidosis

    PubMed Central

    Gupta, Yashdeep; Singla, Gaurav; Singla, Rajiv

    2015-01-01

    Amyloidosis is the term for diseases caused by the extracellular deposition of insoluble polymeric protein fibrils in tissues and organs. Insulin-derived amyloidosis is a rare, yet significant complication of insulin therapy. Insulin-derived amyloidosis at injection site can cause poor glycemic control and increased insulin dose requirements because of the impairment in insulin absorption, which reverse on change of injection site and/or excision of the mass. This entity should be considered and assessed by histopathology and immunohistochemistry, in patients with firm/hard local site reactions, which do not regress after cessation of insulin injection at the affected site. Search strategy: PubMed was searched with terms “insulin amyloidosis”. Full text of articles available in English was reviewed. Relevant cross references were also reviewed. Last search was made on October 15, 2014. PMID:25593849

  1. Old and new basal insulin formulations: understanding pharmacodynamics is still relevant in clinical practice.

    PubMed

    Rossetti, P; Ampudia-Blasco, F J; Ascaso, J F

    2014-08-01

    Long-acting insulin analogues have been developed to mimic the physiology of basal insulin secretion more closely than human insulin formulations (Neutral Protamine Hagedorn, NPH). However, the clinical evidence in favour of analogues is still controversial. Although their major benefit as compared with NPH is a reduction in the hypoglycaemia risk, some cost/effectiveness analyses have not been favourable to analogues, largely because of their higher price. Nevertheless, these new formulations have conquered the insulin market. Human insulin represents currently no more than 20% of market share. Despite (in fact because of) the widespread use of insulin analogues it remains critical to analyse the pharmacodynamics (PD) of basal insulin formulations appropriately to interpret the results of clinical trials correctly. Importantly, these data may help physicians in tailoring insulin therapy to patients' individual needs and, additionally, when clinical evidence is not available, to optimize insulin treatment. For patients at low risk for/from hypoglycaemia, it might be acceptable and also cost-effective not to use long-acting insulin analogues as basal insulin replacement. Conversely, in patients with a higher degree of insulin deficiency and increased risk for hypoglycaemia, analogues are the best option due to their more physiological profile, as has been shown in PD and clinical studies. From this perspective optimizing basal insulin treatment, especially in type 2 diabetes patients who are less prone to hypoglycaemia, would be suitable making significant resources available for other relevant aspects of diabetes care. PMID:24401118

  2. [Iron deficiency in elderly patients: use of biomarkers].

    PubMed

    Le Petitcorps, Hélène; Monti, Alexandra; Pautas, Éric

    2015-01-01

    Iron deficiency, due to blood loss or malabsorption, is commonly observed in geriatric practice. In elderly people, association of inflammatory diseases to iron loss makes diagnosis of absolute iron deficiency sometimes difficult. In case of inflammation, the interpretation of usual biomarkers of iron deficiency (serum ferritin, transferrin saturation, serum iron) may be difficult. The recent discovery of the role of hepcidine in the iron homeostasis, in physiological and pathological situation, contributes to better understanding of the iron regulation. The aim of this short paper is to underline some specificities of elderly iron physiology, to explain hepcidine's role in physiological and pathological situations and to propose a diagnostic approach for a better interpretation of usual biomarkers, in order to differentiate absolute iron deficiency and functional iron deficiency.

  3. D-chiro-inositol--its functional role in insulin action and its deficit in insulin resistance.

    PubMed

    Larner, Joseph

    2002-01-01

    In this review we discuss the biological significance of D-chiro-inositol, originally discovered as a component of a putative mediator of intracellular insulin action, where as a putative mediator, it accelerates the dephosphorylation of glycogen synthase and pyruvate dehydrogenase, rate limiting enzymes of non-oxidative and oxidative glucose disposal. Early studies demonstrated a linear relationship between its decreased urinary excretion and the degree of insulin resistance present. When tissue contents, including muscle, of type 2 diabetic subjects were assayed, they demonstrated a more general body deficiency. Administration of D-chiro-inositol to diabetic rats, Rhesus monkeys and now to humans accelerated glucose disposal and sensitized insulin action. A defect in vivo in the epimerization of myo-inositol to chiro-inositol in insulin sensitive tissues of the GK type 2 diabetic rat has been elucidated. Thus, administered D-chiro-inositol may act to bypass a defective normal epimerization of myo-inositol to D-chiro-inositol associated with insulin resistance and act to at least partially restore insulin sensitivity and glucose disposal. PMID:11900279

  4. Glucose tolerance factor extracted from yeast: oral insulin-mimetic and insulin-potentiating agent: in vivo and in vitro studies.

    PubMed

    Weksler-Zangen, Sarah; Mizrahi, Tal; Raz, Itamar; Mirsky, Nitsa

    2012-09-01

    In search for an effective oral treatment for diabetes, we examined the capacity of glucose tolerance factor (GTF) extracted from yeast and administered orally to reduce hyperglycaemia in rat models exhibiting insulin deficiency. The cellular effect of GTF on the insulin signalling pathway was investigated in vitro. GTF (oral bolus), insulin (intraperitoneal) or their combination was administered to streptozotocin-diabetic (STZ) or hyperglycaemic Cohen diabetic-sensitive (hyp-CDs) rats. Blood glucose (BG) and insulin levels were measured in the postprandial (PP) state and during an oral glucose tolerance test. Deoxy-glucose transport and insulin signal transduction were assessed in 3T3-L1 adipocytes and myoblasts incubated with the GTF. Low dose of insulin produced a 34 and 12·5 % reduction in the PP-BG levels of hyp-CDs and STZ rats, respectively. GTF induced a 33 and 17 % reduction in the PP-BG levels of hyp-CDs and STZ rats, respectively. When combined with insulin, a respective decrease (58 and 42 %) in BG levels was observed, suggesting a partially additive (hyp-CDs) or synergistic (STZ rats) effect of the GTF and insulin. GTF did not induce insulin secretion in hyp-CDs rats, yet it lowered their BG levels, proposing an effect on glucose clearance by peripheral tissues. GTF induced a dose-dependent increase in deoxy-glucose transport into myoblasts and fat cells similar to insulin, while the combined treatment resulted in augmented transport rate. GTF induced a dose- and time-dependent phosphorylation of insulin receptor substrate 1, Akt and mitogen-activated protein kinase independent of insulin receptor phosphorylation. GTF exerts remarkable insulin-mimetic and insulin-potentiating effects, both in vivo and in vitro. It produces an insulin-like effect by acting on cellular signals downstream of the insulin receptor. These results demonstrate a potential source for a novel oral medication for diabetes.

  5. RNA-sequencing of WFS1-deficient pancreatic islets.

    PubMed

    Ivask, Marilin; Hugill, Alison; Kõks, Sulev

    2016-04-01

    Wolfram syndrome, an autosomal recessive disorder characterized by juvenile-onset diabetes mellitus and optic atrophy, is caused by mutations in theWFS1gene.WFS1encodes an endoplasmic reticulum resident transmembrane protein. TheWfs1-null mice exhibit progressive insulin deficiency and diabetes. The aim of this study was to describe the insulin secretion and transcriptome of pancreatic islets inWFS1-deficient mice.WFS1-deficient (Wfs1KO) mice had considerably less pancreatic islets than heterozygous (Wfs1HZ) or wild-type (WT) mice. Wfs1KOpancreatic islets secreted less insulin after incubation in 2 and 10 mmol/L glucose and with tolbutamide solution compared toWTand Wfs1HZislets, but not after stimulation with 20 mmol/L glucose. Differences in proinsulin amount were not statistically significant although there was a trend that Wfs1KOhad an increased level of proinsulin. After incubation in 2 mmol/L glucose solution the proinsulin/insulin ratio in Wfs1KOwas significantly higher than that ofWTand Wfs1HZRNA-seq from pancreatic islets found melastatin-related transient receptor potential subfamily member 5 protein gene (Trpm5) to be downregulated inWFS1-deficient mice. Functional annotation ofRNAsequencing results showed thatWFS1 deficiency influenced significantly the pathways related to tissue morphology, endocrine system development and function, molecular transport network. PMID:27053292

  6. Succinate dehydrogenase-deficient gastrointestinal stromal tumors

    PubMed Central

    Wang, Ya-Mei; Gu, Meng-Li; Ji, Feng

    2015-01-01

    Most gastrointestinal stromal tumors (GISTs) are characterized by KIT or platelet-derived growth factor alpha (PDGFRA) activating mutations. However, there are still 10%-15% of GISTs lacking KIT and PDGFRA mutations, called wild-type GISTs (WT GISTs). Among these so-called WT GISTs, a small subset is associated with succinate dehydrogenase (SDH) deficiency, known as SDH-deficient GISTs. In addition, GISTs that occur in Carney triad and Carney-Stratakis syndrome represent specific examples of SDH-deficient GISTs. SDH-deficient GISTs locate exclusively in the stomach, showing predilection for children and young adults with female preponderance. The tumor generally pursues an indolent course and exhibits primary resistance to imatinib therapy in most cases. Loss of succinate dehydrogenase subunit B expression and overexpression of insulin-like growth factor 1 receptor (IGF1R) are common features of SDH-deficient GISTs. In WT GISTs without succinate dehydrogenase activity, upregulation of hypoxia-inducible factor 1α may lead to increased growth signaling through IGF1R and vascular endothelial growth factor receptor (VEGFR). As a result, IGF1R and VEGFR are promising to be the novel therapeutic targets of GISTs. This review will update the current knowledge on characteristics of SDH-deficient GISTs and further discuss the possible mechanisms of tumorigenesis and clinical management of SDH-deficient GISTs. PMID:25741136

  7. Absolute configuration of isovouacapenol C

    PubMed Central

    Fun, Hoong-Kun; Yodsaoue, Orapun; Karalai, Chatchanok; Chantrapromma, Suchada

    2010-01-01

    The title compound, C27H34O5 {systematic name: (4aR,5R,6R,6aS,7R,11aS,11bR)-4a,6-dihy­droxy-4,4,7,11b-tetra­methyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodeca­hydro­phenanthro[3,2-b]furan-5-yl benzoate}, is a cassane furan­oditerpene, which was isolated from the roots of Caesalpinia pulcherrima. The three cyclo­hexane rings are trans fused: two of these are in chair conformations with the third in a twisted half-chair conformation, whereas the furan ring is almost planar (r.m.s. deviation = 0.003 Å). An intra­molecular C—H⋯O inter­action generates an S(6) ring. The absolute configurations of the stereogenic centres at positions 4a, 5, 6, 6a, 7, 11a and 11b are R, R, R, S, R, S and R, respectively. In the crystal, mol­ecules are linked into infinite chains along [010] by O—H⋯O hydrogen bonds. C⋯O [3.306 (2)–3.347 (2) Å] short contacts and C—H⋯π inter­actions also occur. PMID:21588364

  8. Adipocyte Metrnl Antagonizes Insulin Resistance Through PPARγ Signaling.

    PubMed

    Li, Zhi-Yong; Song, Jie; Zheng, Si-Li; Fan, Mao-Bing; Guan, Yun-Feng; Qu, Yi; Xu, Jian; Wang, Pei; Miao, Chao-Yu

    2015-12-01

    Adipokines play important roles in metabolic homeostasis and disease. We have recently identified a novel adipokine Metrnl, also known as Subfatin, for its high expression in subcutaneous fat. Here, we demonstrate a prodifferentiation action of Metrnl in white adipocytes. Adipocyte-specific knockout of Metrnl exacerbates insulin resistance induced by high-fat diet (HFD), whereas adipocyte-specific transgenic overexpression of Metrnl prevents insulin resistance induced by HFD or leptin deletion. Body weight and adipose content are not changed by adipocyte Metrnl. Consistently, no correlation is found between serum Metrnl level and BMI in humans. Metrnl promotes white adipocyte differentiation, expandability, and lipid metabolism and inhibits adipose inflammation to form functional fat, which contributes to its activity against insulin resistance. The insulin sensitization of Metrnl is blocked by PPARγ inhibitors or knockdown. However, Metrnl does not drive white adipose browning. Acute intravenous injection of recombinant Metrnl has no hypoglycemic effect, and 1-week intravenous administration of Metrnl is unable to rescue insulin resistance exacerbated by adipocyte Metrnl deficiency. Our results suggest adipocyte Metrnl controls insulin sensitivity at least via its local autocrine/paracrine action through the PPARγ pathway. Adipocyte Metrnl is an inherent insulin sensitizer and may become a therapeutic target for insulin resistance. PMID:26307585

  9. Frequency-domain analysis of absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Svitlov, S.

    2012-12-01

    An absolute gravimeter is analysed as a linear time-invariant system in the frequency domain. Frequency responses of absolute gravimeters are derived analytically based on the propagation of the complex exponential signal through their linear measurement functions. Depending on the model of motion and the number of time-distance coordinates, an absolute gravimeter is considered as a second-order (three-level scheme) or third-order (multiple-level scheme) low-pass filter. It is shown that the behaviour of an atom absolute gravimeter in the frequency domain corresponds to that of the three-level corner-cube absolute gravimeter. Theoretical results are applied for evaluation of random and systematic measurement errors and optimization of an experiment. The developed theory agrees with known results of an absolute gravimeter analysis in the time and frequency domains and can be used for measurement uncertainty analyses, building of vibration-isolation systems and synthesis of digital filtering algorithms.

  10. Biosimilar Insulin and Costs

    PubMed Central

    Heinemann, Lutz

    2015-01-01

    The costs for insulin treatment are high, and the steady increase in the number of patients with diabetes on insulin presents a true challenge to health care systems. Therefore, all measures to lower these costs are welcomed by patients, physicians, and health care providers. The market introduction of biosimilar insulins presents an option to lower treatment costs as biosimilars are usually offered at a lower price than the originator product. However, the assumption that a drastic reduction in insulin prices will take place, as was observed with many generic drugs, is most probably not realistic. As the first biosimilar insulin has now been approved in the EU, this commentary discusses a number of aspects that are relevant when it comes to the potential cost reduction we will see with the use of biosimilar insulins. PMID:26350722

  11. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    SciTech Connect

    Watanabe, Tomoyuki; Saotome, Masao; Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi; Funaki, Makoto; Hayashi, Hideharu

    2014-05-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin

  12. Tea enhances insulin activity.

    PubMed

    Anderson, Richard A; Polansky, Marilyn M

    2002-11-20

    The most widely known health benefits of tea relate to the polyphenols as the principal active ingredients in protection against oxidative damage and in antibacterial, antiviral, anticarcinogenic, and antimutagenic activities, but polyphenols in tea may also increase insulin activity. The objective of this study was to determine the insulin-enhancing properties of tea and its components. Tea, as normally consumed, was shown to increase insulin activity >15-fold in vitro in an epididymal fat cell assay. Black, green, and oolong teas but not herbal teas, which are not teas in the traditional sense because they do not contain leaves of Camellia senensis, were all shown to increase insulin activity. High-performance liquid chromatography fractionation of tea extracts utilizing a Waters SymmetryPrep C18 column showed that the majority of the insulin-potentiating activity for green and oolong teas was due to epigallocatechin gallate. For black tea, the activity was present in several regions of the chromatogram corresponding to, in addition to epigallocatechin gallate, tannins, theaflavins, and other undefined compounds. Several known compounds found in tea were shown to enhance insulin with the greatest activity due to epigallocatechin gallate followed by epicatechin gallate, tannins, and theaflavins. Caffeine, catechin, and epicatechin displayed insignificant insulin-enhancing activities. Addition of lemon to the tea did not affect the insulin-potentiating activity. Addition of 5 g of 2% milk per cup decreased the insulin-potentiating activity one-third, and addition of 50 g of milk per cup decreased the insulin-potentiating activity approximately 90%. Nondairy creamers and soy milk also decreased the insulin-enhancing activity. These data demonstrate that tea contains in vitro insulin-enhancing activity and the predominant active ingredient is epigallocatechin gallate. PMID:12428980

  13. Non-invasive quantification of brain glycogen absolute concentration

    PubMed Central

    van Heeswijk, Ruud B.; Xin, Lijing; Laus, Sabrina; Frenkel, Hanne; Lei, Hongxia; Gruetter, Rolf

    2009-01-01

    The only currently available method to measure brain glycogen in vivo is 13C NMR spectroscopy. Incorporation of 13C-labeled glucose (Glc) is necessary to allow glycogen measurement, but might be affected by turnover changes. Our aim was to measure glycogen absolute concentration in the rat brain by eliminating label turnover as variable. The approach is based on establishing an increased, constant 13C isotopic enrichment (IE). 13C-Glc infusion is then performed at the IE of brain glycogen. As glycogen IE cannot be assessed in vivo, we validated that it can be inferred from that of N-acetyl-aspartate IE in vivo: After [1-13C]-Glc ingestion, glycogen IE was 2.2 ± 0.1 fold that of N-acetyl-aspartate (n = 11, R2 = 0.77). After subsequent Glc infusion, glycogen IE equaled brain Glc IE (n = 6, paired t-test, p = 0.37), implying isotopic steady-state achievement and complete turnover of the glycogen molecule. Glycogen concentration measured in vivo by 13C NMR (mean ± SD: 5.8 ± 0.7 μmol/g) was in excellent agreement with that in vitro (6.4 ± 0.6 μmol/g, n = 5). When insulin was administered, the stability of glycogen concentration was analogous to previous biochemical measurements implying that glycogen turnover is activated by insulin. We conclude that the entire glycogen molecule is turned over and that insulin activates glycogen turnover. PMID:19013831

  14. Differential insulin response to myo-inositol administration in obese polycystic ovary syndrome patients.

    PubMed

    Genazzani, Alessandro D; Prati, Alessia; Santagni, Susanna; Ricchieri, Federica; Chierchia, Elisa; Rattighieri, Erica; Campedelli, Annalisa; Simoncini, Tommaso; Artini, Paolo G

    2012-12-01

    Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, chronic anovulation, polycystic ovaries at ultrasound evaluation, and quite frequently by insulin resistance or compensatory hyperinsulinemia. Attention has been given to the role of inositol-phosphoglycan (IPG) mediators of insulin action and growing evidences suggest that a deficiency of D-chiro-inositol (DCI) containing IPG might be at the basis of insulin resistance, frequent in PCOS patients. On such basis, we investigated the efficacy on insulin sensitivity and hormonal parameters of 8 weeks treatment with myo-inositol (MYO) (Inofert, ItalPharmaco, Milano, Italy) at the dosage of 2 g day in a group (n = 42) of obese PCOS patients,. After the treatment interval body mass index (BMI) and insulin resistance decreased together with luteinizing hormone (LH), LH/FSH and insulin. When subdividing the patients according to their fasting insulin levels, Group A (n = 15) insulin below 12 µU/ml and Group B (n = 27) insulin above 12 µU/ml, MYO treatment induced similar changes in both groups but only patients of Group B showed the significant decrease of both fasting insulin plasma levels (from 20.3 ± 1.8 to 12.9 ± 1.8 µU/ml, p < 0.00001) and of area under the curve (AUC) of insulin under oral glucose tolerance test (OGTT). In conclusion, our study supports the hypothesis that MYO administration is more effective in obese patients with high fasting insulin plasma levels.

  15. MHC Class I Limits Hippocampal Synapse Density by Inhibiting Neuronal Insulin Receptor Signaling

    PubMed Central

    Dixon-Salazar, Tracy J.; Fourgeaud, Lawrence; Tyler, Carolyn M.; Poole, Julianna R.; Park, Joseph J.

    2014-01-01

    Proteins of the major histocompatibility complex class I (MHCI) negatively regulate synapse density in the developing vertebrate brain (Glynn et al., 2011; Elmer et al., 2013; Lee et al., 2014), but the underlying mechanisms remain largely unknown. Here we identify a novel MHCI signaling pathway that involves the inhibition of a known synapse-promoting factor, the insulin receptor. Dominant-negative insulin receptor constructs decrease synapse density in the developing Xenopus visual system (Chiu et al., 2008), and insulin receptor activation increases dendritic spine density in mouse hippocampal neurons in vitro (Lee et al., 2011). We find that genetically reducing cell surface MHCI levels increases synapse density selectively in regions of the hippocampus where insulin receptors are expressed, and occludes the neuronal insulin response by de-repressing insulin receptor signaling. Pharmacologically inhibiting insulin receptor signaling in MHCI-deficient animals rescues synapse density, identifying insulin receptor signaling as a critical mediator of the tonic inhibitory effects of endogenous MHCI on synapse number. Insulin receptors co-immunoprecipitate MHCI from hippocampal lysates, and MHCI unmasks a cytoplasmic epitope of the insulin receptor that mediates downstream signaling. These results identify an important role for an MHCI–insulin receptor signaling pathway in circuit patterning in the developing brain, and suggest that changes in MHCI expression could unexpectedly regulate neuronal insulin sensitivity in the aging and diseased brain. PMID:25164678

  16. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene.

    PubMed

    Knowles, Joshua W; Xie, Weijia; Zhang, Zhongyang; Chennamsetty, Indumathi; Chennemsetty, Indumathi; Assimes, Themistocles L; Paananen, Jussi; Hansson, Ola; Pankow, James; Goodarzi, Mark O; Carcamo-Orive, Ivan; Morris, Andrew P; Chen, Yii-Der I; Mäkinen, Ville-Petteri; Ganna, Andrea; Mahajan, Anubha; Guo, Xiuqing; Abbasi, Fahim; Greenawalt, Danielle M; Lum, Pek; Molony, Cliona; Lind, Lars; Lindgren, Cecilia; Raffel, Leslie J; Tsao, Philip S; Schadt, Eric E; Rotter, Jerome I; Sinaiko, Alan; Reaven, Gerald; Yang, Xia; Hsiung, Chao A; Groop, Leif; Cordell, Heather J; Laakso, Markku; Hao, Ke; Ingelsson, Erik; Frayling, Timothy M; Weedon, Michael N; Walker, Mark; Quertermous, Thomas

    2015-04-01

    Decreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 "A" allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol-stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity.

  17. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene

    PubMed Central

    Knowles, Joshua W.; Xie, Weijia; Zhang, Zhongyang; Chennemsetty, Indumathi; Assimes, Themistocles L.; Paananen, Jussi; Hansson, Ola; Pankow, James; Goodarzi, Mark O.; Carcamo-Orive, Ivan; Morris, Andrew P.; Chen, Yii-Der I.; Mäkinen, Ville-Petteri; Ganna, Andrea; Mahajan, Anubha; Guo, Xiuqing; Abbasi, Fahim; Greenawalt, Danielle M.; Lum, Pek; Molony, Cliona; Lind, Lars; Lindgren, Cecilia; Raffel, Leslie J.; Tsao, Philip S.; Schadt, Eric E.; Rotter, Jerome I.; Sinaiko, Alan; Reaven, Gerald; Yang, Xia; Hsiung, Chao A.; Groop, Leif; Cordell, Heather J.; Laakso, Markku; Hao, Ke; Ingelsson, Erik; Frayling, Timothy M.; Weedon, Michael N.; Walker, Mark; Quertermous, Thomas

    2015-01-01

    Decreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 “A” allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol-stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity. PMID:25798622

  18. Growth hormone modulation of arginine-induced glucagon release: studies of isolated growth hormone deficiency and acromegaly.

    PubMed

    Seino, Y; Taminato, T; Goto, Y; Inoue, Y; Kadowaki, S; Hattori, M; Mori, K; Kato, Y; Matsukura, S; Imura, H

    1978-12-01

    Plasma glucagon and insulin responses to L-arginine were compared in normal controls and patients with isolated growth hormone deficiency and acromegaly. Patients with isolated growth hormone deficiency were characterized by high plasma glucagon response and low plasma insulin response, whereas acromegalic patients showed exaggerated plasma glucagon response and almost normal insulin response. These results suggest that growth hormone is probably required for optimum function of the islets, and since hyperglucagonaemia was observed in both growth hormone deficiency and acromegaly, metabolic disturbances stemming from the respective primary diseases may affect glucagon secretion.

  19. Dietary insulin index and insulin load in relation to endometrial cancer risk in the Nurses’ Health Study

    PubMed Central

    Prescott, Jennifer; Bao, Ying; Viswanathan, Akila N.; Giovannucci, Edward L.; Hankinson, Susan E.; De Vivo, Immaculata

    2014-01-01

    Background While unopposed estrogen exposure is considered the main driver of endometrial carcinogenesis, factors associated with states of insulin resistance and hyperinsulinemia are independently associated with endometrial cancer risk. We used dietary insulin load and insulin index scores to represent the estimated insulin demand of overall diets and assessed their association with endometrial cancer risk in the prospective Nurses’ Health Study. Methods We estimated incidence rate ratios (RRs) and 95% confidence intervals (CI) for risk of invasive endometrial cancer using Cox proportional hazards models. Between the baseline dietary questionnaire (1980) and 2010, we identified a total of 798 incident invasive epithelial endometrial adenocarcinomas over 1,417,167 person-years of follow-up. Results Dietary insulin scores were not associated with overall risk of endometrial cancer. Comparing women in the highest to the lowest quintile, the multivariable-adjusted RRs of endometrial cancer were 1.07 (95% CI: 0.84, 1.35) for cumulative average dietary insulin load and 1.03 (95% CI: 0.82, 1.31) for cumulative average dietary insulin index. Findings did not vary substantially by alcohol consumption, total dietary fiber intake, or BMI and/or physical activity (Pheterogeneity ≥ 0.10). Conclusions Intake of a diet predicted to stimulate a high postprandial insulin response was not associated with endometrial cancer risk in this large prospective study. Considering the complex interplay of diet, lifestyle and genetic factors contributing to the hyperinsulinemic state, dietary measures alone may not sufficiently capture absolute long-term insulin exposure. Impact This study is the first to investigate dietary insulin scores in relation to endometrial cancer risk. PMID:24859872

  20. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  1. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  2. Preschoolers' Success at Coding Absolute Size Values.

    ERIC Educational Resources Information Center

    Russell, James

    1980-01-01

    Forty-five 2-year-old and forty-five 3-year-old children coded relative and absolute sizes using 1.5-inch, 6-inch, and 18-inch cardboard squares. Results indicate that absolute coding is possible for children of this age. (Author/RH)

  3. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  4. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  5. Estimating the absolute wealth of households

    PubMed Central

    Gerkey, Drew; Hadley, Craig

    2015-01-01

    Abstract Objective To estimate the absolute wealth of households using data from demographic and health surveys. Methods We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. Findings The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723–6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R2 = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Conclusion Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality. PMID:26170506

  6. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  7. Importance of transcapillary insulin transport on insulin action in vivo

    SciTech Connect

    Yang, Y.J.

    1989-01-01

    The relationship between transcapillary insulin transport and insulin action was examined in normal conscious dogs. Plasma and thoracic duct lymph insulin, and insulin action were simultaneously measured during euglycemic clamps and intravenous glucose tolerance tests. During the clamps, while {sup 14}C-inulin reached an equilibrium, steady-state (ss) plasma insulin was higher than lymph and the ratio of 3:2 was maintained during basal, activation and deactivation phases: 18 {+-} 2 vs. 12 {+-} 1, 51 {+-} 2 vs. 32 {+-} 1, and 18 {+-} 3 vs. 13 {+-} 1 {mu}U/ml. In addition, it took longer for lymph insulin to reach ss than plasma insulin during activation and deactivation: 11 {+-} 2 vs. 31 {+-} 5 and 8 {+-} 2 vs. 32 {+-} 6 min. During IVGTT, plasma insulin peaked within 5 {+-} 2 min; lymph insulin rose slowly to a lower peak. The significant gradient and delay between plasma and lymph insulin concentrations suggest a restricted transcapillary insulin transport.

  8. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  9. Androgen deficiency and metabolic syndrome in men

    PubMed Central

    Winter, Ashley G.; Zhao, Fujun

    2014-01-01

    Metabolic syndrome (MetS) is a growing health concern worldwide. Initially a point of interest in cardiovascular events, the cluster of HTN, obesity, dyslipidemia, and insulin resistance known as MetS has become associated with a variety of other disease processes, including androgen deficiency and late-onset hypogonadism (LOH). Men with MetS are at a higher risk of developing androgen deficiency, and routine screening of testosterone (T) is advised in this population. The pathophysiology of androgen deficiency in MetS is multifactorial, and consists of inflammatory, enzymatic, and endocrine derangements. Many options for the concomitant treatment of both disorders exist. Direct treatment of MetS, whether by diet, exercise, or surgery, may improve T levels. Conversely, testosterone replacement therapy (TRT) has been shown to improve MetS parameters in multiple randomized controlled trials (RTCs). PMID:26816752

  10. Protein Crystal Bovine Insulin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The comparison of protein crystal, Bovine Insulin space-grown (left) and earth-grown (right). Facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  11. Insulin Resistance of Puberty.

    PubMed

    Kelsey, Megan M; Zeitler, Philip S

    2016-07-01

    Puberty is a time of considerable metabolic and hormonal change. Notably, puberty is associated with a marked decrease in insulin sensitivity, on par with that seen during pregnancy. In otherwise healthy youth, there is a nadir in insulin sensitivity in mid-puberty, and then it recovers at puberty completion. However, there is evidence that insulin resistance (IR) does not resolve in youth who are obese going into puberty and may result in increased cardiometabolic risk. Little is known about the underlying pathophysiology of IR in puberty, and how it might contribute to increased disease risk (e.g., type 2 diabetes). In this review, we have outlined what is known about the IR in puberty in terms of pattern, potential underlying mechanisms and other mediating factors. We also outline other potentially related metabolic changes that occur during puberty, and effects of underlying insulin resistant states (e.g., obesity) on pubertal changes in insulin sensitivity. PMID:27179965

  12. Insulin and glucose regulation.

    PubMed

    Ralston, Sarah L

    2002-08-01

    Abnormally high or low blood glucose and insulin concentrations after standardized glucose tolerance tests can reflect disorders such as pituitary dysfunction, polysaccharide storage myopathies, and other clinical disorders. Glucose and insulin responses, however, are modified by the diet to which the animal has adapted, time since it was last fed, and what it was fed. Body fat (obesity), fitness level, physiologic status, and stress also alter glucose and insulin metabolism. Therefore, it is important to consider these factors when evaluating glucose and insulin tests, especially if only one sample it taken. This article describes the factors affecting glucose and insulin metabolism in horses and how they might influence the interpretation of standardized tests of glucose tolerance.

  13. Effect of Growth Hormone Deficiency on Brain Structure, Motor Function and Cognition

    ERIC Educational Resources Information Center

    Webb, Emma A.; O'Reilly, Michelle A.; Clayden, Jonathan D.; Seunarine, Kiran K.; Chong, Wui K.; Dale, Naomi; Salt, Alison; Clark, Chris A.; Dattani, Mehul T.

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone less than 6.7 [micro]g/l) and idiopathic short stature (peak growth hormone greater than 10 [micro]g/l)…

  14. Circulating insulin stimulates fatty acid retention in white adipose tissue via KATP channel activation in the central nervous system only in insulin-sensitive mice[S

    PubMed Central

    Coomans, Claudia P.; Geerling, Janine J.; Guigas, Bruno; van den Hoek, Anita M.; Parlevliet, Edwin T.; Ouwens, D. Margriet; Pijl, Hanno; Voshol, Peter J.; Rensen, Patrick C. N.; Havekes, Louis M.; Romijn, Johannes A.

    2011-01-01

    Insulin signaling in the central nervous system (CNS) is required for the inhibitory effect of insulin on glucose production. Our aim was to determine whether the CNS is also involved in the stimulatory effect of circulating insulin on the tissue-specific retention of fatty acid (FA) from plasma. In wild-type mice, hyperinsulinemic-euglycemic clamp conditions stimulated the retention of both plasma triglyceride-derived FA and plasma albumin-bound FA in the various white adipose tissues (WAT) but not in other tissues, including brown adipose tissue (BAT). Intracerebroventricular (ICV) administration of insulin induced a similar pattern of tissue-specific FA partitioning. This effect of ICV insulin administration was not associated with activation of the insulin signaling pathway in adipose tissue. ICV administration of tolbutamide, a KATP channel blocker, considerably reduced (during hyperinsulinemic-euglycemic clamp conditions) and even completely blocked (during ICV administration of insulin) WAT-specific retention of FA from plasma. This central effect of insulin was absent in CD36-deficient mice, indicating that CD36 is the predominant FA transporter in insulin-stimulated FA retention by WAT. In diet-induced insulin-resistant mice, these stimulating effects of insulin (circulating or ICV administered) on FA retention in WAT were lost. In conclusion, in insulin-sensitive mice, circulating insulin stimulates tissue-specific partitioning of plasma-derived FA in WAT in part through activation of KATP channels in the CNS. Apparently, circulating insulin stimulates fatty acid uptake in WAT but not in BAT, directly and indirectly through the CNS. PMID:21700834

  15. Effect of insulin on LHRH release by perifused hypothalamic fragments.

    PubMed

    Arias, P; Rodríguez, M; Szwarcfarb, B; Sinay, I R; Moguilevsky, J A

    1992-09-01

    Insulin-deficient states are associated with an impaired function of the hypothalamic-pituitary-gonadal axis, but the mechanisms underlying hypothalamic alterations in experimental diabetes are still unknown. We investigated the effect of glucose concentrations, in the presence and absence of insulin, on LHRH release from perifused hypothalamic fragments from female adult ovariectomized rats. Glucose and insulin were added to the perifusion medium (Earle's, pH 7.4, gassed with 95% O2/5% CO2, flow rate 50 microliters/min). When glucose was absent (in the presence of insulin 10 mU/l), LHRH release was reduced, peak levels being < 5 pg/100 microliters. The addition of glucose (100 and 300 mg/dl), in the absence of insulin, resulted in peak LHRH levels fluctuating around 35 pg/100 microliters (p < 0.05 vs. glucose 0 mg/dl). When glucose (100 or 300 mg/dl) and insulin (10 mU/l) were combined, an eightfold increase in peak LHRH values was observed, and peak levels reached 300 pg/100 microliters (p < 0.05 vs. glucose 100 and 300 mg/dl alone). In conclusion, LHRH release by perifused hypothalamic fragments is dramatically increased by low concentrations of insulin; this occurs only when glucose is available. Acutely elevated glucose levels (from 100 to 300 mg/dl) do not affect LHRH release.

  16. Vitamin D deficiency in adolescents

    PubMed Central

    Soliman, Ashraf T.; De Sanctis, Vincenzo; Elalaily, Rania; Bedair, Said; Kassem, Islam

    2014-01-01

    The prevalence of severe vitamin D deficiency (VDD) in adolescents is variable but considerably high in many countries, especially in Middle-east and Southeast Asia. Different factors attribute to this deficiency including lack of sunlight exposure due to cultural dress codes and veiling or due to pigmented skin, and less time spent outdoors, because of hot weather, and lower vitamin D intake. A potent adaptation process significantly modifies the clinical presentation and therefore clinical presentations may be subtle and go unnoticed, thus making true prevalence studies difficult. Adolescents with severe VDD may present with vague manifestations including pain in weight-bearing joints, back, thighs and/or calves, difficulty in walking and/or climbing stairs, or running and muscle cramps. Adaptation includes increased parathormone (PTH) and deceased insulin-like growth factor-I (IGF-I) secretion. PTH enhances the tubular reabsorption of Ca and stimulates the kidneys to produce 1, 25-(OH) 2D3 that increases intestinal calcium absorption and dissolves the mineralized collagen matrix in bone, causing osteopenia and osteoporosis to provide enough Ca to prevent hypocalcaemia. Decreased insulin like growth factor-I (IGF-I) delays bone growth to economize calcium consumption. Radiological changes are not uncommon and include osteoporosis/osteopenia affecting long bones as well as vertebrae and ribs, bone cysts, decalcification of the metaphysis of the long bones and pseudo fractures. In severe cases pathological fractures and deformities may occur. Vitamin D treatment of adolescents with VDD differs considerably in different studies and proved to be effective in treating all clinical, biochemical, and radiological manifestations. Different treatment regiments for VDD have been discussed and presented in this mini-review for practical use. Adequate vitamin D replacement after treating VDD, improving calcium intake (milk and dairy products), encouraging adequate exposure

  17. [Insulin and physical exercise].

    PubMed

    Louis-Sylvestre, J

    1987-04-01

    Secretion of some pituitary hormones and sympatho-adrenal activity increase very early during exercise. Sympathetic activation is of major importance in cardiovascular adaptation, thermoregulation, etc. Furthermore among the hormonal consequences of such activation those related to insulin are capital. In animal and human subjects basal insulin level decrease during prolonged and progressive exercise. With habitual exercise, both basal and stimulated insulin levels are reduced. It seems that the reduced basal level could be due to alpha-adrenergic inhibition of the islets of Langerhans, while the reduced stimulated response could be the consequence of increased clearance. In trained subjects, in spite of reduced insulin secretion tolerance to glucose is normal due to increased sensitivity to insulin. Sensitivity to insulin is particularly enhanced at the muscular tissue level; it is accompanied by increased hexokinase and glycogen synthetase activity. As a consequence glucose uptake remains optimal at the muscular level. In the liver, both insulin sensitivity and glucokinase activity are reduced, so that glucose is spared and the muscular glycogen store can be restored. At the adipocyte level, metabolic adaptations are such that triglyceride turnover is greatly increased, favouring fuel supply and resaturation of stores.

  18. [Alleged suicide by insulin].

    PubMed

    Birngruber, Christoph G; Krüll, Ralf; Dettmeyer, Reinhard; Verhoff, Marcel A

    2015-01-01

    A 26-year-old man, who was on probation, was found dead in his home by his mother. Insulin vials and 2 insulin pens, which the man's stepfather (an insulin-dependent diabetic) had been missing for over a week, were found next to the deceased. The circumstances suggested suicide by an injected insulin overdose. At the time of the autopsy, the corpse showed already marked signs of autolysis. Clinical chemical tests confirmed the injection of insulin, but indicated hyperglycemia at the time of death. Toxicological analyses revealed that the man had consumed amphetamine, cannabinoids, and tramadol in the recent past. Histological examination finally revealed extensive bronchopneumonia as the cause of death. The most plausible explanation for the results of the autopsy and the additional examinations was an injection of insulin as a failed attempt of self-treatment. It is conceivable that the man had discovered by a rapid test that he was a diabetic, but had decided not to go to a doctor to avoid disclosure of parole violation due to continued drug abuse. He may have misinterpreted the symptoms caused by his worsening bronchitis and the developing bronchopneumonia as symptoms of a diabetic metabolic status and may have felt compelled to treat himself with insulin. PMID:26419091

  19. Tagging insulin in microgravity

    NASA Technical Reports Server (NTRS)

    Dobeck, Michael; Nelson, Ronald S.

    1992-01-01

    Knowing the exact subcellular sites of action of insulin in the body has the potential to give basic science investigators a basis from which a cause and cure for this disease can be approached. The goal of this project is to create a test reagent that can be used to visualize these subcellular sites. The unique microgravity environment of the Shuttle will allow the creation of a reagent that has the possibility of elucidating the subcellular sites of action of insulin. Several techniques have been used in an attempt to isolate the sites of action of items such as insulin. One of these is autoradiography in which the test item is obtained from animals fed radioactive materials. What is clearly needed is to visualize individual insulin molecules at their sites of action. The insulin tagging process to be used on G-399 involves the conjugation of insulin molecules with ferritin molecules to create a reagent that will be used back on Earth in an attempt to elucidate the sites of action of insulin.

  20. CD36-deficient congenic strains show improved glucose tolerance and distinct shifts in metabolic and transcriptomic profiles.

    PubMed

    Šedová, L; Liška, F; Křenová, D; Kazdová, L; Tremblay, J; Krupková, M; Corbeil, G; Hamet, P; Křen, V; Šeda, O

    2012-07-01

    Deficiency of fatty acid translocase Cd36 has been shown to have a major role in the pathogenesis of metabolic syndrome in the spontaneously hypertensive rat (SHR). We have tested the hypothesis that the effects of Cd36 mutation on the features of metabolic syndrome are contextually dependent on genomic background. We have derived two new congenic strains by introgression of limited chromosome 4 regions of SHR origin, both including the defective Cd36 gene, into the genetic background of a highly inbred model of insulin resistance and dyslipidemia, polydactylous (PD) rat strain. We subjected standard diet-fed adult males of PD and the congenic PD.SHR4 strains to metabolic, morphometric and transcriptomic profiling. We observed significantly improved glucose tolerance and lower fasting insulin levels in PD.SHR4 congenics than in PD. One of the PD.SHR4 strains showed lower triglyceride concentrations across major lipoprotein fractions combined with higher levels of low-density lipoprotein cholesterol compared with the PD progenitor. The hepatic transcriptome assessment revealed a network of genes differentially expressed between PD and PD.SHR4 with significant enrichment by members of the circadian rhythmicity pathway (Arntl (Bmal1), Clock, Nfil3, Per2 and Per3). In summary, the introduction of the chromosome 4 region of SHR origin including defective Cd36 into the PD genetic background resulted in disconnected shifts of metabolic profile along with distinct changes in hepatic transcriptome. The synthesis of the current results with those obtained in other Cd36-deficient strains indicates that the eventual metabolic effect of a deleterious mutation such as that of SHR-derived Cd36 is not absolute, but rather a function of complex interactions between environmental and genomic background, upon which it operates.

  1. Insulin receptors internalize by a rapid, saturable pathway requiring receptor autophosphorylation and an intact juxtamembrane region

    PubMed Central

    1991-01-01

    The effect of receptor occupancy on insulin receptor endocytosis was examined in CHO cells expressing normal human insulin receptors (CHO/IR), autophosphorylation- and internalization-deficient receptors (CHO/IRA1018), and receptors which undergo autophosphorylation but lack a sequence required for internalization (CHO/IR delta 960). The rate of [125I]insulin internalization in CHO/IR cells at 37 degrees C was rapid at physiological concentrations, but decreased markedly in the presence of increasing unlabeled insulin (ED50 = 1-3 nM insulin, or 75,000 occupied receptors/cell). In contrast, [125I]insulin internalization by CHO/IRA1018 and CHO/IR delta 960 cells was slow and was not inhibited by unlabeled insulin. At saturating insulin concentrations, the rate of internalization by wild-type and mutant receptors was similar. Moreover, depletion of intracellular potassium, which has been shown to disrupt coated pit formation, inhibited the rapid internalization of [125I]insulin at physiological insulin concentrations by CHO/IR cells, but had little or no effect on [125I]insulin uptake by CHO/IR delta 960 and CHO/IRA1018 cells or wild-type cells at high insulin concentrations. These data suggest that the insulin-stimulated entry of the insulin receptor into a rapid, coated pit-mediated internalization pathway is saturable and requires receptor autophosphorylation and an intact juxtamembrane region. Furthermore, CHO cells also contain a constitutive nonsaturable pathway which does not require receptor autophosphorylation or an intact juxtamembrane region; this second pathway is unaffected by depletion of intracellular potassium, and therefore may be independent of coated pits. Our data suggest that the ligand-stimulated internalization of the insulin receptor may require specific saturable interactions between the receptor and components of the endocytic system. PMID:1757462

  2. Transforming growth factor-beta/Smad3 signaling regulates insulin gene transcription and pancreatic islet beta-cell function.

    PubMed

    Lin, Huei-Min; Lee, Ji-Hyeon; Yadav, Hariom; Kamaraju, Anil K; Liu, Eric; Zhigang, Duan; Vieira, Anthony; Kim, Seong-Jin; Collins, Heather; Matschinsky, Franz; Harlan, David M; Roberts, Anita B; Rane, Sushil G

    2009-05-01

    Pancreatic islet beta-cell dysfunction is a signature feature of Type 2 diabetes pathogenesis. Consequently, knowledge of signals that regulate beta-cell function is of immense clinical relevance. Transforming growth factor (TGF)-beta signaling plays a critical role in pancreatic development although the role of this pathway in the adult pancreas is obscure. Here, we define an important role of the TGF-beta pathway in regulation of insulin gene transcription and beta-cell function. We identify insulin as a TGF-beta target gene and show that the TGF-beta signaling effector Smad3 occupies the insulin gene promoter and represses insulin gene transcription. In contrast, Smad3 small interfering RNAs relieve insulin transcriptional repression and enhance insulin levels. Transduction of adenoviral Smad3 into primary human and non-human primate islets suppresses insulin content, whereas, dominant-negative Smad3 enhances insulin levels. Consistent with this, Smad3-deficient mice exhibit moderate hyperinsulinemia and mild hypoglycemia. Moreover, Smad3 deficiency results in improved glucose tolerance and enhanced glucose-stimulated insulin secretion in vivo. In ex vivo perifusion assays, Smad3-deficient islets exhibit improved glucose-stimulated insulin release. Interestingly, Smad3-deficient islets harbor an activated insulin-receptor signaling pathway and TGF-beta signaling regulates expression of genes involved in beta-cell function. Together, these studies emphasize TGF-beta/Smad3 signaling as an important regulator of insulin gene transcription and beta-cell function and suggest that components of the TGF-beta signaling pathway may be dysregulated in diabetes.

  3. Intranasal Insulin Prevents Cognitive Decline, Cerebral Atrophy and White Matter Changes in Murine Type I Diabetic Encephalopathy

    ERIC Educational Resources Information Center

    Francis, George J.; Martinez, Jose A.; Liu, Wei Q.; Xu, Kevin; Ayer, Amit; Fine, Jared; Tuor, Ursula I.; Glazner, Gordon; Hanson, Leah R.; Frey, William H., II; Toth, Cory

    2008-01-01

    Insulin deficiency in type I diabetes may lead to cognitive impairment, cerebral atrophy and white matter abnormalities. We studied the impact of a novel delivery system using intranasal insulin (I-I) in a mouse model of type I diabetes (streptozotocin-induced) for direct targeting of pathological and cognitive deficits while avoiding potential…

  4. Insulin and the law.

    PubMed

    Marks, Vincent

    2015-11-01

    Hypoglycaemia, if it can be proved, may be used as a defence against almost any criminal charge provided it can be established that the perpetrator was in a state of neuroglycopenic (hypoglycaemic) automatism at the time of the offence. Hypoglycaemia produced by exogenous insulin can also be used as a suicidal or homicidal weapon. This paper discusses some of the pitfalls confronting the investigator of suspected insulin misuse including problems arising from the increasing prevalence of insulin analogues and the unreliability of immunoassays for their detection and measurement in the forensic context. PMID:26092979

  5. Regulation of mesenchymal stem cell differentiation and insulin secretion by differential expression of Pdx-1.

    PubMed

    Yuan, Huijuan; Liu, Hongmei; Tian, Rui; Li, Jie; Zhao, Zhigang

    2012-07-01

    In recent years, major effort has been made to differentiate embryonic stem cells, pancreatic ductal epithelial multipotent progenitor cells, and bone marrow stem cells into insulin secreting cells. Our previous work has also demonstrated the feasibility of inducing mesenchymal stem cells (MSC) to insulin secreting cells through overexpression of Pdx-1, a pancreas and islet-specific transcription factor that plays a major role in differentiation of islet β-cells during development (Yuan et al. in Mol Biol Rep 37:4023-4031, 2010). However, the levels of insulin secretion among these differentiated MSC were quite variable. The purpose of this study is to address the issue whether the insulin secretion level from the differentiated MSC lines are determined by the expression level of the Pdx-1 transgene. To do so, we have generated several differentiated MSC lines with stable transfection of the Pdx-1 gene. Using RT-PCR analysis and insulin secretion assay, we have analyzed Pdx-1 mRNA levels and insulin secretion from these stable MSC lines. Our results showed that Pdx-1 expression is absolutely required for the differentiation of MSC lines to insulin secreting cell lines. Furthermore, we demonstrated that the level of Pdx-1 expression is closely correlated with level of insulin mRNA and insulin secretion level in differentiated MSC stable cell lines. These findings suggest that the level of Pdx-1 expression plays a key role in induction of MSCs to insulin secreting cells.

  6. Bioactives from Artemisia dracunculus L. Enhance Insulin Sensitivity via Modulation of Skeletal Muscle Protein Phosphorylation

    PubMed Central

    Kheterpal, Indu; Scherp, Peter; Kelley, Lauren; Wang, Zhong; Johnson, William; Ribnicky, David; Cefalu, William T.

    2014-01-01

    A botanical extract from Artemisia dracunculus L., termed PMI 5011, has been shown previously to improve insulin sensitivity by increasing cellular insulin signaling in in vitro and in vivo studies. These studies suggest that PMI 5011 effects changes in phosphorylation levels of proteins involved in insulin signaling. To explore effects of this promising botanical extract on the human skeletal muscle phosphoproteome, changes in site-specific protein phosphorylation levels in primary skeletal muscle cultures from obese, insulin resistant individuals were evaluated with and without insulin stimulation. Insulin resistance is a condition in which a normal or elevated insulin level results in an abnormal biologic response, e.g., glucose uptake. Using isobaric tagging for relative and absolute quantification (iTRAQ™) followed by phosphopeptide enrichment and liquid chromatography – tandem mass spectrometry, 125 unique phosphopeptides and 159 unique phosphorylation sites from 80 unique proteins were identified and quantified. Insulin stimulation of primary cultured muscle cells from insulin resistant individuals resulted in minimal increase in phosphorylation, demonstrating impaired insulin action in this condition. Treatment with PMI 5011 resulted in significant up regulation of 35 phosphopeptides that were mapped to proteins participating in the regulation of transcription, translation, actin cytoskeleton signaling, caveolae translocation and GLUT4 transport. These data further showed that PMI 5011 increased phosphorylation levels of specific amino acids in proteins in the insulin resistant state that are normally phosphorylated by insulin (thus, increasing cellular insulin signaling) and PMI 5011 also increased the abundance of phosphorylation sites of proteins regulating anti-apoptotic effects. Thus, the phosphoproteomics analysis demonstrated conclusively that PMI 5011 effects changes in phosphorylation levels of proteins and identified novel pathways by which

  7. Insulin inhalation: NN 1998.

    PubMed

    2004-01-01

    Aradigm Corporation has developed an inhaled form of insulin using its proprietary AERx drug delivery system. The system uses liquid insulin that is converted into an aerosol containing very small particles (1-3 micro in diameter), and an electronic device suitable for either the rapid transfer of molecules of insulin into the bloodstream or localised delivery within the lung. The AERx insulin Diabetes Management System (iDMS), AERx iDMS, instructs the user on breathing technique to achieve the best results. Aradigm Corporation and Novo Nordisk have signed an agreement to jointly develop a pulmonary delivery system for insulin [AERx iDMS, NN 1998]. Under the terms of the agreement, Novo Nordisk has exclusive rights for worldwide marketing of any products resulting from the development programme. Aradigm Corporation will initially manufacture the product covered by the agreement, and in return will receive a share of the overall gross profits from Novo Nordisk's sales. Novo Nordisk will cover all development costs incurred by Aradigm Corporation while both parties will co-fund final development of the AERx device. Both companies will explore the possibilities of the AERx platform to deliver other compounds for the regulation of blood glucose levels. Additionally, the agreement gives Novo Nordisk an option to develop the technology for delivery of agents outside the diabetes area. In April 2001, Aradigm Corporation received a milestone payment from Novo Nordisk related to the completion of certain clinical and product development stages of the AERx drug delivery system. Profil, a CRO in Germany, is cooperating with Aradigm and Novo Nordisk in the development of inhaled insulin. Aradigm and Novo Nordisk initiated a pivotal phase III study with inhaled insulin formulation in September 2002. This 24-month, 300-patient trial is evaluating inhaled insulin in comparison with insulin aspart. Both medications will be given three times daily before meals in addition to basal

  8. Absolute magnitudes of trans-neptunian objects

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.

    2015-10-01

    Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.

  9. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  10. The Simplicity Argument and Absolute Morality

    ERIC Educational Resources Information Center

    Mijuskovic, Ben

    1975-01-01

    In this paper the author has maintained that there is a similarity of thought to be found in the writings of Cudworth, Emerson, and Husserl in his investigation of an absolute system of morality. (Author/RK)

  11. Downregulation of diacylglycerol kinase delta contributes to hyperglycemia-induced insulin resistance.

    PubMed

    Chibalin, Alexander V; Leng, Ying; Vieira, Elaine; Krook, Anna; Björnholm, Marie; Long, Yun Chau; Kotova, Olga; Zhong, Zhihui; Sakane, Fumio; Steiler, Tatiana; Nylén, Carolina; Wang, Jianjun; Laakso, Markku; Topham, Matthew K; Gilbert, Marc; Wallberg-Henriksson, Harriet; Zierath, Juleen R

    2008-02-01

    Type 2 (non-insulin-dependent) diabetes mellitus is a progressive metabolic disorder arising from genetic and environmental factors that impair beta cell function and insulin action in peripheral tissues. We identified reduced diacylglycerol kinase delta (DGKdelta) expression and DGK activity in skeletal muscle from type 2 diabetic patients. In diabetic animals, reduced DGKdelta protein and DGK kinase activity were restored upon correction of glycemia. DGKdelta haploinsufficiency increased diacylglycerol content, reduced peripheral insulin sensitivity, insulin signaling, and glucose transport, and led to age-dependent obesity. Metabolic flexibility, evident by the transition between lipid and carbohydrate utilization during fasted and fed conditions, was impaired in DGKdelta haploinsufficient mice. We reveal a previously unrecognized role for DGKdelta in contributing to hyperglycemia-induced peripheral insulin resistance and thereby exacerbating the severity of type 2 diabetes. DGKdelta deficiency causes peripheral insulin resistance and metabolic inflexibility. These defects in glucose and energy homeostasis contribute to mild obesity later in life. PMID:18267070

  12. Vitamin D insufficiency and insulin resistance in obese adolescents.

    PubMed

    Peterson, Catherine A; Tosh, Aneesh K; Belenchia, Anthony M

    2014-12-01

    Obese adolescents represent a particularly vulnerable group for vitamin D deficiency which appears to have negative consequences on insulin resistance and glucose homeostasis. Poor vitamin D status is also associated with future risk of type 2 diabetes and metabolic syndrome in the obese. The biological mechanisms by which vitamin D influences glycemic control in obesity are not well understood, but are thought to involve enhancement of peripheral/hepatic uptake of glucose, attenuation of inflammation and/or regulation of insulin synthesis/secretion by pancreatic β cells. Related to the latter, recent data suggest that the active form of vitamin, 1,25-dihydroxyvitamin D, does not impact insulin release in healthy pancreatic islets; instead they require an environmental stressor such as inflammation or vitamin D deficiency to see an effect. To date, a number of observational studies exploring the relationship between the vitamin D status of obese adolescents and markers of glucose homeostasis have been published. Most, although not all, show significant associations between circulating 25-hydroxyvitamn D concentrations and insulin sensitivity/resistance indices. In interpreting the collective findings of these reports, significant considerations surface including the effects of pubertal status, vitamin D status, influence of parathyroid hormone status and the presence of nonalcoholic fatty liver disease. The few published clinical trials using vitamin D supplementation to improve insulin resistance and impaired glucose tolerance in obese adolescents have yielded beneficial effects. However, there is a need for more randomized controlled trials. Future investigations should involve larger sample sizes of obese adolescents with documented vitamin D deficiency, and careful selection of the dose, dosing regimen and achievement of target 25-hydroxyvitamn D serum concentrations. These trials should also include clamp-derived measures of in vivo sensitivity and

  13. Vitamin D insufficiency and insulin resistance in obese adolescents

    PubMed Central

    Tosh, Aneesh K.; Belenchia, Anthony M.

    2014-01-01

    Obese adolescents represent a particularly vulnerable group for vitamin D deficiency which appears to have negative consequences on insulin resistance and glucose homeostasis. Poor vitamin D status is also associated with future risk of type 2 diabetes and metabolic syndrome in the obese. The biological mechanisms by which vitamin D influences glycemic control in obesity are not well understood, but are thought to involve enhancement of peripheral/hepatic uptake of glucose, attenuation of inflammation and/or regulation of insulin synthesis/secretion by pancreatic β cells. Related to the latter, recent data suggest that the active form of vitamin, 1,25-dihydroxyvitamin D, does not impact insulin release in healthy pancreatic islets; instead they require an environmental stressor such as inflammation or vitamin D deficiency to see an effect. To date, a number of observational studies exploring the relationship between the vitamin D status of obese adolescents and markers of glucose homeostasis have been published. Most, although not all, show significant associations between circulating 25-hydroxyvitamn D concentrations and insulin sensitivity/resistance indices. In interpreting the collective findings of these reports, significant considerations surface including the effects of pubertal status, vitamin D status, influence of parathyroid hormone status and the presence of nonalcoholic fatty liver disease. The few published clinical trials using vitamin D supplementation to improve insulin resistance and impaired glucose tolerance in obese adolescents have yielded beneficial effects. However, there is a need for more randomized controlled trials. Future investigations should involve larger sample sizes of obese adolescents with documented vitamin D deficiency, and careful selection of the dose, dosing regimen and achievement of target 25-hydroxyvitamn D serum concentrations. These trials should also include clamp-derived measures of in vivo sensitivity and

  14. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice.

    PubMed

    Cariou, Bertrand; van Harmelen, Kirsten; Duran-Sandoval, Daniel; van Dijk, Theo H; Grefhorst, Aldo; Abdelkarim, Mouaadh; Caron, Sandrine; Torpier, Gérard; Fruchart, Jean-Charles; Gonzalez, Frank J; Kuipers, Folkert; Staels, Bart

    2006-04-21

    The farnesoid X receptor (FXR) is a bile acid (BA)-activated nuclear receptor that plays a major role in the regulation of BA and lipid metabolism. Recently, several studies have suggested a potential role of FXR in the control of hepatic carbohydrate metabolism, but its contribution to the maintenance of peripheral glucose homeostasis remains to be established. FXR-deficient mice display decreased adipose tissue mass, lower serum leptin concentrations, and elevated plasma free fatty acid levels. Glucose and insulin tolerance tests revealed that FXR deficiency is associated with impaired glucose tolerance and insulin resistance. Moreover, whole-body glucose disposal during a hyperinsulinemic euglycemic clamp is decreased in FXR-deficient mice. In parallel, FXR deficiency alters distal insulin signaling, as reflected by decreased insulin-dependent Akt phosphorylation in both white adipose tissue and skeletal muscle. Whereas FXR is not expressed in skeletal muscle, it was detected at a low level in white adipose tissue in vivo and induced during adipocyte differentiation in vitro. Moreover, mouse embryonic fibroblasts derived from FXR-deficient mice displayed impaired adipocyte differentiation, identifying a direct role for FXR in adipocyte function. Treatment of differentiated 3T3-L1 adipocytes with the FXR-specific synthetic agonist GW4064 enhanced insulin signaling and insulin-stimulated glucose uptake. Finally, treatment with GW4064 improved insulin resistance in genetically obese ob/ob mice in vivo. Although the underlying molecular mechanisms remain to be unraveled, these results clearly identify a novel role of FXR in the regulation of peripheral insulin sensitivity and adipocyte function. This unexpected function of FXR opens new perspectives for the treatment of type 2 diabetes.

  15. Biosimilar Insulins: How Similar is Similar?

    PubMed Central

    Heinemann, Lutz; Hompesch, Marcus

    2011-01-01

    Biosimilar insulins (BIs) are viewed as commercially attractive products by a number of companies. In order to obtain approval in the European Union or the United States, where there is not a single BI currently on the market, a manufacturer needs to demonstrate that a given BI has a safety and efficacy profile that is similar to that of the “original” insulin formulation that is already on the market. As trivial as this may appear at first glance, it is not trivial at all for a good number of reasons that will be discussed in this commentary. As with protein manufacturing, modifications in the structure of the insulin molecule can take place (which can have serious consequences for the biological effects induced), so a rigid and careful assessment is absolutely necessary. The example of Marvel's failed application with the European Medicines Agency provides insights into the regulatory and clinical challenges surrounding the matter of BI. Although a challenging BI approval process might be regarded as a hurdle to keep companies out of certain markets, it is fair to say that the potential safety and efficacy issues surrounding BI are substantial and relevant and do warrant a careful and evidence-driven approval process. PMID:21722590

  16. Insulin Delivery System

    NASA Technical Reports Server (NTRS)

    1988-01-01

    When Programmable Implantable Medication System (PIMS) is implanted in human body, it delivers precise programmed amounts of insulin over long periods of time. Mini-Med Technologies has been refining the Technologies since initial development at APL. The size of a hockey puck, and encased in titanium shell, PIMS holds about 2 1/2 teaspoons of insulin at a programmed basal rate. If a change in measured blood sugar level dictates a different dose, the patient can vary the amount of insulin delivered by holding a small radio transceiver over the implanted system and dialing in a specific program held in the PIMS computer memory. Insulin refills are accomplished approximately 4 times a year by hypodermic needle.

  17. All about Insulin Resistance

    MedlinePlus

    ... news is that cutting calories, being active, and losing weight can reverse insulin resistance and lower your ... you’ll lose weight. Studies have shown that losing even 7% of your weight, may help. For ...

  18. [Vitamin D deficiency associated with insulin resistance in medical residents].

    PubMed

    Noyola-García, Maura Estela; Díaz-Romero, Alberto; Arce-Quiñones, Mariana; Chong-Martínez, Blanca Alicia; Anda-Garay, Juan Carlos

    2016-01-01

    Introducción: diversos estudios han reportado una correlación entre la deficiencia de vitamina D y la resistencia a la insulina; sin embargo, algunos ensayos clínicos demuestran que la suplementación con vitamina D no normaliza las cifras de glucosa ni las de insulina. Por lo tanto, el objetivo es buscar si existe correlación entre las concentraciones séricas de vitamina D y la resistencia a la insulina a partir de la utilización del índice homeostatic model assessment 2 (HOMA 2). Método: estudio transversal, descriptivo y analítico que incluyó a residentes a los que se les aplicó un cuestionario para conocer su tiempo de exposición al sol. Se tomaron medidas antropométricas como peso, talla y circunferencia de cintura, niveles séricos de vitamina D, insulina sérica, glucosa de ayuno, triglicéridos y colesterol de alta densidad. Se determinó la correlación entre las concentraciones séricas de vitamina D y HOMA 2 mediante el coeficiente de correlación de Pearson; se consideró significativa una p < 0.05. Resultados: la disminución sérica de vitamina D no se correlacionó con concentraciones elevadas del HOMA 2 (r = −0.11, p = 0.34). Se observó una correlación negativa entre las concentraciones de vitamina D y el índice cintura-talla (r = −0.27, p = 0.025). El HOMA 2 se correlacionó positivamente con el índice cintura-talla (r = 0.23, p = 0.05) y los triglicéridos (r = 0.61, p = 0.01) y de forma negativa con el colesterol de alta densidad (r = −0.26, p = 0.02). Conclusión: no observamos la correlación esperada entre hipovitaminosis D y resistencia a la insulina.

  19. Insulin signaling and addiction

    PubMed Central

    Daws, Lynette C.; Avison, Malcolm J.; Robertson, Sabrina D.; Niswender, Kevin D.; Galli, Aurelio; Saunders, Christine

    2012-01-01

    Across species, the brain evolved to respond to natural rewards such as food and sex. These physiological responses are important for survival, reproduction and evolutionary processes. It is no surprise, therefore, that many of the neural circuits and signaling pathways supporting reward processes are conserved from Caenorhabditis elegans to Drosophilae, to rats, monkeys and humans. The central role of dopamine (DA) in encoding reward and in attaching salience to external environmental cues is well recognized. Less widely recognized is the role of reporters of the “internal environment”, particularly insulin, in the modulation of reward. Insulin has traditionally been considered an important signaling molecule in regulating energy homeostasis and feeding behavior rather than a major component of neural reward circuits. However, research over recent decades has revealed that DA and insulin systems do not operate in isolation from each other, but instead, work together to orchestrate both the motivation to engage in consummatory behavior and to calibrate the associated level of reward. Insulin signaling has been found to regulate DA neurotransmission and to affect the ability of drugs that target the DA system to exert their neurochemical and behavioral effects. Given that many abused drugs target the DA system, the elucidation of how dopaminergic, as well as other brain reward systems, are regulated by insulin will create opportunities to develop therapies for drug and potentially food addiction. Moreover, a more complete understanding of the relationship between DA neurotransmission and insulin may help to uncover etiological bases for “food addiction” and the growing epidemic of obesity. This review focuses on the role of insulin signaling in regulating DA homeostasis and DA signaling, and the potential impact of impaired insulin signaling in obesity and psychostimulant abuse. PMID:21420985

  20. Moving toward the ideal insulin for insulin pumps.

    PubMed

    Cengiz, Eda; Bode, Bruce; Van Name, Michelle; Tamborlane, William V

    2016-01-01

    Advances in insulin formulations have been important for diabetes management and achieving optimal glycemic control. Rapid-acting insulin analogs provide a faster time-action profile than regular insulin and are approved for use in pumps. However, the need remains for therapy to deliver a more physiologic insulin profile. New insulin formulations and delivery methods are in development, with the aim of accelerating insulin absorption to accomplish ultra-fast-acting insulin time-action profiles. Furthermore, the integration of continuous glucose monitoring with insulin pump therapy enables on-going adjustment of insulin delivery to optimize glycemic control throughout the day and night. These technological and pharmacological advances are likely to facilitate the development of closed-loop pump systems (i.e., artificial pancreas), and improve glycemic control and quality of life for patients with diabetes. PMID:26560137

  1. Relative nutritional deficiencies associated with centrally acting monoamines

    PubMed Central

    Hinz, Marty; Stein, Alvin; Uncini, Thomas

    2012-01-01

    Background Two primary categories of nutritional deficiency exist. An absolute nutritional deficiency occurs when nutrient intake is not sufficient to meet the normal needs of the system, and a relative nutritional deficiency exists when nutrient intake and systemic levels of nutrients are normal, while a change occurs in the system that induces a nutrient intake requirement that cannot be supplied from diet alone. The purpose of this paper is to demonstrate that the primary component of chronic centrally acting monoamine (serotonin, dopamine, norepinephrine, and epinephrine) disease is a relative nutritional deficiency induced by postsynaptic neuron damage. Materials and methods Monoamine transporter optimization results were investigated, reevaluated, and correlated with previous publications by the authors under the relative nutritional deficiency hypothesis. Most of those previous publications did not discuss the concept of a relative nutritional deficiency. It is the purpose of this paper to redefine the etiology expressed in these previous writings into the realm of relative nutritional deficiency, as demonstrated by monoamine transporter optimization. The novel and broad range of amino acid precursor dosing values required to address centrally acting monoamine relative nutritional deficiency properly is also discussed. Results Four primary etiologies are described for postsynaptic neuron damage leading to a centrally acting monoamine relative nutritional deficiency, all of which require monoamine transporter optimization to define the proper amino acid dosing values of serotonin and dopamine precursors. Conclusion Humans suffering from chronic centrally acting monoamine-related disease are not suffering from a drug deficiency; they are suffering from a relative nutritional deficiency involving serotonin and dopamine amino acid precursors. Whenever low or inadequate levels of monoamine neurotransmitters exist, a relative nutritional deficiency is present

  2. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed.

  3. Enhanced insulin signaling in density-enhanced phosphatase-1 (DEP-1) knockout mice

    PubMed Central

    Krüger, Janine; Brachs, Sebastian; Trappiel, Manuela; Kintscher, Ulrich; Meyborg, Heike; Wellnhofer, Ernst; Thöne-Reineke, Christa; Stawowy, Philipp; Östman, Arne; Birkenfeld, Andreas L.; Böhmer, Frank D.; Kappert, Kai

    2015-01-01

    Objective Insulin resistance can be triggered by enhanced dephosphorylation of the insulin receptor or downstream components in the insulin signaling cascade through protein tyrosine phosphatases (PTPs). Downregulating density-enhanced phosphatase-1 (DEP-1) resulted in an improved metabolic status in previous analyses. This phenotype was primarily caused by hepatic DEP-1 reduction. Methods Here we further elucidated the role of DEP-1 in glucose homeostasis by employing a conventional knockout model to explore the specific contribution of DEP-1 in metabolic tissues. Ptprj−/− (DEP-1 deficient) and wild-type C57BL/6 mice were fed a low-fat or high-fat diet. Metabolic phenotyping was combined with analyses of phosphorylation patterns of insulin signaling components. Additionally, experiments with skeletal muscle cells and muscle tissue were performed to assess the role of DEP-1 for glucose uptake. Results High-fat diet fed-Ptprj−/− mice displayed enhanced insulin sensitivity and improved glucose tolerance. Furthermore, leptin levels and blood pressure were reduced in Ptprj−/− mice. DEP-1 deficiency resulted in increased phosphorylation of components of the insulin signaling cascade in liver, skeletal muscle and adipose tissue after insulin challenge. The beneficial effect on glucose homeostasis in vivo was corroborated by increased glucose uptake in skeletal muscle cells in which DEP-1 was downregulated, and in skeletal muscle of Ptprj−/− mice. Conclusion Together, these data establish DEP-1 as novel negative regulator of insulin signaling. PMID:25830095

  4. Factor V deficiency

    MedlinePlus

    ... in blood plasma. These proteins are called blood coagulation factors. Factor V deficiency is caused by a ... Gailani D, Neff AT. Rare coagulation factor deficiencies. In: ... HE, Weitz JI, Anastasi J, eds. Hematology: Basic Principles and ...

  5. Alpha-1 Antitrypsin Deficiency

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Alpha-1 Antitrypsin Deficiency? Alpha-1 antitrypsin (an-tee-TRIP-sin) deficiency, or AAT ... as it relates to lung disease. Overview Alpha-1 antitrypsin, also called AAT, is a protein made ...

  6. Insulin pump therapy in pregnancy.

    PubMed

    Kesavadev, Jothydev

    2016-09-01

    Control of blood glucose during pregnancy is difficult because of wide variations, ongoing hormonal changes and mood swings. The need for multiple injections, pain at the injection site, regular monitoring and skillful handling of the syringes/pen further makes insulin therapy inconvenient. Insulin pump is gaining popularity in pregnancy because it mimics the insulin delivery of a healthy human pancreas. Multiple guidelines have also recommended the use of insulin pump in pregnancy to maintain the glycaemic control. The pump can release small doses of insulin continuously (basal), or a bolus dose close to mealtime to control the spike in blood glucose after a meal and the newer devices can shut down insulin delivery before the occurrence of hypoglycaemia. Pump insulin of choice is rapid acting analogue insulin. This review underscores the role of insulin pump in pregnancy, their usage, advantages and disadvantages in the light of existing literature and clinic experience. PMID:27582150

  7. Influence of anti-insulin antibodies on insulin immunoassays in the autoimmune insulin syndrome.

    PubMed

    Casesnoves, A; Mauri, M; Dominguez, J R; Alfayate, R; Picó, A M

    1998-11-01

    The autoimmune insulin syndrome (AIS) is a rare, benign syndrome characterized by hyperinsulinaemia and hypoglycaemia associated with the presence of autoantibodies to insulin in patients who have not been treated with insulin. We report here the case of a 52-year-old patient with recurrent attacks of severe postprandial hypoglycaemia and we also present the effect of anti-insulin antibodies on insulin immunoassays. The patient was submitted to the following diagnostic tests: 5-h oral glucose tolerance test (OGTT), a prolonged 72-h fast and an insulin tolerance test (ITT). Serum glucose, total and free insulin, C-peptide, proinsulin, insulin antibodies and other autoantibodies were measured. Insulin concentrations were measured by two methods: a double antibody radioimmunoassay (RIA) and an immunoradiometric assay (IRMA). Insulin concentration measured by RIA was extremely high in the OGTT and 72-h fast. In contrast, insulin concentrations measured by IRMA were between 120 and 888 pmol/L in the OGTT and between 37 and 133 pmol/L during the 72-h fast. Fasting free-insulin concentrations measured by RIA were between 2224 and 2669 pmol/L, whereas free-insulin concentrations measured by IRMA ranged between 93 and 237 pmol/L. Total insulin concentrations measured by RIA and IRMA were 57,615 and 94,021 pmol/L, respectively. The C-peptide concentrations were moderately high in the three tests. Serum insulin antibody concentrations were extremely high (62-71%), compared with less than 3% in normal serum samples. In conclusion, the high insulin concentrations measured by RIA were caused by insulin autoantibodies. However, insulin concentrations measured by IRMA were not influenced by them. We conclude that IRMA is the more accurate method for measuring insulin concentrations in such cases.

  8. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  9. Insulin-producing cells.

    PubMed

    Schroeder, Insa S; Kania, Gabriela; Blyszczuk, Przemyslaw; Wobus, Anna M

    2006-01-01

    Embryonic stem (ES) cells offer great potential for cell replacement and tissue engineering therapies because of their almost unlimited proliferation capacity and the potential to differentiate into cellular derivatives of all three primary germ layers. This chapter describes a strategy for the in vitro differentiation of mouse ES cells into insulin-producing cells. The three-step protocol does not select for nestin-expressing cells as performed in previous differentiation systems. It includes (1) the spontaneous differentiation of ES cells via embryoid bodies and (2) the formation of progenitor cells of all three primary germ layers (multilineage progenitors) followed by (3) directed differentiation into the pancreatic lineage. The application of growth and extracellular matrix factors, including laminin, nicotinamide, and insulin, leads to the development of committed pancreatic progenitors, which subsequently differentiate into islet-like clusters that release insulin in response to glucose. During differentiation, transcript levels of pancreas-specific transcription factors (i.e., Pdx1, Pax4) and of genes specific for early and mature beta cells, including insulin, islet amyloid pancreatic peptide, somatostatin, and glucagon, are upregulated. C-peptide/insulin-positive islet-like clusters are formed, which release insulin in response to high glucose concentrations at terminal stages. The differentiated cells reveal functional properties with respect to voltage-activated Na+ and ATP-modulated K+ channels and normalize blood glucose levels in streptozotocin-treated diabetic mice. In conclusion, we demonstrate the efficient differentiation of murine ES cells into insulin-producing cells, which may help in the future to establish ES cell-based therapies in diabetes mellitus.

  10. DOCK8 Deficiency

    MedlinePlus

    ... on ClinicalTrials.gov . Related Links Primary Immune Deficiency Diseases (PIDDs) Immune System ​​​​​​​ Javascript Error Your browser JavaScript is turned ... Scientists Identify Genetic Cause of Previously Undefined Primary Immune Deficiency Disease Signs and Symptoms DOCK8 deficiency causes persistent skin ...

  11. Iron-Deficiency Anemia

    MedlinePlus

    ... the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily ... Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the ...

  12. Insulin-Inducible SMILE Inhibits Hepatic Gluconeogenesis.

    PubMed

    Lee, Ji-Min; Seo, Woo-Young; Han, Hye-Sook; Oh, Kyoung-Jin; Lee, Yong-Soo; Kim, Don-Kyu; Choi, Seri; Choi, Byeong Hun; Harris, Robert A; Lee, Chul-Ho; Koo, Seung-Hoi; Choi, Hueng-Sik

    2016-01-01

    The role of a glucagon/cAMP-dependent protein kinase-inducible coactivator PGC-1α signaling pathway is well characterized in hepatic gluconeogenesis. However, an opposing protein kinase B (PKB)/Akt-inducible corepressor signaling pathway is unknown. A previous report has demonstrated that small heterodimer partner-interacting leucine zipper protein (SMILE) regulates the nuclear receptors and transcriptional factors that control hepatic gluconeogenesis. Here, we show that hepatic SMILE expression was induced by feeding in normal mice but not in db/db and high-fat diet (HFD)-fed mice. Interestingly, SMILE expression was induced by insulin in mouse primary hepatocyte and liver. Hepatic SMILE expression was not altered by refeeding in liver-specific insulin receptor knockout (LIRKO) or PKB β-deficient (PKBβ(-/-)) mice. At the molecular level, SMILE inhibited hepatocyte nuclear factor 4-mediated transcriptional activity via direct competition with PGC-1α. Moreover, ablation of SMILE augmented gluconeogenesis and increased blood glucose levels in mice. Conversely, overexpression of SMILE reduced hepatic gluconeogenic gene expression and ameliorated hyperglycemia and glucose intolerance in db/db and HFD-fed mice. Therefore, SMILE is an insulin-inducible corepressor that suppresses hepatic gluconeogenesis. Small molecules that enhance SMILE expression would have potential for treating hyperglycemia in diabetes. PMID:26340929

  13. Neonatal nucleated red blood cells in G6PD deficiency.

    PubMed

    Yeruchimovich, Mark; Shapira, Boris; Mimouni, Francis B; Dollberg, Shaul

    2002-05-01

    The objective of this study is to study the absolute number of nucleated red blood cells (RBC) at birth, an index of active fetal erythropoiesis, in infants with G6PD deficiency and in controls. We tested the hypothesis that hematocrit and hemoglobin would be lower, and absolute nucleated RBC counts higher, in the G6PD deficient and that these changes would be more prominent in infants exposed passively to fava bean through maternal diet. Thirty-two term infants with G6PD deficiency were compared with 30 term controls. Complete blood counts with manual differential counts were obtained within 12 hours of life. Absolute nucleated RBC and corrected leukocyte counts were computed from the Coulter results and the differential count. G6PD deficient patients did not differ from controls in terms of gestational age, birth weight, or Apgar scores or in any of the hematologic parameters studied, whether or not the mother reported fava beans consumption in the days prior to delivery. Although intrauterine hemolysis is possible in G6PD deficient fetuses exposed passively to fava beans, our study supports that such events must be very rare.

  14. Neonatal nucleated red blood cells in G6PD deficiency.

    PubMed

    Yeruchimovich, Mark; Shapira, Boris; Mimouni, Francis B; Dollberg, Shaul

    2002-05-01

    The objective of this study is to study the absolute number of nucleated red blood cells (RBC) at birth, an index of active fetal erythropoiesis, in infants with G6PD deficiency and in controls. We tested the hypothesis that hematocrit and hemoglobin would be lower, and absolute nucleated RBC counts higher, in the G6PD deficient and that these changes would be more prominent in infants exposed passively to fava bean through maternal diet. Thirty-two term infants with G6PD deficiency were compared with 30 term controls. Complete blood counts with manual differential counts were obtained within 12 hours of life. Absolute nucleated RBC and corrected leukocyte counts were computed from the Coulter results and the differential count. G6PD deficient patients did not differ from controls in terms of gestational age, birth weight, or Apgar scores or in any of the hematologic parameters studied, whether or not the mother reported fava beans consumption in the days prior to delivery. Although intrauterine hemolysis is possible in G6PD deficient fetuses exposed passively to fava beans, our study supports that such events must be very rare. PMID:12012283

  15. The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance

    PubMed Central

    Tamaki, Motoyuki; Fujitani, Yoshio; Hara, Akemi; Uchida, Toyoyoshi; Tamura, Yoshifumi; Takeno, Kageumi; Kawaguchi, Minako; Watanabe, Takahiro; Ogihara, Takeshi; Fukunaka, Ayako; Shimizu, Tomoaki; Mita, Tomoya; Kanazawa, Akio; Imaizumi, Mica O.; Abe, Takaya; Kiyonari, Hiroshi; Hojyo, Shintaro; Fukada, Toshiyuki; Kawauchi, Takeshi; Nagamatsu, Shinya; Hirano, Toshio; Kawamori, Ryuzo; Watada, Hirotaka

    2013-01-01

    Recent genome-wide association studies demonstrated that common variants of solute carrier family 30 member 8 gene (SLC30A8) increase susceptibility to type 2 diabetes. SLC30A8 encodes zinc transporter-8 (ZnT8), which delivers zinc ion from the cytoplasm into insulin granules. Although it is well known that insulin granules contain high amounts of zinc, the physiological role of secreted zinc remains elusive. In this study, we generated mice with β cell–specific Slc30a8 deficiency (ZnT8KO mice) and demonstrated an unexpected functional linkage between Slc30a8 deletion and hepatic insulin clearance. The ZnT8KO mice had low peripheral blood insulin levels, despite insulin hypersecretion from pancreatic β cells. We also demonstrated that a substantial amount of the hypersecreted insulin was degraded during its first passage through the liver. Consistent with these findings, ZnT8KO mice and human individuals carrying rs13266634, a major risk allele of SLC30A8, exhibited increased insulin clearance, as assessed by c-peptide/insulin ratio. Furthermore, we demonstrated that zinc secreted in concert with insulin suppressed hepatic insulin clearance by inhibiting clathrin-dependent insulin endocytosis. Our results indicate that SLC30A8 regulates hepatic insulin clearance and that genetic dysregulation of this system may play a role in the pathogenesis of type 2 diabetes. PMID:24051378

  16. Quantum theory allows for absolute maximal contextuality

    NASA Astrophysics Data System (ADS)

    Amaral, Barbara; Cunha, Marcelo Terra; Cabello, Adán

    2015-12-01

    Contextuality is a fundamental feature of quantum theory and a necessary resource for quantum computation and communication. It is therefore important to investigate how large contextuality can be in quantum theory. Linear contextuality witnesses can be expressed as a sum S of n probabilities, and the independence number α and the Tsirelson-like number ϑ of the corresponding exclusivity graph are, respectively, the maximum of S for noncontextual theories and for the theory under consideration. A theory allows for absolute maximal contextuality if it has scenarios in which ϑ /α approaches n . Here we show that quantum theory allows for absolute maximal contextuality despite what is suggested by the examination of the quantum violations of Bell and noncontextuality inequalities considered in the past. Our proof is not constructive and does not single out explicit scenarios. Nevertheless, we identify scenarios in which quantum theory allows for almost-absolute-maximal contextuality.

  17. Absolute calibration in vivo measurement systems

    SciTech Connect

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

  18. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record

  19. Quantitative standards for absolute linguistic universals.

    PubMed

    Piantadosi, Steven T; Gibson, Edward

    2014-01-01

    Absolute linguistic universals are often justified by cross-linguistic analysis: If all observed languages exhibit a property, the property is taken to be a likely universal, perhaps specified in the cognitive or linguistic systems of language learners and users. In many cases, these patterns are then taken to motivate linguistic theory. Here, we show that cross-linguistic analysis will very rarely be able to statistically justify absolute, inviolable patterns in language. We formalize two statistical methods--frequentist and Bayesian--and show that in both it is possible to find strict linguistic universals, but that the numbers of independent languages necessary to do so is generally unachievable. This suggests that methods other than typological statistics are necessary to establish absolute properties of human language, and thus that many of the purported universals in linguistics have not received sufficient empirical justification.

  20. Absolute photoacoustic thermometry in deep tissue.

    PubMed

    Yao, Junjie; Ke, Haixin; Tai, Stephen; Zhou, Yong; Wang, Lihong V

    2013-12-15

    Photoacoustic thermography is a promising tool for temperature measurement in deep tissue. Here we propose an absolute temperature measurement method based on the dual temperature dependences of the Grüneisen parameter and the speed of sound in tissue. By taking ratiometric measurements at two adjacent temperatures, we can eliminate the factors that are temperature irrelevant but difficult to correct for in deep tissue. To validate our method, absolute temperatures of blood-filled tubes embedded ~9 mm deep in chicken tissue were measured in a biologically relevant range from 28°C to 46°C. The temperature measurement accuracy was ~0.6°C. The results suggest that our method can be potentially used for absolute temperature monitoring in deep tissue during thermotherapy.

  1. Molecular iodine absolute frequencies. Final report

    SciTech Connect

    Sansonetti, C.J.

    1990-06-25

    Fifty specified lines of {sup 127}I{sub 2} were studied by Doppler-free frequency modulation spectroscopy. For each line the classification of the molecular transition was determined, hyperfine components were identified, and one well-resolved component was selected for precise determination of its absolute frequency. In 3 cases, a nearby alternate line was selected for measurement because no well-resolved component was found for the specified line. Absolute frequency determinations were made with an estimated uncertainty of 1.1 MHz by locking a dye laser to the selected hyperfine component and measuring its wave number with a high-precision Fabry-Perot wavemeter. For each line results of the absolute measurement, the line classification, and a Doppler-free spectrum are given.

  2. Molecular Mechanisms of Insulin Secretion and Insulin Action.

    ERIC Educational Resources Information Center

    Flatt, Peter R.; Bailey, Clifford J.

    1991-01-01

    Information and current ideas on the factors regulating insulin secretion, the mechanisms underlying the secretion and biological actions of insulin, and the main characteristics of diabetes mellitus are presented. (Author)

  3. Absolute Stability And Hyperstability In Hilbert Space

    NASA Technical Reports Server (NTRS)

    Wen, John Ting-Yung

    1989-01-01

    Theorems on stabilities of feedback control systems proved. Paper presents recent developments regarding theorems of absolute stability and hyperstability of feedforward-and-feedback control system. Theorems applied in analysis of nonlinear, adaptive, and robust control. Extended to provide sufficient conditions for stability in system including nonlinear feedback subsystem and linear time-invariant (LTI) feedforward subsystem, state space of which is Hilbert space, and input and output spaces having finite numbers of dimensions. (In case of absolute stability, feedback subsystem memoryless and possibly time varying. For hyperstability, feedback system dynamical system.)

  4. Insulin C-peptide test

    MedlinePlus

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  5. Insulin tolerance in laminitic ponies.

    PubMed Central

    Coffman, J R; Colles, C M

    1983-01-01

    Sensitivity to insulin was assessed in ponies episodically affected with chronic laminitis by measurement of blood glucose and arterial blood pressure during insulin tolerance tests. In terms of blood glucose values, laminitic ponies were significantly less sensitive to insulin than controls. Conversely, a post-insulin decline in diastolic, systolic and mean blood pressure values was significantly greater in laminitic ponies than in controls. PMID:6357412

  6. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  7. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  8. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  9. Teaching Absolute Value Inequalities to Mature Students

    ERIC Educational Resources Information Center

    Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea

    2011-01-01

    This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…

  10. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  11. Increasing Capacity: Practice Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Dodds, Pennie; Donkin, Christopher; Brown, Scott D.; Heathcote, Andrew

    2011-01-01

    In most of the long history of the study of absolute identification--since Miller's (1956) seminal article--a severe limit on performance has been observed, and this limit has resisted improvement even by extensive practice. In a startling result, Rouder, Morey, Cowan, and Pfaltz (2004) found substantially improved performance with practice in the…

  12. Absolute Radiometric Calibration Of The Thematic Mapper

    NASA Astrophysics Data System (ADS)

    Slater, P. N.; Biggar, S. F.; Holm, R. G.; Jackson, R. D.; Mao, Y.; Moran, M. S.; Palmer, J. M.; Yuan, B.

    1986-11-01

    The results are presented of five in-flight absolute radiometric calibrations, made in the period July 1984 to November 1985, at White Sands, New Mexico, of the solar reflective bands of the Landsat-5 Thematic Mapper (TM) . The 23 bandcalibrations made on the five dates show a ± 2.8% RMS variation from the mean as a percentage of the mean.

  13. On Relative and Absolute Conviction in Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2015-01-01

    Conviction is a central construct in mathematics education research on justification and proof. In this paper, we claim that it is important to distinguish between absolute conviction and relative conviction. We argue that researchers in mathematics education frequently have not done so and this has lead to researchers making unwarranted claims…

  14. Oral Insulin and Buccal Insulin: A Critical Reappraisal

    PubMed Central

    Heinemann, Lutz; Jacques, Yves

    2009-01-01

    Despite the availability of modern insulin injection devices with needles that are so sharp and thin that practically no injection pain takes place, it is still the dream of patients with diabetes to, for example, swallow a tablet with insulin. This is not associated with any pain and would allow more discretion. Therefore, availability of oral insulin would not only ease insulin therapy, it would certainly increase compliance. However, despite numerous attempts to develop such a “tablet” in the past 85 years, still no oral insulin is commercially available. Buccal insulin is currently in the last stages of clinical development by one company and might become available in the United States and Europe in the coming years (it is already on the market in some other countries). The aim of this review is to critically describe the different approaches that are currently under development. Optimal coverage of prandial insulin requirements is the aim with both routes of insulin administration (at least with most approaches). The speed of onset of metabolic effect seen with some oral insulin approaches is rapid, but absorption appears to be lower when the tablet is taken immediately prior to a meal. With all approaches, considerable amounts of insulin have to be applied in order to induce therapeutically relevant increases in the metabolic effect because of the low relative biopotency of buccal insulin. Unfortunately, the number of publications about clinical–experimental and clinical studies is surprisingly low. In addition, there is no study published in which the variability of the metabolic effect induced (with and without a meal) was studied adequately. In summary, after the failure of inhaled insulin, oral insulin and buccal insulin are hot candidates to come to the market as the next alternative routes of insulin administration. PMID:20144297

  15. Mitotic Checkpoint Regulators Control Insulin Signaling and Metabolic Homeostasis.

    PubMed

    Choi, Eunhee; Zhang, Xiangli; Xing, Chao; Yu, Hongtao

    2016-07-28

    Insulin signaling regulates many facets of animal physiology. Its dysregulation causes diabetes and other metabolic disorders. The spindle checkpoint proteins MAD2 and BUBR1 prevent precocious chromosome segregation and suppress aneuploidy. The MAD2 inhibitory protein p31(comet) promotes checkpoint inactivation and timely chromosome segregation. Here, we show that whole-body p31(comet) knockout mice die soon after birth and have reduced hepatic glycogen. Liver-specific ablation of p31(comet) causes insulin resistance, hyperinsulinemia, glucose intolerance, and hyperglycemia and diminishes the plasma membrane localization of the insulin receptor (IR) in hepatocytes. MAD2 directly binds to IR and facilitates BUBR1-dependent recruitment of the clathrin adaptor AP2 to IR. p31(comet) blocks the MAD2-BUBR1 interaction and prevents spontaneous clathrin-mediated IR endocytosis. BUBR1 deficiency enhances insulin sensitivity in mice. BUBR1 depletion in hepatocytes or the expression of MAD2-binding-deficient IR suppresses the metabolic phenotypes of p31(comet) ablation. Our findings establish a major IR regulatory mechanism and link guardians of chromosome stability to nutrient metabolism. PMID:27374329

  16. Insulin Resistance in Alzheimer's Disease

    PubMed Central

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  17. Progranulin induces adipose insulin resistance and autophagic imbalance via TNFR1 in mice.

    PubMed

    Zhou, Bo; Li, Huixia; Liu, Jiali; Xu, Lin; Guo, Qinyue; Sun, Hongzhi; Wu, Shufang

    2015-12-01

    Progranulin (PGRN) has recently emerged as an important regulator for insulin resistance. However, the direct effect of PGRN in vivo and the underlying role of progranulin in adipose insulin resistance involving the autophagy mechanism is not fully understood. In this study, mice treated with PGRN for 21 days exhibited the impaired glucose tolerance and insulin sensitivity, remarkable adipose autophagy as well as attenuated insulin signaling via inhibition of mammalian target of rapamycin (mTOR) pathway. Furthermore, blockade of tumor necrosis factor receptor 1 (TNFR1) by TNFR1BP-Fc injection resulted in the restoration of impaired insulin sensitivity and insulin signaling induced by PGRN. Consistent with these findings in vivo, PGRN treatment induced defective insulin signaling, abnormal autophagic and mitochondrial activity in cultured adipocytes, while such effects were nullified by the blockade of TNFR1. In addition, PGRN-deficient adipocytes were more refractory to tunicamycin- or dexamethasone-induced insulin resistance, indicating the causative role of the TNFR1 pathway in the action of PGRN. Collectively, our findings support the notion that PGRN is a key regulator of insulin resistance and that PGRN may mediate its effects, at least in part, by inducing autophagy via the TNFR1-dependent mechanism.

  18. Actions of mammalian insulin on a Neurospora variant: morphology, growth and binding

    SciTech Connect

    McKenzie, M.A.; Lenard, J.

    1986-05-01

    Molecules resembling mammalian insulin have previously been detected in lower eukaryotes by others, but no function was found. The authors have found that the cell wall-deficient slime mutant of Neurospora crassa, when cultured in a defined, nutrient-rich medium, responds to mammalian insulin (10/sup -10/ M). In transition from the late logarithmic to early stationary phases of growth (18-24 hours), insulin treated cells were larger, rounder and more uniform in shape, and the number of cells with characteristic projections (tails) was reduced 5-fold. Insulin treated cell cultures also contained 15-30% more protein and showed significantly greater viability for an extended period, as measured by trypan blue dye exclusion. Bovine and porcine insulin were both active, as was human insulin produced by recombinant techniques. Binding of insulin to N. crassa slime cells showed properties similar to that of many mammalian cell types: high affinity, reversibility, and a curvilinear Scatchard plot. Even at the low temperature (4/sup 0/C) of these experiments, however, degradation of radiolabeled insulin was high (ca. 30%). The long-term effects of mammalian insulin on N. crassa may thus be mediated through a receptor as in higher organisms.

  19. miRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors

    PubMed Central

    Melkman-Zehavi, Tal; Oren, Roni; Kredo-Russo, Sharon; Shapira, Tirosh; Mandelbaum, Amitai D; Rivkin, Natalia; Nir, Tomer; Lennox, Kim A; Behlke, Mark A; Dor, Yuval; Hornstein, Eran

    2011-01-01

    MicroRNAs (miRNAs) were shown to be important for pancreas development, yet their roles in differentiated β-cells remain unclear. Here, we show that miRNA inactivation in β-cells of adult mice results in a striking diabetic phenotype. While islet architecture is intact and differentiation markers are maintained, Dicer1-deficient β-cells show a dramatic decrease in insulin content and insulin mRNA. As a consequence of the change in insulin content, the animals become diabetic. We provide evidence for involvement of a set of miRNAs in regulating insulin synthesis. The specific knockdown of miR-24, miR-26, miR-182 or miR-148 in cultured β-cells or in isolated primary islets downregulates insulin promoter activity and insulin mRNA levels. Further, miRNA-dependent regulation of insulin expression is associated with upregulation of transcriptional repressors, including Bhlhe22 and Sox6. Thus, miRNAs in the adult pancreas act in a new network that reinforces insulin expression by reducing the expression of insulin transcriptional repressors. PMID:21285947

  20. Tequila Regulates Insulin-Like Signaling and Extends Life Span in Drosophila melanogaster.

    PubMed

    Huang, Cheng-Wen; Wang, Horng-Dar; Bai, Hua; Wu, Ming-Shiang; Yen, Jui-Hung; Tatar, Marc; Fu, Tsai-Feng; Wang, Pei-Yu

    2015-12-01

    The aging process is a universal phenomenon shared by all living organisms. The identification of longevity genes is important in that the study of these genes is likely to yield significant insights into human senescence. In this study, we have identified Tequila as a novel candidate gene involved in the regulation of longevity in Drosophila melanogaster. We have found that a hypomorphic mutation of Tequila (Teq(f01792)), as well as cell-specific downregulation of Tequila in insulin-producing neurons of the fly, significantly extends life span. Tequila deficiency-induced life-span extension is likely to be associated with reduced insulin-like signaling, because Tequila mutant flies display several common phenotypes of insulin dysregulation, including reduced circulating Drosophila insulin-like peptide 2 (Dilp2), reduced Akt phosphorylation, reduced body size, and altered glucose homeostasis. These observations suggest that Tequila may confer life-span extension by acting as a modulator of Drosophila insulin-like signaling.

  1. Insulin rescues impaired spermatogenesis via the hypothalamic-pituitary-gonadal axis in Akita diabetic mice and restores male fertility.

    PubMed

    Schoeller, Erica L; Albanna, Gabriella; Frolova, Antonina I; Moley, Kelle H

    2012-07-01

    The mechanism responsible for poor reproductive outcomes in type 1 diabetic males is not well understood. In light of new evidence that the Sertoli cells of the testis secrete insulin, it is currently unclear whether diabetic subfertility is the result of deficiency of pancreatic insulin, testicular insulin, or both. In this study, the Akita mouse diabetic model, which expresses a mutant, nonfunctional form of ins2 in testes and pancreas, was used to distinguish between systemic and local effects of insulin deficiency on the process of spermatogenesis and fertility. We determined that Akita homozygous male mice are infertile and have reduced testis size and abnormal morphology. Spermatogonial germ cells are still present but are unable to mature into spermatocytes and spermatids. Exogenous insulin treatment regenerates testes and restores fertility, but this plasma insulin cannot pass through the blood-testis barrier. We conclude that insulin does not rescue fertility through direct interaction with the testis; instead, it restores function of the hypothalamic-pituitary-gonadal axis and, thus, normalizes hormone levels of luteinizing hormone and testosterone. Although we show that the Sertoli cells of the testis secrete insulin protein, this insulin does not appear to be critical for fertility.

  2. Combined Use of Absolute and Differential Seismic Arrival Time Data to Improve Absolute Event Location

    NASA Astrophysics Data System (ADS)

    Myers, S.; Johannesson, G.

    2012-12-01

    Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement

  3. New Insulin Delivery Recommendations.

    PubMed

    Frid, Anders H; Kreugel, Gillian; Grassi, Giorgio; Halimi, Serge; Hicks, Debbie; Hirsch, Laurence J; Smith, Mike J; Wellhoener, Regine; Bode, Bruce W; Hirsch, Irl B; Kalra, Sanjay; Ji, Linong; Strauss, Kenneth W

    2016-09-01

    Many primary care professionals manage injection or infusion therapies in patients with diabetes. Few published guidelines have been available to help such professionals and their patients manage these therapies. Herein, we present new, practical, and comprehensive recommendations for diabetes injections and infusions. These recommendations were informed by a large international survey of current practice and were written and vetted by 183 diabetes experts from 54 countries at the Forum for Injection Technique and Therapy: Expert Recommendations (FITTER) workshop held in Rome, Italy, in 2015. Recommendations are organized around the themes of anatomy, physiology, pathology, psychology, and technology. Key among the recommendations are that the shortest needles (currently the 4-mm pen and 6-mm syringe needles) are safe, effective, and less painful and should be the first-line choice in all patient categories; intramuscular injections should be avoided, especially with long-acting insulins, because severe hypoglycemia may result; lipohypertrophy is a frequent complication of therapy that distorts insulin absorption, and, therefore, injections and infusions should not be given into these lesions and correct site rotation will help prevent them; effective long-term therapy with insulin is critically dependent on addressing psychological hurdles upstream, even before insulin has been started; inappropriate disposal of used sharps poses a risk of infection with blood-borne pathogens; and mitigation is possible with proper training, effective disposal strategies, and the use of safety devices. Adherence to these new recommendations should lead to more effective therapies, improved outcomes, and lower costs for patients with diabetes. PMID:27594187

  4. [Insulin therapy of diabetes].

    PubMed

    Lechleitner, Monika; Roden, Michael; Weitgasser, Raimund; Ludvik, Bernhard; Fasching, Peter; Hoppichler, Friedrich; Kautzky-Willer, Alexandra; Schernthaner, Guntram; Prager, Rudolf; Wascher, Thomas C

    2016-04-01

    Hyperglycemia contributes to morbidity and mortality in patients with diabetes. Thus, reaching treatment targets with regard to control of glycemia is a central goal in the therapy of diabetic patients. The present article represents the recommendations of the Austrian Diabetes Association for the practical use of insulin according to current scientific evidence and clinical studies. PMID:27052221

  5. New Insulin Delivery Recommendations.

    PubMed

    Frid, Anders H; Kreugel, Gillian; Grassi, Giorgio; Halimi, Serge; Hicks, Debbie; Hirsch, Laurence J; Smith, Mike J; Wellhoener, Regine; Bode, Bruce W; Hirsch, Irl B; Kalra, Sanjay; Ji, Linong; Strauss, Kenneth W

    2016-09-01

    Many primary care professionals manage injection or infusion therapies in patients with diabetes. Few published guidelines have been available to help such professionals and their patients manage these therapies. Herein, we present new, practical, and comprehensive recommendations for diabetes injections and infusions. These recommendations were informed by a large international survey of current practice and were written and vetted by 183 diabetes experts from 54 countries at the Forum for Injection Technique and Therapy: Expert Recommendations (FITTER) workshop held in Rome, Italy, in 2015. Recommendations are organized around the themes of anatomy, physiology, pathology, psychology, and technology. Key among the recommendations are that the shortest needles (currently the 4-mm pen and 6-mm syringe needles) are safe, effective, and less painful and should be the first-line choice in all patient categories; intramuscular injections should be avoided, especially with long-acting insulins, because severe hypoglycemia may result; lipohypertrophy is a frequent complication of therapy that distorts insulin absorption, and, therefore, injections and infusions should not be given into these lesions and correct site rotation will help prevent them; effective long-term therapy with insulin is critically dependent on addressing psychological hurdles upstream, even before insulin has been started; inappropriate disposal of used sharps poses a risk of infection with blood-borne pathogens; and mitigation is possible with proper training, effective disposal strategies, and the use of safety devices. Adherence to these new recommendations should lead to more effective therapies, improved outcomes, and lower costs for patients with diabetes.

  6. Insulin Resistance and Prediabetes

    MedlinePlus

    ... to be used in most health care providers' offices. The clamp is a research tool used by scientists to learn more about glucose metabolism. Research has shown that if blood tests indicate prediabetes, insulin ... care provider's office or commercial facility and sending the sample to ...

  7. SORCS1 is necessary for normal insulin secretory granule biogenesis in metabolically stressed β cells.

    PubMed

    Kebede, Melkam A; Oler, Angie T; Gregg, Trillian; Balloon, Allison J; Johnson, Adam; Mitok, Kelly; Rabaglia, Mary; Schueler, Kathryn; Stapleton, Donald; Thorstenson, Candice; Wrighton, Lindsay; Floyd, Brendan J; Richards, Oliver; Raines, Summer; Eliceiri, Kevin; Seidah, Nabil G; Rhodes, Christopher; Keller, Mark P; Coon, Joshua L; Audhya, Anjon; Attie, Alan D

    2014-10-01

    We previously positionally cloned Sorcs1 as a diabetes quantitative trait locus. Sorcs1 belongs to the Vacuolar protein sorting-10 (Vps10) gene family. In yeast, Vps10 transports enzymes from the trans-Golgi network (TGN) to the vacuole. Whole-body Sorcs1 KO mice, when made obese with the leptin(ob) mutation (ob/ob), developed diabetes. β Cells from these mice had a severe deficiency of secretory granules (SGs) and insulin. Interestingly, a single secretagogue challenge failed to consistently elicit an insulin secretory dysfunction. However, multiple challenges of the Sorcs1 KO ob/ob islets consistently revealed an insulin secretion defect. The luminal domain of SORCS1 (Lum-Sorcs1), when expressed in a β cell line, acted as a dominant-negative, leading to SG and insulin deficiency. Using syncollin-dsRed5TIMER adenovirus, we found that the loss of Sorcs1 function greatly impairs the rapid replenishment of SGs following secretagogue challenge. Chronic exposure of islets from lean Sorcs1 KO mice to high glucose and palmitate depleted insulin content and evoked an insulin secretion defect. Thus, in metabolically stressed mice, Sorcs1 is important for SG replenishment, and under chronic challenge by insulin secretagogues, loss of Sorcs1 leads to diabetes. Overexpression of full-length SORCS1 led to a 2-fold increase in SG content, suggesting that SORCS1 is sufficient to promote SG biogenesis. PMID:25157818

  8. SORCS1 is necessary for normal insulin secretory granule biogenesis in metabolically stressed β cells

    PubMed Central

    Kebede, Melkam A.; Oler, Angie T.; Gregg, Trillian; Balloon, Allison J.; Johnson, Adam; Mitok, Kelly; Rabaglia, Mary; Schueler, Kathryn; Stapleton, Donald; Thorstenson, Candice; Wrighton, Lindsay; Floyd, Brendan J.; Richards, Oliver; Raines, Summer; Eliceiri, Kevin; Seidah, Nabil G.; Rhodes, Christopher; Keller, Mark P.; Coon, Joshua L.; Audhya, Anjon; Attie, Alan D.

    2014-01-01

    We previously positionally cloned Sorcs1 as a diabetes quantitative trait locus. Sorcs1 belongs to the Vacuolar protein sorting-10 (Vps10) gene family. In yeast, Vps10 transports enzymes from the trans-Golgi network (TGN) to the vacuole. Whole-body Sorcs1 KO mice, when made obese with the leptinob mutation (ob/ob), developed diabetes. β Cells from these mice had a severe deficiency of secretory granules (SGs) and insulin. Interestingly, a single secretagogue challenge failed to consistently elicit an insulin secretory dysfunction. However, multiple challenges of the Sorcs1 KO ob/ob islets consistently revealed an insulin secretion defect. The luminal domain of SORCS1 (Lum-Sorcs1), when expressed in a β cell line, acted as a dominant-negative, leading to SG and insulin deficiency. Using syncollin-dsRed5TIMER adenovirus, we found that the loss of Sorcs1 function greatly impairs the rapid replenishment of SGs following secretagogue challenge. Chronic exposure of islets from lean Sorcs1 KO mice to high glucose and palmitate depleted insulin content and evoked an insulin secretion defect. Thus, in metabolically stressed mice, Sorcs1 is important for SG replenishment, and under chronic challenge by insulin secretagogues, loss of Sorcs1 leads to diabetes. Overexpression of full-length SORCS1 led to a 2-fold increase in SG content, suggesting that SORCS1 is sufficient to promote SG biogenesis. PMID:25157818

  9. Acquired color vision deficiency.

    PubMed

    Simunovic, Matthew P

    2016-01-01

    Acquired color vision deficiency occurs as the result of ocular, neurologic, or systemic disease. A wide array of conditions may affect color vision, ranging from diseases of the ocular media through to pathology of the visual cortex. Traditionally, acquired color vision deficiency is considered a separate entity from congenital color vision deficiency, although emerging clinical and molecular genetic data would suggest a degree of overlap. We review the pathophysiology of acquired color vision deficiency, the data on its prevalence, theories for the preponderance of acquired S-mechanism (or tritan) deficiency, and discuss tests of color vision. We also briefly review the types of color vision deficiencies encountered in ocular disease, with an emphasis placed on larger or more detailed clinical investigations.

  10. Colour vision deficiency.

    PubMed

    Simunovic, M P

    2010-05-01

    Colour vision deficiency is one of the commonest disorders of vision and can be divided into congenital and acquired forms. Congenital colour vision deficiency affects as many as 8% of males and 0.5% of females--the difference in prevalence reflects the fact that the commonest forms of congenital colour vision deficiency are inherited in an X-linked recessive manner. Until relatively recently, our understanding of the pathophysiological basis of colour vision deficiency largely rested on behavioural data; however, modern molecular genetic techniques have helped to elucidate its mechanisms. The current management of congenital colour vision deficiency lies chiefly in appropriate counselling (including career counselling). Although visual aids may be of benefit to those with colour vision deficiency when performing certain tasks, the evidence suggests that they do not enable wearers to obtain normal colour discrimination. In the future, gene therapy remains a possibility, with animal models demonstrating amelioration following treatment.

  11. Insulin therapy and exercise.

    PubMed

    Kourtoglou, Georgios I

    2011-08-01

    Medical nutrition therapy and physical exercise are the cornerstones of the diabetes management. Patients with type 1 DM always need exogenous insulin administration, recently available in the form of insulin analogs. In type 2 DM, characterized by increased insulin resistance and progressive decline of the beta-cell function, various antidiabetic medications are used. Most of the subjects with type 2 DM will finally need insulin. The main site of insulin action is the skeletal muscle, while the liver is the main site of glucose storage in the form of glycogen. With the modern diabetes therapies it is possible to rapidly reach and maintain normoglycemia in both types of DM but with the cost of higher incidence of hypoglycemia, especially related to exercise. Regular physical exercise causes a lot of beneficial effects in healthy as well as diabetic subjects of all age groups. In type 1 DM physical exercise is a fundamental element for both physical and mental development. In type 2 DM it has a main role in diabetes control. The increased hepatic glucose production and the increased muscular glucose uptake during exercise are closely interrelated in all exercise intensities. In diabetes mellitus there is a disturbed energy substrate use during exercise leading to either hypo- or hyperglycemia. The influence of low or moderate intensity aerobic exercise on diabetes control has been well studied. The inappropriately high insulinemia combined with the low glucose levels can lead to severe hypoglycemia if proper measures are not taken. Prolonged exercise can also predispose to decreased glucose counter regulation. It is better for the type 1 diabetic subject to postpone the exercise session in very high (>300 mg/dl) or very low (<70 mg/dl) BG levels. Every insulin treated subject is recommended to be checked for any existing diabetic complication before the start of every exercise program. Glucose measurement with glucose meters or sometimes with Continuous Glucose

  12. α1-Antitrypsin Deficiency.

    PubMed

    Hatipoğlu, Umur; Stoller, James K

    2016-09-01

    α1-Antitrypsin deficiency is an autosomal codominant condition that predisposes to emphysema and cirrhosis. The condition is common but grossly under-recognized. Identifying patients' α1-antitrypsin deficiency has important management implications (ie, smoking cessation, genetic and occupational counseling, and specific treatment with the infusion of pooled human plasma α1-antitrypsin). The weight of evidence suggests that augmentation therapy slows the progression of emphysema in individuals with severe α1-antitrypsin deficiency. PMID:27514595

  13. Evidence against extrapancreatic insulin synthesis.

    PubMed Central

    Eng, J; Yalow, R S

    1981-01-01

    Labeled and unlabeled insulin in acid/ethanol tissue extracts can be concentrated up to 100-fold by using a hydrophobic adsorption technique. After adsorption to and elution from an octadecylsilyl silica column, insulin is recovered in yields greater than 75%. By using this method of concentration, insulin in brain tissues of three of four fed rats and one rabbit was found to be less than 20% of plasma concentration. The kidney is the only extrapancreatic organ in which insulin is observed to be markedly above plasma levels. Porcine-insulin-like material was not detectable in guinea pig tissues (less than 0.02 ng/g). It is concluded that insulin is not synthesized in brain or other extrapancreatic tissues and that other mammalian insulins are not found in guinea pig tissues. PMID:6270683

  14. Insulin degludec for diabetes mellitus.

    PubMed

    2013-07-01

    Over the last few years there has been a steady increase in the number of prescriptions dispensed in primary care for intermediate and long-acting insulin analogues and a reduction in prescriptions for biphasic isophane insulin. For example, in England, the volume of intermediate and long-acting insulin analogues in general practice has risen from approximately 650,000 prescriptions per quarter in 2007 to over 850,000 per quarter in 2012.(1) ▾Insulin degludec (Tresiba, Novo Nordisk) is a new long acting basal insulin analogue for the management of diabetes mellitus in adults.(2) Two strengths of insulin degludec (100 units/mL and 200 units/mL) were launched in the UK in February 2013. Here we discuss evidence for the effectiveness and safety of insulin degludec. PMID:23842634

  15. Protein Tyrosine Phosphatases in Hypothalamic Insulin and Leptin Signaling.

    PubMed

    Zhang, Zhong-Yin; Dodd, Garron T; Tiganis, Tony

    2015-10-01

    The hypothalamus is critical to the coordination of energy balance and glucose homeostasis. It responds to peripheral factors, such as insulin and leptin, that convey to the brain the degree of adiposity and the metabolic status of the organism. The development of leptin and insulin resistance in hypothalamic neurons appears to have a key role in the exacerbation of diet-induced obesity. In rodents, this has been attributed partly to the increased expression of the tyrosine phosphatases Protein Tyrosine Phosphatase 1B (PTP1B) and T cell protein tyrosine phosphatase (TCPTP), which attenuate leptin and insulin signaling. Deficiencies in PTP1B and TCPTP in the brain, or specific neurons, promote insulin and leptin signaling and prevent diet-induced obesity, type 2 diabetes mellitus (T2DM), and fatty liver disease. Although targeting phosphatases and hypothalamic circuits remains challenging, recent advances indicate that such hurdles might be overcome. Here, we focus on the roles of PTP1B and TCPTP in insulin and leptin signaling and explore their potential as therapeutic targets.

  16. Molecular genetics of hepatic methionine adenosyltransferase deficiency.

    PubMed

    Chou, J Y

    2000-01-01

    Hepatic methionine adenosyltransferase (MAT) deficiency is caused by mutations in the human MAT1A gene that abolish or reduce hepatic MAT activity that catalyzes the synthesis of S-adenosylmethionine from methionine and ATP. This genetic disorder is characterized by isolated persistent hypermethioninemia in the absence of cystathionine beta-synthase deficiency, tyrosinemia, or liver disease. Depending on the nature of the genetic defect, hepatic MAT deficiency can be transmitted either as an autosomal recessive or dominant trait. Genetic analyses have revealed that mutations identified in the MAT1A gene only partially inactivate enzymatic activity, which is consistent with the fact that most hepatic MAT-deficient individuals are clinically well. Two hypermethioninemic individuals with null MAT1A mutations have developed neurological problems, including brain demyelination, although this correlation is by no means absolute. Presently, it is recommended that a DNA-based diagnosis should be performed for isolated hypermethioninemic individuals with unusually high plasma methionine levels to assess if therapy aimed at the prevention of neurological manifestations is warranted.

  17. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  18. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum. PMID:25423049

  19. Absolute radiometry and the solar constant

    NASA Technical Reports Server (NTRS)

    Willson, R. C.

    1974-01-01

    A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).

  20. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  1. Impact of Winko on absolute discharges.

    PubMed

    Balachandra, Krishna; Swaminath, Sam; Litman, Larry C

    2004-01-01

    In Canada, case laws have had a significant impact on the way mentally ill offenders are managed, both in the criminal justice system and in the forensic mental health system. The Supreme Court of Canada's decision with respect to Winko has set a major precedent in the application of the test of significant risk to the safety of the public in making dispositions by the Ontario Review Board and granting absolute discharges to the mentally ill offenders in the forensic health system. Our study examines the impact of the Supreme Court of Canada's decision before and after Winko. The results show that the numbers of absolute discharges have increased post-Winko, which was statistically significant, but there could be other factors influencing this increase.

  2. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  3. Absolute-magnitude distributions of supernovae

    SciTech Connect

    Richardson, Dean; Wright, John; Jenkins III, Robert L.; Maddox, Larry

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  4. Absolute and relative dosimetry for ELIMED

    SciTech Connect

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  5. Iron deficiency: new insights into diagnosis and treatment.

    PubMed

    Camaschella, Clara

    2015-01-01

    Iron deficiency and iron deficiency anemia are common conditions worldwide affecting especially children and young women. In developing countries, iron deficiency is caused by poor iron intake and/or parasitic infection, whereas vegetarian dietary choices, poor iron absorption, and chronic blood loss are common causes in high-income countries. Erythropoiesis stimulating agents can result in functional iron deficiency for erythropoiesis even when stores are iron-replete. Diagnosis of iron deficiency is straightforward, except when it occurs in the context of inflammatory disorders. Oral iron salts correct absolute iron deficiency in most patients, because low hepcidin levels facilitate iron absorption. Unfortunately frequent side effects limit oral iron efficacy. Intravenous iron is increasingly utilized, because currently available preparations allow rapid normalization of total body iron even with a single infusion and are effective also in functional iron deficiency and in iron deficiency associated with inflammatory disorders. The evidence is accumulating that these preparations are safe and effective. However, long-term safety issues of high doses of iron need to be further explored.

  6. Iron deficiency: new insights into diagnosis and treatment.

    PubMed

    Camaschella, Clara

    2015-01-01

    Iron deficiency and iron deficiency anemia are common conditions worldwide affecting especially children and young women. In developing countries, iron deficiency is caused by poor iron intake and/or parasitic infection, whereas vegetarian dietary choices, poor iron absorption, and chronic blood loss are common causes in high-income countries. Erythropoiesis stimulating agents can result in functional iron deficiency for erythropoiesis even when stores are iron-replete. Diagnosis of iron deficiency is straightforward, except when it occurs in the context of inflammatory disorders. Oral iron salts correct absolute iron deficiency in most patients, because low hepcidin levels facilitate iron absorption. Unfortunately frequent side effects limit oral iron efficacy. Intravenous iron is increasingly utilized, because currently available preparations allow rapid normalization of total body iron even with a single infusion and are effective also in functional iron deficiency and in iron deficiency associated with inflammatory disorders. The evidence is accumulating that these preparations are safe and effective. However, long-term safety issues of high doses of iron need to be further explored. PMID:26637694

  7. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  8. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  9. Relative errors can cue absolute visuomotor mappings.

    PubMed

    van Dam, Loes C J; Ernst, Marc O

    2015-12-01

    When repeatedly switching between two visuomotor mappings, e.g. in a reaching or pointing task, adaptation tends to speed up over time. That is, when the error in the feedback corresponds to a mapping switch, fast adaptation occurs. Yet, what is learned, the relative error or the absolute mappings? When switching between mappings, errors with a size corresponding to the relative difference between the mappings will occur more often than other large errors. Thus, we could learn to correct more for errors with this familiar size (Error Learning). On the other hand, it has been shown that the human visuomotor system can store several absolute visuomotor mappings (Mapping Learning) and can use associated contextual cues to retrieve them. Thus, when contextual information is present, no error feedback is needed to switch between mappings. Using a rapid pointing task, we investigated how these two types of learning may each contribute when repeatedly switching between mappings in the absence of task-irrelevant contextual cues. After training, we examined how participants changed their behaviour when a single error probe indicated either the often-experienced error (Error Learning) or one of the previously experienced absolute mappings (Mapping Learning). Results were consistent with Mapping Learning despite the relative nature of the error information in the feedback. This shows that errors in the feedback can have a double role in visuomotor behaviour: they drive the general adaptation process by making corrections possible on subsequent movements, as well as serve as contextual cues that can signal a learned absolute mapping. PMID:26280315

  10. The absolute spectrophotometric catalog by Anita Cochran

    NASA Astrophysics Data System (ADS)

    Burnashev, V. I.; Burnasheva, B. A.; Ruban, E. V.; Hagen-Torn, E. I.

    2014-06-01

    The absolute spectrophotometric catalog by Anita Cochran is presented in a machine-readable form. The catalog systematizes observations acquired at the McDonald Observatory in 1977-1978. The data are compared with other sources, in particular, the calculated broadband stellar magnitudes are compared with photometric observations by other authors, to show that the observational data given in the catalog are reliable and suitable for a variety of applications. Observations of variable stars of different types make Cochran's catalog especially valuable.

  11. Absolute magnitudes and kinematics of barium stars.

    NASA Astrophysics Data System (ADS)

    Gomez, A. E.; Luri, X.; Grenier, S.; Prevot, L.; Mennessier, M. O.; Figueras, F.; Torra, J.

    1997-03-01

    The absolute magnitude of barium stars has been obtained from kinematical data using a new algorithm based on the maximum-likelihood principle. The method allows to separate a sample into groups characterized by different mean absolute magnitudes, kinematics and z-scale heights. It also takes into account, simultaneously, the censorship in the sample and the errors on the observables. The method has been applied to a sample of 318 barium stars. Four groups have been detected. Three of them show a kinematical behaviour corresponding to disk population stars. The fourth group contains stars with halo kinematics. The luminosities of the disk population groups spread a large range. The intrinsically brightest one (M_v_=-1.5mag, σ_M_=0.5mag) seems to be an inhomogeneous group containing barium binaries as well as AGB single stars. The most numerous group (about 150 stars) has a mean absolute magnitude corresponding to stars in the red giant branch (M_v_=0.9mag, σ_M_=0.8mag). The third group contains barium dwarfs, the obtained mean absolute magnitude is characteristic of stars on the main sequence or on the subgiant branch (M_v_=3.3mag, σ_M_=0.5mag). The obtained mean luminosities as well as the kinematical results are compatible with an evolutionary link between barium dwarfs and classical barium giants. The highly luminous group is not linked with these last two groups. More high-resolution spectroscopic data will be necessary in order to better discriminate between barium and non-barium stars.

  12. Roles of the lactogens and somatogens in perinatal and postnatal metabolism and growth: studies of a novel mouse model combining lactogen resistance and growth hormone deficiency.

    PubMed

    Fleenor, Donald; Oden, Jon; Kelly, Paul A; Mohan, Subburaman; Alliouachene, Samira; Pende, Mario; Wentz, Sabrina; Kerr, Jennifer; Freemark, Michael

    2005-01-01

    To delineate the roles of the lactogens and GH in the control of perinatal and postnatal growth, fat deposition, insulin production, and insulin action, we generated a novel mouse model that combines resistance to all lactogenic hormones with a severe deficiency of pituitary GH. The model was created by breeding PRL receptor (PRLR)-deficient (knockout) males with GH-deficient (little) females. In contrast to mice with isolated GH or PRLR deficiencies, double-mutant (lactogen-resistant and GH-deficient) mice on d 7 of life had growth failure and hypoglycemia. These findings suggest that lactogens and GH act in concert to facilitate weight gain and glucose homeostasis during the perinatal period. Plasma insulin and IGF-I and IGF-II concentrations were decreased in both GH-deficient and double-mutant neonates but were normal in PRLR-deficient mice. Body weights of the double mutants were reduced markedly during the first 3-4 months of age, and adults had striking reductions in femur length, plasma IGF-I and IGF binding protein-3 concentrations, and femoral bone mineral density. By age 6-12 months, however, the double-mutant mice developed obesity, hyperleptinemia, fasting hyperglycemia, relative hypoinsulinemia, insulin resistance, and glucose intolerance; males were affected to a greater degree than females. The combination of perinatal growth failure and late-onset obesity and insulin resistance suggests that the lactogen-resistant/GH-deficient mouse may serve as a model for the development of the metabolic syndrome.

  13. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound. PMID:20070087

  14. Measurement of absolute gravity acceleration in Firenze

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  15. A Methodology for Absolute Isotope Composition Measurement

    NASA Astrophysics Data System (ADS)

    Shen, J. J.; Lee, D.; Liang, W.

    2007-12-01

    Double spike technique was a well defined method for isotope composition measurement by TIMS of samples which have natural mass fractionation effect, but it is still a problem to define the isotope composition for double spike itself. In this study, we modified the old double spike technique and found that we could use the modified technique to solve the ¡§true¡¨ isotope composition of double spike itself. According the true isotope composition of double spike, we can measure the absolute isotope composition if the sample has natural fractionation effect. A new vector analytical method has been developed in order to obtain the true isotopic composition of a 42Ca-48Ca double spike, and this is achieved by using two different sample-spike mixtures combined with the double spike and the natural Ca data. Because the natural sample, the two mixtures, and the spike should all lie on a single mixing line, we are able to constrain the true isotopic composition of our double spike using this new approach. This method not only can be used in Ca system but also in Ti, Cr, Fe, Ni, Zn, Mo, Ba and Pb systems. The absolute double spike isotopic ratio is important, which can save a lot of time to check different reference standards. Especially for Pb, radiogenic isotope system, the decay systems embodied in three of four naturally occurring isotopes induce difficult to obtain true isotopic ratios for absolute dating.

  16. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound.

  17. The Carina Project: Absolute and Relative Calibrations

    NASA Astrophysics Data System (ADS)

    Corsi, C. E.; Bono, G.; Walker, A. R.; Brocato, E.; Buonanno, R.; Caputo, F.; Castellani, M.; Castellani, V.; Dall'Ora, M.; Marconi, M.; Monelli, M.; Nonino, M.; Pulone, L.; Ripepi, V.; Smith, H. A.

    We discuss the reduction strategy adopted to perform the relative and the absolute calibration of the Wide Field Imager (WFI) available at the 2.2m ESO/MPI telescope and of the Mosaic Camera (MC) available at the 4m CTIO Blanco telescope. To properly constrain the occurrence of deceptive systematic errors in the relative calibration we observed with each chip the same set of stars. Current photometry seems to suggest that the WFI shows a positional effect when moving from the top to the bottom of individual chips. Preliminary results based on an independent data set collected with the MC suggest that this camera is only marginally affected by the same problem. To perform the absolute calibration we observed with each chip the same set of standard stars. The sample covers a wide color range and the accuracy both in the B and in the V-band appears to be of the order of a few hundredths of magnitude. Finally, we briefly outline the observing strategy to improve both relative and absolute calibrations of mosaic CCD cameras.

  18. Excessive Refined Carbohydrates and Scarce Micronutrients Intakes Increase Inflammatory Mediators and Insulin Resistance in Prepubertal and Pubertal Obese Children Independently of Obesity

    PubMed Central

    López-Alarcón, Mardia; Perichart-Perera, Otilia; Rodríguez-Cruz, Maricela; Armenta-Álvarez, Andrea; Bram-Falcón, María Teresa; Mayorga-Ochoa, Marielle

    2014-01-01

    Background. Low-grade inflammation is the link between obesity and insulin resistance. Because physiologic insulin resistance occurs at puberty, obese pubertal children are at higher risk for insulin resistance. Excessive diets in refined carbohydrates and saturated fats are risk factors for insulin resistance, but calcium, magnesium, vitamin-D, and the omega-3 fatty acids likely protect against inflammation and insulin resistance. Objective. To analyze interactions among dietary saturated fat, refined carbohydrates, calcium, magnesium, vitamin D, and omega-3 fatty acids on the risk of inflammation and insulin resistance in a sample of prepubertal and pubertal children. Methods. A sample of 229 children from Mexico City was analyzed in a cross-sectional design. Anthropometric measurements, 24 h recall questionnaires, and blood samples were obtained. Serum insulin, glucose, calcium, magnesium, 25-OHD3, C-reactive protein, leptin, adiponectin, and erythrocytes fatty acids were measured. Parametric and nonparametric statistics were used for analysis. Results. While mean macronutrients intake was excessive, micronutrients intake was deficient (P < 0.01). Inflammation determinants were central obesity and magnesium-deficient diets. Determinants of insulin resistance were carbohydrates intake and circulating magnesium and adiponectin. Conclusions. Magnesium-deficient diets are determinants of inflammation, while high intake of refined carbohydrates is a risk factor for insulin resistance, independently of central adiposity. PMID:25477716

  19. Cerebral Folate Deficiency

    ERIC Educational Resources Information Center

    Gordon, Neil

    2009-01-01

    Cerebral folate deficiency (CFD) is associated with low levels of 5-methyltetrahydrofolate in the cerebrospinal fluid (CSF) with normal folate levels in the plasma and red blood cells. The onset of symptoms caused by the deficiency of folates in the brain is at around 4 to 6 months of age. This is followed by delayed development, with deceleration…

  20. Iron induced nickel deficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is increasingly apparent that economic loss due to nickel (Ni) deficiency likely occurs in horticultural and agronomic crops. While most soils contain sufficient Ni to meet crop requirements, situations of Ni deficiency can arise due to antagonistic interactions with other metals. This study asse...

  1. Iron deficiency: beyond anemia.

    PubMed

    Yadav, Dinesh; Chandra, Jagdish

    2011-01-01

    Iron deficiency is the most common nutritional disorder affecting at least one third of world's population. Though anemia is common manifestation of iron deficiency, other effects of iron deficiency on various tissues, organs and systems are usually under recognized. Impaired brain development and cognitive, behavioural and psychomotor impairment are most worrisome manifestations of iron deficiency. Studies have demonstrated that some of these changes occurring during period of brain growth spurt (<2 years age) may be irreversible. Association of iron deficiency with febrile seizures, pica, breath holding spells, restless leg syndrome and thrombosis is increasingly being recognized. Impaired cell-mediated immunity and bactericidal function are generally noted in iron-deficient persons; however, the findings are inconsistent. Despite proven reversible functional immunological defects in vitro studies, a clinically important relationship between states of iron deficiency and susceptibility to infections remains controversial. Studies from malaria endemic regions have reported increased incidence of malaria in association with iron supplementation. These and some other aspects of iron deficiency are reviewed in this article.

  2. Iodine-deficiency disorders.

    PubMed

    Zimmermann, Michael B; Jooste, Pieter L; Pandav, Chandrakant S

    2008-10-01

    2 billion individuals worldwide have insufficient iodine intake, with those in south Asia and sub-Saharan Africa particularly affected. Iodine deficiency has many adverse effects on growth and development. These effects are due to inadequate production of thyroid hormone and are termed iodine-deficiency disorders. Iodine deficiency is the most common cause of preventable mental impairment worldwide. Assessment methods include urinary iodine concentration, goitre, newborn thyroid-stimulating hormone, and blood thyroglobulin. In nearly all countries, the best strategy to control iodine deficiency is iodisation of salt, which is one of the most cost-effective ways to contribute to economic and social development. When iodisation of salt is not possible, iodine supplements can be given to susceptible groups. Introduction of iodised salt to regions of chronic iodine-deficiency disorders might transiently increase the proportion of thyroid disorders, but overall the small risks of iodine excess are far outweighed by the substantial risks of iodine deficiency. International efforts to control iodine-deficiency disorders are slowing, and reaching the third of the worldwide population that remains deficient poses major challenges. PMID:18676011

  3. MENTAL DEFICIENCY. SECOND EDITION.

    ERIC Educational Resources Information Center

    HILLIARD, L.T.; KIRMAN, BRIAN H.

    REVISED TO INCLUDE LEGISLATIVE AND ADMINISTRATIVE PROCEDURES NEW IN BRITAIN SINCE THE 1957 EDITION, THE TEXT INCLUDES RECENT ADVANCES IN ETIOLOGY, PATHOLOGY, AND TREATMENT OF MENTAL DEFICIENCY. CONSIDERATION OF THE BACKGROUND OF MENTAL DEFICIENCY INCLUDES HISTORICAL AND LEGAL ASPECTS, THE SOCIAL BACKGROUND OF MENTAL DEFECT, PRENATAL CAUSES OF…

  4. Iron deficiency anemia

    MedlinePlus

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  5. Multiple congenital coagulation deficiencies.

    PubMed

    BONNIN, J A; HICKS, N D; INNIS, M D; SIMPSON, D A

    1960-07-01

    A 6-week-old infant is presented who suffered from a congenital haemorrhagic disorder which caused death from subdural haemorrhage following mild trauma. Haematological investigation revealed deficiencies of factor VII and Christmas factor. Prower-Stuart factor was probably also deficient although investigation of this clotting factor was carried out only on serum obtained at necropsy.

  6. Does salmon brain produce insulin?

    PubMed

    Plisetskaya, E M; Bondareva, V M; Duan, C; Duguay, S J

    1993-07-01

    To address the question whether fish brain can produce insulin, pink salmon (Oncorhynchus gorbusha) brains were extracted and processed according to the procedure developed for purification of pancreatic insulin (Rusakov and Bondareva, 1979). Biological and immunological activity of the resulting material was evaluated respectively by a cartilage sulfation assay and by radioimmunoassay homologous for salmon insulin. Preparations from salmon brain stimulated the [35S]sulfate uptake into salmon branchial cartilage with a potency comparable to pure mammalian or salmon insulins but lower than that of mammalian insulin-like growth factor (IGF-I). In contrast, only trace amounts of radioimmunoreactive insulin could be detected by homologous radioimmunoassay. To determine whether insulin mRNA was present in salmon brain, primers specific for salmon proinsulin and salmon prepro-IGF-I were designed to amplify corresponding cDNA regions by reverse transcriptase-PCR. Insulin mRNA was found only in the endocrine pancreas (Brockmann body) while IGF-I mRNA was detected in the brain, liver, and the Brockmann body. Our results suggest that in fish pancreatic-type insulin is most likely produced only in the endocrine pancreas and then transported to the brain through blood/cerebrospinal fluid system. However, it does not exclude a possibility that some yet unknown insulin-like substances may be expressed in the neural system of ectotherm vertebrates.

  7. Insulin receptor in Drosophila melanogaster

    SciTech Connect

    Petruzzelli, L.; Herrera, R.; Rosen, O.

    1986-05-01

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound /sup 125/I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to /sup 125/I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to /sup 125/I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development.

  8. Treating insulin resistance: future prospects.

    PubMed

    Bailey, Clifford J

    2007-03-01

    Insulin resistance typically reflects multiple defects of insulin receptor and post-receptor signalling that impair a diverse range of metabolic and vascular actions. Many potential intervention targets and compounds with therapeutic activity have been described. Proof of principle for a non-peptide insulin mimetic has been demonstrated by specific activation of the intracellular B-subunit of the insulin receptor. Potentiation of insulin action has been achieved with agents that enhance phosphorylation and prolong the tyrosine kinase activity of the insulin receptor and its protein substrates after activation by insulin. These include inhibitors of phosphatases and serine kinases that normally prevent or terminate tyrosine kinase signalling. Additional approaches involve increasing the activity of phosphatidylinositol 3-kinase and other downstream components of the insulin signalling pathways. Experimental interventions to remove signalling defects caused by cytokines, certain adipocyte hormones, excess fatty acids, glucotoxicity and negative feedback by distal signalling steps have also indicated therapeutic possibilities. Several hormones, metabolic enzymes, minerals, co-factors and transcription co-activators have shown insulin-sensitising potential. Since insulin resistance affects many metabolic and cardiovascular diseases, it provides an opportunity for simultaneous therapeutic attack on a broad front.

  9. [Alcohol, steatohepatitis, insulin resistance and hepatitis C].

    PubMed

    Couzigou, P; Mathurin, P; Serfaty, L; Cacoub, P; Moussalli, J; Pialoux, G; Chossegros, P; Cattan, L; Pol, S

    2008-03-01

    Patients with chronic hepatitis C have frequently other morbidities, either because they are frequent in the general population (metabolic syndrome) and/or because the route of contamination (chronic alcohol consumption succeeding to drug abuse). These co-morbidities have a harmfull impact on fibrosis progression during the natural history of HCV infection and reduce the efficacy of antiviral treatments. Thus, it is crucial to diagnose early and treat these different diseases which may be combined. They are the metabolic syndrome and/or chronic alcohol consumption resulting in insuline resistance, infection by the human immune deficiency virus or by the hepatitis B virus as well as chronic tobacco use or excessive consumption of cannabis. An optimal is based on a multidisciplinary approach to reduce fibrosis progression and improve the efficiency of antiviral therapies. However, the hepatologist has to come back to a global care, which is mandatory at the individual level as well as for the public health. PMID:18675184

  10. [Intensified insulin therapy and insulin micro-pumps during pregnancy].

    PubMed

    Galuppi, V

    1994-06-01

    Before conception and during pregnancy in diabetic patients, every possible effort should be made in order to obtain a good, if not perfect, metabolic control and to warrant maternal and fetal health. Multiple daily injections are required to achieve a very strict glucose regulation in pregnant patients with insulin-dependent diabetes mellitus. The most usual intensive insulin administration patterns require 3 premeal doses of short-acting insulin and 1 (at bedtime) or 2 (one in the morning and one at bedtime) injections of intermediate or slow-acting insulin. As an alternative choice, insulin pumps allow a continuous subcutaneous infusion with short-acting insulin according to a basal rate which cover the insulin need during the night and between meals. Premeal and presnack surges of insulin are administrated by the patient herself. Home glucose monitoring must be used to adjust insulin doses. Target glucose levels every diabetic pregnant woman should try to achieve are lower than in non-pregnant women: fasting glycaemia should be below 100 mg/dl, 1 hour post-prandial value below 140 mg/dl and 2 hour post-prandial level below 120 mg/dl. The stricter the control and treatment goals are, the more frequently hypoglycaemia may occur. Hypoglycaemia may be harmful especially for patients with severe diabetic complications and may affect the fetus. Therefore, every pregnant diabetic woman should receive individualized treatment and glycaemic goals according to her clinical features, her compliance and her social and cultural background.

  11. Plerocercoid growth factor (PGF), a human growth hormone (hGH) analogue produced by the tapeworm Spirometra mansonoides, has direct insulin-like action in adipose tissue of normal rats in vitro

    SciTech Connect

    Salem, M.A.M.; Phares, C.K.

    1986-03-01

    The metabolic actions of GH can be divided into acute (insulin-like) and chronic (lipolytic/anti-insulin). The insulin-like actions of GH are most readily elicited in GH-deficient animals as GH induces resistance to its own insulin-like action. Like GH, PGF stimulates growth and cross-reacts with anti-hGH antibodies. Independent experiments were conducted comparing the direct actions of PGF to insulin or hGH in vitro. Insulin-like effects were determined by the ability of PGF, insulin or hGH to stimulate (U-/sup 14/C)glucose metabolism in epidydimal fat pads from normal rats and by inhibition of epinephrine-stimulated lipolysis. Direct stimulation of lipolysis was used as anti-insulin activity. To determine if PGF competes for insulin or GH receptors, adipocytes (3 x 10/sup 5/ cells/ml) were incubated with either (/sup 125/I)insulin or (/sup 125/I)hGH +/- PGF, +/- insulin or +/- hGH. PGF stimulated glucose oxidation and /sup 14/C-incorporation into lipids. Insulin, hGH and PGF inhibited lipolysis (33%, 29% and 34%, respectively). Adipose tissue was very sensitive to the lipolytic effect of hGH but PGF was neither lipolytic nor did it confer refractoriness to its insulin-like action. PGF bound to GH but not to insulin receptors. Therefore, PGF had direct insulin-like effects but did not stimulate lipolysis in tissue from normal rats in vitro.

  12. Diagnosis of GH deficiency: auxologic and GH response criteria.

    PubMed

    Dash, R J; Pathmanathan, G; Prakash, S; Saini, J S

    1991-01-01

    Health providers examining children of short stature should assess adequacy of growth, determine growth rate, and predict final height with treatment. They can use established standards of growth to compare the child's height with that of other children of the same age to assess growth normalcy. If the child's height is lower than the 3rd/5th percentiles, the health provider must also determine whether the growth velocity is 3 cm/year by following the child for 6 months to 1 year, and whether retardation of skeletal maturity is of more than 2 bone age years to confirm abnormal growth. while the child is being followed for growth velocity, the health provider should prescribe a balanced nutritious diet. If these conditions are met and the child exhibits facial characteristics of growth hormone (GH) deficiency, central obesity, unusually small lower jaw, and prepuberal sex characteristics and behavior after usual age of puberty, the health provider can diagnose GH deficiency. 17% of children of short stature in a certain area of India have GH deficiency. The actual height, chronological age, and bone age are needed to predict the final adult height to monitor the impact of GH therapy. GH levels of less than 7 ng/ml in children not suffering from protein malnutrition suggest total GH deficiency. GH measurements must be done over 24 hours, since GH secretion is pulsatile. Sleep, exercise, and intravenous infusion of 0.5 g/kg body weight of arginine stimulates GH secretion. The most common pharmacologic tests to determine GH secretory status include insulin hypoglycemia and clonidine. Clonidine induces fewer side effects and is more safe than insulin hypoglycemia. Since a child can secrete normal amounts of GH with insulin hypoglycemia, the health provider should conduct 1 physiologic (sleep/exercise) test and 1-2 pharmacologic tests to diagnose GH deficiency.

  13. The role of mouse Akt2 in insulin-dependent suppression of adipocyte lipolysis in vivo

    PubMed Central

    Koren, Shlomit; DiPilato, Lisa M.; Emmett, Matthew J.; Shearin, Abigail L.; Chu, Qingwei; Monks, Bob; Birnbaum, Morris J.

    2015-01-01

    Aim/hypothesis The release of fatty acids from adipocytes, i.e. lipolysis, is maintained under tight control, primarily by the opposing actions of catecholamines and insulin. A widely accepted model is that insulin antagonises catecholamine-dependent lipolysis through phosphorylation and activation of cAMP phosphodiesterase 3B (PDE3B) by the serine-threonine protein kinase Akt (protein kinase B). Recently, this hypothesis has been challenged, as in cultured adipocytes insulin appears, under some conditions, to suppress lipolysis independently of Akt. Methods To address the requirement for Akt2, the predominant isoform expressed in classic insulin target tissues, in the suppression of fatty acid release in vivo, we assessed lipolysis in mice lacking Akt2. Results In the fed state and following an oral glucose challenge, Akt2 null mice were glucose intolerant and hyperinsulinaemic, but nonetheless exhibited normal serum NEFA and glycerol levels, suggestive of normal suppression of lipolysis. Furthermore, insulin partially inhibited lipolysis in Akt2 null mice during an insulin tolerance test (ITT) and hyperinsulinaemic–euglycaemic clamp, respectively. In support of these in vivo observations, insulin antagonised catecholamine-induced lipolysis in primary brown fat adipocytes from Akt2-deficient nice. Conclusion These data suggest that suppression of lipolysis by insulin in hyperinsulinaemic states can take place in the absence of Akt2. PMID:25740694

  14. Clinical Use and Evaluation of Insulin Pens

    PubMed Central

    Ginsberg, Barry H.

    2015-01-01

    Insulin pens are more accurate and easier to teach than other methods of insulin delivery. They also do not suffer from the risk of mismatch of insulin concentration and type of insulin syringe. The ISO standard used to test insulin pens, however, needs to be updated to reflect their clinical use. PMID:26323484

  15. Insulin Degludec, The New Generation Basal Insulin or Just another Basal Insulin?

    PubMed Central

    Nasrallah, Sami N.; Reynolds, L. Raymond

    2012-01-01

    The advances in recombinant DNA technology have led to an improvement in the properties of currently available long-acting insulin analogs. Insulin degludec, a new generation ultra-long-acting basal insulin, currently in phase 3 clinical trials, has a promising future in clinical use. When compared to its rival basal insulin analogs, a longer duration of action and lower incidence of hypoglycemic events in both type 1 and type 2 diabetic patients has been demonstrated.1,2 Its unique mechanism of action is based on multihexamer formation after subcutaneous injection. This reportedly allows for less pharmacodynamic variability and within-subject variability than currently available insulin analogs, and a duration of action that is over 24 hours.3 The lack of proof of carcinogenicity with insulin degludec is yet another factor that would be taken into consideration when choosing the optimal basal insulin for a diabetic individual.4 A formulation of insulin degludec with insulin aspart, Insulin degludec 70%/aspart 30%, may permit improved flexibly of dosing without compromising glycemic control or safety.5 PMID:22879797

  16. Extrapancreatic insulin effect of glibenclamide.

    PubMed

    Mulder, H; Schopman, W; van der Lely, A J

    1991-01-01

    In eight patients with uncomplicated non insulin dependent diabetes mellitus, serum insulin levels, serum C-peptide levels and blood glucose levels were measured before and after oral administration of glibenclamide 0.1 mg/kg body weight and a test meal, or after a test meal alone. The rise in serum insulin levels persisted longer after glibenclamide. The initial rise in serum insulin was of the same magnitude in both situations, as was the rise in serum C-peptide levels during the entire 5 h study. It is concluded that glibenclamide is able to maintain a more prolonged increase in serum insulin levels by inhibiting the degradation of insulin in the vascular endothelial cells of the liver. The inhibition contributes to the blood glucose lowering effect of glibenclamide. PMID:1904820

  17. Glucose-6-phosphate dehydrogenase deficiency

    MedlinePlus

    G6PD deficiency; Hemolytic anemia due to G6PD deficiency; Anemia - hemolytic due to G6PD deficiency ... Saunders; 2016:chap 161. Janz TG, Hamilton GC. Anemia, polycythemia, and white blood cell disorders. In: Marx ...

  18. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  19. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  20. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  1. Absolute calibration of the Auger fluorescence detectors

    SciTech Connect

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  2. Absolute rate theories of epigenetic stability

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.; Onuchic, José N.; Wolynes, Peter G.

    2005-12-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape and the transmission factor depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic, and strictly adiabatic regimes, characterized by the relative values of those input rates. rate theory | stochastic gene expression | gene switches

  3. Characterization of the DARA solar absolute radiometer

    NASA Astrophysics Data System (ADS)

    Finsterle, W.; Suter, M.; Fehlmann, A.; Kopp, G.

    2011-12-01

    The Davos Absolute Radiometer (DARA) prototype is an Electrical Substitution Radiometer (ESR) which has been developed as a successor of the PMO6 type on future space missions and ground based TSI measurements. The DARA implements an improved thermal design of the cavity detector and heat sink assembly to minimize air-vacuum differences and to maximize thermal symmetry of measuring and compensating cavity. The DARA also employs an inverted viewing geometry to reduce internal stray light. We will report on the characterization and calibration experiments which were carried out at PMOD/WRC and LASP (TRF).

  4. Absolute Priority for a Vehicle in VANET

    NASA Astrophysics Data System (ADS)

    Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad

    In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.

  5. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  6. Enhanced insulin sensitivity of gene-targeted mice lacking functional KCNQ1

    PubMed Central

    Boini, Krishna M.; Graf, Dirk; Hennige, Anita M.; Koka, Saisudha; Kempe, Daniela S.; Wang, Kan; Ackermann, Teresa F.; Föller, Michael; Vallon, Volker; Pfeifer, Karl; Schleicher, Erwin; Ullrich, Susanne; Häring, Hans-Ulrich; Häussinger, Dieter; Lang, Florian

    2009-01-01

    The pore-forming K+-channel α-subunit KCNQ1 is expressed in a wide variety of tissues including heart, skeletal muscle, liver, and epithelia. Most recent evidence revealed an association of the KCNQ1 gene with the susceptibility to type 2 diabetes. KCNQ1 participates in the regulation of cell volume, which is, in turn, critically important for the regulation of metabolism by insulin. The present study explored the influence of KCNQ1 on insulin-induced cellular K+ uptake and glucose metabolism. Insulin (100 nM)-induced K+ uptake was determined in isolated perfused livers from KCNQ1-deficient mice (kcnq1−/−) and their wild-type littermates (kcnq1+/+). Moreover, plasma glucose and insulin levels, intraperitoneal glucose (3 g/kg) tolerance, insulin (0.15 U/kg)-induced hypoglycemia, and peripheral uptake of radiolabeled 3H-deoxy-glucose were determined in both genotypes. Insulin-stimulated hepatocellular K+ uptake was significantly more sustained in isolated perfused livers from kcnq1−/− mice than from kcnq1+/+mice. The decline of plasma glucose concentration following an intraperitoneal injection of insulin was again significantly more sustained in kcnq1−/− than in kcnq1+/+ mice. Both fasted and nonfasted plasma glucose and insulin concentrations were significantly lower in kcnq1−/− than in kcnq1+/+mice. Following an intraperitoneal glucose injection, the peak plasma glucose concentration was significantly lower in kcnq1−/− than in kcnq1+/+mice. Uptake of 3H-deoxy-glucose into skeletal muscle, liver, kidney and lung tissue was significantly higher in kcnq1−/− than in kcnq1+/+mice. In conclusion, KCNQ1 counteracts the stimulation of cellular K+ uptake by insulin and thereby influences K+-dependent insulin signaling on glucose metabolism. The observations indicate that KCNQ1 is a novel molecule affecting insulin sensitivity of glucose metabolism. PMID:19369585

  7. 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate insulin sensitivity in liver

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mice lacking 5-HT 2C receptors displayed hepatic insulin resistance, a phenotype normalized by re-expression of 5-HT2CRs only in pro-opiomelanocortin (POMC) neurons. 5-HT2CR deficiency also abolished the anti-diabetic effects of meta-chlorophenylpiperazine (a 5-HT2CR agonist); these effects were re...

  8. Protein Crystal Recombinant Human Insulin

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  9. Ces3/TGH Deficiency Attenuates Steatohepatitis

    PubMed Central

    Lian, Jihong; Wei, Enhui; Groenendyk, Jody; Das, Subhash K.; Hermansson, Martin; Li, Lena; Watts, Russell; Thiesen, Aducio; Oudit, Gavin Y.; Michalak, Marek; Lehner, Richard

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease in developed countries. NAFLD describes a wide range of liver pathologies from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. NASH is distinguished from simple steatosis by inflammation, cell death and fibrosis. In this study we found that mice lacking triacylglycerol hydrolase (TGH, also known as carboxylesterase 3 or carboxylesterase 1d) are protected from high-fat diet (HFD) - induced hepatic steatosis via decreased lipogenesis, increased fatty acid oxidation and improved hepatic insulin sensitivity. To examine the effect of the loss of TGH function on the more severe NAFLD form NASH, we ablated Tgh expression in two independent NASH mouse models, Pemt−/− mice fed HFD and Ldlr−/− mice fed high-fat, high-cholesterol Western-type diet (WTD). TGH deficiency reduced liver inflammation, oxidative stress and fibrosis in Pemt−/− mice. TGH deficiency also decreased NASH in Ldlr−/− mice. Collectively, these findings indicate that TGH deficiency attenuated both simple hepatic steatosis and irreversible NASH. PMID:27181051

  10. Diabetic lipohypertrophy delays insulin absorption.

    PubMed

    Young, R J; Hannan, W J; Frier, B M; Steel, J M; Duncan, L J

    1984-01-01

    The effect of lipohypertrophy at injection sites on insulin absorption has been studied in 12 insulin-dependent diabetic patients. The clearance of 125I-insulin from sites with lipohypertrophy was significantly slower than from complementary nonhypertrophied sites (% clearance in 3 h, 43.8 +/- 3.5 +/- SEM) control; 35.3 +/- 3.9 lipohypertrophy, P less than 0.05). The degree of the effect was variable but sufficient in several patients to be of clinical importance. Injection-site lipohypertrophy is another factor that modifies the absorption of subcutaneously injected insulin.

  11. Hyperinsulinemia, insulin resistance, vitamin D, and colorectal cancer among whites and African Americans.

    PubMed

    Tsai, Chung-Jyi; Giovannucci, Edward L

    2012-10-01

    African Americans have the highest incidence and mortality rates of colorectal cancer among all US racial and ethnic groups. Dietary factors, lifestyle factors, obesity, variability in screening rates, socioeconomic differences, barriers to screening, and differences in access to health care may be contributory factors to racial and ethnic disparities. African Americans are more likely to demonstrate microsatellite instability in their colorectal tumors leading to malignancy. However, these differences do not completely explain all the variances. Ample evidence implicates insulin resistance and its associated conditions, including elevated insulin and insulin-like growth factor-1 (IGF-1), in colorectal carcinogenesis. African Americans have a high risk for and a high prevalence of insulin resistance and subsequent overt type 2 diabetes. Recent clinical studies revealed that ethnic differences between whites and African Americans in early diabetes-related conditions including hyperinsulinemia already exist during childhood. African Americans have a much higher prevalence of vitamin D deficiency than whites throughout their life spans. Vitamin D deficiency has been associated with higher rates of diabetes and colorectal cancer, particularly in individuals with high serum insulin and IGF-1 levels. Moreover, African Americans have lower insulin sensitivity in tissues, independent of obesity, fat distribution, and inflammation. Further development of measures of biomarkers of tumor biology and host susceptibility may provide further insight on risk stratification in African Americans.

  12. An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81.

    PubMed

    Ahmed, Kashan; Tunaru, Sorin; Tang, Cong; Müller, Michaela; Gille, Andreas; Sassmann, Antonia; Hanson, Julien; Offermanns, Stefan

    2010-04-01

    Lactate is an important metabolic intermediate released by skeletal muscle and other organs including the adipose tissue, which converts glucose into lactate under the influence of insulin. Here we show that lactate activates the G protein-coupled receptor GPR81, which is expressed in adipocytes and mediates antilipolytic effects through G(i)-dependent inhibition of adenylyl cyclase. Using GPR81-deficient mice, we demonstrate that the receptor is not involved in the regulation of lipolysis during intensive exercise. However, insulin-induced inhibition of lipolysis and insulin-induced decrease in adipocyte cAMP levels were strongly reduced in mice lacking GPR81, although insulin-dependent release of lactate by adipocytes was comparable between wild-type and GPR81-deficient mice. Thus, lactate and its receptor GPR81 unexpectedly function in an autocrine and paracrine loop to mediate insulin-induced antilipolytic effects. These data show that lactate can directly modulate metabolic processes in a hormone-like manner, and they reveal a new mechanism underlying the antilipolytic effects of insulin.

  13. Voluntary wheel running is beneficial to the amino acid profile of lysine-deficient rats.

    PubMed

    Nagao, Kenji; Bannai, Makoto; Seki, Shinobu; Kawai, Nobuhiro; Mori, Masato; Takahashi, Michio

    2010-06-01

    Rats voluntarily run up to a dozen kilometers per night when their cages are equipped with a running wheel. Daily voluntary running is generally thought to enhance protein turnover. Thus, we sought to determine whether running worsens or improves protein degradation caused by a lysine-deficient diet and whether it changes the utilization of free amino acids released by proteolysis. Rats were fed a lysine-deficient diet and were given free access to a running wheel or remained sedentary (control) for 4 wk. Amino acid levels in plasma, muscle, and liver were measured together with plasma insulin levels and tissue weight. The lysine-deficient diet induced anorexia, skeletal muscle loss, and serine and threonine aminoacidemia, and it depleted plasma insulin and essential amino acids in skeletal muscle. Allowing rats to run voluntarily improved these symptoms; thus, voluntary wheel running made the rats less susceptible to dietary lysine deficiency. Amelioration of the declines in muscular leucine and plasma insulin observed in running rats could contribute to protein synthesis together with the enhanced availability of lysine and other essential amino acids in skeletal muscle. These results indicate that voluntary wheel running under lysine-deficient conditions does not enhance protein catabolism; on the contrary, it accelerates protein synthesis and contributes to the maintenance of muscle mass. The intense nocturnal voluntary running that characterizes rodents might be an adaptation of lysine-deficient grain eaters that allows them to maximize opportunities for food acquisition. PMID:20233939

  14. Sentinel-2/MSI absolute calibration: first results

    NASA Astrophysics Data System (ADS)

    Lonjou, V.; Lachérade, S.; Fougnie, B.; Gamet, P.; Marcq, S.; Raynaud, J.-L.; Tremas, T.

    2015-10-01

    Sentinel-2 is an optical imaging mission devoted to the operational monitoring of land and coastal areas. It is developed in partnership between the European Commission and the European Space Agency. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. It will offer a unique combination of global coverage with a wide field of view (290km), a high revisit (5 days with two satellites), a high resolution (10m, 20m and 60m) and multi-spectral imagery (13 spectral bands in visible and shortwave infra-red domains). CNES is involved in the instrument commissioning in collaboration with ESA. This paper reviews all the techniques that will be used to insure an absolute calibration of the 13 spectral bands better than 5% (target 3%), and will present the first results if available. First, the nominal calibration technique, based on an on-board sun diffuser, is detailed. Then, we show how vicarious calibration methods based on acquisitions over natural targets (oceans, deserts, and Antarctica during winter) will be used to check and improve the accuracy of the absolute calibration coefficients. Finally, the verification scheme, exploiting photometer in-situ measurements over Lacrau plain, is described. A synthesis, including spectral coherence, inter-methods agreement and temporal evolution, will conclude the paper.

  15. Experimental results for absolute cylindrical wavefront testing

    NASA Astrophysics Data System (ADS)

    Reardon, Patrick J.; Alatawi, Ayshah

    2014-09-01

    Applications for Cylindrical and near-cylindrical surfaces are ever-increasing. However, fabrication of high quality cylindrical surfaces is limited by the difficulty of accurate and affordable metrology. Absolute testing of such surfaces represents a challenge to the optical testing community as cylindrical reference wavefronts are difficult to produce. In this paper, preliminary results for a new method of absolute testing of cylindrical wavefronts are presented. The method is based on the merging of the random ball test method with the fiber optic reference test. The random ball test assumes a large number of interferograms of a good quality sphere with errors that are statistically distributed such that the average of the errors goes to zero. The fiber optic reference test utilizes a specially processed optical fiber to provide a clean high quality reference wave from an incident line focus from the cylindrical wave under test. By taking measurements at different rotation and translations of the fiber, an analogous procedure can be employed to determine the quality of the converging cylindrical wavefront with high accuracy. This paper presents and discusses the results of recent tests of this method using a null optic formed by a COTS cylindrical lens and a free-form polished corrector element.

  16. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  17. Why to compare absolute numbers of mitochondria.

    PubMed

    Schmitt, Sabine; Schulz, Sabine; Schropp, Eva-Maria; Eberhagen, Carola; Simmons, Alisha; Beisker, Wolfgang; Aichler, Michaela; Zischka, Hans

    2014-11-01

    Prompted by pronounced structural differences between rat liver and rat hepatocellular carcinoma mitochondria, we suspected these mitochondrial populations to differ massively in their molecular composition. Aiming to reveal these mitochondrial differences, we came across the issue on how to normalize such comparisons and decided to focus on the absolute number of mitochondria. To this end, fluorescently stained mitochondria were quantified by flow cytometry. For rat liver mitochondria, this approach resulted in mitochondrial protein contents comparable to earlier reports using alternative methods. We determined similar protein contents for rat liver, heart and kidney mitochondria. In contrast, however, lower protein contents were determined for rat brain mitochondria and for mitochondria from the rat hepatocellular carcinoma cell line McA 7777. This result challenges mitochondrial comparisons that rely on equal protein amounts as a typical normalization method. Exemplarily, we therefore compared the activity and susceptibility toward inhibition of complex II of rat liver and hepatocellular carcinoma mitochondria and obtained significant discrepancies by either normalizing to protein amount or to absolute mitochondrial number. Importantly, the latter normalization, in contrast to the former, demonstrated a lower complex II activity and higher susceptibility toward inhibition in hepatocellular carcinoma mitochondria compared to liver mitochondria. These findings demonstrate that solely normalizing to protein amount may obscure essential molecular differences between mitochondrial populations.

  18. Absolute Proper Motions of Southern Globular Clusters

    NASA Astrophysics Data System (ADS)

    Dinescu, D. I.; Girard, T. M.; van Altena, W. F.

    1996-05-01

    Our program involves the determination of absolute proper motions with respect to galaxies for a sample of globular clusters situated in the southern sky. The plates cover a 6(deg) x 6(deg) area and are taken with the 51-cm double astrograph at Cesco Observatory in El Leoncito, Argentina. We have developed special methods to deal with the modelling error of the plate transformation and we correct for magnitude equation using the cluster stars. This careful astrometric treatment leads to accuracies of from 0.5 to 1.0 mas/yr for the absolute proper motion of each cluster, depending primarily on the number of measurable cluster stars which in turn is related to the cluster's distance. Space velocities are then derived which, in association with metallicities, provide key information for the formation scenario of the Galaxy, i.e. accretion and/or dissipational collapse. Here we present results for NGC 1851, NGC 6752, NGC 6584, NGC 6362 and NGC 288.

  19. Relational versus absolute representation in categorization.

    PubMed

    Edwards, Darren J; Pothos, Emmanuel M; Perlman, Amotz

    2012-01-01

    This study explores relational-like and absolute-like representations in categorization. Although there is much evidence that categorization processes can involve information about both the particular physical properties of studied instances and abstract (relational) properties, there has been little work on the factors that lead to one kind of representation as opposed to the other. We tested 370 participants in 6 experiments, in which participants had to classify new items into predefined artificial categories. In 4 experiments, we observed a predominantly relational-like mode of classification, and in 2 experiments we observed a shift toward an absolute-like mode of classification. These results suggest 3 factors that promote a relational-like mode of classification: fewer items per group, more training groups, and the presence of a time delay. Overall, we propose that less information about the distributional properties of a category or weaker memory traces for the category exemplars (induced, e.g., by having smaller categories or a time delay) can encourage relational-like categorization.

  20. Transient absolute robustness in stochastic biochemical networks.

    PubMed

    Enciso, German A

    2016-08-01

    Absolute robustness allows biochemical networks to sustain a consistent steady-state output in the face of protein concentration variability from cell to cell. This property is structural and can be determined from the topology of the network alone regardless of rate parameters. An important question regarding these systems is the effect of discrete biochemical noise in the dynamical behaviour. In this paper, a variable freezing technique is developed to show that under mild hypotheses the corresponding stochastic system has a transiently robust behaviour. Specifically, after finite time the distribution of the output approximates a Poisson distribution, centred around the deterministic mean. The approximation becomes increasingly accurate, and it holds for increasingly long finite times, as the total protein concentrations grow to infinity. In particular, the stochastic system retains a transient, absolutely robust behaviour corresponding to the deterministic case. This result contrasts with the long-term dynamics of the stochastic system, which eventually must undergo an extinction event that eliminates robustness and is completely different from the deterministic dynamics. The transiently robust behaviour may be sufficient to carry out many forms of robust signal transduction and cellular decision-making in cellular organisms. PMID:27581485

  1. Insulin Glulisine (rDNA origin) Injection

    MedlinePlus

    ... is a short-acting, man-made version of human insulin. Insulin glulisine works by replacing the insulin ... medications for asthma and colds; certain medications for human immunodeficiency virus (HIV) including amprenavir (Agenerase), atazanavir (Reyataz), ...

  2. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  3. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  4. Cerebral insulin, insulin signaling pathway, and brain angiogenesis.

    PubMed

    Zeng, Yi; Zhang, Le; Hu, Zhiping

    2016-01-01

    Insulin performs unique non-metabolic functions within the brain. Broadly speaking, two major areas of these functions are those related to brain endothelial cells and the blood-brain barrier (BBB) function, and those related to behavioral effects, like cognition in disease states (Alzheimer's disease, AD) and in health. Recent studies showed that both these functions are associated with brain angiogenesis. These findings raise interesting questions such as how they are linked to each other and whether modifying brain angiogenesis by targeting certain insulin signaling pathways could be an effective strategy to treat dementia as in AD, or even to help secure healthy longevity. The two canonical downstream pathways involved in mediating the insulin signaling pathway, the phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinase (MAPK) cascades, in the brain are supposed to be similar to those in the periphery. PI3K and MAPK pathways play important roles in angiogenesis. Both are involved in stimulating hypoxia inducible factor (HIF) in angiogenesis and could be activated by the insulin signaling pathway. This suggests that PI3K and MAPK pathways might act as cross-talk between the insulin signaling pathway and the angiogenesis pathway in brain. But the cerebral insulin, insulin signaling pathway, and the detailed mechanism in the connection of insulin signaling pathway, brain angiogenesis pathway, and healthy aging or dementias are still mostly not clear and need further studies.

  5. Alpha-1 antitrypsin deficiency

    MedlinePlus

    ... liver from damage. The condition can lead to emphysema and liver disease . ... descent. Adults with severe AAT deficiency will develop emphysema , often before age 40. Smoking can increase the ...

  6. Growth hormone deficiency - children

    MedlinePlus

    ... the same age. The child will have normal intelligence in most cases. In older children, puberty may ... hormones cause the body to make. Tests can measure these growth factors. Accurate growth hormone deficiency testing ...

  7. Familial lipoprotein lipase deficiency

    MedlinePlus

    ... and white-colored blood vessels in the retinas Pancreatitis that keeps returning Yellowing of the eyes and ... discuss your diet needs with a registered dietitian. Pancreatitis that is related to lipoprotein lipase deficiency responds ...

  8. Vitamin D Deficiency

    MedlinePlus

    ... deficiency can lead to a loss of bone density (size and strength), broken bones (fractures), muscle weakness, ... get too much calcium in their blood or urine. Careful monitoring of blood vitamin D levels will ...

  9. Alpha-1 Antitrypsin Deficiency

    MedlinePlus

    ... the right shape, they get stuck in the liver cells and can't reach the lungs. Symptoms of AAT deficiency include Shortness of breath and wheezing Repeated lung ... or delay lung symptoms. NIH: National Heart, Lung, and Blood Institute

  10. Paediatrics, insulin resistance and the kidney.

    PubMed

    Marlais, Matko; Coward, Richard J

    2015-08-01

    Systemic insulin resistance is becoming more prevalent in the young due to modern lifestyles predisposing to the metabolic syndrome and obesity. There is also evidence that there are critical insulin-resistant phases for the developing child, including puberty, and that renal disease per se causes systemic insulin resistance. This review considers the factors that render children insulin resistant, as well as the accumulating evidence that the kidney is an insulin-responsive organ and could be affected by insulin resistance.

  11. Absence of Shb impairs insulin secretion by elevated FAK activity in pancreatic islets.

    PubMed

    Alenkvist, Ida; Dyachok, Oleg; Tian, Geng; Li, Jia; Mehrabanfar, Saba; Jin, Yang; Birnir, Bryndis; Tengholm, Anders; Welsh, Michael

    2014-12-01

    The Src homology-2 domain containing protein B (SHB) has previously been shown to function as a pleiotropic adapter protein, conveying signals from receptor tyrosine kinases to intracellular signaling intermediates. The overexpression of Shb in β-cells promotes β-cell proliferation by increased insulin receptor substrate (IRS) and focal adhesion kinase (FAK) activity, whereas Shb deficiency causes moderate glucose intolerance and impaired first-peak insulin secretion. Using an array of techniques, including live-cell imaging, patch-clamping, immunoblotting, and semi-quantitative PCR, we presently investigated the causes of the abnormal insulin secretory characteristics in Shb-knockout mice. Shb-knockout islets displayed an abnormal signaling signature with increased activities of FAK, IRS, and AKT. β-catenin protein expression was elevated and it showed increased nuclear localization. However, there were no major alterations in the gene expression of various proteins involved in the β-cell secretory machinery. Nor was Shb deficiency associated with changes in glucose-induced ATP generation or cytoplasmic Ca(2+) handling. In contrast, the glucose-induced rise in cAMP, known to be important for the insulin secretory response, was delayed in the Shb-knockout compared with WT control. Inhibition of FAK increased the submembrane cAMP concentration, implicating FAK activity in the regulation of insulin exocytosis. In conclusion, Shb deficiency causes a chronic increase in β-cell FAK activity that perturbs the normal insulin secretory characteristics of β-cells, suggesting multi-faceted effects of FAK on insulin secretion depending on the mechanism of FAK activation.

  12. Insulin resistance and muscle insulin receptor substrate‐1 serine hyperphosphorylation

    PubMed Central

    Stuart, Charles A.; Howell, Mary E. A.; Cartwright, Brian M.; McCurry, Melanie P.; Lee, Michelle L.; Ramsey, Michael W.; Stone, Michael H.

    2014-01-01

    Abstract Insulin resistance in metabolic syndrome subjects is profound in spite of muscle insulin receptor and insulin‐responsive glucose transporter (GLUT4) expression being nearly normal. Insulin receptor tyrosine kinase phosphorylation of insulin receptor substrate‐1 (IRS‐1) at Tyr896 is a necessary step in insulin stimulation of translocation of GLUT4 to the cell surface. Serine phosphorylation of IRS‐1 by some kinases diminishes insulin action in mice. We evaluated the phosphorylation status of muscle IRS‐1 in 33 subjects with the metabolic syndrome and seventeen lean controls. Each underwent euglycemic insulin clamps and a thigh muscle biopsy before and after 8 weeks of either strength or endurance training. Muscle IRS‐1 phosphorylation at six sites was quantified by immunoblots. Metabolic syndrome muscle IRS‐1 had excess phosphorylation at Ser337 and Ser636 but not at Ser307, Ser789, or Ser1101. Ser337 is a target for phosphorylation by glycogen synthase kinase 3 (GSK3) and Ser636 is phosphorylated by c‐Jun N‐terminal kinase 1 (JNK1). Exercise training without weight loss did not change the IRS‐1 serine phosphorylation. These data suggest that baseline hyperphosphorylation of at least two key serines within muscle IRS‐1 diminishes the transmission of the insulin signal and thereby decreases the insulin‐stimulated translocation of GLUT4. Excess fasting phosphorylation of muscle IRS‐1 at Ser636 may be a major cause of the insulin resistance seen in obesity and might prevent improvement in insulin responsiveness when exercise training is not accompanied by weight loss. PMID:25472611

  13. The Absolute Radiometric Calibration of Space - Sensors.

    NASA Astrophysics Data System (ADS)

    Holm, Ronald Gene

    1987-09-01

    The need for absolute radiometric calibration of space-based sensors will continue to increase as new generations of space sensors are developed. A reflectance -based in-flight calibration procedure is used to determine the radiance reaching the entrance pupil of the sensor. This procedure uses ground-based measurements coupled with a radiative transfer code to characterize the effects the atmosphere has on the signal reaching the sensor. The computed radiance is compared to the digital count output of the sensor associated with the image of a test site. This provides an update to the preflight calibration of the system and a check on the on-board internal calibrator. This calibration procedure was used to perform a series of five calibrations of the Landsat-5 Thematic Mapper (TM). For the 12 measurements made in TM bands 1-3, the RMS variation from the mean as a percentage of the mean is (+OR-) 1.9%, and for measurements in the IR, TM bands 4,5, and 7, the value is (+OR-) 3.4%. The RMS variation for all 23 measurements is (+OR-) 2.8%. The absolute calibration techniques were put to another test with a series of three calibration of the SPOT-1 High Resolution Visible, (HRV), sensors. The ratio, HRV-2/HRV-1, of absolute calibration coefficients compared very well with ratios of histogrammed data obtained when the cameras simultaneously imaged the same ground site. Bands PA, B1 and B3 agreed to within 3%, while band B2 showed a 7% difference. The procedure for performing a satellite calibration was then used to demonstrate how a calibrated satellite sensor can be used to quantitatively evaluate surface reflectance over a wide range of surface features. Predicted reflectance factors were compared to values obtained from aircraft -based radiometer data. This procedure was applied on four dates with two different surface conditions per date. A strong correlation, R('2) = .996, was shown between reflectance values determined from satellite imagery and low-flying aircraft

  14. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  15. Insulin self-association and the relationship to pharmacokinetics and pharmacodynamics.

    PubMed

    DeFelippis, M R; Chance, R E; Frank, B H

    2001-01-01

    The treatment of type 1 diabetes requires multiple, daily injections of insulin. While many improvements involving formulation adjustments have been made in an attempt to optimize therapy, clinical experience indicates that the commercially available insulin preparations used for treatment have significant limitations. One principal deficiency relates to poor simulation of the physiological insulin secretion pattern, making achieving normalization of blood glucose concentrations difficult. Endogenous insulin secretion in nondiabetic subjects is characterized by a pulsatile profile that displays multiple, meal-stimulated phases and low basal concentrations between meals and overnight. Optimal diabetes therapy, therefore, requires insulin preparations that display a rapid onset of action with corresponding rapid clearance to provide for meal ingestion as well as preparations that can maintain a sustained, peakless profile for basal requirements. Recent efforts in pharmaceutical research have used the concept of rational-based design of the insulin molecule in an attempt to produce preparations that display more ideal pharmacological profiles. Using detailed structural information obtained from X-ray crystallographic studies to guide design strategies and exploit the nonrestrictive synthetic capabilities of recombinant DNA technology, researchers have prepared a number of insulin analogs that display a reduced propensity towards self-association. Clinical evaluations have shown that these so called "monomeric" analogs better mimic the meal-stimulated pharmacokinetics of insulin secretion observed in nondiabetics. Two monomeric insulin analog preparations have successfully obtained regulatory approval and are now commercially available. Efforts to produce optimized basal-acting insulin analogs have lagged behind. While some of these analogs have been engineered using recombinant DNA technology, design strategies in many cases exploit physicochemical properties of

  16. Gene Therapy for Diabetes Mellitus in Rats by Hepatic Expression of Insulin

    NASA Astrophysics Data System (ADS)

    Kolodka, Tadeusz M.; Finegold, Milton; Moss, Larry; Woo, Savio L. C.

    1995-04-01

    Type 1 diabetes mellitus is caused by severe insulin deficiency secondary to the autoimmune destruction of pancreatic β cells. Patients need to be controlled by periodic insulin injections to prevent the development of ketoacidosis, which can be fatal. Sustained, low-level expression of the rat insulin 1 gene from the liver of severely diabetic rats was achieved by in vivo administration of a recombinant retroviral vector. Ketoacidosis was prevented and the treated animals exhibited normoglycemia during a 24-hr fast, with no evidence of hypoglycemia. Histopathological examination of the liver in the treated animals showed no apparent abnormalities. Thus, the liver is an excellent target organ for ectopic expression of the insulin gene as a potential treatment modality for type 1 diabetes mellitus by gene therapy.

  17. A Stress Signaling Pathway in Adipose Tissue Regulates Hepatic Insulin Resistance

    PubMed Central

    Sabio, Guadalupe; Das, Madhumita; Mora, Alfonso; Zhang, Zhiyou; Jun, John Y.; Ko, Hwi Jin; Barrett, Tamera; Kim, Jason K.; Davis, Roger J.

    2008-01-01

    A high-fat diet causes activation of the regulatory protein cJun NH2-terminal kinase 1 (JNK1) and triggers the development of insulin resistance. JNK1 is therefore a potential target for therapeutic treatment of metabolic syndrome. We explored the mechanism of JNK1 signaling by engineering mice in which the Jnk1 gene was ablated selectively in adipose tissue. JNK1-deficiency in adipose tissue suppressed high fat diet-induced insulin resistance in the liver. JNK1-dependent secretion of the inflammatory cytokine IL6 by adipose tissue caused increased expression of liver SOCS3, a protein that induces hepatic insulin resistance. Thus, JNK1 activation in adipose tissue can cause insulin resistance in the liver. PMID:19056984

  18. Insulin Signaling and Heart Failure.

    PubMed

    Riehle, Christian; Abel, E Dale

    2016-04-01

    Heart failure is associated with generalized insulin resistance. Moreover, insulin-resistant states such as type 2 diabetes mellitus and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes mellitus alters the systemic and neurohumoral milieu, leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead box O transcriptional signaling or glucose transport, which may also impair cardiac metabolism, structure, and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed. PMID:27034277

  19. [Local lipohypertrophy in insulin treatment].

    PubMed

    Herold, D A; Albrecht, G

    1993-01-01

    Local lipoatrophy and lipohypertrophy at injection sites are well known side effects of treatment with insulin. Conditions favouring these local complications are created when repeated or continuous injections are given into the same areas. We report on a 27-year-old female patient who suffered from persistent local swellings after use of an external pump which continuously injected human insulin via indwelling cannulas.

  20. Insulin Signaling and Heart Failure.

    PubMed

    Riehle, Christian; Abel, E Dale

    2016-04-01

    Heart failure is associated with generalized insulin resistance. Moreover, insulin-resistant states such as type 2 diabetes mellitus and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes mellitus alters the systemic and neurohumoral milieu, leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead box O transcriptional signaling or glucose transport, which may also impair cardiac metabolism, structure, and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed.

  1. Linking insulin with Alzheimer's disease: emergence as type III diabetes.

    PubMed

    Ahmed, Sara; Mahmood, Zahra; Zahid, Saadia

    2015-10-01

    Alzheimer's disease (AD) has characteristic neuropathological abnormalities including regionalized neurodegeneration, neurofibrillary tangles, amyloid beta (Aβ) deposition, activation of pro-apoptotic genes, and oxidative stress. As the brain functions continue to disintegrate, there is a decline in person's cognitive abilities, memory, mood, spontaneity, and socializing behavior. A framework that sequentially interlinks all these phenomenons under one event is lacking. Accumulating evidence has indicated the role of insulin deficiency and insulin resistance as mediators of AD neurodegeneration. Herein, we reviewed the evidence stemming from the development of diabetes agent-induced AD animal model. Striking evidence has attributed loss of insulin receptor-bearing neurons to precede or accompany initial stage of AD. This state seems to progress with AD such that, in the terminal stages, it worsens and becomes global. Oxidative stress, tau hyperphosphorylation, APP-Aβ deposition, and impaired glucose and energy metabolism have all been linked to perturbation in insulin/IGF signaling. We conclude that AD could be referred to as "type 3 diabetes". Moreover, owing to common pathophysiology with diabetes common therapeutic regime could be effective for AD patients.

  2. VERMILION-DEFICIENCY.

    PubMed

    Bridges, C B

    1919-07-20

    In May, 1916, a culture of Drosophila melanogaster showed that a new sex-linked lethal had arisen. The linkage relations indicated that the position of the lethal was in the neighborhood of the sex-linked recessive "vermilion," whose locus in the X chromosome is at 33.0. When females heterozygous for the lethal were outcrossed to vermilion males, all the daughters that received the lethal-bearing chromosome showed vermilion eye-color, though, from the pedigree, vermilion was known to be absent from the ancestry of the mother. The lethal action and the unexpected appearance of vermilion both suggested that this was another instance of the phenomenon called "deficiency;" that is, the loss or "inactivation" of the genes of a section of the X chromosome. The lethal action would then be due to the deficient region including one or more genes necessary for the life of the individual. The appearance of vermilion in females carrying only one vermilion gene would be explainable on the ground that the deficient-bearing females are virtually haploid for the region including the vermilion locus. Linkage tests showed that the amount of crossing over in the neighborhood of the deficiency was cut down by about five units. Part of this may be attributed to the actual length of the "deficient" region, within which it is probable that no crossing over occurs, and part (probably most) to an alteration in the synaptic relations in the regions immediately adjacent. In more remote regions there was no disturbance or perhaps a slight rise in the frequency of crossing over. Both the local fall and the possible rise in more distant regions would seem to argue that a "pucker" at synapsis had been caused by an actual shortening of the deficient chromosome. That the deficient region extends to the left of the locus of vermilion was indicated by a test in which it was observed that the presence of an extra piece of chromosome including the loci for vermilion and sable ("vermilion

  3. Absolute radiometric calibration of the CCRS SAR

    NASA Astrophysics Data System (ADS)

    Ulander, Lars M. H.; Hawkins, Robert K.; Livingstone, Charles E.; Lukowski, Tom I.

    1991-11-01

    Determining the radar scattering coefficients from SAR (synthetic aperture radar) image data requires absolute radiometric calibration of the SAR system. The authors describe an internal calibration methodology for the airborne Canada Centre for Remote Sensing (CCRS) SAR system, based on radar theory, a detailed model of the radar system, and measurements of system parameters. The methodology is verified by analyzing external calibration data acquired over a 6-month period in 1988 by the C-band radar using HH polarization. The results indicate that the overall error is +/- 0.8 dB (1-sigma) for incidence angles +/- 20 deg from antenna boresight. The dominant error contributions are due to the antenna radome and uncertainties in the elevation angle relative to the antenna boresight.

  4. Absolute calibration of ultraviolet filter photometry

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Fairchild, T.; Code, A. D.

    1972-01-01

    The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.

  5. Absolute measurements of fast neutrons using yttrium

    SciTech Connect

    Roshan, M. V.; Springham, S. V.; Rawat, R. S.; Lee, P.; Krishnan, M.

    2010-08-15

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f{sub n}{approx}4.1x10{sup -4} with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10{sup 8} neutrons per discharge.

  6. Absolute geostrophic currents in global tropical oceans

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Yuan, Dongliang

    2016-11-01

    A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.

  7. Absolute Measurement of Electron Cloud Density

    SciTech Connect

    Covo, M K; Molvik, A W; Cohen, R H; Friedman, A; Seidl, P A; Logan, G; Bieniosek, F; Baca, D; Vay, J; Orlando, E; Vujic, J L

    2007-06-21

    Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 {micro}s duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.

  8. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  9. Absolute calibration of remote sensing instruments

    NASA Astrophysics Data System (ADS)

    Biggar, S. F.; Bruegge, C. J.; Capron, B. A.; Castle, K. R.; Dinguirard, M. C.; Holm, R. G.; Lingg, L. J.; Mao, Y.; Palmer, J. M.; Phillips, A. L.

    1985-12-01

    Source-based and detector-based methods for the absolute radiometric calibration of a broadband field radiometer are described. Using such a radiometer, calibrated by both methods, the calibration of the integrating sphere used in the preflight calibration of the Thematic Mapper was redetermined. The results are presented. The in-flight calibration of space remote sensing instruments is discussed. A method which uses the results of ground-based reflectance and atmospheric measurements as input to a radiative transfer code to predict the radiance at the instrument is described. A calibrated, helicopter-mounted radiometer is used to determine the radiance levels at intermediate altitudes to check the code predictions. Results of such measurements for the calibration of the Thematic Mapper on Landsat 5 and an analysis that shows the value of such measurements are described.

  10. Absolute radiometric calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Biggar, S. F.; Holm, R. G.; Jackson, R. D.; Mao, Y.

    1986-01-01

    Calibration data for the solar reflective bands of the Landsat-5 TM obtained from five in-flight absolute radiometric calibrations from July 1984-November 1985 at White Sands, New Mexico are presented and analyzed. Ground reflectance and atmospheric data were utilized to predict the spectral radiance at the entrance pupil of the TM and the average number of digital counts in each TM band. The calibration of each of the TM solar reflective bands was calculated in terms of average digital counts/unit spectral radiance for each band. It is observed that for the 12 reflectance-based measurements the rms variation from the means as a percentage of the mean is + or - 1.9 percent; for the 11 measurements in the IR bands, it is + or - 3.4 percent; and the rms variation for all 23 measurements is + or - 2.8 percent.

  11. Swarm's Absolute Scalar Magnetometer metrological performances

    NASA Astrophysics Data System (ADS)

    Leger, J.; Fratter, I.; Bertrand, F.; Jager, T.; Morales, S.

    2012-12-01

    The Absolute Scalar Magnetometer (ASM) has been developed for the ESA Earth Observation Swarm mission, planned for launch in November 2012. As its Overhauser magnetometers forerunners flown on Oersted and Champ satellites, it will deliver high resolution scalar measurements for the in-flight calibration of the Vector Field Magnetometer manufactured by the Danish Technical University. Latest results of the ground tests carried out to fully characterize all parameters that may affect its accuracy, both at instrument and satellite level, will be presented. In addition to its baseline function, the ASM can be operated either at a much higher sampling rate (burst mode at 250 Hz) or in a dual mode where it also delivers vector field measurements as a by-product. The calibration procedure and the relevant vector performances will be discussed.

  12. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  13. Resveratrol improves hepatic insulin signaling and reduces the inflammatory response in streptozotocin-induced diabetes.

    PubMed

    Sadi, Gökhan; Pektaş, Mehmet Bilgehan; Koca, Halit Bugra; Tosun, Murat; Koca, Tulay

    2015-10-10

    Diabetes mellitus is a heterogeneous metabolic disorder essentially characterized by deficiency of insulin secretion, insulin receptor or post-receptor events. This study aims to investigate the effects of resveratrol administration on the metabolic characteristics, hepatic functions, histopathological features and insulin signaling pathway components in streptozotocin induced diabetes. Male Wistar rats were randomly divided into four groups: (1) control/vehicle; (2) control/20mg/kg resveratrol; (3) diabetic/vehicle; and (4) diabetic/20mg/kg resveratrol. Histopathological examinations were carried out to reveal hepatic tissue damage and inflammation. In addition to hepatic glucose, lipid, insulin, ALT, AST, resistin and XOD contents, gene and protein expressions of insulin signaling pathway components such as insulin Rβ, IRS-1, IRS-2, eNOS, PI3K, Akt, and FOXO3a were analyzed by qRT-PCR and Western blot. The rats in the diabetes group had significantly lower terminal body weight and hepatic insulin level, but significantly higher hepatic glucose, total cholesterol, triglyceride and resistin concentrations. Diabetes triggered the inflammatory process in the liver tissues that was evidenced by histopathological deformations and increase in the hepatic ALT and AST levels. Hepatic inflammation was considerably associated with insulin signaling pathway ever since a significant down-regulation of insulin signaling components; IRS-1, IRS-2, PI3K, Akt and mTOR have been identified in the diabetic group. To some extent, resveratrol treatment reversed the diabetes-induced changes in the liver tissues. Taken together, resveratrol partly improved hepatic dysfunction induced by diabetes. This may be due to the healing activity of resveratrol on insulin signaling pathway, resistin levels and hepatic glucose-lipid contents.

  14. One-year metreleptin improves insulin secretion in patients with diabetes linked to genetic lipodystrophic syndromes.

    PubMed

    Vatier, C; Fetita, S; Boudou, P; Tchankou, C; Deville, L; Riveline, Jp; Young, J; Mathivon, L; Travert, F; Morin, D; Cahen, J; Lascols, O; Andreelli, F; Reznik, Y; Mongeois, E; Madelaine, I; Vantyghem, Mc; Gautier, Jf; Vigouroux, C

    2016-07-01

    Recombinant methionyl human leptin (metreleptin) therapy was shown to improve hyperglycaemia, dyslipidaemia and insulin sensitivity in patients with lipodystrophic syndromes, but its effects on insulin secretion remain controversial. We used dynamic intravenous (i.v.) clamp procedures to measure insulin secretion, adjusted to insulin sensitivity, at baseline and after 1 year of metreleptin therapy, in 16 consecutive patients with lipodystrophy, diabetes and leptin deficiency. Patients, with a mean [± standard error of the mean (s.e.m.)] age of 39.2 (±4) years, presented with familial partial lipodystrophy (n = 11, 10 women) or congenital generalized lipodystrophy (n = 5, four women). Their mean (± s.e.m.) BMI (23.9 ± 0.7 kg/m(2) ), glycated haemoglobin levels (8.5 ± 0.4%) and serum triglycerides levels (4.6 ± 0.9 mmol/l) significantly decreased within 1 month of metreleptin therapy, then remained stable. Insulin sensitivity (from hyperglycaemic or euglycaemic-hyperinsulinaemic clamps, n = 4 and n = 12, respectively), insulin secretion during graded glucose infusion (n = 12), and acute insulin response to i.v. glucose adjusted to insulin sensitivity (disposition index, n = 12), significantly increased after 1 year of metreleptin therapy. The increase in disposition index was related to a decrease in percentage of total and trunk body fat. Metreleptin therapy improves not only insulin sensitivity, but also insulin secretion in patients with diabetes attributable to genetic lipodystrophies. PMID:26584826

  15. Context-dependent regulation of feeding behaviour by the insulin receptor, DAF-2, in Caenorhabditis elegans.

    PubMed

    Dillon, James; Holden-Dye, Lindy; O'Connor, Vincent; Hopper, Neil A

    2016-06-01

    Insulin signalling plays a significant role in both developmental programmes and pathways modulating the neuronal signalling that controls adult behaviour. Here, we have investigated insulin signalling in food-associated behaviour in adult C. elegans by scoring locomotion and feeding on and off bacteria, the worm's food. This analysis used mutants (daf-2, daf-18) of the insulin signalling pathway, and we provide evidence for an acute role for insulin signalling in the adult nervous system distinct from its impact on developmental programmes. Insulin receptor daf-2 mutants move slower than wild type both on and off food and showed impaired locomotory responses to food deprivation. This latter behaviour is manifest as a failure to instigate dispersal following prolonged food deprivation and suggests a role for insulin signalling in this adaptive response. Insulin receptor daf-2 mutants are also deficient in pharyngeal pumping on food and off food. Pharmacological analysis showed the pharynx of daf-2 is selectively compromised in its response to 5-HT compared to the excitatory neuropeptide FLP-17. By comparing the adaptive pharyngeal behaviour in intact worms and isolated pharyngeal preparations, we determined that an insulin-dependent signal extrinsic to the pharyngeal system is involved in feeding adaptation. Hence, we suggest that reactive insulin signalling modulates both locomotory foraging and pharyngeal pumping as the animal adapts to the absence of food. We discuss this in the context of insulin signalling directing a shift in the sensitivity of neurotransmitter systems to regulate the worm's response to changes in food availability in the environment. PMID:27209024

  16. Effects of Insulin and High Glucose on Human Meibomian Gland Epithelial Cells

    PubMed Central

    Ding, Juan; Liu, Yang; Sullivan, David A.

    2015-01-01

    Purpose Type 2 diabetes is a risk factor for meibomian gland dysfunction (MGD). We hypothesize that this diabetic impact is due, at least in part, to the effects of insulin resistance/deficiency and hyperglycemia on human meibomian gland epithelial cells (HMGECs). To begin to test this hypothesis, we examined whether insulin and high glucose influence immortalized (I) HMGECs. Methods Immortalized HMGECs were cultured in serum-containing or -free media and treated with insulin, insulin-like growth factor–1 (IGF-1), IGF-1 receptor (R) blocking antibody, and glucose or mannitol for varying time periods. Specific proteins were detected by Western blots, cell proliferation was evaluated by manual cell counting and lipids were assessed with LipidTOX and high performance thin layer chromatography. Results We found that insulin induces a dose-dependent increase in phosphatidylinositide 3-kinase/Akt (AKT) signaling in IHMGECs. This effect involves the IGF-1R, but not the insulin receptor (IR), and is associated with a stimulation of cell proliferation and neutral lipid accumulation. In contrast, high glucose exposure alters cell morphology, causes a progressive cell loss, and significantly reduces the levels of IGF-1R, phospho (p)-AKT, Foxhead box protein O1 (FOXO1), and sterol-regulatory element binding protein (SREBP-1) in IHMGECs. Conclusions Our data show that insulin stimulates, and that high glucose is toxic for, IHMGECs. These results support our hypothesis that insulin resistance/deficiency and hyperglycemia are deleterious for HMGECs and may help explain why type II diabetes is a risk factor for MGD. PMID:26658502

  17. [Comparison of biosynthetic human insulin and purified pork insulin. Studies in insulin-resistant obese patients using the insulin suppression test].

    PubMed

    Richard, J L; Rodier, M; Cavalie, G; Lachkar, H; Orsetti, A; Monnier, L; Mirouze, J

    1986-02-01

    An insulin suppression test performed in random order with either biosynthetic human insulin or purified pork insulin was used to compare biological activity of these two insulins in obese patients suffering from varying degrees of glucose intolerance. Blood glucose curve, steady-state blood glucose levels, insulin sensitivity indices and steady-state plasma insulin levels were identical during the two sets of tests. Furthermore endogenous insulin and glucagon secretion were similarly suppressed. The insulin suppression test is a simple and rapid procedure to compare the biological activity of fast-acting insulins. Our results confirm the insulin-resistance in obesity and clearly show that biosynthetic human and porcine insulins have similar biological potency.

  18. DLK1 Regulates Whole-Body Glucose Metabolism: A Negative Feedback Regulation of the Osteocalcin-Insulin Loop.

    PubMed

    Abdallah, Basem M; Ditzel, Nicholas; Laborda, Jorge; Karsenty, Gerard; Kassem, Moustapha

    2015-09-01

    The endocrine role of the skeleton in regulating energy metabolism is supported by a feed-forward loop between circulating osteoblast (OB)-derived undercarboxylated osteocalcin (Glu-OCN) and pancreatic β-cell insulin; in turn, insulin favors osteocalcin (OCN) bioactivity. These data suggest the existence of a negative regulation of this cross talk between OCN and insulin. Recently, we identified delta like-1 (DLK1) as an endocrine regulator of bone turnover. Because DLK1 is colocalized with insulin in pancreatic β-cells, we examined the role of DLK1 in insulin signaling in OBs and energy metabolism. We show that Glu-OCN specifically stimulates Dlk1 expression by the pancreas. Conversely, Dlk1-deficient (Dlk1(-/-) ) mice exhibited increased circulating Glu-OCN levels and increased insulin sensitivity, whereas mice overexpressing Dlk1 in OB displayed reduced insulin secretion and sensitivity due to impaired insulin signaling in OB and lowered Glu-OCN serum levels. Furthermore, Dlk1(-/-) mice treated with Glu-OC experienced significantly lower blood glucose levels than Glu-OCN-treated wild-type mice. The data suggest that Glu-OCN-controlled production of DLK1 by pancreatic β-cells acts as a negative feedback mechanism to counteract the stimulatory effects of insulin on OB production of Glu-OCN, a potential mechanism preventing OCN-induced hypoglycemia.

  19. Exposure to excess insulin (glargine) induces type 2 diabetes mellitus in mice fed on a chow diet.

    PubMed

    Yang, Xuefeng; Mei, Shuang; Gu, Haihua; Guo, Huailan; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Cao, Wenhong

    2014-06-01

    We have previously shown that insulin plays an important role in the nutrient-induced insulin resistance. In this study, we tested the hypothesis that chronic exposure to excess long-acting insulin (glargine) can cause typical type 2 diabetes mellitus (T2DM) in normal mice fed on a chow diet. C57BL/6 mice were treated with glargine once a day for 8 weeks, followed by evaluations of food intake, body weight, blood levels of glucose, insulin, lipids, and cytokines, insulin signaling, histology of pancreas, ectopic fat accumulation, oxidative stress level, and cholesterol content in mitochondria in tissues. Cholesterol content in mitochondria and its association with oxidative stress in cultured hepatocytes and β-cells were also examined. Results show that chronic exposure to glargine caused insulin resistance, hyperinsulinemia, and relative insulin deficiency (T2DM). Treatment with excess glargine led to loss of pancreatic islets, ectopic fat accumulation in liver, oxidative stress in liver and pancreas, and increased cholesterol content in mitochondria of liver and pancreas. Prolonged exposure of cultured primary hepatocytes and HIT-TI5 β-cells to insulin induced oxidative stress in a cholesterol synthesis-dependent manner. Together, our results show that chronic exposure to excess insulin can induce typical T2DM in normal mice fed on a chow diet.

  20. Exposure to excess insulin (glargine) induces type 2 diabetes mellitus in mice fed on a chow diet.

    PubMed

    Yang, Xuefeng; Mei, Shuang; Gu, Haihua; Guo, Huailan; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Cao, Wenhong

    2014-06-01

    We have previously shown that insulin plays an important role in the nutrient-induced insulin resistance. In this study, we tested the hypothesis that chronic exposure to excess long-acting insulin (glargine) can cause typical type 2 diabetes mellitus (T2DM) in normal mice fed on a chow diet. C57BL/6 mice were treated with glargine once a day for 8 weeks, followed by evaluations of food intake, body weight, blood levels of glucose, insulin, lipids, and cytokines, insulin signaling, histology of pancreas, ectopic fat accumulation, oxidative stress level, and cholesterol content in mitochondria in tissues. Cholesterol content in mitochondria and its association with oxidative stress in cultured hepatocytes and β-cells were also examined. Results show that chronic exposure to glargine caused insulin resistance, hyperinsulinemia, and relative insulin deficiency (T2DM). Treatment with excess glargine led to loss of pancreatic islets, ectopic fat accumulation in liver, oxidative stress in liver and pancreas, and increased cholesterol content in mitochondria of liver and pancreas. Prolonged exposure of cultured primary hepatocytes and HIT-TI5 β-cells to insulin induced oxidative stress in a cholesterol synthesis-dependent manner. Together, our results show that chronic exposure to excess insulin can induce typical T2DM in normal mice fed on a chow diet. PMID:24741073

  1. Liver-specific expression of carboxylesterase 1g/esterase-x reduces hepatic steatosis, counteracts dyslipidemia and improves insulin signaling.

    PubMed

    Bahitham, Wesam; Watts, Russell; Nelson, Randal; Lian, Jihong; Lehner, Richard

    2016-05-01

    Ces1g/Es-x deficiency in mice results in weight gain, insulin resistance, fatty liver and hyperlipidemia through upregulation of de novo lipogenesis and oversecretion of triacylglycerol (TG)-rich lipoproteins. Here, we show that restoration of Ces1g/Es-x expression only in the liver significantly reduced hepatic TG concentration accompanied by decreased size of lipid droplets, reduced secretion of very low-density lipoproteins and improved insulin-mediated signal transduction in the liver. Collectively, these results demonstrate that hepatic Ces1g/Es-x plays a critical role in limiting hepatic steatosis, very low-density lipoprotein assembly and in augmenting insulin sensitivity.

  2. Liver-specific expression of carboxylesterase 1g/esterase-x reduces hepatic steatosis, counteracts dyslipidemia and improves insulin signaling.

    PubMed

    Bahitham, Wesam; Watts, Russell; Nelson, Randal; Lian, Jihong; Lehner, Richard

    2016-05-01

    Ces1g/Es-x deficiency in mice results in weight gain, insulin resistance, fatty liver and hyperlipidemia through upregulation of de novo lipogenesis and oversecretion of triacylglycerol (TG)-rich lipoproteins. Here, we show that restoration of Ces1g/Es-x expression only in the liver significantly reduced hepatic TG concentration accompanied by decreased size of lipid droplets, reduced secretion of very low-density lipoproteins and improved insulin-mediated signal transduction in the liver. Collectively, these results demonstrate that hepatic Ces1g/Es-x plays a critical role in limiting hepatic steatosis, very low-density lipoprotein assembly and in augmenting insulin sensitivity. PMID:26976727

  3. Insulin and insulin like growth factor II endocytosis and signaling via insulin receptor B

    PubMed Central

    2013-01-01

    Background Insulin and insulin-like growth factors (IGFs) act on tetrameric tyrosine kinase receptors controlling essential functions including growth, metabolism, reproduction and longevity. The insulin receptor (IR) binds insulin and IGFs with different affinities triggering different cell responses. Results We showed that IGF-II induces cell proliferation and gene transcription when IR-B is over-expressed. We combined biotinylated ligands with streptavidin conjugated quantum dots and visible fluorescent proteins to visualize the binding of IGF-II and insulin to IR-B and their ensuing internalization. By confocal microscopy and flow cytometry in living cells, we studied the internalization kinetic through the IR-B of both IGF-II, known to elicit proliferative responses, and insulin, a regulator of metabolism. Conclusions IGF-II promotes a faster internalization of IR-B than insulin. We propose that IGF-II differentially activates mitogenic responses through endosomes, while insulin-activated IR-B remains at the plasma membrane. This fact could facilitate the interaction with key effector molecules involved in metabolism regulation. PMID:23497114

  4. Reduced Graphene Oxide Modified the Interdigitated Chain Electrode for an Insulin Sensor.

    PubMed

    Yagati, Ajay Kumar; Park, Jinsoo; Cho, Sungbo

    2016-01-01

    Insulin is a key regulator in glucose homeostasis and its deficiency or alternations in the human body causes various types of diabetic disorders. In this paper, we present the development of a reduced graphene oxide (rGO) modified interdigitated chain electrode (ICE) for direct capacitive detection of insulin. The impedance properties of rGO-ICE were characterized by equivalent circuit modeling. After an electrochemical deposition of rGO on ICE, the electrode was modified with self-assembled monolayers and insulin antibodies in order to achieve insulin binding reactions. The impedance spectra and capacitances were measured with respect to the concentrations of insulin and the capacitance change (ΔC) was analyzed to quantify insulin concentration. The antibody immobilized electrode showed an increment of ΔC according to the insulin concentration in human serum ranging from 1 ng/mL to 10 µg/mL. The proposed sensor is feasible for label-free and real-time measuring of the biomarker and for point-of-care diagnosis. PMID:26784202

  5. Reduced Graphene Oxide Modified the Interdigitated Chain Electrode for an Insulin Sensor

    PubMed Central

    Yagati, Ajay Kumar; Park, Jinsoo; Cho, Sungbo

    2016-01-01

    Insulin is a key regulator in glucose homeostasis and its deficiency or alternations in the human body causes various types of diabetic disorders. In this paper, we present the development of a reduced graphene oxide (rGO) modified interdigitated chain electrode (ICE) for direct capacitive detection of insulin. The impedance properties of rGO-ICE were characterized by equivalent circuit modeling. After an electrochemical deposition of rGO on ICE, the electrode was modified with self-assembled monolayers and insulin antibodies in order to achieve insulin binding reactions. The impedance spectra and capacitances were measured with respect to the concentrations of insulin and the capacitance change (ΔC) was analyzed to quantify insulin concentration. The antibody immobilized electrode showed an increment of ΔC according to the insulin concentration in human serum ranging from 1 ng/mL to 10 µg/mL. The proposed sensor is feasible for label-free and real-time measuring of the biomarker and for point-of-care diagnosis. PMID:26784202

  6. Fas (CD95) expression in myeloid cells promotes obesity-induced muscle insulin resistance

    PubMed Central

    Wueest, Stephan; Mueller, Rouven; Blüher, Matthias; Item, Flurin; Chin, Annie S H; Wiedemann, Michael S F; Takizawa, Hitoshi; Kovtonyuk, Larisa; Chervonsky, Alexander V; Schoenle, Eugen J; Manz, Markus G; Konrad, Daniel

    2014-01-01

    Low-grade inflammation in adipose tissue and liver has been implicated in obesity-associated insulin resistance and type 2 diabetes. Yet, the contribution of inflammatory cells to the pathogenesis of skeletal muscle insulin resistance remains elusive. In a large cohort of obese human individuals, blood monocyte Fas (CD95) expression correlated with systemic and skeletal muscle insulin resistance. To test a causal role for myeloid cell Fas expression in the development of skeletal muscle insulin resistance, we generated myeloid/haematopoietic cell-specific Fas-depleted mice. Myeloid/haematopoietic Fas deficiency prevented the development of glucose intolerance in high fat-fed mice, in ob/ob mice, and in mice acutely challenged by LPS. In vivo, ex vivo and in vitro studies demonstrated preservation of muscle insulin responsiveness with no effect on adipose tissue or liver. Studies using neutralizing antibodies demonstrated a role for TNFα as mediator between myeloid Fas and skeletal muscle insulin resistance, supported by significant correlations between monocyte Fas expression and circulating TNFα in humans. In conclusion, our results demonstrate an unanticipated crosstalk between myeloid cells and skeletal muscle in the development of obesity-associated insulin resistance. PMID:24203314

  7. Increase of Calcium Sensing Receptor Expression Is Related to Compensatory Insulin Secretion during Aging in Mice

    PubMed Central

    Oh, Yoon Sin; Seo, Eun-Hui; Lee, Young-Sun; Cho, Sung Chun; Jung, Hye Seung; Park, Sang Chul; Jun, Hee-Sook

    2016-01-01

    Type 2 diabetes is caused by both insulin resistance and relative insulin deficiency. To investigate age-related changes in glucose metabolism and development of type 2 diabetes, we compared glucose homeostasis in different groups of C57BL/6J mice ranging in age from 4 months to 20 months (4, 8, 12, 16 and 20 months). Interestingly, we observed that non-fasting glucose levels were not significantly changed, but glucose tolerance gradually increased by 20 months of age, whereas insulin sensitivity declined with age. We found that the size of islets and glucose-stimulated insulin secretion increased with aging. However, mRNA expression of pancreatic and duodenal homeobox 1 and granuphilin was decreased in islets of older mice compared with that of 4-month-old mice. Serum calcium (Ca2+) levels were significantly decreased at 12, 20 and 28 months of age compared with 4 months and calcium sensing receptor (CaSR) mRNA expression in the islets significantly increased with age. An extracellular calcium depletion agent upregulated CaSR mRNA expression and consequently enhanced insulin secretion in INS-1 cells and mouse islets. In conclusion, we suggest that decreased Ca2+ levels and increased CaSR expression might be involved in increased insulin secretion to compensate for insulin resistance in aged mice. PMID:27441644

  8. Iron deficiency anaemia.

    PubMed

    Lopez, Anthony; Cacoub, Patrice; Macdougall, Iain C; Peyrin-Biroulet, Laurent

    2016-02-27

    Anaemia affects roughly a third of the world's population; half the cases are due to iron deficiency. It is a major and global public health problem that affects maternal and child mortality, physical performance, and referral to health-care professionals. Children aged 0-5 years, women of childbearing age, and pregnant women are particularly at risk. Several chronic diseases are frequently associated with iron deficiency anaemia--notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease. Measurement of serum ferritin, transferrin saturation, serum soluble transferrin receptors, and the serum soluble transferrin receptors-ferritin index are more accurate than classic red cell indices in the diagnosis of iron deficiency anaemia. In addition to the search for and treatment of the cause of iron deficiency, treatment strategies encompass prevention, including food fortification and iron supplementation. Oral iron is usually recommended as first-line therapy, but the most recent intravenous iron formulations, which have been available for nearly a decade, seem to replenish iron stores safely and effectively. Hepcidin has a key role in iron homoeostasis and could be a future diagnostic and therapeutic target. In this Seminar, we discuss the clinical presentation, epidemiology, pathophysiology, diagnosis, and acute management of iron deficiency anaemia, and outstanding research questions for treatment.

  9. Iron deficiency anaemia.

    PubMed

    Lopez, Anthony; Cacoub, Patrice; Macdougall, Iain C; Peyrin-Biroulet, Laurent

    2016-02-27

    Anaemia affects roughly a third of the world's population; half the cases are due to iron deficiency. It is a major and global public health problem that affects maternal and child mortality, physical performance, and referral to health-care professionals. Children aged 0-5 years, women of childbearing age, and pregnant women are particularly at risk. Several chronic diseases are frequently associated with iron deficiency anaemia--notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease. Measurement of serum ferritin, transferrin saturation, serum soluble transferrin receptors, and the serum soluble transferrin receptors-ferritin index are more accurate than classic red cell indices in the diagnosis of iron deficiency anaemia. In addition to the search for and treatment of the cause of iron deficiency, treatment strategies encompass prevention, including food fortification and iron supplementation. Oral iron is usually recommended as first-line therapy, but the most recent intravenous iron formulations, which have been available for nearly a decade, seem to replenish iron stores safely and effectively. Hepcidin has a key role in iron homoeostasis and could be a future diagnostic and therapeutic target. In this Seminar, we discuss the clinical presentation, epidemiology, pathophysiology, diagnosis, and acute management of iron deficiency anaemia, and outstanding research questions for treatment. PMID:26314490

  10. Glucagon receptor antibody completely suppresses type 1 diabetes phenotype without insulin by disrupting a novel diabetogenic pathway

    PubMed Central

    Wang, May-Yun; Yan, Hai; Shi, Zhiqing; Evans, Matthew R.; Yu, Xinxin; Lee, Young; Chen, Shiuhwei; Williams, Annie; Philippe, Jacques; Roth, Michael G.; Unger, Roger H.

    2015-01-01

    Insulin monotherapy can neither maintain normoglycemia in type 1 diabetes (T1D) nor prevent the long-term damage indicated by elevated glycation products in blood, such as glycated hemoglobin (HbA1c). Here we find that hyperglycemia, when unaccompanied by an acute increase in insulin, enhances itself by paradoxically stimulating hyperglucagonemia. Raising glucose from 5 to 25 mM without insulin enhanced glucagon secretion ∼two- to fivefold in InR1-G9 α cells and ∼18-fold in perfused pancreata from insulin-deficient rats with T1D. Mice with T1D receiving insulin treatment paradoxically exhibited threefold higher plasma glucagon during hyperglycemic surges than during normoglycemic intervals. Blockade of glucagon action with mAb Ac, a glucagon receptor (GCGR) antagonizing antibody, maintained glucose below 100 mg/dL and HbA1c levels below 4% in insulin-deficient mice with T1D. In rodents with T1D, hyperglycemia stimulates glucagon secretion, up-regulating phosphoenolpyruvate carboxykinase and enhancing hyperglycemia. GCGR antagonism in mice with T1D normalizes glucose and HbA1c, even without insulin. PMID:25675519

  11. Dimethylglycine Deficiency and the Development of Diabetes

    PubMed Central

    Wang, Thomas J.; Clish, Clary; Engström, Gunnar; Nilsson, Peter; Gerszten, Robert E.; Melander, Olle

    2015-01-01

    Experimental studies have suggested possible protective effects of dimethylglycine (DMG) on glucose metabolism. DMG is degraded to glycine through a DMG-dehydrogenase (DMGDH)-catalyzed reaction, and this is the only known pathway for the breakdown of DMG in mammals. In this study, we aimed to identify the strongest genetic determinant of circulating DMG concentration and to investigate its associations with metabolic traits and incident diabetes. In the cohort with full metabolomics data (n = 709), low plasma levels of DMG were significantly associated with higher blood glucose levels (P = 3.9E–4). In the genome-wide association study (GWAS) of the discovery cohort (n = 5,205), the strongest genetic signal of plasma DMG was conferred by rs2431332 at the DMGDH locus, where the major allele was associated with lower DMG levels (P = 2.5E–15). The same genetic variant (major allele of rs2431332) was also significantly associated with higher plasma insulin (P = 0.019), increased HOMA insulin resistance (P = 0.019), and an increased risk of incident diabetes (P = 0.001) in the pooled analysis of the discovery cohort together with the two replication cohorts (n = 20,698 and n = 7,995). These data are consistent with a possible causal role of DMG deficiency in diabetes development and encourage future studies examining if inhibition of DMGDH, or alternatively, supplementation of DMG, might prove useful for the treatment/prevention of diabetes. PMID:25795213

  12. Antepartum ornithine transcarbamylase deficiency.

    PubMed

    Nakajima, Hitoshi; Sasaki, Yosuke; Maeda, Tadashi; Takeda, Masako; Hara, Noriko; Nakanishi, Kazushige; Urita, Yoshihisa; Hattori, Risa; Miura, Ken; Taniguchi, Tomoko

    2014-01-01

    Ornithine transcarbamylase deficiency (OTCD) is the most common type urea cycle enzyme deficiencies. This syndrome results from a deficiency of the mitochondrial enzyme ornithine transcarbamylase, which catalyzes the conversion of ornithine and carbamoyl phosphate to citrullin. Our case was a 28-year-old female diagnosed with OTCD following neurocognitive deficit during her first pregnancy. Although hyperammonemia was suspected as the cause of the patient's mental changes, there was no evidence of chronic liver disease. Plasma amino acid and urine organic acid analysis revealed OTCD. After combined modality treatment with arginine, sodium benzoate and hemodialysis, the patient's plasma ammonia level stabilized and her mental status returned to normal. At last she recovered without any damage left. PMID:25759629

  13. Transient neonatal zinc deficiency.

    PubMed

    Krieger, I; Alpern, B E; Cunnane, S C

    1986-06-01

    We report an infant who developed clinical manifestations of zinc deficiency during the first month of life although the diet was adequate for zinc and no other causes could be ascertained. The diagnosis was confirmed by low plasma-zinc concentrations and a positive response to zinc treatment. The fatty acid profile of plasma phospholipids was typical of zinc deficiency (ie, arachidonic acid was markedly decreased). The transient nature of this disorder was evident when no relapse occurred after cessation of zinc therapy and plasma-zinc and arachidonic acid concentrations remained normal. Several explanations for the development of transient neonatal zinc deficiency are offered. The observation demonstrates that occasional infants may have requirements for zinc that are beyond the intakes of the conventional RDA. PMID:3717070

  14. Isolation and determination of absolute configurations of insect-produced methyl-branched hydrocarbons.

    PubMed

    Bello, Jan E; McElfresh, J Steven; Millar, Jocelyn G

    2015-01-27

    Although the effects of stereochemistry have been studied extensively for volatile insect pheromones, little is known about the effects of chirality in the nonvolatile methyl-branched hydrocarbons (MBCHs) used by many insects as contact pheromones. MBCHs generally contain one or more chiral centers and so two or more stereoisomeric forms are possible for each structure. However, it is not known whether insects biosynthesize these molecules in high stereoisomeric purity, nor is it known whether insects can distinguish the different stereoisomeric forms of MBCHs. This knowledge gap is due in part to the lack of methods for isolating individual MBCHs from the complex cuticular hydrocarbon (CHC) blends of insects, as well as the difficulty in determining the absolute configurations of the isolated MBCHs. To address these deficiencies, we report a straightforward method for the isolation of individual cuticular hydrocarbons from the complex CHC blend. The method was used to isolate 36 pure MBCHs from 20 species in nine insect orders. The absolute stereochemistries of the purified MBCHs then were determined by digital polarimetry. The absolute configurations of all of the isolated MBCHs were determined to be (R) by comparison with a library of synthesized, enantiomerically pure standards, suggesting that the biosynthetic pathways used to construct MBCHs are highly conserved within the Insecta. The development of a straightforward method for isolation of specific CHCs will enable determination of their functional roles by providing pure compounds for bioassays.

  15. Isolation and determination of absolute configurations of insect-produced methyl-branched hydrocarbons

    PubMed Central

    Bello, Jan E.; McElfresh, J. Steven; Millar, Jocelyn G.

    2015-01-01

    Although the effects of stereochemistry have been studied extensively for volatile insect pheromones, little is known about the effects of chirality in the nonvolatile methyl-branched hydrocarbons (MBCHs) used by many insects as contact pheromones. MBCHs generally contain one or more chiral centers and so two or more stereoisomeric forms are possible for each structure. However, it is not known whether insects biosynthesize these molecules in high stereoisomeric purity, nor is it known whether insects can distinguish the different stereoisomeric forms of MBCHs. This knowledge gap is due in part to the lack of methods for isolating individual MBCHs from the complex cuticular hydrocarbon (CHC) blends of insects, as well as the difficulty in determining the absolute configurations of the isolated MBCHs. To address these deficiencies, we report a straightforward method for the isolation of individual cuticular hydrocarbons from the complex CHC blend. The method was used to isolate 36 pure MBCHs from 20 species in nine insect orders. The absolute stereochemistries of the purified MBCHs then were determined by digital polarimetry. The absolute configurations of all of the isolated MBCHs were determined to be (R) by comparison with a library of synthesized, enantiomerically pure standards, suggesting that the biosynthetic pathways used to construct MBCHs are highly conserved within the Insecta. The development of a straightforward method for isolation of specific CHCs will enable determination of their functional roles by providing pure compounds for bioassays. PMID:25583471

  16. Fatty Acid Oxidation Defects and Insulin Sensitivity

    ClinicalTrials.gov

    2016-09-26

    Very Long-chain Acyl-CoA Dehydrogenase Deficiency; Trifunctional Protein Deficiency; Long-chain 3-hydroxyacyl-CoA Dehydrogenase Deficiency; Medium-chain Acyl-CoA Dehydrogenase Deficiency; Normal Volunteers

  17. Lipid signals and insulin resistance.

    PubMed

    Zhang, Chongben; Klett, Eric L; Coleman, Rosalind A

    2013-12-01

    The metabolic syndrome, a cluster of metabolic derangements that include obesity, glucose intolerance, dyslipidemia and hypertension, is a major risk factor for cardiovascular disease. Insulin resistance has been proposed to be the common feature that links obesity to the metabolic syndrome, but the mechanism remains obscure. Although the excess content of triacylglycerol in muscle and liver is highly associated with insulin resistance in these tissues, triacylglycerol itself is not causal but merely a marker. Thus, attention has turned to the accumulation of cellular lipids known to have signaling roles. This review will discuss recent progress in understanding how glycerolipids and related lipid intermediates may impair insulin signaling. PMID:24533033

  18. Lipid signals and insulin resistance.

    PubMed

    Zhang, Chongben; Klett, Eric L; Coleman, Rosalind A

    2013-12-01

    The metabolic syndrome, a cluster of metabolic derangements that include obesity, glucose intolerance, dyslipidemia and hypertension, is a major risk factor for cardiovascular disease. Insulin resistance has been proposed to be the common feature that links obesity to the metabolic syndrome, but the mechanism remains obscure. Although the excess content of triacylglycerol in muscle and liver is highly associated with insulin resistance in these tissues, triacylglycerol itself is not causal but merely a marker. Thus, attention has turned to the accumulation of cellular lipids known to have signaling roles. This review will discuss recent progress in understanding how glycerolipids and related lipid intermediates may impair insulin signaling.

  19. New ways of insulin delivery.

    PubMed

    Heinemann, L

    2010-02-01

    When Exubera (EXU), the first inhaled insulin formulation to make it through the clinical development process, was introduced to the market some years ago it was hoped that this would be the first in a series of novel insulin formulations applied by this route. In addition, it was hoped that inhaled insulin would pave the way for other alternative routes of insulin administration (ARIA), i.e. oral insulin, nasal insulin or transdermal insulin to mention only some of the different attempts that have been studied in the last 90 years. The failure of EXU, i.e. its withdrawal from the market due to insufficient market success, was followed by the cessation of nearly all other attempts to develop inhaled insulin formulations. Currently there is only one company (MannKind) which moves sturdily ahead with their Technosphere insulin. This company has submitted an NDA for their product recently and hopes to bring it to the market by the end of 2010 or early 2011. Even if the product is able to pass the approval hurdles in the USA and Europe, this does not guarantee that it will become a market success. Many diabetologists were sceptical about the need/advantages of inhaled insulin/EXU from the start and the introduction of this product has raised even more scepticism. Reports about 'side effects' (development of lung cancer in patients treated with EXU) of inhaled insulin are also not helpful, even if the causality of the appearance of cancer with this type of insulin therapy is not proven. One of the very negative consequences of stopping EXU are the huge financial losses to Pfizer. The managers in charge in other pharmaceutical companies and also most venture capitalists are reluctant to invest in ARIA nowadays. This in turn means that many of the small companies that try to develop new forms of insulin administration have issues when they try to find a big brother and/or sufficient financial support. Clearly the economic crisis has further aggravated this issue. One can

  20. New ways of insulin delivery.

    PubMed

    Heinemann, L

    2010-02-01

    When Exubera (EXU), the first inhaled insulin formulation to make it through the clinical development process, was introduced to the market some years ago it was hoped that this would be the first in a series of novel insulin formulations applied by this route. In addition, it was hoped that inhaled insulin would pave the way for other alternative routes of insulin administration (ARIA), i.e. oral insulin, nasal insulin or transdermal insulin to mention only some of the different attempts that have been studied in the last 90 years. The failure of EXU, i.e. its withdrawal from the market due to insufficient market success, was followed by the cessation of nearly all other attempts to develop inhaled insulin formulations. Currently there is only one company (MannKind) which moves sturdily ahead with their Technosphere insulin. This company has submitted an NDA for their product recently and hopes to bring it to the market by the end of 2010 or early 2011. Even if the product is able to pass the approval hurdles in the USA and Europe, this does not guarantee that it will become a market success. Many diabetologists were sceptical about the need/advantages of inhaled insulin/EXU from the start and the introduction of this product has raised even more scepticism. Reports about 'side effects' (development of lung cancer in patients treated with EXU) of inhaled insulin are also not helpful, even if the causality of the appearance of cancer with this type of insulin therapy is not proven. One of the very negative consequences of stopping EXU are the huge financial losses to Pfizer. The managers in charge in other pharmaceutical companies and also most venture capitalists are reluctant to invest in ARIA nowadays. This in turn means that many of the small companies that try to develop new forms of insulin administration have issues when they try to find a big brother and/or sufficient financial support. Clearly the economic crisis has further aggravated this issue. One can

  1. On the absolute alignment of GONG images

    NASA Astrophysics Data System (ADS)

    Toner, C. G.

    2001-01-01

    In order to combine data from the six instruments in the GONG network the alignment of all of the images must be known to a fairly high precision (~0°.1 for GONG Classic and ~0°.01 for GONG+). The relative orientation is obtained using the angular cross-correlation method described by (Toner & Harvey, 1998). To obtain the absolute orientation the Project periodically records a day of drift scans, where the image of the Sun is allowed to drift across the CCD repeatedly throughout the day. These data are then analyzed to deduce the direction of Terrestrial East-West as a function of hour angle (i.e., time) for that instrument. The transit of Mercury on Nov. 15, 1999, which was recorded by three of the GONG instruments, provided an independent check on the current alignment procedures. Here we present a comparison of the alignment of GONG images as deduced from both drift scans and the Mercury transit for two GONG sites: Tucson (GONG+ camera) and Mauna Loa (GONG Classic camera). The agreement is within ~0°.01 for both cameras, however, the scatter is substantially larger for GONG Classic: ~0°.03 compared to ~0°.01 for GONG+.

  2. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  3. Absolute flux measurements for swift atoms

    NASA Technical Reports Server (NTRS)

    Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.

    1987-01-01

    While a torsion balance in vacuum can easily measure the momentum transfer from a gas beam impinging on a surface attached to the balance, this measurement depends on the accommodation coefficients of the atoms with the surface and the distribution of the recoil. A torsion balance is described for making absolute flux measurements independent of recoil effects. The torsion balance is a conventional taut suspension wire design and the Young modulus of the wire determines the relationship between the displacement and the applied torque. A compensating magnetic field is applied to maintain zero displacement and provide critical damping. The unique feature is to couple the impinging gas beam to the torsion balance via a Wood's horn, i.e., a thin wall tube with a gradual 90 deg bend. Just as light is trapped in a Wood's horn by specular reflection from the curved surfaces, the gas beam diffuses through the tube. Instead of trapping the beam, the end of the tube is open so that the atoms exit the tube at 90 deg to their original direction. Therefore, all of the forward momentum of the gas beam is transferred to the torsion balance independent of the angle of reflection from the surfaces inside the tube.

  4. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    SciTech Connect

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  5. Issues in Absolute Spectral Radiometric Calibration: Intercomparison of Eight Sources

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Kindel, Bruce; Pilewskie, Peter

    1998-01-01

    The application of atmospheric models to AVIRIS and other spectral imaging data to derive surface reflectance requires that the sensor output be calibrated to absolute radiance. Uncertainties in absolute calibration are to be expected, and claims of 92% accuracy have been published. Measurements of accurate surface albedos and cloud absorption to be used in radiative balance calculations depend critically on knowing the absolute spectral-radiometric response of the sensor. The Earth Observing System project is implementing a rigorous program of absolute radiometric calibration for all optical sensors. Since a number of imaging instruments that provide output in terms of absolute radiance are calibrated at different sites, it is important to determine the errors that can be expected among calibration sites. Another question exists about the errors in the absolute knowledge of the exoatmospheric spectral solar irradiance.

  6. Relationship of hepatic and peripheral insulin resistance with plasminogen activator inhibitor-1 in Pima Indians.

    PubMed

    Nagi, D K; Tracy, R; Pratley, R

    1996-10-01

    Plasminogen activator inhibitor-1 (PAI-1) is related to insulin resistance and several components of the insulin resistance syndrome, and PAI-1 levels are elevated in subjects with non-insulin-dependent diabetes mellitus. Many Pima Indians are obese, insulin-resistant, and hyperinsulinemic, and they have high rates of diabetes but a low risk of ischemic heart disease. In contrast to whites and Asians, PAI-1 activity is similar between nondiabetic and diabetic Pima Indians. We therefore examined the association of PAI-1 with hepatic and peripheral insulin action measured using the hyperinsulinemic-euglycemic clamp. To investigate if insulin per se has any effect on PAI-1 in vivo, we also assessed the effects of endogenous (during a 75-g oral glucose load) and exogenous (during hyperinsulinemic clamp) insulin on PAI-1 antigen. Twenty-one (14 men and seven women; mean age, 26.3 +/- 4.8 years) Pima Indians underwent a 75-g oral glucose tolerance test (OGTT) and a sequential hyperinsulinemic-euglycemic clamp. Peripheral insulin action was measured as absolute glucose uptake (M value) and normalized to estimated metabolic body size (EMBS). Hepatic insulin action was measured as percent suppression of basal hepatic glucose output during hyperinsulinemia. PAI-1 antigen was determined using a two-site enzyme-linked immunosorbent assay that detects only free PAI-1. PAI-1 antigen concentrations were significantly related to body mass index ([BMI] rs = .54, P = .012), waist (rs=.52, P=.016) and thigh (rs=.63, P=.002) circumference, and fasting plasma insulin concentration (rs=.59, P=.004). PAI-1 antigen concentrations were not significantly associated with peripheral glucose uptake (M value) during either low-dose (rs= -.01, P=NS) or high-dose (rs= -.11, P=NS) insulin infusion. PAI-1 antigen was negatively correlated with basal hepatic glucose output (rs= -.57, P=.013) and percent suppression of hepatic glucose output during hyperinsulinemia (rs= -.69, P=.005). However, this

  7. Protein quality and quantity and insulin control of mammary gland glucose utilization during lactation

    SciTech Connect

    Masor, M.L.

    1987-01-01

    Virgin Sprague-Dawley rats were bred, and fed laboratory stock (STOCK), 13% casein plus methionine, 13% wheat gluten, or 5% casein plus methionine through gestation and 4 days of lactation. Diets were switched at parturition to determine the effects of dietary protein quality and quantity fed during gestation and/or lactation on insulin stimulation of mammary glucose utilization. On day 20 of gestation (20G) and day 4 of lactation (4L) the right inguinal-abdominal mammary glands were removed, and acini and tissue slices were incubated in Krebs buffer with or without insulin containing (U-/sup 14/C)-glucose and 5mM glucose for 1 hour at 37/degrees/C. Glucose incorporation into CO/sub 2/, lipid and lactose was determined. Glucose incorporation into CO/sub 2/ and lipid, but not lactose was stimulated by insulin in mammary slices. Diet effects on glucose utilization in acini were confirmed in slices for basal and insulin stimulated levels. Treatment affected the absolute increase of insulin stimulation. Regression analysis significantly correlated pup weight gain with total glucose utilization. Poor dietary protein quality and quantity fed during gestation impaired both overall response of mammary glucose utilization to insulin stimulation, and mammary development during pregnancy. Improving protein value at parturition did not overcome those deficits by 4L.

  8. Absolute nuclear material assay using count distribution (LAMBDA) space

    SciTech Connect

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  9. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  10. Antifungal activity of tuberose absolute and some of its constituents.

    PubMed

    Nidiry, Eugene Sebastian J; Babu, C S Bujji

    2005-05-01

    The antifungal activity of the absolute of tuberose (Polianthes tuberosa ) and some of its constituents were evaluated against the mycelial growth of Colletotrichum gloeosporioides on potato-dextrose-agar medium. Tuberose absolute showed only mild activity at a concentration of 500 mg/L. However, three constituents present in the absolute, namely geraniol, indole and methyl anthranilate exhibited significant activity showing total inhibition of the mycelial growth at this concentration.

  11. Arginase-1 deficiency.

    PubMed

    Sin, Yuan Yan; Baron, Garrett; Schulze, Andreas; Funk, Colin D

    2015-12-01

    Arginase-1 (ARG1) deficiency is a rare autosomal recessive disorder that affects the liver-based urea cycle, leading to impaired ureagenesis. This genetic disorder is caused by 40+ mutations found fairly uniformly spread throughout the ARG1 gene, resulting in partial or complete loss of enzyme function, which catalyzes the hydrolysis of arginine to ornithine and urea. ARG1-deficient patients exhibit hyperargininemia with spastic paraparesis, progressive neurological and intellectual impairment, persistent growth retardation, and infrequent episodes of hyperammonemia, a clinical pattern that differs strikingly from other urea cycle disorders. This review briefly highlights the current understanding of the etiology and pathophysiology of ARG1 deficiency derived from clinical case reports and therapeutic strategies stretching over several decades and reports on several exciting new developments regarding the pathophysiology of the disorder using ARG1 global and inducible knockout mouse models. Gene transfer studies in these mice are revealing potential therapeutic options that can be exploited in the future. However, caution is advised in extrapolating results since the lethal disease phenotype in mice is much more severe than in humans indicating that the mouse models may not precisely recapitulate human disease etiology. Finally, some of the functions and implications of ARG1 in non-urea cycle activities are considered. Lingering questions and future areas to be addressed relating to the clinical manifestations of ARG1 deficiency in liver and brain are also presented. Hopefully, this review will spark invigorated research efforts that lead to treatments with better clinical outcomes. PMID:26467175

  12. Immune Deficiency Foundation

    MedlinePlus

    ... for IDF Join our nationwide network of volunteers Resources For Patients & Families Peer Support Speak with someone who understands Locate a Physician ... secure Legacy Giving Establish your personal legacy and support IDF 'Immune Deficiency Foundation Remembers' Plaque Pay tribute to ... Educational Resources Find a wealth of IDF educational publications and ...

  13. New ways of insulin delivery.

    PubMed

    Heinemann, L

    2011-02-01

    The predominant number of papers published from the middle of 2009 to the middle of 2010 about alternative routes of insulin administration (ARIA) were still about inhaled insulin. Long-term experience with Exubera was the topic of a number of publications that are also of relevance for inhaled insulin in general. The clinical trials performed with AIR insulin by Eli Lilly were published in a supplement issue of one diabetes technology journal and most of these will be presented. A number of other publications (also one in a high ranked journal) about their inhaled insulin were from another company: MannKind. The driving force behind Technosphere insulin (TI) - which is the only one still in clinical development - is Al Mann; he has put a lot of his personal fortune in this development. We will know the opinion of the regulatory authorities about TI in the near future; however, I am personally relatively confident that the Food and Drug Administration will provide TI with market approval. The more critical question for me is: will diabetologists and patients jump on this product once it becomes commercially available? Will it become a commercial success? In view of many negative feelings in the scientific community about inhaled insulin, it might be of help that MannKind publish their studies with TI systematically. Acknowledging being a believer in this route of insulin administration myself, one has to state that Exubera and AIR insulin had not offered profound advantages in terms of pharmacokinetic (PK) and pharmacodynamic (PD) properties in comparison with subcutaneously (SC) applied regular human insulin (RHI) and rapid-acting insulin analogues. The time-action profiles of these inhaled insulins were more or less comparable with that of rapid-acting insulin analogues. This is clearly different with TI which exhibits a strong metabolic effect shortly after application and a rapid decline in the metabolic effect thereafter; probably the duration of action is

  14. New ways of insulin delivery.

    PubMed

    Heinemann, L

    2011-02-01

    The predominant number of papers published from the middle of 2009 to the middle of 2010 about alternative routes of insulin administration (ARIA) were still about inhaled insulin. Long-term experience with Exubera was the topic of a number of publications that are also of relevance for inhaled insulin in general. The clinical trials performed with AIR insulin by Eli Lilly were published in a supplement issue of one diabetes technology journal and most of these will be presented. A number of other publications (also one in a high ranked journal) about their inhaled insulin were from another company: MannKind. The driving force behind Technosphere insulin (TI) - which is the only one still in clinical development - is Al Mann; he has put a lot of his personal fortune in this development. We will know the opinion of the regulatory authorities about TI in the near future; however, I am personally relatively confident that the Food and Drug Administration will provide TI with market approval. The more critical question for me is: will diabetologists and patients jump on this product once it becomes commercially available? Will it become a commercial success? In view of many negative feelings in the scientific community about inhaled insulin, it might be of help that MannKind publish their studies with TI systematically. Acknowledging being a believer in this route of insulin administration myself, one has to state that Exubera and AIR insulin had not offered profound advantages in terms of pharmacokinetic (PK) and pharmacodynamic (PD) properties in comparison with subcutaneously (SC) applied regular human insulin (RHI) and rapid-acting insulin analogues. The time-action profiles of these inhaled insulins were more or less comparable with that of rapid-acting insulin analogues. This is clearly different with TI which exhibits a strong metabolic effect shortly after application and a rapid decline in the metabolic effect thereafter; probably the duration of action is

  15. The absolute disparity anomaly and the mechanism of relative disparities.

    PubMed

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1).

  16. The absolute disparity anomaly and the mechanism of relative disparities

    PubMed Central

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-01-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  17. Essential Role of Protein-tyrosine Phosphatase 1B in the Modulation of Insulin Signaling by Acetaminophen in Hepatocytes*

    PubMed Central

    Mobasher, Maysa Ahmed; de Toro-Martín, Juan; González-Rodríguez, Águeda; Ramos, Sonia; Letzig, Lynda G.; James, Laura P.; Muntané, Jordi; Álvarez, Carmen; Valverde, Ángela M.

    2014-01-01

    Many drugs are associated with the development of glucose intolerance or deterioration in glycemic control in patients with pre-existing diabetes. We have evaluated the cross-talk between signaling pathways activated by acetaminophen (APAP) and insulin signaling in hepatocytes with or without expression of the protein-tyrosine phosphatase 1B (PTP1B) and in wild-type and PTP1B-deficient mice chronically treated with APAP. Human primary hepatocytes, Huh7 hepatoma cells with silenced PTP1B, mouse hepatocytes from wild-type and PTP1B-deficient mice, and a mouse model of chronic APAP treatment were used to examine the mechanisms involving PTP1B in the effects of APAP on glucose homeostasis and hepatic insulin signaling. In APAP-treated human hepatocytes at concentrations that did not induce death, phosphorylation of JNK and PTP1B expression and enzymatic activity were increased. APAP pretreatment inhibited activation of the early steps of insulin signaling and decreased Akt phosphorylation. The effects of APAP in insulin signaling were prevented by suramin, a PTP1B inhibitor, or rosiglitazone that decreased PTP1B levels. Likewise, PTP1B deficiency in human or mouse hepatocytes protected against APAP-mediated impairment in insulin signaling. These signaling pathways were modulated in mice with chronic APAP treatment, resulting in protection against APAP-mediated hepatic insulin resistance and alterations in islet alpha/beta cell ratio in PTP1B−/− mice. Our results demonstrate negative cross-talk between signaling pathways triggered by APAP and insulin signaling in hepatocytes, which is in part mediated by PTP1B. Moreover, our in vivo data suggest that chronic use of APAP may be associated with insulin resistance in the liver. PMID:25204659

  18. Essential role of protein-tyrosine phosphatase 1B in the modulation of insulin signaling by acetaminophen in hepatocytes.

    PubMed

    Mobasher, Maysa Ahmed; de Toro-Martín, Juan; González-Rodríguez, Águeda; Ramos, Sonia; Letzig, Lynda G; James, Laura P; Muntané, Jordi; Álvarez, Carmen; Valverde, Ángela M

    2014-10-17

    Many drugs are associated with the development of glucose intolerance or deterioration in glycemic control in patients with pre-existing diabetes. We have evaluated the cross-talk between signaling pathways activated by acetaminophen (APAP) and insulin signaling in hepatocytes with or without expression of the protein-tyrosine phosphatase 1B (PTP1B) and in wild-type and PTP1B-deficient mice chronically treated with APAP. Human primary hepatocytes, Huh7 hepatoma cells with silenced PTP1B, mouse hepatocytes from wild-type and PTP1B-deficient mice, and a mouse model of chronic APAP treatment were used to examine the mechanisms involving PTP1B in the effects of APAP on glucose homeostasis and hepatic insulin signaling. In APAP-treated human hepatocytes at concentrations that did not induce death, phosphorylation of JNK and PTP1B expression and enzymatic activity were increased. APAP pretreatment inhibited activation of the early steps of insulin signaling and decreased Akt phosphorylation. The effects of APAP in insulin signaling were prevented by suramin, a PTP1B inhibitor, or rosiglitazone that decreased PTP1B levels. Likewise, PTP1B deficiency in human or mouse hepatocytes protected against APAP-mediated impairment in insulin signaling. These signaling pathways were modulated in mice with chronic APAP treatment, resulting in protection against APAP-mediated hepatic insulin resistance and alterations in islet alpha/beta cell ratio in PTP1B(-/-) mice. Our results demonstrate negative cross-talk between signaling pathways triggered by APAP and insulin signaling in hepatocytes, which is in part mediated by PTP1B. Moreover, our in vivo data suggest that chronic use of APAP may be associated with insulin resistance in the liver. PMID:25204659

  19. Alternative Devices for Taking Insulin

    MedlinePlus

    ... the day. Pumps can also give "bolus" doses—one-time larger doses—of insulin at meals and at times when blood glucose is too high based on the programming set by the user. Frequent blood glucose monitoring ...

  20. Absolute Plate Velocities from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kreemer, Corné; Zheng, Lin; Gordon, Richard

    2015-04-01

    The orientation of seismic anisotropy inferred beneath plate interiors may provide a means to estimate the motions of the plate relative to the sub-asthenospheric mantle. Here we analyze two global sets of shear-wave splitting data, that of Kreemer [2009] and an updated and expanded data set, to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. We also explore the effect of using geologically current plate velocities (i.e., the MORVEL set of angular velocities [DeMets et al. 2010]) compared with geodetically current plate velocities (i.e., the GSRM v1.2 angular velocities [Kreemer et al. 2014]). We demonstrate that the errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. The SKS-MORVEL absolute plate angular velocities (based on the Kreemer [2009] data set) are determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11° Ma-1 (95% confidence limits) right-handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2° ) differs insignificantly from that for continental lithosphere (σ=21.6° ). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4° ) than for continental

  1. Cardiovascular effects of basal insulins.

    PubMed

    Mannucci, Edoardo; Giannini, Stefano; Dicembrini, Ilaria

    2015-01-01

    Basal insulin is an important component of treatment for both type 1 and type 2 diabetes. One of the principal aims of treatment in patients with diabetes is the prevention of diabetic complications, including cardiovascular disease. There is some evidence, although controversial, that attainment of good glycemic control reduces long-term cardiovascular risk in both type 1 and type 2 diabetes. The aim of this review is to provide an overview of the potential cardiovascular safety of the different available preparations of basal insulin. Current basal insulin (neutral protamine Hagedorn [NPH], or isophane) and basal insulin analogs (glargine, detemir, and the more recent degludec) differ essentially by various measures of pharmacokinetic and pharmacodynamic effects in the bloodstream, presence and persistence of peak action, and within-subject variability in the glucose-lowering response. The currently available data show that basal insulin analogs have a lower risk of hypoglycemia than NPH human insulin, in both type 1 and type 2 diabetes, then excluding additional harmful effects on the cardiovascular system mediated by activation of the adrenergic system. Given that no biological rationale for a possible difference in cardiovascular effect of basal insulins has been proposed so far, available meta-analyses of publicly disclosed randomized controlled trials do not show any signal of increased risk of major cardiovascular events between the different basal insulin analogs. However, the number of available cardiovascular events in these trials is very small, preventing any clear-cut conclusion. The results of an ongoing clinical trial comparing glargine and degludec with regard to cardiovascular safety will provide definitive evidence. PMID:26203281

  2. Cardiovascular effects of basal insulins

    PubMed Central

    Mannucci, Edoardo; Giannini, Stefano; Dicembrini, Ilaria

    2015-01-01

    Basal insulin is an important component of treatment for both type 1 and type 2 diabetes. One of the principal aims of treatment in patients with diabetes is the prevention of diabetic complications, including cardiovascular disease. There is some evidence, although controversial, that attainment of good glycemic control reduces long-term cardiovascular risk in both type 1 and type 2 diabetes. The aim of this review is to provide an overview of the potential cardiovascular safety of the different available preparations of basal insulin. Current basal insulin (neutral protamine Hagedorn [NPH], or isophane) and basal insulin analogs (glargine, detemir, and the more recent degludec) differ essentially by various measures of pharmacokinetic and pharmacodynamic effects in the bloodstream, presence and persistence of peak action, and within-subject variability in the glucose-lowering response. The currently available data show that basal insulin analogs have a lower risk of hypoglycemia than NPH human insulin, in both type 1 and type 2 diabetes, then excluding additional harmful effects on the cardiovascular system mediated by activation of the adrenergic system. Given that no biological rationale for a possible difference in cardiovascular effect of basal insulins has been proposed so far, available meta-analyses of publicly disclosed randomized controlled trials do not show any signal of increased risk of major cardiovascular events between the different basal insulin analogs. However, the number of available cardiovascular events in these trials is very small, preventing any clear-cut conclusion. The results of an ongoing clinical trial comparing glargine and degludec with regard to cardiovascular safety will provide definitive evidence. PMID:26203281

  3. Biosimilar insulins: a European perspective

    PubMed Central

    DeVries, J H; Gough, S C L; Kiljanski, J; Heinemann, L

    2015-01-01

    Biosimilar insulins are likely to enter clinical practice in Europe in the near future. It is important that clinicians are familiar with and understand the concept of biosimilarity and how a biosimilar drug may differ from its reference product. The present article provides an overview of biosimilars, the European regulatory requirements for biosimilars and safety issues. It also summarizes the current biosimilars approved in Europe and the key clinical issues associated with the use of biosimilar insulins. PMID:25376600

  4. Massive insulin overdose managed by monitoring daily insulin levels.

    PubMed

    Mork, Tyler A; Killeen, Colin T; Patel, Neel K; Dohnal, James M; Karydes, Harry C; Leikin, Jerrold B

    2011-09-01

    We present a case of a significant insulin overdose that was managed by monitoring daily plasma insulin levels. A 39-year-old male with poorly controlled diabetes mellitus presented to the Emergency Department via emergency medical services after an attempted suicide by insulin overdose. In the attempted suicide, he injected 800 U of insulin lispro and 3800 U of insulin glargine subcutaneously over several parts of his abdomen. The patient was conscious upon arrival to the emergency department. His vital parameters were within normal range. The abdominal examination, in particular, was nonfocal and showed no evidence of hematomas. He was awake, alert, conversant, tearful, and without any focal deficits. An infusion of 10% dextrose was begun at 100 mL/h with hourly blood glucose (BG) checks. The patient was transferred to the intensive care unit where his BG began to decrease and fluctuate between 50 and 80 mg/dL, and the rate of 10% dextrose was increased to 200 mL/h where it was maintained for the next 48 hours. The initial plasma insulin level was found to be 3712.6 uU/mL (reference range 2.6-31.1 uU/mL). At 10 hours, this had decreased to 1582.1 uU/ml. On five occasions, supplemental dextrose was needed when the BG was <70 mg/dL. Thirty-four hours after admission, the plasma insulin level was 724.8 uU/mL. Fifty-eight hours after admission, the plasma insulin level was 321.2 uU/mL, and the 10% dextrose infusion was changed to 5% dextrose solution at 200 mL/h. The plasma insulin levels continued to fall daily to 112.7 uU/mL at 80 hours and to 30.4 uU/mL at 108 hours. He was transferred to an inpatient psychiatric facility 109 hours after initial presentation. Monitoring daily plasma insulin levels and adjusting treatment on a day-to-day basis in terms of basal glucose infusions provides fewer opportunities for episodic hypoglycemia. Furthermore, it was easier to predict daily glucose requirements and eventual medical clearance based on the plasma levels.

  5. Evaluation of the Absolute Regional Temperature Potential

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.

    2012-01-01

    The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  6. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  7. Orion Absolute Navigation System Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2012-01-01

    The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.

  8. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  9. Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth ...

  10. Activation of Proteinase 3 Contributes to Nonalcoholic Fatty Liver Disease and Insulin Resistance

    PubMed Central

    Toonen, Erik JM; Mirea, Andreea-Manuela; Tack, Cees J; Stienstra, Rinke; Ballak, Dov B; van Diepen, Janna A; Hijmans, Anneke; Chavakis, Triantafyllos; Dokter, Wim H; Pham, Christine TN; Netea, Mihai G; Dinarello, Charles A; Joosten, Leo AB

    2016-01-01

    Activation of inflammatory pathways is known to accompany development of obesity-induced nonalcoholic fatty liver disease (NAFLD), insulin resistance and type 2 diabetes. In addition to caspase-1, the neutrophil serine proteases proteinase 3, neutrophil elastase and cathepsin G are able to process the inactive proinflammatory mediators interleukin (IL)-1β and IL-18 to their bioactive forms, thereby regulating inflammatory responses. In this study, we investigated whether proteinase 3 is involved in obesity-induced development of insulin resistance and NAFLD. We investigated the development of NAFLD and insulin resistance in mice deficient for neutrophil elastase/proteinase 3 and neutrophil elastase/cathepsin G and in wild-type mice treated with the neutrophil serine proteinase inhibitor human α-1 antitrypsin. Expression profiling of metabolically relevant tissues obtained from insulin-resistant mice showed that expression of proteinase 3 was specifically upregulated in the liver, whereas neutrophil elastase, cathepsin G and caspase-1 were not. Neutrophil elastase/proteinase 3-deficient mice showed strongly reduced levels of lipids in the liver after being fed a high-fat diet. Moreover, these mice were resistant to high–fat–diet-induced weight gain, inflammation and insulin resistance. Injection of proteinase 3 exacerbated insulin resistance in caspase-1–/– mice, indicating that proteinase 3 acts independently of caspase-1. Treatment with α-1 antitrypsin during the last 10 d of a 16-wk high-fat diet reduced hepatic lipid content and decreased fasting glucose levels. We conclude that proteinase 3 is involved in NAFLD and insulin resistance and that inhibition of proteinase 3 may have therapeutic potential. PMID:27261776

  11. Factor XII (Hageman factor) deficiency

    MedlinePlus

    ... takes longer than normal to clot in a test tube. Factor XII deficiency is a rare inherited disorder. Symptoms There are usually no symptoms. Exams and Tests Factor XII deficiency is most often found when ...

  12. Genetics Home Reference: pseudocholinesterase deficiency

    MedlinePlus

    ... deficiency is a condition that results in increased sensitivity to certain muscle relaxant drugs used during general ... People with pseudocholinesterase deficiency may also have increased sensitivity to certain other drugs, including the local anesthetic ...

  13. Genetics Home Reference: biotinidase deficiency

    MedlinePlus

    ... Aydin HI, Sennaroğlu L, Belgin E, Jensen K, Wolf B. Hearing loss in biotinidase deficiency: genotype-phenotype ... corrected to Aydin, Halil Ibrahim]. Citation on PubMed Wolf B. Biotinidase deficiency: "if you have to have ...

  14. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%–0.68% (k  =  2).

  15. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%-0.68% (k  =  2).

  16. The G Protein-coupled Receptor P2Y14 Influences Insulin Release and Smooth Muscle Function in Mice*

    PubMed Central

    Meister, Jaroslawna; Le Duc, Diana; Ricken, Albert; Burkhardt, Ralph; Thiery, Joachim; Pfannkuche, Helga; Polte, Tobias; Grosse, Johannes; Schöneberg, Torsten; Schulz, Angela

    2014-01-01

    UDP sugars were identified as extracellular signaling molecules, assigning a new function to these compounds in addition to their well defined role in intracellular substrate metabolism and storage. Previously regarded as an orphan receptor, the G protein-coupled receptor P2Y14 (GPR105) was found to bind extracellular UDP and UDP sugars. Little is known about the physiological functions of this G protein-coupled receptor. To study its physiological role, we used a gene-deficient mouse strain expressing the bacterial LacZ reporter gene to monitor the physiological expression pattern of P2Y14. We found that P2Y14 is mainly expressed in pancreas and salivary glands and in subpopulations of smooth muscle cells of the gastrointestinal tract, blood vessels, lung, and uterus. Among other phenotypical differences, knock-out mice showed a significantly impaired glucose tolerance following oral and intraperitoneal glucose application. An unchanged insulin tolerance suggested altered pancreatic islet function. Transcriptome analysis of pancreatic islets showed that P2Y14 deficiency significantly changed expression of components involved in insulin secretion. Insulin secretion tests revealed a reduced insulin release from P2Y14-deficient islets, highlighting P2Y14 as a new modulator of proper insulin secretion. PMID:24993824

  17. Pathophysiological study of the non-insulin-dependent phase of type I diabetes mellitus.

    PubMed

    Torella, R; Salvatore, T; Cozzolino, D; Grandillo, F; Giugliano, D

    1988-01-01

    The usual practice of considering type I diabetes synonymous with insulin-dependent diabetes has been criticized. Since type I diabetes can have a non-insulin-dependent phase (pre-type I diabetes and/or honeymoon) the differentiation of two main types of diabetes according to insulin-dependency is not absolute. We studied the insulin, C-peptide and glucagon responses to various tests (OGTT, IVGTT, glibenclamide test, mixed meal tolerance test and ITT) performed during the non-insulin-dependent phase of 3 young patients (range 8-18 years) who developed ketosis 12-24 months after the discovery of fasting hyperglycemia, and in 6 patients (age 15-23 years) who presented a remission phase 4-6 months after the sudden clinical onset of type I diabetes. An insignificant insulin and C-peptide increase following i.v. glucose was observed in all patients, whereas the B-cell response to both oral glucose and other secretagogues was preserved, although at a subnormal level. In the three hyperglycemic and preketoacidotic patients the basal levels of glucagon were low and no significant increase after secretagogues was seen. Sensitivity to exogenous insulin in all patients was good. Thus, B-cell response in our patients was reminiscent of the differential responsiveness to various stimulants in the early stage of type II (non-insulin-dependent) diabetes. These results suggest that type I and type II diabetes can be characterized by the same functional B-cell defect during a period of their natural history.

  18. Insulin-Stimulated Degradation of Apolipoprotein B100: Roles of Class II Phosphatidylinositol-3-Kinase and Autophagy

    PubMed Central

    Chirieac, Doru V.; Tuyama, Ana C.; Montenont, Emilie; Brodsky, Jeffrey L.; Fisher, Edward A.

    2013-01-01

    Both in humans and animal models, an acute increase in plasma insulin levels, typically following meals, leads to transient depression of hepatic secretion of very low density lipoproteins (VLDL). One contributing mechanism for the decrease in VLDL secretion is enhanced degradation of apolipoprotein B100 (apoB100), which is required for VLDL formation. Unlike the degradation of nascent apoB100, which occurs in the endoplasmic reticulum (ER), insulin-stimulated apoB100 degradation occurs post-ER and is inhibited by pan-phosphatidylinositol (PI)3-kinase inhibitors. It is unclear, however, which of the three classes of PI3-kinases is required for insulin-stimulated apoB100 degradation, as well as the proteolytic machinery underlying this response. Class III PI3-kinase is not activated by insulin, but the other two classes are. By using a class I-specific inhibitor and siRNA to the major class II isoform in liver, we now show that it is class II PI3-kinase that is required for insulin-stimulated apoB100 degradation in primary mouse hepatocytes. Because the insulin-stimulated process resembles other examples of apoB100 post-ER proteolysis mediated by autophagy, we hypothesized that the effects of insulin in autophagy-deficient mouse primary hepatocytes would be attenuated. Indeed, apoB100 degradation in response to insulin was significantly impaired in two types of autophagy-deficient hepatocytes. Together, our data demonstrate that insulin-stimulated apoB100 degradation in the liver requires both class II PI3-kinase activity and autophagy. PMID:23516411

  19. GGPPS-mediated Rab27A geranylgeranylation regulates β cell dysfunction during type 2 diabetes development by affecting insulin granule docked pool formation.

    PubMed

    Jiang, Shan; Shen, Di; Jia, Wen-Jun; Han, Xiao; Shen, Ning; Tao, Weiwei; Gao, Xiang; Xue, Bin; Li, Chao-Jun

    2016-01-01

    Loss of first-phase insulin secretion associated with β cell dysfunction is an independent predictor of type 2 diabetes mellitus (T2DM) onset. Here we found that a critical enzyme involved in protein prenylation, geranylgeranyl pyrophosphate synthase (GGPPS), is required to maintain first-phase insulin secretion. GGPPS shows a biphasic expression pattern in islets of db/db mice during the progression of T2DM: GGPPS is increased during the insulin compensatory period, followed by a decrease during β cell dysfunction. Ggpps deletion in β cells results in typical T2DM β cell dysfunction, with blunted glucose-stimulated insulin secretion and consequent insulin secretion insufficiency. However, the number and size of islets and insulin biosynthesis are unaltered. Transmission electron microscopy shows a reduced number of insulin granules adjacent to the cellular membrane, suggesting a defect in docked granule pool formation, while the reserve pool is unaffected. Ggpps ablation depletes GGPP and impairs Rab27A geranylgeranylation, which is responsible for the docked pool deficiency in Ggpps-null mice. Moreover, GGPPS re-expression or GGPP administration restore glucose-stimulated insulin secretion in Ggpps-null islets. These results suggest that GGPPS-controlled protein geranylgeranylation, which regulates formation of the insulin granule docked pool, is critical for β cell function and insulin release during the development of T2DM.

  20. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  1. Absolute Pitch in Infant Auditory Learning: Evidence for Developmental Reorganization.

    ERIC Educational Resources Information Center

    Saffran, Jenny R.; Griepentrog, Gregory J.

    2001-01-01

    Two experiments examined 8-month-olds' use of absolute and relative pitch cues in a tone-sequence statistical learning task. Results suggest that, given unsegmented stimuli that do not conform to rules of musical composition, infants are more likely to track patterns of absolute pitches than of relative pitches. A third experiment found that adult…

  2. Supplementary and Enrichment Series: Absolute Value. Teachers' Commentary. SP-25.

    ERIC Educational Resources Information Center

    Bridgess, M. Philbrick, Ed.

    This is one in a series of manuals for teachers using SMSG high school supplementary materials. The pamphlet includes commentaries on the sections of the student's booklet, answers to the exercises, and sample test questions. Topics covered include addition and multiplication in terms of absolute value, graphs of absolute value in the Cartesian…

  3. Supplementary and Enrichment Series: Absolute Value. SP-24.

    ERIC Educational Resources Information Center

    Bridgess, M. Philbrick, Ed.

    This is one in a series of SMSG supplementary and enrichment pamphlets for high school students. This series is designed to make material for the study of topics of special interest to students readily accessible in classroom quantity. Topics covered include absolute value, addition and multiplication in terms of absolute value, graphs of absolute…

  4. Absolute dimensions of unevolved O type close binaries

    SciTech Connect

    Doom, C.; de Loore, C.

    1984-03-15

    A method is presented to derive the absolute dimensions of early-type detached binaries by combining the observed parameters with results of evolutionary computations. The method is used to obtain the absolute dimensions of nine close binaries. We find that most systems have an initial masss ratio near 1.

  5. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  6. Determination of Absolute Zero Using a Computer-Based Laboratory

    ERIC Educational Resources Information Center

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  7. Immunologic consequences of taurine deficiency in cats.

    PubMed

    Schuller-Levis, G; Mehta, P D; Rudelli, R; Sturman, J

    1990-04-01

    Our results show that a lack of taurine in the diet of cats results in a significant leukopenia, a shift in the percentage of polymorphonuclear and mononuclear leukocytes, an increase in the absolute count of mononuclear leukocytes, and a change in the sedimentation characteristics of white cells. Functional studies of polymorphonuclear cells isolated from cats fed taurine-free diets show a significant decrease in the respiratory burst as measured by chemiluminescence as well as a decrease in phagocytosis of Staphylococcus epidermis compared to cats fed the same diet containing taurine. In addition, serum gamma globulin in cats fed taurine-free diets was significantly increased compared to taurine-supplemented cats, indicating that other immune cells may be affected by taurine deficiency. Histological examination of lymph nodes and spleen revealed regression of follicular centers with depletion of reticular cells, mature and immature lymphocytes (B cell areas), as well as mild extravascular hemolysis. These results indicate that there are profound immunologic consequences in cats with prolonged taurine deficiency. PMID:2319206

  8. Molybdenum cofactor deficiency.

    PubMed

    Atwal, Paldeep S; Scaglia, Fernando

    2016-01-01

    Molybdenum cofactor deficiency (MoCD) is a severe autosomal recessive inborn error of metabolism first described in 1978. It is characterized by a neonatal presentation of intractable seizures, feeding difficulties, severe developmental delay, microcephaly with brain atrophy and coarse facial features. MoCD results in deficiency of the molybdenum cofactor dependent enzymes sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase and mitochondrial amidoxime reducing component. The resultant accumulation of sulfite, taurine, S-sulfocysteine and thiosulfate contributes to the severe neurological impairment. Recently, initial evidence has demonstrated early treatment with cyclic PMP can turn MoCD type A from a previously neonatal lethal condition with only palliative options, to near normal neurological outcomes in affected patients. We review MoCD and focus on describing the currently published evidence of this exciting new therapeutic option for MoCD type A caused by pathogenic variants in MOCD1.

  9. [α1-Antitrypsin deficiency].

    PubMed

    Hirai, Toyohiro

    2016-05-01

    α1-Antitrypsin deficiency (AATD) is the commonest genetic risk factor for developing chronic obstructive pulmonary disease. In 2015, AATD has been categorized as one of intractable diseases called "Nanbyo" in Japan. The prevalence of AATD is extremely low in Japanese compared with Caucasians in North America and Europe. According to recent nationwide epidemiological survey, the prevalence of AATD in Japan was estimated to be 24 patients with a 95% confidence interval. The mutation PI*S(iiyama) is commonly found in the Japanese patients with AATD, whereas PI*Z is the most frequent mutation associated with severe deficiency in Caucasians. The availability of AAT augmentation therapy in Japan is expected. This paper reviews the diagnosis and treatment in AATD. PMID:27254961

  10. Evaluation of red cell and reticulocyte parameters as indicative of iron deficiency in patients with anemia of chronic disease

    PubMed Central

    Torino, Ana Beatriz Barbosa; Gilberti, Maria de Fátima Pererira; da Costa, Edvilson; de Lima, Gisélia Aparecida Freire; Grotto, Helena Zerlotti Wolf

    2014-01-01

    Objective The purpose of this study was to evaluate the effectiveness of mature red cell and reticulocyte parameters under three conditions: iron deficiency anemia, anemia of chronic disease, and anemia of chronic disease associated with absolute iron deficiency. Methods Peripheral blood cells from 117 adult patients with anemia were classified according to iron status, and inflammatory activity, and the results of a hemoglobinopathy investigation as: iron deficiency anemia (n = 42), anemia of chronic disease (n = 28), anemia of chronic disease associated with iron deficiency anemia (n = 22), and heterozygous β thalassemia (n = 25). The percentage of microcytic red cells, hypochromic red cells, and levels of hemoglobin content in both reticulocytes and mature red cells were determined. Receiver operating characteristic analysis was used to evaluate the accuracy of the parameters in differentiating between the different types of anemia. Results There was no significant difference between the iron deficient group and anemia of chronic disease associated with absolute iron deficiency in respect to any parameter. The percentage of hypochromic red cells was the best parameter to discriminate anemia of chronic disease with and without absolute iron deficiency (area under curve = 0.785; 95% confidence interval: 0.661–0.909, with sensitivity of 72.7%, and specificity of 70.4%; cut-off value 1.8%). The formula microcytic red cells minus hypochromic red cells was very accurate in differentiating iron deficiency anemia and heterozygous β thalassemia (area under curve = 0.977; 95% confidence interval: 0.950–1.005; with sensitivity of 96.2%, and specificity of 92.7%; cut-off value 13.8). Conclusion The indices related to red cells and reticulocytes have a moderate performance in identifying absolute iron deficiency in patients with anemia of chronic disease. PMID:25453653

  11. Evaluation of erythrocyte and reticulocyte parameters as indicative of iron deficiency in patients with anemia of chronic disease

    PubMed Central

    Torino, Ana Beatriz Barbosa; Gilberti, Maria de Fátima Pererira; da Costa, Edvilson; de Lima, Gisélia Aparecida Freire; Grotto, Helena Zerlotti Wolf

    2015-01-01

    Objective The aim of this study was to evaluate the effectiveness of mature red cell and reticulocyte parameters to identify three conditions: iron deficiency anemia, anemia of chronic disease, and anemia of chronic disease associated with absolute iron deficiency. Methods Peripheral blood cells from 117 adult patients with anemia were classified according to iron status, inflammation, and hemoglobinopathies as: iron deficiency anemia (n = 42), anemia of chronic disease (n = 28), anemia of chronic disease associated with iron deficiency anemia (n = 22), and heterozygous β-thalassemia (n = 25). The percentage of microcytic erythrocytes, hypochromic erythrocytes, and the levels of hemoglobin in both reticulocytes and mature red cells were determined. Receiver operating characteristic analysis was used to evaluate the accuracy of the parameters in differentiating anemia. Results There was no difference between the groups of iron deficiency and anemia of chronic disease associated with absolute iron deficiency for any of the parameters. The percentage of hypochromic erythrocytes was the best parameter to identify absolute iron deficiency in patients with anemia of chronic disease (area under curve = 0.785; 95% confidence interval: 0.661–0.909 with sensitivity of 72.7%, and specificity of 70.4%; cut-off value 1.8%). The formula microcytic erythrocyte count minus hypochromic erythrocyte count was very accurate to differentiate iron deficiency anemia from heterozygous β-thalassemia (area under curve = 0.977; 95% confidence interval: 0.950–1.005 with a sensitivity of 96.2%, and specificity of 92.7%; cut-off value 13.8). Conclusion The erythrocyte and reticulocyte indices are moderately good to identify absolute iron deficiency in patients with anemia of chronic disease. PMID:25818816

  12. Bioavailability, tissue distribution and hypoglycaemic effect of vanadium in magnesium-deficient rats.

    PubMed

    Sánchez, Cristina; Torres, Miguel; Bermúdez-Peña, María C; Aranda, Pilar; Montes-Bayón, María; Sanz-Medel, Alfredo; Llopis, Juan

    2011-12-01

    Vanadium is an element whose role as a micronutrient and hypoglycaemic drug has yet to be fully clarified. The present study was undertaken to investigate the bioavailability and tissue distribution of vanadium and its interactions with magnesium in healthy and in magnesium-deficient rats, in order to determine its role as a micronutrient and antidiabetic agent. Four groups were used: control (456.4 mg magnesium and 0.06 mg vanadium/kg food); control treated with 1mg vanadium/day; magnesium-deficient (164.4 mg magnesium/kg food and 0.06 mg vanadium/kg food); and magnesium-deficient treated with 1 mg vanadium/day. The vanadium was supplied in the drinking water as bis(maltolato)oxovanadium (IV). The experiment had a duration of five weeks. We measured vanadium and magnesium in excreta, serum, skeletal muscle, kidney, liver, adipose tissue and femur. Fasting glucose, insulin and total antioxidant status (TAS) in serum were studied. The vanadium treatment applied to the control rats reduced the absorption, retention, serum level and femur content of magnesium. Magnesium deficiency increased the retention and serum level of vanadium, the content of vanadium in the kidney, liver and femur (organs where magnesium had been depleted), serum glycaemia and insulin, and reduced TAS. V treatment given to magnesium-deficient rats corrected magnesium content in muscle, kidney and liver and levels of serum glucose, insulin and TAS. In conclusion, our results show interactions between magnesium and vanadium in the digestive and renal systems. Treatment with vanadium to magnesium-deficient rats corrected many of the alterations that had been generated by the magnesium deficiency.

  13. pVHL is a regulator of glucose metabolism and insulin secretion in pancreatic β cells

    PubMed Central

    Zehetner, Jens; Danzer, Carsten; Collins, Stephan; Eckhardt, Katrin; Gerber, Philipp A.; Ballschmieter, Pia; Galvanovskis, Juris; Shimomura, Kenju; Ashcroft, Frances M.; Thorens, Bernard; Rorsman, Patrik; Krek, Wilhelm

    2008-01-01

    Insulin secretion from pancreatic β cells is stimulated by glucose metabolism. However, the relative importance of metabolizing glucose via mitochondrial oxidative phosphorylation versus glycolysis for insulin secretion remains unclear. von Hippel-Lindau (VHL) tumor suppressor protein, pVHL, negatively regulates hypoxia-inducible factor HIF1α, a transcription factor implicated in promoting a glycolytic form of metabolism. Here we report a central role for the pVHL–HIF1α pathway in the control of β-cell glucose utilization, insulin secretion, and glucose homeostasis. Conditional inactivation of Vhlh in β cells promoted a diversion of glucose away from mitochondria into lactate production, causing cells to produce high levels of glycolytically derived ATP and to secrete elevated levels of insulin at low glucose concentrations. Vhlh-deficient mice exhibited diminished glucose-stimulated changes in cytoplasmic Ca2+ concentration, electrical activity, and insulin secretion, which culminate in impaired systemic glucose tolerance. Importantly, combined deletion of Vhlh and Hif1α rescued these phenotypes, implying that they are the result of HIF1α activation. Together, these results identify pVHL and HIF1α as key regulators of insulin secretion from pancreatic β cells. They further suggest that changes in the metabolic strategy of glucose metabolism in β cells have profound effects on whole-body glucose homeostasis. PMID:19056893

  14. Cross Talk between Insulin and Bone Morphogenetic Protein Signaling Systems in Brown Adipogenesis ▿ †

    PubMed Central

    Zhang, Hongbin; Schulz, Tim J.; Espinoza, Daniel O.; Huang, Tian Lian; Emanuelli, Brice; Kristiansen, Karsten; Tseng, Yu-Hua

    2010-01-01

    Both insulin and bone morphogenetic protein (BMP) signaling systems are important for adipocyte differentiation. Analysis of gene expression in BMP7-treated fibroblasts revealed a coordinated change in insulin signaling components by BMP7. To further investigate the cross talk between insulin and BMP signaling systems in brown adipogenesis, we examined the effect of BMP7 in insulin receptor substrate 1 (IRS-1)-deficient brown preadipocytes, which exhibit a severe defect in differentiation. Treatment of these cells with BMP7 for 3 days prior to adipogenic induction restored differentiation and expression of brown adipogenic markers. The high level of adipogenic inhibitor preadipocyte factor 1 (Pref-1) in IRS-1-null cells was markedly reduced by 3 days of BMP7 treatment, and analysis of the 1.3-kb pref-1 promoter revealed 9 putative Smad binding elements (SBEs), suggesting that BMP7 could directly suppress Pref-1 expression, thereby allowing the initiation of the adipogenic program. Using a series of sequential deletion mutants of the pref-1 promoter linked to the luciferase gene and chromatin immunoprecipitation, we demonstrate that the promoter-proximal SBE (−192/−184) was critical in mediating BMP7's suppressive effect on pref-1 transcription. Together, these data suggest cross talk between the insulin and BMP signaling systems by which BMP7 can rescue brown adipogenesis in cells with insulin resistance. PMID:20584981

  15. MiR-155 Enhances Insulin Sensitivity by Coordinated Regulation of Multiple Genes in Mice

    PubMed Central

    Lin, Taoyan; Lin, Xia; Chen, Li; Zeng, Hui; Han, Yanjiang; Wu, Lihong; Huang, Shun; Wang, Meng; Huang, Shenhao; Xie, Raoying; Liang, Liqi; Liu, Yu; Liu, Ruiyu; Zhang, Tingting; Li, Jing; Wang, Shengchun; Sun, Penghui; Huang, Wenhua; Yao, Kaitai; Xu, Kang; Du, Tao; Xiao, Dong

    2016-01-01

    miR-155 plays critical roles in numerous physiological and pathological processes, however, its function in the regulation of blood glucose homeostasis and insulin sensitivity and underlying mechanisms remain unknown. Here, we reveal that miR-155 levels are downregulated in serum from type 2 diabetes (T2D) patients, suggesting that miR-155 might be involved in blood glucose control and diabetes. Gain-of-function and loss-of-function studies in mice demonstrate that miR-155 has no effects on the pancreatic β-cell proliferation and function. Global transgenic overexpression of miR-155 in mice leads to hypoglycaemia, improved glucose tolerance and insulin sensitivity. Conversely, miR-155 deficiency in mice causes hyperglycemia, impaired glucose tolerance and insulin resistance. In addition, consistent with a positive regulatory role of miR-155 in glucose metabolism, miR-155 positively modulates glucose uptake in all cell types examined, while mice overexpressing miR-155 transgene show enhanced glycolysis, and insulin-stimulated AKT and IRS-1 phosphorylation in liver, adipose tissue or skeletal muscle. Furthermore, we reveal these aforementioned phenomena occur, at least partially, through miR-155-mediated repression of important negative regulators (i.e. C/EBPβ, HDAC4 and SOCS1) of insulin signaling. Taken together, these findings demonstrate, for the first time, that miR-155 is a positive regulator of insulin sensitivity with potential applications for diabetes treatment. PMID:27711113

  16. Myeloperoxidase deletion prevents high-fat diet-induced obesity and insulin resistance.

    PubMed

    Wang, Qilong; Xie, Zhonglin; Zhang, Wencheng; Zhou, Jun; Wu, Yue; Zhang, Miao; Zhu, Huaiping; Zou, Ming-Hui

    2014-12-01

    Activation of myeloperoxidase (MPO), a heme protein primarily expressed in granules of neutrophils, is associated with the development of obesity. However, whether MPO mediates high-fat diet (HFD)-induced obesity and obesity-associated insulin resistance remains to be determined. Here, we found that consumption of an HFD resulted in neutrophil infiltration and enhanced MPO expression and activity in epididymal white adipose tissue, with an increase in body weight gain and impaired insulin signaling. MPO knockout (MPO(-/-)) mice were protected from HFD-enhanced body weight gain and insulin resistance. The MPO inhibitor 4-aminobenzoic acid hydrazide reduced peroxidase activity of neutrophils and prevented HFD-enhanced insulin resistance. MPO deficiency caused high body temperature via upregulation of uncoupling protein-1 and mitochondrial oxygen consumption in brown adipose tissue. Lack of MPO also attenuated HFD-induced macrophage infiltration and expression of proinflammatory cytokines. We conclude that activation of MPO in adipose tissue contributes to the development of obesity and obesity-associated insulin resistance. Inhibition of MPO may be a potential strategy for prevention and treatment of obesity and insulin resistance.

  17. Role of Myotonic Dystrophy Protein Kinase (DMPK) in Glucose Homeostasis and Muscle Insulin Action

    PubMed Central

    Marti, Luc; Liesa, Marc; Camps, Marta; Ciaraldi, Theodore P.; Kondo, Richard; Reddy, Sita; Dillmann, Wolfgang H.; Palacin, Manuel; Zorzano, Antonio; Ruiz-Lozano, Pilar; Gomis, Ramon; Kaliman, Perla

    2007-01-01

    Myotonic dystrophy 1 (DM1) is caused by a CTG expansion in the 3′-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk−/−) mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk−/− mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk−/− mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes. PMID:17987120

  18. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  19. Micronutrient deficiency in children.

    PubMed

    Bhan, M K; Sommerfelt, H; Strand, T

    2001-05-01

    Malnutrition increases morbidity and mortality and affects physical growth and development, some of these effects resulting from specific micronutrient deficiencies. While public health efforts must be targeted to improve dietary intakes in children through breast feeding and appropriate complementary feeding, there is a need for additional measures to increase the intake of certain micronutrients. Food-based approaches are regarded as the long-term strategy for improving nutrition, but for certain micronutrients, supplementation, be it to the general population or to high risk groups or as an adjunct to treatment must also be considered. Our understanding of the prevalence and consequences of iron, vitamin A and iodine deficiency in children and pregnant women has advanced considerably while there is still a need to generate more knowledge pertaining to many other micronutrients, including zinc, selenium and many of the B-vitamins. For iron and vitamin A, the challenge is to improve the delivery to target populations. For disease prevention and growth promotion, the need to deliver safe but effective amounts of micronutrients such as zinc to children and women of fertile age can be determined only after data on deficiency prevalence becomes available and the studies on mortality reduction following supplementation are completed. Individual or multiple micronutrients must be used as an adjunct to treatment of common infectious diseases and malnutrition only if the gains are substantial and the safety window sufficiently wide. The available data for zinc are promising with regard to the prevention of diarrhea and pneumonia. It should be emphasized that there must be no displacement of important treatment such as ORS in acute diarrhea by adjunct therapy such as zinc. Credible policy making requires description of not only the clinical effects but also the underlying biological mechanisms. As findings of experimental studies are not always feasible to extrapolate to

  20. Metabolic flexibility and insulin resistance.

    PubMed

    Galgani, Jose E; Moro, Cedric; Ravussin, Eric

    2008-11-01

    Metabolic flexibility is the capacity for the organism to adapt fuel oxidation to fuel availability. The inability to modify fuel oxidation in response to changes in nutrient availability has been implicated in the accumulation of intramyocellular lipid and insulin resistance. The metabolic flexibility assessed by the ability to switch from fat to carbohydrate oxidation is usually impaired during a hyperinsulinemic clamp in insulin-resistant subjects; however, this "metabolic inflexibility" is mostly the consequence of impaired cellular glucose uptake. Indeed, after controlling for insulin-stimulated glucose disposal rate (amount of glucose available for oxidation), metabolic flexibility is not altered in obesity regardless of the presence of type 2 diabetes. To understand how intramyocellular lipids accumulate and cause insulin resistance, the assessment of metabolic flexibility to high-fat diets is more relevant than metabolic flexibility during a hyperinsulinemic clamp. An impaired capacity to upregulate muscle lipid oxidation in the face of high lipid supply may lead to increased muscle fat accumulation and insulin resistance. Surprisingly, very few studies have investigated the response to high-fat diets. In this review, we discuss the role of glucose disposal rate, adipose tissue lipid storage, and mitochondrial function on metabolic flexibility. Additionally, we emphasize the bias of using the change in respiratory quotient to calculate metabolic flexibility and propose novel approaches to assess metabolic flexibility. On the basis of current evidence, one cannot conclude that impaired metabolic flexibility is responsible for the accumulation of intramyocellular lipid and insulin resistance. We propose to study metabolic flexibility in response to high-fat diets in individuals having contrasting degree of insulin sensitivity and/or mitochondrial characteristics. PMID:18765680

  1. Leptin rapidly suppresses insulin release from insulinoma cells, rat and human islets and, in vivo, in mice.

    PubMed Central

    Kulkarni, R N; Wang, Z L; Wang, R M; Hurley, J D; Smith, D M; Ghatei, M A; Withers, D J; Gardiner, J V; Bailey, C J; Bloom, S R

    1997-01-01

    Obesity is associated with diabetes, and leptin is known to be elevated in obesity. To investigate whether leptin has a direct effect on insulin secretion, isolated rat and human islets and cultured insulinoma cells were studied. In all cases, mouse leptin inhibited insulin secretion at concentrations within the plasma range reported in humans. Insulin mRNA expression was also suppressed in the cultured cells and rat islets. The long form of the leptin receptor (OB-Rb) mRNA was present in the islets and insulinoma cell lines. To determine the significance of these findings in vivo, normal fed mice were injected with two doses of leptin. A significant decrease in plasma insulin and associated rise in glucose concentration were observed. Fasted normal and leptin receptor-deficient db/db mice showed no response to leptin. A dose of leptin, which mimicked that found in normal mice, was administered to leptin-deficient, hyperinsulinemic ob/ob mice. This caused a marked lowering of plasma insulin concentration and a doubling of plasma glucose. Thus, leptin has a powerful acute inhibitory effect on insulin secretion. These results suggest that the action of leptin may be one mechanism by which excess adipose tissue could acutely impair carbohydrate metabolism. PMID:9389736

  2. Insulin withdrawal-induced cell death in adult hippocampal neural stem cells as a model of autophagic cell death.

    PubMed

    Baek, Seung-Hoon; Kim, Eun-Kyoung; Goudreau, John L; Lookingland, Keith J; Kim, Seong Who; Yu, Seong-Woon

    2009-02-01

    The term "autophagic cell death" was coined to describe a form of cell death associated with the massive formation of autophagic vacuoles without signs of apoptosis. However, questions about the actual role of autophagy and its molecular basis in cell death remain to be elucidated. We recently reported that adult hippocampal neural stem (HCN) cells undergo autophagic cell death following insulin withdrawal. Insulin-deprived HCN cells exhibit morphological and biochemical markers of autophagy, including accumulation of Beclin 1 and the type II form of microtubule-associated protein 1 light chain 3 (LC3) without evidence of apoptosis. Suppression of autophagy by knockdown of Atg7 reduces cell death, whereas promotion of autophagy with rapamycin augments cell death in insulin-deficient HCN cells. These data reveal a causative role of autophagy in insulin withdrawal-induced HCN cell death. HCN cells have intact apoptotic capability despite the lack of apoptosis following insulin withdrawal. Our study demonstrates that autophagy is the default cell death mechanism in insulin-deficient HCN cells, and provides a genuine model of autophagic cell death in apoptosis-intact cells. Novel insight into molecular mechanisms of this underappreciated form of programmed cell death should facilitate the development of therapeutic methods to cope with human diseases caused by dysregulated cell death.

  3. Iron-Deficiency Anemia (For Parents)

    MedlinePlus

    ... Things to Know About Zika & Pregnancy Iron-Deficiency Anemia KidsHealth > For Parents > Iron-Deficiency Anemia Print A ... common nutritional deficiency in children. About Iron-Deficiency Anemia Every red blood cell in the body contains ...

  4. Iron deficiency and cognitive functions

    PubMed Central

    Jáuregui-Lobera, Ignacio

    2014-01-01

    Micronutrient deficiencies, especially those related to iodine and iron, are linked to different cognitive impairments, as well as to potential long-term behavioral changes. Among the cognitive impairments caused by iron deficiency, those referring to attention span, intelligence, and sensory perception functions are mainly cited, as well as those associated with emotions and behavior, often directly related to the presence of iron deficiency anemia. In addition, iron deficiency without anemia may cause cognitive disturbances. At present, the prevalence of iron deficiency and iron deficiency anemia is 2%–6% among European children. Given the importance of iron deficiency relative to proper cognitive development and the alterations that can persist through adulthood as a result of this deficiency, the objective of this study was to review the current state of knowledge about this health problem. The relevance of iron deficiency and iron deficiency anemia, the distinction between the cognitive consequences of iron deficiency and those affecting specifically cognitive development, and the debate about the utility of iron supplements are the most relevant and controversial topics. Despite there being methodological differences among studies, there is some evidence that iron supplementation improves cognitive functions. Nevertheless, this must be confirmed by means of adequate follow-up studies among different groups. PMID:25419131

  5. The story of insulin discovery.

    PubMed

    Karamitsos, Dimitrios T

    2011-08-01

    Many researchers had tried to isolate insulin from animal pancreas, but Frederick Banting, a young surgeon, and Charles Best, a medical student, were the ones that succeeded. They both worked hard in very difficult conditions in the late 1921 and early 1922 until final success. They encountered problems with the impurities of their extract that was causing inflammations, but J. Collip, their late biochemist collaborator, worked many hours and was soon able to prepare cleaner insulin, free from impurities. This extract was administered successfully to L. Thomson, a ketotic young diabetic patient, on 23 January 1922. Following this, Eli Lilly & Co of USA started the commercial production of insulin, soon followed by the Danish factories Nordisc and NOVO as well as the British Wellcome. Nicolae Paulescu who was professor of Physiology in Bucharest, was also quite close to the discovery of insulin but the researchers in Toronto were faster and more efficient. Banting and Macleod won the Nobel price, which Banting shared with Best and Macleod with J. Collip. The contribution of Paulescu in insulin discovery was recognized after his death. PMID:21864746

  6. Patient Perspectives on Biosimilar Insulin.

    PubMed

    Wilkins, Alasdair R; Venkat, Manu V; Brown, Adam S; Dong, Jessica P; Ran, Nina A; Hirsch, James S; Close, Kelly L

    2014-01-01

    Given that a new wave of biosimilar insulins will likely enter the market in coming years, it is important to understand patient perspectives on these biosimilars. A survey (N = 3214) conducted by the market research company dQ&A, which maintains a 10 000-patient panel of people with type 1 or type 2 diabetes in roughly equal measure, investigated these perspectives. The survey asked whether patients would switch to a hypothetical less expensive biosimilar insulin that was approved by their provider. Approximately 66% of respondents reported that they would "definitely" or "likely" use a biosimilar insulin, while 17% reported that they were "unlikely" to use or would "definitely not use" such a product. Type 2 diabetes patients demonstrated slightly more willingness to use biosimilars than type 1 diabetes patients. Common patient concerns included whether biosimilars would be as effective as reference products (~650 respondents), whether side effect profiles would deviate from those of reference products (~220 respondents), and the design of the delivery device (~50 respondents). While cost savings associated with biosimilar insulins could increase patient uptake, especially among patients without health insurance (some recent estimates suggest that biosimilars will come at a substantial discount), patients may still need assurance that a cheaper price tag is not necessarily associated with substandard quality. Overall, the dQ&A survey indicates that the majority of patients are willing to consider biosimilar insulins, but manufacturers will need to work proactively to address and assuage patient concerns regarding efficacy, safety, drug administration, and other factors. PMID:24876533

  7. Oral insulin--a perspective.

    PubMed

    Raj, N K Kavitha; Sharma, Chandra P

    2003-01-01

    Diabetes mellitus is generally controlled quite well with the administration of oral medications or by the use of insulin injections. The current practice is the use of one or more doses, intermediate or long acting insulin per day. Oral insulin is a promising yet experimental method providing tight glycemic control for patients with diabetes. A biologically adhesive delivery systems offer important advantage over conventional drug delivery systems. The engineered polymer microspheres made of erodable polymer display strong adhesive interactions with gastrointestinal mucus and cellular lining can traverse both the mucosal epithelium and the follicle associated epithelium covering the lymphoid tissue of Peyer's patches. Alginate, a natural polymer recovered from seaweed is being developed as a nanoparticle for the delivery of insulin without being destroyed in the stomach. Alginate is in fact finding application in biotechnology industry as thickening agent, a gelling agent and a colloid stabilizer. Alginate has in addition, several other properties that have enabled it to be used as a matrix for entrapment and for the delivery of a variety of proteins such as insulin and cells. These properties include: a relatively inert aqueous environment within the matrix; a mild room temperature encapsulation process free of organic solvents; a high gel porosity which allows for high diffusion rates of macromolecules; the ability to control this porosity with simple coating procedures and dissolution and biodegradation of the system under normal physiological conditions.

  8. Transplacental passage of insulin complexed to antibody.

    PubMed Central

    Bauman, W A; Yalow, R S

    1981-01-01

    The passage of plasma proteins across the placental barrier in humans is known to be highly selective. Thus, free maternal insulin has been reported not to cross the normal maternofetal barrier, although insulin-binding antibodies have been detected in newborn infants whose diabetic mothers received insulin therapy. In this report we demonstrate, with the use of a human antiserum that permits distinction between human and animal insulins, that insulin in the cord blood of each of two neonates of insulin-treated diabetic mothers was, in part, animal insulin. The higher the antibody titer of the mother the greater was the total insulin in the cord plasma and the greater was the fraction that was animal insulin. In case 1 cord plasma insulin was 0.7 unit/liter, of which 10% was animal insulin; in case 2 cord plasma insulin was 3.5 units/liter, of which 25% was animal insulin. The demonstration that antigen restricted from transplacental passage can be transferred while complexed to antibody raises the question whether such fetal exposure would induce partial or total immunologic unresponsiveness subsequently if the fetus were rechallenged with the same antigen. PMID:7027265

  9. Insulin receptors in the mammary gland

    SciTech Connect

    Smith, D.H.

    1986-01-01

    Insulin binding studies were conducted using mammary membrane preparations to further the authors understanding of insulin's role in regulating mammary metabolism, particularly ruminant mammary metabolism. Specific objectives were to: (1) characterize insulin binding to bovine mammary microsomes and determine if the specificity and kinetics of binding indicate the presence of insulin receptors in bovine mammary gland; (2) examine and compare insulin binding by liver and mammary microsomes of the pig and dairy cow; (3) examine insulin binding to bovine milk fat globule membranes (MFGM) and evaluate this model's usefulness in assessing insulin receptor regulation in the mammary gland of the cow; (4) examine the effect of dietary fat in insulin binding by rat mammary and liver microsomes. The specificity and kinetics of /sup 125/I-insulin binding of bovine mammary microsomes indicated the presence of insulin receptors in bovine mammary gland. Bovine liver and mammary microsomes specifically bound less /sup 125/I-insulin than did the corresponding porcine microsomes, and mammary microsomes, regardless of species, specifically bound less /sup 125/I-insulin than did liver microsomes. These differences in binding suggest differences in insulin responsiveness between pigs and cattle, as well as between the liver and mammary glands.

  10. Insulin-glycerolipid mediators and gene expression

    SciTech Connect

    Standaert, M.L.; Pollet, R.J. )

    1988-06-01

    Insulin is an anabolic polypeptide hormone with pleiotrophic effects. During the decades since the initial description by Banting and Best, the acute effects of insulin have been widely studied with particular focus on the mechanism or mechanisms of insulin activation of hexose transport and regulation of metabolic enzyme activity. However, recently there has been a major expansion of investigation to include insulin regulation of gene expression with multiple insulin-sensitive specific mRNAs now reported. In this review, we explore the involvement of insulin-induced changes in plasma membrane glycerolipid metabolism in the transmembrane signaling process required for insulin regulation of mRNA levels. Insulin increase diacylglycerol levels in insulin-responsive cells, and synthetic diacylglycerols or their phorbol ester diacylglycerol analogs, such as 4{beta}, 9{alpha}, 12{beta}, 13{alpha}, 20-pentahydroxytiglia-1,6-dien-3-one 12{beta}-myristate 13-acetate (TPA), mimic insulin regulation of ornithine decarboxylase mRNA, c-fos mRNA, and phosphoenolpyruvate carboxykinase mRNA levels. This suggests that insulin regulation of specific mRNA levels may be mediated by insulin-induced changes in phospholipid metabolism and that diacylglycerol may play a pivotal role in insulin regulation of gene expression.

  11. Mini-implants and miniplates generate sub-absolute and absolute anchorage

    PubMed Central

    Consolaro, Alberto

    2014-01-01

    The functional demand imposed on bone promotes changes in the spatial properties of osteocytes as well as in their extensions uniformly distributed throughout the mineralized surface. Once spatial deformation is established, osteocytes create the need for structural adaptations that result in bone formation and resorption that happen to meet the functional demands. The endosteum and the periosteum are the effectors responsible for stimulating adaptive osteocytes in the inner and outer surfaces.Changes in shape, volume and position of the jaws as a result of skeletal correction of the maxilla and mandible require anchorage to allow bone remodeling to redefine morphology, esthetics and function as a result of spatial deformation conducted by orthodontic appliances. Examining the degree of changes in shape, volume and structural relationship of areas where mini-implants and miniplates are placed allows us to classify mini-implants as devices of subabsolute anchorage and miniplates as devices of absolute anchorage. PMID:25162561

  12. Insulin Glargine (rDNA origin) Injection

    MedlinePlus

    ... insulin and therefore cannot control the amount of sugar in the blood). It is also used to ... normally and, therefore, cannot control the amount of sugar in the blood) who need insulin to control ...

  13. Insulin Aspart (rDNA Origin) Injection

    MedlinePlus

    ... insulin and therefore cannot control the amount of sugar in the blood). It is also used to ... normally and therefore cannot control the amount of sugar in the blood) who need insulin to control ...

  14. Insulin Detemir (rDNA Origin) Injection

    MedlinePlus

    ... insulin and therefore cannot control the amount of sugar in the blood). It is also used to ... normally and, therefore, cannot control the amount of sugar in the blood) who need insulin to control ...

  15. Insulin Degludec (rDNA Origin) Injection

    MedlinePlus

    ... insulin and therefore cannot control the amount of sugar in the blood). It is also used to ... normally and, therefore, cannot control the amount of sugar in the blood) who need insulin to control ...

  16. Metabolism A higher power for insulin

    NASA Astrophysics Data System (ADS)

    Gribble, Fiona M.

    2005-04-01

    Glucose output from the liver is tightly regulated by insulin. But insulin holds sway over more than the liver - an unappreciated circuit in glucose control involves the opening of ion channels in the brain.

  17. Quantification of adipose tissue insulin sensitivity.

    PubMed

    Søndergaard, Esben; Jensen, Michael D

    2016-06-01

    In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and weaknesses.

  18. Emerging Trends in Noninvasive Insulin Delivery

    PubMed Central

    Verma, Arun; Kumar, Nitin; Malviya, Rishabha; Sharma, Pramod Kumar

    2014-01-01

    This paper deals with various aspects of oral insulin delivery system. Insulin is used for the treatment of diabetes mellitus, which is characterized by the elevated glucose level (above the normal range) in the blood stream, that is, hyperglycemia. Oral route of administration of any drug is the most convenient route. Development of oral insulin is still under research. Oral insulin will cause the avoidance of pain during the injection (in subcutaneous administration), anxiety due to needle, and infections which can be developed. Different types of enzyme inhibitors, like sodium cholate, camostat, mesilate, bacitracin, leupeptin, and so forth, have been used to prevent insulin from enzymatic degradation. Subcutaneous route has been used for administration of insulin, but pain and itching at the site of administration can occur. That is why various alternative routes of insulin administration like oral route are under investigation. In this paper authors summarized advancement in insulin delivery with their formulation aspects. PMID:26556194

  19. An All Fiber White Light Interferometric Absolute Temperature Measurement System

    PubMed Central

    Kim, Jeonggon Harrison

    2008-01-01

    Recently the author of this article proposed a new signal processing algorithm for an all fiber white light interferometer. In this article, an all fiber white light interferometric absolute temperature measurement system is presented using the previously proposed signal processing algorithm. Stability and absolute temperature measurement were demonstrated. These two tests demonstrated the feasibility of absolute temperature measurement with an accuracy of 0.015 fringe and 0.0005 fringe, respectively. A hysteresis test from 373K to 873K was also presented. Finally, robustness of the sensor system towards laser diode temperature drift, AFMZI temperature drift and PZT non-linearity was demonstrated.

  20. Measurement of Disintegration Rates and Absolute {gamma}-ray Intensities

    SciTech Connect

    DeVries, Daniel J.; Griffin, Henry C.

    2006-03-13

    The majority of practical radioactive materials decay by modes that include {gamma}-ray emission. For questions of 'how much' or 'how pure', one must know the absolute intensities of the major radiations. We are using liquid scintillation counting (LSC) to measurements of disintegration rates, coupled with {gamma}-ray spectroscopy to measure absolute {gamma}-ray emission probabilities. Described is a study of the 227Th chain yielding absolute {gamma}-ray intensities with {approx}0.5% accuracy and information on LSC efficiencies.