Science.gov

Sample records for absolute intensity calibration

  1. NIST Standard Reference Material 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering.

    PubMed

    Allen, Andrew J; Zhang, Fan; Kline, R Joseph; Guthrie, William F; Ilavsky, Jan

    2017-04-01

    The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008-0.25 Å -1 , together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments that employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. The validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.

  2. NIST Standard Reference Material 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering

    DOE PAGES

    Allen, Andrew J.; Zhang, Fan; Kline, R. Joseph; ...

    2017-03-07

    The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008–0.25 Å –1, together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments thatmore » employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. As a result, the validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.« less

  3. NIST Standard Reference Material 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering

    SciTech Connect

    Allen, Andrew J.; Zhang, Fan; Kline, R. Joseph

    The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008–0.25 Å –1, together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments thatmore » employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. As a result, the validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.« less

  4. Absolute laser-intensity measurement and online monitor calibration using a calorimeter at a soft X-ray free-electron laser beamline in SACLA

    NASA Astrophysics Data System (ADS)

    Tanaka, Takahiro; Kato, Masahiro; Saito, Norio; Owada, Shigeki; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya

    2018-06-01

    This paper reports measurement of the absolute intensity of free-electron laser (FEL) and calibration of online intensity monitors for a brand-new FEL beamline BL1 at SPring-8 Angstrom Compact free-electron LAser (SACLA) in Japan. To measure the absolute intensity of FEL, we used a room-temperature calorimeter originally developed for FELs in the hard X-ray range. By using the calorimeter, we calibrated online intensity monitors of BL1, gas monitors (GMs), based on the photoionization of argon gas, in the photon energy range from 25 eV to 150 eV. A good correlation between signals obtained from the calorimeter and GMs was observed in the pulse energy range from 1 μJ to 100 μJ, where the upper limit is nearly equal to the maximum pulse energy at BL1. Moreover, the calibration result of the GMs, measured in terms of the spectral responsivity, demonstrates a characteristic photon-energy dependence owing to the occurrence of the Cooper minimum in the total ionization cross-section of argon gas. These results validate the feasibility of employing the room-temperature calorimeter in the measurement of absolute intensity of FELs over the specified photon energy range.

  5. Absolute calibration of ultraviolet filter photometry

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Fairchild, T.; Code, A. D.

    1972-01-01

    The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.

  6. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  7. Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Reichmann, Edwin J.

    1987-01-01

    Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.

  8. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  9. Absolute detector calibration using twin beams.

    PubMed

    Peřina, Jan; Haderka, Ondřej; Michálek, Václav; Hamar, Martin

    2012-07-01

    A method for the determination of absolute quantum detection efficiency is suggested based on the measurement of photocount statistics of twin beams. The measured histograms of joint signal-idler photocount statistics allow us to eliminate an additional noise superimposed on an ideal calibration field composed of only photon pairs. This makes the method superior above other approaches presently used. Twin beams are described using a paired variant of quantum superposition of signal and noise.

  10. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  11. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  12. Advancing Absolute Calibration for JWST and Other Applications

    NASA Astrophysics Data System (ADS)

    Rieke, George; Bohlin, Ralph; Boyajian, Tabetha; Carey, Sean; Casagrande, Luca; Deustua, Susana; Gordon, Karl; Kraemer, Kathleen; Marengo, Massimo; Schlawin, Everett; Su, Kate; Sloan, Greg; Volk, Kevin

    2017-10-01

    We propose to exploit the unique optical stability of the Spitzer telescope, along with that of IRAC, to (1) transfer the accurate absolute calibration obtained with MSX on very bright stars directly to two reference stars within the dynamic range of the JWST imagers (and of other modern instrumentation); (2) establish a second accurate absolute calibration based on the absolutely calibrated spectrum of the sun, transferred onto the astronomical system via alpha Cen A; and (3) provide accurate infrared measurements for the 11 (of 15) highest priority stars with no such data but with accurate interferometrically measured diameters, allowing us to optimize determinations of effective temperatures using the infrared flux method and thus to extend the accurate absolute calibration spectrally. This program is integral to plans for an accurate absolute calibration of JWST and will also provide a valuable Spitzer legacy.

  13. Absolute calibration of sniffer probes on Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  14. Absolute calibration of sniffer probes on Wendelstein 7-X.

    PubMed

    Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured.

  15. Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration

    PubMed Central

    Deng, Mingjun; Li, Jiansong

    2017-01-01

    The Chinese Gaofen-3 (GF-3) mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR) sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts) using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method. PMID:29240675

  16. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  17. Absolute calibration technique for broadband ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1994-01-01

    Calibrating an ultrasonic transducer can be performed with a reduced number of calculations and testing. A wide-band pulser is connected to an ultrasonic transducer under test to generate ultrasonic waves in a liquid. A single frequency is transmitted to the electrostatic acoustic transducer (ESAT) and the voltage change produced is monitored. Then a broadband ultrasonic pulse is generated by the ultrasonic transducer and received by the ESAT. The output of the ESAT is amplified and input to a digitized oscilloscope for fast Fourier transform. The resulting plot is normalized with the monitored signal from the single frequency pulse. The plot is then corrected for characteristics of the membrane and diffraction effects. The transfer function of the final plot is determined. The transfer function gives the final sensitivity of the ultrasonic transducer as a function of frequency. The advantage of the system is the speed of calibrating the transducer by a reduced number of measurements and removal of the membrane and diffraction effects.

  18. NIST Stars: Absolute Spectrophotometric Calibration of Vega and Sirius

    NASA Astrophysics Data System (ADS)

    Deustua, Susana; Woodward, John T.; Rice, Joseph P.; Brown, Steven W.; Maxwell, Stephen E.; Alberding, Brian G.; Lykke, Keith R.

    2018-01-01

    Absolute flux calibration of standard stars, traceable to SI (International System of Units) standards, is essential for 21st century astrophysics. Dark energy investigations that rely on observations of Type Ia supernovae and precise photometric redshifts of weakly lensed galaxies require a minimum accuracy of 0.5 % in the absolute color calibration. Studies that aim to address fundamental stellar astrophysics also benefit. In the era of large telescopes and all sky surveys well-calibrated standard stars that do not saturate and that are available over the whole sky are needed. Significant effort has been expended to obtain absolute measurements of the fundamental standards Vega and Sirius (and other stars) in the visible and near infrared, achieving total uncertainties between1% and 3%, depending on wavelength, that do not meet the needed accuracy. The NIST Stars program aims to determine the top-of-the-atmosphere absolute spectral irradiance of bright stars to an uncertainty less than 1% from a ground-based observatory. NIST Stars has developed a novel, fully SI-traceable laboratory calibration strategy that will enable achieving the desired accuracy. This strategy has two key components. The first is the SI-traceable calibration of the entire instrument system, and the second is the repeated spectroscopic measurement of the target star throughout the night. We will describe our experimental strategy, present preliminary results for Vega and Sirius and an end-to-end uncertainty budget

  19. Landsat-5 TM reflective-band absolute radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Markham, B.L.; Dewald, J.D.; Kaita, E.; Thome, K.J.; Micijevic, E.; Ruggles, T.A.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) sensor provides the longest running continuous dataset of moderate spatial resolution remote sensing imagery, dating back to its launch in March 1984. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset of each detector. Due to observed degradations in the IC, a new procedure was implemented for U.S.-processed data in May 2003. This new calibration procedure is based on a lifetime radiometric calibration model for the instrument's reflective bands (1-5 and 7) and is derived, in part, from the IC response without the related degradation effects and is tied to the cross calibration with the Landsat-7 Enhanced Thematic Mapper Plus. Reflective-band absolute radiometric accuracy of the instrument tends to be on the order of 7% to 10%, based on a variety of calibration methods.

  20. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; ,

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  1. Absolute sensitivity calibration of an extreme ultraviolet spectrometer for tokamak measurements

    NASA Astrophysics Data System (ADS)

    Guirlet, R.; Schwob, J. L.; Meyer, O.; Vartanian, S.

    2017-01-01

    An extreme ultraviolet spectrometer installed on the Tore Supra tokamak has been calibrated in absolute units of brightness in the range 10-340 Å. This has been performed by means of a combination of techniques. The range 10-113 Å was absolutely calibrated by using an ultrasoft-X ray source emitting six spectral lines in this range. The calibration transfer to the range 113-182 Å was performed using the spectral line intensity branching ratio method. The range 182-340 Å was calibrated thanks to radiative-collisional modelling of spectral line intensity ratios. The maximum sensitivity of the spectrometer was found to lie around 100 Å. Around this wavelength, the sensitivity is fairly flat in a 80 Å wide interval. The spatial variations of sensitivity along the detector assembly were also measured. The observed trend is related to the quantum efficiency decrease as the angle of the incoming photon trajectories becomes more grazing.

  2. The importance and attainment of accurate absolute radiometric calibration

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1984-01-01

    The importance of accurate absolute radiometric calibration is discussed by reference to the needs of those wishing to validate or use models describing the interaction of electromagnetic radiation with the atmosphere and earth surface features. The in-flight calibration methods used for the Landsat Thematic Mapper (TM) and the Systeme Probatoire d'Observation de la Terre, Haute Resolution visible (SPOT/HRV) systems are described and their limitations discussed. The questionable stability of in-flight absolute calibration methods suggests the use of a radiative transfer program to predict the apparent radiance, at the entrance pupil of the sensor, of a ground site of measured reflectance imaged through a well characterized atmosphere. The uncertainties of such a method are discussed.

  3. Absolute charge calibration of scintillating screens for relativistic electron detection

    NASA Astrophysics Data System (ADS)

    Buck, A.; Zeil, K.; Popp, A.; Schmid, K.; Jochmann, A.; Kraft, S. D.; Hidding, B.; Kudyakov, T.; Sears, C. M. S.; Veisz, L.; Karsch, S.; Pawelke, J.; Sauerbrey, R.; Cowan, T.; Krausz, F.; Schramm, U.

    2010-03-01

    We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm2. The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm2 was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

  4. Improved Absolute Radiometric Calibration of a UHF Airborne Radar

    NASA Technical Reports Server (NTRS)

    Chapin, Elaine; Hawkins, Brian P.; Harcke, Leif; Hensley, Scott; Lou, Yunling; Michel, Thierry R.; Moreira, Laila; Muellerschoen, Ronald J.; Shimada, Joanne G.; Tham, Kean W.; hide

    2015-01-01

    The AirMOSS airborne SAR operates at UHF and produces fully polarimetric imagery. The AirMOSS radar data are used to produce Root Zone Soil Moisture (RZSM) depth profiles. The absolute radiometric accuracy of the imagery, ideally of better than 0.5 dB, is key to retrieving RZSM, especially in wet soils where the backscatter as a function of soil moisture function tends to flatten out. In this paper we assess the absolute radiometric uncertainty in previously delivered data, describe a method to utilize Built In Test (BIT) data to improve the radiometric calibration, and evaluate the improvement from applying the method.

  5. Absolute Calibration of the AXAF Telescope Effective Area

    NASA Technical Reports Server (NTRS)

    Kellogg, E.; Cohen, L.; Edgar, R.; Evans, I.; Freeman, M.; Gaetz, T.; Jerius, D.; McDermott, W. C.; McKinnon, P.; Murray, S.; hide

    1997-01-01

    The prelaunch calibration of AXAF encompasses many aspects of the telescope. In principle, all that is needed is the complete point response function. This is, however, a function of energy, off-axis angle of the source, and operating mode of the facility. No single measurement would yield the entire result. Also, any calibration made prior to launch will be affected by changes in conditions after launch, such as the change from one g to zero g. The reflectivity of the mirror and perhaps even the detectors can change as well, for example by addition or removal of small amounts of material deposited on their surfaces. In this paper, we give a broad view of the issues in performing such a calibration, and discuss how they are being addressed in prelaunch preparation of AXAF. As our title indicates, we concentrate here on the total throughput of the observatory. This can be thought of as the integral of the point response function, i.e. the encircled energy, out ot the largest practical solid angle for an observation. Since there is no standard x-ray source in the sky whose flux is known to the -1% accuracy we are trying to achieve, we must do this calibration on the ground. we also must provide a means for monitoring any possible changes in this calibration from pre-launch until on-orbit operation can transfer the calibration to a celestial x-ray source whose emission is stable. In this paper, we analyze the elements of the absolute throughput calibration, which we call Effective Area. We review the requirements for calibrations of components or subsystems of the AXAF facility, including mirror, detectors, and gratings. We show how it is necessary to calibrate this ground-based detection system at standard man-made x-ray sources, such as electron storage rings. We present the status of all these calibrations, with indications of the measurements remaining to be done, even though the measurements on the AXAF flight optics and detectors will have been completed by the

  6. Landsat-7 ETM+ radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Barker, J.L.; Barsi, J.A.; Kaita, E.; Thome, K.J.; Helder, D.L.; Palluconi, Frank Don; Schott, J.R.; Scaramuzza, Pat; ,

    2002-01-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than ??1%, reflective band absolute calibration to better than ??5%, and thermal band absolute calibration to better than ??0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m 2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of ??0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  7. Absolute calibration of Doppler coherence imaging velocity images

    NASA Astrophysics Data System (ADS)

    Samuell, C. M.; Allen, S. L.; Meyer, W. H.; Howard, J.

    2017-08-01

    A new technique has been developed for absolutely calibrating a Doppler Coherence Imaging Spectroscopy interferometer for measuring plasma ion and neutral velocities. An optical model of the interferometer is used to generate zero-velocity reference images for the plasma spectral line of interest from a calibration source some spectral distance away. Validation of this technique using a tunable diode laser demonstrated an accuracy better than 0.2 km/s over an extrapolation range of 3.5 nm; a two order of magnitude improvement over linear approaches. While a well-characterized and very stable interferometer is required, this technique opens up the possibility of calibrated velocity measurements in difficult viewing geometries and for complex spectral line-shapes.

  8. Absolute calibration for complex-geometry biomedical diffuse optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Mastanduno, Michael A.; Jiang, Shudong; El-Ghussein, Fadi; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.

    2013-03-01

    We have presented methodology to calibrate data in NIRS/MRI imaging versus an absolute reference phantom and results in both phantoms and healthy volunteers. This method directly calibrates data to a diffusion-based model, takes advantage of patient specific geometry from MRI prior information, and generates an initial guess without the need for a large data set. This method of calibration allows for more accurate quantification of total hemoglobin, oxygen saturation, water content, scattering, and lipid concentration as compared with other, slope-based methods. We found the main source of error in the method to be derived from incorrect assignment of reference phantom optical properties rather than initial guess in reconstruction. We also present examples of phantom and breast images from a combined frequency domain and continuous wave MRI-coupled NIRS system. We were able to recover phantom data within 10% of expected contrast and within 10% of the actual value using this method and compare these results with slope-based calibration methods. Finally, we were able to use this technique to calibrate and reconstruct images from healthy volunteers. Representative images are shown and discussion is provided for comparison with existing literature. These methods work towards fully combining the synergistic attributes of MRI and NIRS for in-vivo imaging of breast cancer. Complete software and hardware integration in dual modality instruments is especially important due to the complexity of the technology and success will contribute to complex anatomical and molecular prognostic information that can be readily obtained in clinical use.

  9. The Absolute Reflectance and New Calibration Site of the Moon

    NASA Astrophysics Data System (ADS)

    Wu, Yunzhao; Wang, Zhenchao; Cai, Wei; Lu, Yu

    2018-05-01

    How bright the Moon is forms a simple but fundamental and important question. Although numerous efforts have been made to answer this question such as use of sophisticated electro-optical measurements and suggestions for calibration sites, the answer is still debated. An in situ measurement with a calibration panel on the surface of the Moon is crucial for obtaining the accurate absolute reflectance and resolving the debate. China’s Chang’E-3 (CE-3) “Yutu” rover accomplished this type of measurement using the Visible-Near Infrared Spectrometer (VNIS). The measurements of the VNIS, which were at large emission and phase angles, complement existing measurements for the range of photometric geometry. The in situ reflectance shows that the CE-3 landing site is very dark with an average reflectance of 3.86% in the visible bands. The results are compared with recent mission instruments: the Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC), the Spectral Profiler (SP) on board the SELENE, the Moon Mineralogy Mapper (M3) on board the Chandrayaan-1, and the Chang’E-1 Interference Imaging Spectrometer (IIM). The differences in the measurements of these instruments are very large and indicate inherent differences in their absolute calibration. The M3 and IIM measurements are smaller than LROC WAC and SP, and the VNIS measurement falls between these two pairs. When using the Moon as a radiance source for the on-orbit calibration of spacecraft instruments, one should be cautious about the data. We propose that the CE-3 landing site, a young and homogeneous surface, should serve as the new calibration site.

  10. A new method to calibrate the absolute sensitivity of a soft X-ray streak camera

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Liu, Shenye; Li, Jin; Yang, Zhiwen; Chen, Ming; Guo, Luting; Yao, Li; Xiao, Shali

    2016-12-01

    In this paper, we introduce a new method to calibrate the absolute sensitivity of a soft X-ray streak camera (SXRSC). The calibrations are done in the static mode by using a small laser-produced X-ray source. A calibrated X-ray CCD is used as a secondary standard detector to monitor the X-ray source intensity. In addition, two sets of holographic flat-field grating spectrometers are chosen as the spectral discrimination systems of the SXRSC and the X-ray CCD. The absolute sensitivity of the SXRSC is obtained by comparing the signal counts of the SXRSC to the output counts of the X-ray CCD. Results show that the calibrated spectrum covers the range from 200 eV to 1040 eV. The change of the absolute sensitivity in the vicinity of the K-edge of the carbon can also be clearly seen. The experimental values agree with the calculated values to within 29% error. Compared with previous calibration methods, the proposed method has several advantages: a wide spectral range, high accuracy, and simple data processing. Our calibration results can be used to make quantitative X-ray flux measurements in laser fusion research.

  11. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  12. Ensuring long-term stability of infrared camera absolute calibration.

    PubMed

    Kattnig, Alain; Thetas, Sophie; Primot, Jérôme

    2015-07-13

    Absolute calibration of cryogenic 3-5 µm and 8-10 µm infrared cameras is notoriously instable and thus has to be repeated before actual measurements. Moreover, the signal to noise ratio of the imagery is lowered, decreasing its quality. These performances degradations strongly lessen the suitability of Infrared Imaging. These defaults are often blamed on detectors reaching a different "response state" after each return to cryogenic conditions, while accounting for the detrimental effects of imperfect stray light management. We show here that detectors are not to be blamed and that the culprit can also dwell in proximity electronics. We identify an unexpected source of instability in the initial voltage of the integrating capacity of detectors. Then we show that this parameter can be easily measured and taken into account. This way we demonstrate that a one month old calibration of a 3-5 µm camera has retained its validity.

  13. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site

    USGS Publications Warehouse

    Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, Xiaoxiong; Angal, A.; Choi, Tae-young

    2013-01-01

    Pseudo invariant calibration sites (PICS) have been used for on-orbit radiometric trending of optical satellite systems for more than 15 years. This approach to vicarious calibration has demonstrated a high degree of reliability and repeatability at the level of 1-3% depending on the site, spectral channel, and imaging geometries. A variety of sensors have used this approach for trending because it is broadly applicable and easy to implement. Models to describe the surface reflectance properties, as well as the intervening atmosphere have also been developed to improve the precision of the method. However, one limiting factor of using PICS is that an absolute calibration capability has not yet been fully developed. Because of this, PICS are primarily limited to providing only long term trending information for individual sensors or cross-calibration opportunities between two sensors. This paper builds an argument that PICS can be used more extensively for absolute calibration. To illustrate this, a simple empirical model is developed for the well-known Libya 4 PICS based on observations by Terra MODIS and EO-1 Hyperion. The model is validated by comparing model predicted top-of-atmosphere reflectance values to actual measurements made by the Landsat ETM+ sensor reflective bands. Following this, an outline is presented to develop a more comprehensive and accurate PICS absolute calibration model that can be Système international d'unités (SI) traceable. These initial concepts suggest that absolute calibration using PICS is possible on a broad scale and can lead to improved on-orbit calibration capabilities for optical satellite sensors.

  14. Calibration Against the Moon. I: A Disk-Resolved Lunar Model for Absolute Reflectance Calibration

    DTIC Science & Technology

    2010-01-01

    average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Calibration against the Moon I: A disk- resolved lunar model for absolute reflectance...of the disk- resolved Moon at visible to near infrared wavelengths. It has been developed in order to use the Moon as a calibration reference

  15. Corsica: A Multi-Mission Absolute Calibration Site

    NASA Astrophysics Data System (ADS)

    Bonnefond, P.; Exertier, P.; Laurain, O.; Guinle, T.; Femenias, P.

    2013-09-01

    In collaboration with the CNES and NASA oceanographic projects (TOPEX/Poseidon and Jason), the OCA (Observatoire de la Côte d'Azur) developed a verification site in Corsica since 1996, operational since 1998. CALibration/VALidation embraces a wide variety of activities, ranging from the interpretation of information from internal-calibration modes of the sensors to validation of the fully corrected estimates of the reflector heights using in situ data. Now, Corsica is, like the Harvest platform (NASA side) [14], an operating calibration site able to support a continuous monitoring with a high level of accuracy: a 'point calibration' which yields instantaneous bias estimates with a 10-day repeatability of 30 mm (standard deviation) and mean errors of 4 mm (standard error). For a 35-day repeatability (ERS, Envisat), due to a smaller time series, the standard error is about the double ( 7 mm).In this paper, we will present updated results of the absolute Sea Surface Height (SSH) biases for TOPEX/Poseidon (T/P), Jason-1, Jason-2, ERS-2 and Envisat.

  16. Absolute calorimetric calibration of low energy brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Stump, Kurt E.

    In the past decade there has been a dramatic increase in the use of permanent radioactive source implants in the treatment of prostate cancer. A small radioactive source encapsulated in a titanium shell is used in this type of treatment. The radioisotopes used are generally 125I or 103Pd. Both of these isotopes have relatively short half-lives, 59.4 days and 16.99 days, respectively, and have low-energy emissions and a low dose rate. These factors make these sources well suited for this application, but the calibration of these sources poses significant metrological challenges. The current standard calibration technique involves the measurement of ionization in air to determine the source air-kerma strength. While this has proved to be an improvement over previous techniques, the method has been shown to be metrologically impure and may not be the ideal means of calbrating these sources. Calorimetric methods have long been viewed to be the most fundamental means of determining source strength for a radiation source. This is because calorimetry provides a direct measurement of source energy. However, due to the low energy and low power of the sources described above, current calorimetric methods are inadequate. This thesis presents work oriented toward developing novel methods to provide direct and absolute measurements of source power for low-energy low dose rate brachytherapy sources. The method is the first use of an actively temperature-controlled radiation absorber using the electrical substitution method to determine total contained source power of these sources. The instrument described operates at cryogenic temperatures. The method employed provides a direct measurement of source power. The work presented here is focused upon building a metrological foundation upon which to establish power-based calibrations of clinical-strength sources. To that end instrument performance has been assessed for these source strengths. The intent is to establish the limits of

  17. An absolute calibration system for millimeter-accuracy APOLLO measurements

    NASA Astrophysics Data System (ADS)

    Adelberger, E. G.; Battat, J. B. R.; Birkmeier, K. J.; Colmenares, N. R.; Davis, R.; Hoyle, C. D.; Huang, L. R.; McMillan, R. J.; Murphy, T. W., Jr.; Schlerman, E.; Skrobol, C.; Stubbs, C. W.; Zach, A.

    2017-12-01

    Lunar laser ranging provides a number of leading experimental tests of gravitation—important in our quest to unify general relativity and the standard model of physics. The apache point observatory lunar laser-ranging operation (APOLLO) has for years achieved median range precision at the  ∼2 mm level. Yet residuals in model-measurement comparisons are an order-of-magnitude larger, raising the question of whether the ranging data are not nearly as accurate as they are precise, or if the models are incomplete or ill-conditioned. This paper describes a new absolute calibration system (ACS) intended both as a tool for exposing and eliminating sources of systematic error, and also as a means to directly calibrate ranging data in situ. The system consists of a high-repetition-rate (80 MHz) laser emitting short (< 10 ps) pulses that are locked to a cesium clock. In essence, the ACS delivers photons to the APOLLO detector at exquisitely well-defined time intervals as a ‘truth’ input against which APOLLO’s timing performance may be judged and corrected. Preliminary analysis indicates no inaccuracies in APOLLO data beyond the  ∼3 mm level, suggesting that historical APOLLO data are of high quality and motivating continued work on model capabilities. The ACS provides the means to deliver APOLLO data both accurate and precise below the 2 mm level.

  18. Absolute calibration of a hydrogen discharge lamp in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Nealy, J. E.

    1975-01-01

    A low-pressure hydrogen discharge lamp was calibrated for radiant intensity in the vacuum ultraviolet spectral region on an absolute basis and was employed as a laboratory standard source in spectrograph calibrations. This calibration was accomplished through the use of a standard photodiode detector obtained from the National Bureau of Standards together with onsite measurements of spectral properties of optical components used. The stability of the light source for use in the calibration of vacuum ultraviolet spectrographs and optical systems was investigated and found to be amenable to laboratory applications. The lamp was studied for a range of operating parameters; the results indicate that with appropriate peripheral instrumentation, the light source can be used as a secondary laboratory standard source when operated under preset controlled conditions. Absolute intensity measurements were recorded for the wavelengths 127.7, 158.0, 177.5, and 195.0 nm for a time period of over 1 month, and the measurements were found to be repeatable to within 11 percent.

  19. Metallicity and absolute magnitude calibrations for UBV photometry

    NASA Astrophysics Data System (ADS)

    Karataş, Y.; Schuster, W. J.

    2006-10-01

    Calibrations are presented here for metallicity ([Fe/H]) in terms of the ultraviolet excess, [δ(U - B) at B - V = 0.6, hereafter δ0.6], and also for the absolute visual magnitude (MV) and its difference with respect to the Hyades (ΔMHV) in terms of δ0.6 and (B - V), making use of high-resolution spectroscopic abundances from the literature and Hipparcos parallaxes. The relation [Fe/H]-δ0.6 has been derived for dwarf plus turn-off stars, and also for dwarf, turn-off, plus subgiant stars classified using the MV-(B - V)0 plane of Fig. 11, which is calibrated with isochrones from Bergbusch & VandenBerg (and also VandenBerg & Clem). The [Fe/H]-δ0.6 relations in our equations (5) and (6) agree well with those of Carney, as can be seen from Fig. 5(a). Within the uncertainties, the zero-points, +0.13(+/-0.05) of equation (5) and +0.13(+/-0.04) of equation (6), are in good agreement with the photometric ones of Cameron and of Carney, and close to the spectroscopic ones of Cayrel et al. and of Boesgaard & Friel for the Hyades open cluster. Good quantitative agreement between our estimated [Fe/H] abundances with those from uvby-β photometry and spectroscopic [Fe/H]spec values demonstrates that our equation (6) can be used in deriving quality photometric metal abundances for field stars and clusters using UBV data from various photometric surveys. For dwarf and turn-off stars, a new hybrid MV calibration is presented, based on Hipparcos parallaxes with σπ/π <= 0.1 and with a dispersion of +/-0.24 in MV. This hybrid MV calibration contains δ0.6 and (B - V) terms, plus higher order cross-terms of these, and is valid for the ranges of +0.37 <= (B - V)0 <= +0.88,- 0.10 <= δ0.6 <= +0.29 and 3.44 <= MV <= 7.23. For dwarf and turn-off stars, the relation for ΔMHV is revised and updated in terms of (B - V) and δ0.6, for the ranges of -0.10 <= δ0.6 <= +0.29, and +0.49 <= (B - V)0 <= +0.89, again making use of Hipparcos parallaxes with σπ/π <= 0.1. These parallaxes for

  20. Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site

    NASA Technical Reports Server (NTRS)

    Mishra, Nischal; Helder, Dennis; Angal, Amit; Choi, Jason; Xiong, Xiaoxiong

    2014-01-01

    The objective of this paper is to report the improvements in an empirical absolute calibration model developed at South Dakota State University using Libya 4 (+28.55 deg, +23.39 deg) pseudo invariant calibration site (PICS). The approach was based on use of the Terra MODIS as the radiometer to develop an absolute calibration model for the spectral channels covered by this instrument from visible to shortwave infrared. Earth Observing One (EO-1) Hyperion, with a spectral resolution of 10 nm, was used to extend the model to cover visible and near-infrared regions. A simple Bidirectional Reflectance Distribution function (BRDF) model was generated using Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations over Libya 4 and the resulting model was validated with nadir data acquired from satellite sensors such as Aqua MODIS and Landsat 7 (L7) Enhanced Thematic Mapper (ETM+). The improvements in the absolute calibration model to account for the BRDF due to off-nadir measurements and annual variations in the atmosphere are summarized. BRDF models due to off-nadir viewing angles have been derived using the measurements from EO-1 Hyperion. In addition to L7 ETM+, measurements from other sensors such as Aqua MODIS, UK-2 Disaster Monitoring Constellation (DMC), ENVISAT Medium Resolution Imaging Spectrometer (MERIS) and Operational Land Imager (OLI) onboard Landsat 8 (L8), which was launched in February 2013, were employed to validate the model. These satellite sensors differ in terms of the width of their spectral bandpasses, overpass time, off-nadir-viewing capabilities, spatial resolution and temporal revisit time, etc. The results demonstrate that the proposed empirical calibration model has accuracy of the order of 3% with an uncertainty of about 2% for the sensors used in the study.

  1. Alignment and absolute wavelength calibration of imaging Bragg spectrometers.

    PubMed

    Bertschinger, G; Marchuk, O; Barnsley, R

    2016-11-01

    In the present and the next generation of fusion devices, imaging Bragg spectrometers are key diagnostics to measure plasma parameters in the hot core, especially ion temperature and plasma rotation. The latter quantities are routinely obtained using the Doppler-width and -shift of the emitted spectral lines, respectively. Line shift measurements require absolute accuracies Δλ/λ of about 10 ppm, where λ-is the observed wavelength. For ITER and the present fusion devices, spectral lines of He-and H-like argon, iron, and krypton as well as Ne-like tungsten are foreseen for the measurements. For these lines, Kα lines can be found, some in higher order, which fit into the narrow energy window of the spectrometers. For arbitrary wavelength settings, Kα lines are also used to measure the miscut of the spherical crystals; afterwards the spectrometers can be set according to the geometrical imaging properties using coordinate measurement machines. For the spectrometers measuring Lyα lines of H-like ions, fluorescence targets can provide in situ localized calibration lines on the spectra. The fluorescence targets are used best in transmission and are excited by the thermal x-ray radiation of the plasma. An analytic theory of fluorescence is worked out.

  2. Computational Methodology for Absolute Calibration Curves for Microfluidic Optical Analyses

    PubMed Central

    Chang, Chia-Pin; Nagel, David J.; Zaghloul, Mona E.

    2010-01-01

    Optical fluorescence and absorption are two of the primary techniques used for analytical microfluidics. We provide a thorough yet tractable method for computing the performance of diverse optical micro-analytical systems. Sample sizes range from nano- to many micro-liters and concentrations from nano- to milli-molar. Equations are provided to trace quantitatively the flow of the fundamental entities, namely photons and electrons, and the conversion of energy from the source, through optical components, samples and spectral-selective components, to the detectors and beyond. The equations permit facile computations of calibration curves that relate the concentrations or numbers of molecules measured to the absolute signals from the system. This methodology provides the basis for both detailed understanding and improved design of microfluidic optical analytical systems. It saves prototype turn-around time, and is much simpler and faster to use than ray tracing programs. Over two thousand spreadsheet computations were performed during this study. We found that some design variations produce higher signal levels and, for constant noise levels, lower minimum detection limits. Improvements of more than a factor of 1,000 were realized. PMID:22163573

  3. Anomalous gain in an isotopically mixed CO2 laser and application to absolute wavelength calibration

    NASA Technical Reports Server (NTRS)

    Hewagama, Tilak; Oppenheim, Uri P.; Mumma, Michael J.

    1991-01-01

    Measurements are reported on a grating-tuned CO2 laser, containing an isotropic mixture of O-16C-12O-16, O-16C-12O-18, and O-18C-12O-18. The P6 and R14 lines of O-16C-12O-16 were found to have anomalously high intensities. These anomalies are produced by the near coincidence of the transition frequencies in two distinct isotopes, permitting them to act as a single indistinguishable population. These two lines can be used to identify the rotational quantum numbers in the P and R branch spectra, thereby permitting absolute wavelength calibration to be achieved.

  4. Absolute intensity of radiation emitted by uranium plasmas

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Lee, J. H.; Mcfarland, D. R.

    1975-01-01

    The absolute intensity of radiation emitted by fissioning and nonfissioning uranium plasmas in the spectral range from 350 nm to 1000 nm was measured. The plasma was produced in a plasma-focus apparatus and the plasma properties are simular to those anticipated for plasma-core nuclear reactors. The results are expected to contribute to the establishment of design criteria for the development of plasma-core reactors.

  5. On the absolute calibration of SO2 cameras

    USGS Publications Warehouse

    Lübcke, Peter; Bobrowski, Nicole; Illing, Sebastian; Kern, Christoph; Alvarez Nieves, Jose Manuel; Vogel, Leif; Zielcke, Johannes; Delgados Granados, Hugo; Platt, Ulrich

    2013-01-01

    This work investigates the uncertainty of results gained through the two commonly used, but quite different, calibration methods (DOAS and calibration cells). Measurements with three different instruments, an SO2 camera, a NFOVDOAS system and an Imaging DOAS (I-DOAS), are presented. We compare the calibration-cell approach with the calibration from the NFOV-DOAS system. The respective results are compared with measurements from an I-DOAS to verify the calibration curve over the spatial extent of the image. The results show that calibration cells, while working fine in some cases, can lead to an overestimation of the SO2 CD by up to 60% compared with CDs from the DOAS measurements. Besides these errors of calibration, radiative transfer effects (e.g. light dilution, multiple scattering) can significantly influence the results of both instrument types. The measurements presented in this work were taken at Popocatepetl, Mexico, between 1 March 2011 and 4 March 2011. Average SO2 emission rates between 4.00 and 14.34 kg s−1 were observed.

  6. CATE 2016 Indonesia: Image Calibration, Intensity Calibration, and Drift Scan

    NASA Astrophysics Data System (ADS)

    Hare, H. S.; Kovac, S. A.; Jensen, L.; McKay, M. A.; Bosh, R.; Watson, Z.; Mitchell, A. M.; Penn, M. J.

    2016-12-01

    The citizen Continental America Telescopic Eclipse (CATE) experiment aims to provide equipment for 60 sites across the path of totality for the United States August 21st, 2017 total solar eclipse. The opportunity to gather ninety minutes of continuous images of the solar corona is unmatched by any other previous eclipse event. In March of 2016, 5 teams were sent to Indonesia to test CATE equipment and procedures on the March 9th, 2016 total solar eclipse. Also, a goal of the trip was practice and gathering data to use in testing data reduction methods. Of the five teams, four collected data. While in Indonesia, each group participated in community outreach in the location of their site. The 2016 eclipse allowed CATE to test the calibration techniques for the 2017 eclipse. Calibration dark current and flat field images were collected to remove variation across the cameras. Drift scan observations provided information to rotationally align the images from each site. These image's intensity values allowed for intensity calibration for each of the sites. A GPS at each site corrected for major computer errors in time measurement of images. Further refinement of these processes is required before the 2017 eclipse. This work was made possible through the NSO Training for the 2017 Citizen CATE Experiment funded by NASA (NASA NNX16AB92A).

  7. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-01-01

    The need for independent, redundant absolute radiometric calibration methods is discussed with reference to the Thematic Mapper. Uncertainty requirements for absolute calibration of between 0.5 and 4 percent are defined based on the accuracy of reflectance retrievals at an agricultural site. It is shown that even very approximate atmospheric corrections can reduce the error in reflectance retrieval to 0.02 over the reflectance range 0 to 0.4.

  8. Confidence-Accuracy Calibration in Absolute and Relative Face Recognition Judgments

    ERIC Educational Resources Information Center

    Weber, Nathan; Brewer, Neil

    2004-01-01

    Confidence-accuracy (CA) calibration was examined for absolute and relative face recognition judgments as well as for recognition judgments from groups of stimuli presented simultaneously or sequentially (i.e., simultaneous or sequential mini-lineups). When the effect of difficulty was controlled, absolute and relative judgments produced…

  9. Goddard Laser for Absolute Measurement of Radiance for Instrument Calibration in the Ultraviolet to Short Wave Infrared

    NASA Technical Reports Server (NTRS)

    McAndrew, Brendan; McCorkel, Joel; Shuman, Timothy; Zukowski, Barbara; Traore, Aboubakar; Rodriguez, Michael; Brown, Steven; Woodward, John

    2018-01-01

    A description of the Goddard Laser for Absolute Calibration of Radiance, a tunable, narrow linewidth spectroradiometric calibration tool, and results from calibration of an earth science satellite instrument from ultraviolet to short wave infrared wavelengths.

  10. First Absolutely Calibrated Localized Measurements of Ion Velocity in the MST in Locked and Rotating Plasmas

    NASA Astrophysics Data System (ADS)

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; Munaretto, S.

    2015-11-01

    An Ion Doppler Spectrometer (IDS) is used on MST for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometer records data within 0.3 nm of the C+5 line of interest, and commercial calibration lamps do not produce lines in this narrow range . A novel optical system was designed to absolutely calibrate the IDS. The device uses an UV LED to produce a broad emission curve in the desired region. A Fabry-Perot etalon filters this light, cutting transmittance peaks into the pattern of the LED emission. An optical train of fused silica lenses focuses the light into the IDS with f/4. A holographic diffuser blurs the light cone to increase homogeneity. Using this light source, the absolute Doppler shift of ion emissions can be measured in MST plasmas. In combination with charge exchange recombination spectroscopy, localized ion velocities can now be measured. Previously, a time-averaged measurement along the chord bisecting the poloidal plane was used to calibrate the IDS; the quality of these central chord calibrations can be characterized with our absolute calibration. Calibration errors may also be quantified and minimized by optimizing the curve-fitting process. Preliminary measurements of toroidal velocity in locked and rotating plasmas will be shown. This work has been supported by the US DOE.

  11. Absolute photometric calibration of IRAC: lessons learned using nine years of flight data

    NASA Astrophysics Data System (ADS)

    Carey, S.; Ingalls, J.; Hora, J.; Surace, J.; Glaccum, W.; Lowrance, P.; Krick, J.; Cole, D.; Laine, S.; Engelke, C.; Price, S.; Bohlin, R.; Gordon, K.

    2012-09-01

    Significant improvements in our understanding of various photometric effects have occurred in the more than nine years of flight operations of the Infrared Array Camera aboard the Spitzer Space Telescope. With the accumulation of calibration data, photometric variations that are intrinsic to the instrument can now be mapped with high fidelity. Using all existing data on calibration stars, the array location-dependent photometric correction (the variation of flux with position on the array) and the correction for intra-pixel sensitivity variation (pixel-phase) have been modeled simultaneously. Examination of the warm mission data enabled the characterization of the underlying form of the pixelphase variation in cryogenic data. In addition to the accumulation of calibration data, significant improvements in the calibration of the truth spectra of the calibrators has taken place. Using the work of Engelke et al. (2006), the KIII calibrators have no offset as compared to the AV calibrators, providing a second pillar of the calibration scheme. The current cryogenic calibration is better than 3% in an absolute sense, with most of the uncertainty still in the knowledge of the true flux densities of the primary calibrators. We present the final state of the cryogenic IRAC calibration and a comparison of the IRAC calibration to an independent calibration methodology using the HST primary calibrators.

  12. Improvements in absolute seismometer sensitivity calibration using local earth gravity measurements

    USGS Publications Warehouse

    Anthony, Robert E.; Ringler, Adam; Wilson, David

    2018-01-01

    The ability to determine both absolute and relative seismic amplitudes is fundamentally limited by the accuracy and precision with which scientists are able to calibrate seismometer sensitivities and characterize their response. Currently, across the Global Seismic Network (GSN), errors in midband sensitivity exceed 3% at the 95% confidence interval and are the least‐constrained response parameter in seismic recording systems. We explore a new methodology utilizing precise absolute Earth gravity measurements to determine the midband sensitivity of seismic instruments. We first determine the absolute sensitivity of Kinemetrics EpiSensor accelerometers to 0.06% at the 99% confidence interval by inverting them in a known gravity field at the Albuquerque Seismological Laboratory (ASL). After the accelerometer is calibrated, we install it in its normal configuration next to broadband seismometers and subject the sensors to identical ground motions to perform relative calibrations of the broadband sensors. Using this technique, we are able to determine the absolute midband sensitivity of the vertical components of Nanometrics Trillium Compact seismometers to within 0.11% and Streckeisen STS‐2 seismometers to within 0.14% at the 99% confidence interval. The technique enables absolute calibrations from first principles that are traceable to National Institute of Standards and Technology (NIST) measurements while providing nearly an order of magnitude more precision than step‐table calibrations.

  13. Absolute intensity measurements of impurity emissions in a shock tunnel and their consequences for laser-induced fluorescence experiments

    NASA Technical Reports Server (NTRS)

    Palma, P. C.; Houwing, A. F. P.; Sandeman, R. J.

    1993-01-01

    Absolute intensity measurements of impurity emissions in a shock tunnel nozzle flow are presented. The impurity emission intensities were measured with a photomultiplier and optical multichannel analyzer and calibrated against an intensity standard. The various metallic contaminants were identified and their intensities measured in the spectral regions 290 to 330 nm and 375 to 385 nm. A comparison with calculated fluorescence intensities for predissociated laser-induced fluorescence signals is made. It is found that the emission background is negligible for most fluorescence experiments.

  14. Intensity correlation-based calibration of FRET.

    PubMed

    Bene, László; Ungvári, Tamás; Fedor, Roland; Sasi Szabó, László; Damjanovich, László

    2013-11-05

    Dual-laser flow cytometric resonance energy transfer (FCET) is a statistically efficient and accurate way of determining proximity relationships for molecules of cells even under living conditions. In the framework of this algorithm, absolute fluorescence resonance energy transfer (FRET) efficiency is determined by the simultaneous measurement of donor-quenching and sensitized emission. A crucial point is the determination of the scaling factor α responsible for balancing the different sensitivities of the donor and acceptor signal channels. The determination of α is not simple, requiring preparation of special samples that are generally different from a double-labeled FRET sample, or by the use of sophisticated statistical estimation (least-squares) procedures. We present an alternative, free-from-spectral-constants approach for the determination of α and the absolute FRET efficiency, by an extension of the presented framework of the FCET algorithm with an analysis of the second moments (variances and covariances) of the detected intensity distributions. A quadratic equation for α is formulated with the intensity fluctuations, which is proved sufficiently robust to give accurate α-values on a cell-by-cell basis in a wide system of conditions using the same double-labeled sample from which the FRET efficiency itself is determined. This seemingly new approach is illustrated by FRET measurements between epitopes of the MHCI receptor on the cell surface of two cell lines, FT and LS174T. The figures show that whereas the common way of α determination fails at large dye-per-protein labeling ratios of mAbs, this presented-as-new approach has sufficient ability to give accurate results. Although introduced in a flow cytometer, the new approach can also be straightforwardly used with fluorescence microscopes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Confidence-accuracy calibration in absolute and relative face recognition judgments.

    PubMed

    Weber, Nathan; Brewer, Neil

    2004-09-01

    Confidence-accuracy (CA) calibration was examined for absolute and relative face recognition judgments as well as for recognition judgments from groups of stimuli presented simultaneously or sequentially (i.e., simultaneous or sequential mini-lineups). When the effect of difficulty was controlled, absolute and relative judgments produced negligibly different CA calibration, whereas no significant difference was observed for simultaneous and sequential mini-lineups. Further, the effect of difficulty on CA calibration was equivalent across judgment and mini-lineup types. It is interesting to note that positive (i.e., old) recognition judgments demonstrated strong CA calibration whereas negative (i.e., new) judgments evidenced little or no CA association. Implications for eyewitness identification are discussed. (c) 2004 APA, all rights reserved.

  16. Calibration of the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Barnes, Robert; Baize, Rosemary; O'Connell, Joseph; Hair, Jason

    2010-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements.

  17. Artifact correction and absolute radiometric calibration techniques employed in the Landsat 7 image assessment system

    USGS Publications Warehouse

    Boncyk, Wayne C.; Markham, Brian L.; Barker, John L.; Helder, Dennis

    1996-01-01

    The Landsat-7 Image Assessment System (IAS), part of the Landsat-7 Ground System, will calibrate and evaluate the radiometric and geometric performance of the Enhanced Thematic Mapper Plus (ETM +) instrument. The IAS incorporates new instrument radiometric artifact correction and absolute radiometric calibration techniques which overcome some limitations to calibration accuracy inherent in historical calibration methods. Knowledge of ETM + instrument characteristics gleaned from analysis of archival Thematic Mapper in-flight data and from ETM + prelaunch tests allow the determination and quantification of the sources of instrument artifacts. This a priori knowledge will be utilized in IAS algorithms designed to minimize the effects of the noise sources before calibration, in both ETM + image and calibration data.

  18. Vicarious absolute radiometric calibration of GF-2 PMS2 sensor using permanent artificial targets in China

    NASA Astrophysics Data System (ADS)

    Liu, Yaokai; Li, Chuanrong; Ma, Lingling; Wang, Ning; Qian, Yonggang; Tang, Lingli

    2016-10-01

    GF-2, launched on August 19 2014, is one of the high-resolution land resource observing satellite of the China GF series satellites plan. The radiometric performance evaluation of the onboard optical pan and multispectral (PMS2) sensor of GF-2 satellite is very important for the further application of the data. And, the vicarious absolute radiometric calibration approach is one of the most useful way to monitor the radiometric performance of the onboard optical sensors. In this study, the traditional reflectance-based method is used to vicarious radiometrically calibrate the onboard PMS2 sensor of GF-2 satellite using three black, gray and white reflected permanent artificial targets located in the AOE Baotou site in China. Vicarious field calibration campaign were carried out in the AOE-Baotou calibration site on 22 April 2016. And, the absolute radiometric calibration coefficients were determined with in situ measured atmospheric parameters and surface reflectance of the permanent artificial calibration targets. The predicted TOA radiance of a selected desert area with our determined calibrated coefficients were compared with the official distributed calibration coefficients. Comparison results show a good consistent and the mean relative difference of the multispectral channels is less than 5%. Uncertainty analysis was also carried out and a total uncertainty with 3.87% is determined of the TOA radiance.

  19. Absolute Wavelength Calibration of the IDSII Spectrometer for Impurity Ion Velocity Measurements in the MST

    NASA Astrophysics Data System (ADS)

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; MST Team

    2014-10-01

    The MST operates two Ion Doppler Spectrometers (IDS) for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometers record data within 0.3 nm of the line of interest, and commercial calibration lamps do not produce lines in this narrow range . Four calibration methods were investigated. First, emission along the chord bisecting the poloidal plane was measured as it should have no time-averaged Doppler shift. Second, a calibrated CCD spectrometer and the IDSII were used to observe the same plasma from opposing sides so as to measure opposite Doppler shifts. The unshifted line is located halfway between the two opposing measurements. Third, the two fibers of the IDSI were positioned to take absolute flow measurements using opposing views. Substituting the IDSII for one of the IDSI fibers, absolute measurements of flow from the IDSI were used to calibrate the IDSII. Finally, an optical system was designed to filter an ultraviolet LED, providing a known wavelength source within the spectral range covered by the IDSII. The optical train is composed of an air-gapped etalon and fused silica lenses. The quality of calibration for each of these methods is analyzed and their results compared. Preliminary impurity ion velocity measurements are shown. This work has been supported by the US DOE and the NSF.

  20. Absolute flux density calibrations of radio sources: 2.3 GHz

    NASA Technical Reports Server (NTRS)

    Freiley, A. J.; Batelaan, P. D.; Bathker, D. A.

    1977-01-01

    A detailed description of a NASA/JPL Deep Space Network program to improve S-band gain calibrations of large aperture antennas is reported. The program is considered unique in at least three ways; first, absolute gain calibrations of high quality suppressed-sidelobe dual mode horns first provide a high accuracy foundation to the foundation to the program. Second, a very careful transfer calibration technique using an artificial far-field coherent-wave source was used to accurately obtain the gain of one large (26 m) aperture. Third, using the calibrated large aperture directly, the absolute flux density of five selected galactic and extragalactic natural radio sources was determined with an absolute accuracy better than 2 percent, now quoted at the familiar 1 sigma confidence level. The follow-on considerations to apply these results to an operational network of ground antennas are discussed. It is concluded that absolute gain accuracies within + or - 0.30 to 0.40 db are possible, depending primarily on the repeatability (scatter) in the field data from Deep Space Network user stations.

  1. Absolute Magnitude Calibration for Dwarfs Based on the Colour-Magnitude Diagrams of Galactic Clusters

    NASA Astrophysics Data System (ADS)

    Karaali, S.; Gökçe, E. Yaz; Bilir, S.; Güçtekin, S. Tunçel

    2014-07-01

    We present two absolute magnitude calibrations for dwarfs based on colour-magnitude diagrams of Galactic clusters. The combination of the Mg absolute magnitudes of the dwarf fiducial sequences of the clusters M92, M13, M5, NGC 2420, M67, and NGC 6791 with the corresponding metallicities provides absolute magnitude calibration for a given (g - r)0 colour. The calibration is defined in the colour interval 0.25 ≤ (g - r)0 ≤ 1.25 mag and it covers the metallicity interval - 2.15 ≤ [Fe/H] ≤ +0.37 dex. The absolute magnitude residuals obtained by the application of the procedure to another set of Galactic clusters lie in the interval - 0.15 ≤ ΔMg ≤ +0.12 mag. The mean and standard deviation of the residuals are < ΔMg > = - 0.002 and σ = 0.065 mag, respectively. The calibration of the MJ absolute magnitude in terms of metallicity is carried out by using the fiducial sequences of the clusters M92, M13, 47 Tuc, NGC 2158, and NGC 6791. It is defined in the colour interval 0.90 ≤ (V - J)0 ≤ 1.75 mag and it covers the same metallicity interval of the Mg calibration. The absolute magnitude residuals obtained by the application of the procedure to the cluster M5 ([Fe/H] = -1.40 dex) and 46 solar metallicity, - 0.45 ≤ [Fe/H] ≤ +0.35 dex, field stars lie in the interval - 0.29 and + 0.35 mag. However, the range of 87% of them is rather shorter, - 0.20 ≤ ΔMJ ≤ +0.20 mag. The mean and standard deviation of all residuals are < ΔMJ > =0.05 and σ = 0.13 mag, respectively. The derived relations are applicable to stars older than 4 Gyr for the Mg calibration, and older than 2 Gyr for the MJ calibration. The cited limits are the ages of the youngest calibration clusters in the two systems.

  2. Absolute x-ray energy calibration and monitoring using a diffraction-based method

    SciTech Connect

    Hong, Xinguo, E-mail: xhong@bnl.gov; Weidner, Donald J.; Duffy, Thomas S.

    2016-07-27

    In this paper, we report some recent developments of the diffraction-based absolute X-ray energy calibration method. In this calibration method, high spatial resolution of the measured detector offset is essential. To this end, a remotely controlled long-translation motorized stage was employed instead of the less convenient gauge blocks. It is found that the precision of absolute X-ray energy calibration (ΔE/E) is readily achieved down to the level of 10{sup −4} for high-energy monochromatic X-rays (e.g. 80 keV). Examples of applications to pair distribution function (PDF) measurements and energy monitoring for high-energy X-rays are presented.

  3. Infrared mapping of ultrasound fields generated by medical transducers: feasibility of determining absolute intensity levels.

    PubMed

    Khokhlova, Vera A; Shmeleva, Svetlana M; Gavrilov, Leonid R; Martin, Eleanor; Sadhoo, Neelaksh; Shaw, Adam

    2013-08-01

    Considerable progress has been achieved in the use of infrared (IR) techniques for qualitative mapping of acoustic fields of high intensity focused ultrasound (HIFU) transducers. The authors have previously developed and demonstrated a method based on IR camera measurement of the temperature rise induced in an absorber less than 2 mm thick by ultrasonic bursts of less than 1 s duration. The goal of this paper was to make the method more quantitative and estimate the absolute intensity distributions by determining an overall calibration factor for the absorber and camera system. The implemented approach involved correlating the temperature rise measured in an absorber using an IR camera with the pressure distribution measured in water using a hydrophone. The measurements were conducted for two HIFU transducers and a flat physiotherapy transducer of 1 MHz frequency. Corresponding correction factors between the free field intensity and temperature were obtained and allowed the conversion of temperature images to intensity distributions. The system described here was able to map in good detail focused and unfocused ultrasound fields with sub-millimeter structure and with local time average intensity from below 0.1 W/cm(2) to at least 50 W/cm(2). Significantly higher intensities could be measured simply by reducing the duty cycle.

  4. Infrared mapping of ultrasound fields generated by medical transducers: Feasibility of determining absolute intensity levels

    PubMed Central

    Khokhlova, Vera A.; Shmeleva, Svetlana M.; Gavrilov, Leonid R.; Martin, Eleanor; Sadhoo, Neelaksh; Shaw, Adam

    2013-01-01

    Considerable progress has been achieved in the use of infrared (IR) techniques for qualitative mapping of acoustic fields of high intensity focused ultrasound (HIFU) transducers. The authors have previously developed and demonstrated a method based on IR camera measurement of the temperature rise induced in an absorber less than 2 mm thick by ultrasonic bursts of less than 1 s duration. The goal of this paper was to make the method more quantitative and estimate the absolute intensity distributions by determining an overall calibration factor for the absorber and camera system. The implemented approach involved correlating the temperature rise measured in an absorber using an IR camera with the pressure distribution measured in water using a hydrophone. The measurements were conducted for two HIFU transducers and a flat physiotherapy transducer of 1 MHz frequency. Corresponding correction factors between the free field intensity and temperature were obtained and allowed the conversion of temperature images to intensity distributions. The system described here was able to map in good detail focused and unfocused ultrasound fields with sub-millimeter structure and with local time average intensity from below 0.1 W/cm2 to at least 50 W/cm2. Significantly higher intensities could be measured simply by reducing the duty cycle. PMID:23927199

  5. Absolute calibration of optical streak cameras on picosecond time scales using supercontinuum generation

    DOE PAGES

    Patankar, S.; Gumbrell, E. T.; Robinson, T. S.; ...

    2017-08-17

    Here we report a new method using high stability, laser-driven supercontinuum generation in a liquid cell to calibrate the absolute photon response of fast optical streak cameras as a function of wavelength when operating at fastest sweep speeds. A stable, pulsed white light source based around the use of self-phase modulation in a salt solution was developed to provide the required brightness on picosecond timescales, enabling streak camera calibration in fully dynamic operation. The measured spectral brightness allowed for absolute photon response calibration over a broad spectral range (425-650nm). Calibrations performed with two Axis Photonique streak cameras using the Photonismore » P820PSU streak tube demonstrated responses which qualitatively follow the photocathode response. Peak sensitivities were 1 photon/count above background. The absolute dynamic sensitivity is less than the static by up to an order of magnitude. We attribute this to the dynamic response of the phosphor being lower.« less

  6. Four Years of Absolutely Calibrated Hyperspectral Data from the Atmospheric Infrared Sounder (AIRS) on the Eos Aqua

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Broberg, Steve; Elliott, Denis; Gregorich, Dave

    2006-01-01

    This viewgraph presentation reviews four years of absolute calibration of hyperspectral data from the AIRS instrument located on the EOS AQUA spacecraft. The following topics are discussed: 1) A quick overview of AIRS; 2) What absolute calibration accuracy and stability are required for climate applications?; 3) Validating of radiance accuracy and stability: Results from four years of AIRS data; and 4) Conclusions.

  7. Absolute wavelength calibration of a Doppler spectrometer with a custom Fabry-Perot optical system.

    PubMed

    Baltzer, M M; Craig, D; Den Hartog, D J; Nishizawa, T; Nornberg, M D

    2016-11-01

    An Ion Doppler Spectrometer (IDS) is used for fast measurements of C VI line emission (343.4 nm) in the Madison Symmetric Torus. Absolutely calibrated flow measurements are difficult because the IDS records data within 0.25 nm of the line. Commercial calibration lamps do not produce lines in this narrow range. A light source using an ultraviolet LED and etalon was designed to provide a fiducial marker 0.08 nm wide. The light is coupled into the IDS at f/4, and a holographic diffuser increases homogeneity of the final image. Random and systematic errors in data analysis were assessed. The calibration is accurate to 0.003 nm, allowing for flow measurements accurate to 3 km/s. This calibration is superior to the previous method which used a time-averaged measurement along a chord believed to have zero net Doppler shift.

  8. Absolute wavelength calibration of a Doppler spectrometer with a custom Fabry-Perot optical system

    NASA Astrophysics Data System (ADS)

    Baltzer, M. M.; Craig, D.; Den Hartog, D. J.; Nishizawa, T.; Nornberg, M. D.

    2016-11-01

    An Ion Doppler Spectrometer (IDS) is used for fast measurements of C VI line emission (343.4 nm) in the Madison Symmetric Torus. Absolutely calibrated flow measurements are difficult because the IDS records data within 0.25 nm of the line. Commercial calibration lamps do not produce lines in this narrow range. A light source using an ultraviolet LED and etalon was designed to provide a fiducial marker 0.08 nm wide. The light is coupled into the IDS at f/4, and a holographic diffuser increases homogeneity of the final image. Random and systematic errors in data analysis were assessed. The calibration is accurate to 0.003 nm, allowing for flow measurements accurate to 3 km/s. This calibration is superior to the previous method which used a time-averaged measurement along a chord believed to have zero net Doppler shift.

  9. Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC

    SciTech Connect

    Magee, R. M., E-mail: rmagee@trialphaenergy.com; Clary, R.; Korepanov, S.

    2016-11-15

    In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10{sup 7} n/s AmBe source. The practical issues of each methodmore » are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.« less

  10. Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC.

    PubMed

    Magee, R M; Clary, R; Korepanov, S; Jauregui, F; Allfrey, I; Garate, E; Valentine, T; Smirnov, A

    2016-11-01

    In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10 7 n/s AmBe source. The practical issues of each method are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.

  11. Rapid, absolute calibration of x-ray filters employed by laser-produced plasma diagnostics

    SciTech Connect

    Brown, G. V.; Beiersdorfer, P.; Emig, J.

    2008-10-15

    The Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of x-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen x-ray energies. X rays are detected using the high resolution EBIT Calorimeter Spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the x-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification ofmore » filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated x-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed.« less

  12. Absolute mass scale calibration in the inverse problem of the physical theory of fireballs.

    NASA Astrophysics Data System (ADS)

    Kalenichenko, V. V.

    A method of the absolute mass scale calibration is suggested for solving the inverse problem of the physical theory of fireballs. The method is based on the data on the masses of the fallen meteorites whose fireballs have been photographed in their flight. The method may be applied to those fireballs whose bodies have not experienced considerable fragmentation during their destruction in the atmosphere and have kept their form well enough. Statistical analysis of the inverse problem solution for a sufficiently representative sample makes it possible to separate a subsample of such fireballs. The data on the Lost City and Innisfree meteorites are used to obtain calibration coefficients.

  13. Absolute calibration of the mass scale in the inverse problem of the physical theory of fireballs

    NASA Astrophysics Data System (ADS)

    Kalenichenko, V. V.

    1992-08-01

    A method of the absolute calibration of the mass scale is proposed for solving the inverse problem of the physical theory of fireballs. The method is based on data on the masses of fallen meteorites whose fireballs have been photographed in flight. The method can be applied to fireballs whose bodies have not experienced significant fragmentation during their flight in the atmosphere and have kept their shape relatively well. Data on the Lost City and Innisfree meteorites are used to calculate the calibration coefficients.

  14. Calibration-free absolute frequency response measurement of directly modulated lasers based on additional modulation.

    PubMed

    Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-10-15

    A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.

  15. Absolute calibration of a charge-coupled device camera with twin beams

    SciTech Connect

    Meda, A.; Ruo-Berchera, I., E-mail: i.ruoberchera@inrim.it; Degiovanni, I. P.

    2014-09-08

    We report on the absolute calibration of a Charge-Coupled Device (CCD) camera by exploiting quantum correlation. This method exploits a certain number of spatial pairwise quantum correlated modes produced by spontaneous parametric-down-conversion. We develop a measurement model accounting for all the uncertainty contributions, and we reach the relative uncertainty of 0.3% in low photon flux regime. This represents a significant step forward for the characterization of (scientific) CCDs used in mesoscopic light regime.

  16. Empirical photometric calibration of the Gaia red clump: Colours, effective temperature, and absolute magnitude

    NASA Astrophysics Data System (ADS)

    Ruiz-Dern, L.; Babusiaux, C.; Arenou, F.; Turon, C.; Lallement, R.

    2018-01-01

    Context. Gaia Data Release 1 allows the recalibration of standard candles such as the red clump stars. To use those stars, they first need to be accurately characterised. In particular, colours are needed to derive interstellar extinction. As no filter is available for the first Gaia data release and to avoid the atmosphere model mismatch, an empirical calibration is unavoidable. Aims: The purpose of this work is to provide the first complete and robust photometric empirical calibration of the Gaia red clump stars of the solar neighbourhood through colour-colour, effective temperature-colour, and absolute magnitude-colour relations from the Gaia, Johnson, 2MASS, HIPPARCOS, Tycho-2, APASS-SLOAN, and WISE photometric systems, and the APOGEE DR13 spectroscopic temperatures. Methods: We used a 3D extinction map to select low reddening red giants. To calibrate the colour-colour and the effective temperature-colour relations, we developed a MCMC method that accounts for all variable uncertainties and selects the best model for each photometric relation. We estimated the red clump absolute magnitude through the mode of a kernel-based distribution function. Results: We provide 20 colour versus G-Ks relations and the first Teff versus G-Ks calibration. We obtained the red clump absolute magnitudes for 15 photometric bands with, in particular, MKs = (-1.606 ± 0.009) and MG = (0.495 ± 0.009) + (1.121 ± 0.128)(G-Ks-2.1). We present a dereddened Gaia-TGAS HR diagram and use the calibrations to compare its red clump and its red giant branch bump with Padova isochrones. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A116

  17. Full-Field Calibration of Color Camera Chromatic Aberration using Absolute Phase Maps.

    PubMed

    Liu, Xiaohong; Huang, Shujun; Zhang, Zonghua; Gao, Feng; Jiang, Xiangqian

    2017-05-06

    The refractive index of a lens varies for different wavelengths of light, and thus the same incident light with different wavelengths has different outgoing light. This characteristic of lenses causes images captured by a color camera to display chromatic aberration (CA), which seriously reduces image quality. Based on an analysis of the distribution of CA, a full-field calibration method based on absolute phase maps is proposed in this paper. Red, green, and blue closed sinusoidal fringe patterns are generated, consecutively displayed on an LCD (liquid crystal display), and captured by a color camera from the front viewpoint. The phase information of each color fringe is obtained using a four-step phase-shifting algorithm and optimum fringe number selection method. CA causes the unwrapped phase of the three channels to differ. These pixel deviations can be computed by comparing the unwrapped phase data of the red, blue, and green channels in polar coordinates. CA calibration is accomplished in Cartesian coordinates. The systematic errors introduced by the LCD are analyzed and corrected. Simulated results show the validity of the proposed method and experimental results demonstrate that the proposed full-field calibration method based on absolute phase maps will be useful for practical software-based CA calibration.

  18. Absolute Calibration of Si iRMs used for Measurements of Si Paleo-nutrient proxies

    NASA Astrophysics Data System (ADS)

    Vocke, R. D., Jr.; Rabb, S. A.

    2016-12-01

    Silicon isotope variations (reported as δ30Si and δ29Si, relative to NBS28) in silicic acid dissolved in ocean waters, in biogenic silica and in diatoms are extremely informative paleo-nutrient proxies. The resolution and comparability of such measurements depend on the quality of the isotopic Reference Materials (iRMs) defining the delta scale. We report new absolute Si isotopic measurements on the iRMs NBS28 (RM 8546 - Silica Sand), Diatomite, and Big Batch using the Avogadro measurement approach and comparing them with prior assessments of these iRMs. The Avogadro Si measurement technique was developed by the German Physikalish-Technische Bundesanstalt (PTB) to provide a precise and highly accurate method to measure absolute isotopic ratios in highly enriched 28Si (99.996%) material. These measurements are part of an international effort to redefine the kg and mole based on the Planck constant h and the Avogadro constant NA, respectively (Vocke et al., 2014 Metrologia 51, 361, Azuma et al., 2015 Metrologia 52 360). This approach produces absolute Si isotope ratio data with lower levels of uncertainty when compared to the traditional "Atomic Weights" method of absolute isotope ratio measurement calibration. This is illustrated in Fig. 1 where absolute Si isotopic measurements on SRM 990, separated by 40+ years of advances in instrumentation, are compared. The availability of this new technique does not say that absolute Si isotopic ratios are or ever will be better for normal Si isotopic measurements when seeking isotopic variations in nature, because they are not. However, by determining the absolute isotopic ratios of all the Si iRM scale artifacts, such iRMs become traceable to the metric system (SI); thereby automatically conferring on all the artifact-based δ30Si and δ29Si measurements traceability to the base SI unit, the mole. Such traceability should help reduce the potential of bias between different iRMs and facilitate the replacement of delta

  19. Absolute Calibration of Si iRMs used for Si Paleo-nutrient proxies

    NASA Astrophysics Data System (ADS)

    Vocke, Robert; Rabb, Savelas

    2016-04-01

    The Avogadro Project is an ongoing international effort, coordinated by the International Bureau of Weights and Measures (BIPM) and the International Avogadro Coordination (IAC) to redefine the SI unit mole in terms of the Avogadro constant and the SI unit kg in terms of the Planck constant. One of the outgrowths of this effort has been the development of a novel, precise and highly accurate method to measure calibrated (absolute) isotopic ratios that are traceable to the SI (Vocke et al., 2014 Metrologia 51, 361, Azuma et al., 2015 Metrologia 52 360). This approach has also been able to produce absolute Si isotope ratio data with lower levels of uncertainty when compared to the traditional "Atomic Weights" method of absolute isotope ratio measurement. Silicon isotope variations (reported as delta(Si30)and delta(Si29)) in silicic acid dissolved in ocean waters, in biogenic silica and in diatoms are extremely informative paleo-nutrient proxies. The utility and comparability of such measurements however depends on calibration with artifact isotopic Reference Materials (iRMs). We will be reporting new measurements on the iRMs NBS-28 (RM 8546 - Silica Sand), Diatomite, Big Batch and SRM 990 using the Avogadro measurement approach, comparing them with prior assessments of these iRMs.

  20. SU-F-T-492: The Impact of Water Temperature On Absolute Dose Calibration

    SciTech Connect

    Islam, N; Podgorsak, M; Roswell Park Cancer Institute, Buffalo, NY

    Purpose: The Task Group 51 (TG 51) protocol prescribes that dose calibration of photon beams be done by irradiating an ionization chamber in a water tank at pre-defined depths. Methodologies are provided to account for variations in measurement conditions by applying correction factors. However, the protocol does not completely account for the impact of water temperature. It is well established that water temperature will influence the density of air in the ion chamber collecting volume. Water temperature, however, will also influence the size of the collecting volume via thermal expansion of the cavity wall and the density of the watermore » in the tank. In this work the overall effect of water temperature on absolute dosimetry has been investigated. Methods: Dose measurements were made using a Farmer-type ion chamber for 6 and 23 MV photon beams with water temperatures ranging from 10 to 40°C. A reference ion chamber was used to account for fluctuations in beam output between successive measurements. Results: For the same beam output, the dose determined using TG 51 was dependent on the temperature of the water in the tank. A linear regression of the data suggests that the dependence is statistically significant with p-values of the slope equal to 0.003 and 0.01 for 6 and 23 MV beams, respectively. For a 10 degree increase in water phantom temperature, the absolute dose determined with TG 51 increased by 0.27% and 0.31% for 6 and 23 MV beams, respectively. Conclusion: There is a measurable effect of water temperature on absolute dose calibration. To account for this effect, a reference temperature can be defined and a correction factor applied to account for deviations from this reference temperature during beam calibration. Such a factor is expected to be of similar magnitude to most of the existing TG 51 correction factors.« less

  1. Performance of Different Light Sources for the Absolute Calibration of Radiation Thermometers

    NASA Astrophysics Data System (ADS)

    Martín, M. J.; Mantilla, J. M.; del Campo, D.; Hernanz, M. L.; Pons, A.; Campos, J.

    2017-09-01

    The evolving mise en pratique for the definition of the kelvin (MeP-K) [1, 2] will, in its forthcoming edition, encourage the realization and dissemination of the thermodynamic temperature either directly (primary thermometry) or indirectly (relative primary thermometry) via fixed points with assigned reference thermodynamic temperatures. In the last years, the Centro Español de Metrología (CEM), in collaboration with the Instituto de Óptica of Consejo Superior de Investigaciones Científicas (IO-CSIC), has developed several setups for absolute calibration of standard radiation thermometers using the radiance method to allow CEM the direct dissemination of the thermodynamic temperature and the assignment of the thermodynamic temperatures to several fixed points. Different calibration facilities based on a monochromator and/or a laser and an integrating sphere have been developed to calibrate CEM's standard radiation thermometers (KE-LP2 and KE-LP4) and filter radiometer (FIRA2). This system is based on the one described in [3] placed in IO-CSIC. Different light sources have been tried and tested for measuring absolute spectral radiance responsivity: a Xe-Hg 500 W lamp, a supercontinuum laser NKT SuperK-EXR20 and a diode laser emitting at 6473 nm with a typical maximum power of 120 mW. Their advantages and disadvantages have been studied such as sensitivity to interferences generated by the laser inside the filter, flux stability generated by the radiant sources and so forth. This paper describes the setups used, the uncertainty budgets and the results obtained for the absolute temperatures of Cu, Co-C, Pt-C and Re-C fixed points, measured with the three thermometers with central wavelengths around 650 nm.

  2. ACCESS, Absolute Color Calibration Experiment for Standard Stars: Integration, Test, and Ground Performance

    NASA Astrophysics Data System (ADS)

    Kaiser, Mary Elizabeth; Morris, Matthew; Aldoroty, Lauren; Kurucz, Robert; McCandliss, Stephan; Rauscher, Bernard; Kimble, Randy; Kruk, Jeffrey; Wright, Edward L.; Feldman, Paul; Riess, Adam; Gardner, Jonathon; Bohlin, Ralph; Deustua, Susana; Dixon, Van; Sahnow, David J.; Perlmutter, Saul

    2018-01-01

    Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. Systematic errors associated with astrophysical data used to probe fundamental astrophysical questions, such as SNeIa observations used to constrain dark energy theories, now exceed the statistical errors associated with merged databases of these measurements. ACCESS, “Absolute Color Calibration Experiment for Standard Stars”, is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35‑1.7μm bandpass. To achieve this goal ACCESS (1) observes HST/ Calspec stars (2) above the atmosphere to eliminate telluric spectral contaminants (e.g. OH) (3) using a single optical path and (HgCdTe) detector (4) that is calibrated to NIST laboratory standards and (5) monitored on the ground and in-flight using a on-board calibration monitor. The observations are (6) cross-checked and extended through the generation of stellar atmosphere models for the targets. The ACCESS telescope and spectrograph have been designed, fabricated, and integrated. Subsystems have been tested. Performance results for subsystems, operations testing, and the integrated spectrograph will be presented. NASA sounding rocket grant NNX17AC83G supports this work.

  3. First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University

    PubMed Central

    Hu, Zhigang; Zhao, Qile; Chen, Guo; Wang, Guangxing; Dai, Zhiqiang; Li, Tao

    2015-01-01

    GNSS receiver antenna phase center variations (PCVs), which arise from the non-spherical phase response of GNSS signals have to be well corrected for high-precision GNSS applications. Without using a precise antenna phase center correction (PCC) model, the estimated position of a station monument will lead to a bias of up to several centimeters. The Chinese large-scale research project “Crustal Movement Observation Network of China” (CMONOC), which requires high-precision positions in a comprehensive GPS observational network motived establishment of a set of absolute field calibrations of the GPS receiver antenna located at Wuhan University. In this paper the calibration facilities are firstly introduced and then the multipath elimination and PCV estimation strategies currently used are elaborated. The validation of estimated PCV values of test antenna are finally conducted, compared with the International GNSS Service (IGS) type values. Examples of TRM57971.00 NONE antenna calibrations from our calibration facility demonstrate that the derived PCVs and IGS type mean values agree at the 1 mm level. PMID:26580616

  4. First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University.

    PubMed

    Hu, Zhigang; Zhao, Qile; Chen, Guo; Wang, Guangxing; Dai, Zhiqiang; Li, Tao

    2015-11-13

    GNSS receiver antenna phase center variations (PCVs), which arise from the non-spherical phase response of GNSS signals have to be well corrected for high-precision GNSS applications. Without using a precise antenna phase center correction (PCC) model, the estimated position of a station monument will lead to a bias of up to several centimeters. The Chinese large-scale research project "Crustal Movement Observation Network of China" (CMONOC), which requires high-precision positions in a comprehensive GPS observational network motived establishment of a set of absolute field calibrations of the GPS receiver antenna located at Wuhan University. In this paper the calibration facilities are firstly introduced and then the multipath elimination and PCV estimation strategies currently used are elaborated. The validation of estimated PCV values of test antenna are finally conducted, compared with the International GNSS Service (IGS) type values. Examples of TRM57971.00 NONE antenna calibrations from our calibration facility demonstrate that the derived PCVs and IGS type mean values agree at the 1 mm level.

  5. Landsat-7 ETM+ on-orbit reflective-band radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Thome, K.J.; Barsi, J.A.; Kaita, E.; Helder, Dennis L.; Barker, J. L.; Scaramuzza, Pat

    2004-01-01

    Launched in April 1999, the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) instrument is in its sixth year of operation. The ETM+ instrument has been the most stable of any of the Landsat instruments. To date, the best onboard calibration source for the reflective bands has been the Full Aperture Solar Calibrator, a solar-diffuser-based system, which has indicated changes of between 1% to 2% per year in the ETM+ gain for bands 1-4 and 8 and less than 0.5%/year for bands 5 and 7. However, most of this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on vicarious calibrations and observations of "invariant sites", hyperarid sites of the Sahara and Arabia. Weighted average slopes determined from these datasets suggest changes of 0.0% to 0.4% per year for bands 1-4 and 8 and 0.4% to 0.5% per year for bands 5 and 7. Absolute calibration of the reflective bands of the ETM+ is consistent with vicarious observations and other sensors generally at the 5% level, though there appear to be some systematic differences.

  6. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1989-01-01

    The measurement conditions are described for an intensive field campaign at White Sands Missile Range for the calibration of the AVHRRs on NOAA-9, NOAA-10 and NOAA-11, LANDSAT-4 TM and SPOT. Three different methods for calibration of AVHRRs by reference to a ground surface site are reported, and results from these methods are compared. Significant degradations in NOAA-9 and NOAA-10 AVHRR responsivities occurred since prelaunch calibrations were completed. As of February 1988, degradations in NOAA-9 AVHRR responsivities were on the order of 37 percent in channel and 41 percent in channel 2, and for the NOAA-10 AVHRR these degradations were 42 and 59 percent in channels 1 and 2, respectively.

  7. Absolute calibration of Phase Contrast Imaging on HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Yu, Yi; Gong, Shaobo; Xu, Min; Wu, Yifan; Yuan, Boda; Ye, Minyou; Duan, Xuru; HL-2A Team Team

    2017-10-01

    Phase contrast imaging (PCI) has recently been developed on HL-2A tokamak. In this article we present the calibration of this diagnostic. This system is to diagnose chord integral density fluctuations by measuring the phase shift of a CO2 laser beam with a wavelength of 10.6 μm when the laser beam passes through plasma. Sound waves are used to calibrate PCI diagnostic. The signal series in different PCI channels show a pronounced modulation of incident laser beam by the sound wave. Frequency-wavenumber spectrum is achieved. Calibrations by sound waves with different frequencies exhibit a maximal wavenumber response of 12 cm-1. The conversion relationship between the chord integral plasma density fluctuation and the signal intensity is 2.3-1013 m-2/mV, indicating a high sensitivity. Supported by the National Magnetic Confinement Fusion Energy Research Project (Grant No.2015GB120002, 2013GB107001).

  8. Description and performance of the OGSE for VNIR absolute spectroradiometric calibration of MTG-I satellites

    NASA Astrophysics Data System (ADS)

    Glastre, W.; Marque, J.; Compain, E.; Deep, A.; Durand, Y.; Aminou, D. M. A.

    2017-09-01

    The Meteosat Third Generation (MTG) Programme is being realised through the well-established and successful Cooperation between EUMETSAT and ESA. It will ensure the future continuity of MSG with the capabilities to enhance nowcasting, global and regional numerical weather prediction, climate and atmospheric chemistry monitoring data from Geostationary Orbit. This will be achieved through a series of 6 satellites named MTG-I and MTG-S to bring to the meteorological community continuous high spatial, spectral and temporal resolution observations and geophysical parameters of the Earth based on sensors from the geo-stationary orbit. In particular, the imagery mission MTG-I will bring an improved continuation of the MSG satellites series with the Flexible Combined Imager (FCI) a broad spectral range (from UV to LWIR) with better spatial and spectral resolutions. The FCI will be able to take high spatial resolution pictures of the Earth within 8 VNIR and 8 IR channels. As one of the mission of this instrument is to provide a quantitative analysis of atmosphere compounds, the absolute observed radiance needs to be known with a specified accuracy for VNIR as low as to 5% at k=3 over its full dynamic. While the FCI is regularly recalibrated every 6 month at equinoxes, it is however requiring initial ground calibration for the beginning of its mission. The Multi Optical Test Assembly (MOTA) is one of the Optical Ground Support Equipment (OGSE) dedicated to various missions necessary for the integration of the FCI . This equipment, provided by Bertin Technologies, will be delivered to TAS-F by the end of 2016. One of its mission, is the on-ground absolute calibration of VNIR channels. In order to handle this, the MOTA will be placed in front of the FCI under representative vacuum conditions and will be able to project a perfectly known, calibrated radiance level within the full dynamic of FCI instrument. The main difficulty is the very demanding calibration level with

  9. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization

    PubMed Central

    Hakala, Teemu; Scott, Barry; Theocharous, Theo; Näsi, Roope; Suomalainen, Juha; Greenwell, Claire; Fox, Nigel

    2018-01-01

    Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK). PMID:29751560

  10. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization.

    PubMed

    Hakala, Teemu; Markelin, Lauri; Honkavaara, Eija; Scott, Barry; Theocharous, Theo; Nevalainen, Olli; Näsi, Roope; Suomalainen, Juha; Viljanen, Niko; Greenwell, Claire; Fox, Nigel

    2018-05-03

    Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK).

  11. Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials

    SciTech Connect

    Gregor, M. C.; Boni, R.; Sorce, A.

    Experiments in high-energy-density physics often use optical pyrometry to determine temperatures of dynamically compressed materials. In combination with simultaneous shock-velocity and optical-reflectivity measurements using velocity interferometry, these experiments provide accurate equation-of-state data at extreme pressures (P > 1 Mbar) and temperatures (T > 0.5 eV). This paper reports on the absolute calibration of the streaked optical pyrometer (SOP) at the Omega Laser Facility. The wavelength-dependent system response was determined by measuring the optical emission from a National Institute of Standards and Technology–traceable tungsten-filament lamp through various narrowband (40 nm-wide) filters. The integrated signal over the SOP’s ~250-nm operating range ismore » then related to that of a blackbody radiator using the calibrated response. We present a simple closed-form equation for the brightness temperature as a function of streak-camera signal derived from this calibration. As a result, error estimates indicate that brightness temperature can be inferred to a precision of <5%.« less

  12. Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials

    DOE PAGES

    Gregor, M. C.; Boni, R.; Sorce, A.; ...

    2016-11-29

    Experiments in high-energy-density physics often use optical pyrometry to determine temperatures of dynamically compressed materials. In combination with simultaneous shock-velocity and optical-reflectivity measurements using velocity interferometry, these experiments provide accurate equation-of-state data at extreme pressures (P > 1 Mbar) and temperatures (T > 0.5 eV). This paper reports on the absolute calibration of the streaked optical pyrometer (SOP) at the Omega Laser Facility. The wavelength-dependent system response was determined by measuring the optical emission from a National Institute of Standards and Technology–traceable tungsten-filament lamp through various narrowband (40 nm-wide) filters. The integrated signal over the SOP’s ~250-nm operating range ismore » then related to that of a blackbody radiator using the calibrated response. We present a simple closed-form equation for the brightness temperature as a function of streak-camera signal derived from this calibration. As a result, error estimates indicate that brightness temperature can be inferred to a precision of <5%.« less

  13. Lunar Cratering Chronology: Calibrating Degree of Freshness of Craters to Absolute Ages

    NASA Astrophysics Data System (ADS)

    Trang, D.; Gillis-Davis, J.; Boyce, J. M.

    2013-12-01

    The use of impact craters to age-date surfaces of and/or geomorphological features on planetary bodies is a decades old practice. Various dating techniques use different aspects of impact craters in order to determine ages. One approach is based on the degree of freshness of primary-impact craters. This method examines the degradation state of craters through visual inspection of seven criteria: polygonality, crater ray, continuous ejecta, rim crest sharpness, satellite craters, radial channels, and terraces. These criteria are used to rank craters in order of age from 0.0 (oldest) to 7.0 (youngest). However, the relative decimal scale used in this technique has not been tied to a classification of absolute ages. In this work, we calibrate the degree of freshness to absolute ages through crater counting. We link the degree of freshness to absolute ages through crater counting of fifteen craters with diameters ranging from 5-22 km and degree of freshness from 6.3 to 2.5. We use the Terrain Camera data set on Kaguya to count craters on the continuous ejecta of each crater in our sample suite. Specifically, we divide the crater's ejecta blanket into quarters and count craters between the rim of the main crater out to one crater radii from the rim for two of the four sections. From these crater counts, we are able to estimate the absolute model age of each main crater using the Craterstats2 tool in ArcGIS. Next, we compare the degree of freshness for the crater count-derived age of our main craters to obtain a linear inverse relation that links these two metrics. So far, for craters with degree of freshness from 6.3 to 5.0, the linear regression has an R2 value of 0.7, which corresponds to a relative uncertainty of ×230 million years. At this point, this tool that links degree of freshness to absolute ages cannot be used with craters <8km because this class of crater degrades quicker than larger craters. A graphical solution exists for correcting the degree of

  14. Absolute geomagnetic intensity data from preclassic Guatemalan pottery

    NASA Astrophysics Data System (ADS)

    Alva-Valdivia, L. M.; Morales, J.; Goguitchaichvili, A.; Popenoe de Hatch, M.; Hernandez-Bernal, M. S.; Mariano-Matías, F.

    2010-05-01

    Archaeointensity results from 10 pottery fragments from the Kaminaljuyu area (14°37'N, 90°32'W)—Guatemala, whose ages range from 100 to 900 B.C., were determined in order to contribute to the incipient intensity secular variation curve for the preclassic period in Mesoamerica. Magnetic experiments including hysteresis loops, IRM-DIRM and Curie temperature analysis indicate that pseudo-single-domain magnetite and/or titanium poor titanomagnetites are responsible for the remanence. Pottery fragments were analyzed using the Coe version of the Thellier and Thellier paleointensity method. Although not numerous, our results meet with high standard, commonly accepted strict selection and acceptance criteria as attested by reasonably high Coe quality factors. The fragment mean archaeointensities range from 15 to 43 μT, and corresponding virtual axial dipole moments range from 3.6 ± 0.7 to 10.3 ± 0.9 × 10 22 Am 2. This corresponds to a mean VADM value of (7.5 ± 2.5) × 10 22 Am 2, which is close to the present day field strength. The new results obtained in this study together with those of ArcheoInt data compilation, are analyzed in context of CALS3k and ARCH3K model predictions.

  15. ScaRaB: first results of absolute and cross calibration

    NASA Astrophysics Data System (ADS)

    Trémas, Thierry L.; Aznay, Ouahid; Chomette, Olivier

    2015-10-01

    ScaRaB (SCAnner for RAdiation Budget) is the name of three radiometers whose two first flight models have been launched in 1994 and 1997. The instruments were mounted on-board Russian satellites, METEOR and RESURS. On October 12th 2011, a last model has been launched from the Indian site of Sriharikota. ScaRaB is a passenger of MEGHA-TROPIQUES, an Indo-French joint Satellite Mission for studying the water cycle and energy exchanges in the tropics. ScaRaB is composed of four parallel and independent channels. Channel-2 and channel-3 are considered as the main ones. Channel-1 is dedicated to measure solar radiance (0.5 to 0.7 μm) while channel-4 (10 to 13 μm) is an infrared window. The absolute calibration of ScaRab is assured by internal calibration sources (black bodies and a lamp for channel-1). However, during the commissioning phase, the lamp used for the absolute calibration of channel-1 revealed to be inaccurate. We propose here an alternative calibration method based on terrestrial targets. Due to the spectral range of channel-1, only calibration over desert sites (temporal monitoring) and clouds (cross band) is suitable. Desert sites have been widely used for sensor calibration since they have a stable spectral response over time. Because of their high reflectances, the atmospheric effect on the upward radiance is relatively minimal. In addition, they are spatially uniform. Their temporal instability without atmospheric correction has been determined to be less than 1-2% over a year. Very-high-altitude (10 km) bright clouds are good validation targets in the visible and near-infrared spectra because of their high spectrally consistent reflectance. If the clouds are very high, there is no need to correct aerosol scattering and water vapor absorption as both aerosol and water vapor are distributed near the surface. Only Rayleigh scattering and ozone absorption need to be considered. This method has been found to give a 4% uncertainty. Radiometric cross

  16. Absolute Density Calibration Cell for Laser Induced Fluorescence Erosion Rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2001-01-01

    Flight qualification of ion thrusters typically requires testing on the order of 10,000 hours. Extensive knowledge of wear mechanisms and rates is necessary to establish design confidence prior to long duration tests. Consequently, real-time erosion rate measurements offer the potential both to reduce development costs and to enhance knowledge of the dependency of component wear on operating conditions. Several previous studies have used laser-induced fluorescence (LIF) to measure real-time, in situ erosion rates of ion thruster accelerator grids. Those studies provided only relative measurements of the erosion rate. In the present investigation, a molybdenum tube was resistively heated such that the evaporation rate yielded densities within the tube on the order of those expected from accelerator grid erosion. This work examines the suitability of the density cell as an absolute calibration source for LIF measurements, and the intrinsic error was evaluated.

  17. The stars: an absolute radiometric reference for the on-orbit calibration of PLEIADES-HR satellites

    NASA Astrophysics Data System (ADS)

    Meygret, Aimé; Blanchet, Gwendoline; Mounier, Flore; Buil, Christian

    2017-09-01

    The accurate on-orbit radiometric calibration of optical sensors has become a challenge for space agencies who gather their effort through international working groups such as CEOS/WGCV or GSICS with the objective to insure the consistency of space measurements and to reach an absolute accuracy compatible with more and more demanding scientific needs. Different targets are traditionally used for calibration depending on the sensor or spacecraft specificities: from on-board calibration systems to ground targets, they all take advantage of our capacity to characterize and model them. But achieving the in-flight stability of a diffuser panel is always a challenge while the calibration over ground targets is often limited by their BDRF characterization and the atmosphere variability. Thanks to their agility, some satellites have the capability to view extra-terrestrial targets such as the moon or stars. The moon is widely used for calibration and its albedo is known through ROLO (RObotic Lunar Observatory) USGS model but with a poor absolute accuracy limiting its use to sensor drift monitoring or cross-calibration. Although the spectral irradiance of some stars is known with a very high accuracy, it was not really shown that they could provide an absolute reference for remote sensors calibration. This paper shows that high resolution optical sensors can be calibrated with a high absolute accuracy using stars. The agile-body PLEIADES 1A satellite is used for this demonstration. The star based calibration principle is described and the results are provided for different stars, each one being acquired several times. These results are compared to the official calibration provided by ground targets and the main error contributors are discussed.

  18. The Dependence of Cloud Property Trend Detection on Absolute Calibration Accuracy of Passive Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Shea, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Zelinka, M. D.

    2016-12-01

    Detecting trends in climate variables on global, decadal scales requires highly accurate, stable measurements and retrieval algorithms. Trend uncertainty depends on its magnitude, natural variability, and instrument and retrieval algorithm accuracy and stability. We applied a climate accuracy framework to quantify the impact of absolute calibration on cloud property trend uncertainty. The cloud properties studied were cloud fraction, effective temperature, optical thickness, and effective radius retrieved using the Clouds and the Earth's Radiant Energy System (CERES) Cloud Property Retrieval System, which uses Moderate-resolution Imaging Spectroradiometer measurements (MODIS). Modeling experiments from the fifth phase of the Climate Model Intercomparison Project (CMIP5) agree that net cloud feedback is likely positive but disagree regarding its magnitude, mainly due to uncertainty in shortwave cloud feedback. With the climate accuracy framework we determined the time to detect trends for instruments with various calibration accuracies. We estimated a relationship between cloud property trend uncertainty, cloud feedback, and Equilibrium Climate Sensitivity and also between effective radius trend uncertainty and aerosol indirect effect trends. The direct relationship between instrument accuracy requirements and climate model output provides the level of instrument absolute accuracy needed to reduce climate model projection uncertainty. Different cloud types have varied radiative impacts on the climate system depending on several attributes, such as their thermodynamic phase, altitude, and optical thickness. Therefore, we also conducted these studies by cloud types for a clearer understanding of instrument accuracy requirements needed to detect changes in their cloud properties. Combining this information with the radiative impact of different cloud types helps to prioritize among requirements for future satellite sensors and understanding the climate detection

  19. Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals

    PubMed Central

    Xia, Jun; Danielli, Amos; Liu, Yan; Wang, Lidai; Maslov, Konstantin; Wang, Lihong V.

    2014-01-01

    Photoacoustic tomography (PAT) is a hybrid imaging technique that has broad preclinical and clinical applications. Based on the photoacoustic effect, PAT directly measures specific optical absorption, which is the product of the tissue-intrinsic optical absorption coefficient and the local optical fluence. Therefore, quantitative PAT, such as absolute oxygen saturation (sO2) quantification, requires knowledge of the local optical fluence, which can be estimated only through invasive measurements or sophisticated modeling of light transportation. In this work, we circumvent this requirement by taking advantage of the dynamics in sO2. The new method works when the sO2 transition can be simultaneously monitored with multiple wavelengths. For each wavelength, the ratio of photoacoustic amplitudes measured at different sO2 states is utilized. Using the ratio cancels the contribution from optical fluence and allows calibration-free quantification of absolute sO2. The new method was validated through both phantom and in vivo experiments. PMID:23903146

  20. Absolute calibration accuracy of L4 TM and L5 TM sensor image pairs

    USGS Publications Warehouse

    Chander, G.; Micijevic, E.

    2006-01-01

    The Landsat suite of satellites has collected the longest continuous archive of multispectral data of any land-observing space program. From the Landsat program's inception in 1972 to the present, the Earth science user community has benefited from a historical record of remotely sensed data. However, little attention has been paid to ensuring that the data are calibrated and comparable from mission to mission, Launched in 1982 and 1984 respectively, the Landsat 4 (L4) and Landsat 5 (L5) Thematic Mappers (TM) are the backbone of an extensive archive of moderate resolution Earth imagery. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The approach involves comparing image statistics derived from large common areas observed eight days apart by the two sensors. The average percent differences in reflectance estimates obtained from the L4 TM agree with those from the L5 TM to within 15 percent. Additional work to characterize the absolute differences between the two sensors over the entire mission is in progress.

  1. Absolute versus relative intensity of physical activity in a dose-response context.

    PubMed

    Shephard, R J

    2001-06-01

    To examine the importance of relative versus absolute intensities of physical activity in the context of population health. A standard computer-search of the literature was supplemented by review of extensive personal files. Consensus reports (Category D Evidence) have commonly recommended moderate rather than hard physical activity in the context of population health. Much of the available literature provides Category C Evidence. It has often confounded issues of relative intensity with absolute intensity or total weekly dose of exercise. In terms of cardiovascular health, there is some evidence for a threshold intensity of effort, perhaps as high as 6 METs, in addition to a minimum volume of physical activity. Decreases in blood pressure and prevention of stroke seem best achieved by moderate rather than high relative intensities of physical activity. Many aspects of metabolic health depend on the total volume of activity; moderate relative intensities of effort are more effective in mobilizing body fat, but harder relative intensities may help to increase energy expenditures postexercise. Hard relative intensities seem needed to augment bone density, but this may reflect an associated increase in volume of activity. Hard relative intensities of exercise induce a transient immunosuppression. The optimal intensity of effort, relative or absolute, for protection against various types of cancer remains unresolved. Acute effects of exercise on mood state also require further study; long-term benefits seem associated with a moderate rather than a hard relative intensity of effort. The importance of relative versus absolute intensity of effort depends on the desired health outcome, and many issues remain to be resolved. Progress will depend on more precise epidemiological methods of assessing energy expenditures and studies that equate total energy expenditures between differing relative intensities. There is a need to focus on gains in quality-adjusted life expectancy.

  2. Frequency comb calibrated frequency-sweeping interferometry for absolute group refractive index measurement of air.

    PubMed

    Yang, Lijun; Wu, Xuejian; Wei, Haoyun; Li, Yan

    2017-04-10

    The absolute group refractive index of air at 194061.02 GHz is measured in real time using frequency-sweeping interferometry calibrated by an optical frequency comb. The group refractive index of air is calculated from the calibration peaks of the laser frequency variation and the interference signal of the two beams passing through the inner and outer regions of a vacuum cell when the frequency of a tunable external cavity diode laser is scanned. We continuously measure the refractive index of air for 2 h, which shows that the difference between measured results and Ciddor's equation is less than 9.6×10-8, and the standard deviation of that difference is 5.9×10-8. The relative uncertainty of the measured refractive index of air is estimated to be 8.6×10-8. The data update rate is 0.2 Hz, making it applicable under conditions in which air refractive index fluctuates fast.

  3. Prediction of absolute infrared intensities for the fundamental vibrations of H2O2

    NASA Technical Reports Server (NTRS)

    Rogers, J. D.; Hillman, J. J.

    1981-01-01

    Absolute infrared intensities are predicted for the vibrational bands of gas-phase H2O2 by the use of a hydrogen atomic polar tensor transferred from the hydroxyl hydrogen atom of CH3OH. These predicted intensities are compared with intensities predicted by the use of a hydrogen atomic polar tensor transferred from H2O. The predicted relative intensities agree well with published spectra of gas-phase H2O2, and the predicted absolute intensities are expected to be accurate to within at least a factor of two. Among the vibrational degrees of freedom, the antisymmetric O-H bending mode nu(6) is found to be the strongest with a calculated intensity of 60.5 km/mole. The torsional band, a consequence of hindered rotation, is found to be the most intense fundamental with a predicted intensity of 120 km/mole. These results are compared with the recent absolute intensity determinations for the nu(6) band.

  4. Absolute Sea Level Monitoring and Altimeter Calibration At Gavdos, Crete, Greece

    NASA Astrophysics Data System (ADS)

    Pavlis, E. C.; Gavdos Team

    We present the mean sea level (MSL) monitoring aspect of the altimeter calibration fa- cility under deployment on western Crete and the isle of Gavdos. The Eastern Mediter- ranean area is one of great interest for its intense tectonic activity as well as for its regional oceanography. Recent observations have convincingly demonstrated the im- portance of that area for the regional meteorological and climatological changes. Tide- gauge monitoring with GPS has gained importance lately since tectonics contaminate the inferred sea level variations, and a global network of tide-gauges with long his- torical records can be used as satellite altimeter calibration sites for current and fu- ture missions (e.g. TOPEX/POSEIDON, GFO, JASON-1, ENVISAT, etc.). This is at present a common IOC-GLOSS-IGS effort, already underway (TIGA). Crete hosts two of the oldest tide-gauges in the regional network and our project will further ex- pand it to the south of the island with a new site on the isle of Gavdos, the southernmost European parcel of land. One component of our "GAVDOS" project is the repeated occupation of two already in existence tide-gauge sites at Souda Bay and Heraklion, and their tie to the new facility. We show here initial results from positioning of these sites and some of the available tidal records. Gavdos is situated under a ground-track crossing point of the present T/P and JASON-1 orbits. It is an ideal calibration site if the tectonic motions are monitored precisely and continuously. Our plans include the deployment of additional instrumentation at this site: GPS and DORIS beacons for positioning, transponders for direct calibration, water vapor radiometers, GPS-loaded buoys, airborne surveys with gravimeters and laser profiling lidars, etc., to ensure the best possible and most reliable results.

  5. Absolute Sea-level Monitoring and Altimeter Calibration Facility at Gavdos, Crete, Greece

    NASA Astrophysics Data System (ADS)

    Pavlis, E. C.

    2002-12-01

    We introduce the recently instrumented mean sea level (MSL) monitoring facility on western Crete and the isle of Gavdos. We will focus on the altimeter calibration aspect of the facility, in particular, its application to the JASON mission. The Eastern Mediterranean area is one of great interest for its intense tectonic activity as well as for its regional oceanography. Recent observations have convincingly demonstrated the importance of that area for the regional meteorological and climatologic changes. Tide-gauge monitoring with continuous GPS has gained importance lately since tectonics contaminate the inferred sea level variations, and a global network of tide-gauges with long historical records can be used as satellite altimeter calibration sites (e.g. TOPEX/POSEIDON, GFO, JASON-1, ENVISAT, etc.). This is at present a common IOC-GLOSS-IGS effort, already underway (TIGA), and our facility is part of it. Crete hosts two of the oldest tide-gauges in the regional network and our project will further expand it to the south with a new site on the isle of Gavdos, the southernmost European parcel of land. One component of our "GAVDOS" project is the repeated occupation of two already in existence tide-gauge sites at Souda Bay and Heraklion, and their tie to the new facility. We show here initial results from positioning of these sites and some of the available tidal records. Gavdos is situated under a ground-track crossing point of the original T/P and present JASON-1 orbits. It is an ideal calibration site if the tectonic motions are monitored precisely and continuously. The facility hosts in addition to the tide gauges: GPS and DORIS beacons for positioning, transponders for direct calibration, water vapor radiometers and solar spectrometers, GPS-loaded buoys, airborne surveys with gravimeters and laser profiling lidars, transportable laser ranging systems, etc., to ensure the best possible and most reliable results.

  6. A BAYESIAN METHOD FOR CALCULATING REAL-TIME QUANTITATIVE PCR CALIBRATION CURVES USING ABSOLUTE PLASMID DNA STANDARDS

    EPA Science Inventory

    In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignore...

  7. Absolute reactivity calibration of accelerator-driven systems after RACE-T experiments

    SciTech Connect

    Jammes, C. C.; Imel, G. R.; Geslot, B.

    2006-07-01

    The RACE-T experiments that were held in november 2005 in the ENEA-Casaccia research center near Rome allowed us to improve our knowledge of the experimental techniques for absolute reactivity calibration at either startup or shutdown phases of accelerator-driven systems. Various experimental techniques for assessing a subcritical level were inter-compared through three different subcritical configurations SC0, SC2 and SC3, about -0.5, -3 and -6 dollars, respectively. The area-ratio method based of the use of a pulsed neutron source appears as the most performing. When the reactivity estimate is expressed in dollar unit, the uncertainties obtained with the area-ratio method were lessmore » than 1% for any subcritical configuration. The sensitivity to measurement location was about slightly more than 1% and always less than 4%. Finally, it is noteworthy that the source jerk technique using a transient caused by the pulsed neutron source shutdown provides results in good agreement with those obtained from the area-ratio technique. (authors)« less

  8. Test Plan for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; Hair, Jason; McAndrew, Brendan; Daw, Adrian; Jennings, Donald; Rabin, Douglas

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe high-accuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change. One of the major objectives of CLARREO is to advance the accuracy of SI traceable absolute calibration at infrared and reflected solar wavelengths. This advance is required to reach the on-orbit absolute accuracy required to allow climate change observations to survive data gaps while remaining sufficiently accurate to observe climate change to within the uncertainty of the limit of natural variability. While these capabilities exist at NIST in the laboratory, there is a need to demonstrate that it can move successfully from NIST to NASA and/or instrument vendor capabilities for future spaceborne instruments. The current work describes the test plan for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches , alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The end result of efforts with the SOLARIS CDS will be an SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climate-quality data collections. The CLARREO mission addresses the need to observe high-accuracy, long-term climate change trends and advance the accuracy of SI traceable absolute calibration. The current work describes the test plan for the SOLARIS which is the calibration demonstration

  9. A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source

    NASA Astrophysics Data System (ADS)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S.

    2013-09-01

    An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k = 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k = 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody.

  10. Error Budget for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2013-01-01

    A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.

  11. Technical note: An empirical method for absolute calibration of coccolith thickness

    NASA Astrophysics Data System (ADS)

    González-Lemos, Saúl; Guitián, José; Fuertes, Miguel-Ángel; Flores, José-Abel; Stoll, Heather M.

    2018-02-01

    As major calcifiers in the open ocean, coccolithophores play a key role in the marine carbon cycle. Because they may be sensitive to changing CO2 and ocean acidification, there is significant interest in quantifying past and present variations in their cellular calcification by quantifying the thickness of the coccoliths or calcite plates that cover their cells. Polarized light microscopy has emerged as a key tool for quantifying the thickness of these calcite plates, but the reproducibility and accuracy of such determinations has been limited by the absence of suitable calibration materials in the thickness range of coccoliths (0-4 µm). Here, we describe the fabrication of a calcite wedge with a constant slope over this thickness range, and the independent determination of calcite thickness along the wedge profile. We show how the calcite wedge provides more robust calibrations in the 0 to 1.55 µm range than previous approaches using rhabdoliths. We show the particular advantages of the calcite wedge approach for developing equations to relate thickness to the interference colors that arise in calcite in the thickness range between 1.55 and 4 µm. The calcite wedge approach can be applied to develop equations relevant to the particular light spectra and intensity of any polarized light microscope system and could significantly improve inter-laboratory data comparability.

  12. Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification

    EPA Science Inventory

    Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...

  13. Temporal dynamics of sand dune bidirectional reflectance characteristics for absolute radiometric calibration of optical remote sensing data

    NASA Astrophysics Data System (ADS)

    Coburn, Craig A.; Logie, Gordon S. J.

    2018-01-01

    Attempts to use pseudoinvariant calibration sites (PICS) for establishing absolute radiometric calibration of Earth observation (EO) satellites requires high-quality information about the nature of the bidirectional reflectance distribution function (BRDF) of the surfaces used for these calibrations. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or for the intercalibration of sensors. The PICS method was not considered until recently for deriving absolute radiometric calibration. This paper presents BRDF data collected by a high-performance portable goniometer system to develop a temporal BRDF model for the Algodones Dunes in California. By sampling the BRDF of the sand surface at similar solar zenith angles to those normally encountered by EO satellites, additional information on the changing nature of the surface can improve models used to provide absolute radiometric correction. The results demonstrated that the BRDF of a reasonably simple sand surface was complex with changes in anisotropy taking place in response to changing solar zenith angles. For the majority of observation and illumination angles, the spectral reflectance anisotropy observed varied between 1% and 5% in patterns that repeat around solar noon.

  14. Exploring a Black Body Source as an Absolute Radiometric Calibration Standard and Comparison with a NIST Traced Lamp Standard

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Chrien, Thomas; Sarture, Chuck

    2001-01-01

    Radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is required for the scientific research and application objectives pursued with the spectroscopic measurements. Specifically calibration is required for: inter-comparison of AVIRIS data measured at different locations and at different times; analysis of AVIRIS data with data measured by other instruments; and analysis of AVIRIS data in conjunction with computer models. The primary effect of radiometric calibration is conversion of AVIRIS instrument response values (digitized numbers, or DN) to units of absolute radiance. For example, a figure shows the instrument response spectrum measured by AVIRIS over a portion of Rogers Dry Lake, California, and another figure shows the same spectrum calibrated to radiance. Only the calibrated spectrum may be quantitatively analyzed for science research and application objectives. Since the initial development of the AVIRIS instrument-radiometric calibration has been based upon a 1000-W irradiance lamp with a calibration traced to the National Institute of Standards and Technology (NIST). There are several advantages to this irradiance-lamp calibration approach. First, the considerable effort of NIST backs up the calibration. Second, by changing the distance to the lamp, the output can closely span the radiance levels measured by AVIRIS. Third, this type of standard is widely used. Fourth, these calibrated lamps are comparatively inexpensive. Conversely, there are several disadvantages to this approach as well. First, the lamp is not a primary standard. Second, the lamp output characteristics may change in an unknown manner through time. Third, it is difficult to assess, constrain, or improve the calibration uncertainty delivered with the lamp. In an attempt to explore the effect and potentially address some of these disadvantages a set of analyses and measurements comparing an irradiance lamp with a black-body source have been completed

  15. The Near-infrared Tip of the Red Giant Branch. II. An Absolute Calibration in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Hoyt, Taylor J.; Freedman, Wendy L.; Madore, Barry F.; Seibert, Mark; Beaton, Rachael L.; Hatt, Dylan; Jang, In Sung; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.

    2018-05-01

    We present a new empirical JHK absolute calibration of the tip of the red giant branch (TRGB) in the Large Magellanic Cloud (LMC). We use published data from the extensive Near-Infrared Synoptic Survey containing 3.5 million stars, 65,000 of which are red giants that fall within one magnitude of the TRGB. Adopting the TRGB slopes from a companion study of the isolated dwarf galaxy IC 1613, as well as an LMC distance modulus of μ 0 = 18.49 mag from (geometric) detached eclipsing binaries, we derive absolute JHK zero points for the near-infrared TRGB. For a comparison with measurements in the bar alone, we apply the calibrated JHK TRGB to a 500 deg2 area of the 2MASS survey. The TRGB reveals the 3D structure of the LMC with a tilt in the direction perpendicular to the major axis of the bar, which is in agreement with previous studies.

  16. Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV

    SciTech Connect

    Chen, H; Back, N L; Eder, D C

    2007-12-10

    The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction ofmore » the absolute calibration to other spectrometer setting at this electron energy range.« less

  17. OCT angiography by absolute intensity difference applied to normal and diseased human retinas

    PubMed Central

    Ruminski, Daniel; Sikorski, Bartosz L.; Bukowska, Danuta; Szkulmowski, Maciej; Krawiec, Krzysztof; Malukiewicz, Grazyna; Bieganowski, Lech; Wojtkowski, Maciej

    2015-01-01

    We compare four optical coherence tomography techniques for noninvasive visualization of microcapillary network in the human retina and murine cortex. We perform phantom studies to investigate contrast-to-noise ratio for angiographic images obtained with each of the algorithm. We show that the computationally simplest absolute intensity difference angiographic OCT algorithm that bases only on two cross-sectional intensity images may be successfully used in clinical study of healthy eyes and eyes with diabetic maculopathy and branch retinal vein occlusion. PMID:26309740

  18. Absolute Radiometric Calibration of Narrow-Swath Imaging Sensors with Reference to Non-Coincident Wide-Swath Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Thome, Kurtis; Lockwood, Ronald

    2012-01-01

    An inter-calibration method is developed to provide absolute radiometric calibration of narrow-swath imaging sensors with reference to non-coincident wide-swath sensors. The method predicts at-sensor radiance using non-coincident imagery from the reference sensor and knowledge of spectral reflectance of the test site. The imagery of the reference sensor is restricted to acquisitions that provide similar view and solar illumination geometry to reduce uncertainties due to directional reflectance effects. Spectral reflectance of the test site is found with a simple iterative radiative transfer method using radiance values of a well-understood wide-swath sensor and spectral shape information based on historical ground-based measurements. At-sensor radiance is calculated for the narrow-swath sensor using this spectral reflectance and atmospheric parameters that are also based on historical in situ measurements. Results of the inter-calibration method show agreement on the 2 5 percent level in most spectral regions with the vicarious calibration technique relying on coincident ground-based measurements referred to as the reflectance-based approach. While the variability of the inter-calibration method based on non-coincident image pairs is significantly larger, results are consistent with techniques relying on in situ measurements. The method is also insensitive to spectral differences between the sensors by transferring to surface spectral reflectance prior to prediction of at-sensor radiance. The utility of this inter-calibration method is made clear by its flexibility to utilize image pairings with acquisition dates differing in excess of 30 days allowing frequent absolute calibration comparisons between wide- and narrow-swath sensors.

  19. Determining the importance of model calibration for forecasting absolute/relative changes in streamflow from LULC and climate changes

    USGS Publications Warehouse

    Niraula, Rewati; Meixner, Thomas; Norman, Laura M.

    2015-01-01

    Land use/land cover (LULC) and climate changes are important drivers of change in streamflow. Assessing the impact of LULC and climate changes on streamflow is typically done with a calibrated and validated watershed model. However, there is a debate on the degree of calibration required. The objective of this study was to quantify the variation in estimated relative and absolute changes in streamflow associated with LULC and climate changes with different calibration approaches. The Soil and Water Assessment Tool (SWAT) was applied in an uncalibrated (UC), single outlet calibrated (OC), and spatially-calibrated (SC) mode to compare the relative and absolute changes in streamflow at 14 gaging stations within the Santa Cruz River Watershed in southern Arizona, USA. For this purpose, the effect of 3 LULC, 3 precipitation (P), and 3 temperature (T) scenarios were tested individually. For the validation period, Percent Bias (PBIAS) values were >100% with the UC model for all gages, the values were between 0% and 100% with the OC model and within 20% with the SC model. Changes in streamflow predicted with the UC and OC models were compared with those of the SC model. This approach implicitly assumes that the SC model is “ideal”. Results indicated that the magnitude of both absolute and relative changes in streamflow due to LULC predicted with the UC and OC results were different than those of the SC model. The magnitude of absolute changes predicted with the UC and SC models due to climate change (both P and T) were also significantly different, but were not different for OC and SC models. Results clearly indicated that relative changes due to climate change predicted with the UC and OC were not significantly different than that predicted with the SC models. This result suggests that it is important to calibrate the model spatially to analyze the effect of LULC change but not as important for analyzing the relative change in streamflow due to climate change. This

  20. Beta decay of the fission product 125Sb and a new complete evaluation of absolute gamma ray transition intensities

    NASA Astrophysics Data System (ADS)

    Rajput, M. U.; Ali, N.; Hussain, S.; Mujahid, S. A.; MacMahon, D.

    2012-04-01

    The radionuclide 125Sb is a long-lived fission product, which decays to 125Te by negative beta emission with a half-life of 1008 day. The beta decay is followed by the emission of several gamma radiations, ranging from low to medium energy, that can suitably be used for high-resolution detector calibrations, decay heat calculations and in many other applications. In this work, the beta decay of 125Sb has been studied in detail. The complete published experimental data of relative gamma ray intensities in the beta decay of the radionuclide 125Sb has been compiled. The consistency analysis was performed and discrepancies found at several gamma ray energies. Evaluation of the discrepant data was carried out using Normalized Residual and RAJEVAL methods. The decay scheme balance was carried out using beta branching ratios, internal conversion coefficients, populating and depopulating gamma transitions to 125Te levels. The work has resulted in the consistent conversion factor equal to 29.59(13) %, and determined a new evaluated set of the absolute gamma ray emission probabilities. The work has also shown 22.99% of the delayed intensity fraction as outgoing from the 58 d isomeric 144 keV energy level and 77.01% of the prompt intensity fraction reaching to the ground state from the other excited states. The results are discussed and compared with previous evaluations. The present work includes additional experimental data sets which were not included in the previous evaluations. A new set of recommended relative and absolute gamma ray emission probabilities is presented.

  1. The absolute amplitude calibration of the SEASAT synthetic aperture radar - An intercomparison with other L-band radar systems

    NASA Technical Reports Server (NTRS)

    Held, D.; Werner, C.; Wall, S.

    1983-01-01

    The absolute amplitude calibration of the spaceborne Seasat SAR data set is presented based on previous relative calibration studies. A scale factor making it possible to express the perceived radar brightness of a scene in units of sigma-zero is established. The system components are analyzed for error contribution, and the calibration techniques are introduced for each stage. These include: A/D converter saturation tests; prevention of clipping in the processing step; and converting the digital image into the units of received power. Experimental verification was performed by screening and processing the data of the lava flow surrounding the Pisgah Crater in Southern California, for which previous C-130 airborne scatterometer data were available. The average backscatter difference between the two data sets is estimated to be 2 dB in the brighter, and 4 dB in the dimmer regions. For the SAR a calculated uncertainty of 3 dB is expected.

  2. EDGES and the Development of Absolute Calibration for Wideband Radio Receivers for 21cm Cosmology

    NASA Astrophysics Data System (ADS)

    Bowman, Judd D.

    2018-06-01

    The ultra-violet light emitted by early stars, when the universe was less than 400 million years old, alters the excitation state of the 21cm hyperfine line of primordial neutral hydrogen gas that surrounds the stars. This causes the gas to absorb photons from the cosmic microwave background (CMB). Later, energy deposited into the gas by the ultra-violet and X-ray emission from these early stars and their remnants heats the gas and eventually ionizes it. These effects produce spectral features in the CMB observable today at frequencies redshifted to below 200 MHz. The 21cm signal is approximately 10,000 times fainter the foreground synchrotron emission from the Milky Way, leading to the requirement that any instrument designed to observe it must have a knowable response at the 0.01% level. Typical radio receivers used in astronomical measurements are accurate at the 1-10% level. Over the last decade, our team has investigated new radio receiver designs and accurate calibration strategies in the laboratory and in ground-based instruments to achieve the 0.01% performance goal. Building on these efforts, we recently reported evidence for detection of the redshifted 21cm signal as a decrease in the sky-averaged radio intensity observed by the Experiment to Detect the Global EoR Signature (EDGES). We found a flattened absorption profile in the measured radio spectrum centered at a frequency of 78 MHz with full width at half maximum of 19 MHz and an amplitude of 0.5 K. The frequency of the profile is roughly consistent with astrophysical models of early star formation. However, the amplitude of the observed profile is more than a factor of two greater than the largest standard predictions and suggests that the gas was either significantly colder than expected or the background radiation temperature was hotter than expected.

  3. (abstract) Absolute Flux Calibrations of Venus and Jupiter at 32 GHz

    NASA Technical Reports Server (NTRS)

    Gatti, Mark S.; Klein, Michael J.

    1994-01-01

    The microwave flux densities of Venus and Jupiter at 32 GHz have been measured using a calibration standard radio telescope system at the Owens Valley Radio Observatory (OVRO) during April and May of 1993. These measurements are part of a joint JPL/Caltech program to accurately calibrate a catalog of other radio sources using the two bright planets as flux standards.

  4. Absolute Flux Calibration of the IRAC Instrument on the Spitzer Space Telescope Using Hubble Space Telescope Flux Standards

    NASA Astrophysics Data System (ADS)

    Bohlin, R. C.; Gordon, K. D.; Rieke, G. H.; Ardila, D.; Carey, S.; Deustua, S.; Engelbracht, C.; Ferguson, H. C.; Flanagan, K.; Kalirai, J.; Meixner, M.; Noriega-Crespo, A.; Su, K. Y. L.; Tremblay, P.-E.

    2011-05-01

    The absolute flux calibration of the James Webb Space Telescope (JWST) will be based on a set of stars observed by the Hubble and Spitzer Space Telescopes. In order to cross-calibrate the two facilities, several A, G, and white dwarf stars are observed with both Spitzer and Hubble and are the prototypes for a set of JWST calibration standards. The flux calibration constants for the four Spitzer IRAC bands 1-4 are derived from these stars and are 2.3%, 1.9%, 2.0%, and 0.5% lower than the official cold-mission IRAC calibration of Reach et al., i.e., in agreement within their estimated errors of ~2%. The causes of these differences lie primarily in the IRAC data reduction and secondarily in the spectral energy distributions of our standard stars. The independent IRAC 8 μm band-4 fluxes of Rieke et al. are about 1.5% ± 2% higher than those of Reach et al. and are also in agreement with our 8 μm result.

  5. Comparison of absolute intensity between EAS with gamma-families and general EAS at Mount Norikura

    NASA Technical Reports Server (NTRS)

    Mitsumune, T.; Nakatsuka, T.; Nishikawa, K.; Saito, T.; Sakata, M.; Shima, M.; Yamamoto, Y.; Dake, S.; Kawamoto, M.; Kusumose, M.

    1985-01-01

    Gamma-families with total energy greater than 10 TeV, found in the EX chamber which was cooperated with the EAS array were combined with EAS triggered by big bursts. The absolute intensity of the size spectrum of these combined EAS was compared with that of general EAS obtained by AS trigger. The EAS with sizes greater than 2x1 million were always accompanied by gamma-families with sigma E sub gamma H 10 TeV, n sub gamma, H 2 and Emin=3 TeV, although the rate of EAS accompaning such gamma-families decreases rapidly as their sizes decrease.

  6. Landsat-7 ETM+ On-Orbit Reflective-Band Radiometric Stability and Absolute Calibration

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Thome, Kurtis J.; Barsi, Julia A.; Kaita, Ed; Helder, Dennis L.; Barker, John L.

    2003-01-01

    The Landsat-7 spacecraft carries the Enhanced Thematic Mapper Plus (ETM+) instrument. This instrument images the Earth land surface in eight parts of the electromagnetic spectrum, termed spectral bands. These spectral images are used to monitor changes in the land surface, so a consistent relationship, i.e., calibration, between the image data and the Earth surface brightness, is required. The ETM+ has several on- board calibration devices that are used to monitor this calibration. The best on-board calibration source employs a flat white painted reference panel and has indicated changes of between 0.5% to 2% per year in the ETM+ response, depending on the spectral band. However, most of these changes are believed to be caused by changes in the reference panel, as opposed to changes in the instrument's sensitivity. This belief is based partially on on-orbit calibrations using instrumented ground sites and observations of "invariant sites", hyper-arid sites of the Sahara and Arabia. Changes determined from these data sets indicate are 0.1% - 0.6% per year. Tests and comparisons to other sensors also indicate that the uncertainty of the calibration is at the 5% level.

  7. Comparison of absolute gain photometric calibration between Planck/HFI and Herschel/SPIRE at 545 and 857 GHz

    NASA Astrophysics Data System (ADS)

    Bertincourt, B.; Lagache, G.; Martin, P. G.; Schulz, B.; Conversi, L.; Dassas, K.; Maurin, L.; Abergel, A.; Beelen, A.; Bernard, J.-P.; Crill, B. P.; Dole, H.; Eales, S.; Gudmundsson, J. E.; Lellouch, E.; Moreno, R.; Perdereau, O.

    2016-04-01

    We compare the absolute gain photometric calibration of the Planck/HFI and Herschel/SPIRE instruments on diffuse emission. The absolute calibration of HFI and SPIRE each relies on planet flux measurements and comparison with theoretical far-infrared emission models of planetary atmospheres. We measure the photometric cross calibration between the instruments at two overlapping bands, 545 GHz/500 μm and 857 GHz/350 μm. The SPIRE maps used have been processed in the Herschel Interactive Processing Environment (Version 12) and the HFI data are from the 2015 Public Data Release 2. For our study we used 15 large fields observed with SPIRE, which cover a total of about 120 deg2. We have selected these fields carefully to provide high signal-to-noise ratio, avoid residual systematics in the SPIRE maps, and span a wide range of surface brightness. The HFI maps are bandpass-corrected to match the emission observed by the SPIRE bandpasses. The SPIRE maps are convolved to match the HFI beam and put on a common pixel grid. We measure the cross-calibration relative gain between the instruments using two methods in each field, pixel-to-pixel correlation and angular power spectrum measurements. The SPIRE/HFI relative gains are 1.047 (±0.0069) and 1.003 (±0.0080) at 545 and 857 GHz, respectively, indicating very good agreement between the instruments. These relative gains deviate from unity by much less than the uncertainty of the absolute extended emission calibration, which is about 6.4% and 9.5% for HFI and SPIRE, respectively, but the deviations are comparable to the values 1.4% and 5.5% for HFI and SPIRE if the uncertainty from models of the common calibrator can be discounted. Of the 5.5% uncertainty for SPIRE, 4% arises from the uncertainty of the effective beam solid angle, which impacts the adopted SPIRE point source to extended source unit conversion factor, highlighting that as a focus for refinement.

  8. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    SciTech Connect

    Marshall, F. J.; Knauer, J. P.; Anderson, D.

    2006-10-15

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this techniquemore » to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.« less

  9. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L.

    2006-10-01

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si (Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3keV but has reduced sensitivity above 3keV (˜50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  10. Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating.

    PubMed

    Zhou, Wenjun; Mandia, David J; Barry, Seán T; Albert, Jacques

    2015-04-15

    The absolute refractive indices (RIs) of water and other liquids are determined with an uncertainty of ±0.001 at near-infrared wavelengths by using the tilted fiber Bragg grating (TFBG) cladding mode resonances of a standard single-mode fiber to measure the critical angle for total internal reflection at the interface between the fiber and its surroundings. The necessary condition to obtain absolute RIs (instead of measuring RI changes) is a thorough characterization of the dispersion of the core mode effective index of the TFBG across the full range of its cladding mode resonance spectrum. This technique is shown to be competitive with the best available measurements of the RIs of water and NaCl solutions at wavelengths in the vicinity of 1550 nm.

  11. Absolute calibration of a multichannel plate detector for low energy O, O-, and O+

    NASA Astrophysics Data System (ADS)

    Stephen, T. M.; Peko, B. L.

    2000-03-01

    Absolute detection efficiencies of a commercial multichannel plate detector have been measured for O, O+, and O-, impacting at normal incidence for energies ranging from 30-1000 eV. In addition, the detection efficiencies for O relative to its ions are presented, as they may have a more universal application. The absolute detection efficiencies are strongly energy dependent and significant differences are observed for the various charge states at lower energies. The detection efficiencies for the different charge states appear to converge at higher energies. The strongest energy dependence is for O+; the detection efficiency varies by three orders of magnitude across the energy range studied. The weakest dependence is for O-, which varies less than one order of magnitude.

  12. Absolute Infrared Calibration of Standard Stars by the Midcourse Space Experiment

    DTIC Science & Technology

    2004-04-01

    analytic expressions have been adopted for limb darkening (see the discussion and references in Neckel, 1996 , for examples) the fact is that the ratio...expression is of little consequence. Spickler, Benner and Russell ( 1996 ) noted that their measurements showed more infrared limb darkening than the...that calculated by Neckel and Labs (1981) from absolute radiances at the center of the Sun. However, Colina, Bohlin and Castelli ( 1996 ) questioned the

  13. The Importance of Post-Launch, On-Orbit Absolute Radiometric Calibration for Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Kuester, M. A.

    2015-12-01

    Remote sensing is a powerful tool for monitoring changes on the surface of the Earth at a local or global scale. The use of data sets from different sensors across many platforms, or even a single sensor over time, can bring a wealth of information when exploring anthropogenic changes to the environment. For example, variations in crop yield and health for a specific region can be detected by observing changes in the spectral signature of the particular species under study. However, changes in the atmosphere, sun illumination and viewing geometries during image capture can result in inconsistent image data, hindering automated information extraction. Additionally, an incorrect spectral radiometric calibration will lead to false or misleading results. It is therefore critical that the data being used are normalized and calibrated on a regular basis to ensure that physically derived variables are as close to truth as is possible. Although most earth observing sensors are well-calibrated in a laboratory prior to launch, a change in the radiometric response of the system is inevitable due to thermal, mechanical or electrical effects caused during the rigors of launch or by the space environment itself. Outgassing and exposure to ultra-violet radiation will also have an effect on the sensor's filter responses. Pre-launch lamps and other laboratory calibration systems can also fall short in representing the actual output of the Sun. A presentation of the differences in the results of some example cases (e.g. geology, agriculture) derived for science variables using pre- and post-launch calibration will be presented using DigitalGlobe's WorldView-3 super spectral sensor, with bands in the visible and near infrared, as well as in the shortwave infrared. Important defects caused by an incomplete (i.e. pre-launch only) calibration will be discussed using validation data where available. In addition, the benefits of using a well-validated surface reflectance product will be

  14. Absolute Spectrophotometric Calibration to 1% from the FUV through the near-IR

    NASA Astrophysics Data System (ADS)

    Finley, David

    2006-07-01

    We are requesting additional support to complete the work now being carried out under the Cycle 14 archive program, HST-AR-10654. The most critical component of that effort is an accurate determination of the STIS spectrometer LSF, so that we may correctly model the infill of the Balmer line cores by light redistributed from the wings and adjacent continuum. That is the essential input for obtaining accurate and unbiased effective temperatures and gravities, and hence calibrated fluxes, via line profile fitting of the WD calibration standards. To evaluate the published STIS LSF, we investigated the spectral images of the calibration targets, yielding several significant results: a} the STIS LSF varies significantly; b} existing observation-based spectroscopic LSFs or imaging PSFs are inadequate for deriving suitable spectroscopic LSFs; c} accounting for the PSF/LSF variability will improve spectrophotometric accuracy; d} the LSFs used for model fits must be consistent with the extraction process details; and, e} TinyTim-generated PSFs, with some modifications, provide the most suitable basis for producing the required LSFs that are tailored to each individual spectral observation. Based on our current {greatly improved} state of knowlege of the instrumental effects, we are now requesting additional support to complete the work needed to generate correct LSFs, and then carry out the analyses that were the subject of the original proposal.Our goal is the same: to produce a significant improvement to the existing HST calibration. The current calibration is based on three primary DA white dwarf standards, GD 71, GD 153,and G 191-B2B. The standard fluxes are calculated using NLTE models, with effective temperatures and gravities that were derived from Balmer line fits using LTE models. We propose to improve the accuracy and internal consistency of the calibration by deriving corrected effective temperatures and gravities based on fitting the observed line profiles with

  15. Absolute Spectrophotometric Calibration to 1% from the FUV through the near-IR

    NASA Astrophysics Data System (ADS)

    Finley, David

    2005-07-01

    We propose a significant improvement to the existing HST calibration. The current calibration is based on three primary DA white dwarf standards, GD 71, GD 153, and G 191-B2B. The standard fluxes are calculated using NLTE models, with effective temperatures and gravities that were derived from Balmer line fits using LTE models. We propose to improve the accuracy and internal consistency of the calibration by deriving corrected effective temperatures and gravities based on fitting the observed line profiles with updated NLTE models, and including the fit results from multiple STIS spectra, rather than the {usually} 1 or 2 ground-based spectra used previously. We will also determine the fluxes for 5 new, fainter primary or secondary standards, extending the standard V magnitude lower limit from 13.4 to 16.5, and extending the wavelength coverage from 0.1 to 2.5 micron. The goal is to achieve an overall flux accuracy of 1%, which will be needed, for example, for the upcoming supernova survey missions to measure the equation of state of the dark energy that is accelerating the expansion of the universe.

  16. Muscle Activation During Exercise in Severe Acute Hypoxia: Role of Absolute and Relative Intensity

    PubMed Central

    Torres-Peralta, Rafael; Losa-Reyna, José; González-Izal, Miriam; Perez-Suarez, Ismael; Calle-Herrero, Jaime; Izquierdo, Mikel

    2014-01-01

    Abstract Torres-Peralta, Rafael, José Losa-Reyna, Miriam González-Izal, Ismael Perez-Suarez, Jaime Calle-Herrero, Mikel Izquierdo, and José A.L. Calbet. Muscle activation during exercise in severe acute hypoxia: Role of absolute and relative intensity. High Alt Med Biol 15:472–482, 2014.—The aim of this study was to determine the influence of severe acute hypoxia on muscle activation during whole body dynamic exercise. Eleven young men performed four incremental cycle ergometer tests to exhaustion breathing normoxic (FIo2=0.21, two tests) or hypoxic gas (FIo2=0.108, two tests). Surface electromyography (EMG) activities of rectus femoris (RF), vastus medialis (VL), vastus lateralis (VL), and biceps femoris (BF) were recorded. The two normoxic and the two hypoxic tests were averaged to reduce EMG variability. Peak Vo2 was 34% lower in hypoxia than in normoxia (p<0.05). The EMG root mean square (RMS) increased with exercise intensity in all muscles (p<0.05), with greater effect in hypoxia than in normoxia in the RF and VM (p<0.05), and a similar trend in VL (p=0.10). At the same relative intensity, the RMS was greater in normoxia than in hypoxia in RF, VL, and BF (p<0.05), with a similar trend in VM (p=0.08). Median frequency increased with exercise intensity (p<0.05), and was higher in hypoxia than in normoxia in VL (p<0.05). Muscle contraction burst duration increased with exercise intensity in VM and VL (p<0.05), without clear effects of FIo2. No significant FIo2 effects on frequency domain indices were observed when compared at the same relative intensity. In conclusion, muscle activation during whole body exercise increases almost linearly with exercise intensity, following a muscle-specific pattern, which is adjusted depending on the FIo2 and the relative intensity of exercise. Both VL and VM are increasingly involved in power output generation with the increase of intensity and the reduction in FIo2. PMID:25225839

  17. Excited-state structure and electronic dephasing time of Nile blue from absolute resonance Raman intensities

    NASA Astrophysics Data System (ADS)

    Lawless, Mary K.; Mathies, Richard A.

    1992-06-01

    Absolute resonance Raman cross sections are measured for Nile blue 690 perchlorate dissolved in ethylene glycol with excitation at 514, 531, and 568 nm. These values and the absorption spectrum are modeled using a time-dependent wave packet formalism. The excited-state equilibrium geometry changes are quantitated for 40 resonance Raman active modes, seven of which (590, 1141, 1351, 1429, 1492, 1544, and 1640 cm-1 ) carry 70% of the total resonance Raman intensity. This demonstrates that in addition to the prominent 590 and 1640 cm-1 modes, a large number of vibrational degrees of freedom are Franck-Condon coupled to the electronic transition. After exposure of the explicit vibrational progressions, the residual absorption linewidth is separated into its homogeneous [350 cm-1 half-width at half-maximum (HWHM)] and inhomogeneous (313 cm-1 HWHM) components through an analysis of the absolute Raman cross sections. The value of the electronic dephasing time derived from this study (25 fs) compares well to previously published results. These data should be valuable in multimode modeling of femtosecond experiments on Nile blue.

  18. Absolute continuum intensity diagnostics of a novel large coaxial gridded hollow cathode argon plasma

    SciTech Connect

    Gao, Ruilin; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn, E-mail: zhouzx@hit.edu.cn; Jia, Jieshu

    2016-08-15

    This paper reports a novel coaxial gridded hollow discharge during operation at low pressure (20 Pa–80 Pa) in an argon atmosphere. A homogeneous hollow discharge was observed under different conditions, and the excitation mechanism and the discharge parameters for the hollow cathode plasma were examined at length. An optical emission spectrometry (OES) method, with a special focus on absolute continuum intensity method, was employed to measure the plasma parameters. The Langmuir probe measurement (LPM) was used to verify the OES results. Both provided electron density values (n{sub e}) in the order of 10{sup 16} m{sup −3} for different plasma settings. Taken together, themore » results show that the OES method is an effective approach to diagnosing the similar plasma, especially when the LPM is hardly operated.« less

  19. Absolute efficiency calibration of 6LiF-based solid state thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Finocchiaro, Paolo; Cosentino, Luigi; Lo Meo, Sergio; Nolte, Ralf; Radeck, Desiree

    2018-03-01

    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of the art of a promising low-cost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. A few configurations were studied with the GEANT4 simulation code, and the intrinsic efficiency of the corresponding detectors was calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured intrinsic detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.

  20. Improvement in absolute calibration accuracy of Landsat-5 TM with Landsat-7 ETM+ data

    USGS Publications Warehouse

    Chander, G.; Markham, B.L.; Micijevic, E.; Teillet, P.M.; Helder, D.L.; ,

    2005-01-01

    The ability to detect and quantify changes in the Earth's environment depends on satellites sensors that can provide calibrated, consistent measurements of Earth's surface features through time. A critical step in this process is to put image data from subsequent generations of sensors onto a common radiometric scale. To evaluate Landsat-5 (L5) Thematic Mapper's (TM) utility in this role, image pairs from the L5 TM and Landsat-7 (L7) Enhanced Thematic Mapper Plus (ETM+) sensors were compared. This approach involves comparison of surface observations based on image statistics from large common areas observed eight days apart by the two sensors. The results indicate a significant improvement in the consistency of L5 TM data with respect to L7 ETM+ data, achieved using a revised Look-Up-Table (LUT) procedure as opposed to the historical Internal Calibrator (IC) procedure previously used in the L5 TM product generation system. The average percent difference in reflectance estimates obtained from the L5 TM agree with those from the L7 ETM+ in the Visible and Near Infrared (VNIR) bands to within four percent and in the Short Wave Infrared (SWIR) bands to within six percent.

  1. SU-E-J-85: Leave-One-Out Perturbation (LOOP) Fitting Algorithm for Absolute Dose Film Calibration

    SciTech Connect

    Chu, A; Ahmad, M; Chen, Z

    2014-06-01

    Purpose: To introduce an outliers-recognition fitting routine for film dosimetry. It cannot only be flexible with any linear and non-linear regression but also can provide information for the minimal number of sampling points, critical sampling distributions and evaluating analytical functions for absolute film-dose calibration. Methods: The technique, leave-one-out (LOO) cross validation, is often used for statistical analyses on model performance. We used LOO analyses with perturbed bootstrap fitting called leave-one-out perturbation (LOOP) for film-dose calibration . Given a threshold, the LOO process detects unfit points (“outliers”) compared to other cohorts, and a bootstrap fitting process follows to seek any possibilitiesmore » of using perturbations for further improvement. After that outliers were reconfirmed by a traditional t-test statistics and eliminated, then another LOOP feedback resulted in the final. An over-sampled film-dose- calibration dataset was collected as a reference (dose range: 0-800cGy), and various simulated conditions for outliers and sampling distributions were derived from the reference. Comparisons over the various conditions were made, and the performance of fitting functions, polynomial and rational functions, were evaluated. Results: (1) LOOP can prove its sensitive outlier-recognition by its statistical correlation to an exceptional better goodness-of-fit as outliers being left-out. (2) With sufficient statistical information, the LOOP can correct outliers under some low-sampling conditions that other “robust fits”, e.g. Least Absolute Residuals, cannot. (3) Complete cross-validated analyses of LOOP indicate that the function of rational type demonstrates a much superior performance compared to the polynomial. Even with 5 data points including one outlier, using LOOP with rational function can restore more than a 95% value back to its reference values, while the polynomial fitting completely failed under the same

  2. Simple Parametric Model for Intensity Calibration of Cassini Composite Infrared Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Brasunas, J.; Mamoutkine, A.; Gorius, N.

    2016-01-01

    Accurate intensity calibration of a linear Fourier-transform spectrometer typically requires the unknown science target and the two calibration targets to be acquired under identical conditions. We present a simple model suitable for vector calibration that enables accurate calibration via adjustments of measured spectral amplitudes and phases when these three targets are recorded at different detector or optics temperatures. Our model makes calibration more accurate both by minimizing biases due to changing instrument temperatures that are always present at some level and by decreasing estimate variance through incorporating larger averages of science and calibration interferogram scans.

  3. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    SciTech Connect

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya

    2013-02-15

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and {+-}0.2{sup 0}, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ('Dee' voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTemore » X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.« less

  4. Absolute Infrared Intensities and Interstellar Ice Abundances- From Neutrals to Ions

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry

    Infrared (IR) telescopes, such as Spitzer and SOFIA, have revealed a rich variety of chemical species trapped in interstellar ices. However, quantifying the abundances of these species has been difficult because some molecules, such as formaldehyde (H2CO), and some ions, such as ammonium (NH4+), have poorly-known IR optical parameters, such as band strengths and optical constants. In the case of NH4+, the most widely used band-intensity values are from a mere two measurements published over a decade ago. Those two experiments cannot be repeated or checked as the original publication provided no information on reaction temperature, heating rate, spectral resolution, and so forth, and the two authors are no longer active in the field. Moreover, neither kinetic data nor statistics on the two measurements were provided, clearly an unsatisfactory situation. Exacerbating the problem is that NH4+ is sometimes used as a check on the IR spectral intensities of other ions, such as OCN- (cyanate), which has its own checkered past. We propose to correct these problems associated with abundance determinations of selected interstellar ices. We will combine two recent successful efforts from our laboratory and measure band intensities for NH4+ and OCN-, as well as HCOO- (formate). To unravel the interstellar formate band requires that we also properly determine its spectral baseline to distinguish from co-absorbing species, primarily formaldehyde (H2CO). Since the latter also has, at best, poorly-determined IR absolute intensities, we will measure them at multiple temperatures and ice phases for this project. This work will build on our recent success in deriving optical constants from IR spectra for interstellar hydrocarbon and nitrile ices (Hudson et al., 2014a, 2014b), and in generating NH4+ in situ for a study of Jupiter's atmosphere (Loeffler and Hudson, 2015). As a bonus, the proposed measurements also will enable the determination of band-strengths for such ions as CN-, NO

  5. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE PAGES

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; ...

    2015-05-27

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  6. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors.

    PubMed

    Waugh, C J; Rosenberg, M J; Zylstra, A B; Frenje, J A; Séguin, F H; Petrasso, R D; Glebov, V Yu; Sangster, T C; Stoeckl, C

    2015-05-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  7. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    SciTech Connect

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  8. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    SciTech Connect

    Waugh, C. J., E-mail: cjwaugh@mit.edu; Zylstra, A. B.; Frenje, J. A.

    2015-05-15

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  9. Reconstructing the Geomagnetic Field in West Africa: First Absolute Intensity Results from Burkina Faso

    PubMed Central

    Kapper, Lisa; Donadini, Fabio; Serneels, Vincent; Tema, Evdokia; Goguitchaichvili, Avto; Julio Morales, Juan

    2017-01-01

    We present absolute geomagnetic intensities from iron smelting furnaces discovered at the metallurgical site of Korsimoro, Burkina Faso. Up to now, archaeologists recognized four different types of furnaces based on different construction methods, which were related to four subsequent time periods. Additionally, radiocarbon ages obtained from charcoal confine the studied furnaces to ages ranging from 700–1700 AD, in good agreement with the archaeologically determined time periods for each type of furnace. Archaeointensity results reveal three main groups of Arai diagrams. The first two groups contain specimens with either linear Arai diagrams, or slightly curved diagrams or two phases of magnetization. The third group encompasses specimens with strong zigzag or curvature in their Arai diagrams. Specimens of the first two groups were accepted after applying selection criteria to guarantee the high quality of the results. Our data compared to palaeosecular variation curves show a similar decreasing trend between 900–1500 AD. However, they reveal larger amplitudes at around 800 AD and 1650 AD than the reference curves and geomagnetic field models. Furthermore, they agree well with archaeomagnetic data from Mali and Senegal around 800 AD and with volcanic data around 1700 AD. PMID:28350006

  10. Reconstructing the Geomagnetic Field in West Africa: First Absolute Intensity Results from Burkina Faso

    NASA Astrophysics Data System (ADS)

    Kapper, Lisa; Donadini, Fabio; Serneels, Vincent; Tema, Evdokia; Goguitchaichvili, Avto; Julio Morales, Juan

    2017-03-01

    We present absolute geomagnetic intensities from iron smelting furnaces discovered at the metallurgical site of Korsimoro, Burkina Faso. Up to now, archaeologists recognized four different types of furnaces based on different construction methods, which were related to four subsequent time periods. Additionally, radiocarbon ages obtained from charcoal confine the studied furnaces to ages ranging from 700-1700 AD, in good agreement with the archaeologically determined time periods for each type of furnace. Archaeointensity results reveal three main groups of Arai diagrams. The first two groups contain specimens with either linear Arai diagrams, or slightly curved diagrams or two phases of magnetization. The third group encompasses specimens with strong zigzag or curvature in their Arai diagrams. Specimens of the first two groups were accepted after applying selection criteria to guarantee the high quality of the results. Our data compared to palaeosecular variation curves show a similar decreasing trend between 900-1500 AD. However, they reveal larger amplitudes at around 800 AD and 1650 AD than the reference curves and geomagnetic field models. Furthermore, they agree well with archaeomagnetic data from Mali and Senegal around 800 AD and with volcanic data around 1700 AD.

  11. Absolute calibration of the Jenoptik CHM15k-x ceilometer and its applicability for quantitative aerosol monitoring

    NASA Astrophysics Data System (ADS)

    Geiß, Alexander; Wiegner, Matthias

    2014-05-01

    The knowledge of the spatiotemporal distribution of atmospheric aerosols and its optical characterization is essential for the understanding of the radiation budget, air quality, and climate. For this purpose, lidar is an excellent system as it is an active remote sensing technique. As multi-wavelength research lidars with depolarization channels are quite complex and cost-expensive, increasing attention is paid to so-called ceilometers. They are simple one-wavelength backscatter lidars with low pulse energy for eye-safe operation. As maintenance costs are low and continuous and unattended measurements can be performed, they are suitable for long-term aerosol monitoring in a network. However, the signal-to-noise ratio is low, and the signals are not calibrated. The only optical property that can be derived from a ceilometer is the particle backscatter coefficient, but even this quantity requires a calibration of the signals. With four years of measurements from a Jenoptik ceilometer CHM15k-x, we developed two methods for an absolute calibration on this system. This advantage of our approach is that only a few days with favorable meteorological conditions are required where Rayleigh-calibration and comparison with our research lidar is possible to estimate the lidar constant. This method enables us to derive the particle backscatter coefficient at 1064 nm, and we retrieved for the first time profiles in near real-time within an accuracy of 10 %. If an appropriate lidar ratio is assumed the aerosol optical depth of e.g. the mixing layer can be determined with an accuracy depending on the accuracy of the lidar ratio estimate. Even for 'simple' applications, e.g. assessment of the mixing layer height, cloud detection, detection of elevated aerosol layers, the particle backscatter coefficient has significant advantages over the measured (uncalibrated) attenuated backscatter. The possibility of continuous operation under nearly any meteorological condition with temporal

  12. Wavelength calibration of arc spectra using intensity modelling

    NASA Astrophysics Data System (ADS)

    Balona, L. A.

    2010-12-01

    Wavelength calibration for astronomical spectra usually involves the use of different arc lamps for different resolving powers to reduce the problem of line blending. We present a technique which eliminates the necessity of different lamps. A lamp producing a very rich spectrum, normally used only at high resolving powers, can be used at the lowest resolving power as well. This is accomplished by modelling the observed arc spectrum and solving for the wavelength calibration as part of the modelling procedure. Line blending is automatically incorporated as part of the model. The method has been implemented and successfully tested on spectra taken with the Robert Stobie spectrograph of the Southern African Large Telescope.

  13. Calibration of Clinical Audio Recording and Analysis Systems for Sound Intensity Measurement.

    PubMed

    Maryn, Youri; Zarowski, Andrzej

    2015-11-01

    Sound intensity is an important acoustic feature of voice/speech signals. Yet recordings are performed with different microphone, amplifier, and computer configurations, and it is therefore crucial to calibrate sound intensity measures of clinical audio recording and analysis systems on the basis of output of a sound-level meter. This study was designed to evaluate feasibility, validity, and accuracy of calibration methods, including audiometric speech noise signals and human voice signals under typical speech conditions. Calibration consisted of 3 comparisons between data from 29 measurement microphone-and-computer systems and data from the sound-level meter: signal-specific comparison with audiometric speech noise at 5 levels, signal-specific comparison with natural voice at 3 levels, and cross-signal comparison with natural voice at 3 levels. Intensity measures from recording systems were then linearly converted into calibrated data on the basis of these comparisons, and validity and accuracy of calibrated sound intensity were investigated. Very strong correlations and quasisimilarity were found between calibrated data and sound-level meter data across calibration methods and recording systems. Calibration of clinical sound intensity measures according to this method is feasible, valid, accurate, and representative for a heterogeneous set of microphones and data acquisition systems in real-life circumstances with distinct noise contexts.

  14. Calibration strategies for the determination of stable carbon absolute isotope ratios in a glycine candidate reference material by elemental analyser-isotope ratio mass spectrometry.

    PubMed

    Dunn, Philip J H; Malinovsky, Dmitry; Goenaga-Infante, Heidi

    2015-04-01

    We report a methodology for the determination of the stable carbon absolute isotope ratio of a glycine candidate reference material with natural carbon isotopic composition using EA-IRMS. For the first time, stable carbon absolute isotope ratios have been reported using continuous flow rather than dual inlet isotope ratio mass spectrometry. Also for the first time, a calibration strategy based on the use of synthetic mixtures gravimetrically prepared from well characterised, highly (13)C-enriched and (13)C-depleted glycines was developed for EA-IRMS calibration and generation of absolute carbon isotope ratio values traceable to the SI through calibration standards of known purity. A second calibration strategy based on converting the more typically determined delta values on the Vienna PeeDee Belemnite (VPDB) scale using literature values for the absolute carbon isotope ratio of VPDB itself was used for comparison. Both calibration approaches provided results consistent with those previously reported for the same natural glycine using MC-ICP-MS; absolute carbon ratios of 10,649 × 10(-6) with an expanded uncertainty (k = 2) of 24 × 10(-6) and 10,646 × 10(-6) with an expanded uncertainty (k = 2) of 88 × 10(-6) were obtained, respectively. The absolute carbon isotope ratio of the VPDB standard was found to be 11,115 × 10(-6) with an expanded uncertainty (k = 2) of 27 × 10(-6), which is in excellent agreement with previously published values.

  15. A non-invasive diffuse reflectance calibration-free method for absolute determination of exogenous biochemicals concentration in biological tissues

    NASA Astrophysics Data System (ADS)

    Lappa, Alexander V.; Kulikovskiy, Artem N.; Busarov, Oleg G.

    2014-03-01

    The paper presents a new method for distant non-destructive determination of concentration of light absorbing admixtures in turbid media. In particular, it is intended for non-invasive in vivo control of accumulation in patient tissues of various biochemicals introduced to the patients for chemotherapy, photodynamic therapy or diagnostics. It is require that the admixture absorption spectrum should have a clearly marked peak in the wavelength region where the pure medium one varies regularly. Fluorescence of admixtures is not required. The method uses the local diffuse reflectance spectroscopy with optical fiber probe including one emitting and two reading There are several features in the method: the value to be determined is absolute concentration of admixtures; the method needs no calibration measurements on phantoms; it needs no reference measurements on sample with zero admixture concentration; it uses a two parametric kinetic light propagation model and original algorithms to resolve direct and inverse tasks of radiation transport theory. Experimental testing passed with tissue equivalent phantoms and different admixtures, including a chlorine photosensitizer, showed accuracy under 10% in all cases.

  16. DAQ Software Contributions, Absolute Scale Energy Calibration and Background Evaluation for the NOvA Experiment at Fermilab

    SciTech Connect

    Flumerfelt, Eric Lewis

    2015-08-01

    The NOvA (NuMI Off-axis v e [nu_e] Appearance) Experiment is a long-baseline accelerator neutrino experiment currently in its second year of operations. NOvA uses the Neutrinos from the Main Injector (NuMI) beam at Fermilab, and there are two main off-axis detectors: a Near Detector at Fermilab and a Far Detector 810 km away at Ash River, MN. The work reported herein is in support of the NOvA Experiment, through contributions to the development of data acquisition software, providing an accurate, absolute-scale energy calibration for electromagnetic showers in NOvA detector elements, crucial to the primary electron neutrino search, and through anmore » initial evaluation of the cosmic background rate in the NOvA Far Detector, which is situated on the surface without significant overburden. Additional support work for the NOvA Experiment is also detailed, including DAQ Server Administration duties and a study of NOvA’s sensitivity to neutrino oscillations into a “sterile” state.« less

  17. Progress in obtaining an absolute calibration of a total deuterium-tritium neutron yield diagnostic based on copper activationa)

    NASA Astrophysics Data System (ADS)

    Ruiz, C. L.; Chandler, G. A.; Cooper, G. W.; Fehl, D. L.; Hahn, K. D.; Leeper, R. J.; McWatters, B. R.; Nelson, A. J.; Smelser, R. M.; Snow, C. S.; Torres, J. A.

    2012-10-01

    The 350-keV Cockroft-Walton accelerator at Sandia National laboratory's Ion Beam facility is being used to calibrate absolutely a total DT neutron yield diagnostic based on the 63Cu(n,2n)62Cu(β+) reaction. These investigations have led to first-order uncertainties approaching 5% or better. The experiments employ the associated-particle technique. Deuterons at 175 keV impinge a 2.6 μm thick erbium tritide target producing 14.1 MeV neutrons from the T(d,n)4He reaction. The alpha particles emitted are measured at two angles relative to the beam direction and used to infer the neutron flux on a copper sample. The induced 62Cu activity is then measured and related to the neutron flux. This method is known as the F-factor technique. Description of the associated-particle method, copper sample geometries employed, and the present estimates of the uncertainties to the F-factor obtained are given.

  18. Progress in obtaining an absolute calibration of a total deuterium-tritium neutron yield diagnostic based on copper activation.

    PubMed

    Ruiz, C L; Chandler, G A; Cooper, G W; Fehl, D L; Hahn, K D; Leeper, R J; McWatters, B R; Nelson, A J; Smelser, R M; Snow, C S; Torres, J A

    2012-10-01

    The 350-keV Cockroft-Walton accelerator at Sandia National laboratory's Ion Beam facility is being used to calibrate absolutely a total DT neutron yield diagnostic based on the (63)Cu(n,2n)(62)Cu(β+) reaction. These investigations have led to first-order uncertainties approaching 5% or better. The experiments employ the associated-particle technique. Deuterons at 175 keV impinge a 2.6 μm thick erbium tritide target producing 14.1 MeV neutrons from the T(d,n)(4)He reaction. The alpha particles emitted are measured at two angles relative to the beam direction and used to infer the neutron flux on a copper sample. The induced (62)Cu activity is then measured and related to the neutron flux. This method is known as the F-factor technique. Description of the associated-particle method, copper sample geometries employed, and the present estimates of the uncertainties to the F-factor obtained are given.

  19. Low-intensity calibration source for optical imaging systems

    NASA Astrophysics Data System (ADS)

    Holdsworth, David W.

    2017-03-01

    Laboratory optical imaging systems for fluorescence and bioluminescence imaging have become widely available for research applications. These systems use an ultra-sensitive CCD camera to produce quantitative measurements of very low light intensity, detecting signals from small-animal models labeled with optical fluorophores or luminescent emitters. Commercially available systems typically provide quantitative measurements of light output, in units of radiance (photons s-1 cm-2 SR-1) or intensity (photons s-1 cm-2). One limitation to current systems is that there is often no provision for routine quality assurance and performance evaluation. We describe such a quality assurance system, based on an LED-illuminated thin-film transistor (TFT) liquid-crystal display module. The light intensity is controlled by pulse-width modulation of the backlight, producing radiance values ranging from 1.8 x 106 photons s-1 cm-2 SR-1 to 4.2 x 1013 photons s-1 cm-2 SR-1. The lowest light intensity values are produced by very short backlight pulses (i.e. approximately 10 μs), repeated every 300 s. This very low duty cycle is appropriate for laboratory optical imaging systems, which typically operate with long-duration exposures (up to 5 minutes). The low-intensity light source provides a stable, traceable radiance standard that can be used for routine quality assurance of laboratory optical imaging systems.

  20. Improved absolute calibration of LOPES measurements and its impact on the comparison with REAS 3.11 and CoREAS simulations

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hiller, R.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Nehls, S.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.

    2016-02-01

    LOPES was a digital antenna array detecting the radio emission of cosmic-ray air showers. The calibration of the absolute amplitude scale of the measurements was done using an external, commercial reference source, which emits a frequency comb with defined amplitudes. Recently, we obtained improved reference values by the manufacturer of the reference source, which significantly changed the absolute calibration of LOPES. We reanalyzed previously published LOPES measurements, studying the impact of the changed calibration. The main effect is an overall decrease of the LOPES amplitude scale by a factor of 2.6 ± 0.2, affecting all previously published values for measurements of the electric-field strength. This results in a major change in the conclusion of the paper 'Comparing LOPES measurements of air-shower radio emission with REAS 3.11 and CoREAS simulations' published by Apel et al. (2013) : With the revised calibration, LOPES measurements now are compatible with CoREAS simulations, but in tension with REAS 3.11 simulations. Since CoREAS is the latest version of the simulation code incorporating the current state of knowledge on the radio emission of air showers, this new result indicates that the absolute amplitude prediction of current simulations now is in agreement with experimental data.

  1. Consistency of L4 TM absolute calibration with respect to the L5 TM sensor based on near-simultaneous image acquisition

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Malla, R.; Micijevic, E.; Mettler, C.J.

    2007-01-01

    The Landsat archive provides more than 35 years of uninterrupted multispectral remotely sensed data of Earth observations. Since 1972, Landsat missions have carried different types of sensors, from the Return Beam Vidicon (RBV) camera to the Enhanced Thematic Mapper Plus (ETM+). However, the Thematic Mapper (TM) sensors on Landsat 4 (L4) and Landsat 5 (L5), launched in 1982 and 1984 respectively, are the backbone of an extensive archive. Effective April 2, 2007, the radiometric calibration of L5 TM data processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) was updated to use an improved lifetime gain model, based on the instrument's detector response to pseudo-invariant desert site data and cross-calibration with the L7 ETM+. However, no modifications were ever made to the radiometric calibration procedure of the Landsat 4 (L4) TM data. The L4 TM radiometric calibration procedure has continued to use the Internal Calibrator (IC) based calibration algorithms and the post calibration dynamic ranges, as previously defined. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The number of coincident image pairs in the USGS EROS archive is limited, so the scene selection for the cross-calibration studies proved to be a challenge. Additionally, because of the lack of near-simultaneous images available over well-characterized and traditionally used calibration sites, alternate sites that have high reflectance, large dynamic range, high spatial uniformity, high sun elevation, and minimal cloud cover were investigated. The alternate sites were identified in Yuma, Iraq, Egypt, Libya, and Algeria. The cross-calibration approach involved comparing image statistics derived from large common areas observed eight days apart by the two sensors. This paper summarizes the average percent differences in reflectance estimates obtained between the

  2. Consistency of L4 TM absolute calibration with respect to the L5 TM sensor based on near-simultaneous image acquisition

    NASA Astrophysics Data System (ADS)

    Chander, Gyanesh; Helder, Dennis L.; Malla, Rimy; Micijevic, Esad; Mettler, Cory J.

    2007-09-01

    The Landsat archive provides more than 35 years of uninterrupted multispectral remotely sensed data of Earth observations. Since 1972, Landsat missions have carried different types of sensors, from the Return Beam Vidicon (RBV) camera to the Enhanced Thematic Mapper Plus (ETM+). However, the Thematic Mapper (TM) sensors on Landsat 4 (L4) and Landsat 5 (L5), launched in 1982 and 1984 respectively, are the backbone of an extensive archive. Effective April 2, 2007, the radiometric calibration of L5 TM data processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) was updated to use an improved lifetime gain model, based on the instrument's detector response to pseudo-invariant desert site data and cross-calibration with the L7 ETM+. However, no modifications were ever made to the radiometric calibration procedure of the Landsat 4 (L4) TM data. The L4 TM radiometric calibration procedure has continued to use the Internal Calibrator (IC) based calibration algorithms and the post calibration dynamic ranges, as previously defined. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The number of coincident image pairs in the USGS EROS archive is limited, so the scene selection for the cross-calibration studies proved to be a challenge. Additionally, because of the lack of near-simultaneous images available over well-characterized and traditionally used calibration sites, alternate sites that have high reflectance, large dynamic range, high spatial uniformity, high sun elevation, and minimal cloud cover were investigated. The alternate sites were identified in Yuma, Iraq, Egypt, Libya, and Algeria. The cross-calibration approach involved comparing image statistics derived from large common areas observed eight days apart by the two sensors. This paper summarizes the average percent differences in reflectance estimates obtained between the

  3. Cryogenic radiometers and intensity-stabilized lasers for Eos radiometric calibrations

    NASA Technical Reports Server (NTRS)

    Foukal, P.; Hoyt, C.; Jauniskis, L.

    1991-01-01

    Liquid helium-cooled electrical substitution radiometers (ESRs) provide irradiance standards with demonstrated absolute accuracy at the 0.01 percent level, spectrally flat response between the UV and IR, and sensitivity down to 0.1 nW/sq cm. We describe an automated system developed for NASA - Goddard Space Flight Center, consisting of a cryogenic ESR illuminated by servocontrolled laser beams. This system is designed to provide calibration of single-element and array detectors over the spectral range between 257nm in the UV to 10.6 microns in the IR. We also describe a cryogenic ESR optimized for black body calibrations that has been installed at NIST, and another that is under construction for calibrations of the CERES scanners planned for Eos.

  4. Campaign-Style Measurements of Vertical Seafloor Deformation in the Cascadia Subduction Zone Using an Absolute Self-Calibrating Pressure Recorder

    NASA Astrophysics Data System (ADS)

    Cook, M. J.; Sasagawa, G. S.; Roland, E. C.; Schmidt, D. A.; Wilcock, W. S. D.; Zumberge, M. A.

    2017-12-01

    Seawater pressure can be used to measure vertical seafloor deformation since small seafloor height changes produce measurable pressure changes. However, resolving secular vertical deformation near subduction zones can be difficult due to pressure gauge drift. A typical gauge drift rate of about 10 cm/year exceeds the expected secular rate of 1 cm/year or less in Cascadia. The absolute self-calibrating pressure recorder (ASCPR) was developed to solve the issue of gauge drift by using a deadweight calibrator to make campaign-style measurements of the absolute seawater pressure. Pressure gauges alternate between observing the ambient seawater pressure and the deadweight calibrator pressure, which is an accurately known reference value, every 10-20 minutes for several hours. The difference between the known reference pressure and the observed seafloor pressure allows offsets and transients to be corrected to determine the true, absolute seafloor pressure. Absolute seafloor pressure measurements provide a great utility for geodetic deformation studies. The measurements provide instrument-independent, benchmark values that can be used far into the future as epoch points in long-term time series or as important calibration points for other continuous pressure records. The ASCPR was first deployed in Cascadia in 2014 and 2015, when seven concrete seafloor benchmarks were placed along a trench-perpendicular profile extending from 20 km to 105 km off the central Oregon coast. Two benchmarks have ASCPR measurements that span three years, one benchmark spans two years, and four benchmarks span one year. Measurement repeatability is currently 3 to 4 cm, but we anticipate accuracy on the order of 1 cm with improvements to the instrument metrology and processing tidal and non-tidal oceanographic signals.

  5. Absolute Radiometric Calibration of the GÖKTÜRK-2 Satellite Sensor Using Tuz GÖLÜ (landnet Site) from Ndvi Perspective

    NASA Astrophysics Data System (ADS)

    Sakarya, Ufuk; Hakkı Demirhan, İsmail; Seda Deveci, Hüsne; Teke, Mustafa; Demirkesen, Can; Küpçü, Ramazan; Feray Öztoprak, A.; Efendioğlu, Mehmet; Fehmi Şimşek, F.; Berke, Erdinç; Zübeyde Gürbüz, Sevgi

    2016-06-01

    TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP) Project) and AKTAR (Smart Agriculture Feasibility Project). The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for red and NIR bands

  6. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    SciTech Connect

    Fat’yanov, O. V., E-mail: fatyan1@gps.caltech.edu; Asimow, P. D., E-mail: asimow@gps.caltech.edu

    2015-10-15

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documentedmore » methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten

  7. Piston manometer as an absolute standard for vacuum-gage calibration in the range 2 to 500 millitorr

    NASA Technical Reports Server (NTRS)

    Warshawsky, I.

    1972-01-01

    A thin disk is suspended, with very small annular clearance, in a cylindrical opening in the base plate of a calibration chamber. A continuous flow of calibration gas passes through the chamber and annular opening to a downstream high vacuum pump. The ratio of pressures on the two faces of the disk is very large, so that the upstream pressure is substantially equal to net force on the disk divided by disk area. This force is measured with a dynamometer that is calibrated in place with dead weights. A probable error of + or - (0.2 millitorr plus 0.2 percent) is attainable when downstream pressure is known to 10 percent.

  8. THE IMPORTANCE OF PROPER INTENSITY CALIBRATION FOR RAMAN ANALYSIS OF LOW-LEVEL ANALYTES IN WATER

    EPA Science Inventory

    Modern dispersive Raman spectroscopy offers unique advantages for the analysis of low-concentration analytes in aqueous solution. However, we have found that proper intensity calibration is critical for obtaining these benefits. This is true not only for producing spectra with ...

  9. Calibration of a modified temperature-light intensity logger for quantifying water electrical conductivity

    NASA Astrophysics Data System (ADS)

    Gillman, M. A.; Lamoureux, S. F.; Lafrenière, M. J.

    2017-09-01

    The Stream Temperature, Intermittency, and Conductivity (STIC) electrical conductivity (EC) logger as presented by Chapin et al. (2014) serves as an inexpensive (˜50 USD) means to assess relative EC in freshwater environments. This communication demonstrates the calibration of the STIC logger for quantifying EC, and provides examples from a month long field deployment in the High Arctic. Calibration models followed multiple nonlinear regression and produced calibration curves with high coefficient of determination values (R2 = 0.995 - 0.998; n = 5). Percent error of mean predicted specific conductance at 25°C (SpC) to known SpC ranged in magnitude from -0.6% to 13% (mean = -1.4%), and mean absolute percent error (MAPE) ranged from 2.1% to 13% (mean = 5.3%). Across all tested loggers we found good accuracy and precision, with both error metrics increasing with increasing SpC values. During 10, month-long field deployments, there were no logger failures and full data recovery was achieved. Point SpC measurements at the location of STIC loggers recorded via a more expensive commercial electrical conductivity logger followed similar trends to STIC SpC records, with 1:1.05 and 1:1.08 relationships between the STIC and commercial logger SpC values. These results demonstrate that STIC loggers calibrated to quantify EC are an economical means to increase the spatiotemporal resolution of water quality investigations.

  10. Use of Naturally Available Reference Targets to Calibrate Airborne Laser Scanning Intensity Data

    PubMed Central

    Vain, Ants; Kaasalainen, Sanna; Pyysalo, Ulla; Krooks, Anssi; Litkey, Paula

    2009-01-01

    We have studied the possibility of calibrating airborne laser scanning (ALS) intensity data, using land targets typically available in urban areas. For this purpose, a test area around Espoonlahti Harbor, Espoo, Finland, for which a long time series of ALS campaigns is available, was selected. Different target samples (beach sand, concrete, asphalt, different types of gravel) were collected and measured in the laboratory. Using tarps, which have certain backscattering properties, the natural samples were calibrated and studied, taking into account the atmospheric effect, incidence angle and flying height. Using data from different flights and altitudes, a time series for the natural samples was generated. Studying the stability of the samples, we could obtain information on the most ideal types of natural targets for ALS radiometric calibration. Using the selected natural samples as reference, the ALS points of typical land targets were calibrated again and examined. Results showed the need for more accurate ground reference data, before using natural samples in ALS intensity data calibration. Also, the NIR camera-based field system was used for collecting ground reference data. This system proved to be a good means for collecting in situ reference data, especially for targets with inhomogeneous surface reflection properties. PMID:22574045

  11. Absolute calibration of the Agfa Structurix series films at energies between 2.7 and 6.2 keV.

    PubMed

    Lanier, N E; Cowan, J S

    2014-11-01

    Although photo-emulsion technology is many decades old, x-ray film still remains a key asset for diagnosing hydrodynamic features in High-Energy Density (HED) experiments. For decades, the preferred option had been Kodak's direct exposure film. After its discontinuance in 2004, the push to find alternatives began. In many situations, the Agfa Structurix series offers the most favorable substitute, but being new to the HED community, its characterization was lacking. To remedy this, recent experiments, conducted at Brookhaven's National Synchrotron Light Source, provide absolute, monochromatic calibration data for the Agfa Structurix series films at K-shell backlighter energies between 2.7 and 6.2 keV. Absolute response curves are presented for Agfa D8, D7, D4, D4sc, D3, and D2. Moreover, the transmission of each film type is also measured.

  12. Absolute calibration of the Agfa Structurix series films at energies between 2.7 and 6.2 keVa)

    NASA Astrophysics Data System (ADS)

    Lanier, N. E.; Cowan, J. S.

    2014-11-01

    Although photo-emulsion technology is many decades old, x-ray film still remains a key asset for diagnosing hydrodynamic features in High-Energy Density (HED) experiments. For decades, the preferred option had been Kodak's direct exposure film. After its discontinuance in 2004, the push to find alternatives began. In many situations, the Agfa Structurix series offers the most favorable substitute, but being new to the HED community, its characterization was lacking. To remedy this, recent experiments, conducted at Brookhaven's National Synchrotron Light Source, provide absolute, monochromatic calibration data for the Agfa Structurix series films at K-shell backlighter energies between 2.7 and 6.2 keV. Absolute response curves are presented for Agfa D8, D7, D4, D4sc, D3, and D2. Moreover, the transmission of each film type is also measured.

  13. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration.

    PubMed

    Kashani, Alireza G; Olsen, Michael J; Parrish, Christopher E; Wilson, Nicholas

    2015-11-06

    In addition to precise 3D coordinates, most light detection and ranging (LIDAR) systems also record "intensity", loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced in the scientific literature, and even commercial software, to enhance the utility of intensity data through a variety of "normalization", "correction", or "calibration" techniques, the current situation is complicated by a lack of standardization, as well as confusing, inconsistent use of terminology. In this paper, we first provide an overview of basic principles of LIDAR intensity measurements and applications utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and current intensity processing methods. We define terminology adopted from the most commonly-used conventions based on a review of current literature. Finally, we identify topics in need of further research. Ultimately, the presented information helps lay the foundation for future standards and specifications for LIDAR radiometric calibration.

  14. A Multi-Purpose, Detector-Based Photometric Calibration System for Luminous Intensity, Illuminance and Luminance

    NASA Astrophysics Data System (ADS)

    Lam, Brenda H. S.; Yang, Steven S. L.; Chau, Y. C.

    2018-02-01

    A multi-purpose detector based calibration system for luminous intensity, illuminance and luminance has been developed at the Government of the Hong Kong Special Administrative Region, Standards and Calibration Laboratory (SCL). In this paper, the measurement system and methods are described. The measurement models and contributory uncertainties were validated using the Guide to the Expression of Uncertainty in Measurement (GUM) framework and Supplement 1 to the GUM - Propagation of distributions using a Monte Carlo method in accordance with the JCGM 100:2008 and JCGM 101:2008 at the intended precision level.

  15. Absolute dose calibration of an X-ray system and dead time investigations of photon-counting techniques

    NASA Astrophysics Data System (ADS)

    Carpentieri, C.; Schwarz, C.; Ludwig, J.; Ashfaq, A.; Fiederle, M.

    2002-07-01

    High precision concerning the dose calibration of X-ray sources is required when counting and integrating methods are compared. The dose calibration for a dental X-ray tube was executed with special dose calibration equipment (dosimeter) as function of exposure time and rate. Results were compared with a benchmark spectrum and agree within ±1.5%. Dead time investigations with the Medipix1 photon-counting chip (PCC) have been performed by rate variations. Two different types of dead time, paralysable and non-paralysable will be discussed. The dead time depends on settings of the front-end electronics and is a function of signal height, which might lead to systematic defects of systems. Dead time losses in excess of 30% have been found for the PCC at 200 kHz absorbed photons per pixel.

  16. Piston manometer as an absolute standard for vacuum gage calibration in the range 10 to 700 microtorr

    NASA Technical Reports Server (NTRS)

    Warshawsky, I.

    1972-01-01

    Total pressure in a calibration chamber is determined by measuring the force on a disk suspended in an orifice in the baseplate of the chamber. The disk forms a narrow annular gap with the orifice. A continuous flow of calibration gas passes through the chamber and annulus to a downstream pumping system. The ratio of pressures on the two faces of the disk exceeds 100:1, so that chamber pressure is substantially equal to the product of disk area and net force on the disk. This force is measured with an electrodynamometer that can be calibrated in situ with dead weights. Probable error in pressure measurement is plus or minus (0.5 microtorr + 0.6 percent).

  17. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  18. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.

    PubMed

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  19. A new solar irradiance calibration from 3295 A to 8500 A derived from absolute spectrophotometry of Vega

    NASA Technical Reports Server (NTRS)

    Lockwood, G. W.; Tueg, H.; White, N. M.

    1992-01-01

    By imaging sunlight diffracted by 20- and 30-micron diameter pinholes onto the entrance aperture of a photoelectric grating scanner, the solar spectral irradiance was determined relative to the spectrophotometric standard star Vega, observed at night with the same instrument. Solar irradiances are tabulated at 4 A increments from 3295 A to 8500 A. Over most of the visible spectrum, the internal error of measurement is less than 2 percent. This calibration is compared with earlier irradiance measurements by Neckel and Labs (1984) and by Arvesen et al. (1969) and with the high-resolution solar atlas by Kurucz et al. The three calibrations agree well in visible light but differ by as much as 10 percent in the ultraviolet.

  20. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    SciTech Connect

    Liu, Yi Jun; Mandelis, Andreas, E-mail: mandelis@mie.utoronto.ca; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that couldmore » be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.« less

  1. Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation

    NASA Astrophysics Data System (ADS)

    Cao, X.; Tian, F.; Telford, R.; Ni, J.; Xu, Q.; Chen, F.; Liu, X.; Stebich, M.; Zhao, Y.; Herzschuh, U.

    2017-12-01

    Pollen-based quantitative reconstructions of past climate variables is a standard palaeoclimatic approach. Despite knowing that the spatial extent of the calibration-set affects the reconstruction result, guidance is lacking as to how to determine a suitable spatial extent of the pollen-climate calibration-set. In this study, past mean annual precipitation (Pann) during the Holocene (since 11.5 cal ka BP) is reconstructed repeatedly for pollen records from Qinghai Lake (36.7°N, 100.5°E; north-east Tibetan Plateau), Gonghai Lake (38.9°N, 112.2°E; north China) and Sihailongwan Lake (42.3°N, 126.6°E; north-east China) using calibration-sets of varying spatial extents extracted from the modern pollen dataset of China and Mongolia (2559 sampling sites and 168 pollen taxa in total). Results indicate that the spatial extent of the calibration-set has a strong impact on model performance, analogue quality and reconstruction diagnostics (absolute value, range, trend, optimum). Generally, these effects are stronger with the modern analogue technique (MAT) than with weighted averaging partial least squares (WA-PLS). With respect to fossil spectra from northern China, the spatial extent of calibration-sets should be restricted to ca. 1000 km in radius because small-scale calibration-sets (<800 km radius) will likely fail to include enough spatial variation in the modern pollen assemblages to reflect the temporal range shifts during the Holocene, while too broad a scale calibration-set (>1500 km radius) will include taxa with very different pollen-climate relationships. Based on our results we conclude that the optimal calibration-set should 1) cover a reasonably large spatial extent with an even distribution of modern pollen samples; 2) possess good model performance as indicated by cross-validation, high analogue quality, and excellent fit with the target fossil pollen spectra; 3) possess high taxonomic resolution, and 4) obey the modern and past distribution ranges of

  2. Development of a low-level 39Ar calibration standard – Analysis by absolute gas counting measurements augmented with simulation

    DOE PAGES

    Williams, Richard M.; Aalseth, C. E.; Brandenberger, J. M.; ...

    2017-02-17

    Here, this paper describes the generation of 39Ar, via reactor irradiation of potassium carbonate, followed by quantitative analysis (length-compensated proportional counting) to yield two calibration standards that are respectively 50 and 3 times atmospheric background levels. Measurements were performed in Pacific Northwest National Laboratory's shallow underground counting laboratory studying the effect of gas density on beta-transport; these results are compared with simulation. The total expanded uncertainty of the specific activity for the ~50 × 39Ar in P10 standard is 3.6% (k=2).

  3. Absolute Doppler shift calibration of laser induced fluorescence signals using optogalvanic measurements in a hollow cathode lamp

    NASA Technical Reports Server (NTRS)

    Ruyten, Wilhelmus M.; Keefer, Dennis

    1992-01-01

    The paper investigates the use of optogalvanic (OG) measurements on the neutral 3P1 and 3P2 levels of argon in a hollow cathode lamp for the purpose of calibrating Doppler shifts of laser-induced fluorescence signals from an arcjet plume. It is shown that, even with non-Doppler-free OG detection, accuracy to better than 10 MHz is possible but that, depending on the experiment geometry, corrections of 10-35 MHz may be necessary to offset small axial drift velocities of neutral atoms in the hollow cathode lamp.

  4. Development of a low-level 39Ar calibration standard – Analysis by absolute gas counting measurements augmented with simulation

    SciTech Connect

    Williams, Richard M.; Aalseth, C. E.; Brandenberger, J. M.

    Here, this paper describes the generation of 39Ar, via reactor irradiation of potassium carbonate, followed by quantitative analysis (length-compensated proportional counting) to yield two calibration standards that are respectively 50 and 3 times atmospheric background levels. Measurements were performed in Pacific Northwest National Laboratory's shallow underground counting laboratory studying the effect of gas density on beta-transport; these results are compared with simulation. The total expanded uncertainty of the specific activity for the ~50 × 39Ar in P10 standard is 3.6% (k=2).

  5. The absolute calibration of KOMPSAT-3 and 3A high spatial resolution satellites using radiometric tarps and MFRSR measurments

    NASA Astrophysics Data System (ADS)

    Yeom, J. M.

    2017-12-01

    Recently developed Korea Multi-Purpose Satellite-3A (KOMPSAT-3A), which is a continuation of the KOMPSAT-1, 2 and 3 earth observation satellite (EOS) programs from the Korea Aerospace Research Institute (KARI) was launched on March, 25 2015 on a Dnepr-1 launch vehicle from the Jasny Dombarovsky site in Russia. After launched, KARI performed in-orbit-test (IOT) including radiometric calibration for 6 months from 14 Apr. to 4 Sep. 2015. KOMPSAT-3A is equipped with two distinctive sensors; one is a high resolution multispectral optical sensor, namely the Advances Earth Image Sensor System-A (AEISS-A) and the other is the Scanner Infrared Imaging System (SIIS). In this study, we focused on the radiometric calibration of AEISS-A. The multispectral wavelengths of AEISS-A are covering three visible regions: blue (450 - 520 nm), green (520 - 600 nm), red (630 - 690 nm), one near infrared (760 - 900 nm) with a 2.0 m spatial resolution at nadir, whereas the panchromatic imagery (450 - 900 nm) has a 0.5 m resolution. Those are the same spectral response functions were same with KOMPSAT-3 multispectral and panchromatic bands but the spatial resolutions are improved. The main mission of KOMPSAT-3A is to develop for Geographical Information System (GIS) applications in environmental, agriculture, and oceanographic sciences, as well as natural hazard monitoring.

  6. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration

    PubMed Central

    Kashani, Alireza G.; Olsen, Michael J.; Parrish, Christopher E.; Wilson, Nicholas

    2015-01-01

    In addition to precise 3D coordinates, most light detection and ranging (LIDAR) systems also record “intensity”, loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced in the scientific literature, and even commercial software, to enhance the utility of intensity data through a variety of “normalization”, “correction”, or “calibration” techniques, the current situation is complicated by a lack of standardization, as well as confusing, inconsistent use of terminology. In this paper, we first provide an overview of basic principles of LIDAR intensity measurements and applications utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and current intensity processing methods. We define terminology adopted from the most commonly-used conventions based on a review of current literature. Finally, we identify topics in need of further research. Ultimately, the presented information helps lay the foundation for future standards and specifications for LIDAR radiometric calibration. PMID:26561813

  7. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response.

    PubMed

    Troussel, Ph; Villette, B; Emprin, B; Oudot, G; Tassin, V; Bridou, F; Delmotte, F; Krumrey, M

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  8. Relative and Absolute Calibration of a Multihead Camera System with Oblique and Nadir Looking Cameras for a Uas

    NASA Astrophysics Data System (ADS)

    Niemeyer, F.; Schima, R.; Grenzdörffer, G.

    2013-08-01

    Numerous unmanned aerial systems (UAS) are currently flooding the market. For the most diverse applications UAVs are special designed and used. Micro and mini UAS (maximum take-off weight up to 5 kg) are of particular interest, because legal restrictions are still manageable but also the payload capacities are sufficient for many imaging sensors. Currently a camera system with four oblique and one nadir looking cameras is under development at the Chair for Geodesy and Geoinformatics. The so-called "Four Vision" camera system was successfully built and tested in the air. A MD4-1000 UAS from microdrones is used as a carrier system. Light weight industrial cameras are used and controlled by a central computer. For further photogrammetric image processing, each individual camera, as well as all the cameras together have to be calibrated. This paper focuses on the determination of the relative orientation between the cameras with the „Australis" software and will give an overview of the results and experiences of test flights.

  9. The fading of Cassiopeia A, and improved models for the absolute spectrum of primary radio calibration sources

    NASA Astrophysics Data System (ADS)

    Trotter, A. S.; Reichart, D. E.; Egger, R. E.; Stýblová, J.; Paggen, M. L.; Martin, J. R.; Dutton, D. A.; Reichart, J. E.; Kumar, N. D.; Maples, M. P.; Barlow, B. N.; Berger, T. A.; Foster, A. C.; Frank, N. R.; Ghigo, F. D.; Haislip, J. B.; Heatherly, S. A.; Kouprianov, V. V.; LaCluyzé, A. P.; Moffett, D. A.; Moore, J. P.; Stanley, J. L.; White, S.

    2017-08-01

    Based on 5 yr of observations with the 40-foot telescope at Green Bank Observatory (GBO), Reichart & Stephens found that the radio source Cassiopeia A had either faded more slowly between the mid-1970s and late 1990s than Baars et al. had found it to be fading between the late 1940s and mid-1970s, or that it had rebrightened and then resumed fading sometime between the mid-1970s and mid-1990s, in the L band (1.4 GHz). Here, we present 15 additional years of observations of Cas A and Cyg A with the 40-foot in the L band, and three and a half additional years of observations of Cas A, Cyg A, Tau A and Vir A with GBO's recently refurbished 20-m telescope in the L and X (9 GHz) bands. We also present a more sophisticated analysis of the 40-foot data, and a reanalysis of the Baars et al. data, which reveals small, but non-negligible differences. We find that overall, between the late 1950s and late 2010s, Cas A faded at an average rate of 0.670 ± 0.019 per cent yr-1 in the L band, consistent with Reichart & Stephens. However, we also find, at the 6.3σ credible level, that it did not fade at a constant rate. Rather, Cas A faded at a faster rate through at least the late 1960s, rebrightened (or at least faded at a much slower rate), and then resumed fading at a similarly fast rate by, at most, the late 1990s. Given these differences from the original Baars et al. analysis, and given the importance of their fitted spectral and temporal models for flux-density calibration in radio astronomy, we update and improve on these models for all four of these radio sources. In doing so, we additionally find that Tau A is fading at a rate of 0.102^{+0.042}_{-0.043} per cent yr-1 in the L band.

  10. Correspondence of verbal descriptor and numeric rating scales for pain intensity: an item response theory calibration.

    PubMed

    Edelen, Maria Orlando; Saliba, Debra

    2010-07-01

    Assessing pain intensity in older adults is critical and challenging. There is debate about the most effective way to ask older adults to describe their pain severity, and clinicians vary in their preferred approaches, making comparison of pain intensity scores across settings difficult. A total of 3,676 residents from 71 community nursing homes across eight states were asked about pain presence. The 1,960 residents who reported pain within the past 5 days (53% of total, 70% female; age: M = 77.9, SD = 12.4) were included in analyses. Those who reported pain were also asked to provide a rating of pain intensity using either a verbal descriptor scale (VDS; mild, moderate, severe, and very severe and horrible), a numeric rating scale (NRS; 0 = no pain to 10 = worst pain imaginable), or both. We used item response theory (IRT) methods to identify the correspondence between the VDS and the NRS response options by estimating item parameters for these and five additional pain items. The sample reported moderate amounts of pain on average. Examination of the IRT location parameters for the pain intensity items indicated the following approximate correspondence: VDS mild approximately NRS 1-4, VDS moderate approximately NRS 5-7, VDS severe approximately NRS 8-9, and VDS very severe, horrible approximately NRS 10. This IRT calibration provides a crosswalk between the two response scales so that either can be used in practice depending on the preference of the clinician and respondent.

  11. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  12. SkyProbe: Real-Time Precision Monitoring in the Optical of the Absolute Atmospheric Absorption on the Telescope Science and Calibration Fields

    NASA Astrophysics Data System (ADS)

    Cuillandre, J.-C.; Magnier, E.; Sabin, D.; Mahoney, B.

    2016-05-01

    Mauna Kea is known for its pristine seeing conditions but sky transparency can be an issue for science operations since at least 25% of the observable (i.e. open dome) nights are not photometric, an effect mostly due to high-altitude cirrus. Since 2001, the original single channel SkyProbe mounted in parallel on the Canada-France-Hawaii Telescope (CFHT) has gathered one V-band exposure every minute during each observing night using a small CCD camera offering a very wide field of view (35 sq. deg.) encompassing the region pointed by the telescope for science operations, and exposures long enough (40 seconds) to capture at least 100 stars of Hipparcos' Tycho catalog at high galactic latitudes (and up to 600 stars at low galactic latitudes). The measurement of the true atmospheric absorption is achieved within 2%, a key advantage over all-sky direct thermal infrared imaging detection of clouds. The absolute measurement of the true atmospheric absorption by clouds and particulates affecting the data being gathered by the telescope's main science instrument has proven crucial for decision making in the CFHT queued service observing (QSO) representing today all of the telescope time. Also, science exposures taken in non-photometric conditions are automatically registered for a new observation at a later date at 1/10th of the original exposure time in photometric conditions to ensure a proper final absolute photometric calibration. Photometric standards are observed only when conditions are reported as being perfectly stable by SkyProbe. The more recent dual color system (simultaneous B & V bands) will offer a better characterization of the sky properties above Mauna Kea and should enable a better detection of the thinnest cirrus (absorption down to 0.01 mag., or 1%).

  13. PRESAGE® as a new calibration method for high intensity focused ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Costa, M.; McErlean, C.; Rivens, I.; Adamovics, J.; Leach, M. O.; ter Haar, G.; Doran, S. J.

    2015-01-01

    High Intensity Focused ultrasound (HIFU) is a non-invasive cancer therapy that makes use of the mainly thermal effects of ultrasound to destroy tissue. In order to achieve reliable treatment planning, it is necessary to characterise the ultrasound source (transducer) and to understand how the wave propagates in tissue and the energy deposition in the focal region. This novel exploratory study investigated how HIFU affects PRESAGE®, an optical phantom used for radiotherapy dosimetry, which is potentially a rapid method of calibrating the transducer. Samples, of two different formulations, were exposed to focused ultrasound and imaged using Optical Computed Tomography. First results showed that, PRESAGE® changes colour on ultrasound exposure (darker green regions were observed) with the alterations being related to the acoustic power and sample composition. Future work will involve quantification of these alterations and understanding how to relate them to the mechanisms of action of HIFU.

  14. Radiation calibration for LWIR Hyperspectral Imager Spectrometer

    NASA Astrophysics Data System (ADS)

    Yang, Zhixiong; Yu, Chunchao; Zheng, Wei-jian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong

    2014-11-01

    The radiometric calibration of LWIR Hyperspectral imager Spectrometer is presented. The lab has been developed to LWIR Interferometric Hyperspectral imager Spectrometer Prototype(CHIPED-I) to study Lab Radiation Calibration, Two-point linear calibration is carried out for the spectrometer by using blackbody respectively. Firstly, calibration measured relative intensity is converted to the absolute radiation lightness of the object. Then, radiation lightness of the object is is converted the brightness temperature spectrum by the method of brightness temperature. The result indicated †that this method of Radiation Calibration calibration was very good.

  15. Absolute, pressure-dependent validation of a calibration-free, airborne laser hygrometer transfer standard (SEALDH-II) from 5 to 1200 ppmv using a metrological humidity generator

    NASA Astrophysics Data System (ADS)

    Buchholz, Bernhard; Ebert, Volker

    2018-01-01

    Highly accurate water vapor measurements are indispensable for understanding a variety of scientific questions as well as industrial processes. While in metrology water vapor concentrations can be defined, generated, and measured with relative uncertainties in the single percentage range, field-deployable airborne instruments deviate even under quasistatic laboratory conditions up to 10-20 %. The novel SEALDH-II hygrometer, a calibration-free, tuneable diode laser spectrometer, bridges this gap by implementing a new holistic concept to achieve higher accuracy levels in the field. We present in this paper the absolute validation of SEALDH-II at a traceable humidity generator during 23 days of permanent operation at 15 different H2O mole fraction levels between 5 and 1200 ppmv. At each mole fraction level, we studied the pressure dependence at six different gas pressures between 65 and 950 hPa. Further, we describe the setup for this metrological validation, the challenges to overcome when assessing water vapor measurements on a high accuracy level, and the comparison results. With this validation, SEALDH-II is the first airborne, metrologically validated humidity transfer standard which links several scientific airborne and laboratory measurement campaigns to the international metrological water vapor scale.

  16. Determination of Delta m(d) and absolute calibration of flavor taggers for the Delta m(s) analysis, in fully reconstructed decays at the CDF experiment

    SciTech Connect

    Gomez, Jonatan Piedra

    2005-04-21

    The new trigger processor, the Silicon Vertex Tracking (SVT), has dramatically improved the B physics capabilities of the upgraded CDF II Detector; for the first time in a hadron collider, the SVT has enabled the access to non-lepton-triggered B meson decays. Within the new available range of decay modes, the Bmore » $$0\\atop{s}$$ → D$$-\\atop{s}$$π + signature is of paramount importance in the measurement of the Δm s mixing frequency. The analysis reported here is a step towards the measurement of this frequency; two where our goals: carrying out the absolute calibration of the opposite side flavor taggers, used in the Δm s measurement; and measuring the B$$0\\atop{d}$$ mixing frequency in a B → Dπ sample, establishing the feasibility of the mixing measurement in this sample whose decay-length is strongly biased by the selective SVT trigger. We analyze a total integrated luminosity of 355 pb -1 collected with the CDF II Detector. By triggering on muons, using the conventional di-muon trigger; or displaced tracks, using the SVT trigger, we gather a sample rich in bottom and charm mesons.« less

  17. How calibration and reference spectra affect the accuracy of absolute soft X-ray solar irradiance measured by the SDO/EVE/ESP during high solar activity

    NASA Astrophysics Data System (ADS)

    Didkovsky, Leonid; Wieman, Seth; Woods, Thomas

    2016-10-01

    The Extreme ultraviolet Spectrophotometer (ESP), one of the channels of SDO's Extreme ultraviolet Variability Experiment (EVE), measures solar irradiance in several EUV and soft x-ray (SXR) bands isolated using thin-film filters and a transmission diffraction grating, and includes a quad-diode detector positioned at the grating zeroth-order to observe in a wavelength band from about 0.1 to 7.0 nm. The quad diode signal also includes some contribution from shorter wavelength in the grating's first-order and the ratio of zeroth-order to first-order signal depends on both source geometry, and spectral distribution. For example, radiometric calibration of the ESP zeroth-order at the NIST SURF BL-2 with a near-parallel beam provides a different zeroth-to-first-order ratio than modeled for solar observations. The relative influence of "uncalibrated" first-order irradiance during solar observations is a function of the solar spectral irradiance and the locations of large Active Regions or solar flares. We discuss how the "uncalibrated" first-order "solar" component and the use of variable solar reference spectra affect determination of absolute SXR irradiance which currently may be significantly overestimated during high solar activity.

  18. Calibrated FMRI.

    PubMed

    Hoge, Richard D

    2012-08-15

    Functional magnetic resonance imaging with blood oxygenation level-dependent (BOLD) contrast has had a tremendous influence on human neuroscience in the last twenty years, providing a non-invasive means of mapping human brain function with often exquisite sensitivity and detail. However the BOLD method remains a largely qualitative approach. While the same can be said of anatomic MRI techniques, whose clinical and research impact has not been diminished in the slightest by the lack of a quantitative interpretation of their image intensity, the quantitative expression of BOLD responses as a percent of the baseline T2*- weighted signal has been viewed as necessary since the earliest days of fMRI. Calibrated MRI attempts to dissociate changes in oxygen metabolism from changes in blood flow and volume, the latter three quantities contributing jointly to determine the physiologically ambiguous percent BOLD change. This dissociation is typically performed using a "calibration" procedure in which subjects inhale a gas mixture containing small amounts of carbon dioxide or enriched oxygen to produce changes in blood flow and BOLD signal which can be measured under well-defined hemodynamic conditions. The outcome is a calibration parameter M which can then be substituted into an expression providing the fractional change in oxygen metabolism given changes in blood flow and BOLD signal during a task. The latest generation of calibrated MRI methods goes beyond fractional changes to provide absolute quantification of resting-state oxygen consumption in micromolar units, in addition to absolute measures of evoked metabolic response. This review discusses the history, challenges, and advances in calibrated MRI, from the personal perspective of the author. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Determination of the absolute carrier-envelope phase by angle-resolved photoelectron spectra of Ar by intense circularly polarized few-cycle pulses

    NASA Astrophysics Data System (ADS)

    Fukahori, Shinichi; Ando, Toshiaki; Miura, Shun; Kanya, Reika; Yamanouchi, Kaoru; Rathje, Tim; Paulus, Gerhard G.

    2017-05-01

    The angle-resolved photoelectron spectra of Ar are recorded using intense circularly polarized near-infrared few-cycle laser pulses, and the effect of the depletion of Ar atoms by the ionization and the effect of the Coulombic potential are examined by the classical trajectory Monte Carlo simulations. On the basis of the comparison between the experimental and theoretical photoelectron spectra, a procedure for estimating the absolute carrier-envelope phase (CEP) of the few-cycle laser pulses interacting with atoms and molecules is proposed. It is confirmed that the absolute CEP can securely be estimated without any numerical calculations once the angular distribution of the yield of photoelectrons having the kinetic energy larger than 30 eV is measured with the peak laser intensity in the range between 1 ×1014 and 5 ×1014W /c m2 .

  20. Investigating temporal field sampling strategies for site-specific calibration of three soil moisture-neutron intensity parameterisation methods

    NASA Astrophysics Data System (ADS)

    Iwema, J.; Rosolem, R.; Baatz, R.; Wagener, T.; Bogena, H. R.

    2015-07-01

    The Cosmic-Ray Neutron Sensor (CRNS) can provide soil moisture information at scales relevant to hydrometeorological modelling applications. Site-specific calibration is needed to translate CRNS neutron intensities into sensor footprint average soil moisture contents. We investigated temporal sampling strategies for calibration of three CRNS parameterisations (modified N0, HMF, and COSMIC) by assessing the effects of the number of sampling days and soil wetness conditions on the performance of the calibration results while investigating actual neutron intensity measurements, for three sites with distinct climate and land use: a semi-arid site, a temperate grassland, and a temperate forest. When calibrated with 1 year of data, both COSMIC and the modified N0 method performed better than HMF. The performance of COSMIC was remarkably good at the semi-arid site in the USA, while the N0mod performed best at the two temperate sites in Germany. The successful performance of COSMIC at all three sites can be attributed to the benefits of explicitly resolving individual soil layers (which is not accounted for in the other two parameterisations). To better calibrate these parameterisations, we recommend in situ soil sampled to be collected on more than a single day. However, little improvement is observed for sampling on more than 6 days. At the semi-arid site, the N0mod method was calibrated better under site-specific average wetness conditions, whereas HMF and COSMIC were calibrated better under drier conditions. Average soil wetness condition gave better calibration results at the two humid sites. The calibration results for the HMF method were better when calibrated with combinations of days with similar soil wetness conditions, opposed to N0mod and COSMIC, which profited from using days with distinct wetness conditions. Errors in actual neutron intensities were translated to average errors specifically to each site. At the semi-arid site, these errors were below the

  1. Crystalline sulfur dioxide: Crystal field splittings, absolute band intensities and complex refractive indices derived from infrared spectra

    NASA Technical Reports Server (NTRS)

    Khanna, R. K.; Zhao, Guizhi

    1986-01-01

    The infrared absorption spectra of thin crystalline films of sulfur dioxide at 90 K are reported in the 2700 to 450/cm region. The observed multiplicity of the spectral features in the regions of fundamentals is attributed to factor group splittings of the modes in a biaxial crystal lattice and the naturally present minor S-34, S-36, and O-18 isotopic species. Complex refractive indices determined by an iterative Kramers-Kronig analysis of the extinction data, and absolute band strengths derived from them, are also reported in this region.

  2. Absolute intensities for the Q-branch of the 3 nu(sub 2) (-) nu(sub 1) (465.161/cm) band of nitrous oxide

    NASA Technical Reports Server (NTRS)

    Sirota, J. Marcos; Reuter, Dennis C.

    1993-01-01

    The absolute intensities of four lines, Q 15-Q 18 in the 03(sup 1)0-10(sup 0)0 band, of N2O have been measured using a tunable diode laser spectrometer at temperatures between 380 and 420 K and pressures between 4 and 15 torr. Even though these transitions are weak and produced only about 2% of absorption at the line center for a pathlength of 52 m, they were measured with a signal to noise ratio of about 20 due to the high sensitivity of the instrument. The band strength derived is 1.03 x 10(exp -24) cm/molec at 296 K.

  3. Quantitative infrared and near-infrared gas-phase spectra for pyridine: Absolute intensities and vibrational assignments

    SciTech Connect

    Johnson, T. J.; Aker, P. M.; Scharko, N. K.

    Using vetted methods for generating quantitative absorption reference data, broadband infrared and near-infrared spectra (total range 11,000 – 600 cm-1) of pyridine vapor were recorded at 0.1 cm-1 spectral resolution, with the analyte thermostatted at 298 K and pressure-broadened to 1 atmosphere using N2 ballast gas. The quantitative spectrum is reported for the first time, and we have re-assigned some of the 27 fundamental modes. Fundamental assignments were confirmed by IR vapor phase band shapes, FT-Raman measurements and comparison with previous analyses. For the 760-Torr vapor-phase IR data several bands show resolved peaks (Q-branches). We have also assigned for themore » first time hundreds of combination and overtone bands in the mid- and near-IR. All assignments were made via comparison to theoretically calculated frequencies and intensities: The frequencies were computed with Gaussian03 with the anharmonic option, using MP2 and the ccpvtz basis set. The intensities were taken from a VSCF calculation in GAMESS using Hartree-Fock (for overtones and combination bands) or from the harmonic MP2 for fundamentals. Overtone and combination band harmonic and anharmonic frequencies, as well as intensities were also calculated using the CFOUR program. It is seen in the NIR spectrum near 6000 cm-1 that the very strong bands arise from the C-H first overtones, whereas only much weaker bands are observed for combination bands of C-H stretching modes. Certain features are discussed for their potential utility for atmospheric monitoring.« less

  4. Proposed low-energy absolute calibration of nuclear recoils in a dual-phase noble element TPC using D-D neutron scattering kinematics

    NASA Astrophysics Data System (ADS)

    Verbus, J. R.; Rhyne, C. A.; Malling, D. C.; Genecov, M.; Ghosh, S.; Moskowitz, A. G.; Chan, S.; Chapman, J. J.; de Viveiros, L.; Faham, C. H.; Fiorucci, S.; Huang, D. Q.; Pangilinan, M.; Taylor, W. C.; Gaitskell, R. J.

    2017-04-01

    We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an in situ measurement of the low-energy nuclear recoil response of the target media using the measured scattering angle between multiple neutron interactions within the detector volume. The low-energy reach and reduced systematics of this calibration have particular significance for the low-mass WIMP sensitivity of several leading dark matter experiments. Multiple strategies for improving this calibration technique are discussed, including the creation of a new type of quasi-monoenergetic neutron source with a minimum possible peak energy of 272 keV. We report results from a time-of-flight-based measurement of the neutron energy spectrum produced by an Adelphi Technology, Inc. DD108 neutron generator, confirming its suitability for the proposed nuclear recoil calibration.

  5. An attempt to determine the absolute geomagnetic field intensity in Southwestern Iceland during the Gauss-Matuyama reversal

    NASA Astrophysics Data System (ADS)

    Goguitchaichvili, Avto; Prévot, Michel; Thompson, John; Roberts, Neil

    1999-08-01

    We have measured the variation in the intensity of the geomagnetic field during the Gauss-Matuyama (N4-R3) polarity reversal by application of the Thelliers' method to specimens of lava flows from Hvalfjördur district in Western Iceland (Reynivallahals Mts.). Eleven lava flows all show very similar directions corresponding to an equatorial VGP (Plat=2.9°N, Plong=81.9°E, A95=4.2, K=119). Twenty-nine specimens from nine of the flows were pre-selected for palaeointensity determination on the basis that specimens from the same drill cores showed a single component of magnetisation upon thermal or AF demagnetisation, and possessed low magnetic viscosity and reversible susceptibility curves upon heating at 600-650°C. Observation that the directional data obtained in the course of the palaeointensity experiments occasionally showed substantial non-linearity indicates that a significant chemical remanent magnetization (CRM) can be acquired in the direction of the laboratory field during heating at T. For each double heating step we calculated the ratio of CRM( T) to the magnitude of the natural remanent magnetization (NRM( T)) in the direction of characteristic remanence (obtained independently from another specimen from the same core). When this ratio exceeded 15%, the paleointensity data was rejected. In addition, specimens for which the quality factor was less than 5 were rejected. Twelve reliable palaeointensity values were obtained from specimens representing five lava flows. The results confirm that the palaeointensity was substantially reduced during the N4-R3 reversal. The range of mean palaeointensity values obtained for the five flows is 8.8 to 20.5 and the overall mean is 14.8±4.6 μT. This corresponds to an equivalent VDM of 3.81±1.19 (10 22 A m 2). A comparison of all Thellier palaeointensity data from the R3 magnetozone in the Rayinivallahals Mts. area reveals a progressive although irregular increase in the palaeointensity between the Gauss

  6. Intensity calibration of a laser scanning confocal microscope based on concentrated dyes.

    PubMed

    Model, Michael A; Blank, James L

    2006-10-01

    To find water-soluble fluorescent dyes with absorption in various regions of the spectrum and investigate their utility as standards for laser scanning confocal microscopy. Several dyes were found to have characteristics required for fluorescence microscopy standards. The intensity of biological fluorescent specimens was measured against the emission of concentrated dyes. Results using different optics and different microscopes were compared. Slides based on concentrated dyes can be prepared in a highly reproducible manner and are stable under laser scanning. Normalized fluorescence of biological specimens remains consistent with different objective lenses and is tolerant to some mismatch in optical filters or imperfect pinhole alignment. Careful choice of scanning parameters is necessary to ensure linearity of intensity measurements. Concentrated dyes provide a robust and inexpensive intensity standard that can be used in basic research or clinical studies.

  7. Calibration of GENEActiv accelerometer wrist cut-points for the assessment of physical activity intensity of preschool aged children.

    PubMed

    Roscoe, Clare M P; James, Rob S; Duncan, Michael J

    2017-08-01

    This study sought to validate cut-points for use of wrist-worn GENEActiv accelerometer data, to analyse preschool children's (4 to 5 year olds) physical activity (PA) levels via calibration with oxygen consumption values (VO 2 ). This was a laboratory-based calibration study. Twenty-one preschool children, aged 4.7 ± 0.5 years old, completed six activities (ranging from lying supine to running) whilst wearing the GENEActiv accelerometers at two locations (left and right wrist), these being the participants' non-dominant and dominant wrist, and a Cortex face mask for gas analysis. VO 2 data was used for the assessment of criterion validity. Location specific activity intensity cut-points were established via receiver operator characteristic curve (ROC) analysis. The GENEActiv accelerometers, irrespective of their location, accurately discriminated between all PA intensities (sedentary, light, and moderate and above), with the dominant wrist monitor providing a slightly more precise discrimination at light PA and the non-dominant at the sedentary behaviour and moderate and above intensity levels (area under the curve (AUC) for non-dominant = 0.749-0.993, compared to AUC dominant = 0.760-0.988). This study establishes wrist-worn physical activity cut-points for the GENEActiv accelerometer in preschoolers. What is Known: • GENEActiv accelerometers have been validated as a PA measurement tool in adolescents and adults. • No study to date has validated the GENEActiv accelerometers in preschoolers. What is New: • Cut-points were determined for the wrist-worn GENEActiv accelerometer in preschoolers. • These cut-points can be used in future research to help classify and increase preschoolers' compliance rates with PA.

  8. Raman spectroscopy of titanomagnetites: Calibration of the intensity of Raman peaks as a sensitive indicator for their Ti content

    SciTech Connect

    Zinin, Pavel; Tatsumi-Petrochilos, Lisa; Bonal, Lydie

    2015-10-15

    A systematic study of the Raman spectra of the titanomagnetite solid-solution series (Fe{sub 3-x}Ti{sub x}O{sub 4}) for x = {approx}0.0, 0.2, 0.4, and 0.6 has been conducted. The samples showed combinations of five previously predicted Raman peaks at {approx}190, 310, 460, 540, and 670 cm{sup -1} that correspond to vibrational modes with T{sub 2g}(1), E{sub g}, T{sub 2g}(3), T{sub 2g}(2), and A{sub 1g}, respectively. The calibration of Raman spectra for titanomagnetite with known values of Ti concentrations reveals a strong dependence of relative intensity for the T{sub 2g}(2) and T{sub 2g}(3) modes on Ti concentration. The most prominent feature ismore » the appearance and increase in the relative intensity of a T{sub 2g}(3) peak above x = {approx}0.2. On the other hand, the Raman peak for the T{sub 2g}(2) mode gradually diminishes as Ti increases and nearly disappears at x = {approx}0.6. Combining the two relative intensities potentially provides a sensitive indicator of Ti content. The technique was applied to study titanomagnetite in grains from Hana Volcanics and melatroctolite from Rhode Island.« less

  9. Mapping the pharmacological modulation of brain oxygen metabolism: The effects of caffeine on absolute CMRO2 measured using dual calibrated fMRI.

    PubMed

    Merola, Alberto; Germuska, Michael A; Warnert, Esther Ah; Richmond, Lewys; Helme, Daniel; Khot, Sharmila; Murphy, Kevin; Rogers, Peter J; Hall, Judith E; Wise, Richard G

    2017-07-15

    This study aims to map the acute effects of caffeine ingestion on grey matter oxygen metabolism and haemodynamics with a novel MRI method. Sixteen healthy caffeine consumers (8 males, age=24.7±5.1) were recruited to this randomised, double-blind, placebo-controlled study. Each participant was scanned on two days before and after the delivery of an oral caffeine (250mg) or placebo capsule. Our measurements were obtained with a newly proposed estimation approach applied to data from a dual calibration fMRI experiment that uses hypercapnia and hyperoxia to modulate brain blood flow and oxygenation. Estimates were based on a forward model that describes analytically the contributions of cerebral blood flow (CBF) and of the measured end-tidal partial pressures of CO 2 and O 2 to the acquired dual-echo GRE signal. The method allows the estimation of grey matter maps of: oxygen extraction fraction (OEF), CBF, CBF-related cerebrovascular reactivity (CVR) and cerebral metabolic rate of oxygen consumption (CMRO 2 ). Other estimates from a multi inversion time ASL acquisition (mTI-ASL), salivary samples of the caffeine concentration and behavioural measurements are also reported. We observed significant differences between caffeine and placebo on average across grey matter, with OEF showing an increase of 15.6% (SEM±4.9%, p<0.05) with caffeine, while CBF and CMRO 2 showed differences of -30.4% (SEM±1.6%, p<0.01) and -18.6% (SEM±2.9%, p<0.01) respectively with caffeine administration. The reduction in oxygen metabolism found is somehow unexpected, but consistent with a hypothesis of decreased energetic demand, supported by previous electrophysiological studies reporting reductions in spectral power with EEG. Moreover the maps of the physiological parameters estimated illustrate the spatial distribution of changes across grey matter enabling us to localise the effects of caffeine with voxel-wise resolution. CBF changes were widespread as reported by previous findings, while

  10. NIST/ISAC standardization study: variability in assignment of intensity values to fluorescence standard beads and in cross calibration of standard beads to hard dyed beads.

    PubMed

    Hoffman, Robert A; Wang, Lili; Bigos, Martin; Nolan, John P

    2012-09-01

    Results from a standardization study cosponsored by the International Society for Advancement of Cytometry (ISAC) and the US National Institute of Standards and Technology (NIST) are reported. The study evaluated the variability of assigning intensity values to fluorophore standard beads by bead manufacturers and the variability of cross calibrating the standard beads to stained polymer beads (hard-dyed beads) using different flow cytometers. Hard dyed beads are generally not spectrally matched to the fluorophores used to stain cells, and spectral response varies among flow cytometers. Thus if hard dyed beads are used as fluorescence calibrators, one expects calibration for specific fluorophores (e.g., FITC or PE) to vary among different instruments. Using standard beads surface-stained with specific fluorophores (FITC, PE, APC, and Pacific Blue™), the study compared the measured intensity of fluorophore standard beads to that of hard dyed beads through cross calibration on 133 different flow cytometers. Using robust CV as a measure of variability, the variation of cross calibrated values was typically 20% or more for a particular hard dyed bead in a specific detection channel. The variation across different instrument models was often greater than the variation within a particular instrument model. As a separate part of the study, NIST and four bead manufacturers used a NIST supplied protocol and calibrated fluorophore solution standards to assign intensity values to the fluorophore beads. Values assigned to the reference beads by different groups varied by orders of magnitude in most cases, reflecting differences in instrumentation used to perform the calibration. The study concluded that the use of any spectrally unmatched hard dyed bead as a general fluorescence calibrator must be verified and characterized for every particular instrument model. Close interaction between bead manufacturers and NIST is recommended to have reliable and uniformly assigned

  11. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  12. Absolute band intensities in the nu19/nu23 (530 cm(-1)) and nu7 (777 cm(-1)) bands of acetone ((CH3)2CO) from 232 to 295 K

    NASA Technical Reports Server (NTRS)

    Wang, W. F.; Stevenson, A.; Reuter, D. C.; Sirota, J. M.

    2000-01-01

    Absolute band intensities of acetone ((CH3)2CO) in the nu19/nu23 and nu7 band systems near 530 and 777 cm(-1), respectively, were measured at temperatures of 232, 262 and 295 K, using a Fourier transform infrared (FTIR) spectrometer. No evident temperature dependence for the band intensities was observed. The dipole moments and the fundamental band intensities were derived in the harmonic oscillator approximation. The results are useful for the spectroscopic retrieval of acetone concentrations in the upper atmosphere.

  13. Absolute Rovibrational Intensities for the Chi(sup 1)Sigma(sup +) v=3 <-- 0 Band of (12)C(16)O Obtained with Kitt Peak and BOMEM FTS Instruments

    NASA Technical Reports Server (NTRS)

    Chackerian, Charles, Jr.; Kshirsagar, R. J.; Giver, L. P.; Brown, L. R.; Condon, Estelle P. (Technical Monitor)

    1999-01-01

    This work was initiated to compare absolute line intensities retrieved with the Kitt Peak FTS (Fourier Transform Spectrometer) and Ames BOMEM FTS. Since thermal contaminations can be a problem using the BOMEM instrument if proper precautions are not taken it was thought that measurements done at 6300 per cm would more easily result in satisfactory intercomparisons. Very recent measurements of the CO 3 <-- 0 band fine intensities confirms results reported here that the intensities listed in HITRAN (High Resolution Molecular Absorption Database) for this band are on the order of six to seven percent too low. All of the infrared intensities in the current HITRAN tabulation are based on the electric dipole moment function reported fifteen years ago. The latter in turn was partly based on intensities for the 3 <-- 0 band reported thirty years ago. We have, therefore, redetermined the electric dipole moment function of ground electronic state CO.

  14. Absolute intensities and self-, N2-, and air-broadened Lorentz halfwidths for selected lines in the nu3 band of (C-12)H3D from measurements with a tunable diode laser spectrometer

    NASA Technical Reports Server (NTRS)

    Malathy Devi, V.; Benner, D. C.; Rinsland, C. P.; Smith, M. A. H.; Thakur, K. B.

    1986-01-01

    Absolute intensities and self-, air- and N2-broadened half-widths have been determined for the first time for individual lines in the nu3(A1) band of (C-12)H3D near 7.6 microns from measurements of individual vibration-rotation lines using a tunable diode laser spectrometer. The intensity measurements are believed to be accurate to within three percent. Within experimental uncertainties, equal broadening efficiencies are found for both air and nitrogen. Self-broadened half-widths determined for three transitions yield an average half-width value of 0.803 + or -0.0010/cm/atm at 296 K.

  15. The 238U/235U isotope ratio of the Earth and the solar system: Constrains from a gravimetrically calibrated U double spike and implications for absolute Pb-Pb ages

    NASA Astrophysics Data System (ADS)

    Weyer, Stefan; Noordmann, Janine; Brennecka, Greg; Richter, Stephan

    2010-05-01

    The ratio of 238U and 235U, the two primordial U isotopes, has been assumed to be constant on Earth and in the solar system. The commonly accepted value for the 238U/235U ratio, which has been used in Pb-Pb dating for the last ~ 30 years, was 137.88. Within the last few years, it has been shown that 1) there are considerable U isotope variations (~1.3‰) within terrestrial material produced by isotope fractionation during chemical reactions [1-3] and 2) there are even larger isotope variations (at least 3.5‰) in calcium-aluminum-rich inclusions (CAIs) in meoteorites that define the currently accepted age of the solar system [4]. These findings are dramatic for geochronology, as a known 238U/235U is a requirement for Pb-Pb dating, the most precise dating technique for absolute ages. As 238U/235U variations can greatly affect the reported absolute Pb-Pb age, understanding and accurately measuring variation of the 238U/235U ratio in various materials is critical, With these new findings, the questions also arises of "How well do we know the average U isotope composition of the Earth and the solar system?" and "How accurate can absolute Pb-Pb ages be?" Our results using a gravimetrically calibrated 233U/236U double spike IRMM 3636 [5] indicate that the U standard NBL 950a, which was commonly used to define the excepted "natural" 238U/235U isotope ratio, has a slightly lower 238U/235U of 137.836 ± 0.024. This value is indistinguishable from the U isotope compositions for NBL 960 and NBL112A, which have been determined by several laboratories, also using the newly calibrated U double spike IRMM 3636 [6]. These findings provide new implications about the average U isotope composition of the Earth and the solar system. Basalts display a very tight range of U isotope variations (~0.25-0.32‰ relative to SRM 950a). Their U isotope composition is also very similar to that of chondrites [4], which however appear to show a slightly larger spread. Accepting terrestrial

  16. Calibrating Wide Field Surveys

    NASA Astrophysics Data System (ADS)

    González Fernández, Carlos; Irwin, M.; Lewis, J.; González Solares, E.

    2017-09-01

    "In this talk I will review the strategies in CASU to calibrate wide field surveys, in particular applied to data taken with the VISTA telescope. These include traditional night-by-night calibrations along with the search for a global, coherent calibration of all the data once observations are finished. The difficulties of obtaining photometric accuracy of a few percent and a good absolute calibration will also be discussed."

  17. Application of the Self Calibrating Emissivity and/or Transmissivity Independent Multiwavelength Pyrometer in an Intense Ambient Radiation Environment

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1996-01-01

    The NASA self calibrating multiwavelength pyrometer is a recent addition to the list of pyrometers used in remote temperature measurement in research and development. The older one-color, two-color, and the disappearing filament pyrometers, as well as the multicolor and early multiwavelength pyrometers, all do not operate successfully in situations in which strong ambient radiation coexists with radiation originating from the measured surface. In such situations radiation departing from the target surface arrives at the pyrometer together with radiation coming from another source either directly or through reflection. Unlike the other pyrometers, the self calibrating multiwavelength pyrometer can still calibrate itself and measure the temperatures in this adverse environment.

  18. Approaches on calibration of bolometer and establishment of bolometer calibration device

    NASA Astrophysics Data System (ADS)

    Xia, Ming; Gao, Jianqiang; Ye, Jun'an; Xia, Junwen; Yin, Dejin; Li, Tiecheng; Zhang, Dong

    2015-10-01

    Bolometer is mainly used for measuring thermal radiation in the field of public places, labor hygiene, heating and ventilation and building energy conservation. The working principle of bolometer is under the exposure of thermal radiation, temperature of black absorbing layer of detector rise after absorption of thermal radiation, which makes the electromotive force produced by thermoelectric. The white light reflective layer of detector does not absorb thermal radiation, so the electromotive force produced by thermoelectric is almost zero. A comparison of electromotive force produced by thermoelectric of black absorbing layer and white reflective layer can eliminate the influence of electric potential produced by the basal background temperature change. After the electromotive force which produced by thermal radiation is processed by the signal processing unit, the indication displays through the indication display unit. The measurement unit of thermal radiation intensity is usually W/m2 or kW/m2. Its accurate and reliable value has important significance for high temperature operation, labor safety and hygiene grading management. Bolometer calibration device is mainly composed of absolute radiometer, the reference light source, electric measuring instrument. Absolute radiometer is a self-calibration type radiometer. Its working principle is using the electric power which can be accurately measured replaces radiation power to absolutely measure the radiation power. Absolute radiometer is the standard apparatus of laser low power standard device, the measurement traceability is guaranteed. Using the calibration method of comparison, the absolute radiometer and bolometer measure the reference light source in the same position alternately which can get correction factor of irradiance indication. This paper is mainly about the design and calibration method of the bolometer calibration device. The uncertainty of the calibration result is also evaluated.

  19. Absolute Rovibrational Intensities, Self-Broadening and Self-Shift Coefficients for the X(sup 1) Sigma(+) V=3 (left arrow) V=0 Band (C-12)(O-16)

    NASA Technical Reports Server (NTRS)

    Chackerian, Charles, Jr.; Freedman, R.; Giver, L. P.; Brown, L. R.

    2001-01-01

    The rotationless transition moment squared for the x(sup 1) sigma (sup +) v=3 (left arrow) v=0 band of CO is measured to be the absolute value of R (sub 3-0) squared = 1.7127(25)x 10(exp -7) Debye squared. This value is about 8.6 percent smaller than the value assumed for HITRAN 2000. The Herman-Wallis intensity factor of this band is F=1+0.01168(11)m+0.0001065(79)m squared. The determination of self-broadening coefficients is improved with the inclusion of line narrowing; self-shifts are also reported.

  20. Absolute infrared intensities for F-113 and F-114 and an assessment of their greenhouse warming potential relative to other chlorofluorocarbons

    NASA Astrophysics Data System (ADS)

    Rogers, Jerry D.; Stephens, Robert D.

    1988-03-01

    The literature concerning the "greenhouse" warming potentials of Chlorofluorocarbons F-11, F-12, F-22, F-113, F-114, F-134a, and F-142b is reviewed. Additionally, infrared intensities are reported for each of the fundamental absorption bands of F-113 (CF2ClCFCl2) and F-114 (CF2ClCF2Cl) in the region between 8 and 20 μm. The measurements were made with a Fourier transform infrared spectrometer operated at 0.04 cm-1 apodized resolution. The total intensities measured for this region were 4905 cm-2 atm-1 for F-113 and 6064 cm-2 atm-1 for F-114, compared to a total intensity of 3404 cm-2 atm-1 for F-12 (CF2Cl2) in the same region. On the basis of these infrared intensities and the atmospheric lifetimes of F-113 and of F-114 relative to F-12, and on a per unit mass basis, F-113 and F-114 are about 0.8 and 1.9 times as effective, respectively, as F-12 in the "greenhouse" warming of the Earth.

  1. An evaluation of the accuracy of geomagnetic data obtained from an unattended, automated, quasi-absolute station

    USGS Publications Warehouse

    Herzog, D.C.

    1990-01-01

    A comparison is made of geomagnetic calibration data obtained from a high-sensitivity proton magnetometer enclosed within an orthogonal bias coil system, with data obtained from standard procedures at a mid-latitude U.S. Geological Survey magnetic observatory using a quartz horizontal magnetometer, a Ruska magnetometer, and a total field magnetometer. The orthogonal coil arrangement is used with the proton magnetometer to provide Deflected-Inclination-Deflected-Declination (DIDD) data from which quasi-absolute values of declination, horizontal intensity, and vertical intensity can be derived. Vector magnetometers provide the ordinate values to yield baseline calibrations for both the DIDD and standard observatory processes. Results obtained from a prototype system over a period of several months indicate that the DIDD unit can furnish adequate absolute field values for maintaining observatory calibration data, thus providing baseline control for unattended, remote stations. ?? 1990.

  2. The relative meaning of absolute numbers: the case of pain intensity scores as decision support systems for pain management of patients with dementia.

    PubMed

    Lichtner, Valentina; Dowding, Dawn; Closs, S José

    2015-12-24

    Assessment and management of pain in patients with dementia is known to be challenging, due to patients' cognitive and/or communication difficulties. In the UK, pain in hospital is managed through regular assessments, with the use of pain intensity scores as triggers for action. The aim of this study was to understand current pain assessment practices, in order to later inform the development of a decision support tool designed to improve the management of pain for people with dementia in hospital. An exploratory study was conducted in four hospitals in the UK (11 wards), with observations of patients with dementia (n = 31), interviews of staff (n = 52) and patients' family members (n = 4) and documentary analysis. A thematic analysis was carried out, structured along dimensions of decision making. This paper focuses on the emergent themes related to the use of assessment tools and pain intensity scores. A variety of tools were used to record pain intensity, usually with numerical scales. None of the tools in actual use had been specifically designed for patients with cognitive impairment. With patients with more severe dementia, the patient's body language and other cues were studied to infer pain intensity and then a score entered on behalf of the patient. Information regarding the temporality of pain and changes in pain experience (rather than a score at a single point in time) seemed to be most useful to the assessment of pain. Given the inherent uncertainty of the meaning of pain scores for patients with dementia, numerical scales were used with caution. Numerical scores triggered action but their meaning was relative - to the patient, to the clinician, to the time of recording and to the purpose of documenting. There are implications for use of data and computerized decision support systems design. Decision support interventions should include personalized alerting cut-off scores for individual patients, display pain scores over time and integrate

  3. Using Multivariate Regression Model with Least Absolute Shrinkage and Selection Operator (LASSO) to Predict the Incidence of Xerostomia after Intensity-Modulated Radiotherapy for Head and Neck Cancer

    PubMed Central

    Ting, Hui-Min; Chang, Liyun; Huang, Yu-Jie; Wu, Jia-Ming; Wang, Hung-Yu; Horng, Mong-Fong; Chang, Chun-Ming; Lan, Jen-Hong; Huang, Ya-Yu; Fang, Fu-Min; Leung, Stephen Wan

    2014-01-01

    Purpose The aim of this study was to develop a multivariate logistic regression model with least absolute shrinkage and selection operator (LASSO) to make valid predictions about the incidence of moderate-to-severe patient-rated xerostomia among head and neck cancer (HNC) patients treated with IMRT. Methods and Materials Quality of life questionnaire datasets from 206 patients with HNC were analyzed. The European Organization for Research and Treatment of Cancer QLQ-H&N35 and QLQ-C30 questionnaires were used as the endpoint evaluation. The primary endpoint (grade 3+ xerostomia) was defined as moderate-to-severe xerostomia at 3 (XER3m) and 12 months (XER12m) after the completion of IMRT. Normal tissue complication probability (NTCP) models were developed. The optimal and suboptimal numbers of prognostic factors for a multivariate logistic regression model were determined using the LASSO with bootstrapping technique. Statistical analysis was performed using the scaled Brier score, Nagelkerke R2, chi-squared test, Omnibus, Hosmer-Lemeshow test, and the AUC. Results Eight prognostic factors were selected by LASSO for the 3-month time point: Dmean-c, Dmean-i, age, financial status, T stage, AJCC stage, smoking, and education. Nine prognostic factors were selected for the 12-month time point: Dmean-i, education, Dmean-c, smoking, T stage, baseline xerostomia, alcohol abuse, family history, and node classification. In the selection of the suboptimal number of prognostic factors by LASSO, three suboptimal prognostic factors were fine-tuned by Hosmer-Lemeshow test and AUC, i.e., Dmean-c, Dmean-i, and age for the 3-month time point. Five suboptimal prognostic factors were also selected for the 12-month time point, i.e., Dmean-i, education, Dmean-c, smoking, and T stage. The overall performance for both time points of the NTCP model in terms of scaled Brier score, Omnibus, and Nagelkerke R2 was satisfactory and corresponded well with the expected values. Conclusions

  4. Using multivariate regression model with least absolute shrinkage and selection operator (LASSO) to predict the incidence of Xerostomia after intensity-modulated radiotherapy for head and neck cancer.

    PubMed

    Lee, Tsair-Fwu; Chao, Pei-Ju; Ting, Hui-Min; Chang, Liyun; Huang, Yu-Jie; Wu, Jia-Ming; Wang, Hung-Yu; Horng, Mong-Fong; Chang, Chun-Ming; Lan, Jen-Hong; Huang, Ya-Yu; Fang, Fu-Min; Leung, Stephen Wan

    2014-01-01

    The aim of this study was to develop a multivariate logistic regression model with least absolute shrinkage and selection operator (LASSO) to make valid predictions about the incidence of moderate-to-severe patient-rated xerostomia among head and neck cancer (HNC) patients treated with IMRT. Quality of life questionnaire datasets from 206 patients with HNC were analyzed. The European Organization for Research and Treatment of Cancer QLQ-H&N35 and QLQ-C30 questionnaires were used as the endpoint evaluation. The primary endpoint (grade 3(+) xerostomia) was defined as moderate-to-severe xerostomia at 3 (XER3m) and 12 months (XER12m) after the completion of IMRT. Normal tissue complication probability (NTCP) models were developed. The optimal and suboptimal numbers of prognostic factors for a multivariate logistic regression model were determined using the LASSO with bootstrapping technique. Statistical analysis was performed using the scaled Brier score, Nagelkerke R(2), chi-squared test, Omnibus, Hosmer-Lemeshow test, and the AUC. Eight prognostic factors were selected by LASSO for the 3-month time point: Dmean-c, Dmean-i, age, financial status, T stage, AJCC stage, smoking, and education. Nine prognostic factors were selected for the 12-month time point: Dmean-i, education, Dmean-c, smoking, T stage, baseline xerostomia, alcohol abuse, family history, and node classification. In the selection of the suboptimal number of prognostic factors by LASSO, three suboptimal prognostic factors were fine-tuned by Hosmer-Lemeshow test and AUC, i.e., Dmean-c, Dmean-i, and age for the 3-month time point. Five suboptimal prognostic factors were also selected for the 12-month time point, i.e., Dmean-i, education, Dmean-c, smoking, and T stage. The overall performance for both time points of the NTCP model in terms of scaled Brier score, Omnibus, and Nagelkerke R(2) was satisfactory and corresponded well with the expected values. Multivariate NTCP models with LASSO can be used to

  5. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  6. Improved dewpoint-probe calibration

    NASA Technical Reports Server (NTRS)

    Stephenson, J. G.; Theodore, E. A.

    1978-01-01

    Relatively-simple pressure-control apparatus calibrates dewpoint probes considerably faster than conventional methods, with no loss of accuracy. Technique requires only pressure measurement at each calibration point and single absolute-humidity measurement at beginning of run. Several probes can be calibrated simultaneously and points can be checked above room temperature.

  7. Laser-induced incandescence calibration via gravimetric sampling

    NASA Technical Reports Server (NTRS)

    Choi, M. Y.; Vander Wal, R. L.; Zhou, Z.

    1996-01-01

    Absolute calibration of laser-induced incandescence (LII) is demonstrated via comparison of LII signal intensities with gravimetrically determined soot volume fractions. This calibration technique does not rely upon calculated or measured optical characteristics of soot. The variation of the LII signal with gravimetrically measured soot volume fractions ranging from 0.078 to 1.1 ppm established the linearly of the calibration. With the high spatial and temporal resolution capabilities of laser-induced incandescence (LII), the spatial and temporal fluctuations of the soot field within a gravimetric chimney were characterized. Radial uniformity of the soot volume fraction, f(sub v) was demonstrated with sufficient averaging of the single laser-shot LII images of the soot field thus confirming the validity of the calibration method for imaging applications. As illustration, instantaneous soot volume fractions within a Re = 5000 ethylene/air diffusion flame measured via planar LII were established quantitatively with this calibration.

  8. Absolute metrology for space interferometers

    NASA Astrophysics Data System (ADS)

    Salvadé, Yves; Courteville, Alain; Dändliker, René

    2017-11-01

    The crucial issue of space-based interferometers is the laser interferometric metrology systems to monitor with very high accuracy optical path differences. Although classical high-resolution laser interferometers using a single wavelength are well developed, this type of incremental interferometer has a severe drawback: any interruption of the interferometer signal results in the loss of the zero reference, which requires a new calibration, starting at zero optical path difference. We propose in this paper an absolute metrology system based on multiplewavelength interferometry.

  9. Optical calibration of the Auger fluorescence telescopes

    NASA Astrophysics Data System (ADS)

    Matthews, John A. J.

    2003-02-01

    The Pierre Auger Observatory is optimized to study the cosmic ray spectrum in the region of the Greisen-Zatsepin-Kuz'min (GZK) cutoff, i.e.cosmic rays with energies of ~1020eV. Cosmic rays are detected as extensive air showers. To measure these showers each Auger site combines a 3000sq-km ground array with air fluorescence telescopes into a hybrid detector. Our design choice is motivated by the heightened importance of the energy scale, and related systematic uncertainties in shower energies, for experiments investigating the GZK cutoff. This paper focuses on the optical calibration of the Auger fluorescence telescopes. The optical calibration is done three independent ways: an absolute end-to-end calibration using a uniform, calibrated intensity, light-source at the telescope entrance aperture, a component by component calibration using both laboratory and in-situ measurements, and Rayleigh scattered light from external laser beams. The calibration concepts and related instrumentation are summarized. Results from the 5-month engineering array test are presented.

  10. Absolute Soft X-ray Emission Measurements at the Nike Laser

    NASA Astrophysics Data System (ADS)

    Weaver, J.; Atkin, R.; Boyer, C.; Colombant, D.; Feldman, U.; Fielding, D.; Gardner, J.; Holland, G.; Klapisch, M.; Mostovych, A. N.; Obenscain, S.; Seely, J. F.

    2002-11-01

    Recent experiments at the Nike laser facility have demonstrated that, when a low intensity prepulse ( 2main laser intensity) is used to heat a thin Au or Pd coating on a planar CH target, the growth of non-uniformities due to laser imprint can be reduced from the growth observed for an uncoated CH target. The absolute radiation intensity in the soft x-ray region (0.1-1 keV) has a important role in the energy balance for layered targets. There is an ongoing effort to characterize the soft x-ray emission using an absolutely calibrated transmission grating spectrometer and filtered diode modules. Measurements of the angular distribution of the emission from unlayered solid targets (Au, Pd, CH) have recently been made using an array of moveable filtered diode modules. The data from the angular distribution studies will be presented. A new absolutely calibrated, time-resolving transmission grating spectrometer has been installed at the Nike. The new version has improved spectral resolution, selectable transmission filters, and the potential for simultaneous temporal, spatial, and spectral resolution. Preliminary data from the new spectrometer will be presented and future experiments will be briefly discussed. *Work was supported by DoE

  11. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  12. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  13. Association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury after intensity-modulated radiotherapy in lung cancer: a retrospective analysis.

    PubMed

    Chen, Jinmei; Hong, Jinsheng; Zou, Xi; Lv, Wenlong; Guo, Feibao; Hong, Hualan; Zhang, Weijian

    2015-11-01

    The aim of this study was to investigate the association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury (RILI) after intensity-modulated radiotherapy (IMRT) for lung cancer. The normal lung relative volumes receiving greater than 5, 10, 20 and 30 Gy (V5-30) mean lung dose (MLD), and absolute volumes spared from greater than 5, 10, 20 and 30 Gy (AVS5-30) for the bilateral and ipsilateral lungs of 83 patients were recorded. Any association of clinical factors and dose-volume parameters with Grade ≥2 RILI was analyzed. The median follow-up was 12.3 months; 18 (21.7%) cases of Grade 2 RILI, seven (8.4%) of Grade 3 and two (2.4%) of Grade 4 were observed. Univariate analysis revealed the located lobe of the primary tumor. V5, V10, V20, MLD of the ipsilateral lung, V5, V10, V20, V30 and MLD of the bilateral lung, and AVS5 and AVS10 of the ipsilateral lung were associated with Grade ≥2 RILI (P < 0.05). Multivariate analysis indicated AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI (P = 0.010, OR = 0.272, 95% CI: 0.102-0.729). Receiver operating characteristic curves indicated Grade ≥2 RILI could be predicted using AVS5 of the ipsilateral lung (area under curve, 0.668; cutoff value, 564.9 cm(3); sensitivity, 60.7%; specificity, 70.4%). The incidence of Grade ≥2 RILI was significantly lower with AVS5 of the ipsilateral lung ≥564.9 cm(3) than with AVS5 < 564.9 cm(3) (P = 0.008). Low-dose irradiation relative volumes and MLD of the bilateral or ipsilateral lung were associated with Grade ≥2 RILI, and AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI for lung cancer after IMRT. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  14. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  15. Software For Calibration Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Van Zyl, Jakob; Zebker, Howard; Freeman, Anthony; Holt, John; Dubois, Pascale; Chapman, Bruce

    1994-01-01

    POLCAL (Polarimetric Radar Calibration) software tool intended to assist in calibration of synthetic-aperture radar (SAR) systems. In particular, calibrates Stokes-matrix-format data produced as standard product by NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). Version 4.0 of POLCAL is upgrade of version 2.0. New options include automatic absolute calibration of 89/90 data, distributed-target analysis, calibration of nearby scenes with corner reflectors, altitude or roll-angle corrections, and calibration of errors introduced by known topography. Reduces crosstalk and corrects phase calibration without use of ground calibration equipment. Written in FORTRAN 77.

  16. On the prospects of cross-calibrating the Cherenkov Telescope Array with an airborne calibration platform

    NASA Astrophysics Data System (ADS)

    Brown, Anthony M.

    2018-01-01

    Recent advances in unmanned aerial vehicle (UAV) technology have made UAVs an attractive possibility as an airborne calibration platform for astronomical facilities. This is especially true for arrays of telescopes spread over a large area such as the Cherenkov Telescope Array (CTA). In this paper, the feasibility of using UAVs to calibrate CTA is investigated. Assuming a UAV at 1km altitude above CTA, operating on astronomically clear nights with stratified, low atmospheric dust content, appropriate thermal protection for the calibration light source and an onboard photodiode to monitor its absolute light intensity, inter-calibration of CTA's telescopes of the same size class is found to be achievable with a 6 - 8 % uncertainty. For cross-calibration of different telescope size classes, a systematic uncertainty of 8 - 10 % is found to be achievable. Importantly, equipping the UAV with a multi-wavelength calibration light source affords us the ability to monitor the wavelength-dependent degradation of CTA telescopes' optical system, allowing us to not only maintain this 6 - 10 % uncertainty after the first few years of telescope deployment, but also to accurately account for the effect of multi-wavelength degradation on the cross-calibration of CTA by other techniques, namely with images of air showers and local muons. A UAV-based system thus provides CTA with several independent and complementary methods of cross-calibrating the optical throughput of individual telescopes. Furthermore, housing environmental sensors on the UAV system allows us to not only minimise the systematic uncertainty associated with the atmospheric transmission of the calibration signal, it also allows us to map the dust content above CTA as well as monitor the temperature, humidity and pressure profiles of the first kilometre of atmosphere above CTA with each UAV flight.

  17. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. © 2013 John Wiley & Sons Ltd.

  18. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams

    NASA Astrophysics Data System (ADS)

    Popescu, I. A.; Shaw, C. P.; Zavgorodni, S. F.; Beckham, W. A.

    2005-07-01

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 × 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 × 1013 ± 1.0% electrons incident on the target and a total dose of 20.87 cGy ± 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.

  19. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams.

    PubMed

    Popescu, I A; Shaw, C P; Zavgorodni, S F; Beckham, W A

    2005-07-21

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 x 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 x 10(13) +/- 1.0% electrons incident on the target and a total dose of 20.87 cGy +/- 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.

  20. Absolute atomic hydrogen densities in a radio frequency discharge measured by two-photon laser induced fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Chérigier, L.; Czarnetzki, U.; Luggenhölscher, D.; Schulz-von der Gathen, V.; Döbele, H. F.

    1999-01-01

    Absolute atomic hydrogen densities were measured in the gaseous electronics conference reference cell parallel plate reactor by Doppler-free two-photon absorption laser induced fluorescence spectroscopy (TALIF) at λ=205 nm. The capacitively coupled radio frequency discharge was operated at 13.56 MHz in pure hydrogen under various input power and pressure conditions. The Doppler-free excitation technique with an unfocused laser beam together with imaging the fluorescence radiation by an intensified charge coupled device camera allows instantaneous spatial resolution along the radial direction. Absolute density calibration is obtained with the aid of a flow tube reactor and titration with NO2. The influence of spatial intensity inhomogenities along the laser beam and subsequent fluorescence are corrected by TALIF in xenon. A full mapping of the absolute density distribution between the electrodes was obtained. The detection limit for atomic hydrogen amounts to about 2×1018 m-3. The dissociation degree is of the order of a few percent.

  1. The NIST Detector-Based Luminous Intensity Scale

    PubMed Central

    Cromer, C. L.; Eppeldauer, G.; Hardis, J. E.; Larason, T. C.; Ohno, Y.; Parr, A. C.

    1996-01-01

    The Système International des Unités (SI) base unit for photometry, the candela, has been realized by using absolute detectors rather than absolute sources. This change in method permits luminous intensity calibrations of standard lamps to be carried out with a relative expanded uncertainty (coverage factor k = 2, and thus a 2 standard deviation estimate) of 0.46 %, almost a factor-of-two improvement. A group of eight reference photometers has been constructed with silicon photodiodes, matched with filters to mimic the spectral luminous efficiency function for photopic vision. The wide dynamic range of the photometers aid in their calibration. The components of the photometers were carefully measured and selected to reduce the sources of error and to provide baseline data for aging studies. Periodic remeasurement of the photometers indicate that a yearly recalibration is required. The design, characterization, calibration, evaluation, and application of the photometers are discussed. PMID:27805119

  2. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed.

  3. Calibration techniques for a fast duo-spectrometer

    SciTech Connect

    Chapman, J.T.; Den Hartog, D.J.

    1996-06-01

    The authors have completed the upgrade and calibration of the Ion Dynamics Spectrometer (IDS), a high-speed Doppler duo-spectrometer which measures ion flow and temperature in the MST Reversed-field Pinch. This paper describes an in situ calibration of the diagnostic`s phase and frequency response. A single clock was employed to generate both a digital test signal and a digitizer trigger thus avoiding frequency drift and providing a highly resolved measurement over the system bandwidth. Additionally, they review the measurement of the spectrometer instrument function and absolute intensity response. This calibration and subsequent performance demonstrate the IDS to be one of themore » fastest, highest throughput diagnostics of its kind. Typical measurements are presented.« less

  4. Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions

    NASA Astrophysics Data System (ADS)

    Doria, D.; Kar, S.; Ahmed, H.; Alejo, A.; Fernandez, J.; Cerchez, M.; Gray, R. J.; Hanton, F.; MacLellan, D. A.; McKenna, P.; Najmudin, Z.; Neely, D.; Romagnani, L.; Ruiz, J. A.; Sarri, G.; Scullion, C.; Streeter, M.; Swantusch, M.; Willi, O.; Zepf, M.; Borghesi, M.

    2015-12-01

    The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.

  5. Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions.

    PubMed

    Doria, D; Kar, S; Ahmed, H; Alejo, A; Fernandez, J; Cerchez, M; Gray, R J; Hanton, F; MacLellan, D A; McKenna, P; Najmudin, Z; Neely, D; Romagnani, L; Ruiz, J A; Sarri, G; Scullion, C; Streeter, M; Swantusch, M; Willi, O; Zepf, M; Borghesi, M

    2015-12-01

    The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.

  6. Calibrating page sized Gafchromic EBT3 films

    SciTech Connect

    Crijns, W.; Maes, F.; Heide, U. A. van der

    2013-01-15

    Purpose: The purpose is the development of a novel calibration method for dosimetry with Gafchromic EBT3 films. The method should be applicable for pretreatment verification of volumetric modulated arc, and intensity modulated radiotherapy. Because the exposed area on film can be large for such treatments, lateral scan errors must be taken into account. The correction for the lateral scan effect is obtained from the calibration data itself. Methods: In this work, the film measurements were modeled using their relative scan values (Transmittance, T). Inside the transmittance domain a linear combination and a parabolic lateral scan correction described the observed transmittancemore » values. The linear combination model, combined a monomer transmittance state (T{sub 0}) and a polymer transmittance state (T{sub {infinity}}) of the film. The dose domain was associated with the observed effects in the transmittance domain through a rational calibration function. On the calibration film only simple static fields were applied and page sized films were used for calibration and measurements (treatment verification). Four different calibration setups were considered and compared with respect to dose estimation accuracy. The first (I) used a calibration table from 32 regions of interest (ROIs) spread on 4 calibration films, the second (II) used 16 ROIs spread on 2 calibration films, the third (III), and fourth (IV) used 8 ROIs spread on a single calibration film. The calibration tables of the setups I, II, and IV contained eight dose levels delivered to different positions on the films, while for setup III only four dose levels were applied. Validation was performed by irradiating film strips with known doses at two different time points over the course of a week. Accuracy of the dose response and the lateral effect correction was estimated using the dose difference and the root mean squared error (RMSE), respectively. Results: A calibration based on two films was the

  7. Minerva Detector Calibration

    NASA Astrophysics Data System (ADS)

    Rakotondravohitra, Laza

    2013-04-01

    Current and future neutrino oscillation experiments depend on precise knowledge of neutrino-nucleus cross-sections. Minerva is a neutrino scattering experiment at Fermilab. Minerva was designed to make precision measurements of low energy neutrino and antineutrino cross sections on a variety of different materials (plastic scintillator, C, Fe, Pb, He and H2O). In Order to make these measurements, it is crucial that the detector is carefully calibrated.This talk will describe how MINERvA uses muons from upstream neutrino interactions as a calibration source to convert electronics output to absolute energy deposition.

  8. Recent Infrasound Calibration Activity at Los Alamos

    NASA Astrophysics Data System (ADS)

    Whitaker, R. W.; Marcillo, O. E.

    2014-12-01

    Absolute infrasound sensor calibration is necessary for estimating source sizes from measured waveforms. This can be an important function in treaty monitoring. The Los Alamos infrasound calibration chamber is capable of absolute calibration. Early in 2014 the Los Alamos infrasound calibration chamber resumed operations in its new location after an unplanned move two years earlier. The chamber has two sources of calibration signals. The first is the original mechanical piston, and the second is a CLD Dynamics Model 316 electro-mechanical unit that can be digitally controlled and provide a richer set of calibration options. During 2008-2010 a number of upgrades were incorporated for improved operation and recording. In this poster we give an overview of recent chamber work on sensor calibrations, calibration with the CLD unit, some measurements with different porous hoses and work with impulse sources.

  9. Absolute auditory threshold: testing the absolute.

    PubMed

    Heil, Peter; Matysiak, Artur

    2017-11-02

    The mechanisms underlying the detection of sounds in quiet, one of the simplest tasks for auditory systems, are debated. Several models proposed to explain the threshold for sounds in quiet and its dependence on sound parameters include a minimum sound intensity ('hard threshold'), below which sound has no effect on the ear. Also, many models are based on the assumption that threshold is mediated by integration of a neural response proportional to sound intensity. Here, we test these ideas. Using an adaptive forced choice procedure, we obtained thresholds of 95 normal-hearing human ears for 18 tones (3.125 kHz carrier) in quiet, each with a different temporal amplitude envelope. Grand-mean thresholds and standard deviations were well described by a probabilistic model according to which sensory events are generated by a Poisson point process with a low rate in the absence, and higher, time-varying rates in the presence, of stimulation. The subject actively evaluates the process and bases the decision on the number of events observed. The sound-driven rate of events is proportional to the temporal amplitude envelope of the bandpass-filtered sound raised to an exponent. We find no evidence for a hard threshold: When the model is extended to include such a threshold, the fit does not improve. Furthermore, we find an exponent of 3, consistent with our previous studies and further challenging models that are based on the assumption of the integration of a neural response that, at threshold sound levels, is directly proportional to sound amplitude or intensity. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Strategy for the absolute neutron emission measurement on ITER.

    PubMed

    Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S

    2010-10-01

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  11. Fundamental principles of absolute radiometry and the philosophy of this NBS program (1968 to 1971)

    NASA Technical Reports Server (NTRS)

    Geist, J.

    1972-01-01

    A description is given work performed on a program to develop an electrically calibrated detector (also called absolute radiometer, absolute detector, and electrically calibrated radiometer) that could be used to realize, maintain, and transfer a scale of total irradiance. The program includes a comprehensive investigation of the theoretical basis of absolute detector radiometry, as well as the design and construction of a number of detectors. A theoretical analysis of the sources of error is also included.

  12. Ground calibrations of the X-ray detector system of the Solar Intensity X-ray Spectrometer (SIXS) on board BepiColombo

    NASA Astrophysics Data System (ADS)

    Huovelin, Juhani; Lehtolainen, Arto; Genzer, Maria; Korpela, Seppo; Esko, Eero; Andersson, Hans

    2014-05-01

    SIXS includes X-ray and particle detector systems for the BepiColombo Mercury Planetary Orbiter (MPO). Its task is to monitor the direct solar X-rays and energetic particles in a wide field of view in the energy range of 1-20 keV (X-rays), 0.1-3 MeV (electrons) and 1-30 MeV (protons). The main purpose of these measurements is to provide quantitative information on the high energy radiation incident on Mercury's surface which causes the X-ray glow of the planet measured by the MIXS instrument. The X-ray and particle measurements of SIXS are also useful for investigations of the solar corona and the magnetosphere of Mercury. The ground calibrations of the X-ray detectors of the SIXS flight model were carried out in the X-ray laboratory of the Helsinki University during May and June 2012. The aim of the ground calibrations was to characterize the performance of the SIXS instrument's three High-Purity Silicon PIN X-ray detectors and verify that they fulfil their scientific performance requirements. The calibrations included the determination of the beginning of life energy resolution at different operational temperatures, determination of the detector's sensitivity within the field of view as a function of the off-axis and roll angles, pile-up tests for determining the speed of the read out electronics, measurements of the low energy threshold of the energy scale, a cross-calibration with the SMART-1 XSM flight spare detector, and the determination of the temperature dependence of the energy scale. An X-ray tube and the detectors' internal Ti coated 55Fe calibration sources were used as primary X-ray sources. In addition, two external fluorescence sources were used as secondary X-ray sources in the determination of the energy resolutions and in the comparison calibration with the SMART-1 XSM. The calibration results show that the detectors fulfill all of the scientific performance requirements. The ground calibration data combined with the instrument house-keeping data

  13. An absolute photometric system at 10 and 20 microns

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Lebofsky, M. J.; Low, F. J.

    1985-01-01

    Two new direct calibrations at 10 and 20 microns are presented in which terrestrial flux standards are referred to infrared standard stars. These measurements give both good agreement and higher accuracy when compared with previous direct calibrations. As a result, the absolute calibrations at 10 and 20 microns have now been determined with accuracies of 3 and 8 percent, respectively. A variety of absolute calibrations based on extrapolation of stellar spectra from the visible to 10 microns are reviewed. Current atmospheric models of A-type stars underestimate their fluxes by about 10 percent at 10 microns, whereas models of solar-type stars agree well with the direct calibrations. The calibration at 20 microns can probably be determined to about 5 percent by extrapolation from the more accurate result at 10 microns. The photometric system at 10 and 20 microns is updated to reflect the new absolute calibration, to base its zero point directly on the colors of A0 stars, and to improve the accuracy in the comparison of the standard stars.

  14. DIRBE External Calibrator (DEC)

    NASA Technical Reports Server (NTRS)

    Wyatt, Clair L.; Thurgood, V. Alan; Allred, Glenn D.

    1987-01-01

    Under NASA Contract No. NAS5-28185, the Center for Space Engineering at Utah State University has produced a calibration instrument for the Diffuse Infrared Background Experiment (DIRBE). DIRBE is one of the instruments aboard the Cosmic Background Experiment Observatory (COBE). The calibration instrument is referred to as the DEC (Dirbe External Calibrator). DEC produces a steerable, infrared beam of controlled spectral content and intensity and with selectable point source or diffuse source characteristics, that can be directed into the DIRBE to map fields and determine response characteristics. This report discusses the design of the DEC instrument, its operation and characteristics, and provides an analysis of the systems capabilities and performance.

  15. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  16. Absolute Spatially- and Temporally-Resolved Optical Emission Measurements of rf Glow Discharges in Argon

    PubMed Central

    Djurović, S.; Roberts, J. R.; Sobolewski, M. A.; Olthoff, J. K.

    1993-01-01

    Spatially- and temporally-resolved measurements of optical emission intensities are presented from rf discharges in argon over a wide range of pressures (6.7 to 133 Pa) and applied rf voltages (75 to 200 V). Results of measurements of emission intensities are presented for both an atomic transition (Ar I, 750.4 nm) and an ionic transition (Ar II, 434.8 nm). The absolute scale of these optical emissions has been determined by comparison with the optical emission from a calibrated standard lamp. All measurements were made in a well-defined rf reactor. They provide detailed characterization of local time-resolved plasma conditions suitable for the comparison with results from other experiments and theoretical models. These measurements represent a new level of detail in diagnostic measurements of rf plasmas, and provide insight into the electron transport properties of rf discharges. PMID:28053464

  17. Measurement of absolute regional lung air volumes from near-field x-ray speckles.

    PubMed

    Leong, Andrew F T; Paganin, David M; Hooper, Stuart B; Siew, Melissa L; Kitchen, Marcus J

    2013-11-18

    Propagation-based phase contrast x-ray (PBX) imaging yields high contrast images of the lung where airways that overlap in projection coherently scatter the x-rays, giving rise to a speckled intensity due to interference effects. Our previous works have shown that total and regional changes in lung air volumes can be accurately measured from two-dimensional (2D) absorption or phase contrast images when the subject is immersed in a water-filled container. In this paper we demonstrate how the phase contrast speckle patterns can be used to directly measure absolute regional lung air volumes from 2D PBX images without the need for a water-filled container. We justify this technique analytically and via simulation using the transport-of-intensity equation and calibrate the technique using our existing methods for measuring lung air volume. Finally, we show the full capabilities of this technique for measuring regional differences in lung aeration.

  18. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  19. Absolute cavity pyrgeometer

    DOEpatents

    Reda, Ibrahim

    2013-10-29

    Implementations of the present disclosure involve an apparatus and method to measure the long-wave irradiance of the atmosphere or long-wave source. The apparatus may involve a thermopile, a concentrator and temperature controller. The incoming long-wave irradiance may be reflected from the concentrator to a thermopile receiver located at the bottom of the concentrator to receive the reflected long-wave irradiance. In addition, the thermopile may be thermally connected to a temperature controller to control the device temperature. Through use of the apparatus, the long-wave irradiance of the atmosphere may be calculated from several measurements provided by the apparatus. In addition, the apparatus may provide an international standard of pyrgeometers' calibration that is traceable back to the International System of Units (SI) rather than to a blackbody atmospheric simulator.

  20. MODIS calibration

    NASA Technical Reports Server (NTRS)

    Barker, John L.

    1992-01-01

    The MODIS/MCST (MODIS Characterization Support Team) Status Report contains an outline of the calibration strategy, handbook, and plan. It also contains an outline of the MODIS/MCST action item from the 4th EOS Cal/Val Meeting, for which the objective was to locate potential MODIS calibration targets on the Earth's surface that are radiometrically homogeneous on a scale of 3 by 3 Km. As appendices, draft copies of the handbook table of contents, calibration plan table of contents, and detailed agenda for MODIS calibration working group are included.

  1. Calibrations of the LHD Thomson scattering system

    SciTech Connect

    Yamada, I., E-mail: yamadai@nifs.ac.jp; Funaba, H.; Yasuhara, R.

    2016-11-15

    The Thomson scattering diagnostic systems are widely used for the measurements of absolute local electron temperatures and densities of fusion plasmas. In order to obtain accurate and reliable temperature and density data, careful calibrations of the system are required. We have tried several calibration methods since the second LHD experiment campaign in 1998. We summarize the current status of the calibration methods for the electron temperature and density measurements by the LHD Thomson scattering diagnostic system. Future plans are briefly discussed.

  2. Calibrations of the LHD Thomson scattering system.

    PubMed

    Yamada, I; Funaba, H; Yasuhara, R; Hayashi, H; Kenmochi, N; Minami, T; Yoshikawa, M; Ohta, K; Lee, J H; Lee, S H

    2016-11-01

    The Thomson scattering diagnostic systems are widely used for the measurements of absolute local electron temperatures and densities of fusion plasmas. In order to obtain accurate and reliable temperature and density data, careful calibrations of the system are required. We have tried several calibration methods since the second LHD experiment campaign in 1998. We summarize the current status of the calibration methods for the electron temperature and density measurements by the LHD Thomson scattering diagnostic system. Future plans are briefly discussed.

  3. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments inmore » Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.« less

  4. Calibration of scintillation-light filters for neutron time-of-flight spectrometers at the National Ignition Facility

    SciTech Connect

    Sayre, D. B., E-mail: sayre4@llnl.gov; Barbosa, F.; Caggiano, J. A.

    Sixty-four neutral density filters constructed of metal plates with 88 apertures of varying diameter have been radiographed with a soft x-ray source and CCD camera at National Security Technologies, Livermore. An analysis of the radiographs fits the radial dependence of the apertures’ image intensities to sigmoid functions, which can describe the rapidly decreasing intensity towards the apertures’ edges. The fitted image intensities determine the relative attenuation value of each filter. Absolute attenuation values of several imaged filters, measured in situ during calibration experiments, normalize the relative quantities which are now used in analyses of neutron spectrometer data at the Nationalmore » Ignition Facility.« less

  5. Calibration of scintillation-light filters for neutron time-of-flight spectrometers at the National Ignition Facility.

    PubMed

    Sayre, D B; Barbosa, F; Caggiano, J A; DiPuccio, V N; Eckart, M J; Grim, G P; Hartouni, E P; Hatarik, R; Weber, F A

    2016-11-01

    Sixty-four neutral density filters constructed of metal plates with 88 apertures of varying diameter have been radiographed with a soft x-ray source and CCD camera at National Security Technologies, Livermore. An analysis of the radiographs fits the radial dependence of the apertures' image intensities to sigmoid functions, which can describe the rapidly decreasing intensity towards the apertures' edges. The fitted image intensities determine the relative attenuation value of each filter. Absolute attenuation values of several imaged filters, measured in situ during calibration experiments, normalize the relative quantities which are now used in analyses of neutron spectrometer data at the National Ignition Facility.

  6. Normal incidence spectrophotometer using high density transmission grating technology and highly efficiency silicon photodiodes for absolute solar EUV irradiance measurements

    NASA Technical Reports Server (NTRS)

    Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Korde, R.

    1992-01-01

    New developments in transmission grating and photodiode technology now make it possible to realize spectrometers in the extreme ultraviolet (EUV) spectral region (wavelengths less than 1000 A) which are expected to be virtually constant in their diffraction and detector properties. Time dependent effects associated with reflection gratings are eliminated through the use of free standing transmission gratings. These gratings together with recently developed and highly stable EUV photodiodes have been utilized to construct a highly stable normal incidence spectrophotometer to monitor the variability and absolute intensity of the solar 304 A line. Owing to its low weight and compactness, such a spectrometer will be a valuable tool for providing absolute solar irradiance throughout the EUV. This novel instrument will also be useful for cross-calibrating other EUV flight instruments and will be flown on a series of Hitchhiker Shuttle Flights and on SOHO. A preliminary version of this instrument has been fabricated and characterized, and the results are described.

  7. POLCAL - POLARIMETRIC RADAR CALIBRATION

    NASA Technical Reports Server (NTRS)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  8. GPI Calibrations

    NASA Astrophysics Data System (ADS)

    Rantakyrö, Fredrik T.

    2017-09-01

    "The Gemini Planet Imager requires a large set of Calibrations. These can be split into two major sets, one set associated with each observation and one set related to biweekly calibrations. The observation set is to optimize the correction of miscroshifts in the IFU spectra and the latter set is for correction of detector and instrument cosmetics."

  9. SU-E-T-491: Importance of Energy Dependent Protons Per MU Calibration Factors in IMPT Dose Calculations Using Monte Carlo Technique

    SciTech Connect

    Randeniya, S; Mirkovic, D; Titt, U

    2014-06-01

    Purpose: In intensity modulated proton therapy (IMPT), energy dependent, protons per monitor unit (MU) calibration factors are important parameters that determine absolute dose values from energy deposition data obtained from Monte Carlo (MC) simulations. Purpose of this study was to assess the sensitivity of MC-computed absolute dose distributions to the protons/MU calibration factors in IMPT. Methods: A “verification plan” (i.e., treatment beams applied individually to water phantom) of a head and neck patient plan was calculated using MC technique. The patient plan had three beams; one posterior-anterior (PA); two anterior oblique. Dose prescription was 66 Gy in 30 fractions. Ofmore » the total MUs, 58% was delivered in PA beam, 25% and 17% in other two. Energy deposition data obtained from the MC simulation were converted to Gy using energy dependent protons/MU calibrations factors obtained from two methods. First method is based on experimental measurements and MC simulations. Second is based on hand calculations, based on how many ion pairs were produced per proton in the dose monitor and how many ion pairs is equal to 1 MU (vendor recommended method). Dose distributions obtained from method one was compared with those from method two. Results: Average difference of 8% in protons/MU calibration factors between method one and two converted into 27 % difference in absolute dose values for PA beam; although dose distributions preserved the shape of 3D dose distribution qualitatively, they were different quantitatively. For two oblique beams, significant difference in absolute dose was not observed. Conclusion: Results demonstrate that protons/MU calibration factors can have a significant impact on absolute dose values in IMPT depending on the fraction of MUs delivered. When number of MUs increases the effect due to the calibration factors amplify. In determining protons/MU calibration factors, experimental method should be preferred in MC dose calculations

  10. Radiometric calibration updates to the Landsat collection

    USGS Publications Warehouse

    Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal

    2016-01-01

    The Landsat Project is planning to implement a new collection management strategy for Landsat products generated at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center. The goal of the initiative is to identify a collection of consistently geolocated and radiometrically calibrated images across the entire Landsat archive that is readily suitable for time-series analyses. In order to perform an accurate land change analysis, the data from all Landsat sensors must be on the same radiometric scale. Landsat 7 Enhanced Thematic Mapper Plus (ETM+) is calibrated to a radiance standard and all previous sensors are cross-calibrated to its radiometric scale. Landsat 8 Operational Land Imager (OLI) is calibrated to both radiance and reflectance standards independently. The Landsat 8 OLI reflectance calibration is considered to be most accurate. To improve radiometric calibration accuracy of historical data, Landsat 1-7 sensors also need to be cross-calibrated to the OLI reflectance scale. Results of that effort, as well as other calibration updates including the absolute and relative radiometric calibration and saturated pixel replacement for Landsat 8 OLI and absolute calibration for Landsat 4 and 5 Thematic Mappers (TM), will be implemented into Landsat products during the archive reprocessing campaign planned within the new collection management strategy. This paper reports on the planned radiometric calibration updates to the solar reflective bands of the new Landsat collection.

  11. Calibration of X-Ray Observatories

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; L'Dell, Stephen L.

    2011-01-01

    Accurate calibration of x-ray observatories has proved an elusive goal. Inaccuracies and inconsistencies amongst on-ground measurements, differences between on-ground and in-space performance, in-space performance changes, and the absence of cosmic calibration standards whose physics we truly understand have precluded absolute calibration better than several percent and relative spectral calibration better than a few percent. The philosophy "the model is the calibration" relies upon a complete high-fidelity model of performance and an accurate verification and calibration of this model. As high-resolution x-ray spectroscopy begins to play a more important role in astrophysics, additional issues in accurately calibrating at high spectral resolution become more evident. Here we review the challenges of accurately calibrating the absolute and relative response of x-ray observatories. On-ground x-ray testing by itself is unlikely to achieve a high-accuracy calibration of in-space performance, especially when the performance changes with time. Nonetheless, it remains an essential tool in verifying functionality and in characterizing and verifying the performance model. In the absence of verified cosmic calibration sources, we also discuss the notion of an artificial, in-space x-ray calibration standard. 6th

  12. Anemometer calibrator

    NASA Technical Reports Server (NTRS)

    Bate, T.; Calkins, D. E.; Price, P.; Veikins, O.

    1971-01-01

    Calibrator generates accurate flow velocities over wide range of gas pressure, temperature, and composition. Both pressure and flow velocity can be maintained within 0.25 percent. Instrument is essentially closed loop hydraulic system containing positive displacement drive.

  13. Space environment simulation and sensor calibration facility

    NASA Astrophysics Data System (ADS)

    Engelhart, Daniel P.; Patton, James; Plis, Elena; Cooper, Russell; Hoffmann, Ryan; Ferguson, Dale; Hilmer, Robert V.; McGarity, John; Holeman, Ernest

    2018-02-01

    The Mumbo space environment simulation chamber discussed here comprises a set of tools to calibrate a variety of low flux, low energy electron and ion detectors used in satellite-mounted particle sensors. The chamber features electron and ion beam sources, a Lyman-alpha ultraviolet lamp, a gimbal table sensor mounting system, cryogenic sample mount and chamber shroud, and beam characterization hardware and software. The design of the electron and ion sources presented here offers a number of unique capabilities for space weather sensor calibration. Both sources create particle beams with narrow, well-characterized energetic and angular distributions with beam diameters that are larger than most space sensor apertures. The electron and ion sources can produce consistently low fluxes that are representative of quiescent space conditions. The particle beams are characterized by 2D beam mapping with several co-located pinhole aperture electron multipliers to capture relative variation in beam intensity and a large aperture Faraday cup to measure absolute current density.

  14. Space environment simulation and sensor calibration facility.

    PubMed

    Engelhart, Daniel P; Patton, James; Plis, Elena; Cooper, Russell; Hoffmann, Ryan; Ferguson, Dale; Hilmer, Robert V; McGarity, John; Holeman, Ernest

    2018-02-01

    The Mumbo space environment simulation chamber discussed here comprises a set of tools to calibrate a variety of low flux, low energy electron and ion detectors used in satellite-mounted particle sensors. The chamber features electron and ion beam sources, a Lyman-alpha ultraviolet lamp, a gimbal table sensor mounting system, cryogenic sample mount and chamber shroud, and beam characterization hardware and software. The design of the electron and ion sources presented here offers a number of unique capabilities for space weather sensor calibration. Both sources create particle beams with narrow, well-characterized energetic and angular distributions with beam diameters that are larger than most space sensor apertures. The electron and ion sources can produce consistently low fluxes that are representative of quiescent space conditions. The particle beams are characterized by 2D beam mapping with several co-located pinhole aperture electron multipliers to capture relative variation in beam intensity and a large aperture Faraday cup to measure absolute current density.

  15. The Absolute Magnitude of the Sun in Several Filters

    NASA Astrophysics Data System (ADS)

    Willmer, Christopher N. A.

    2018-06-01

    This paper presents a table with estimates of the absolute magnitude of the Sun and the conversions from vegamag to the AB and ST systems for several wide-band filters used in ground-based and space-based observatories. These estimates use the dustless spectral energy distribution (SED) of Vega, calibrated absolutely using the SED of Sirius, to set the vegamag zero-points and a composite spectrum of the Sun that coadds space-based observations from the ultraviolet to the near-infrared with models of the Solar atmosphere. The uncertainty of the absolute magnitudes is estimated by comparing the synthetic colors with photometric measurements of solar analogs and is found to be ∼0.02 mag. Combined with the uncertainty of ∼2% in the calibration of the Vega SED, the errors of these absolute magnitudes are ∼3%–4%. Using these SEDs, for three of the most utilized filters in extragalactic work the estimated absolute magnitudes of the Sun are M B = 5.44, M V = 4.81, and M K = 3.27 mag in the vegamag system and M B = 5.31, M V = 4.80, and M K = 5.08 mag in AB.

  16. Spectroscopic imaging of metal halide high-intensity discharge lamps

    NASA Astrophysics Data System (ADS)

    Bonvallet, Geoffrey A.

    The body of this work consists of three main research projects. An optical- and near-ultraviolet-wavelength absorption study sought to determine absolute densities of ground and excited level Sc atoms, ground level Sc + ions, and ground level Na atoms in a commercial 250 W metal halide high intensity discharge lamp during operation. These measurements also allowed the determination of the arc temperature and absolute electron density as functions of radius. Through infrared emission spectroscopy, relative densities of sodium and scandium were determined as functions of radius. Using the absolute densities gained from the optical experiment, these relative densities were calibrated. In addition, direct observation of the infrared emission allowed us to characterize the infrared power losses of the lamp. When considered as a fraction of the overall power consumption, the near-infrared spectral power losses were not substantial enough to warrant thorough investigation of their reduction in these lamps. The third project was an attempt to develop a portable x-ray diagnostic experiment. Two-dimensional spatial maps of the lamps were analyzed to determine absolute elemental mercury densities and the arc temperature as a function of radius. Two methods were used to improve the calibration of the density measurements and to correct for the spread in x-ray energy: known solutions of mercury in nitric acid, and an arc lamp which was uniformly heated to evaporate the mercury content. Although many complexities arose in this experiment, its goal was successfully completed.

  17. Absolute measurements of fast neutrons using yttrium.

    PubMed

    Roshan, M V; Springham, S V; Rawat, R S; Lee, P; Krishnan, M

    2010-08-01

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f(n) approximately 4.1x10(-4) with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10(8) neutrons per discharge.

  18. Optical detector calibrator system

    NASA Technical Reports Server (NTRS)

    Strobel, James P. (Inventor); Moerk, John S. (Inventor); Youngquist, Robert C. (Inventor)

    1996-01-01

    An optical detector calibrator system simulates a source of optical radiation to which a detector to be calibrated is responsive. A light source selected to emit radiation in a range of wavelengths corresponding to the spectral signature of the source is disposed within a housing containing a microprocessor for controlling the light source and other system elements. An adjustable iris and a multiple aperture filter wheel are provided for controlling the intensity of radiation emitted from the housing by the light source to adjust the simulated distance between the light source and the detector to be calibrated. The geared iris has an aperture whose size is adjustable by means of a first stepper motor controlled by the microprocessor. The multiple aperture filter wheel contains neutral density filters of different attenuation levels which are selectively positioned in the path of the emitted radiation by a second stepper motor that is also controlled by the microprocessor. An operator can select a number of detector tests including range, maximum and minimum sensitivity, and basic functionality. During the range test, the geared iris and filter wheel are repeatedly adjusted by the microprocessor as necessary to simulate an incrementally increasing simulated source distance. A light source calibration subsystem is incorporated in the system which insures that the intensity of the light source is maintained at a constant level over time.

  19. New Wavenumber Calibration Tables From Heterodyne Frequency Measurements

    PubMed Central

    Maki, Arthur G.; Wells, Joseph S.

    1992-01-01

    This new calibration atlas is based on frequency rather than wavelength calibration techniques for absolute references. Since a limited number of absolute frequency measurements is possible, additional data from alternate methodology are used for difference frequency measurements within each band investigated by the frequency measurements techniques. Data from these complementary techniques include the best Fourier transform measurements available. Included in the text relating to the atlas are a description of the heterodyne frequency measurement techniques and details of the analysis, including the Hamiltonians and least-squares-fitting and calculation. Also included are other relevant considerations such as intensities and lincshape parameters. A 390-entry bibliography which contains all data sources used and a subsequent section on errors conclude the text portion. The primary calibration molecules are the linear triatomics, carbonyl sulfide and nitrous oxide, which cover portions of the infrared spectrum ranging from 488 to 3120 cm−1. Some gaps in the coverage afforded by OCS and N2O are partially covered by NO, CO, and CS2. An additional region from 4000 to 4400 cm−1 is also included. The tabular portion of the atlas is too lengthy to include in an archival journal. Furthermore, different users have different requirements for such an atlas. In an effort to satisfy most users, we have made two different options available. The first is NIST Special Publication 821, which has a spectral map/facing table format. The spectral maps (as well as the facing tables) are calculated from molecular constants derived for the work. A complete list of all of the molecular transitions that went into making the maps is too long (perhaps by a factor of 4 or 5) to include in the facing tables. The second option for those not interested in maps (or perhaps to supplement Special Publication 821) is the complete list (tables-only) which is available in computerized format as

  20. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  1. Evaluation of factors affecting CGMS calibration.

    PubMed

    Buckingham, Bruce A; Kollman, Craig; Beck, Roy; Kalajian, Andrea; Fiallo-Scharer, Rosanna; Tansey, Michael J; Fox, Larry A; Wilson, Darrell M; Weinzimer, Stuart A; Ruedy, Katrina J; Tamborlane, William V

    2006-06-01

    The optimal number/timing of calibrations entered into the CGMS (Medtronic MiniMed, Northridge, CA) continuous glucose monitoring system have not been previously described. Fifty subjects with Type 1 diabetes mellitus (10-18 years old) were hospitalized in a clinical research center for approximately 24 h on two separate days. CGMS and OneTouch Ultra meter (LifeScan, Milpitas, CA) data were obtained. The CGMS was retrospectively recalibrated using the Ultra data varying the number and timing of calibrations. Resulting CGMS values were compared against laboratory reference values. There was a modest improvement in accuracy with increasing number of calibrations. The median relative absolute deviation (RAD) was 14%, 15%, 13%, and 13% when using three, four, five, and seven calibration values, respectively (P < 0.001). Corresponding percentages of CGMS-reference pairs meeting the International Organisation for Standardisation criteria were 66%, 67%, 71%, and 72% (P < 0.001). Nighttime accuracy improved when daytime calibrations (pre-lunch and pre-dinner) were removed leaving only two calibrations at 9 p.m. and 6 a.m. (median difference, -2 vs. -9 mg/dL, P < 0.001; median RAD, 12% vs. 15%, P = 0.001). Accuracy was better on visits where the average absolute rate of glucose change at the times of calibration was lower. On visits with average absolute rates <0.5, 0.5 to <1.0, 1.0 to <1.5, and >or=1.5 mg/dL/min, median RAD values were 13% versus 14% versus 17% versus 19%, respectively (P = 0.05). Although accuracy is slightly improved with more calibrations, the timing of the calibrations appears more important. Modifying the algorithm to put less weight on daytime calibrations for nighttime values and calibrating during times of relative glucose stability may have greater impact on accuracy.

  2. Evaluation of Factors Affecting CGMS Calibration

    PubMed Central

    2006-01-01

    Background The optimal number/timing of calibrations entered into the Continuous Glucose Monitoring System (“CGMS”; Medtronic MiniMed, Northridge, CA) have not been previously described. Methods Fifty subjects with T1DM (10–18y) were hospitalized in a clinical research center for ~24h on two separate days. CGMS and OneTouch® Ultra® Meter (“Ultra”; LifeScan, Milpitas, CA) data were obtained. The CGMS was retrospectively recalibrated using the Ultra data varying the number and timing of calibrations. Resulting CGMS values were compared against laboratory reference values. Results There was a modest improvement in accuracy with increasing number of calibrations. The median relative absolute deviation (RAD) was 14%, 15%, 13% and 13% when using 3, 4, 5 and 7 calibration values, respectively (p<0.001). Corresponding percentages of CGMS-reference pairs meeting the ISO criteria were 66%, 67%, 71% and 72% (p<0.001). Nighttime accuracy improved when daytime calibrations (pre-lunch and pre-dinner) were removed leaving only two calibrations at 9p.m. and 6a.m. (median difference: −2 vs. −9mg/dL, p<0.001; median RAD: 12% vs. 15%, p=0.001). Accuracy was better on visits where the average absolute rate of glucose change at the times of calibration was lower. On visits with average absolute rates <0.5, 0.5-<1.0, 1.0-<1.5 and ≥1.5mg/dL/min, median RAD values were 13% vs. 14% vs. 17% vs. 19%, respectively (p=0.05). Conclusions Although accuracy is slightly improved with more calibrations, the timing of the calibrations appears more important. Modifying the algorithm to put less weight on daytime calibrations for nighttime values and calibrating during times of relative glucose stability may have greater impact on accuracy. PMID:16800753

  3. An atlas of selected calibrated stellar spectra

    NASA Technical Reports Server (NTRS)

    Walker, Russell G.; Cohen, Martin

    1992-01-01

    Five hundred and fifty six stars in the IRAS PSC-2 that are suitable for stellar radiometric standards and are brighter than 1 Jy at 25 microns were identified. In addition, 123 stars that meet all of our criteria for calibration standards, but which lack a luminosity class were identified. An approach to absolute stellar calibration of broadband infrared filters based upon new models of Vega and Sirius due to Kurucz (1992) is presented. A general technique used to assemble continuous wide-band calibrated infrared spectra is described and an absolutely calibrated 1-35 micron spectrum of alpha(Tau) is constructed and the method using new and carefully designed observations is independently validated. The absolute calibration of the IRAS Low Resolution Spectrometer (LRS) database is investigated by comparing the observed spectrum of alpha(Tau) with that assumed in the original LRS calibration scheme. Neglect of the SiO fundamental band in alpha(Tau) has led to the presence of a specious 'emission' feature in all LRS spectra near 8.5 microns, and to an incorrect spectral slope between 8 and 12 microns. Finally, some of the properties of asteroids that effect their utility as calibration objects for the middle and far infrared region are examined. A technique to determine, from IRAS multiwaveband observations, the basic physical parameters needed by various asteroid thermal models that minimize the number of assumptions required is developed.

  4. Model independent approach to the single photoelectron calibration of photomultiplier tubes

    SciTech Connect

    Saldanha, R.; Grandi, L.; Guardincerri, Y.

    2017-08-01

    The accurate calibration of photomultiplier tubes is critical in a wide variety of applications in which it is necessary to know the absolute number of detected photons or precisely determine the resolution of the signal. Conventional calibration methods rely on fitting the photomultiplier response to a low intensity light source with analytical approximations to the single photoelectron distribution, often leading to biased estimates due to the inability to accurately model the full distribution, especially at low charge values. In this paper we present a simple statistical method to extract the relevant single photoelectron calibration parameters without making any assumptions aboutmore » the underlying single photoelectron distribution. We illustrate the use of this method through the calibration of a Hamamatsu R11410 photomultiplier tube and study the accuracy and precision of the method using Monte Carlo simulations. The method is found to have significantly reduced bias compared to conventional methods and works under a wide range of light intensities, making it suitable for simultaneously calibrating large arrays of photomultiplier tubes.« less

  5. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  6. Absolute angular encoder based on optical diffraction

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Zhou, Tingting; Yuan, Bo; Wang, Liqiang

    2015-08-01

    A new encoding method for absolute angular encoder based on optical diffraction was proposed in the present study. In this method, an encoder disc is specially designed that a series of elements are uniformly spaced in one circle and each element is consisted of four diffraction gratings, which are tilted in the directions of 30°, 60°, -60° and -30°, respectively. The disc is illuminated by a coherent light and the diffractive signals are received. The positions of diffractive spots are used for absolute encoding and their intensities are for subdivision, which is different from the traditional optical encoder based on transparent/opaque binary principle. Since the track's width in the disc is not limited in the diffraction pattern, it provides a new way to solve the contradiction between the size and resolution, which is good for minimization of encoder. According to the proposed principle, the diffraction pattern disc with a diameter of 40 mm was made by lithography in the glass substrate. A prototype of absolute angular encoder with a resolution of 20" was built up. Its maximum error was tested as 78" by comparing with a small angle measuring system based on laser beam deflection.

  7. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXI - Absolute energy distribution of stars in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Code, A. D.; Fairchild, E. T.

    1976-01-01

    The absolute energy distribution in the ultraviolet is given for the stars alpha Vir, eta UMa, and alpha Leo. The calibration is based on absolute heterochromatic photometry between 2920 and 1370 A carried out with an Aerobee sounding rocket. The fundamental radiation standard is the synchrotron radiation from 240-MeV electrons in a certain synchrotron storage ring. On the basis of the sounding-rocket calibration, the preliminary OAO-2 spectrometer calibration has been revised; the fluxes for the three program stars are tabulated in energy per second per square centimeter per unit wavelength interval.

  8. Measurement of absolute gamma emission probabilities

    NASA Astrophysics Data System (ADS)

    Sumithrarachchi, Chandana S.; Rengan, Krish; Griffin, Henry C.

    2003-06-01

    The energies and emission probabilities (intensities) of gamma-rays emitted in radioactive decays of particular nuclides are the most important characteristics by which to quantify mixtures of radionuclides. Often, quantification is limited by uncertainties in measured intensities. A technique was developed to reduce these uncertainties. The method involves obtaining a pure sample of a nuclide using radiochemical techniques, and using appropriate fractions for beta and gamma measurements. The beta emission rates were measured using a liquid scintillation counter, and the gamma emission rates were measured with a high-purity germanium detector. Results were combined to obtain absolute gamma emission probabilities. All sources of uncertainties greater than 0.1% were examined. The method was tested with 38Cl and 88Rb.

  9. Absolute marine gravimetry with matter-wave interferometry.

    PubMed

    Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F

    2018-02-12

    Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5  m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.

  10. Calibration strategies for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Gaug, Markus; Berge, David; Daniel, Michael; Doro, Michele; Förster, Andreas; Hofmann, Werner; Maccarone, Maria C.; Parsons, Dan; de los Reyes Lopez, Raquel; van Eldik, Christopher

    2014-08-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration efforts of the different telescopes. The latter include LED-based light pulsers, and various methods and instruments to achieve a calibration of the overall optical throughput. On the array level, methods for the inter-telescope calibration and the absolute calibration of the entire observatory are being developed. Additionally, the atmosphere above the telescopes, used as a calorimeter, will be monitored constantly with state-of-the-art instruments to obtain a full molecular and aerosol profile up to the stratosphere. The aim is to provide a maximal uncertainty of 10% on the reconstructed energy-scale, obtained through various independent methods. Different types of LIDAR in combination with all-sky-cameras will provide the observatory with an online, intelligent scheduling system, which, if the sky is partially covered by clouds, gives preference to sources observable under good atmospheric conditions. Wide-field optical telescopes and Raman Lidars will provide online information about the height-resolved atmospheric extinction, throughout the field-of-view of the cameras, allowing for the correction of the reconstructed energy of each gamma-ray event. The aim is to maximize the duty cycle of the observatory, in terms of usable data, while reducing the dead time introduced by calibration activities to an absolute minimum.

  11. SDSS-IV/MaNGA: SPECTROPHOTOMETRIC CALIBRATION TECHNIQUE

    SciTech Connect

    Yan, Renbin; Sánchez-Gallego, José R.; Tremonti, Christy

    2016-01-15

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), one of three core programs in the Sloan Digital Sky Survey-IV, is an integral-field spectroscopic survey of roughly 10,000 nearby galaxies. It employs dithered observations using 17 hexagonal bundles of 2″ fibers to obtain resolved spectroscopy over a wide wavelength range of 3600–10300 Å. To map the internal variations within each galaxy, we need to perform accurate spectral surface photometry, which is to calibrate the specific intensity at every spatial location sampled by each individual aperture element of the integral field unit. The calibration must correct only for the flux loss duemore » to atmospheric throughput and the instrument response, but not for losses due to the finite geometry of the fiber aperture. This requires the use of standard star measurements to strictly separate these two flux loss factors (throughput versus geometry), a difficult challenge with standard single-fiber spectroscopy techniques due to various practical limitations. Therefore, we developed a technique for spectral surface photometry using multiple small fiber-bundles targeting standard stars simultaneously with galaxy observations. We discuss the principles of our approach and how they compare to previous efforts, and we demonstrate the precision and accuracy achieved. MaNGA's relative calibration between the wavelengths of Hα and Hβ has an rms of 1.7%, while that between [N ii] λ6583 and [O ii] λ3727 has an rms of 4.7%. Using extinction-corrected star formation rates and gas-phase metallicities as an illustration, this level of precision guarantees that flux calibration errors will be sub-dominant when estimating these quantities. The absolute calibration is better than 5% for more than 89% of MaNGA's wavelength range.« less

  12. SDSS-IV/MaNGA: Spectrophotometric calibration technique

    DOE PAGES

    Yan, Renbin; Tremonti, Christy; Bershady, Matthew A.; ...

    2015-12-21

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), one of three core programs in the Sloan Digital Sky Survey-IV, is an integral-field spectroscopic survey of roughly 10,000 nearby galaxies. It employs dithered observations using 17 hexagonal bundles of 2'' fibers to obtain resolved spectroscopy over a wide wavelength range of 3600-10300 Å. To map the internal variations within each galaxy, we need to perform accurate spectral surface photometry, which is to calibrate the specific intensity at every spatial location sampled by each individual aperture element of the integral field unit. The calibration must correct only for the flux loss duemore » to atmospheric throughput and the instrument response, but not for losses due to the finite geometry of the fiber aperture. This then requires the use of standard star measurements to strictly separate these two flux loss factors (throughput versus geometry), a difficult challenge with standard single-fiber spectroscopy techniques due to various practical limitations. Thus, we developed a technique for spectral surface photometry using multiple small fiber-bundles targeting standard stars simultaneously with galaxy observations. We discuss the principles of our approach and how they compare to previous efforts, and we demonstrate the precision and accuracy achieved. MaNGA's relative calibration between the wavelengths of Hα and Hβ has an rms of 1.7%, while that between [N ii] λ6583 and [O ii] λ3727 has an rms of 4.7%. In using extinction-corrected star formation rates and gas-phase metallicities as an illustration, this level of precision guarantees that flux calibration errors will be sub-dominant when estimating these quantities. The absolute calibration is better than 5% for more than 89% of MaNGA's wavelength range.« less

  13. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  14. Results from Source-Based and Detector-Based Calibrations of a CLARREO Calibration Demonstration System

    NASA Technical Reports Server (NTRS)

    Angal, Amit; Mccorkel, Joel; Thome, Kurt

    2016-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is formulated to determine long-term climate trends using SI-traceable measurements. The CLARREO mission will include instruments operating in the reflected solar (RS) wavelength region from 320 nm to 2300 nm. The Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO and facilitates testing and evaluation of calibration approaches. The basis of CLARREO and SOLARIS calibration is the Goddard Laser for Absolute Measurement of Response (GLAMR) that provides a radiance-based calibration at reflective solar wavelengths using continuously tunable lasers. SI-traceability is achieved via detector-based standards that, in GLAMRs case, are a set of NIST-calibrated transfer radiometers. A portable version of the SOLARIS, Suitcase SOLARIS is used to evaluate GLAMRs calibration accuracies. The calibration of Suitcase SOLARIS using GLAMR agrees with that obtained from source-based results of the Remote Sensing Group (RSG) at the University of Arizona to better than 5 (k2) in the 720-860 nm spectral range. The differences are within the uncertainties of the NIST-calibrated FEL lamp-based approach of RSG and give confidence that GLAMR is operating at 5 (k2) absolute uncertainties. Limitations of the Suitcase SOLARIS instrument also discussed and the next edition of the SOLARIS instrument (Suitcase SOLARIS- 2) is expected to provide an improved mechanism to further assess GLAMR and CLARREO calibration approaches. (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  15. The CHEOPS calibration bench

    NASA Astrophysics Data System (ADS)

    Wildi, F.; Chazelas, B.; Deline, A.; Sarajlic, M.; Sordet, M.

    2017-09-01

    CHEOPS is an ESA Class S Mission aiming at the characterization of exoplanets through the precise measurement of their radius, using the transit method [1]. To achieve this goal, the payload is designed to be a high precision "absolute" photometer, looking at one star at a time. It will be able to cover la large fraction of the sky by repointing. Its launch is expected at the end of 2017 [2, this conference]. CHEOPS' main science is the measure of the transit of exoplanets of radius ranging from 1 to 6 Earth radii orbiting bright stars. The required photometric stability to reach this goal is of 20 ppm in 6 hours for a 9th magnitude star. The CHEOPS' only instrument is a Ritchey-Chretien style telescope with 300 mm effective aperture diameter, which provides a defocussed image of the target star on a single frame-transfer backside illuminated CCD detector cooled to -40°C and stabilized within 10 mK [2]. CHEOPS being in a LEO, it is equipped with a high performance baffle. The spacecraft platform provides a pointing stability of < 2 arcsec rms. This relatively modest pointing performance makes high quality flat-fielding necessary In the rest of this article we will refer to the only CHEOPS instrument simply as "CHEOP" Its behavior will be calibrated thoroughly on the ground and only a small subset of the calibrations can be redone in flight. The main focuses of the calibrations are the photonic gain stability and sensibility to the environment variations and the Flat field that has to be known at a precision better than 0.1%.

  16. The PMA Catalogue: 420 million positions and absolute proper motions

    NASA Astrophysics Data System (ADS)

    Akhmetov, V. S.; Fedorov, P. N.; Velichko, A. B.; Shulga, V. M.

    2017-07-01

    We present a catalogue that contains about 420 million absolute proper motions of stars. It was derived from the combination of positions from Gaia DR1 and 2MASS, with a mean difference of epochs of about 15 yr. Most of the systematic zonal errors inherent in the 2MASS Catalogue were eliminated before deriving the absolute proper motions. The absolute calibration procedure (zero-pointing of the proper motions) was carried out using about 1.6 million positions of extragalactic sources. The mean formal error of the absolute calibration is less than 0.35 mas yr-1. The derived proper motions cover the whole celestial sphere without gaps for a range of stellar magnitudes from 8 to 21 mag. In the sky areas where the extragalactic sources are invisible (the avoidance zone), a dedicated procedure was used that transforms the relative proper motions into absolute ones. The rms error of proper motions depends on stellar magnitude and ranges from 2-5 mas yr-1 for stars with 10 mag < G < 17 mag to 5-10 mas yr-1 for faint ones. The present catalogue contains the Gaia DR1 positions of stars for the J2015 epoch. The system of the PMA proper motions does not depend on the systematic errors of the 2MASS positions, and in the range from 14 to 21 mag represents an independent realization of a quasi-inertial reference frame in the optical and near-infrared wavelength range. The Catalogue also contains stellar magnitudes taken from the Gaia DR1 and 2MASS catalogues. A comparison of the PMA proper motions of stars with similar data from certain recent catalogues has been undertaken.

  17. The absolute threshold of cone vision

    PubMed Central

    Koeing, Darran; Hofer, Heidi

    2013-01-01

    We report measurements of the absolute threshold of cone vision, which has been previously underestimated due to sub-optimal conditions or overly strict subjective response criteria. We avoided these limitations by using optimized stimuli and experimental conditions while having subjects respond within a rating scale framework. Small (1′ fwhm), brief (34 msec), monochromatic (550 nm) stimuli were foveally presented at multiple intensities in dark-adapted retina for 5 subjects. For comparison, 4 subjects underwent similar testing with rod-optimized stimuli. Cone absolute threshold, that is, the minimum light energy for which subjects were just able to detect a visual stimulus with any response criterion, was 203 ± 38 photons at the cornea, ∼0.47 log units lower than previously reported. Two-alternative forced-choice measurements in a subset of subjects yielded consistent results. Cone thresholds were less responsive to criterion changes than rod thresholds, suggesting a limit to the stimulus information recoverable from the cone mosaic in addition to the limit imposed by Poisson noise. Results were consistent with expectations for detection in the face of stimulus uncertainty. We discuss implications of these findings for modeling the first stages of human cone vision and interpreting psychophysical data acquired with adaptive optics at the spatial scale of the receptor mosaic. PMID:21270115

  18. Physics of negative absolute temperatures.

    PubMed

    Abraham, Eitan; Penrose, Oliver

    2017-01-01

    Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.

  19. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate.

  20. Absolute gravity measurements in California

    NASA Astrophysics Data System (ADS)

    Zumberge, M. A.; Sasagawa, G.; Kappus, M.

    1986-08-01

    An absolute gravity meter that determines the local gravitational acceleration by timing a freely falling mass with a laser interferometer has been constructed. The instrument has made measurements at 11 sites in California, four in Nevada, and one in France. The uncertainty in the results is typically 10 microgal. Repeated measurements have been made at several of the sites; only one shows a substantial change in gravity.

  1. Comparison Between One-Point Calibration and Two-Point Calibration Approaches in a Continuous Glucose Monitoring Algorithm

    PubMed Central

    Mahmoudi, Zeinab; Johansen, Mette Dencker; Christiansen, Jens Sandahl

    2014-01-01

    Background: The purpose of this study was to investigate the effect of using a 1-point calibration approach instead of a 2-point calibration approach on the accuracy of a continuous glucose monitoring (CGM) algorithm. Method: A previously published real-time CGM algorithm was compared with its updated version, which used a 1-point calibration instead of a 2-point calibration. In addition, the contribution of the corrective intercept (CI) to the calibration performance was assessed. Finally, the sensor background current was estimated real-time and retrospectively. The study was performed on 132 type 1 diabetes patients. Results: Replacing the 2-point calibration with the 1-point calibration improved the CGM accuracy, with the greatest improvement achieved in hypoglycemia (18.4% median absolute relative differences [MARD] in hypoglycemia for the 2-point calibration, and 12.1% MARD in hypoglycemia for the 1-point calibration). Using 1-point calibration increased the percentage of sensor readings in zone A+B of the Clarke error grid analysis (EGA) in the full glycemic range, and also enhanced hypoglycemia sensitivity. Exclusion of CI from calibration reduced hypoglycemia accuracy, while slightly increased euglycemia accuracy. Both real-time and retrospective estimation of the sensor background current suggest that the background current can be considered zero in the calibration of the SCGM1 sensor. Conclusions: The sensor readings calibrated with the 1-point calibration approach indicated to have higher accuracy than those calibrated with the 2-point calibration approach. PMID:24876420

  2. Spitzer/JWST Cross Calibration: IRAC Observations of Potential Calibrators for JWST

    NASA Astrophysics Data System (ADS)

    Carey, Sean J.; Gordon, Karl D.; Lowrance, Patrick; Ingalls, James G.; Glaccum, William J.; Grillmair, Carl J.; E Krick, Jessica; Laine, Seppo J.; Fazio, Giovanni G.; Hora, Joseph L.; Bohlin, Ralph

    2017-06-01

    We present observations at 3.6 and 4.5 microns using IRAC on the Spitzer Space Telescope of a set of main sequence A stars and white dwarfs that are potential calibrators across the JWST instrument suite. The stars range from brightnesses of 4.4 to 15 mag in K band. The calibration observations use a similar redundancy to the observing strategy for the IRAC primary calibrators (Reach et al. 2005) and the photometry is obtained using identical methods and instrumental photometric corrections as those applied to the IRAC primary calibrators (Carey et al. 2009). The resulting photometry is then compared to the predictions based on spectra from the CALSPEC Calibration Database (http://www.stsci.edu/hst/observatory/crds/calspec.html) and the IRAC bandpasses. These observations are part of an ongoing collaboration between IPAC and STScI investigating absolute calibration in the infrared.

  3. Calibration and characterization of a highly efficient spectrometer in von Hamos geometry for 7-10 keV x-rays

    DOE PAGES

    Jarrott, L. C.; Wei, M. S.; McGuffey, C.; ...

    2017-04-27

    Here, we have built an absolutely calibrated, highly efficient, Bragg crystal spectrometer in von Hamos geometry. This zinc von Hamos spectrometer uses a crystal made from highly oriented pyrolytic graphite that is cylindrically bent along the non-dispersive axis. It is tuned to measure x-ray spectra in the 7–10 keV range and has been designed to be used on a Ten Inch Manipulator for the Omega and OmegaEP target chambers at the Laboratory for Laser Energetics in Rochester, USA. Significant shielding strategies and fluorescence mitigation have been implemented in addition to an imaging plate detector making it well suited for experimentsmore » in high-intensity environments. Here we present the design and absolute calibration as well as mosaicity and integrated reflectivity measurements.« less

  4. Tls Field Data Based Intensity Correction for Forest Environments

    NASA Astrophysics Data System (ADS)

    Heinzel, J.; Huber, M. O.

    2016-06-01

    Terrestrial laser scanning (TLS) is increasingly used for forestry applications. Besides the three dimensional point coordinates, the 'intensity' of the reflected signal plays an important role in forestry and vegetation studies. The benefit of the signal intensity is caused by the wavelength of the laser that is within the near infrared (NIR) for most scanners. The NIR is highly indicative for various vegetation characteristics. However, the intensity as recorded by most terrestrial scanners is distorted by both external and scanner specific factors. Since details about system internal alteration of the signal are often unknown to the user, model driven approaches are impractical. On the other hand, existing data driven calibration procedures require laborious acquisition of separate reference datasets or areas of homogenous reflection characteristics from the field data. In order to fill this gap, the present study introduces an approach to correct unwanted intensity variations directly from the point cloud of the field data. The focus is on the variation over range and sensor specific distortions. Instead of an absolute calibration of the values, a relative correction within the dataset is sufficient for most forestry applications. Finally, a method similar to time series detrending is presented with the only pre-condition of a relative equal distribution of forest objects and materials over range. Our test data covers 50 terrestrial scans captured with a FARO Focus 3D S120 scanner using a laser wavelength of 905 nm. Practical tests demonstrate that our correction method removes range and scanner based alterations of the intensity.

  5. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  6. Preliminary Evaluation of the Radiometric Calibration of LANDSAT-4 Thematic Mapper Data by the Canada Centre for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Murphy, J.; Park, W.; Fitzgerald, A.

    1985-01-01

    The radiometric characteristics of the LANDSAT-4 TM sensor are being studied with a view to developing absolute and relative radiometric calibration procedures. Preliminary results from several different approaches to the relative correction of all detectors within each band are reported. Topics covered include: the radiometric correction method; absolute calibration; the relative radiometric calibration algorithm; relative gain and offset calibration; relative gain and offset observations; and residual radiometric stripping.

  7. Metrological activity determination of 133Ba by sum-peak absolute method

    NASA Astrophysics Data System (ADS)

    da Silva, R. L.; de Almeida, M. C. M.; Delgado, J. U.; Poledna, R.; Santos, A.; de Veras, E. V.; Rangel, J.; Trindade, O. L.

    2016-07-01

    The National Laboratory for Metrology of Ionizing Radiation provides gamma sources of radionuclide and standardized in activity with reduced uncertainties. Relative methods require standards to determine the sample activity while the absolute methods, as sum-peak, not. The activity is obtained directly with good accuracy and low uncertainties. 133Ba is used in research laboratories and on calibration of detectors for analysis in different work areas. Classical absolute methods don't calibrate 133Ba due to its complex decay scheme. The sum-peak method using gamma spectrometry with germanium detector standardizes 133Ba samples. Uncertainties lower than 1% to activity results were obtained.

  8. Demonstrating the Error Budget for the Climate Absolute Radiance and Refractivity Observatory Through Solar Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2016-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe highaccuracy, long-term climate change trends and to use decadal change observations as a method to determine the accuracy of climate change. A CLARREO objective is to improve the accuracy of SI-traceable, absolute calibration at infrared and reflected solar wavelengths to reach on-orbit accuracies required to allow climate change observations to survive data gaps and observe climate change at the limit of natural variability. Such an effort will also demonstrate National Institute of Standards and Technology (NIST) approaches for use in future spaceborne instruments. The current work describes the results of laboratory and field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. SOLARIS allows testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. Results of laboratory calibration measurements are provided to demonstrate key assumptions about instrument behavior that are needed to achieve CLARREO's climate measurement requirements. Absolute radiometric response is determined using laser-based calibration sources and applied to direct solar views for comparison with accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.

  9. A Synthesis of Star Calibration Techniques for Ground-Based Narrowband Electron-Multiplying Charge-Coupled Device Imagers Used in Auroral Photometry

    NASA Technical Reports Server (NTRS)

    Grubbs, Guy II; Michell, Robert; Samara, Marilia; Hampton, Don; Jahn, Jorg-Micha

    2016-01-01

    A technique is presented for the periodic and systematic calibration of ground-based optical imagers. It is important to have a common system of units (Rayleighs or photon flux) for cross comparison as well as self-comparison over time. With the advancement in technology, the sensitivity of these imagers has improved so that stars can be used for more precise calibration. Background subtraction, flat fielding, star mapping, and other common techniques are combined in deriving a calibration technique appropriate for a variety of ground-based imager installations. Spectral (4278, 5577, and 8446 A ) ground-based imager data with multiple fields of view (19, 47, and 180 deg) are processed and calibrated using the techniques developed. The calibration techniques applied result in intensity measurements in agreement between different imagers using identical spectral filtering, and the intensity at each wavelength observed is within the expected range of auroral measurements. The application of these star calibration techniques, which convert raw imager counts into units of photon flux, makes it possible to do quantitative photometry. The computed photon fluxes, in units of Rayleighs, can be used for the absolute photometry between instruments or as input parameters for auroral electron transport models.

  10. Development and Validation of a Model to Predict Absolute Vascular Risk Reduction by Moderate-Intensity Statin Therapy in Individual Patients With Type 2 Diabetes Mellitus: The Anglo Scandinavian Cardiac Outcomes Trial, Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial, and Collaborative Atorvastatin Diabetes Study.

    PubMed

    Kaasenbrood, Lotte; Poulter, Neil R; Sever, Peter S; Colhoun, Helen M; Livingstone, Shona J; Boekholdt, S Matthijs; Pressel, Sara L; Davis, Barry R; van der Graaf, Yolanda; Visseren, Frank L J

    2016-05-01

    In this study, we aimed to translate the average relative effect of statin therapy from trial data to the individual patient with type 2 diabetes mellitus by developing and validating a model to predict individualized absolute risk reductions (ARR) of cardiovascular events. Data of 2725 patients with type 2 diabetes mellitus from the Lipid Lowering Arm of the Anglo Scandinavian Cardiac Outcomes Trial (ASCOT-LLA) study (atorvastatin 10 mg versus placebo) were used for model derivation. The model was based on 8 clinical predictors including treatment allocation (statin/placebo). Ten-year individualized ARR on major cardiovascular events by statin therapy were calculated for each patient by subtracting the estimated on-treatment risk from the estimated off-treatment risk. Predicted 10-year ARR by statin therapy was <2% for 13% of the patients. About 30% had an ARR of >4% (median ARR, 3.2%; interquartile range, 2.5%-4.3%; 95% confidence interval for 3.2% ARR, -1.4% to 6.8%). Addition of treatment interactions did not improve model performance. Therefore, the wide distribution in ARR was a consequence of the underlying distribution in cardiovascular risk enrolled in these trials. External validation of the model was performed in data from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT; pravastatin 40 mg versus usual care) and Collaborative Atorvastatin Diabetes Study (CARDS; atorvastatin 10 mg versus placebo) of 3878 and 2838 patients with type 2 diabetes mellitus, respectively. Model calibration was adequate in both external data sets, discrimination was moderate (ALLHAT-LLT: c-statistics, 0.64 [95% confidence interval, 0.61-0.67] and CARDS: 0.68 [95% confidence interval, 0.64-0.72]). ARRs of major cardiovascular events by statin therapy can be accurately estimated for individual patients with type 2 diabetes mellitus using a model based on routinely available patient characteristics. There is a wide distribution in ARR that

  11. Determining absolute protein numbers by quantitative fluorescence microscopy.

    PubMed

    Verdaasdonk, Jolien Suzanne; Lawrimore, Josh; Bloom, Kerry

    2014-01-01

    Biological questions are increasingly being addressed using a wide range of quantitative analytical tools to examine protein complex composition. Knowledge of the absolute number of proteins present provides insights into organization, function, and maintenance and is used in mathematical modeling of complex cellular dynamics. In this chapter, we outline and describe three microscopy-based methods for determining absolute protein numbers--fluorescence correlation spectroscopy, stepwise photobleaching, and ratiometric comparison of fluorescence intensity to known standards. In addition, we discuss the various fluorescently labeled proteins that have been used as standards for both stepwise photobleaching and ratiometric comparison analysis. A detailed procedure for determining absolute protein number by ratiometric comparison is outlined in the second half of this chapter. Counting proteins by quantitative microscopy is a relatively simple yet very powerful analytical tool that will increase our understanding of protein complex composition. © 2014 Elsevier Inc. All rights reserved.

  12. Technique for calibrating angular measurement devices when calibration standards are unavailable

    NASA Technical Reports Server (NTRS)

    Finley, Tom D.

    1991-01-01

    A calibration technique is proposed that will allow the calibration of certain angular measurement devices without requiring the use of absolute standard. The technique assumes that the device to be calibrated has deterministic bias errors. A comparison device must be available that meets the same requirements. The two devices are compared; one device is then rotated with respect to the other, and a second comparison is performed. If the data are reduced using the described technique, the individual errors of the two devices can be determined.

  13. Lunar eclipse photometry: absolute luminance measurements and modeling.

    PubMed

    Hernitschek, Nina; Schmidt, Elmar; Vollmer, Michael

    2008-12-01

    The Moon's time-dependent luminance was determined during the 9 February 1990 and 3 March 2007 total lunar eclipses by using calibrated, industry standard photometers. After the results were corrected to unit air mass and to standard distances for both Moon and Sun, an absolute calibration was accomplished by using the Sun's known luminance and a pre-eclipse lunar albedo of approximately 13.5%. The measured minimum level of brightness in the total phase of both eclipses was relatively high, namely -3.32 m(vis) and -1.7 m(vis), which hints at the absence of pronounced stratospheric aerosol. The light curves were modeled in such a way as to let the Moon move through an artificial Earth shadow composed of a multitude of disk and ring zones, containing a relative luminance data set from an atmospheric radiative transfer calculation.

  14. Absolute stellar photometry on moderate-resolution FPA images

    USGS Publications Warehouse

    Stone, T.C.

    2009-01-01

    An extensive database of star (and Moon) images has been collected by the ground-based RObotic Lunar Observatory (ROLO) as part of the US Geological Survey program for lunar calibration. The stellar data are used to derive nightly atmospheric corrections for the observations from extinction measurements, and absolute calibration of the ROLO sensors is based on observations of Vega and published reference flux and spectrum data. The ROLO telescopes were designed for imaging the Moon at moderate resolution, thus imposing some limitations for the stellar photometry. Attaining accurate stellar photometry with the ROLO image data has required development of specialized processing techniques. A key consideration is consistency in discriminating the star core signal from the off-axis point spread function. The analysis and processing methods applied to the ROLO stellar image database are described. ?? 2009 BIPM and IOP Publishing Ltd.

  15. Cross-calibration between airborne SAR sensors

    NASA Technical Reports Server (NTRS)

    Zink, Manfred; Olivier, Philippe; Freeman, Anthony

    1993-01-01

    As Synthetic Aperture Radar (SAR) system performance and experience in SAR signature evaluation increase, quantitative analysis becomes more and more important. Such analyses require an absolute radiometric calibration of the complete SAR system. To keep the expenditure on calibration of future multichannel and multisensor remote sensing systems (e.g., X-SAR/SIR-C) within a tolerable level, data from different tracks and different sensors (channels) must be cross calibrated. The 1989 joint E-SAR/DC-8 SAR calibration campaign gave a first opportunity for such an experiment, including cross sensor and cross track calibration. A basic requirement for successful cross calibration is the stability of the SAR systems. The calibration parameters derived from different tracks and the polarimetric properties of the uncalibrated data are used to describe this stability. Quality criteria for a successful cross calibration are the agreement of alpha degree values and the consistency of radar cross sections of equally sized corner reflectors. Channel imbalance and cross talk provide additional quality in case of the polarimetric DC-8 SAR.

  16. Absolute measurements of large mirrors

    NASA Astrophysics Data System (ADS)

    Su, Peng

    The ability to produce mirrors for large astronomical telescopes is limited by the accuracy of the systems used to test the surfaces of such mirrors. Typically the mirror surfaces are measured by comparing their actual shapes to a precision master, which may be created using combinations of mirrors, lenses, and holograms. The work presented here develops several optical testing techniques that do not rely on a large or expensive precision, master reference surface. In a sense these techniques provide absolute optical testing. The Giant Magellan Telescope (GMT) has been designed with a 350 m 2 collecting area provided by a 25 m diameter primary mirror made out from seven circular independent mirror segments. These segments create an equivalent f/0.7 paraboloidal primary mirror consisting of a central segment and six outer segments. Each of the outer segments is 8.4 m in diameter and has an off-axis aspheric shape departing 14.5 mm from the best-fitting sphere. Much of the work in this dissertation is motivated by the need to measure the surfaces or such large mirrors accurately, without relying on a large or expensive precision reference surface. One method for absolute testing describing in this dissertation uses multiple measurements relative to a reference surface that is located in different positions with respect to the test surface of interest. The test measurements are performed with an algorithm that is based on the maximum likelihood (ML) method. Some methodologies for measuring large flat surfaces in the 2 m diameter range and for measuring the GMT primary mirror segments were specifically developed. For example, the optical figure of a 1.6-m flat mirror was determined to 2 nm rms accuracy using multiple 1-meter sub-aperture measurements. The optical figure of the reference surface used in the 1-meter sub-aperture measurements was also determined to the 2 nm level. The optical test methodology for a 1.7-m off axis parabola was evaluated by moving several

  17. Cosmology with negative absolute temperatures

    SciTech Connect

    Vieira, J.P.P.; Byrnes, Christian T.; Lewis, Antony, E-mail: J.Pinto-Vieira@sussex.ac.uk, E-mail: ctb22@sussex.ac.uk, E-mail: antony@cosmologist.info

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion ( w < -1) with no Big Rip, and their contractingmore » counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.« less

  18. What is Data-Intensive Science?

    SciTech Connect

    Critchlow, Terence J.; Kleese van Dam, Kerstin

    2013-06-03

    What is Data Intensive Science? Today we are living in a digital world, where scientists often no longer interact directly with the physical object of their research, but do so via digitally captured, reduced, calibrated, analyzed, synthesized and, at times, visualized data. Advances in experimental and computational technologies have lead to an exponential growth in the volumes, variety and complexity of this data and while the deluge is not happening everywhere in an absolute sense, it is in a relative one. Science today is data intensive. Data intensive science has the potential to transform not only how we do science,more » but how quickly we can translate scientific progress into complete solutions, policies, decisions and ultimately economic success. Critically, data intensive science touches some of the most important challenges we are facing. Consider a few of the grand challenges outlined by the U.S. National Academy of Engineering: make solar energy economical, provide energy from fusion, develop carbon sequestration methods, advance health informatics, engineer better medicines, secure cyberspace, and engineer the tools of scientific discovery. Arguably, meeting any of these challenges requires the collaborative effort of trans-disciplinary teams, but also significant contributions from enabling data intensive technologies. Indeed for many of them, advances in data intensive research will be the single most important factor in developing successful and timely solutions. Simple extrapolations of how we currently interact with and utilize data and knowledge are not sufficient to meet this need. Given the importance of these challenges, a new, bold vision for the role of data in science, and indeed how research will be conducted in a data intensive environment is evolving.« less

  19. Spectral irradiance calibration in the infrared. I - Ground-based and IRAS broadband calibrations

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Walker, Russell G.; Barlow, Michael J.; Deacon, John R.

    1992-01-01

    Absolutely calibrated versions of realistic model atmosphere calculations for Sirius and Vega by Kurucz (1991) are presented and used as a basis to offer a new absolute calibration of infrared broad and narrow filters. In-band fluxes for Vega are obtained and defined to be zero magnitude at all wavelengths shortward of 20 microns. Existing infrared photometry is used differentially to establish an absolute scale of the new Sirius model, yielding an angular diameter within 1 sigma of the mean determined interferometrically by Hanbury Brown et al. (1974). The use of Sirius as a primary infrared stellar standard beyond the 20 micron region is suggested. Isophotal wavelengths and monochromatic flux densities for both Vega and Sirius are tabulated.

  20. Calibration of High Heat Flux Sensors at NIST

    PubMed Central

    Murthy, A. V.; Tsai, B. K.; Gibson, C. E.

    1997-01-01

    An ongoing program at the National Institute of Standards and Technology (NIST) is aimed at improving and standardizing heat-flux sensor calibration methods. The current calibration needs of U.S. science and industry exceed the current NIST capability of 40 kW/m2 irradiance. In achieving this goal, as well as meeting lower-level non-radiative heat flux calibration needs of science and industry, three different types of calibration facilities currently are under development at NIST: convection, conduction, and radiation. This paper describes the research activities associated with the NIST Radiation Calibration Facility. Two different techniques, transfer and absolute, are presented. The transfer calibration technique employs a transfer standard calibrated with reference to a radiometric standard for calibrating the sensors using a graphite tube blackbody. Plans for an absolute calibration facility include the use of a spherical blackbody and a cooled aperture and sensor-housing assembly to calibrate the sensors in a low convective environment. PMID:27805156

  1. Design, test, and calibration of an electrostatic beam position monitor

    NASA Astrophysics Data System (ADS)

    Cohen-Solal, Maurice

    2010-03-01

    The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  2. Variation in light intensity with height and time from subsequent lightning return strokes

    NASA Technical Reports Server (NTRS)

    Jordan, D. M.; Uman, M. A.

    1983-01-01

    Photographic measurements of relative light intensity as a function of height and time have been conducted for seven return strokes in two lightning flashes at 7.8 and 8.7 km ranges, using film which possesses an approximately constant spectral response in the 300-670 nm range. The amplitude of the initial light peak is noted to decrease exponentially with height, with a decay constant of 0.6-0.8 km. The logarithm of the peak light intensity near the ground is found to be approximately proportional to the initial peak electric field intensity, implying that the current decrease with height may be much slower than the light decrease. Absolute light intensity is presently estimated through the integration of the photographic signals from individual channel segments, in order to simulate the calibrated, all-sky photoelectric data of Guo and Krider (1982).

  3. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  4. Calibration of scintillation-light filters for neutron time-of-flight spectrometers at the National Ignition Facility

    DOE PAGES

    Sayre, D. B.; Barbosa, F.; Caggiano, J. A.; ...

    2016-07-26

    Sixty-four neutral density filters constructed of metal plates with 88 apertures of varying diameter have been radiographed with a soft x-ray source and CCD camera at National Security Technologies, Livermore. An analysis of the radiographs fits the radial dependence of the apertures’ image intensities to sigmoid functions, which can describe the rapidly decreasing intensity towards the apertures’ edges. Here, the fitted image intensities determine the relative attenuation value of each filter. Absolute attenuation values of several imaged filters, measured in situ during calibration experiments, normalize the relative quantities which are now used in analyses of neutron spectrometer data at themore » National Ignition Facility.« less

  5. Calibration of scintillation-light filters for neutron time-of-flight spectrometers at the National Ignition Facility

    SciTech Connect

    Sayre, D. B.; Barbosa, F.; Caggiano, J. A.

    Sixty-four neutral density filters constructed of metal plates with 88 apertures of varying diameter have been radiographed with a soft x-ray source and CCD camera at National Security Technologies, Livermore. An analysis of the radiographs fits the radial dependence of the apertures’ image intensities to sigmoid functions, which can describe the rapidly decreasing intensity towards the apertures’ edges. Here, the fitted image intensities determine the relative attenuation value of each filter. Absolute attenuation values of several imaged filters, measured in situ during calibration experiments, normalize the relative quantities which are now used in analyses of neutron spectrometer data at themore » National Ignition Facility.« less

  6. Absolute wind measurements in the lower thermosphere of Venus using infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Goldstein, Jeffrey J.

    1990-01-01

    The first absolute wind velocities above the Venusian cloud-tops were obtained using NASA/Goddard infrared heterodyne spectrometers at the NASA Infrared Telescope Facility (IRTF) and the McMath Solar Telescope. Beam-integrated Doppler displacements in the non-thermal emission core of (12)C(16)O2 10.33 micron R(8) sampled the line of sight projection of the lower thermospheric wind field (100 to 120 km). A field-usable Lamb-dip laser stabilization system, developed for spectrometer absolute frequency calibration to less than + or - 0.1 MHz, allowed S/N-limited line of sight velocity resolution at the 1 m/s level. The spectrometer's diffraction-limited beam (1.7 arc-second HPBW at McMath, 0.9 arc-second HPBW at IRTF), and 1 to 2 arc-second seeing, provided the spatial resolution necessary for circulation model discrimination. Qualitative analysis of beam-integrated winds provided definitive evidence of a dominant subsolar-antisolar circulation in the lower thermosphere. Beam-integrated winds were modelled with a 100x100 grid over the beam, incorporating beam spatial rolloff and across-the-beam gradients in non-thermal emission intensity, line of sight projection geometry, and horizontal wind velocity. Horizontal wind velocity was derived from a 2-parameter model wind field comprised of subsolar-antisolar and zonal components. Best-fit models indicated a dominant subsolar-antisolar flow with 120 m/s cross-terminator winds and a retrograde zonal component with a 25 m/s equatorial velocity. A review of all dynamical indicators above the cloud-tops allowed development of an integrated and self-consistent picture of circulation in the 70 to 200 km range.

  7. Calibration of the COBE FIRAS instrument

    NASA Technical Reports Server (NTRS)

    Fixsen, D. J.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Hewagama, T.; Isaacman, R. B.; Jensen, K. A.; Mather, J. C.; Massa, D. L.; Meyer, S. S.

    1994-01-01

    The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite was designed to accurately measure the spectrum of the cosmic microwave background radiation (CMBR) in the frequency range 1-95/cm with an angular resolution of 7 deg. We describe the calibration of this instrument, including the method of obtaining calibration data, reduction of data, the instrument model, fitting the model to the calibration data, and application of the resulting model solution to sky observations. The instrument model fits well for calibration data that resemble sky condition. The method of propagating detector noise through the calibration process to yield a covariance matrix of the calibrated sky data is described. The final uncertainties are variable both in frequency and position, but for a typical calibrated sky 2.6 deg square pixel and 0.7/cm spectral element the random detector noise limit is of order of a few times 10(exp -7) ergs/sq cm/s/sr cm for 2-20/cm, and the difference between the sky and the best-fit cosmic blackbody can be measured with a gain uncertainty of less than 3%.

  8. Landsat Data Continuity Mission Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Dabney, Philip W.; Storey, James C.; Morfitt, Ron; Knight, Ed; Kvaran, Geir; Lee, Kenton

    2008-01-01

    The primary payload for the Landsat Data Continuity Mission (LDCM) is the Operational Land Imager (OLI), being built by Ball Aerospace and Technologies, under contract to NASA. The OLI has spectral bands similar to the Landsat-7 ETM+, minus the thermal band and with two new bands, a 443 nm band and 1375 nm cirrus detection band. On-board calibration systems include two solar diffusers (routine and pristine), a shutter and three sets of internal lamps (routine, backup and pristine). Being a pushbroom opposed to a whiskbroom design of ETM+, the system poses new challenges for characterization and calibration, chief among them being the large focal plane with 75000+ detectors. A comprehensive characterization and calibration plan is in place for the instrument and the data throughout the mission including Ball, NASA and the United States Geological Survey, which will take over operations of LDCM after on-orbit commissioning. Driving radiometric calibration requirements for OLI data include radiance calibration to 5% uncertainty (1 q); reflectance calibration to 3% uncertainty (1 q) and relative (detector-to-detector) calibration to 0.5% (J (r). Driving geometric calibration requirements for OLI include bandto- band registration of 4.5 meters (90% confidence), absolute geodetic accuracy of 65 meters (90% CE) and relative geodetic accuracy of 25 meters (90% CE). Key spectral, spatial and radiometric characterization of the OLI will occur in thermal vacuum at Ball Aerospace. During commissioning the OLI will be characterized and calibrated using celestial (sun, moon, stars) sources and terrestrial sources. The USGS EROS ground processing system will incorporate an image assessment system similar to Landsat-7 for characterization and calibration. This system will have the added benefit that characterization data will be extracted as part of the normal image data processing, so that the characterization data available will be significantly larger than for Landsat-7 ETM+.

  9. Absolute detector-based spectrally tunable radiant source using digital micromirror device and supercontinuum fiber laser.

    PubMed

    Li, Zhigang; Wang, Xiaoxu; Zheng, Yuquan; Li, Futian

    2017-06-10

    High-accuracy absolute detector-based spectroradiometric calibration techniques traceable to cryogenic absolute radiometers have made progress rapidly in recent decades under the impetus of atmospheric quantitative spectral remote sensing. A high brightness spectrally tunable radiant source using a supercontinuum fiber laser and a digital micromirror device (DMD) has been developed to meet demands of spectroradiometric calibrations for ground-based, aeronautics-based, and aerospace-based remote sensing instruments and spectral simulations of natural scenes such as the sun and atmosphere. Using a supercontinuum fiber laser as a radiant source, the spectral radiance of the spectrally tunable radiant source is 20 times higher than the spectrally tunable radiant source using conventional radiant sources such as tungsten halogen lamps, xenon lamps, or LED lamps, and the stability is better than ±0.3%/h. Using a DMD, the spectrally tunable radiant source possesses two working modes. In narrow-band modes, it is calibrated by an absolute detector, and in broad-band modes, it can calibrate for remote sensing instrument. The uncertainty of the spectral radiance of the spectrally tunable radiant source is estimated at less than 1.87% at 350 nm to 0.85% at 750 nm, and compared to only standard lamp-based calibration, a greater improvement is gained.

  10. PACS photometer calibration block analysis

    NASA Astrophysics Data System (ADS)

    Moór, A.; Müller, T. G.; Kiss, C.; Balog, Z.; Billot, N.; Marton, G.

    2014-07-01

    The absolute stability of the PACS bolometer response over the entire mission lifetime without applying any corrections is about 0.5 % (standard deviation) or about 8 % peak-to-peak. This fantastic stability allows us to calibrate all scientific measurements by a fixed and time-independent response file, without using any information from the PACS internal calibration sources. However, the analysis of calibration block observations revealed clear correlations of the internal source signals with the evaporator temperature and a signal drift during the first half hour after the cooler recycling. These effects are small, but can be seen in repeated measurements of standard stars. From our analysis we established corrections for both effects which push the stability of the PACS bolometer response to about 0.2 % (stdev) or 2 % in the blue, 3 % in the green and 5 % in the red channel (peak-to-peak). After both corrections we still see a correlation of the signals with PACS FPU temperatures, possibly caused by parasitic heat influences via the Kevlar wires which connect the bolometers with the PACS Focal Plane Unit. No aging effect or degradation of the photometric system during the mission lifetime has been found.

  11. Absolute gravimetry as an operational tool for geodynamics research

    NASA Astrophysics Data System (ADS)

    Torge, W.

    Relative gravimetric techniques have been used for nearly 30 years for measuring non-tidal gravity variations with time, and thus have contributed to geodynamics research by monitoring vertical crustal movements and internal mass shifts. With today's accuracy of about ± 0.05µms-2 (or 5µGal), significant results have been obtained in numerous control nets of local extension, especially in connection with seismic and volcanic events. Nevertheless, the main drawbacks of relative gravimetry, which are deficiencies in absolute datum and calibration, set a limit for its application, especially with respect to large-scale networks and long-term investigations. These problems can now be successfully attacked by absolute gravimetry, with transportable gravimeters available since about 20 years. While the absolute technique during the first two centuries of gravimetry's history was based on the pendulum method, the free-fall method can now be employed taking advantage of laser-interferometry, electronic timing, vacuum and shock absorbing techniques, and on-line computer-control. The accuracy inherent in advanced instruments is about ± 0.05 µms-2. In field work, generally an accuracy of ±0.1 µms-2 may be expected, strongly depending on local environmental conditions.

  12. Absolute surface reconstruction by slope metrology and photogrammetry

    NASA Astrophysics Data System (ADS)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  13. Absolute brightness temperature measurements at 3.5-mm wavelength. [of sun, Venus, Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Ulich, B. L.; Rhodes, P. J.; Davis, J. H.; Hollis, J. M.

    1980-01-01

    Careful observations have been made at 86.1 GHz to derive the absolute brightness temperatures of the sun (7914 + or - 192 K), Venus (357.5 + or - 13.1 K), Jupiter (179.4 + or - 4.7 K), and Saturn (153.4 + or - 4.8 K) with a standard error of about three percent. This is a significant improvement in accuracy over previous results at millimeter wavelengths. A stable transmitter and novel superheterodyne receiver were constructed and used to determine the effective collecting area of the Millimeter Wave Observatory (MWO) 4.9-m antenna relative to a previously calibrated standard gain horn. The thermal scale was set by calibrating the radiometer with carefully constructed and tested hot and cold loads. The brightness temperatures may be used to establish an absolute calibration scale and to determine the antenna aperture and beam efficiencies of other radio telescopes at 3.5-mm wavelength.

  14. Interlaboratory calibration of atmospheric nitrous oxide measurements

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Pierotti, D.

    1978-01-01

    Samples representative of Northern Hemispheric conditions in mid-1976 were analyzed by 11 laboratories to resolve the question of the absolute tropospheric concentration of nitrous oxide. The laboratories all employed electron capture-gas chromatography for the analysis. After exclusion of one anomalously low determination, the calibration results showed a mean concentration of 323.5 + or - 8.7 ppb v/v nitrous oxide.

  15. Results of Absolute Cavity Pyrgeometer and Infrared Integrating Sphere Comparisons

    SciTech Connect

    Reda, Ibrahim M; Sengupta, Manajit; Dooraghi, Michael R

    Accurate and traceable atmospheric longwave irradiance measurements are required for understanding radiative impacts on the Earth's energy budget. The standard to which pyrgeometers are traceable is the interim World Infrared Standard Group (WISG), maintained in the Physikalisch-Meteorologisches Observatorium Davos (PMOD). The WISG consists of four pyrgeometers that were calibrated using Rolf Philipona's Absolute Sky-scanning Radiometer [1]. The Atmospheric Radiation Measurement (ARM) facility has recently adopted the WISG to maintain the traceability of the calibrations of all Eppley precision infrared radiometer (PIR) pyrgeometers. Subsequently, Julian Grobner [2] developed the infrared interferometer spectrometer and radiometer (IRIS) radiometer, and Ibrahim Reda [3] developedmore » the absolute cavity pyrgeometer (ACP). The ACP and IRIS were developed to establish a world reference for calibrating pyrgeometers with traceability to the International System of Units (SI). The two radiometers are unwindowed with negligible spectral dependence, and they are traceable to SI units through the temperature scale (ITS-90). The two instruments were compared directly to the WISG three times at PMOD and twice at the Southern Great Plains (SGP) facility to WISG-traceable pyrgeometers. The ACP and IRIS agreed within +/- 1 W/m2 to +/- 3 W/m2 in all comparisons, whereas the WISG references exhibit a 2-5 Wm2 low bias compared to the ACP/IRIS average, depending on the water vapor column, as noted in Grobner et al. [4]. Consequently, a case for changing the current WISG has been made by Grobner and Reda. However, during the five comparisons the column water vapor exceeded 8 mm. Therefore, it is recommended that more ACP and IRIS comparisons should be held under different environmental conditions and water vapor column content to better establish the traceability of these instruments to SI with established uncertainty.« less

  16. Absolute Paleointensity Estimates using Combined Shaw and Pseudo-Thellier Experimental Protocols

    NASA Astrophysics Data System (ADS)

    Foucher, M. S.; Smirnov, A. V.

    2016-12-01

    Data on the long-term evolution of Earth's magnetic field intensity have a great potential to advance our understanding of many aspects of the Earth's evolution. However, paleointensity determination is one of the most challenging aspects of paleomagnetic research so the quantity and quality of existing paleointensity data remain limited, especially for older epochs. While the Thellier double-heating method remains to be the most commonly used paleointensity technique, its applicability is limited for many rocks that undergo magneto-mineralogical alteration during the successive heating steps required by the method. In order to reduce the probability of alteration, several alternative methods that involve a limited number of or no heating steps have been proposed. However, continued efforts are needed to better understand the physical foundations and relative efficiency of reduced/non-heating methods in recovering the true paleofield strength and to better constrain their calibration factors. We will present the results of our investigation of synthetic and natural magnetite-bearing samples using a combination of the LTD-DHT Shaw and pseudo-Thellier experimental protocols for absolute paleointensity estimation.

  17. UNDERFLIGHT CALIBRATION OF SOHO/CDS AND HINODE/EIS WITH EUNIS-07

    SciTech Connect

    Wang Tongjiang; Brosius, Jeffrey W.; Thomas, Roger J.

    2011-12-01

    Flights of Goddard Space Flight Center's Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS) sounding rocket in 2006 and 2007 provided updated radiometric calibrations for Solar and Heliospheric Observatory/Coronal Diagnostic Spectrometer (SOHO/CDS) and Hinode/Extreme Ultraviolet Imaging Spectrometer (Hinode/EIS). EUNIS carried two independent imaging spectrographs covering wavebands of 300-370 A in first order and 170-205 A in second order. After each flight, end-to-end radiometric calibrations of the rocket payload were carried out in the same facility used for pre-launch calibrations of CDS and EIS. During the 2007 flight, EUNIS, SOHO/CDS, and Hinode/EIS observed the same solar locations, allowing the EUNIS calibrations to bemore » directly applied to both CDS and EIS. The measured CDS NIS 1 line intensities calibrated with the standard (version 4) responsivities with the standard long-term corrections are found to be too low by a factor of 1.5 due to the decrease in responsivity. The EIS calibration update is performed in two ways. One uses the direct calibration transfer of the calibrated EUNIS-07 short wavelength (SW) channel. The other uses the insensitive line pairs, in which one member was observed by the EUNIS-07 long wavelength (LW) channel and the other by EIS in either the LW or SW waveband. Measurements from both methods are in good agreement, and confirm (within the measurement uncertainties) the EIS responsivity measured directly before the instrument's launch. The measurements also suggest that the EIS responsivity decreased by a factor of about 1.2 after the first year of operation (although the size of the measurement uncertainties is comparable to this decrease). The shape of the EIS SW response curve obtained by EUNIS-07 is consistent with the one measured in laboratory prior to launch. The absolute value of the quiet-Sun He II 304 A intensity measured by EUNIS-07 is consistent with the radiance measured by CDS NIS in quiet regions near

  18. Correction to Method of Establishing the Absolute Radiometric Accuracy of Remote Sensing Systems While On-orbit Using Characterized Stellar Sources

    NASA Technical Reports Server (NTRS)

    Bowen, Howard S.; Cunningham, Douglas M.

    2007-01-01

    The contents include: 1) Brief history of related events; 2) Overview of original method used to establish absolute radiometric accuracy of remote sensing instruments using stellar sources; and 3) Considerations to improve the stellar calibration approach.

  19. Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp

    NASA Astrophysics Data System (ADS)

    Billaud, Pierre; Marhaba, Salem; Grillet, Nadia; Cottancin, Emmanuel; Bonnet, Christophe; Lermé, Jean; Vialle, Jean-Louis; Broyer, Michel; Pellarin, Michel

    2010-04-01

    This article describes a high sensitivity spectrophotometer designed to detect the overall extinction of light by a single nanoparticle (NP) in the 10-4-10-5 relative range, using a transmission measurement configuration. We focus here on the simple and low cost scheme where a white lamp is used as a light source, permitting easy and broadband extinction measurements (300-900 nm). Using a microscope, in a confocal geometry, an increased sensitivity is reached thanks to a modulation of the NP position under the light spot combined with lock-in detection. Moreover, it is shown that this technique gives access to the absolute extinction cross-sections of the single NP provided that the incident electromagnetic field distribution experienced by the NP is accurately characterized. In this respect, an experimental procedure to characterize the light spot profile in the focal plane, using a reference NP as a probe, is also laid out. The validity of this approach is discussed and confirmed by comparing experimental intensity distributions to theoretical calculations taking into account the vector character of the tightly focused beam. The calibration procedure permitting to obtain the absolute extinction cross-section of the probed NP is then fully described. Finally, the force of the present technique is illustrated through selected examples concerning spherical and slightly elongated gold and silver NPs. Absolute extinction measurements are found to be in good consistency with the NP size and shape independently obtained from transmission electron microscopy, showing that spatial modulation spectroscopy is a powerful tool to get an optical fingerprint of the NP.

  20. Absolute empirical rate coefficient for the excitation of the 117.6 nm line in C III

    NASA Astrophysics Data System (ADS)

    Gardner, L. D.; Daw, A. N.; Janzen, P. H.; Atkins, N.; Kohl, J. L.

    2005-05-01

    We have measured the absolute cross sections for electron impact excitation (EIE) of C2+ (2s2p 3P° - 2p2 3P) for energies from below threshold to 17 eV above and derived EIE rate coefficients required for astrophysical applications. The uncertainty in the rate coefficient at a typical solar temperature of formation of C2+ is less than ± 6 %. Ions are produced in a 5 GHz Electron Cyclotron Resonance (ECR) ion source, extracted, formed into a beam, and transported to a collision chamber where they collide with electrons from an electron beam inclined at 45 degrees. The beams are modulated and the radiation from the decay of the excited ions at λ 117.6 nm is detected synchronously using an absolutely calibrated optical system that subtends slightly over π steradians. The fractional population of the C2+ metastable state in the incident ion beam has been determined experimentally to be 0.42 ± 0.03 (1.65 σ). At the reported ± 15 % total experimental uncertainty level (1.65 σ), the measured structure and absolute scale of the cross section are in fairly good agreement with 6-term close-coupling R-matrix calculations and 90-term R-matrix with pseudo-states calculations, although some minor differences are seen just above threshold. As density-sensitive line intensity ratios vary by only about a factor of 5 as the density changes by nearly a factor of 100, even a 30 % uncertainty in the excitation rate can lead to a factor of 3 error in density. This work is supported by NASA Supporting Research and Technology grants NAG5- 9516 and NAG5-12863 in Solar and Heliospheric Physics and by the Smithsonian Astrophysical Observatory.

  1. Radiance calibration of the High Altitude Observatory white-light coronagraph on Skylab

    NASA Technical Reports Server (NTRS)

    Poland, A. I.; Macqueen, R. M.; Munro, R. H.; Gosling, J. T.

    1977-01-01

    The processing of over 35,000 photographs of the solar corona obtained by the white-light coronograph on Skylab is described. Calibration of the vast amount of data was complicated by temporal effects of radiation fog and latent image loss. These effects were compensated by imaging a calibration step wedge on each data frame. Absolute calibration of the wedge was accomplished through comparison with a set of previously calibrated glass opal filters. Analysis employed average characteristic curves derived from measurements of step wedges from many frames within a given camera half-load. The net absolute accuracy of a given radiance measurement is estimated to be 20%.

  2. Calibration and energy measurement of optically levitated nanoparticle sensors

    NASA Astrophysics Data System (ADS)

    Hebestreit, Erik; Frimmer, Martin; Reimann, René; Dellago, Christoph; Ricci, Francesco; Novotny, Lukas

    2018-03-01

    Optically levitated nanoparticles offer enormous potential for precision sensing. However, as for any other metrology device, the absolute measurement performance of a levitated-particle sensor is limited by the accuracy of the calibration relating the measured signal to an absolute displacement of the particle. Here, we suggest and demonstrate calibration protocols for levitated-nanoparticle sensors. Our calibration procedures include the treatment of anharmonicities in the trapping potential, as well as a protocol using a harmonic driving force, which is applicable if the sensor is coupled to a heat bath of unknown temperature. Finally, using the calibration, we determine the center-of-mass temperature of an optically levitated particle in thermal equilibrium from its motion and discuss the optimal measurement time required to determine the said temperature.

  3. TWSTFT Link Calibration Report

    DTIC Science & Technology

    2015-09-01

    1 Annex II. TWSTFT link calibration with a GPS calibrator Calibration reference: CI-888-2015 Version history: ZJ/V0/25Feb2015, V0a,b/HE/ZJ...7Mar; V0s/VZ9Mar; V0d,e,f+/DM10,17Mar; V1.0/1Apr; Final version 1Sept2015 TWSTFT link calibration report -- Calibration of the Lab(k)-PTB UTC...bipm.org * Coordinator Abstract This report includes the calibration results of the Lab(k)-PTB TWSTFT link and closure measurements of the BIPM

  4. An image registration based ultrasound probe calibration

    NASA Astrophysics Data System (ADS)

    Li, Xin; Kumar, Dinesh; Sarkar, Saradwata; Narayanan, Ram

    2012-02-01

    Reconstructed 3D ultrasound of prostate gland finds application in several medical areas such as image guided biopsy, therapy planning and dose delivery. In our application, we use an end-fire probe rotated about its axis to acquire a sequence of rotational slices to reconstruct 3D TRUS (Transrectal Ultrasound) image. The image acquisition system consists of an ultrasound transducer situated on a cradle directly attached to a rotational sensor. However, due to system tolerances, axis of probe does not align exactly with the designed axis of rotation resulting in artifacts in the 3D reconstructed ultrasound volume. We present a rigid registration based automatic probe calibration approach. The method uses a sequence of phantom images, each pair acquired at angular separation of 180 degrees and registers corresponding image pairs to compute the deviation from designed axis. A modified shadow removal algorithm is applied for preprocessing. An attribute vector is constructed from image intensity and a speckle-insensitive information-theoretic feature. We compare registration between the presented method and expert-corrected images in 16 prostate phantom scans. Images were acquired at multiple resolutions, and different misalignment settings from two ultrasound machines. Screenshots from 3D reconstruction are shown before and after misalignment correction. Registration parameters from automatic and manual correction were found to be in good agreement. Average absolute differences of translation and rotation between automatic and manual methods were 0.27 mm and 0.65 degree, respectively. The registration parameters also showed lower variability for automatic registration (pooled standard deviation σtranslation = 0.50 mm, σrotation = 0.52 degree) compared to the manual approach (pooled standard deviation σtranslation = 0.62 mm, σrotation = 0.78 degree).

  5. FTIR Calibration Methods and Issues

    NASA Astrophysics Data System (ADS)

    Perron, Gaetan

    Over the past 10 years, several space-borne FTIR missions were launched for atmospheric research, environmental monitoring and meteorology. One can think of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) launched by the European Space Agency, the Atmospheric Chemistry Experiment (ACE) launched by the Canadian Space Agency, the Tropospheric Emission Spectrometer (TES) launched by NASA and the Infrared Atmospheric Sounding Interferometer (IASI) launched by Eumetsat in Europe. Others are near to be launched, namely the Cross-track Infrared Sounder (CrIS) from the Integrated Program Of- fice in the United States and the Thermal And Near infrared Sensor for carbon Observation (TANSO) from the Japan Aerospace Exploration Agency. Moreover, several missions under definition foresee the use of this technology as sensor, e.g. Meteosat Third Generation (MTG), Eumetsat Polar System (EPS) and the Premier mission, one of the six candidates of the next ESA Earth Explorer Core Mission. In order to produce good quality products, calibration is essential. Calibrated data is the output of three main sub-systems that are tightly coupled: the instrument, the calibration targets and the level 1B processor. Calibration requirements must be carefully defined and propagated to each sub-system. Often, they are carried out by different parties which add to the complexity. Under budget and schedule pressure, some aspects are sometimes neglected and jeopardized final quality. For space-borne FTIR, level 1B outputs are spectra that are radiometrically, spectrally calibrated and geolocated. Radiometric calibration means to assign an intensity value in units to the y-axis. Spectral calibration means to assign to the x-axis the proper frequency value in units. Finally, geolocated means to assign a target position over the earth geoid i.e. longitude, latitude and altitude. This paper will present calibration methods and issues related to space-borne FTIR missions, e.g. two

  6. Estimating the absolute wealth of households

    PubMed Central

    Gerkey, Drew; Hadley, Craig

    2015-01-01

    Abstract Objective To estimate the absolute wealth of households using data from demographic and health surveys. Methods We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. Findings The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723–6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R2 = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Conclusion Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality. PMID:26170506

  7. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  8. 49 CFR 236.709 - Block, absolute.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Block, absolute. 236.709 Section 236.709 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Block, absolute. A block in which no train is permitted to enter while it is occupied by another train. ...

  9. Estimating the absolute wealth of households.

    PubMed

    Hruschka, Daniel J; Gerkey, Drew; Hadley, Craig

    2015-07-01

    To estimate the absolute wealth of households using data from demographic and health surveys. We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. The median absolute wealth estimates of 1,403,186 households were 2056 international dollars per capita (interquartile range: 723-6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R(2)  = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality.

  10. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  11. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  12. 49 CFR 236.709 - Block, absolute.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Block, absolute. 236.709 Section 236.709 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Block, absolute. A block in which no train is permitted to enter while it is occupied by another train. ...

  13. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  14. Monolithically integrated absolute frequency comb laser system

    SciTech Connect

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  15. Calibration of the Auger Fluorescence Telescopes

    NASA Astrophysics Data System (ADS)

    Klages, H.; Pierre Auger Observatory Collaboration

    Thirty fluorescence telescopes in four stations will overlook the detector array of the southern hemisphere experiment of the Pierre Auger project. The main aim of these telescopes is tracking of EHE air showers, measurement of the longitudinal shower development (Xmax) and determination of the absolute energy of EHE events. A telescope camera contains 440 PMTs each covering a 1.5 x 1.5 degree pixel of the sky. The response of every pixel is converted into the number of charged particles at the observed part of the shower. This reconstruction includes the shower/observer geometry and the details of the atmospheric photon production and transport. The remaining experimental task is to convert the ADC counts of the camera pixel electronics into the light flux entering the Schmidt aperture. Three types of calibration and control are necessary : a) Monitoring of time dependent variations has to be performed for all parts of the optics and for all pixels frequently. Common illumination for all pixels of a camera allows the detection of individual deviations. Properties of windows, filters and mirrors have to be measured separately. b) Differences in pixel-to-pixel efficiency are mainly due to PMT gain and to differences in effective area (camera shadow, mirror size limits). Homogeneous and isotropic illumination will enable cross calibration. c) An absolute calibration has to be performed once in a while using trusted light monitors. The calibration methods used for the Pierre Auger FD telescopes in Argentina are discussed.

  16. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  17. Calibrating an Ionosonde for Ionospheric Attenuation Measurements.

    PubMed

    Gilli, Lorenzo; Sciacca, Umberto; Zuccheretti, Enrico

    2018-05-15

    Vertical ionospheric soundings have been performed at almost all ionospheric observatories with little attention to measuring the attenuation of the signal between transmission and reception. When the absorption has been determined, this has been achieved by comparing the received power after the first and second reflections, but this method has some limitations due to the unknown reflection coefficient of the ground and the non-continuous presence of the second reflection. This paper deals with a different method based on precise calibration of the sounding system, allowing determination of absolute signal attenuation after a single reflection. This approach is affected by a systematic error due to imperfect calibration of the antennas, but when the focus of interest is to measure a trend over a specified period, it is very accurate. The article describes how calibration was implemented, the measurement output formats, and finally it presents some results from a meaningful set of measurements in order to demonstrate what this method can accomplish.

  18. Calibration of quadpolarization SAR data using backscatter statistics

    NASA Technical Reports Server (NTRS)

    Klein, Jeffrey D.

    1989-01-01

    A new technique is described for calibration of complex multipolarization SAR imagery. Scatterer reciprocity and lack of correlation between like- and cross-polarized radar echoes for natural targets are used to remove cross-polarized contamination in the radar data channels without the use of known ground targets. If known targets are available, all data channels can be calibrated relative to one another and absolutely as well. The method is verified with airborne SAR data.

  19. Spectroradiometric calibration of the thematic mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Slater, P. N. (Principal Investigator); Palmer, J. M.

    1983-01-01

    The results obtained for the absolute calibration of TM bands 2, 3, and 4 are presented. The results are based on TM image data collected simultaneously with ground and atmospheric data at White Sands, New Mexico. Also discussed are the results of a moments analysis to determine the equivalent bandpasses, effective central wavelengths and normalized responses of the TM and MSS spectral bands; the calibration of the BaSO, plate used at White Sands; and future plans.

  20. Inertial Sensor Error Reduction through Calibration and Sensor Fusion.

    PubMed

    Lambrecht, Stefan; Nogueira, Samuel L; Bortole, Magdo; Siqueira, Adriano A G; Terra, Marco H; Rocon, Eduardo; Pons, José L

    2016-02-17

    This paper presents the comparison between cooperative and local Kalman Filters (KF) for estimating the absolute segment angle, under two calibration conditions. A simplified calibration, that can be replicated in most laboratories; and a complex calibration, similar to that applied by commercial vendors. The cooperative filters use information from either all inertial sensors attached to the body, Matricial KF; or use information from the inertial sensors and the potentiometers of an exoskeleton, Markovian KF. A one minute walking trial of a subject walking with a 6-DoF exoskeleton was used to assess the absolute segment angle of the trunk, thigh, shank, and foot. The results indicate that regardless of the segment and filter applied, the more complex calibration always results in a significantly better performance compared to the simplified calibration. The interaction between filter and calibration suggests that when the quality of the calibration is unknown the Markovian KF is recommended. Applying the complex calibration, the Matricial and Markovian KF perform similarly, with average RMSE below 1.22 degrees. Cooperative KFs perform better or at least equally good as Local KF, we therefore recommend to use cooperative KFs instead of local KFs for control or analysis of walking.

  1. Synthesis Polarimetry Calibration

    NASA Astrophysics Data System (ADS)

    Moellenbrock, George

    2017-10-01

    Synthesis instrumental polarization calibration fundamentals for both linear (ALMA) and circular (EVLA) feed bases are reviewed, with special attention to the calibration heuristics supported in CASA. Practical problems affecting modern instruments are also discussed.

  2. Method and apparatus for making absolute range measurements

    DOEpatents

    Earl, Dennis D [Knoxville, TN; Allison, Stephen W [Knoxville, TN; Cates, Michael R [Oak Ridge, TN; Sanders, Alvin J [Knoxville, TN

    2002-09-24

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through a screen at least partially opaque at the wavelength. The screen has an aperture sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector spaced some distance from the screen. The detector detects the central intensity of the beam as well as a set of intensities displaced from a center of the aperture. The distance from the source to the target can then be calculated based upon the known wavelength, aperture radius, and beam intensity.

  3. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  4. PV Calibration Insights | NREL

    Science.gov Websites

    PV Calibration Insights PV Calibration Insights The Photovoltaic (PV) Calibration Insights blog will provide updates on the testing done by the NREL PV Device Performance group. This NREL research group measures the performance of any and all technologies and sizes of PV devices from around the world

  5. Experimental benchmark for an improved simulation of absolute soft-x-ray emission from polystyrene targets irradiated with the Nike laser.

    PubMed

    Weaver, J L; Busquet, M; Colombant, D G; Mostovych, A N; Feldman, U; Klapisch, M; Seely, J F; Brown, C; Holland, G

    2005-02-04

    Absolutely calibrated, time-resolved spectral intensity measurements of soft-x-ray emission (hnu approximately 0.1-1.0 keV) from laser-irradiated polystyrene targets are compared to radiation-hydrodynamic simulations that include our new postprocessor, Virtual Spectro. This new capability allows a unified, detailed treatment of atomic physics and radiative transfer in nonlocal thermodynamic equilibrium conditions for simple spectra from low-Z materials as well as complex spectra from high-Z materials. The excellent agreement (within a factor of approximately 1.5) demonstrates the powerful predictive capability of the codes for the complex conditions in the ablating plasma. A comparison to data with high spectral resolution (E/deltaE approximately 1000) emphasizes the importance of including radiation coupling in the quantitative simulation of emission spectra.

  6. A global algorithm for estimating Absolute Salinity

    NASA Astrophysics Data System (ADS)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  7. Analysis of Intrinsic Peptide Detectability via Integrated Label-Free and SRM-Based Absolute Quantitative Proteomics.

    PubMed

    Jarnuczak, Andrew F; Lee, Dave C H; Lawless, Craig; Holman, Stephen W; Eyers, Claire E; Hubbard, Simon J

    2016-09-02

    Quantitative mass spectrometry-based proteomics of complex biological samples remains challenging in part due to the variability and charge competition arising during electrospray ionization (ESI) of peptides and the subsequent transfer and detection of ions. These issues preclude direct quantification from signal intensity alone in the absence of a standard. A deeper understanding of the governing principles of peptide ionization and exploitation of the inherent ionization and detection parameters of individual peptides is thus of great value. Here, using the yeast proteome as a model system, we establish the concept of peptide F-factor as a measure of detectability, closely related to ionization efficiency. F-factor is calculated by normalizing peptide precursor ion intensity by absolute abundance of the parent protein. We investigated F-factor characteristics in different shotgun proteomics experiments, including across multiple ESI-based LC-MS platforms. We show that F-factors mirror previously observed physicochemical predictors as peptide detectability but demonstrate a nonlinear relationship between hydrophobicity and peptide detectability. Similarly, we use F-factors to show how peptide ion coelution adversely affects detectability and ionization. We suggest that F-factors have great utility for understanding peptide detectability and gas-phase ion chemistry in complex peptide mixtures, selection of surrogate peptides in targeted MS studies, and for calibration of peptide ion signal in label-free workflows. Data are available via ProteomeXchange with identifier PXD003472.

  8. Sentinel-2 diffuser on-ground calibration

    NASA Astrophysics Data System (ADS)

    Mazy, E.; Camus, F.; Chorvalli, V.; Domken, I.; Laborie, A.; Marcotte, S.; Stockman, Y.

    2013-10-01

    The Sentinel-2 multi-spectral instrument (MSI) will provide Earth imagery in the frame of the Global Monitoring for Environment and Security (GMES) initiative which is a joint undertaking of the European Commission and the Agency. MSI instrument, under Astrium SAS responsibility, is a push-broom spectro imager in 13 spectral channels in VNIR and SWIR. The instrument radiometric calibration is based on in-flight calibration with sunlight through a quasi Lambertian diffuser. The diffuser covers the full pupil and the full field of view of the instrument. The on-ground calibration of the diffuser BRDF is mandatory to fulfil the in-flight performances. The diffuser is a 779 x 278 mm2 rectangular flat area in Zenith-A material. It is mounted on a motorised door in front of the instrument optical system entrance. The diffuser manufacturing and calibration is under the Centre Spatial of Liege (CSL) responsibility. The CSL has designed and built a completely remote controlled BRDF test bench able to handle large diffusers in their mount. As the diffuser is calibrated directly in its mount with respect to a reference cube, the error budget is significantly improved. The BRDF calibration is performed directly in MSI instrument spectral bands by using dedicated band-pass filters (VNIR and SWIR up to 2200 nm). Absolute accuracy is better than 0.5% in VNIR spectral bands and 1% in SWIR spectral bands. Performances were cross checked with other laboratories. The first MSI diffuser for flight model was calibrated mid 2013 on CSL BRDF measurement bench. The calibration of the diffuser consists mainly in thermal vacuum cycles, BRDF uniformity characterisation and BRDF angular characterisation. The total amount of measurement for the first flight model diffuser corresponds to more than 17500 BRDF acquisitions. Performance results are discussed in comparison with requirements.

  9. Calibration aspects of the JEM-EUSO mission

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    The JEM-EUSO telescope will be, after calibration, a very accurate instrument which yields the number of received photons from the number of measured photo-electrons. The project is in phase A (demonstration of the concept) including already operating prototype instruments, i.e. many parts of the instrument have been constructed and tested. Calibration is a crucial part of the instrument and its use. The focal surface (FS) of the JEM-EUSO telescope will consist of about 5000 photo-multiplier tubes (PMTs), which have to be well calibrated to reach the required accuracy in reconstructing the air-shower parameters. The optics system consists of 3 plastic Fresnel (double-sided) lenses of 2.5 m diameter. The aim of the calibration system is to measure the efficiencies (transmittances) of the optics and absolute efficiencies of the entire focal surface detector. The system consists of 3 main components: (i) Pre-flight calibration devices on ground, where the efficiency and gain of the PMTs will be measured absolutely and also the transmittance of the optics will be. (ii) On-board relative calibration system applying two methods: a) operating during the day when the JEM-EUSO lid will be closed with small light sources on board. b) operating during the night, together with data taking: the monitoring of the background rate over identical sites. (iii) Absolute in-flight calibration, again, applying two methods: a) measurement of the moon light, reflected on high altitude, high albedo clouds. b) measurements of calibrated flashes and tracks produced by the Global Light System (GLS). Some details of each calibration method will be described in this paper.

  10. SUMS calibration test report

    NASA Technical Reports Server (NTRS)

    Robertson, G.

    1982-01-01

    Calibration was performed on the shuttle upper atmosphere mass spectrometer (SUMS). The results of the calibration and the as run test procedures are presented. The output data is described, and engineering data conversion factors, tables and curves, and calibration on instrument gauges are included. Static calibration results which include: instrument sensitive versus external pressure for N2 and O2, data from each scan of calibration, data plots from N2 and O2, and sensitivity of SUMS at inlet for N2 and O2, and ratios of 14/28 for nitrogen and 16/32 for oxygen are given.

  11. Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D

    DOE PAGES

    Brookman, M. W.; Austin, M. E.; McLean, A. G.; ...

    2016-08-08

    Thomson scattering (TS) produces n e profiles from measurement of scattered laser beam intensity. In the case of Rayleigh scattering, it provides a first calibration of the relation n e / ITS, which depends on many factors (e.g. laser alignment and power, optics, and measurement systems). On DIII-D, the n e calibration is adjusted for each laser and optic path against an absolute n e measurement from a density-driven cutoff on the 48 channel 2nd harmonic X-mode electron cyclotron emission (ECE) system. This method has been used to calibrate Thompson densities from the edge to near the core (r/a >more » 0.15). Application of core electron cyclotron heating improves the quality of cutoff and depth of its penetration into the core. ECH also changes underlying MHD activity. Furthermore, on the removal of ECH power, cutoff penetrates in from the edge to the core and channels fall successively and smoothly into cutoff. This improves the quality of the TS n e calibration while minimizing wall loading.« less

  12. Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D.

    PubMed

    Brookman, M W; Austin, M E; McLean, A G; Carlstrom, T N; Hyatt, A W; Lohr, J

    2016-11-01

    Thomson scattering produces n e profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation n e ∝ I TS , which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the n e calibration is adjusted against an absolute n e from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson n e from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoff and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as "ECH pump-out" generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff.

  13. Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D

    SciTech Connect

    Brookman, M. W., E-mail: brookmanmw@fusion.gat.com; Austin, M. E.; McLean, A. G.

    2016-11-15

    Thomson scattering produces n{sub e} profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation n{sub e} ∝ I{sub TS}, which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the n{sub e} calibration is adjusted against an absolute n{sub e} from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson n{sub e} from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoffmore » and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as “ECH pump-out” generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff.« less

  14. Absolute quantification of microbial taxon abundances.

    PubMed

    Props, Ruben; Kerckhof, Frederiek-Maarten; Rubbens, Peter; De Vrieze, Jo; Hernandez Sanabria, Emma; Waegeman, Willem; Monsieurs, Pieter; Hammes, Frederik; Boon, Nico

    2017-02-01

    High-throughput amplicon sequencing has become a well-established approach for microbial community profiling. Correlating shifts in the relative abundances of bacterial taxa with environmental gradients is the goal of many microbiome surveys. As the abundances generated by this technology are semi-quantitative by definition, the observed dynamics may not accurately reflect those of the actual taxon densities. We combined the sequencing approach (16S rRNA gene) with robust single-cell enumeration technologies (flow cytometry) to quantify the absolute taxon abundances. A detailed longitudinal analysis of the absolute abundances resulted in distinct abundance profiles that were less ambiguous and expressed in units that can be directly compared across studies. We further provide evidence that the enrichment of taxa (increase in relative abundance) does not necessarily relate to the outgrowth of taxa (increase in absolute abundance). Our results highlight that both relative and absolute abundances should be considered for a comprehensive biological interpretation of microbiome surveys.

  15. Low absolute neutrophil counts in African infants.

    PubMed

    Kourtis, Athena P; Bramson, Brian; van der Horst, Charles; Kazembe, Peter; Ahmed, Yusuf; Chasela, Charles; Hosseinipour, Mina; Knight, Rodney; Lugalia, Lebah; Tegha, Gerald; Joaki, George; Jafali, Robert; Jamieson, Denise J

    2005-07-01

    Infants of African origin have a lower normal range of absolute neutrophil counts than white infants; this fact, however, remains under appreciated by clinical researchers in the United States. During the initial stages of a clinical trial in Malawi, the authors noted an unexpectedly high number of infants with absolute neutrophil counts that would be classifiable as neutropenic using the National Institutes of Health's Division of AIDS toxicity tables. The authors argue that the relevant Division of AIDS table does not take into account the available evidence of low absolute neutrophil counts in African infants and that a systematic collection of data from many African settings might help establish the absolute neutrophil count cutpoints to be used for defining neutropenia in African populations.

  16. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  17. Absolute colorimetric characterization of a DSLR camera

    NASA Astrophysics Data System (ADS)

    Guarnera, Giuseppe Claudio; Bianco, Simone; Schettini, Raimondo

    2014-03-01

    A simple but effective technique for absolute colorimetric camera characterization is proposed. It offers a large dynamic range requiring just a single, off-the-shelf target and a commonly available controllable light source for the characterization. The characterization task is broken down in two modules, respectively devoted to absolute luminance estimation and to colorimetric characterization matrix estimation. The characterized camera can be effectively used as a tele-colorimeter, giving an absolute estimation of the XYZ data in cd=m2. The user is only required to vary the f - number of the camera lens or the exposure time t, to better exploit the sensor dynamic range. The estimated absolute tristimulus values closely match the values measured by a professional spectro-radiometer.

  18. Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Barsi, Julia A.; Shott, John R.; Raqueno, Nina G.; Markham, Brian L.; Radocinski, Robert G.

    2014-01-01

    Launched in February 2013, the Landsat-8 carries on-board the Thermal Infrared Sensor (TIRS), a two-band thermal pushbroom imager, to maintain the thermal imaging capability of the Landsat program. The TIRS bands are centered at roughly 10.9 and 12 micrometers (Bands 10 and 11 respectively). They have 100 m spatial resolution and image coincidently with the Operational Land Imager (OLI), also on-board Landsat-8. The TIRS instrument has an internal calibration system consisting of a variable temperature blackbody and a special viewport with which it can see deep space; a two point calibration can be performed twice an orbit. Immediately after launch, a rigorous vicarious calibration program was started to validate the absolute calibration of the system. The two vicarious calibration teams, NASA/Jet Propulsion Laboratory (JPL) and the Rochester Institute of Technology (RIT), both make use of buoys deployed on large water bodies as the primary monitoring technique. RIT took advantage of cross-calibration opportunity soon after launch when Landsat-8 and Landsat-7 were imaging the same targets within a few minutes of each other to perform a validation of the absolute calibration. Terra MODIS is also being used for regular monitoring of the TIRS absolute calibration. The buoy initial results showed a large error in both bands, 0.29 and 0.51 W/sq m·sr·micrometers or -2.1 K and -4.4 K at 300 K in Band 10 and 11 respectively, where TIRS data was too hot. A calibration update was recommended for both bands to correct for a bias error and was implemented on 3 February 2014 in the USGS/EROS processing system, but the residual variability is still larger than desired for both bands (0.12 and 0.2 W/sq m·sr·micrometers or 0.87 and 1.67 K at 300 K). Additional work has uncovered the source of the calibration error: out-of-field stray light. While analysis continues to characterize the stray light contribution, the vicarious calibration work proceeds. The additional data have

  19. Calibration and characterisation of the Gaia Red Clump

    NASA Astrophysics Data System (ADS)

    Ruiz-Dern, L.; Babusiaux, C.; Arenou, F.; Danielski, C.; Turon, C.; Sartoretti, P.

    2018-04-01

    We present new empirical Colour-Colour and Effective Temperature-Colour Gaia Red Clump calibrations. The selected sample takes into account high photometric quality, good spectrometric metallicity, homogeneous effective temperatures and low interstellar extinctions. From those calibrations we developed a method to derive the absolute magnitude, temperature and extinction of the Gaia RC. We tested our colour and extinction estimates on stars with measured spectroscopic effective temperatures and Diffuse Interstellar Band (DIB) constraints. Within the Gaia Validation team these calibrations are also being used, together with asteroseismic constraints, to check the parallax zero-point with Red Clump stars.

  20. A distance-independent calibration of the luminosity of type Ia supernovae and the Hubble constant

    NASA Technical Reports Server (NTRS)

    Leibundgut, Bruno; Pinto, Philip A.

    1992-01-01

    The absolute magnitude of SNe Ia at maximum is calibrated here using radioactive decay models for the light curve and a minimum of assumptions. The absolute magnitude parameter space is studied using explosion models and a range of rise times, and absolute B magnitudes at maximum are used to derive a range of the H0 and the distance to the Virgo Cluster from SNe Ia. Rigorous limits for H0 of 45 and 105 km/s/Mpc are derived.

  1. 40 CFR 92.120 - NDIR analyzer calibration and checks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....120 NDIR analyzer calibration and checks. (a) NDIR water rejection ratio check. (1) Zero and span the analyzer on the lowest range that will be used. (2) Introduce a saturated mixture of water and zero gas at...) in absolute units in Pascal. Gauges G3 and G4 may be used if the values are converted to the correct...

  2. 40 CFR 92.120 - NDIR analyzer calibration and checks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....120 NDIR analyzer calibration and checks. (a) NDIR water rejection ratio check. (1) Zero and span the analyzer on the lowest range that will be used. (2) Introduce a saturated mixture of water and zero gas at...) in absolute units in Pascal. Gauges G3 and G4 may be used if the values are converted to the correct...

  3. 40 CFR 92.120 - NDIR analyzer calibration and checks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....120 NDIR analyzer calibration and checks. (a) NDIR water rejection ratio check. (1) Zero and span the analyzer on the lowest range that will be used. (2) Introduce a saturated mixture of water and zero gas at...) in absolute units in Pascal. Gauges G3 and G4 may be used if the values are converted to the correct...

  4. 40 CFR 92.120 - NDIR analyzer calibration and checks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....120 NDIR analyzer calibration and checks. (a) NDIR water rejection ratio check. (1) Zero and span the analyzer on the lowest range that will be used. (2) Introduce a saturated mixture of water and zero gas at...) in absolute units in Pascal. Gauges G3 and G4 may be used if the values are converted to the correct...

  5. 40 CFR 92.120 - NDIR analyzer calibration and checks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....120 NDIR analyzer calibration and checks. (a) NDIR water rejection ratio check. (1) Zero and span the analyzer on the lowest range that will be used. (2) Introduce a saturated mixture of water and zero gas at...) in absolute units in Pascal. Gauges G3 and G4 may be used if the values are converted to the correct...

  6. A Spectralon BRF Data Base for MISR Calibration Application

    NASA Technical Reports Server (NTRS)

    Bruegge, C.; Chrien, N.; Haner, D.

    1999-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) is an Earth observing sensor which will provide global retrievals of aerosols, clouds, and land surface parameters. Instrument specifications require high accuracy absolute calibration, as well as accurate camera-to-camera, band-to-band and pixel-to-pixel relative response determinations.

  7. 40 CFR 86.1319-90 - CVS calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with such a device.) The CVS calibration procedures are designed for use of a “metering venturi” type... series with the pump. (ii) The calculated flow rate, ft 3/min, (at pump inlet absolute pressure and... during test period N Revs ±1 Rev. Elapsed time for test period t sec. ±0.5 sec. (5) After the system has...

  8. 40 CFR 86.1319-90 - CVS calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with such a device.) The CVS calibration procedures are designed for use of a “metering venturi” type... series with the pump. (ii) The calculated flow rate, ft 3/min, (at pump inlet absolute pressure and... test period N Revs ±1 Rev. Elapsed time for test period t sec. ±0.5 sec. (5) After the system has been...

  9. 40 CFR 86.1319-90 - CVS calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with such a device.) The CVS calibration procedures are designed for use of a “metering venturi” type... series with the pump. (ii) The calculated flow rate, ft 3/min, (at pump inlet absolute pressure and... during test period N Revs ±1 Rev. Elapsed time for test period t sec. ±0.5 sec. (5) After the system has...

  10. 40 CFR 86.1319-90 - CVS calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with such a device.) The CVS calibration procedures are designed for use of a “metering venturi” type... series with the pump. (ii) The calculated flow rate, ft 3/min, (at pump inlet absolute pressure and... test period N Revs ±1 Rev. Elapsed time for test period t sec. ±0.5 sec. (5) After the system has been...

  11. Debiased estimates for NEO orbits, absolute magnitudes, and source regions

    NASA Astrophysics Data System (ADS)

    Granvik, Mikael; Morbidelli, Alessandro; Jedicke, Robert; Bolin, Bryce T.; Bottke, William; Beshore, Edward C.; Vokrouhlicky, David; Nesvorny, David; Michel, Patrick

    2017-10-01

    The debiased absolute-magnitude and orbit distributions as well as source regions for near-Earth objects (NEOs) provide a fundamental frame of reference for studies on individual NEOs as well as on more complex population-level questions. We present a new four-dimensional model of the NEO population that describes debiased steady-state distributions of semimajor axis (a), eccentricity (e), inclination (i), and absolute magnitude (H). We calibrate the model using NEO detections by the 703 and G96 stations of the Catalina Sky Survey (CSS) during 2005-2012 corresponding to objects with 17absolute sense using the biases computed for CSS (Jedicke et al. 2016, Icarus 266, 173). The model makes use of six source regions or escape routes from the main asteroid belt as identified by Granvik et al. (2017, A&A 598, A52) in addition to Jupiter-family comets: Hungaria and Phocaea asteroids, and main-belt asteroids escaping through the ν6, 3:1J, 5:2J and 2:1J resonance complexes. We account for the destruction of asteroids with small perihelion distances (Granvik et al. 2016, Nature 530, 303) by fitting a penalty function in perihelion distance. Our model accurately reproduces the observed distribution of NEOs and the predicted numbers, particularly for the larger NEOs, are in agreement with other contemporary estimates. Our model also provides updated estimates for the likelihood of the various source regions and escape routes as a function of NEO (a,e,i,H) parameters. We present the model and its predictions, and discuss them in the context of other contemporary estimates.

  12. Vicarious Calibration of EO-1 Hyperion

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Thome, Kurt; Lawrence, Ong

    2012-01-01

    The Hyperion imaging spectrometer on the Earth Observing-1 satellite is the first high-spatial resolution imaging spectrometer to routinely acquire science-grade data from orbit. Data gathered with this instrument needs to be quantitative and accurate in order to derive meaningful information about ecosystem properties and processes. Also, comprehensive and long-term ecological studies require these data to be comparable over time, between coexisting sensors and between generations of follow-on sensors. One method to assess the radiometric calibration is the reflectance-based approach, a common technique used for several other earth science sensors covering similar spectral regions. This work presents results of radiometric calibration of Hyperion based on the reflectance-based approach of vicarious calibration implemented by University of Arizona during 2001 2005. These results show repeatability to the 2% level and accuracy on the 3 5% level for spectral regions not affected by strong atmospheric absorption. Knowledge of the stability of the Hyperion calibration from moon observations allows for an average absolute calibration based on the reflectance-based results to be determined and applicable for the lifetime of Hyperion.

  13. Evolution of Altimetry Calibration and Future Challenges

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Haines, Bruce J.

    2012-01-01

    Over the past 20 years, altimetry calibration has evolved from an engineering-oriented exercise to a multidisciplinary endeavor driving the state of the art. This evolution has been spurred by the developing promise of altimetry to capture the large-scale, but small-amplitude, changes of the ocean surface containing the expression of climate change. The scope of altimeter calibration/validation programs has expanded commensurately. Early efforts focused on determining a constant range bias and verifying basic compliance of the data products with mission requirements. Contemporary investigations capture, with increasing accuracies, the spatial and temporal characteristics of errors in all elements of the measurement system. Dedicated calibration sites still provide the fundamental service of estimating absolute bias, but also enable long-term monitoring of the sea-surface height and constituent measurements. The use of a network of island and coastal tide gauges has provided the best perspective on the measurement stability, and revealed temporal variations of altimeter measurement system drift. The cross-calibration between successive missions provided fundamentally new information on the performance of altimetry systems. Spatially and temporally correlated errors pose challenges for future missions, underscoring the importance of cross-calibration of new measurements against the established record.

  14. OARE flight maneuvers and calibration measurements on STS-58

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.; Larman, Kevin T.

    1994-01-01

    The Orbital Acceleration Research Experiment (OARE), which has flown on STS-40, STS-50, and STS-58, contains a three axis accelerometer with a single, nonpendulous, electrostatically suspended proofmass which can resolve accelerations to the nano-g level. The experiment also contains a full calibration station to permit in situ bias and scale factor calibration. This on-orbit calibration capability eliminates the large uncertainty of ground-based calibrations encountered with accelerometers flown in the past on the orbiter, thus providing absolute acceleration measurement accuracy heretofore unachievable. This is the first time accelerometer scale factor measurements have been performed on orbit. A detailed analysis of the calibration process is given along with results of the calibration factors from the on-orbit OARE flight measurements on STS-58. In addition, the analysis of OARE flight maneuver data used to validate the scale factor measurements in the sensor's most sensitive range is also presented. Estimates on calibration uncertainties are discussed. This provides bounds on the STS-58 absolute acceleration measurements for future applications.

  15. Design considerations and validation of the MSTAR absolute metrology system

    NASA Astrophysics Data System (ADS)

    Peters, Robert D.; Lay, Oliver P.; Dubovitsky, Serge; Burger, Johan; Jeganathan, Muthu

    2004-08-01

    Absolute metrology measures the actual distance between two optical fiducials. A number of methods have been employed, including pulsed time-of-flight, intensity-modulated optical beam, and two-color interferometry. The rms accuracy is currently limited to ~5 microns. Resolving the integer number of wavelengths requires a 1-sigma range accuracy of ~0.1 microns. Closing this gap has a large pay-off: the range (length measurement) accuracy can be increased substantially using the unambiguous optical phase. The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. In this paper, we present recent experiments that use dispersed white light interferometry to independently validate the zero-point of the system. We also describe progress towards reducing the size of optics, and stabilizing the laser wavelength for operation over larger target ranges. MSTAR is a general-purpose tool for conveniently measuring length with much greater accuracy than was previously possible, and has a wide range of possible applications.

  16. Radiometric Calibration of the NASA Advanced X-Ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Kellogg, Edwin M.

    1999-01-01

    We present the results of absolute calibration of the quantum efficiency of soft x-ray detectors performed at the PTB/BESSY beam lines. The accuracy goal is 1%. We discuss the implementation of that goal. These detectors were used as transfer standards to provide the radiometric calibration of the AXAF X-ray observatory, to be launched in April 1999.

  17. SAR calibration technology review

    NASA Technical Reports Server (NTRS)

    Walker, J. L.; Larson, R. W.

    1981-01-01

    Synthetic Aperture Radar (SAR) calibration technology including a general description of the primary calibration techniques and some of the factors which affect the performance of calibrated SAR systems are reviewed. The use of reference reflectors for measurement of the total system transfer function along with an on-board calibration signal generator for monitoring the temporal variations of the receiver to processor output is a practical approach for SAR calibration. However, preliminary error analysis and previous experimental measurements indicate that reflectivity measurement accuracies of better than 3 dB will be difficult to achieve. This is not adequate for many applications and, therefore, improved end-to-end SAR calibration techniques are required.

  18. Summary of KOMPSAT-5 Calibration and Validation

    NASA Astrophysics Data System (ADS)

    Yang, D.; Jeong, H.; Lee, S.; Kim, B.

    2013-12-01

    including pointing, relative and absolute calibration as well as geolocation accuracy determination. The absolute calibration will be accomplished by determining absolute radiometric accuracy using already deployed trihedral corner reflectors on calibration and validation sites located southeast from Ulaanbaatar, Mongolia. To establish a measure for the assess the final image products, geolocation accuracies of image products with different imaging modes will be determined by using deployed point targets and available Digital Terrain Model (DTM), and on different image processing levels. In summary, this paper will present calibration and validation activities performed during the LEOP and IOT of KOMPSAT-5. The methodology and procedure of calibration and validation will be explained as well as its results. Based on the results, the applications of SAR image products on geophysical processes will be also discussed.

  19. Anatomical calibration for wearable motion capture systems: Video calibrated anatomical system technique.

    PubMed

    Bisi, Maria Cristina; Stagni, Rita; Caroselli, Alessio; Cappello, Angelo

    2015-08-01

    Inertial sensors are becoming widely used for the assessment of human movement in both clinical and research applications, thanks to their usability out of the laboratory. This work aims to propose a method for calibrating anatomical landmark position in the wearable sensor reference frame with an ease to use, portable and low cost device. An off-the-shelf camera, a stick and a pattern, attached to the inertial sensor, compose the device. The proposed technique is referred to as video Calibrated Anatomical System Technique (vCAST). The absolute orientation of a synthetic femur was tracked both using the vCAST together with an inertial sensor and using stereo-photogrammetry as reference. Anatomical landmark calibration showed mean absolute error of 0.6±0.5 mm: these errors are smaller than those affecting the in-vivo identification of anatomical landmarks. The roll, pitch and yaw anatomical frame orientations showed root mean square errors close to the accuracy limit of the wearable sensor used (1°), highlighting the reliability of the proposed technique. In conclusion, the present paper proposes and preliminarily verifies the performance of a method (vCAST) for calibrating anatomical landmark position in the wearable sensor reference frame: the technique is low time consuming, highly portable, easy to implement and usable outside laboratory. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Absolute Two-Photon Absorption Coefficients in UltraViolet Window Materials

    DTIC Science & Technology

    1977-12-01

    fvtt* tld » II ntctHB,-y md Idtnlll’ by block number; The absolute two-photon absorption coefficiehts of u. v. transmitting materials have been...measured using well-calibrated single picosecond pulses, at the third and fourth harmonic of a mode locked Nd:YAG laser systems. Twc photon...30, 1977. Work in the area of laser induced breakdown and multiphoton absorption in ultraviolet and infrared laser window materials was carried

  1. Coda Calibration Tool

    SciTech Connect

    Addair, Travis; Barno, Justin; Dodge, Doug

    CCT is a Java based application for calibrating 10 shear wave coda measurement models to observed data using a much smaller set of reference moment magnitudes (MWs) calculated from other means (waveform modeling, etc.). These calibrated measurement models can then be used in other tools to generate coda moment magnitude measurements, source spectra, estimated stress drop, and other useful measurements for any additional events and any new data collected in the calibrated region.

  2. Method for in-situ calibration of electrophoretic analysis systems

    DOEpatents

    Liu, Changsheng; Zhao, Hequan

    2005-05-08

    An electrophoretic system having a plurality of separation lanes is provided with an automatic calibration feature in which each lane is separately calibrated. For each lane, the calibration coefficients map a spectrum of received channel intensities onto values reflective of the relative likelihood of each of a plurality of dyes being present. Individual peaks, reflective of the influence of a single dye, are isolated from among the various sets of detected light intensity spectra, and these can be used to both detect the number of dye components present, and also to establish exemplary vectors for the calibration coefficients which may then be clustered and further processed to arrive at a calibration matrix for the system. The system of the present invention thus permits one to use different dye sets to tag DNA nucleotides in samples which migrate in separate lanes, and also allows for in-situ calibration with new, previously unused dye sets.

  3. Absolute Thermal SST Measurements over the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Good, W. S.; Warden, R.; Kaptchen, P. F.; Finch, T.; Emery, W. J.

    2010-12-01

    Climate monitoring and natural disaster rapid assessment require baseline measurements that can be tracked over time to distinguish anthropogenic versus natural changes to the Earth system. Disasters like the Deepwater Horizon Oil Spill require constant monitoring to assess the potential environmental and economic impacts. Absolute calibration and validation of Earth-observing sensors is needed to allow for comparison of temporally separated data sets and provide accurate information to policy makers. The Ball Experimental Sea Surface Temperature (BESST) radiometer was designed and built by Ball Aerospace to provide a well calibrated measure of sea surface temperature (SST) from an unmanned aerial system (UAS). Currently, emissive skin SST observed by satellite infrared radiometers is validated by shipborne instruments that are expensive to deploy and can only take a few data samples along the ship track to overlap within a single satellite pixel. Implementation on a UAS will allow BESST to map the full footprint of a satellite pixel and perform averaging to remove any local variability due to the difference in footprint size of the instruments. It also enables the capability to study this sub-pixel variability to determine if smaller scale effects need to be accounted for in models to improve forecasting of ocean events. In addition to satellite sensor validation, BESST can distinguish meter scale variations in SST which could be used to remotely monitor and assess thermal pollution in rivers and coastal areas as well as study diurnal and seasonal changes to bodies of water that impact the ocean ecosystem. BESST was recently deployed on a conventional Twin Otter airplane for measurements over the Gulf of Mexico to access the thermal properties of the ocean surface being affected by the oil spill. Results of these measurements will be presented along with ancillary sensor data used to eliminate false signals including UV and Synthetic Aperture Radar (SAR

  4. Planck 2013 results. VIII. HFI photometric calibration and mapmaking

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bertincourt, B.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Filliard, C.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Lellouch, E.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Maurin, L.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Moreno, R.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Santos, D.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Techene, S.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    This paper describes the methods used to produce photometrically calibrated maps from the Planck High Frequency Instrument (HFI) cleaned, time-ordered information. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To obtain the best calibration accuracy over such a large range, two different photometric calibration schemes have to be used. The 545 and 857 GHz data are calibrated by comparing flux-density measurements of Uranus and Neptune with models of their atmospheric emission. The lower frequencies (below 353 GHz) are calibrated using the solar dipole. A component of this anisotropy is time-variable, owing to the orbital motion of the satellite in the solar system. Photometric calibration is thus tightly linked to mapmaking, which also addresses low-frequency noise removal. By comparing observations taken more than one year apart in the same configuration, we have identified apparent gain variations with time. These variations are induced by non-linearities in the read-out electronics chain. We have developed an effective correction to limit their effect on calibration. We present several methods to estimate the precision of the photometric calibration. We distinguish relative uncertainties (between detectors, or between frequencies) and absolute uncertainties. Absolute uncertainties lie in the range from 0.54% to 10% from 100 to 857 GHz. We describe the pipeline used to produce the maps from the HFI timelines, based on the photometric calibration parameters, and the scheme used to set the zero level of the maps a posteriori. We also discuss the cross-calibration between HFI and the SPIRE instrument on board Herschel. Finally we summarize the basic characteristics of the set of HFI maps included in the 2013 Planck data release.

  5. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed.

  6. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  7. The Absolute Vector Magnetometers on Board Swarm, Lessons Learned From Two Years in Space.

    NASA Astrophysics Data System (ADS)

    Hulot, G.; Leger, J. M.; Vigneron, P.; Brocco, L.; Olsen, N.; Jager, T.; Bertrand, F.; Fratter, I.; Sirol, O.; Lalanne, X.

    2015-12-01

    ESA's Swarm satellites carry 4He absolute magnetometers (ASM), designed by CEA-Léti and developed in partnership with CNES. These instruments are the first-ever space-born magnetometers to use a common sensor to simultaneously deliver 1Hz independent absolute scalar and vector readings of the magnetic field. They have provided the very high accuracy scalar field data nominally required by the mission (for both science and calibration purposes, since each satellite also carries a low noise high frequency fluxgate magnetometer designed by DTU), but also very useful experimental absolute vector data. In this presentation, we will report on the status of the instruments, as well as on the various tests and investigations carried out using these experimental data since launch in November 2013. In particular, we will illustrate the advantages of flying ASM instruments on space-born magnetic missions for nominal data quality checks, geomagnetic field modeling and science objectives.

  8. Aircraft electric field measurements: Calibration and ambient field retrieval

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Bailey, Jeff; Christian, Hugh J.; Mach, Douglas M.

    1994-01-01

    An aircraft locally distorts the ambient thundercloud electric field. In order to determine the field in the absence of the aircraft, an aircraft calibration is required. In this work a matrix inversion method is introduced for calibrating an aircraft equipped with four or more electric field sensors and a high-voltage corona point that is capable of charging the aircraft. An analytic, closed form solution for the estimate of a (3 x 3) aircraft calibration matrix is derived, and an absolute calibration experiment is used to improve the relative magnitudes of the elements of this matrix. To demonstrate the calibration procedure, we analyze actual calibration date derived from a Lear jet 28/29 that was equipped with five shutter-type field mill sensors (each with sensitivities of better than 1 V/m) located on the top, bottom, port, starboard, and aft positions. As a test of the calibration method, we analyze computer-simulated calibration data (derived from known aircraft and ambient fields) and explicitly determine the errors involved in deriving the variety of calibration matrices. We extend our formalism to arrive at an analytic solution for the ambient field, and again carry all errors explicitly.

  9. OMPS SDR Calibration and Validation

    NASA Astrophysics Data System (ADS)

    Sen, B.; Done, J.; Buss, R.; Jaross, G. R.; Kelly, T. J.

    2009-12-01

    The Ozone Mapper and Profiler Suite (OMPS) is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in early 2011. The OMPS will continue monitoring ozone from space, using three instruments, namely the Total Column Mapper (heritage: TOMS), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE). The Total Column Mapper (TC) sensor images the Earth through a slit, nadir-cell horizontally spaced at 49.5 km cross-track with an along-track reporting interval of 50 km. The total field of view (FOV) cross-track is 110 degree to provide daily global coverage. The TC sensor, a grating spectrometer, provides 0.45 nm spectral sampling across the wavelength range of 300-380 nm. The calibration stability, which is essential to enable long-term ozone monitoring, is maintained by periodic observations of the Sun, using a diffuser to redirect the solar irradiance into the sensor. We describe the plans to calibrate the TC sensor and validate the radiance data (TC Sensor Data Record or TC SDR) after launch. We discuss the measurements planned during the Intensive Cal/Val (ICV) phase of NPP mission, the data analysis methodology and results from the analysis of OMPS calibration measurements.

  10. New tests of the common calibration context for ISO, IRTS, and MSX

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1997-01-01

    The work carried out in order to test, verify and validate the accuracy of the calibration spectra provided to the Infrared Space Observatory (ISO), to the Infrared Telescope in Space (IRTS) and to the Midcourse Space Experiment (MSX) for external calibration support of instruments, is reviewed. The techniques, used to vindicate the accuracy of the absolute spectra, are discussed. The work planned for comparing far infrared spectra of Mars and some of the bright stellar calibrators with long wavelength spectrometer data are summarized.

  11. Spatial resolution study and power calibration of the high-k scattering system on NSTX.

    PubMed

    Lee, W; Park, H K; Cho, M H; Namkung, W; Smith, D R; Domier, C W; Luhmann, N C

    2008-10-01

    NSTX high-k scattering system has been extensively utilized in studying the microturbulence and coherent waves. An absolute calibration of the scattering system was performed employing a new millimeter-wave source and calibrated attenuators. One of the key parameters essential for the calibration of the multichannel scattering system is the interaction length. This interaction length is significantly different from the conventional one due to the curvature and magnetic shear effect.

  12. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    SciTech Connect

    Evans, J., E-mail: radiant@ferrodevices.com; Chapman, S., E-mail: radiant@ferrodevices.com

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude ofmore » the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided.« less

  13. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Absolute gravimetry for monitoring geodynamics in Greenland.

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Strykowski, G.; Forsberg, R.

    2015-12-01

    Here are presented the preliminary results of the absolute gravity measurements done in Greenland by DTU Space with their A10 absolute gravimeter (the A10-019). The purpose, besides establishing and maintaining a national gravity network, is to study geodynamics.The absolute gravity measurements are juxtaposed with the permanent GNET GNSS stations. The first measurements were conducted in 2009 and a few sites have been re-visited. As of present is there a gravity value at 18 GNET sites.There are challenges in interpreting the measurements from Greenland and several signals has to be taken into account, besides the geodynamical signals originating from the changing load of the ice, there is also a clear signal of direct attraction from different masses. Here are presented the preliminary results of our measurements in Greenland and attempts explain them through modelling of the geodynamical signals and the direct attraction from the ocean and ice.

  15. Development and validation of a cerebral oximeter capable of absolute accuracy.

    PubMed

    MacLeod, David B; Ikeda, Keita; Vacchiano, Charles; Lobbestael, Aaron; Wahr, Joyce A; Shaw, Andrew D

    2012-12-01

    Cerebral oximetry may be a valuable monitor, but few validation data are available, and most report the change from baseline rather than absolute accuracy, which may be affected by individuals whose oximetric values are outside the expected range. The authors sought to develop and validate a cerebral oximeter capable of absolute accuracy. An in vivo research study. A university human physiology laboratory. Healthy human volunteers were enrolled in calibration and validation studies of 2 cerebral oximetric sensors, the Nonin 8000CA and 8004CA. The 8000CA validation study identified 5 individuals with atypical cerebral oxygenation values; their data were used to design the 8004CA sensor, which subsequently underwent calibration and validation. Volunteers were taken through a stepwise hypoxia protocol to a minimum saturation of peripheral oxygen. Arteriovenous saturation (70% jugular bulb venous saturation and 30% arterial saturation) at 6 hypoxic plateaus was used as the reference value for the cerebral oximeter. Absolute accuracy was defined using a combination of the bias and precision of the paired saturations (A(RMS)). In the validation study for the 8000CA sensor (n = 9, 106 plateaus), relative accuracy was an A(RMS) of 2.7, with an absolute accuracy of 8.1, meeting the criteria for a relative (trend) monitor, but not an absolute monitor. In the validation study for the 8004CA sensor (n = 11, 119 plateaus), the A(RMS) of the 8004CA was 4.1, meeting the prespecified success criterion of <5.0. The Nonin cerebral oximeter using the 8004CA sensor can provide absolute data on regional cerebral saturation compared with arteriovenous saturation, even in subjects previously shown to have values outside the normal population distribution curves. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Absolute Distance Measurement with the MSTAR Sensor

    NASA Technical Reports Server (NTRS)

    Lay, Oliver P.; Dubovitsky, Serge; Peters, Robert; Burger, Johan; Ahn, Seh-Won; Steier, William H.; Fetterman, Harrold R.; Chang, Yian

    2003-01-01

    The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. The sensor uses a single laser in conjunction with fast phase modulators and low frequency detectors. We describe the design of the system - the principle of operation, the metrology source, beamlaunching optics, and signal processing - and show results for target distances up to 1 meter. We then demonstrate how the system can be scaled to kilometer-scale distances.

  17. Using Calibrated Peer Review to Teach Basic Research Skills

    ERIC Educational Resources Information Center

    Bracke, Marianne S.; Graveel, John G.

    2014-01-01

    Calibrated Peer Review (CPR) is an online tool being used in the class Introduction to Agriculture and Purdue University (AGR 10100) to integrate a writing and research component (http://cpr.molsci.ucla.edu/Home.aspx). Calibrated Peer Review combines the ability to create writing intensive assignments with an introduction to the peer-review…

  18. Calibration and Temperature Profile of a Tungsten Filament Lamp

    ERIC Educational Resources Information Center

    de Izarra, Charles; Gitton, Jean-Michel

    2010-01-01

    The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament…

  19. Improvement of single detector proton radiography by incorporating intensity of time-resolved dose rate functions

    NASA Astrophysics Data System (ADS)

    Zhang, Rongxiao; Jee, Kyung-Wook; Cascio, Ethan; Sharp, Gregory C.; Flanz, Jacob B.; Lu, Hsiao-Ming

    2018-01-01

    Proton radiography, which images patients with the same type of particles as those with which they are to be treated, is a promising approach to image guidance and water equivalent path length (WEPL) verification in proton radiation therapy. We have shown recently that proton radiographs could be obtained by measuring time-resolved dose rate functions (DRFs) using an x-ray amorphous silicon flat panel. The WEPL values were derived solely from the root-mean-square (RMS) of DRFs, while the intensity information in the DRFs was filtered out. In this work, we explored the use of such intensity information for potential improvement in WEPL accuracy and imaging quality. Three WEPL derivation methods based on, respectively, the RMS only, the intensity only, and the intensity-weighted RMS were tested and compared in terms of the quality of obtained radiograph images and the accuracy of WEPL values. A Gammex CT calibration phantom containing inserts made of various tissue substitute materials with independently measured relative stopping powers (RSP) was used to assess the imaging performances. Improved image quality with enhanced interfaces was achieved while preserving the accuracy by using intensity information in the calibration. Other objects, including an anthropomorphic head phantom, a proton therapy range compensator, a frozen lamb’s head and an ‘image quality phantom’ were also imaged. Both the RMS only and the intensity-weighted RMS methods derived RSPs within  ±  1% for most of the Gammex phantom inserts, with a mean absolute percentage error of 0.66% for all inserts. In the case of the insert with a titanium rod, the method based on RMS completely failed, whereas that based on the intensity-weighted RMS was qualitatively valid. The use of intensity greatly enhanced the interfaces between different materials in the obtained WEPL images, suggesting the potential for image guidance in areas such as patient positioning and tumor tracking by proton

  20. Comparison of Two Methodologies for Calibrating Satellite Instruments in the Visible and Near Infrared

    NASA Technical Reports Server (NTRS)

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Xiong, Xiaoxiong (Jack); Butler, James J.

    2010-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance response in a two-step method. In the first step, the spectral response of the instrument is determined using a nearly monochromatic light source, such a lamp-illuminated monochromator. Such sources only provide a relative spectral response (RSR) for the instrument, since they do not act as calibrated sources of light nor do they typically fill the field-of-view of the instrument. In the second step, the instrument views a calibrated source of broadband light, such as lamp-illuminated integrating sphere. In the traditional method, the RSR and the sphere spectral radiance are combined and, with the instrument's response, determine the absolute spectral radiance responsivity of the instrument. More recently, an absolute calibration system using widely tunable monochromatic laser systems has been developed, Using these sources, the absolute spectral responsivity (ASR) of an instrument can be determined on a wavelength-hy-wavelength basis. From these monochromatic ASRs. the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as integrating spheres. Here we describe the laser-based calibration and the traditional broad-band source-based calibration of the NPP VIIRS sensor, and compare the derived calibration coefficients for the instrument. Finally, we evaluate the impact of the new calibration approach on the on-orbit performance of the sensor.

  1. Photogrammetric camera calibration

    USGS Publications Warehouse

    Tayman, W.P.; Ziemann, H.

    1984-01-01

    Section 2 (Calibration) of the document "Recommended Procedures for Calibrating Photogrammetric Cameras and Related Optical Tests" from the International Archives of Photogrammetry, Vol. XIII, Part 4, is reviewed in the light of recent practical work, and suggestions for changes are made. These suggestions are intended as a basis for a further discussion. ?? 1984.

  2. OLI Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Markham, Brian; Morfitt, Ron; Kvaran, Geir; Biggar, Stuart; Leisso, Nathan; Czapla-Myers, Jeff

    2011-01-01

    Goals: (1) Present an overview of the pre-launch radiance, reflectance & uniformity calibration of the Operational Land Imager (OLI) (1a) Transfer to orbit/heliostat (1b) Linearity (2) Discuss on-orbit plans for radiance, reflectance and uniformity calibration of the OLI

  3. Spectral Irradiance Calibration in the Infrared. 4; 1.2-35um Spectra of Six Standard Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Walker, Russell G.; Bregman, Jesse D.; Wooden, Diane H.

    1995-01-01

    We present five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns, constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars, Beta Peg, Delta Boo, Beta And, Beta Gem, and Delta Hya, augment our already created complete absolutely calibrated spectrum for a Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.

  4. Spectral Irradiance Calibration in the Infrared. Part 4; 1.2 - 35 microns Spectra of Six Standard Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Walker, Russell G.; Bregman, Jesse D.; Wooden, Diane H.

    1995-01-01

    We present five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns, constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars- beta Peg, alpha Boo, beta And, beta Gem, and alpha Hya-augment our already created complete absolutely calibrated spectrum for alpha Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.

  5. Spectral Irradiance Calibration in the Infrared. Part 4; 1.2-35 micrometer Spectra of Six Standard Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Walker, Russell, G.; Bregman, Jesse D.; Wooden, Diane H.

    1995-01-01

    Five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns are presented. The spectra were constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars (beta Peg, alpha Boo, beta And, beta Gem, and alpha Hya) augment the author's already created complete absolutely calibrated spectrum for alpha Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.

  6. Cross-calibration of Fuji TR image plate and RAR 2492 x-ray film to determine the response of a DITABIS Super Micron image plate scanner

    SciTech Connect

    Dunham, G., E-mail: gsdunha@sandia.gov; Harding, E. C.; Loisel, G. P.

    Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity appliedmore » to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed.« less

  7. Cross-calibration of Fuji TR image plate and RAR 2492 x-ray film to determine the response of a DITABIS Super Micron image plate scanner

    NASA Astrophysics Data System (ADS)

    Dunham, G.; Harding, E. C.; Loisel, G. P.; Lake, P. W.; Nielsen-Weber, L. B.

    2016-11-01

    Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity applied to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed.

  8. Energy calibration of the fly's eye detector

    NASA Technical Reports Server (NTRS)

    Baltrusaitis, R. M.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, P. R.; Ko, S.; Loh, E. C.; Mizumoto, Y.; Sokolsky, P.; Steck, D.

    1985-01-01

    The methods used to calibrate the Fly's eye detector to evaluate the energy of EAS are discussed. The energy of extensive air showers (EAS) as seen by the Fly's Eye detector are obtained from track length integrals of observed shower development curves. The energy of the parent cosmic ray primary is estimated by applying corrections to account for undetected energy in the muon, neutrino and hadronic channels. Absolute values for E depend upon the measurement of shower sizes N sub e(x). The following items are necessary to convert apparent optical brightness into intrinsical optical brightness: (1) an assessment of those factors responsible for light production by the relativistic electrons in an EAS and the transmission of light thru the atmosphere, (2) calibration of the optical detection system, and (3) a knowledge of the trajectory of the shower.

  9. HST/WFC3 flux calibration ladder: Vega

    NASA Astrophysics Data System (ADS)

    Deustua, Susana E.; Bohlin, Ralph; Pirzkal, Nor; MacKenty, John

    2014-08-01

    Vega is one of only a few stars calibrated against an SI-traceable blackbody, and is the historical flux standard. Photometric zeropoints of the Hubble Space Telescope's instruments rely on Vega, through the transfer of its calibration via stellar atmosphere models to the suite of standard stars. HST's recently implemented scan mode has enabled us to develop a path to an absolute SI traceable calibration for HST IR observations. To fill in the crucial gap between 0.9 and 1.7 micron in the absolute calibration, we acquired -1st order spectra of Vega with the two WFC3 infrared grisms. At the same time, we have improved the calibration of the -1st orders of both WFC3 IR grisms, as well as extended the dynamic range of WFC3 science observations by a factor of 10000. We describe our progress to date on the WFC3 `flux calibration ladder' project to provide currently needed accurate zeropoint measurements in the IR

  10. Calibrating Historical IR Sensors Using GEO, and AVHRR Infrared Tropical Mean Calibration Models

    NASA Technical Reports Server (NTRS)

    Scarino, Benjamin; Doelling, David R.; Minnis, Patrick; Gopalan, Arun; Haney, Conor; Bhatt, Rajendra

    2014-01-01

    Long-term, remote-sensing-based climate data records (CDRs) are highly dependent on having consistent, wellcalibrated satellite instrument measurements of the Earth's radiant energy. Therefore, by making historical satellite calibrations consistent with those of today's imagers, the Earth-observing community can benefit from a CDR that spans a minimum of 30 years. Most operational meteorological satellites rely on an onboard blackbody and space looks to provide on-orbit IR calibration, but neither target is traceable to absolute standards. The IR channels can also be affected by ice on the detector window, angle dependency of the scan mirror emissivity, stray-light, and detector-to-detector striping. Being able to quantify and correct such degradations would mean IR data from any satellite imager could contribute to a CDR. Recent efforts have focused on utilizing well-calibrated modern hyper-spectral sensors to intercalibrate concurrent operational IR imagers to a single reference. In order to consistently calibrate both historical and current IR imagers to the same reference, however, another strategy is needed. Large, well-characterized tropical-domain Earth targets have the potential of providing an Earth-view reference accuracy of within 0.5 K. To that effort, NASA Langley is developing an IR tropical mean calibration model in order to calibrate historical Advanced Very High Resolution Radiometer (AVHRR) instruments. Using Meteosat-9 (Met-9) as a reference, empirical models are built based on spatially/temporally binned Met-9 and AVHRR tropical IR brightness temperatures. By demonstrating the stability of the Met-9 tropical models, NOAA-18 AVHRR can be calibrated to Met-9 by matching the AVHRR monthly histogram averages with the Met-9 model. This method is validated with ray-matched AVHRR and Met-9 biasdifference time series. Establishing the validity of this empirical model will allow for the calibration of historical AVHRR sensors to within 0.5 K, and thereby

  11. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  12. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  13. Increasing Capacity: Practice Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Dodds, Pennie; Donkin, Christopher; Brown, Scott D.; Heathcote, Andrew

    2011-01-01

    In most of the long history of the study of absolute identification--since Miller's (1956) seminal article--a severe limit on performance has been observed, and this limit has resisted improvement even by extensive practice. In a startling result, Rouder, Morey, Cowan, and Pfaltz (2004) found substantially improved performance with practice in the…

  14. On Relative and Absolute Conviction in Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2015-01-01

    Conviction is a central construct in mathematics education research on justification and proof. In this paper, we claim that it is important to distinguish between absolute conviction and relative conviction. We argue that researchers in mathematics education frequently have not done so and this has lead to researchers making unwarranted claims…

  15. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  16. Calibration of Thomson scattering system on VEST

    NASA Astrophysics Data System (ADS)

    Kim, Y.-G.; Lee, J.-H.; Kim, D.; Yoo, M.-G.; Lee, H.; Hwang, Y. S.; Na, Y.-S.

    2017-12-01

    The Thomson scattering system has been recently installed on Versatile Experiment Spherical Torus (VEST) to measure the electron temperature and the density of the core plasmas. Since the calibration of the system is required for the accurate measurement of these parameters, a polychromator and the system efficiency are calibrated. The bias voltage of the detector is optimized and the relative responsivity of the polychromator is measured to analyse the spectral broadening. The tendency of decreasing responsivity because of the ambient temperature change is addressed together. The efficiencies of the alignments using HeNe laser and Nd:YAG laser are compared. After the alignment using Rayleigh scattering, it is improved ~ 7 times while the peak signal of the stray light is decreased. To evaluate the efficiencies of the alignment using HeNe laser, it is compared with the efficiency of the fine alignment by Rayleigh scattering. After absolute calibration is done, the Thomson scattering signal is estimated theoretically. The Bayesian analysis is tried using the synthetic data, and the results show that the input temperature and the density are inside the contour of the 90% confident level. The calibrated Thomson scattering system will provide the meaningful information of the core plasma of the VEST.

  17. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, David R.

    1998-01-01

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets.

  18. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, D.R.

    1998-11-17

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets. 3 figs.

  19. 40 CFR 60.5220 - What are the performance testing, monitoring, and calibration requirements for compliance with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... per million dry volume absolute value of the mean difference between the method and the continuous... activities (including, as applicable, calibration checks and required zero and span adjustments). Any such...

  20. Calibration of the Odyssey Photosynthetic Irradiance Recorder for Absolute Irradiance Measures

    EPA Science Inventory

    Researchers are increasingly interested in measuring hotosynthetically active radiation (PAR) because of its importance in determining the structure and function of lotic ecosystems. The Odyssey Photosynthetic Irradiance Recorder is an affordable PAR meter gaining popularity am...

  1. Evaluating least absolute deviation regression as an inverse model in groundwater flow calibration

    NASA Astrophysics Data System (ADS)

    Huddleston, John Matthew

    Though information regarding children's mental health is increasing, and we know that approximately 20% of children meet criteria for a mental disorder, little is known about the characteristics of the child client population at community mental health clinics. This study is an exploratory analysis of the demographic and treatment characteristics of the child client population at a psychology training clinic/community mental health center. Demographic and treatment information is presented and compared across various service categories as well as diagnostic categories. Comparisons between those served during the first six years and those served during the second six years of the study period are also made. Results are discussed in terms of generalizability of results as well as available information from the literature.

  2. Excimer laser calibration system.

    PubMed

    Gottsch, J D; Rencs, E V; Cambier, J L; Hall, D; Azar, D T; Stark, W J

    1996-01-01

    Excimer laser photoablation for refractive and therapeutic keratectomies has been demonstrated to be feasible and practicable. However, corneal laser ablations are not without problems, including the delivery and maintenance of a homogeneous beam. We have developed an excimer laser calibration system capable of characterizing a laser ablation profile. Beam homogeneity is determined by the analysis of a polymethylmethacrylate (PMMA)-based thin-film using video capture and image processing. The ablation profile is presented as a color-coded map. Interpolation of excimer calibration system analysis provides a three-dimensional representation of elevation profiles that correlates with two-dimensional scanning profilometry. Excimer calibration analysis was performed before treating a monkey undergoing phototherapeutic keratectomy and two human subjects undergoing myopic spherocylindrical photorefractive keratectomy. Excimer calibration analysis was performed before and after laser refurbishing. Laser ablation profiles in PMMA are resolved by the excimer calibration system to .006 microns/pulse. Correlations with ablative patterns in a monkey cornea were demonstrated with preoperative and postoperative keratometry using corneal topography, and two human subjects using video-keratography. Excimer calibration analysis predicted a central-steep-island ablative pattern with the VISX Twenty/Twenty laser, which was confirmed by corneal topography immediately postoperatively and at 1 week after reepithelialization in the monkey. Predicted central steep islands in the two human subjects were confirmed by video-keratography at 1 week and at 1 month. Subsequent technical refurbishing of the laser resulted in a beam with an overall increased ablation rate measured as microns/pulse with a donut ablation profile. A patient treated after repair of the laser electrodes demonstrated no central island. This excimer laser calibration system can precisely detect laser-beam ablation

  3. Digital encoding of cellular mRNAs enabling precise and absolute gene expression measurement by single-molecule counting.

    PubMed

    Fu, Glenn K; Wilhelmy, Julie; Stern, David; Fan, H Christina; Fodor, Stephen P A

    2014-03-18

    We present a new approach for the sensitive detection and accurate quantitation of messenger ribonucleic acid (mRNA) gene transcripts in single cells. First, the entire population of mRNAs is encoded with molecular barcodes during reverse transcription. After amplification of the gene targets of interest, molecular barcodes are counted by sequencing or scored on a simple hybridization detector to reveal the number of molecules in the starting sample. Since absolute quantities are measured, calibration to standards is unnecessary, and many of the relative quantitation challenges such as polymerase chain reaction (PCR) bias are avoided. We apply the method to gene expression analysis of minute sample quantities and demonstrate precise measurements with sensitivity down to sub single-cell levels. The method is an easy, single-tube, end point assay utilizing standard thermal cyclers and PCR reagents. Accurate and precise measurements are obtained without any need for cycle-to-cycle intensity-based real-time monitoring or physical partitioning into multiple reactions (e.g., digital PCR). Further, since all mRNA molecules are encoded with molecular barcodes, amplification can be used to generate more material for multiple measurements and technical replicates can be carried out on limited samples. The method is particularly useful for small sample quantities, such as single-cell experiments. Digital encoding of cellular content preserves true abundance levels and overcomes distortions introduced by amplification.

  4. Camera calibration for multidirectional flame chemiluminescence tomography

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Zhang, Weiguang; Zhang, Yuhong; Yu, Xun

    2017-04-01

    Flame chemiluminescence tomography (FCT), which combines computerized tomography theory and multidirectional chemiluminescence emission measurements, can realize instantaneous three-dimensional (3-D) diagnostics for flames with high spatial and temporal resolutions. One critical step of FCT is to record the projections by multiple cameras from different view angles. For high accuracy reconstructions, it requires that extrinsic parameters (the positions and orientations) and intrinsic parameters (especially the image distances) of cameras be accurately calibrated first. Taking the focus effect of the camera into account, a modified camera calibration method was presented for FCT, and a 3-D calibration pattern was designed to solve the parameters. The precision of the method was evaluated by reprojections of feature points to cameras with the calibration results. The maximum root mean square error of the feature points' position is 1.42 pixels and 0.0064 mm for the image distance. An FCT system with 12 cameras was calibrated by the proposed method and the 3-D CH* intensity of a propane flame was measured. The results showed that the FCT system provides reasonable reconstruction accuracy using the camera's calibration results.

  5. Tensorial Calibration. 2. Second Order Tensorial Calibration.

    DTIC Science & Technology

    1987-10-12

    index is repeated more than once only in one side of an equation, it implies a summation over the index valid range. 12 To avoid confusion of terms...and higher order tensor, the rank can be higher than the maximum dimensionality. 13 ,ON 6 LINEAR SECOND ORDER TENSORIAL CALIBRATION MODEL From...these equations are valid only if all the elements of the diagonal matrix B3 are non-zero because its inverse (-1) must be computed. This implies that M

  6. Airdata Measurement and Calibration

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.

    1995-01-01

    This memorandum provides a brief introduction to airdata measurement and calibration. Readers will learn about typical test objectives, quantities to measure, and flight maneuvers and operations for calibration. The memorandum informs readers about tower-flyby, trailing cone, pacer, radar-tracking, and dynamic airdata calibration maneuvers. Readers will also begin to understand how some data analysis considerations and special airdata cases, including high-angle-of-attack flight, high-speed flight, and nonobtrusive sensors are handled. This memorandum is not intended to be all inclusive; this paper contains extensive reference and bibliography sections.

  7. Dynamic Pressure Calibration Standard

    NASA Technical Reports Server (NTRS)

    Schutte, P. C.; Cate, K. H.; Young, S. D.

    1986-01-01

    Vibrating columns of fluid used to calibrate transducers. Dynamic pressure calibration standard developed for calibrating flush diaphragm-mounted pressure transducers. Pressures up to 20 kPa (3 psi) accurately generated over frequency range of 50 to 1,800 Hz. System includes two conically shaped aluminum columns one 5 cm (2 in.) high for low pressures and another 11 cm (4.3 in.) high for higher pressures, each filled with viscous fluid. Each column mounted on armature of vibration exciter, which imparts sinusoidally varying acceleration to fluid column. Signal noise low, and waveform highly dependent on quality of drive signal in vibration exciter.

  8. A suggestion for computing objective function in model calibration

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shuguang

    2014-01-01

    A parameter-optimization process (model calibration) is usually required for numerical model applications, which involves the use of an objective function to determine the model cost (model-data errors). The sum of square errors (SSR) has been widely adopted as the objective function in various optimization procedures. However, ‘square error’ calculation was found to be more sensitive to extreme or high values. Thus, we proposed that the sum of absolute errors (SAR) may be a better option than SSR for model calibration. To test this hypothesis, we used two case studies—a hydrological model calibration and a biogeochemical model calibration—to investigate the behavior of a group of potential objective functions: SSR, SAR, sum of squared relative deviation (SSRD), and sum of absolute relative deviation (SARD). Mathematical evaluation of model performance demonstrates that ‘absolute error’ (SAR and SARD) are superior to ‘square error’ (SSR and SSRD) in calculating objective function for model calibration, and SAR behaved the best (with the least error and highest efficiency). This study suggests that SSR might be overly used in real applications, and SAR may be a reasonable choice in common optimization implementations without emphasizing either high or low values (e.g., modeling for supporting resources management).

  9. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Absolute coverage groups. 404.1205 Section... Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent... are not under a retirement system. An absolute coverage group may include positions which were...

  10. Absolute versus relative ascertainment of pedophilia in men.

    PubMed

    Blanchard, Ray; Kuban, Michael E; Blak, Thomas; Cantor, James M; Klassen, Philip E; Dickey, Robert

    2009-12-01

    There are at least two different criteria for assessing pedophilia in men: absolute ascertainment (their sexual interest in children is intense) and relative ascertainment (their sexual interest in children is greater than their interest in adults). The American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders, 3rd edition (DSM-III) used relative ascertainment in its diagnostic criteria for pedophilia; this was abandoned and replaced by absolute ascertainment in the DSM-III-R and all subsequent editions. The present study was conducted to demonstrate the continuing need for relative ascertainment, particularly in the laboratory assessment of pedophilia. A total of 402 heterosexual men were selected from a database of patients referred to a specialty clinic. These had undergone phallometric testing, a psychophysiological procedure in which their penile blood volume was monitored while they were presented with a standardized set of laboratory stimuli depicting male and female children, pubescents, and adults.The 130 men selected for the Teleiophilic Profile group responded substantially to prepubescent girls but even more to adult women; the 272 men selected for the Pedophilic Profile group responded weakly to prepubescent girls but even less to adult women. In terms of absolute magnitude, every patient in the Pedophilic Profile group had a lesser penile response to prepubescent girls than every patient in the Teleiophilic Profile group. Nevertheless, the Pedophilic Profile group had a significantly greater number of known sexual offenses against prepubescent girls, indicating that they contained a higher proportion of true pedophiles. These results dramatically demonstrate the utility-or perhaps necessity-of relative ascertainment in the laboratory assessment of erotic age-preference.

  11. Intensity Biased PSP Measurement

    NASA Technical Reports Server (NTRS)

    Subramanian, Chelakara S.; Amer, Tahani R.; Oglesby, Donald M.; Burkett, Cecil G., Jr.

    2000-01-01

    The current pressure sensitive paint (PSP) technique assumes a linear relationship (Stern-Volmer Equation) between intensity ratio (I(sub 0)/I) and pressure ratio (P/P(sub 0)) over a wide range of pressures (vacuum to ambient or higher). Although this may be valid for some PSPs, in most PSPs the relationship is nonlinear, particularly at low pressures (less than 0.2 psia when the oxygen level is low). This non-linearity can be attributed to variations in the oxygen quenching (de-activation) rates (which otherwise is assumed constant) at these pressures. Other studies suggest that some paints also have non-linear calibrations at high pressures; because of heterogeneous (non-uniform) oxygen diffusion and c quenching. Moreover, pressure sensitive paints require correction for the output intensity due to light intensity variation, paint coating variation, model dynamics, wind-off reference pressure variation, and temperature sensitivity. Therefore to minimize the measurement uncertainties due to these causes, an in- situ intensity correction method was developed. A non-oxygen quenched paint (which provides a constant intensity at all pressures, called non-pressure sensitive paint, NPSP) was used for the reference intensity (I(sub NPSP)) with respect to which all the PSP intensities (I) were measured. The results of this study show that in order to fully reap the benefits of this technique, a totally oxygen impermeable NPSP must be available.

  12. Intensity Biased PSP Measurement

    NASA Technical Reports Server (NTRS)

    Subramanian, Chelakara S.; Amer, Tahani R.; Oglesby, Donald M.; Burkett, Cecil G., Jr.

    2000-01-01

    The current pressure sensitive paint (PSP) technique assumes a linear relationship (Stern-Volmer Equation) between intensity ratio (I(sub o)/I) and pressure ratio (P/P(sub o)) over a wide range of pressures (vacuum to ambient or higher). Although this may be valid for some PSPs, in most PSPs the relationship is nonlinear, particularly at low pressures (less than 0.2 psia when the oxygen level is low). This non-linearity can be attributed to variations in the oxygen quenching (de-activation) rates (which otherwise is assumed constant) at these pressures. Other studies suggest that some paints also have non-linear calibrations at high pressures; because of heterogeneous (non-uniform) oxygen diffusion and quenching. Moreover, pressure sensitive paints require correction for the output intensity due to light intensity variation, paint coating variation, model dynamics, wind-off reference pressure variation, and temperature sensitivity. Therefore to minimize the measurement uncertainties due to these causes, an insitu intensity correction method was developed. A non-oxygen quenched paint (which provides a constant intensity at all pressures, called non-pressure sensitive paint, NPSP) was used for the reference intensity (I(sub NPSP) with respect to which all the PSP intensities (I) were measured. The results of this study show that in order to fully reap the benefits of this technique, a totally oxygen impermeable NPSP must be available.

  13. Calibration for Infrared Measurements of OH in Apatite

    NASA Astrophysics Data System (ADS)

    Wang, K. L.; Naab, F.; Zhang, Y.

    2010-12-01

    Apatite is a common accessory mineral, and OH in apatite can indicate the fluid conditions of crystal formation. Previously, water (OH) concentration in apatite has often been estimated through electron microprobe analyses combined with mineral stoichiometry. However, the detection limit, precision, and accuracy of this method are not high. In this work, we calibrated the infrared spectroscopy (IR) method for measurement of OH concentration in apatite by using elastic recoil detection (ERD) analysis to obtain the absolute OH concentration. Large apatite wafers were cut perpendicular to the c-axis of each crystal and doubly polished. ERD measurements were carried out in the Michigan Ion Beam Laboratory at the University of Michigan to determine the hydrogen concentration in each sample. Each ERD spectrum was fitted and a hydrogen standard was used to quantify the hydrogen concentrations. Polarized transmission IR was used on apatite sections that were cut parallel to the c-axis, and doubly polished. IR measurements were made for E-vector parallel to the c-axis. Because the OH peak is intense, very thin samples must be used to avoid absorbance saturation; the thinnest sample (corresponding to the highest OH content) used was 17 µm thick. Four different apatite crystals were successfully analyzed using both the IR and ERD methods. Two were from Durango, Mexico; one from Imilchil, High Atlas Mountains, Morocco; and one from an unknown locality, purchased online from gem dealers. The OH peak near 3550 cm-1 was a relatively simple peak in all four samples. Therefore peak height was used for the absorbance value, A. Using the Beer-Lambert Law, a calibration line was established (R2= 0.95, for IR aperture of 50 µm x 50 µm) where the weight % of H2O is 0.013 times A/d, where d is the thickness in mm. The detection limit of H2O concentration in apatite by IR approaches ppm level for 0.1 mm wafers, the precision is better than 1% relative (depending on H2O content), and

  14. Spectroradiometric calibration of the thematic mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Slater, Philip N.; Palmer, James M.

    1986-01-01

    A list of personnel who have contributed to the program is provided. Sixteen publications and presentations are also listed. A preprint summarizing five in-flight absolute radiometric calibrations of the solar reflective bands of the LANDSAT-5 Thematic Mapper is presented. The 23 band calibrations made on the five dates show a 2.5% RMS variation from the mean as a percentage of the mean. A preprint is also presented that discusses the reflectance-based results of the above preprint. It proceeds to analyze and present results of a second, independent calibration method based on radiance measurements from a helicopter. Radiative transfer through the atmosphere, model atmospheres, the calibration methodology used at White Sands and the results of a sensitivity analysis of the reflectance-based approach is also discussed.

  15. Importance of Calibration/Validation Traceability for Multi-Sensor Imaging Spectrometry Applications

    NASA Technical Reports Server (NTRS)

    Thome, K.

    2017-01-01

    Knowledge of calibration traceability is essential for ensuring the quality of data products relying on multiple sensors and especially true for imaging spectrometers. The current work discusses the expected impact that imaging spectrometers have in ensuring radiometric traceability for both multispectral and hyperspectral products. The Climate Absolute Radiance and Refractivity Observatory Pathfinder mission is used to show the role that high-accuracy imaging spectrometers can play in understanding test sites used for vicarious calibration of sensors. The associated Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer calibration demonstration system is used to illustrate recent advances in laboratory radiometric calibration approaches that will allow both the use of imaging spectrometers as calibration standards as well as to ensure the consistency of the multiple imaging spectrometers expected to be on orbit in the next decade.

  16. Continuous glucose monitoring system: dawn period calibration does not change accuracy of the method.

    PubMed

    Augusto, Gustavo A; Sousa, André G P; Perazo, Marcela N A; Correa-Giannella, Maria L C; Nery, Marcia; Melo, Karla F S de

    2009-06-01

    Continuous glucose monitoring system is a valuable instrument to measure glycemic control, which uses a retrospective calibration based upon 3 to 4 capillary glucose meter values inserted by the patient each day. We evaluated the interference of calibration during the dawn period in the system accuracy. The monitoring data were retrospectively divided into two groups: with (Group A) or without (Group B) the dawn period calibration (between 1:00 and 5:00 AM). Accuracy of the method was expressed by relative absolute difference. Thirty-four continuous glucose monitoring data were evaluated comprising a total of 112 nights. A total of 289 paired readings were analyzed - 195 in Group A and 94 in Group B. We did not find a difference in relative absolute difference (RAD%) in any analyzed period of day by adding dawn calibration. These data suggest that dawn calibration does not alter accuracy of method.

  17. Roundness calibration standard

    DOEpatents

    Burrus, Brice M.

    1984-01-01

    A roundness calibration standard is provided with a first arc constituting the major portion of a circle and a second arc lying between the remainder of the circle and the chord extending between the ends of said first arc.

  18. Metrology and Calibration

    NASA Technical Reports Server (NTRS)

    Mathews, Kenneth W.; Wachter, James R.

    2018-01-01

    The purpose of this NASA Technical Standard is to ensure the accuracy of measurements affecting safety and mission success through the proper selection, calibration, and use of Measuring and Test Equipment (MTE).

  19. Gauge calibration by diffusion

    NASA Technical Reports Server (NTRS)

    Brock, F. J.; Feakes, F. (Inventor)

    1968-01-01

    Vacuum gage calibration by diffusing a known quantity of gas through a heated barrier into a gauge is examined. The gas flow raises the pressure in the gauge to known level and is then compared with the gauge's pressure reading.

  20. SRAM Detector Calibration

    NASA Technical Reports Server (NTRS)

    Soli, G. A.; Blaes, B. R.; Beuhler, M. G.

    1994-01-01

    Custom proton sensitive SRAM chips are being flown on the BMDO Clementine missions and Space Technology Research Vehicle experiments. This paper describes the calibration procedure for the SRAM proton detectors and their response to the space environment.

  1. Mass spectrometer calibration standard

    NASA Technical Reports Server (NTRS)

    Ross, D. S.

    1978-01-01

    Inert perfluorinated alkane and alkyl ethers mixture is used to calibrate mass spectrometer. Noncontaminating, commercially-available liquid provides series of reproducible reference peaks over broad mass spectrum that ranges over mass numbers from 1 to 200.

  2. A highly accurate absolute gravimetric network for Albania, Kosovo and Montenegro

    NASA Astrophysics Data System (ADS)

    Ullrich, Christian; Ruess, Diethard; Butta, Hubert; Qirko, Kristaq; Pavicevic, Bozidar; Murat, Meha

    2016-04-01

    The objective of this project is to establish a basic gravity network in Albania, Kosovo and Montenegro to enable further investigations in geodetic and geophysical issues. Therefore the first time in history absolute gravity measurements were performed in these countries. The Norwegian mapping authority Kartverket is assisting the national mapping authorities in Kosovo (KCA) (Kosovo Cadastral Agency - Agjencia Kadastrale e Kosovës), Albania (ASIG) (Autoriteti Shtetëror i Informacionit Gjeohapësinor) and in Montenegro (REA) (Real Estate Administration of Montenegro - Uprava za nekretnine Crne Gore) in improving the geodetic frameworks. The gravity measurements are funded by Kartverket. The absolute gravimetric measurements were performed from BEV (Federal Office of Metrology and Surveying) with the absolute gravimeter FG5-242. As a national metrology institute (NMI) the Metrology Service of the BEV maintains the national standards for the realisation of the legal units of measurement and ensures their international equivalence and recognition. Laser and clock of the absolute gravimeter were calibrated before and after the measurements. The absolute gravimetric survey was carried out from September to October 2015. Finally all 8 scheduled stations were successfully measured: there are three stations located in Montenegro, two stations in Kosovo and three stations in Albania. The stations are distributed over the countries to establish a gravity network for each country. The vertical gradients were measured at all 8 stations with the relative gravimeter Scintrex CG5. The high class quality of some absolute gravity stations can be used for gravity monitoring activities in future. The measurement uncertainties of the absolute gravity measurements range around 2.5 micro Gal at all stations (1 microgal = 10-8 m/s2). In Montenegro the large gravity difference of 200 MilliGal between station Zabljak and Podgorica can be even used for calibration of relative gravimeters

  3. Calibration of a High Resolution X-ray Spectrometer for High-Energy-Density Plasmas on NIF

    NASA Astrophysics Data System (ADS)

    Kraus, B.; Gao, L.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Beiersdorfer, P.; Liedahl, D.; Macphee, A. G.; Thorn, D. B.; Bettencourt, R.; Kauffman, R.; Le, H.; Nelson, D.

    2017-10-01

    A high-resolution, DIM-based (Diagnostic Instrument Manipulator) x-ray crystal spectrometer has been calibrated for and deployed at the National Ignition Facility (NIF) to diagnose plasma conditions and mix in ignition capsules near stagnation times. Two conical crystals in the Hall geometry focus rays from the Kr He- α, Ly- α, and He- β complexes onto a streak camera for time-resolved spectra, in order to measure electron density and temperature by observing Stark broadening and relative intensities of dielectronic satellites. Signals from these two crystals are correlated with a third crystal that time-integrates the intervening energy range. The spectrometer has been absolutely calibrated using a microfocus x-ray source, an array of CCD and single-photon-counting detectors, and K- and L-absorption edge filters. Measurements of the integrated reflectivity, energy range, and energy resolution for each crystal will be presented. The implications of the calibration on signal levels from NIF implosions and x-ray filter choices will be discussed. This work was performed under the auspices of the U.S. DoE by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  4. EUV mirror based absolute incident flux detector

    DOEpatents

    Berger, Kurt W.

    2004-03-23

    A device for the in-situ monitoring of EUV radiation flux includes an integrated reflective multilayer stack. This device operates on the principle that a finite amount of in-band EUV radiation is transmitted through the entire multilayer stack. This device offers improvements over existing vacuum photo-detector devices since its calibration does not change with surface contamination.

  5. 237Np absolute delayed neutron yield measurements

    NASA Astrophysics Data System (ADS)

    Doré, D.; Ledoux, X.; Nolte, R.; Gagnon-Moisan, F.; Thulliez, L.; Litaize, O.; Roettger, S.; Serot, O.

    2017-09-01

    237Np absolute delayed neutron yields have been measured at different incident neutron energies from 1.5 to 16 MeV. The experiment was performed at the Physikalisch-Technische Bundesanstalt (PTB) facility where the Van de Graaff accelerator and the cyclotron CV28 delivered 9 different neutron energy beams using p+T, d+D and d+T reactions. The detection system is made up of twelve 3He tubes inserted into a polyethylene cylinder. In this paper, the experimental setup and the data analysis method are described. The evolution of the absolute DN yields as a function of the neutron incident beam energies are presented and compared to experimental data found in the literature and data from the libraries.

  6. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  7. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  8. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  9. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  10. High intensity 5 eV atomic oxygen source and Low Earth Orbit (LEO) simulation facility

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Spangler, L. H.; Hoffbauer, M. A.; Archuleta, F. A.; Leger, Lubert; Visentine, James

    1987-01-01

    An atomic oxygen exposure facility has been developed for studies of material degradation. The goal of these studies is to provide design criteria and information for the manufacture of long life (20 to 30 years) construction materials for use in LEO. The studies that are being undertaken using the facility will provide: absolute reaction cross sections for use in engineering design problems; formulations of reaction mechanisms; and calibration of flight hardware (mass spectrometers, etc.) in order to directly relate experiments performed in LEO to ground based investigations. The facility consists of: (1) a CW laser sustained discharge source of O atoms having a variable energy up to 5 eV and an intensity between 10(15) and 10(17) O atoms s(-1) cm(-2); (2) an atomic beam formation and diagnostics system consisting of various stages of differential pumping, a mass spectrometer detector, and a time of flight analyzer; (3) a spinning rotor viscometer for absolute O atom flux measurements; and (4) provision for using the system for calibration of actual flight instruments. Surface analysis equipment is available for the characterization of material surfaces before and after exposure to O atoms.

  11. Determination of the laser intensity applied to a Ta witness plate from the measured X-ray signal using a pulsed micro-channel plate detector

    SciTech Connect

    Pickworth, L. A.; Rosen, M. D.; Schneider, M. B.

    The laser intensity distribution at the surface of a high-Z material, such as Ta, can be deduced from imaging the self-emission of the produced x-ray spot using suitable calibration data. This paper presents a calibration method which uses the measured x-ray emissions from laser spots of di erent intensities hitting a Ta witness plate. The x-ray emission is measured with a micro-channel plate (MCP) based x-ray framing camera plus filters. Data from di erent positions on one MCP strip or from di erent MCP assemblies are normalized to each other using a standard candle laser beam spot at 1x10 14more » W/cm 2 intensity. The distribution of the resulting dataset agrees with results from a pseudo spectroscopic model for laser intensities between 4 and 15x10 13 W/cm 2. The model is then used to determine the absolute scaling factor between the experimental results from assemblies using two di erent x-ray filters. The data and model method also allows unique calibration factors for each MCP system and each MCP gain to be compared. We also present simulation results investigating alternate witness plate materials (Ag, Eu and Au).« less

  12. Determination of the laser intensity applied to a Ta witness plate from the measured X-ray signal using a pulsed micro-channel plate detector

    DOE PAGES

    Pickworth, L. A.; Rosen, M. D.; Schneider, M. B.; ...

    2017-04-14

    The laser intensity distribution at the surface of a high-Z material, such as Ta, can be deduced from imaging the self-emission of the produced x-ray spot using suitable calibration data. This paper presents a calibration method which uses the measured x-ray emissions from laser spots of di erent intensities hitting a Ta witness plate. The x-ray emission is measured with a micro-channel plate (MCP) based x-ray framing camera plus filters. Data from di erent positions on one MCP strip or from di erent MCP assemblies are normalized to each other using a standard candle laser beam spot at 1x10 14more » W/cm 2 intensity. The distribution of the resulting dataset agrees with results from a pseudo spectroscopic model for laser intensities between 4 and 15x10 13 W/cm 2. The model is then used to determine the absolute scaling factor between the experimental results from assemblies using two di erent x-ray filters. The data and model method also allows unique calibration factors for each MCP system and each MCP gain to be compared. We also present simulation results investigating alternate witness plate materials (Ag, Eu and Au).« less

  13. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound.

  14. The absolute dynamic ocean topography (ADOT)

    NASA Astrophysics Data System (ADS)

    Bosch, Wolfgang; Savcenko, Roman

    The sea surface slopes relative to the geoid (an equipotential surface) basically carry the in-formation on the absolute velocity field of the surface circulation. Pure oceanographic models may remain unspecific with respect to the absolute level of the ocean topography. In contrast, the geodetic approach to estimate the ocean topography as difference between sea level and the geoid gives by definition an absolute dynamic ocean topography (ADOT). This approach requires, however, a consistent treatment of geoid and sea surface heights, the first being usually derived from a band limited spherical harmonic series of the Earth gravity field and the second observed with much higher spectral resolution by satellite altimetry. The present contribution shows a procedure for estimating the ADOT along the altimeter profiles, preserving as much sea surface height details as the consistency w.r.t. the geoid heights will allow. The consistent treatment at data gaps and the coast is particular demanding and solved by a filter correction. The ADOT profiles are inspected for their innocent properties towards the coast and compared to external estimates of the ocean topography or the velocity field of the surface circulation as derived, for example, by ARGO floats.

  15. Measurement of absolute gravity acceleration in Firenze

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  16. On the Perceptual Subprocess of Absolute Pitch.

    PubMed

    Kim, Seung-Goo; Knösche, Thomas R

    2017-01-01

    Absolute pitch (AP) is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma) and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label). In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC) or based on absolute pitch memory (APM). A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC) that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM), only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them.

  17. On the Perceptual Subprocess of Absolute Pitch

    PubMed Central

    Kim, Seung-Goo; Knösche, Thomas R.

    2017-01-01

    Absolute pitch (AP) is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma) and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label). In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC) or based on absolute pitch memory (APM). A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC) that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM), only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them. PMID:29085275

  18. Sand dune ridge alignment effects on surface BRF over the Libya-4 CEOS calibration site.

    PubMed

    Govaerts, Yves M

    2015-02-03

    The Libya-4 desert area, located in the Great Sand Sea, is one of the most important bright desert CEOS pseudo-invariant calibration sites by its size and radiometric stability. This site is intensively used for radiometer drift monitoring, sensor intercalibration and as an absolute calibration reference based on simulated radiances traceable to the SI standard. The Libya-4 morphology is composed of oriented sand dunes shaped by dominant winds. The effects of sand dune spatial organization on the surface bidirectional reflectance factor is analyzed in this paper using Raytran, a 3D radiative transfer model. The topography is characterized with the 30 m resolution ASTER digital elevation model. Four different regions-of-interest sizes, ranging from 10 km up to 100 km, are analyzed. Results show that sand dunes generate more backscattering than forward scattering at the surface. The mean surface reflectance averaged over different viewing and illumination angles is pretty much independent of the size of the selected area, though the standard deviation differs. Sun azimuth position has an effect on the surface reflectance field, which is more pronounced for high Sun zenith angles. Such 3D azimuthal effects should be taken into account to decrease the simulated radiance uncertainty over Libya-4 below 3% for wavelengths larger than 600 nm.

  19. Planck 2013 results. V. LFI calibration

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chen, X.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Kangaslahti, P.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Paci, F.; Pagano, L.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Ricciardi, S.; Riller, T.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    within uncertainties and comparison of power spectra indicates good consistency in the absolute calibration with HFI (0.3%) and a 1.4σ discrepancy with WMAP (0.9%).

  20. Radiometric calibration of the Landsat MSS sensor series

    USGS Publications Warehouse

    Helder, Dennis L.; Karki, Sadhana; Bhatt, Rajendra; Micijevik, Esad; Aaron, David; Jasinski, Benjamin

    2012-01-01

    Multispectral remote sensing of the Earth using Landsat sensors was ushered on July 23, 1972, with the launch of Landsat-1. Following that success, four more Landsat satellites were launched, and each of these carried the Multispectral Scanner System (MSS). These five sensors provided the only consistent multispectral space-based imagery of the Earth's surface from 1972 to 1982. This work focuses on developing both a consistent and absolute radiometric calibration of this sensor system. Cross-calibration of the MSS was performed through the use of pseudoinvariant calibration sites (PICSs). Since these sites have been shown to be stable for long periods of time, changes in MSS observations of these sites were attributed to changes in the sensors themselves. In addition, simultaneous data collections were available for some MSS sensor pairs, and these were also used for cross-calibration. Results indicated substantial differences existed between instruments, up to 16%, and these were reduced to 5% or less across all MSS sensors and bands. Lastly, this paper takes the calibration through the final step and places the MSS sensors on an absolute radiometric scale. The methodology used to achieve this was based on simultaneous data collections by the Landsat-5 MSS and Thematic Mapper (TM) instruments. Through analysis of image data from a PICS location and through compensating for the spectral differences between the two instruments, the Landsat-5 MSS sensor was placed on an absolute radiometric scale based on the Landsat-5 TM sensor. Uncertainties associated with this calibration are considered to be less than 5%.

  1. Comparison of spectral radiance responsivity calibration techniques used for backscatter ultraviolet satellite instruments

    NASA Astrophysics Data System (ADS)

    Kowalewski, M. G.; Janz, S. J.

    2015-02-01

    Methods of absolute radiometric calibration of backscatter ultraviolet (BUV) satellite instruments are compared as part of an effort to minimize pre-launch calibration uncertainties. An internally illuminated integrating sphere source has been used for the Shuttle Solar BUV, Total Ozone Mapping Spectrometer, Ozone Mapping Instrument, and Global Ozone Monitoring Experiment 2 using standardized procedures traceable to national standards. These sphere-based spectral responsivities agree to within the derived combined standard uncertainty of 1.87% relative to calibrations performed using an external diffuser illuminated by standard irradiance sources, the customary spectral radiance responsivity calibration method for BUV instruments. The combined standard uncertainty for these calibration techniques as implemented at the NASA Goddard Space Flight Center’s Radiometric Calibration and Development Laboratory is shown to less than 2% at 250 nm when using a single traceable calibration standard.

  2. Design and realization of an active SAR calibrator for TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Dummer, Georg; Lenz, Rainer; Lutz, Benjamin; Kühl, Markus; Müller-Glaser, Klaus D.; Wiesbeck, Werner

    2005-10-01

    TerraSAR-X is a new earth observing satellite which will be launched in spring 2006. It carries a high resolution X-band SAR sensor. For high image data quality, accurate ground calibration targets are necessary. This paper describes a novel system concept for an active and highly integrated, digitally controlled SAR system calibrator. A total of 16 active transponder and receiver systems and 17 receiver only systems will be fabricated for a calibration campaign. The calibration units serve for absolute radiometric calibration of the SAR image data. Additionally, they are equipped with an extra receiver path for two dimensional satellite antenna pattern recognition. The calibrator is controlled by a dedicated digital Electronic Control Unit (ECU). The different voltages needed by the calibrator and the ECU are provided by the third main unit called Power Management Unit (PMU).

  3. Integrated calibration sphere and calibration step fixture for improved coordinate measurement machine calibration

    DOEpatents

    Clifford, Harry J [Los Alamos, NM

    2011-03-22

    A method and apparatus for mounting a calibration sphere to a calibration fixture for Coordinate Measurement Machine (CMM) calibration and qualification is described, decreasing the time required for such qualification, thus allowing the CMM to be used more productively. A number of embodiments are disclosed that allow for new and retrofit manufacture to perform as integrated calibration sphere and calibration fixture devices. This invention renders unnecessary the removal of a calibration sphere prior to CMM measurement of calibration features on calibration fixtures, thereby greatly reducing the time spent qualifying a CMM.

  4. An absolute cavity pyrgeometer to measure the absolute outdoor longwave irradiance with traceability to international system of units, SI

    NASA Astrophysics Data System (ADS)

    Reda, Ibrahim; Zeng, Jinan; Scheuch, Jonathan; Hanssen, Leonard; Wilthan, Boris; Myers, Daryl; Stoffel, Tom

    2012-03-01

    This article describes a method of measuring the absolute outdoor longwave irradiance using an absolute cavity pyrgeometer (ACP), U.S. Patent application no. 13/049, 275. The ACP consists of domeless thermopile pyrgeometer, gold-plated concentrator, temperature controller, and data acquisition. The dome was removed from the pyrgeometer to remove errors associated with dome transmittance and the dome correction factor. To avoid thermal convection and wind effect errors resulting from using a domeless thermopile, the gold-plated concentrator was placed above the thermopile. The concentrator is a dual compound parabolic concentrator (CPC) with 180° view angle to measure the outdoor incoming longwave irradiance from the atmosphere. The incoming irradiance is reflected from the specular gold surface of the CPC and concentrated on the 11 mm diameter of the pyrgeometer's blackened thermopile. The CPC's interior surface design and the resulting cavitation result in a throughput value that was characterized by the National Institute of Standards and Technology. The ACP was installed horizontally outdoor on an aluminum plate connected to the temperature controller to control the pyrgeometer's case temperature. The responsivity of the pyrgeometer's thermopile detector was determined by lowering the case temperature and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The responsivity is then used to calculate the absolute atmospheric longwave irradiance with an uncertainty estimate (U95) of ±3.96 W m-2 with traceability to the International System of Units, SI. The measured irradiance was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the Interim World Infrared Standard Group, WISG. A total of 408 readings were collected over three different nights. The calculated irradiance measured by the ACP was 1.5 W/m2 lower than that measured by the two

  5. The NIF x-ray spectrometer calibration campaign at Omega.

    PubMed

    Pérez, F; Kemp, G E; Regan, S P; Barrios, M A; Pino, J; Scott, H; Ayers, S; Chen, H; Emig, J; Colvin, J D; Bedzyk, M; Shoup, M J; Agliata, A; Yaakobi, B; Marshall, F J; Hamilton, R A; Jaquez, J; Farrell, M; Nikroo, A; Fournier, K B

    2014-11-01

    The calibration campaign of the National Ignition Facility X-ray Spectrometer (NXS) was carried out at the Omega laser facility. Spherically symmetric, laser-driven, millimeter-scale x-ray sources of K-shell and L-shell emission from various mid-Z elements were designed for the 2-18 keV energy range of the NXS. The absolute spectral brightness was measured by two calibrated spectrometers. We compare the measured performance of the target design to radiation hydrodynamics simulations.

  6. Model Robust Calibration: Method and Application to Electronically-Scanned Pressure Transducers

    NASA Technical Reports Server (NTRS)

    Walker, Eric L.; Starnes, B. Alden; Birch, Jeffery B.; Mays, James E.

    2010-01-01

    This article presents the application of a recently developed statistical regression method to the controlled instrument calibration problem. The statistical method of Model Robust Regression (MRR), developed by Mays, Birch, and Starnes, is shown to improve instrument calibration by reducing the reliance of the calibration on a predetermined parametric (e.g. polynomial, exponential, logarithmic) model. This is accomplished by allowing fits from the predetermined parametric model to be augmented by a certain portion of a fit to the residuals from the initial regression using a nonparametric (locally parametric) regression technique. The method is demonstrated for the absolute scale calibration of silicon-based pressure transducers.

  7. Radiometric Calibration Assessment of Commercial High Spatial Resolution Multispectral Image Products

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara; Aaron, David; Thome, Kurtis

    2006-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can better understand their properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, satellite at-sensor radiance values were compared to those estimated by each independent team member to determine the sensor's radiometric accuracy. The combined results of this evaluation provide the user community with an independent assessment of these commercially available high spatial resolution sensors' absolute calibration values.

  8. Scanning micro-resonator direct-comb absolute spectroscopy

    PubMed Central

    Gambetta, Alessio; Cassinerio, Marco; Gatti, Davide; Laporta, Paolo; Galzerano, Gianluca

    2016-01-01

    Direct optical Frequency Comb Spectroscopy (DFCS) is proving to be a fundamental tool in many areas of science and technology thanks to its unique performance in terms of ultra-broadband, high-speed detection and frequency accuracy, allowing for high-fidelity mapping of atomic and molecular energy structure. Here we present a novel DFCS approach based on a scanning Fabry-Pérot micro-cavity resonator (SMART) providing a simple, compact and accurate method to resolve the mode structure of an optical frequency comb. The SMART approach, while drastically reducing system complexity, allows for a straightforward absolute calibration of the optical-frequency axis with an ultimate resolution limited by the micro-resonator resonance linewidth and can be used in any spectral region from UV to THz. We present an application to high-precision spectroscopy of acetylene at 1.54 μm, demonstrating performances comparable or even better than current state-of-the-art DFCS systems in terms of sensitivity, optical bandwidth and frequency-resolution. PMID:27752132

  9. Interpretation of the Arcade 2 Absolute Sky Brightness Measurement

    NASA Technical Reports Server (NTRS)

    Seiffert, M.; Fixsen, D. J.; Kogut, A.; Levin, S. M.; Limon, M.; Lubin, P. M.; Mirel, P.; Singal, J.; Villela, T.; Wollack, E.; hide

    2011-01-01

    We use absolutely calibrated data between 3 and 90 GHz from the 2006 balloon flight of the ARCADE 2 instrument, along with previous measurements at other frequencies to constrain models of extragalactic emission. Such emission is a combination of the cosmic microwave background (CMB) monopole, Galactic foreground emission, the integrated contribution of radio emission from external galaxies, any spectral distortions present in the CMB, and any other extragalactic source. After removal of estimates of foreground emission from our own Galaxy, and an estimated contribution of external galaxies, we present fits to a combination of the flat-spectrum CMB and potential spectral distortions in the CMB. We find 217 upper limits to CMB spectral distortions of u < 6x10(exp -4) and [Y(sub ff)] < 1x10(exp -4). We also find a significant detection of a residual signal beyond that, which can be explained by the CMB plus the integrated radio emission from galaxies estimated from existing surveys. This residual signal may be due to an underestimated galactic foreground contribution, an unaccounted for contribution of a background of radio sources, or some combination of both. The residual signal is consistent with emission in the form of a power law with amplitUde 18.4 +/- 2.1 K at 0.31 GHz and a spectral index of -2.57 +/- 0.05.

  10. Emission- and fluorescence-spectroscopic investigation of a glow discharge plasma: absolute number density of radiative and nonradiative atoms in the negative glow.

    PubMed

    Takubo, Y; Sato, T; Asaoka, N; Kusaka, K; Akiyama, T; Muroo, K; Yamamoto, M

    2008-01-01

    The excited-state atom densities in the negative glow of a direct-current glow discharge are derived from the spectral-line intensity of radiative atoms and the resonance-fluorescence photon flux of nonradiative atoms. The discharge is operated in a helium-argon gas mixture (molar fraction ratio 91:9; total gas pressure 5 Torr) at a dc current of 0.7-1.2 mA. The observations are made in the region of the maximum luminance in the cathode region, where high-energy electrons accelerated in the cathode fall are injected into the negative glow. The emission intensities of the He I, He II, Ar I, and Ar II spectral lines are measured with a calibrated tungsten ribbon lamp as an absolute spectral-radiance standard. Fluorescence photons scattered by helium and argon atoms in the metastable state and argon atoms in the resonance state are detected by the laser-induced fluorescence (LIF) method with the Rayleigh scattering of nitrogen molecules as an absolute standard of scattering cross section. The laser absorption method is incorporated to confirm the result of the LIF measurement. Excitation energies of the measured spectral lines range from 11.6 (Ar I) to 75.6 eV (He II), where the excitation energy is measured from the ground state of the neutral atom on the assumption that, in the plasma of this study, both the neutral and the ionic lines are excited by electron impact in a single-step process from the ground state of the corresponding neutral atoms. Experimental evidence is shown for the validity of this assumption.

  11. Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement

    NASA Astrophysics Data System (ADS)

    Yang, Juqing; Wang, Dayong; Fan, Baixing; Dong, Dengfeng; Zhou, Weihu

    2017-03-01

    In-situ intelligent manufacturing for large-volume equipment requires industrial robots with absolute high-accuracy positioning and orientation steering control. Conventional robots mainly employ an offline calibration technology to identify and compensate key robotic parameters. However, the dynamic and static parameters of a robot change nonlinearly. It is not possible to acquire a robot's actual parameters and control the absolute pose of the robot with a high accuracy within a large workspace by offline calibration in real-time. This study proposes a real-time online absolute pose steering control method for an industrial robot based on six degrees of freedom laser tracking measurement, which adopts comprehensive compensation and correction of differential movement variables. First, the pose steering control system and robot kinematics error model are constructed, and then the pose error compensation mechanism and algorithm are introduced in detail. By accurately achieving the position and orientation of the robot end-tool, mapping the computed Jacobian matrix of the joint variable and correcting the joint variable, the real-time online absolute pose compensation for an industrial robot is accurately implemented in simulations and experimental tests. The average positioning error is 0.048 mm and orientation accuracy is better than 0.01 deg. The results demonstrate that the proposed method is feasible, and the online absolute accuracy of a robot is sufficiently enhanced.

  12. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  13. Psychophysical contrast calibration

    PubMed Central

    To, Long; Woods, Russell L; Goldstein, Robert B; Peli, Eli

    2013-01-01

    Electronic displays and computer systems offer numerous advantages for clinical vision testing. Laboratory and clinical measurements of various functions and in particular of (letter) contrast sensitivity require accurately calibrated display contrast. In the laboratory this is achieved using expensive light meters. We developed and evaluated a novel method that uses only psychophysical responses of a person with normal vision to calibrate the luminance contrast of displays for experimental and clinical applications. Our method combines psychophysical techniques (1) for detection (and thus elimination or reduction) of display saturating nonlinearities; (2) for luminance (gamma function) estimation and linearization without use of a photometer; and (3) to measure without a photometer the luminance ratios of the display’s three color channels that are used in a bit-stealing procedure to expand the luminance resolution of the display. Using a photometer we verified that the calibration achieved with this procedure is accurate for both LCD and CRT displays enabling testing of letter contrast sensitivity to 0.5%. Our visual calibration procedure enables clinical, internet and home implementation and calibration verification of electronic contrast testing. PMID:23643843

  14. 21 CFR 874.1080 - Audiometer calibration set.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... calibration traceable to the National Bureau of Standards, oscillators, frequency counters, microphone amplifiers, and a recorder. The device can measure selected audiometer test frequencies at a given intensity... audiometer. It measures the sound frequency and intensity characteristics that emanate from an audiometer...

  15. 21 CFR 874.1080 - Audiometer calibration set.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... calibration traceable to the National Bureau of Standards, oscillators, frequency counters, microphone amplifiers, and a recorder. The device can measure selected audiometer test frequencies at a given intensity... audiometer. It measures the sound frequency and intensity characteristics that emanate from an audiometer...

  16. Calibrated work function mapping by Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Fernández Garrillo, Pablo A.; Grévin, Benjamin; Chevalier, Nicolas; Borowik, Łukasz

    2018-04-01

    We propose and demonstrate the implementation of an alternative work function tip calibration procedure for Kelvin probe force microscopy under ultrahigh vacuum, using monocrystalline metallic materials with known crystallographic orientation as reference samples, instead of the often used highly oriented pyrolytic graphite calibration sample. The implementation of this protocol allows the acquisition of absolute and reproducible work function values, with an improved uncertainty with respect to unprepared highly oriented pyrolytic graphite-based protocols. The developed protocol allows the local investigation of absolute work function values over nanostructured samples and can be implemented in electronic structures and devices characterization as demonstrated over a nanostructured semiconductor sample presenting Al0.7Ga0.3As and GaAs layers with variable thickness. Additionally, using our protocol we find that the work function of annealed highly oriented pyrolytic graphite is equal to 4.6 ± 0.03 eV.

  17. Portable Dynamic Pressure Calibrator

    NASA Technical Reports Server (NTRS)

    Wright, Morgan S.; Maynard, Everett (Technical Monitor)

    1996-01-01

    A portable, dynamic pressure calibrator was fabricated for use on wind tunnel models at NASA-Ames Research Center. The calibrator generates sine wave pressures at levels up to 1 PSIG P-P(168dB) at frequencies from 10Hz to 6KHz and .5 PSIG P.P (162dB) at frequencies from 6KHz to 20KHz. The calibrator consists of two units connected by a single cable. The handheld unit contains a pressure transducer, speaker, and deadman switch. This unit allows application of dynamic pressure to transducers/ports on installed wind tunnel models. The base unit contains all of power supplies, controls and displays. This unit allows amplitude and frequency to be set and verified at a safe location off of the model.

  18. Continuum limit of electrostatic gyrokinetic absolute equilibrium

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Zhou

    2012-06-01

    Electrostatic gyrokinetic absolute equilibria with continuum velocity field are obtained through the partition function and through the Green function of the functional integral. The new results justify and explain the prescription for quantization/discretization or taking the continuum limit of velocity. The mistakes in the Appendix D of our earlier work [J.-Z. Zhu and G. W. Hammett, Phys. Plasmas 17, 122307 (2010)] are explained and corrected. If the lattice spacing for discretizing velocity is big enough, all the invariants could concentrate at the lowest Fourier modes in a negative-temperature state, which might indicate a possible variation of the dual cascade picture in 2D plasma turbulence.

  19. Fractional order absolute vibration suppression (AVS) controllers

    NASA Astrophysics Data System (ADS)

    Halevi, Yoram

    2017-04-01

    Absolute vibration suppression (AVS) is a control method for flexible structures. The first step is an accurate, infinite dimension, transfer function (TF), from actuation to measurement. This leads to the collocated, rate feedback AVS controller that in some cases completely eliminates the vibration. In case of the 1D wave equation, the TF consists of pure time delays and low order rational terms, and the AVS controller is rational. In all other cases, the TF and consequently the controller are fractional order in both the delays and the "rational parts". The paper considers stability, performance and actual implementation in such cases.

  20. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.