Science.gov

Sample records for absolute line intensities

  1. Measurements of absolute line intensities in carbon dioxide bands near 5.2 microns

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Benner, D. C.; Devi, V. M.

    1985-01-01

    A nonlinear least-squares spectral fitting procedure has been used to derive experimental absolute intensities for over 300 unblended lines belonging to twelve CO2 bands in the 5.2-micron region. The spectral data were recorded at 0.01/cm resolution and room temperature with the Fourier transform spectrometer in the McMath solar telescope complex at the National Solar Observatory on Kitt Peak and have a signal-to-rms noise ratio of 2000-4000. A natural sample of carbon dioxide was used as the sample gas. For each band, the measured line intensities have been analyzed to derive the vibrational band intensity and coefficients of the F factor. The results are compared to the values used to calculate the intensities in the 1982 Air Force Geophysics Laboratory line parameters compilation.

  2. Absolute line intensities in CO2 bands near 4.8 microns

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Benner, D. C.; Devi, V. M.

    1986-01-01

    Absolute intensities for 726 unblended lines in 20 bands of C-12(O-16)2, C-13(O-16)2, O-16C-12O-18, and O-16C-12O-17 in the 4.8-micron spectral region have been determined using a natural sample of ultrahigh-purity CO2. Spectral data were recorded at low pressure (less than 10 torr) and room temperature with the Fourier transform spectrometer in the McMath solar telescope complex on Kitt Peak. Derived vibrational band intensities and coefficients of the F factor for each band were compared to values of the 1982 Air Force Geophysics Laboratory line parameters compilation. The present work fills out the CO2 lines in the 5-micron band systems. Lines in the strongest of these measured bands are being used to infer atmospheric pressure from high-resolution stratospheric spectra recorded during the Spacelab 3 Atmospheric Trace Molecule Spectroscopy experiment.

  3. Absolute intensities of CO2 lines in the 3140-3410/cm spectral region

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Devi, V. Malathy; Ferry-Leeper, Penelope S.; Rinsland, Curtis P.

    1988-01-01

    Absolute intensities for 430 transitions belonging to eleven rotation-vibration bands of (C-12)(O-16)2, (C-13)(O-16)2, and (O-16)(C-18)(O-18) in the 3140-3410/cm spectral region have been determined by analyzing spectra recorded at 0.01/cm resolution with the Fourier transform spectrometer in the McMath solar telescope complex at the National Solar Observatory on Kitt Peak. The data were recorded at room temperature and low pressures (less than 10 torr) using a natural sample of carbon dioxide. Intensities were derived using a nonlinear least-squares spectral fitting procedure, and the values obtained for each band have been analyzed to determine the vibrational band intensity and nonrigid rotor coefficients. An alternative mathematical formulation is shown in the case of bands for which the Coriolis effect is large and the Q-branch line intensities were not determinable either because they were severely blended or absent from the spectra. Comparison are made between the results obtained in this study and other published values.

  4. Absolute integrated intensity and individual line parameters for the 6.2-micron band of NO2. [in solar spectrum

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Bonomo, F. S.; Williams, W. J.; Murcray, D. G.; Snider, D. E.

    1975-01-01

    The absolute integrated intensity of the 6.2-micron band of NO2 at 40 C was determined from quantitative spectra at about 10 per cm resolution by the spectral band model technique. A value of 1430 plus or minus 300 per sq cm per atm was obtained. Individual line parameters, positions, intensities, and ground-state energies were derived, and line-by-line calculations were compared with the band model results and with the quantitative spectra obtained at about 0.5 per cm resolution.

  5. Absolute Line Intensities in the ν 3Band of 12CH 3F by Diode-Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lepère, Muriel; Blanquet, Ghislain; Walrand, Jacques

    1996-06-01

    Infrared absolute line intensities of the ν 3band of 12CH 3F have been measured around 9.5 μm using a diode-laser spectrometer. These line strengths were obtained from the equivalent width method and, for a few lines, by fitting a Rautian profile to the measured shape of the lines. From these results, we have deduced the vibrational bandstrength ( Sv0= 379.2 ± 5.9 cm -2·atm -1at 296 K) and the first Herman-Wallis factor (α = 0.35 × 10 -3± 0.10 × 10 -3).

  6. Absolute Line Intensities in the 2ν 02 Band of Cyanogen Chloride at 12.8 μm

    NASA Astrophysics Data System (ADS)

    Lepère, Muriel; Blanquet, Ghislain; Walrand, Jacques

    2000-05-01

    Absolute line intensities were measured at high resolution with a tunable diode laser. This work concerns the 2ν02 band of cyanogen chloride ClCN in the region 780 cm-1. Thirty-two absorption lines were recorded for the isotopomer 35ClCN and 26 lines for 37ClCN. From the analysis of these lines, we determined the bandstrengths: S0v = 19.14 cm-2 atm-1 for 35ClCN and S0v = 17.84 cm-2 atm-1 for 37ClCN.

  7. Einstein A coefficients and absolute line intensities for the E2Π-X2Σ+ transition of CaH

    NASA Astrophysics Data System (ADS)

    Li, Gang; Harrison, Jeremy J.; Ram, Ram S.; Western, Colin M.; Bernath, Peter F.

    2012-01-01

    Einstein A coefficients and absolute line intensities have been calculated for the E2Π-X2Σ+ transition of CaH. Using wavefunctions derived from the Rydberg-Klein-Rees (RKR) method and electronic transition dipole moment functions obtained from high-level ab initio calculations, rotationless transition dipole moment matrix elements have been calculated for all 10 bands involving v‧=0,1 of the E2Π state and v″=0,1,2,3,4 of the X2Σ state. The rotational line strength factors (Hönl-London factors) are derived for the intermediate coupling case between Hund's case (a) and (b) for the E2Π-X2Σ+ transition. The computed transition dipole moments and the spectroscopic constants from a recent study [Ram et al., Journal of Molecular Spectroscopy 2011;266:86-91] have been combined to generate line lists containing Einstein A coefficients and absolute line intensities for 10 bands of the E2Π-X2Σ+ transition of CaH for J-values up to 50.5. The absolute line intensities have been used to determine a rotational temperature of 778±3 °C for the CaH sample in the recent study.

  8. Absolute ν 2 Line Intensities of HOCl by Simultaneous Measurements in the Infrared with a Tunable Diode Laser and Far-Infrared Region Using a Fourier Transform Spectrometer

    NASA Astrophysics Data System (ADS)

    Vander Auwera, J.; Kleffmann, J.; Flaud, J.-M.; Pawelke, G.; Bürger, H.; Hurtmans, D.; Pétrisse, R.

    2000-11-01

    We have measured absolute line intensities in the ν2 fundamental band at 1238 cm-1 of both isotopomers of hypochlorous acid, HOCl. To obtain the partial pressure of the species in the sample mixture, unavailable through direct measurement since HOCl exists only in equilibrium with H2O and Cl2O and may decay by secondary reactions, we relied on known absolute line intensities in the pure rotational far-infrared (FIR) spectrum determined from Stark effect measurements. We have thus recorded simultaneously the FIR pure rotation spectrum of HOCl using a Bruker IFS120HR interferometer and the spectrum of a few vibration-rotation lines in the infrared (IR) ν2 band using a tunable diode laser spectrometer. The absolute intensities of these IR lines thus determined allowed us to 'calibrate' the intensities of vibration-rotation lines in the whole ν2 band, measured previously using Fourier transform spectroscopy. The treatment of the data took into account the blackbody emission contribution in the FIR and the evolution of the HOCl amount during the recording of the spectra. The latter was found to be almost constant over hours after conditioning of the cell. The square of the ν2 band vibrational transition dipole moment was determined to be 0.013947(23) D2 and 0.013870(51) D2 for HO35Cl and HO37Cl, respectively, that is, 29 to 73% lower than previous measurements. A linear Herman-Wallis factor was also determined for both isotopomers. Finally, the line intensities were least-squares fitted using a model that takes into account a weak resonance between the (010) and (002) levels.

  9. Absolute intensities and self-, N2-, and air-broadened Lorentz halfwidths for selected lines in the nu3 band of (C-12)H3D from measurements with a tunable diode laser spectrometer

    NASA Technical Reports Server (NTRS)

    Malathy Devi, V.; Benner, D. C.; Rinsland, C. P.; Smith, M. A. H.; Thakur, K. B.

    1986-01-01

    Absolute intensities and self-, air- and N2-broadened half-widths have been determined for the first time for individual lines in the nu3(A1) band of (C-12)H3D near 7.6 microns from measurements of individual vibration-rotation lines using a tunable diode laser spectrometer. The intensity measurements are believed to be accurate to within three percent. Within experimental uncertainties, equal broadening efficiencies are found for both air and nitrogen. Self-broadened half-widths determined for three transitions yield an average half-width value of 0.803 + or -0.0010/cm/atm at 296 K.

  10. Absolute number density calibration of the absorption by ground-state lead atoms of the 283. 3-nm resonance line from a high-intensity lead hollow cathode lamp and the calculated effect of argon pressures

    SciTech Connect

    Simons, J.W.; McClean, R.E. ); Oldenborg, R.C. )

    1991-03-21

    The absolute number density calibration for the absorption by ground-state lead atoms of the 283.3-nm resonance line from a high-intensity lead hollow cathode lamp (Photron superlamp) is determined and found to be the same as that of a standard hollow cathode lamp. Comparisons of the calibrations to theoretical calculations are found to be quite satisfactory. The effects of argon pressures in the absorption cell on the calibration are examined theoretically by using a simple Lorentzian broadening and shifting model. These calculations show the expected reduction in sensitivity and increasing linearity of Beer-Lambert plots with increasing argon pressure.

  11. Ion chambers simplify absolute intensity measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Sampson, J. A. R.

    1966-01-01

    Single or double ion chamber technique measures absolute radiation intensities in the extreme vacuum ultraviolet region of the spectrum. The ion chambers use rare gases as the ion carrier. Photon absorbed by the gas creates one ion pair so a measure of these is a measure of the number of incident photons.

  12. Absolute intensity of radiation emitted by uranium plasmas

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Lee, J. H.; Mcfarland, D. R.

    1975-01-01

    The absolute intensity of radiation emitted by fissioning and nonfissioning uranium plasmas in the spectral range from 350 nm to 1000 nm was measured. The plasma was produced in a plasma-focus apparatus and the plasma properties are simular to those anticipated for plasma-core nuclear reactors. The results are expected to contribute to the establishment of design criteria for the development of plasma-core reactors.

  13. Measurement at different temperatures of absolute intensities, line half-widths, and broadening by Ar and N2 for the 30 0 1 II--00 0 0 band of CO2

    NASA Technical Reports Server (NTRS)

    Valero, F. P. J.; Suarez, C. B.

    1978-01-01

    Vibration-rotation line intensities, self-broadening coefficients, and foreign-gas-broadening (Ar and N2) coefficients were measured at 197, 233, and 294 K for the 30 0 1 II--00 0 0 band of CO2 at 6348/cm. Values for the total band intensity, purely vibrational transition moment, and vibration-rotation interaction factor were deduced from the measurements.

  14. Use of intensity quotients and differences in absolute structure refinement

    PubMed Central

    Parsons, Simon; Flack, Howard D.; Wagner, Trixie

    2013-01-01

    Several methods for absolute structure refinement were tested using single-crystal X-ray diffraction data collected using Cu Kα radiation for 23 crystals with no element heavier than oxygen: conventional refinement using an inversion twin model, estimation using intensity quotients in SHELXL2012, estimation using Bayesian methods in PLATON, estimation using restraints consisting of numerical intensity differences in CRYSTALS and estimation using differences and quotients in TOPAS-Academic where both quantities were coded in terms of other structural parameters and implemented as restraints. The conventional refinement approach yielded accurate values of the Flack parameter, but with standard uncertainties ranging from 0.15 to 0.77. The other methods also yielded accurate values of the Flack parameter, but with much higher precision. Absolute structure was established in all cases, even for a hydrocarbon. The procedures in which restraints are coded explicitly in terms of other structural parameters enable the Flack parameter to correlate with these other parameters, so that it is determined along with those parameters during refinement. PMID:23719469

  15. Use of intensity quotients and differences in absolute structure refinement.

    PubMed

    Parsons, Simon; Flack, Howard D; Wagner, Trixie

    2013-06-01

    Several methods for absolute structure refinement were tested using single-crystal X-ray diffraction data collected using Cu Kα radiation for 23 crystals with no element heavier than oxygen: conventional refinement using an inversion twin model, estimation using intensity quotients in SHELXL2012, estimation using Bayesian methods in PLATON, estimation using restraints consisting of numerical intensity differences in CRYSTALS and estimation using differences and quotients in TOPAS-Academic where both quantities were coded in terms of other structural parameters and implemented as restraints. The conventional refinement approach yielded accurate values of the Flack parameter, but with standard uncertainties ranging from 0.15 to 0.77. The other methods also yielded accurate values of the Flack parameter, but with much higher precision. Absolute structure was established in all cases, even for a hydrocarbon. The procedures in which restraints are coded explicitly in terms of other structural parameters enable the Flack parameter to correlate with these other parameters, so that it is determined along with those parameters during refinement. PMID:23719469

  16. Absolute intensity measurement of the 4-0 vibration-rotation band of carbon monoxide

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.; Valero, F. P. J.

    1976-01-01

    The absolute intensity of the 4-0 vibration band of CO is measured in spectra obtained using a 25-m base-path multiple-traversal absorption cell and a 5-m scanning spectrometer. The intensities of individual vibration-rotation lines in this band are determined from measurements of their equivalent widths, and absolute values for the rotationless transition moment and the vibration-rotation interaction factor are derived from the measured line strengths. The experimentally obtained vibration-rotation function is compared with a theoretical curve; agreement between theory and experiment is found to be good for the P-branch but poor for the R-branch. It is noted that numerical solutions to the radial Schroedinger equation lead to vibration-rotation function values that are in good agreement with the experiment.

  17. Absolute intensities and foreign gas broadening coefficients of the 11(sub 1,10) from 11(sub 2,10) and 18(sub 0,18) from 18(sub 1,18) lines in the nu(sub 7) band of C2H4

    NASA Technical Reports Server (NTRS)

    Reuter, Dennis C.; Sirota, J. Marcos

    1993-01-01

    Absolute intensities and foreign gas broadening coefficients of the 18(sub 0,18) from 18(sub 1,18) and 11(sub 1,10) from 11(sub 2,10) transitions in the nu(sub 7) band of C2H4 near 948/cm have been measured at a spectral resolution of approximately 5 x 10(exp -4)/cm using tunable diode laser spectrometry. Ar, He, N2, O2 were used as the broadening gases. In order to determine the temperature dependence of the broadening coefficient, data were obtained at temperatures ranging from 150 to 296 K. The absolute intensity of the 5(sub 0,5) from 5(sub 1,5) transition was also found at 296 K. A band strength of 330 +/- 10/sq cm/atm was obtained from weighted averages of the individual line intensities and a rigid asymmetric top calculation.

  18. Towards Perfect Water Line Intensities

    NASA Astrophysics Data System (ADS)

    Lodi, L.; Tennyson, J.

    2012-06-01

    Over the last ten years the increased availability of computational resources and the steady refinement of theoretical methods have permitted more and more accurate first principle calculations of water-vapor spectra as exemplified, e.g., by the very successful BT2 line list both line positions and intensities, a reliable dipole moment surface (DMS), affecting line intensities. It is also very useful to several application to give reasonable uncertainty bars for computed quantities, an aspect which traditionally has received little attention. We report here recent progress leading to very accurate room-temperature linelists covering the range 0.05-20 000 cm-1, complete with uncertainty bars, for the H_218O and H_217O water isotopologues Line intensities were produced using a recent DMS produced by our group which is capable of giving line intensites accurate to 1% for most medium and strong transitions. Line positions are based if possible on the experimentally derived energy levels recently produced by a IUPAC task group and have a typical accuracy of 0.0002 cm-1; when experimentally derived energy levels are unavailable calculated line position are provided, with an accuracy of the order of 0.2 cm-1. An extension to the main isotopologue H_216O is currently underway. R. J. Barber, J. Tennyson, G. J. Harris and R. N. Tolchenov, Mon. Not. R. Astron. Soc. {368}, 1087-1094 (2006). L. Lodi and J. Tennyson, J. Quant. Spectrosc. Radiat. Trans. (2012), doi:10.1016/j.jqsrt.2012.02.023 L. Lodi, J. Tennyson and O. L. Polyansky, J. Chem. Phys. {135}, 034113 (2011). J. Tennyson at al., J. Quant. Spectrosc. Radiat. Trans. {110}, 573-96 (2009).

  19. Absolute intensity and polarization of rotational Raman scattering from N2, O2, and CO2

    NASA Technical Reports Server (NTRS)

    Penney, C. M.; St.peters, R. L.; Lapp, M.

    1973-01-01

    An experimental examination of the absolute intensity, polarization, and relative line intensities of rotational Raman scattering (RRS) from N2, O2, and CO2 is reported. The absolute scattering intensity for N2 is characterized by its differential cross section for backscattering of incident light at 647.1 nm, which is calculated from basic measured values. The ratio of the corresponding cross section for O2 to that for N2 is 2.50 plus or minus 5 percent. The intensity recent for N2, O2, and CO2 are shown to compare favorably to values calculated from recent measurements of the depolarization of Rayleigh scattering plus RRS. Measured depolarizations of various RRS lines agree to within a few percent with the theoretical value of 3/4. Detailed error analyses are presented for intensity and depolarization measurements. Finally, extensive RRS spectra at nominal gas temperatures of 23 C, 75 C, and 125 C are presented and shown to compare favorably to theoretical predictions.

  20. Absolute intensity measurements of the CO2 bands 401-III /backward arrow/ 000 and 411-III /backward arrow/ 010

    NASA Technical Reports Server (NTRS)

    Valero, F. P. J.

    1977-01-01

    The absolute intensities of the studied transitions of CO2 have been measured from spectra obtained under high resolution. Vibration-rotation line intensities and integrated band intensities are reported. The studied bands are characterized by origins at 7593.5 and 7584 cm to the minus 1. Spectra were obtained by an Ames' 25-m base path White-type absorption cell equipped with silver-coated mirrors together with a 5-m focal length Czerny-Turner scanning spectrometer. The procedures for calculating the widths and intensities are explained, and uncertainty limits of the reported values are considered.

  1. Absolute absorption on the potassium D lines: theory and experiment

    NASA Astrophysics Data System (ADS)

    Hanley, Ryan K.; Gregory, Philip D.; Hughes, Ifan G.; Cornish, Simon L.

    2015-10-01

    We present a detailed study of the absolute Doppler-broadened absorption of a probe beam scanned across the potassium D lines in a thermal vapour. Spectra using a weak probe were measured on the 4S \\to 4P transition and compared to the theoretical model of the electric susceptibility detailed by Zentile et al (2015 Comput. Phys. Commun. 189 162-74) in the code named ElecSus. Comparisons were also made on the 4S \\to 5P transition with an adapted version of ElecSus. This is the first experimental test of ElecSus on an atom with a ground state hyperfine splitting smaller than that of the Doppler width. An excellent agreement was found between ElecSus and experimental measurements at a variety of temperatures with rms errors ˜ {10}-3. We have also demonstrated the use of ElecSus as an atomic vapour thermometry tool, and present a possible new measurement technique of transition decay rates which we predict to have a precision of ˜3 {kHz}.

  2. Absolute Intensities of the Vacuum Ultraviolet Spectra in a Metal-Etch Plasma Processing Discharge

    SciTech Connect

    Aragon, B.P.; Blain, M.G.; Hamilton, T.W.; Jarecki, R.L.; Woodworth, J.R.

    1998-12-09

    In this paper we report absolute intensities of vacuum ultraviolet and near ultraviolet emission lines (4.8 eV to 18 eV ) for aluminum etching discharges in an inductively coupled plasma reactor. We report line intensities as a function of wafer type, pressure, gas mixture and rf excitation level. IrI a standard aluminum etching mixture containing C12 and BC13 almost all the light emitted at energies exceeding 8.8 eV was due to neutral atomic chlorine. Optical trapping of the WV radiation in the discharge complicates calculations of VUV fluxes to the wafer. However, we see total photon fluxes to the wailer at energies above 8.8 eV on the order of 4 x 1014 photons/cm2sec with anon- reactive wafer and 0.7 x 10 `4 photons/cm2sec with a reactive wtier. The maj ority of the radiation observed was between 8.9 and 9.3 eV. At these energies, the photons have enough energy to create electron-hole pairs in Si02, but may penetrate up to a micron into the Si02 before being absorbed. Relevance of these measurements to vacuum-W photon-induced darnage of Si02 during etching is discussed.

  3. Absolute intensities of the vacuum ultraviolet spectra in a metal-etch plasma processing discharge

    SciTech Connect

    Woodworth, J.R.; Blain, M.G.; Jarecki, R.L.; Hamilton, T.W.; Aragon, B.P.

    1999-11-01

    In this article we report absolute intensities of vacuum ultraviolet (VUV) and near ultraviolet emission lines (4.8{endash}18 eV) for discharges used to etch aluminum in a commercial inductively coupled plasma reactor. We report line intensities as functions of wafer type, pressure, gas mixture, and radio frequency excitation level. In a standard aluminum etching mixture containing Cl{sub 2} and BCl{sub 3} almost all the light emitted at energies exceeding 8.8 eV was due to neutral atomic chlorine. Optical trapping of the VUV radiation in the discharge complicates calculations of VUV fluxes to the wafer. However, we measured total photon fluxes to the wafer at energies above 8.8 eV on the order of 4{times}10{sup 14}&hthinsp;photons/cm{sup 2}&hthinsp;s with a nonreactive wafer and 0.7{times}10{sup 14}&hthinsp;photons/cm{sup 2}&hthinsp;s with a reactive wafer. The majority of the radiation was between 8.9 and 9.3 eV. At these energies, the photons have enough energy to create electron-hole pairs in SiO{sub 2} and may penetrate up to a micron into the SiO{sub 2} before being absorbed. Relevance of these measurements to VUV photon-induced damage of SiO{sub 2} during etching is discussed. {copyright} {ital 1999 American Vacuum Society.}

  4. Uncertainty Estimation in Intensity-Modulated Radiotherapy Absolute Dosimetry Verification

    SciTech Connect

    Sanchez-Doblado, Francisco . E-mail: paco@us.es; Hartmann, Guenther H.; Pena, Javier; Capote, Roberto; Paiusco, Marta; Rhein, Bernhard; Leal, Antonio; Lagares, Juan Ignacio

    2007-05-01

    Purpose: Intensity-modulated radiotherapy (IMRT) represents an important method for improving RT. The IMRT relative dosimetry checks are well established; however, open questions remain in reference dosimetry with ionization chambers (ICs). The main problem is the departure of the measurement conditions from the reference ones; thus, additional uncertainty is introduced into the dose determination. The goal of this study was to assess this effect systematically. Methods and Materials: Monte Carlo calculations and dosimetric measurements with five different detectors were performed for a number of representative IMRT cases, covering both step-and-shoot and dynamic delivery. Results: Using ICs with volumes of about 0.125 cm{sup 3} or less, good agreement was observed among the detectors in most of the situations studied. These results also agreed well with the Monte Carlo-calculated nonreference correction factors (c factors). Additionally, we found a general correlation between the IC position relative to a segment and the derived correction factor c, which can be used to estimate the expected overall uncertainty of the treatment. Conclusion: The increase of the reference dose relative standard uncertainty measured with ICs introduced by nonreference conditions when verifying an entire IMRT plan is about 1-1.5%, provided that appropriate small-volume chambers are used. The overall standard uncertainty of the measured IMRT dose amounts to about 2.3%, including the 0.5% of reproducibility and 1.5% of uncertainty associated with the beam calibration factor. Solid state detectors and large-volume chambers are not well suited to IMRT verification dosimetry because of the greater uncertainties. An action level of 5% is appropriate for IMRT verification. Greater discrepancies should lead to a review of the dosimetric procedure, including visual inspection of treatment segments and energy fluence.

  5. Prediction of absolute infrared intensities for the fundamental vibrations of H2O2

    NASA Technical Reports Server (NTRS)

    Rogers, J. D.; Hillman, J. J.

    1981-01-01

    Absolute infrared intensities are predicted for the vibrational bands of gas-phase H2O2 by the use of a hydrogen atomic polar tensor transferred from the hydroxyl hydrogen atom of CH3OH. These predicted intensities are compared with intensities predicted by the use of a hydrogen atomic polar tensor transferred from H2O. The predicted relative intensities agree well with published spectra of gas-phase H2O2, and the predicted absolute intensities are expected to be accurate to within at least a factor of two. Among the vibrational degrees of freedom, the antisymmetric O-H bending mode nu(6) is found to be the strongest with a calculated intensity of 60.5 km/mole. The torsional band, a consequence of hindered rotation, is found to be the most intense fundamental with a predicted intensity of 120 km/mole. These results are compared with the recent absolute intensity determinations for the nu(6) band.

  6. Absolute Transition Probabilities of Lines in the Spectra of Astrophysical Atoms, Molecules, and Ions

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Smith, P. L.; Yoshino, K.

    1984-01-01

    Progress in the investigation of absolute transition probabilities (A-values or F values) for ultraviolet lines is reported. A radio frequency ion trap was used for measurement of transition probabilities for intersystem lines seen in astronomical spectra. The intersystem line at 2670 A in Al II, which is seen in pre-main sequence stars and symbiotic stars, was studied.

  7. Glassy Carbon as an Absolute Intensity Calibration Standard for Small-Angle Scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Ilavsky, Jan; Long, Gabrielle G.; Quintana, John P. G.; Allen, Andrew J.; Jemian, Pete R.

    2010-05-01

    Absolute calibration of small-angle scattering (SAS) intensity data (measured in terms of the differential scattering cross section per unit sample volume per unit solid angle) is essential for many important aspects of quantitative SAS analysis, such as obtaining the number density, volume fraction, and specific surface area of the scatterers. It also enables scattering data from different instruments (light, X-ray, or neutron scattering) to be combined, and it can even be useful to detect the existence of artifacts in the experimental data. Different primary or secondary calibration methods are available. In the latter case, absolute intensity calibration requires a stable artifact with the necessary scattering profile. Glassy carbon has sometimes been selected as this intensity calibration standard. Here we review the spatial homogeneity and temporal stability of one type of commercially available glassy carbon that is being used as an intensity calibration standard at a number of SAS facilities. We demonstrate that glassy carbon is sufficiently homogeneous and stable during routine use to be relied upon as a suitable standard for absolute intensity calibration of SAS data.

  8. Glassy carbon as an absolute intensity calibration standard for small-angle scattering.

    SciTech Connect

    Zhang, F.; Ilavsky, J.; Long, G.; Allen, A.; Quintana, J.; Jemian, P.; NIST

    2010-05-01

    Absolute calibration of small-angle scattering (SAS) intensity data (measured in terms of the differential scattering cross section per unit sample volume per unit solid angle) is essential for many important aspects of quantitative SAS analysis, such as obtaining the number density, volume fraction, and specific surface area of the scatterers. It also enables scattering data from different instruments (light, X-ray, or neutron scattering) to be combined, and it can even be useful to detect the existence of artifacts in the experimental data. Different primary or secondary calibration methods are available. In the latter case, absolute intensity calibration requires a stable artifact with the necessary scattering profile. Glassy carbon has sometimes been selected as this intensity calibration standard. Here we review the spatial homogeneity and temporal stability of one type of commercially available glassy carbon that is being used as an intensity calibration standard at a number of SAS facilities. We demonstrate that glassy carbon is sufficiently homogeneous and stable during routine use to be relied upon as a suitable standard for absolute intensity calibration of SAS data.

  9. Revised Pioneer 10 absolute electron intensities in the inner Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Van Allen, J. A.

    1977-01-01

    Improved techniques for the analysis of Pioneer 10 Jupiter encounter data are used to obtain significantly more reliable values for energetic electron (Ee less than 21 MeV) intensities within the inner magnetosphere. The revised absolute intensities of electrons in the energy range 0.06-21 MeV are less than previous estimates by factors as great as 10 for L not exceeding 6. Previously published intensities at greater radial distances for Ee less than 21 MeV and at all radial distances for Ee greater than 21 MeV are not affected by the revisions.

  10. Longitudinal asymmetries of the coronal line intensities

    NASA Astrophysics Data System (ADS)

    Xanthakis, J.; Petropoulos, B.; Tritakis, V. P.; Mavromichalaki, H.; Marmatsuri, L.

    The analysis of the daily measurements of the coronal green line intensity which have been collected by the Pic-du-Midi Observatory during the period 1944-1974 has led to some very interesting results. The main finding of this analysis is a permanent longitudinal asymmetry of the green line intensity which has been determined all along the data record. In an effort to make this asymmetry certain E-W intensity differences very close to the solar equator where the rotation rate for coronal features is equal to 25.35 days on the average are examined. When these data are examined every 25 days, namely data which almost correspond to the same points of the solar disk, it confirms the above mentioned longitudinal asymmetry.

  11. Anomalous fluorescence line intensity in megavoltage bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Pereira, Nino; Litz, Marc; Merkel, George; Schumer, Joseph; Seely, John; Carroll, Jeff

    2009-11-01

    A Cauchois transmission crystal spectrometer intended for laser plasma diagnostics has measured an anomalous ratio between the fluorescence lines in megavoltage bremsstrahlung. When observed in reflection, Kα1 fluorescence is twice as strong as the Kβ line, as is usual. However, in forward-directed bremsstrahlung from a 2 MV end point linear accelerator with a tungsten converter, the Kα1 and Kβ fluorescence are approximately equal. The anomalous fluorescence line ratio, unity, reflects the large amount of fluorescence generated on the side of the converter where the electrons enter, and the differential attenuation of the fluorescence photons as they pass through the converter to opposite side. Understanding of fluorescence in megavoltage bremsstrahlung is relevant to the explanation of anomalous line ratios in spectra produced by high-energy electrons generated by intense femtosecond laser irradiation.

  12. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    SciTech Connect

    Liu, X.; Zhao, H. L.; Liu, Y. Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D.; Domier, C. W.; Luhmann, N. C.

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  13. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak.

    PubMed

    Liu, X; Zhao, H L; Liu, Y; Li, E Z; Han, X; Domier, C W; Luhmann, N C; Ti, A; Hu, L Q; Zhang, X D

    2014-09-01

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems. PMID:25273727

  14. OCT angiography by absolute intensity difference applied to normal and diseased human retinas

    PubMed Central

    Ruminski, Daniel; Sikorski, Bartosz L.; Bukowska, Danuta; Szkulmowski, Maciej; Krawiec, Krzysztof; Malukiewicz, Grazyna; Bieganowski, Lech; Wojtkowski, Maciej

    2015-01-01

    We compare four optical coherence tomography techniques for noninvasive visualization of microcapillary network in the human retina and murine cortex. We perform phantom studies to investigate contrast-to-noise ratio for angiographic images obtained with each of the algorithm. We show that the computationally simplest absolute intensity difference angiographic OCT algorithm that bases only on two cross-sectional intensity images may be successfully used in clinical study of healthy eyes and eyes with diabetic maculopathy and branch retinal vein occlusion. PMID:26309740

  15. Intensity evaluation using a femtosecond pulse laser for absolute distance measurement.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Li, Jianshuang; Cao, Shiying; Meng, Xiangsong; Qu, Xinghua

    2015-06-10

    In this paper, we propose a method of intensity evaluation based on different pulse models using a femtosecond pulse laser, which enables long-range absolute distance measurement with nanometer precision and large non-ambiguity range. The pulse cross-correlation is analyzed based on different pulse models, including Gaussian, Sech(2), and Lorenz. The DC intensity and the amplitude of the cross-correlation patterns are also demonstrated theoretically. In the experiments, we develop a new combined system and perform the distance measurements on an underground granite rail system. The DC intensity and amplitude of the interference fringes are measured and show a good agreement with the theory, and the distance to be determined can be up to 25 m using intensity evaluation, within 64 nm deviation compared with a He-Ne incremental interferometer, and corresponds to a relative precision of 2.7×10(-9). PMID:26192864

  16. High angular resolution absolute intensity of the solar continuum from 1400 to 1790 A.

    NASA Technical Reports Server (NTRS)

    Brueckner, G. E.; Moe, O. K.

    1972-01-01

    Absolute intensities of the solar UV continuum from 1400 to 1790 A have been measured from rocket spectra taken on August 13, 1970. The spectra had an angular resolution of 2 arc sec by 1 arc min, and the pointing accuracy of the instrument was plus or minus 2 arc sec. This permits us to study the center-to-limb variation of the intensity with a spatial resolution of 2 arc sec. Four positions on the solar disk have been studied corresponding to values of cos theta = 0.12, 0.22, 0.28 and 0.72, where theta is the heliocentric position angle. The measurements give higher values for the intensity than recent photoelectric measurement, but are in good agreement with the intensities of Widing et al.

  17. Absolute Rovibrational Intensities of C-12O2-16 Absorption Bands in the 3090-3850/ CM Spectral Region

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Rinsland, Curtis P.; Smith, Mary Ann H.

    1998-01-01

    A multispectrum nonlinear least-squares fitting technique has been used to determine the absolute intensities for approximately 1500 spectral lines in 36 vibration - rotation bands Of C-12O2-16 between 3090 and 3850/ cm. A total of six absorption spectra of a high- purity (99.995% minimum) natural sample of carbon dioxide were used in the analysis. The spectral data (0.01/cm resolution) were recorded at room temperature and low pressure (1 to 10 Torr) using the McMath-Pierce Fourier transform spectrometer of the National Solar Observatory (NSO) on Kitt Peak. The absorption path lengths for these spectra varied between 24.86 and 385.76 m. The first experimental determination of the intensity of the theoretically predicted 2(nu)(sub 2, sup 2) + nu(sub 3) "forbidden" band has been made. The measured line intensities obtained for each band have been analyzed to determine the vibrational band intensity, S(sub nu), in /cm/( molecule/sq cm) at 296 K, square of the rotationless transition dipole moment |R|(exp 2) in Debye, as well as the nonrigid rotor coefficients. The results are compared to the values listed in the 1996 HITRAN database which are obtained using the direct numerical diagonalization (DND) technique as well as to other published values where available.

  18. Absolute intensity measurements of CO2 bands in the 2395-2680/cm region

    NASA Technical Reports Server (NTRS)

    Malathy Devi, V.; Benner, D. C.; Rinsland, C. P.

    1984-01-01

    Absolute intensities for over 800 transitions belonging to twelve bands of (C-12)(O-16)2, (O-16)(C-12)(O-18), (O-16)(C-12)(O-17), and (O-16)(C-13)(O-18) molecules in the 2395-2680/cm spectral region have been derived using a nonlinear least-squares spectral fitting procedure. The data used in the analysis were recorded at room temperature and low pressure with the 0.01/cm resolution Fourier transform spectrometer in the McMath solar telescope complex at the National Solar Observatory. The measured intensities obtained for each band have been analyzed to derive the vibrational band intensity and F-factor coefficients. The results are compared with other published values.

  19. Infrared mapping of ultrasound fields generated by medical transducers: Feasibility of determining absolute intensity levels

    PubMed Central

    Khokhlova, Vera A.; Shmeleva, Svetlana M.; Gavrilov, Leonid R.; Martin, Eleanor; Sadhoo, Neelaksh; Shaw, Adam

    2013-01-01

    Considerable progress has been achieved in the use of infrared (IR) techniques for qualitative mapping of acoustic fields of high intensity focused ultrasound (HIFU) transducers. The authors have previously developed and demonstrated a method based on IR camera measurement of the temperature rise induced in an absorber less than 2 mm thick by ultrasonic bursts of less than 1 s duration. The goal of this paper was to make the method more quantitative and estimate the absolute intensity distributions by determining an overall calibration factor for the absorber and camera system. The implemented approach involved correlating the temperature rise measured in an absorber using an IR camera with the pressure distribution measured in water using a hydrophone. The measurements were conducted for two HIFU transducers and a flat physiotherapy transducer of 1 MHz frequency. Corresponding correction factors between the free field intensity and temperature were obtained and allowed the conversion of temperature images to intensity distributions. The system described here was able to map in good detail focused and unfocused ultrasound fields with sub-millimeter structure and with local time average intensity from below 0.1 W/cm2 to at least 50 W/cm2. Significantly higher intensities could be measured simply by reducing the duty cycle. PMID:23927199

  20. Infrared mapping of ultrasound fields generated by medical transducers: feasibility of determining absolute intensity levels.

    PubMed

    Khokhlova, Vera A; Shmeleva, Svetlana M; Gavrilov, Leonid R; Martin, Eleanor; Sadhoo, Neelaksh; Shaw, Adam

    2013-08-01

    Considerable progress has been achieved in the use of infrared (IR) techniques for qualitative mapping of acoustic fields of high intensity focused ultrasound (HIFU) transducers. The authors have previously developed and demonstrated a method based on IR camera measurement of the temperature rise induced in an absorber less than 2 mm thick by ultrasonic bursts of less than 1 s duration. The goal of this paper was to make the method more quantitative and estimate the absolute intensity distributions by determining an overall calibration factor for the absorber and camera system. The implemented approach involved correlating the temperature rise measured in an absorber using an IR camera with the pressure distribution measured in water using a hydrophone. The measurements were conducted for two HIFU transducers and a flat physiotherapy transducer of 1 MHz frequency. Corresponding correction factors between the free field intensity and temperature were obtained and allowed the conversion of temperature images to intensity distributions. The system described here was able to map in good detail focused and unfocused ultrasound fields with sub-millimeter structure and with local time average intensity from below 0.1 W/cm(2) to at least 50 W/cm(2). Significantly higher intensities could be measured simply by reducing the duty cycle. PMID:23927199

  1. Comparison of absolute intensity between EAS with gamma-families and general EAS at Mount Norikura

    NASA Technical Reports Server (NTRS)

    Nakatsuka, T.; Nishikawa, K.; Saito, T.; Sakata, M.; Dake, S.; Kawamoto, M.; Mitsumune, T.; Shima, M.; Yamamoto, Y.; Kusumose, M.

    1985-01-01

    Gamma-families with total energy greater than 10 TeV, found in the EX chamber which was cooperated with the EAS array were combined with EAS triggered by big bursts. The absolute intensity of the size spectrum of these combined EAS was compared with that of general EAS obtained by AS trigger. The EAS with sizes greater than 2x1 million were always accompanied by gamma-families with sigma E sub gamma H 10 TeV, n sub gamma, H 2 and Emin=3 TeV, although the rate of EAS accompaning such gamma-families decreases rapidly as their sizes decrease.

  2. Methane Line Intensities: Near and Far IR

    NASA Astrophysics Data System (ADS)

    Brown, Linda R.; Devi, V. Malathy; Wishnow, Edward H.; Sung, Keeyoon; Crawford, Timothy J.; Mantz, Arlan W.; Smith, Mary Ann H.; Predoi-Cross, Adriana; Benner, D. Chris

    2014-11-01

    Accurate knowledge of line intensities is crucial input for radiance calculations to interpret atmospheric observations of planets and moons. We have therefore undertaken extensive laboratory studies to measure the methane spectrum line-by-line in order to improve theoretical quantum mechanical modeling for molecular spectroscopy databases (e. g. HITRAN and GEISA) used by planetary astronomers. Preliminary results will be presented for selected ro-vibrational transitions in both the near-IR (1.66 and 2.2 - 2.4 microns) and the far-IR (80 - 120 microns) regions. For this, we have recorded high-resolution spectra (instrumental resolving power: 1,300,000 (NIR) and 10,000 (FIR)) with the Bruker 125HR Fourier transform spectrometer at JPL using isotopically-enriched 12CH4 and 13CH4, as well as normal methane samples. For the NIR wavelengths, three different absorption cells have been employed to achieve sample temperatures ranging from 78 K to 299 K: 1) a White cell set to a path length of 13.09 m for room temperature data, 2) a single-pass 0.2038 m cold cell and 3) a new coolable Herriott cell with a fixed 20.941 m optical path and configured for the first time to a FT-IR spectrometer. For the Far-IR, another coolable absorption chamber set to a 52 m optical path has been used. These new experiments and intensity measurements will be presented and discussed.Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, the University of California, Berkeley, Connecticut College, and NASA Langley under contracts and grants with the National Aeronautics and Space Administration. A. Predoi-Cross and her research group have been supported by the National Science and Engineering Research Council of Canada.

  3. Fast GPU-based absolute intensity determination for energy-dispersive X-ray Laue diffraction

    NASA Astrophysics Data System (ADS)

    Alghabi, F.; Send, S.; Schipper, U.; Abboud, A.; Pietsch, U.; Kolb, A.

    2016-01-01

    This paper presents a novel method for fast determination of absolute intensities in the sites of Laue spots generated by a tetragonal hen egg-white lysozyme crystal after exposure to white synchrotron radiation during an energy-dispersive X-ray Laue diffraction experiment. The Laue spots are taken by means of an energy-dispersive X-ray 2D pnCCD detector. Current pnCCD detectors have a spatial resolution of 384 × 384 pixels of size 75 × 75 μm2 each and operate at a maximum of 400 Hz. Future devices are going to have higher spatial resolution and frame rates. The proposed method runs on a computer equipped with multiple Graphics Processing Units (GPUs) which provide fast and parallel processing capabilities. Accordingly, our GPU-based algorithm exploits these capabilities to further analyse the Laue spots of the sample. The main contribution of the paper is therefore an alternative algorithm for determining absolute intensities of Laue spots which are themselves computed from a sequence of pnCCD frames. Moreover, a new method for integrating spectral peak intensities and improved background correction, a different way of calculating mean count rate of the background signal and also a new method for n-dimensional Poisson fitting are presented.We present a comparison of the quality of results from the GPU-based algorithm with the quality of results from a prior (base) algorithm running on CPU. This comparison shows that our algorithm is able to produce results with at least the same quality as the base algorithm. Furthermore, the GPU-based algorithm is able to speed up one of the most time-consuming parts of the base algorithm, which is n-dimensional Poisson fitting, by a factor of more than 3. Also, the entire procedure of extracting Laue spots' positions, energies and absolute intensities from a raw dataset of pnCCD frames is accelerated by a factor of more than 3.

  4. Muscle Activation During Exercise in Severe Acute Hypoxia: Role of Absolute and Relative Intensity

    PubMed Central

    Torres-Peralta, Rafael; Losa-Reyna, José; González-Izal, Miriam; Perez-Suarez, Ismael; Calle-Herrero, Jaime; Izquierdo, Mikel

    2014-01-01

    Abstract Torres-Peralta, Rafael, José Losa-Reyna, Miriam González-Izal, Ismael Perez-Suarez, Jaime Calle-Herrero, Mikel Izquierdo, and José A.L. Calbet. Muscle activation during exercise in severe acute hypoxia: Role of absolute and relative intensity. High Alt Med Biol 15:472–482, 2014.—The aim of this study was to determine the influence of severe acute hypoxia on muscle activation during whole body dynamic exercise. Eleven young men performed four incremental cycle ergometer tests to exhaustion breathing normoxic (FIo2=0.21, two tests) or hypoxic gas (FIo2=0.108, two tests). Surface electromyography (EMG) activities of rectus femoris (RF), vastus medialis (VL), vastus lateralis (VL), and biceps femoris (BF) were recorded. The two normoxic and the two hypoxic tests were averaged to reduce EMG variability. Peak Vo2 was 34% lower in hypoxia than in normoxia (p<0.05). The EMG root mean square (RMS) increased with exercise intensity in all muscles (p<0.05), with greater effect in hypoxia than in normoxia in the RF and VM (p<0.05), and a similar trend in VL (p=0.10). At the same relative intensity, the RMS was greater in normoxia than in hypoxia in RF, VL, and BF (p<0.05), with a similar trend in VM (p=0.08). Median frequency increased with exercise intensity (p<0.05), and was higher in hypoxia than in normoxia in VL (p<0.05). Muscle contraction burst duration increased with exercise intensity in VM and VL (p<0.05), without clear effects of FIo2. No significant FIo2 effects on frequency domain indices were observed when compared at the same relative intensity. In conclusion, muscle activation during whole body exercise increases almost linearly with exercise intensity, following a muscle-specific pattern, which is adjusted depending on the FIo2 and the relative intensity of exercise. Both VL and VM are increasingly involved in power output generation with the increase of intensity and the reduction in FIo2. PMID:25225839

  5. Absolute intensity calibration of the Wendelstein 7-X high efficiency extreme ultraviolet overview spectrometer system

    NASA Astrophysics Data System (ADS)

    Greiche, Albert; Biel, Wolfgang; Marchuk, Oleksandr; Burhenn, Rainer

    2008-09-01

    The new high effiency extreme ultraviolet overview spectrometer (HEXOS) system for the stellarator Wendelstein 7-X is now mounted for testing and adjustment at the tokamak experiment for technology oriented research (TEXTOR). One part of the testing phase was the intensity calibration of the two double spectrometers which in total cover a spectral range from 2.5 to 160.0 nm with overlap. This work presents the current intensity calibration curves for HEXOS and describes the method of calibration. The calibration was implemented with calibrated lines of a hollow cathode light source and the branching ratio technique. The hollow cathode light source provides calibrated lines from 16 up to 147 nm. We could extend the calibrated region in the spectrometers down to 2.8 nm by using the branching line pairs emitted by an uncalibrated pinch extreme ultraviolet light source as well as emission lines from boron and carbon in TEXTOR plasmas. In total HEXOS is calibrated from 2.8 up to 147 nm, which covers most of the observable wavelength region. The approximate density of carbon in the range of the minor radius from 18 to 35 cm in a TEXTOR plasma determined by simulating calibrated vacuum ultraviolet emission lines with a transport code was 5.5×1017 m-3 which corresponds to a local carbon concentration of 2%.

  6. Absolute oscillator strengths for 108 lines of Si I between 163 and 410 nanometers

    NASA Technical Reports Server (NTRS)

    Smith, Peter L.; Griesinger, Harriet E.; Cardon, Bartley L.; Huber, Martin C. E.; Tozzi, G. P.

    1987-01-01

    Measurements of neutral silicon oscillator strengths (f-values) obtained by absorption and emission techniques have been combined using the numerical procedure of Cardon et al. (1979) to produce 108 f-values for the Si I lines between 163 and 410 nm. Beam-foil-lifetime measurements were employed to determine the absolute scale. The present measurements have uncertainties of about 0.07 dex (+ or - 16 percent) at the 1-sigma level of confidence. Good agreement is obtained between the results and previous data. The data also provide upper limits for the f-values of 22 other lines and information on the lifetimes for 36 levels in Si I.

  7. Theoretical rovibrational line intensities in the electronic ground state of ozone

    NASA Astrophysics Data System (ADS)

    Diehr, Matthieu; Rosmus, Pavel; Carter, Stuart; Knowles, Peter J.

    2004-01-01

    First-principles calculations of absolute line intensities and rovibrational energies of ozone (16O3) are reported using potential energy and electric dipole moment functions calculated by the internally contracted MRCI approach. The rovibrational energies and eigenfunctions (up to about 8500 cm-1 and J = 64) were obtained variationally with an exact Hamiltonian in internal valence coordinates. More than 4.8 × 106 electric dipole transition matrix elements were calculated for the absolute rovibrational line intensities. They are compared with the values of the HITRAN database. The purely rotational absolute line intensities in the (000) state and the rovibrational intensities for the (001)-(000) band agree to within about 0.3 to 1% for the (010)-(000) band to within about 3 to 4%. Excellent agreement with experiment is also achieved for low-lying overtone and combination bands. Inconsistencies are found for the (100)-(000) band overlapping with the antisymmetric stretching fundamental and also for the (002)-(000) antisymmetric stretching overtone. The generated dipole moment function can be used for predicting the absorption intensities in any of the heavier isotopomers, hot bands or the rates of spontaneous emission.

  8. Absolute intensities for the Q-branch of the 3 nu(sub 2) (-) nu(sub 1) (465.161/cm) band of nitrous oxide

    NASA Astrophysics Data System (ADS)

    Sirota, J. Marcos; Reuter, Dennis C.

    1993-12-01

    The absolute intensities of four lines, Q 15-Q 18 in the 03(sup 1)0-10(sup 0)0 band, of N2O have been measured using a tunable diode laser spectrometer at temperatures between 380 and 420 K and pressures between 4 and 15 torr. Even though these transitions are weak and produced only about 2% of absorption at the line center for a pathlength of 52 m, they were measured with a signal to noise ratio of about 20 due to the high sensitivity of the instrument. The band strength derived is 1.03 x 10(exp -24) cm/molec at 296 K.

  9. Absolute intensities for the Q-branch of the 3 nu(sub 2) (-) nu(sub 1) (465.161/cm) band of nitrous oxide

    NASA Technical Reports Server (NTRS)

    Sirota, J. Marcos; Reuter, Dennis C.

    1993-01-01

    The absolute intensities of four lines, Q 15-Q 18 in the 03(sup 1)0-10(sup 0)0 band, of N2O have been measured using a tunable diode laser spectrometer at temperatures between 380 and 420 K and pressures between 4 and 15 torr. Even though these transitions are weak and produced only about 2% of absorption at the line center for a pathlength of 52 m, they were measured with a signal to noise ratio of about 20 due to the high sensitivity of the instrument. The band strength derived is 1.03 x 10(exp -24) cm/molec at 296 K.

  10. Low-pressure line-shape study in molecular oxygen with absolute frequency reference

    NASA Astrophysics Data System (ADS)

    Domysławska, J.; Wójtewicz, S.; Cygan, A.; Bielska, K.; Lisak, D.; Masłowski, P.; Trawiński, R. S.; Ciuryło, R.

    2013-11-01

    We present a line-shape analysis of the rovibronic R1 Q2 transition of the oxygen B band resolved by the Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy technique in the low pressure range. The frequency axis of the spectra is linked by the ultra-narrow diode laser to the optical frequency comb in order to measure the absolute frequency at each point of the recorded spectra. Experimental spectra are fitted with various line-shape models: the Voigt profile, the Galatry profile, the Nelkin-Ghatak profile, the speed-dependent Voigt profile, and the speed-dependent Nelkin-Ghatak profile with quadratic and hypergeometric approximations for the speed dependence of collisional broadening and shifting. The influences of Dicke narrowing, speed-dependent effects, and correlation between phase- and velocity-changing collisions on the line shape are investigated. Values of line-shape parameters, including the absolute frequency of the transition 435685.24828(46) GHz, are reported.

  11. Tunable diode laser measurements of absolute line strengths in the 2nu2 band of N2O near 8 microns

    NASA Technical Reports Server (NTRS)

    Tang, Lai-Wa; Daunt, Stephen J.; Nadler, Shachar

    1989-01-01

    The absolute intensities of five rotational transitions in the 2nu2 band of N2O near 8 microns have been measured with a tunable-diode laser-spectrometer. Measurements were reproducible within an average deviation of about 3 percent, and the experimental and calculated line strengths differed by only 1.5 percent. An analysis of the line strengths has yielded a band strength of S(v) = 6.98 + or - 0.26/sq cm per atm at 296 K. The band and line strengths are in excellent agreement with two recently reported values obtained by using Fourier transform-IR spectroscopy.

  12. Absolute intensities of the vacuum ultraviolet spectra in oxide etch plasma processing discharges

    SciTech Connect

    WOODWORTH,JOSEPH R.; RILEY,MERLE E.; AMATUCCI,VINCENT A.; HAMILTON,THOMAS W.; ARAGON,BEN P.

    2000-05-01

    In this paper, the authors report the absolute intensities of ultraviolet light between 4.9 eV and 24 eV ( 250 nm to 50 mn ) striking a silicon wafer in a number of oxide-etch processing discharges. The emphasis is on photons with energies greater than 8.8 eV, which have enough energy to damage SiO{sub 2}. These discharges were in an inductively-driven Gaseous Electronics Conference reference cell which had been modified to more closely resemble commercial etching tools. Comparisons of measurements made through a side port in the cell and through a hole in the wafer indicate that the VUV light in these discharges is strongly trapped. For the pure halocarbon gases examined in these experiments (C{sub 2}F{sub 6}, CHF{sub 3}, C{sub 4}F{sub 8}), the fluxes of VUV photons to the wafer varied from 1 x 10{sup 15} to 3 x 10{sup 15} photons/cm{sup 2} sec or equivalently from 1.5 to 5 mW/cm{sup 2}. These measurements imply that 0.1% to 0.3% of the rf source power to these discharges ends up hitting the wafer as VUV photons for the typical 20 mT, 200 W rf discharges. For typical ashing discharges containing pure oxygen, the VUV intensities are slightly higher--about 8 mW/cm{sup 2} . As argon or hydrogen diluents are added to the fluorocarbon gases, the VUV intensities increase dramatically, with a 10/10/10 mixture of Ar/C{sub 2}F{sub 6}/H{sub 2} yielding VUV fluxes on the wafer 26 mW/cm{sup 2} and pure argon discharges yielding 52 mW/cm{sup 2} . Adding an rf bias to the wafer had only a small effect on the VUV observed through a side-port of the GEC cell.

  13. Absolute phase recovery in structured light illumination systems: Sinusoidal vs. intensity discrete patterns

    NASA Astrophysics Data System (ADS)

    Porras-Aguilar, Rosario; Falaggis, Konstantinos

    2016-09-01

    Structured light illumination is a well-established technology for noncontact 3D surface measurements. A common challenge in those systems is to obtain the absolute surface information using few measurement frames. This work discusses techniques based on the projection of multiple sinusoidal fringe patterns with different fringe period, as well as the projection of intensity discrete Gray Code and grey-level coded patterns. The use of sinusoidal multi-frequency techniques has been since years an on-going area of research, where various algorithms have been developed based on beats, look-up tables, or number-theoretical approaches. This work shows that a related technique, the so-called algebraic reconstruction technique that is borrowed from the area of multi-wavelength interferometry can be used for this purpose. This approach provides a robust analytical solution to the phase-unwrapping problem. However, this work argues that despite these advances, the acquisition of additional phase maps obtained with different fringe periods requires too many measurement frames, and hence is inefficient. Motivated by that, this work proposes a new grey level coding scheme that uses only few measurement frames, overcomes typical defocus errors, and has an error detecting feature. The latter feature makes the need of separate error detecting algorithms obsolete. This so-called closed-loop space filling curve can be implemented with an arbitrary number of N grey-levels enabling to code up to (2N) code-words. The performance of this so-called closed-loop space filling curve is demonstrated using experimental data.

  14. Gamma-ray line intensities for depleted uranium

    SciTech Connect

    Moss, C.E.

    1985-01-01

    Measurements of the gamma-ray line intensities from depleted uranium allowed us to determine which of two conflicting previous experiments was correct. For the 1001-keV line we obtain a branching ratio of 0.834 +- 0.007, in good agreement with one of the previous experiments. A table compares our intensities for several lines with those obtained in previous experiments. 5 refs., 2 figs., 1 tab.

  15. Low-cost, robust, filtered spectrometer for absolute intensity measurements in the soft x-ray region

    SciTech Connect

    Lanier, N.E.; Gerhardt, S.P.; Den Hartog, D.J.

    2000-06-22

    We have developed a low-cost, robust, multifoil-filtered spectrometer to provide absolute measurements of low-z impurity concentrations in the Madison Symmetric Torus reversed-field pinch. The spectrometer utilizes an array of six thin-film coated soft x-ray diodes. Each multilayered coating is specifically tailored to isolate the K-shell emission lines of H- and He-like oxygen, carbon and aluminum. With calibrations obtained via a synchrotron source absolute measurements of photon flux have been made. We address the technical aspects of this diagnostic and present impurity data from both standard and high-confinement plasma discharges.

  16. Line intensities: the good, the bad and the ugly

    NASA Technical Reports Server (NTRS)

    Brown, L. R.

    2000-01-01

    Atmospheric remote sensing requires that line intensities be measured and modeled to 5 percent or better in laboratory studies. Successes and failures for analyses of carbon monoxide, methane, methanol and nitric acid will be reviewed.

  17. Optical line intensities in the Trifid nebula

    SciTech Connect

    Lynds, B.T.; Oneil, E.J. Jr.

    1985-07-01

    Observations of the Trifid nebula (M20) obtained in H-alpha; He I (587.6 nm); and the forbidden lines of N II (658.3 nm), S II (671.6 and 673 nm), O III (500.7 nm), and O II (272.6 and 372.9 nm) using either the CIT long-slit spectrograph or a direct-mode CCD with narrow-band interference filters on the 92-cm telescope at KPNO are reported. The data are presented in extensive graphs and characterized in detail and a model is proposed to explain the scattering measurements. Findings discussed include a single central O7 V star with Teff = about 37,500 K, a dusty plasma ionized by this star, mean nebular electron density 150/cu cm, a central hole of radius 0.2 times that of the ionized zone, dust extending beyond the ionized region, overall temperature 7000-8000 K, filament temperatures up to 9000 K, dust optical depth 1.5 at H-beta, dust albedo 0.5, emission-nebula radius 2.8 pc, and total mass about 1700 solar mass (comprising 340 solar mass ionized material, about 800 solar mass unionized cloud material, and about 600 solar mass in an outer dust sphere). 18 references.

  18. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter

    SciTech Connect

    Harty, P. D. Ramanathan, G.; Butler, D. J.; Johnston, P. N.; Lye, J. E.; Hall, C. J.; Stevenson, A. W.

    2014-05-15

    Purpose: The absolute dose rate of the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter. The calorimetry results were compared to measurements from the existing free-air chamber, to provide a robust determination of the absolute dose in the synchrotron beam and provide confidence in the first implementation of a graphite calorimeter on a synchrotron medical beam line. Methods: The graphite calorimeter has a core which rises in temperature when irradiated by the beam. A collimated x-ray beam from the synchrotron with well-defined edges was used to partially irradiate the core. Two filtration sets were used, one corresponding to an average beam energy of about 80 keV, with dose rate about 50 Gy/s, and the second filtration set corresponding to average beam energy of 90 keV, with dose rate about 20 Gy/s. The temperature rise from this beam was measured by a calibrated thermistor embedded in the core which was then converted to absorbed dose to graphite by multiplying the rise in temperature by the specific heat capacity for graphite and the ratio of cross-sectional areas of the core and beam. Conversion of the measured absorbed dose to graphite to absorbed dose to water was achieved using Monte Carlo calculations with the EGSnrc code. The air kerma measurements from the free-air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. Results: Absolute measurements of the IMBL dose rate were made using the graphite calorimeter and compared to measurements with the free-air chamber. The measurements were at three different depths in graphite and two different filtrations. The calorimetry measurements at depths in graphite show agreement within 1% with free-air chamber measurements, when converted to absorbed dose to water. The calorimetry at the surface and free-air chamber results show agreement of order 3% when converted to absorbed dose to water. The combined standard uncertainty is 3

  19. Line Intensities of the Phosphine Dyad at 10 mu m

    SciTech Connect

    Brown, Linda R.; Sams, Robert L.; Kleiner, Isabelle; Cottaz, C; Sagui, L

    2002-10-01

    Over 1000 measured line intensities of phosphine (PH3) are reported for the 830 to 1310 cm-1 region that contains the two lowest fundamentals in Coriolis interaction. These measurements are fitted to 1.5% for v2 at 992.13 cm-1 for v4 at 1118.31 cm-1, respectively, using five intensity parameters that include three Herman-Wallis type terms. In addition, some 60 intensities of the 2v2-v2 hot band are modeled. The corresponding assignments and line positions of the dyad from previous work [L. Fusina and G. Di Lonardo, J. Mol. Struct. 517-518, 67-78 (2000)] are combined with the present intensity study to provide an improved PH3 database for planetary studies. The total integrated intensity for the dyad is 156.(4) cm-2atm-1 at 296 K.

  20. On-line dialysate infusion to estimate absolute blood volume in dialysis patients.

    PubMed

    Schneditz, Daniel; Schilcher, Gernot; Ribitsch, Werner; Krisper, Peter; Haditsch, Bernd; Kron, Joachim

    2014-01-01

    It was the aim to measure the distribution volume and the elimination of ultra-pure dialysate in stable hemodialysis patients during on-line hemodiafiltration (HDF). Dialysate was automatically infused as a volume indicator using standard on-line HDF equipment. Indicator concentration was noninvasively measured in the arterial blood-line (using the blood volume monitor, Fresenius Medical Care, Bad Homburg vor der Höhe, Germany), and its time course was analyzed to obtain the elimination rate and the distribution volume V(t) at the time of dilution. Blood volume at treatment start (V0) was calculated accounting for the degree of intradialytic hemoconcentration. Five patients (two females) were studied during 15 treatments. Two to six measurements using indicator volumes ranging from 60 to 210 ml were done in each treatment. V0 was 4.59 ± 1.15 L and larger than the volume of 4.08 ± 0.48 L estimated from anthropometric relationships. The mean half-life of infused volume was 17.2 ± 29.7 min. Given predialysis volume expansion V0 was consistent with blood volume determined from anthropometric measurements. Information on blood volume could substantially improve volume management in hemodialysis patients and fluid therapy in intensive care patients undergoing extracorporeal blood treatment. The system has the potential for complete automation using proper control inputs for BVM and HDF modules of the dialysis machine. PMID:24814842

  1. The 3ν 1+ ν 2Combination Band of HOCl: Assignments, Perturbations, and Line Intensities

    NASA Astrophysics Data System (ADS)

    Charvát, Aleš; Deppe, Sabine F.; Hamann, Hilmar H.; Abel, Bernd

    1997-10-01

    The high-resolution spectra (0.012 cm-1) of the 3ν1+ ν2combination band of hypochlorous acid HO35(37)Cl in the near infrared (∼11 478 cm-1) have been measured using a titanium:sapphire intracavity laser absorption (ICLA) spectrometer. Line assignments, absolute intensities, and the total band intensity for both isotopomers are reported. In the course of the band analysis twoKabranches (Ka= 2,3) were found to be perturbed via low-order Fermi-type (anharmonic) resonances by a dark perturber which has been identified to be the 2ν1+ 2ν2+ 3ν3state. The data are compared with intensity predictions from simple empirical models and discussed with regard to detection limits for this molecule in the near infrared spectral region of the atmosphere.

  2. Absolute radiometric calibration of Als intensity data: effects on accuracy and target classification.

    PubMed

    Kaasalainen, Sanna; Pyysalo, Ulla; Krooks, Anssi; Vain, Ants; Kukko, Antero; Hyyppä, Juha; Kaasalainen, Mikko

    2011-01-01

    Radiometric calibration of airborne laser scanning (ALS) intensity data aims at retrieving a value related to the target scattering properties, which is independent on the instrument or flight parameters. The aim of a calibration procedure is also to be able to compare results from different flights and instruments, but practical applications are sparsely available, and the performance of calibration methods for this purpose needs to be further assessed. We have studied the radiometric calibration with data from three separate flights and two different instruments using external calibration targets. We find that the intensity data from different flights and instruments can be compared to each other only after a radiometric calibration process using separate calibration targets carefully selected for each flight. The calibration is also necessary for target classification purposes, such as separating vegetation from sand using intensity data from different flights. The classification results are meaningful only for calibrated intensity data. PMID:22346660

  3. Absolute Radiometric Calibration of ALS Intensity Data: Effects on Accuracy and Target Classification

    PubMed Central

    Kaasalainen, Sanna; Pyysalo, Ulla; Krooks, Anssi; Vain, Ants; Kukko, Antero; Hyyppä, Juha; Kaasalainen, Mikko

    2011-01-01

    Radiometric calibration of airborne laser scanning (ALS) intensity data aims at retrieving a value related to the target scattering properties, which is independent on the instrument or flight parameters. The aim of a calibration procedure is also to be able to compare results from different flights and instruments, but practical applications are sparsely available, and the performance of calibration methods for this purpose needs to be further assessed. We have studied the radiometric calibration with data from three separate flights and two different instruments using external calibration targets. We find that the intensity data from different flights and instruments can be compared to each other only after a radiometric calibration process using separate calibration targets carefully selected for each flight. The calibration is also necessary for target classification purposes, such as separating vegetation from sand using intensity data from different flights. The classification results are meaningful only for calibrated intensity data. PMID:22346660

  4. Muscle activation during exercise in severe acute hypoxia: role of absolute and relative intensity.

    PubMed

    Torres-Peralta, Rafael; Losa-Reyna, José; González-Izal, Miriam; Perez-Suarez, Ismael; Calle-Herrero, Jaime; Izquierdo, Mikel; Calbet, José A L

    2014-12-01

    The aim of this study was to determine the influence of severe acute hypoxia on muscle activation during whole body dynamic exercise. Eleven young men performed four incremental cycle ergometer tests to exhaustion breathing normoxic (FIO2=0.21, two tests) or hypoxic gas (FIO2=0.108, two tests). Surface electromyography (EMG) activities of rectus femoris (RF), vastus medialis (VL), vastus lateralis (VL), and biceps femoris (BF) were recorded. The two normoxic and the two hypoxic tests were averaged to reduce EMG variability. Peak VO2 was 34% lower in hypoxia than in normoxia (p<0.05). The EMG root mean square (RMS) increased with exercise intensity in all muscles (p<0.05), with greater effect in hypoxia than in normoxia in the RF and VM (p<0.05), and a similar trend in VL (p=0.10). At the same relative intensity, the RMS was greater in normoxia than in hypoxia in RF, VL, and BF (p<0.05), with a similar trend in VM (p=0.08). Median frequency increased with exercise intensity (p<0.05), and was higher in hypoxia than in normoxia in VL (p<0.05). Muscle contraction burst duration increased with exercise intensity in VM and VL (p<0.05), without clear effects of FIO2. No significant FIO2 effects on frequency domain indices were observed when compared at the same relative intensity. In conclusion, muscle activation during whole body exercise increases almost linearly with exercise intensity, following a muscle-specific pattern, which is adjusted depending on the FIO2 and the relative intensity of exercise. Both VL and VM are increasingly involved in power output generation with the increase of intensity and the reduction in FIO2. PMID:25225839

  5. Quantitative vapor-phase IR intensities and DFT computations to predict absolute IR spectra based on molecular structure: I. Alkanes

    NASA Astrophysics Data System (ADS)

    Williams, Stephen D.; Johnson, Timothy J.; Sharpe, Steven W.; Yavelak, Veronica; Oates, R. P.; Brauer, Carolyn S.

    2013-11-01

    Recently recorded quantitative IR spectra of a variety of gas-phase alkanes are shown to have integrated intensities in both the C3H stretching and C3H bending regions that depend linearly on the molecular size, i.e. the number of C3H bonds. This result is well predicted from CH4 to C15H32 by density functional theory (DFT) computations of IR spectra using Becke's three parameter functional (B3LYP/6-31+G(d,p)). Using the experimental data, a simple model predicting the absolute IR band intensities of alkanes based only on structural formula is proposed: For the C3H stretching band envelope centered near 2930 cm-1 this is given by (km/mol) CH_str=(34±1)×CH-(41±23) where CH is number of C3H bonds in the alkane. The linearity is explained in terms of coordinated motion of methylene groups rather than the summed intensities of autonomous -CH2-units. The effect of alkyl chain length on the intensity of a C3H bending mode is explored and interpreted in terms of conformer distribution. The relative intensity contribution of a methyl mode compared to the total C3H stretch intensity is shown to be linear in the number of methyl groups in the alkane, and can be used to predict quantitative spectra a priori based on structure alone.

  6. Assessment of absolute added correlative coding in optical intensity modulation and direct detection channels

    NASA Astrophysics Data System (ADS)

    Dong-Nhat, Nguyen; Elsherif, Mohamed A.; Malekmohammadi, Amin

    2016-06-01

    The performance of absolute added correlative coding (AACC) modulation format with direct detection has been numerically and analytically reported, targeting metro data center interconnects. Hereby, the focus lies on the performance of the bit error rate, noise contributions, spectral efficiency, and chromatic dispersion tolerance. The signal space model of AACC, where the average electrical and optical power expressions are derived for the first time, is also delineated. The proposed modulation format was also compared to other well-known signaling, such as on-off-keying (OOK) and four-level pulse-amplitude modulation, at the same bit rate in a directly modulated vertical-cavity surface-emitting laser-based transmission system. The comparison results show a clear advantage of AACC in achieving longer fiber delivery distance due to the higher dispersion tolerance.

  7. Ion source and injection line for high intensity medical cyclotron

    SciTech Connect

    Jia, XianLu Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  8. Absolute intensities and optical constants of crystalline C 2N 2 in the infrared region

    NASA Astrophysics Data System (ADS)

    Ospina, Mario; Zhao, Guizhi; Khanna, R. K.

    Infrared absorption spectra of several thin films of crystalline C 2N 2 were investigated in the 4000-200 cm -1 region at 70 K and under ˜0.6 cm -1 resolution. The integrated band intensities were obtained by least square fit of the integrated absorbance vs sample thickness data. The optical constants ( n and k, the real and imaginary parts of the complex refractive index) in the regions of absorption bands were evaluated by the Kramers—Kronig analysis of the absorbance data. These constants reproduce the laboratory spectra to within 12%.

  9. Beta decay of the fission product 125Sb and a new complete evaluation of absolute gamma ray transition intensities

    NASA Astrophysics Data System (ADS)

    Rajput, M. U.; Ali, N.; Hussain, S.; Mujahid, S. A.; MacMahon, D.

    2012-04-01

    The radionuclide 125Sb is a long-lived fission product, which decays to 125Te by negative beta emission with a half-life of 1008 day. The beta decay is followed by the emission of several gamma radiations, ranging from low to medium energy, that can suitably be used for high-resolution detector calibrations, decay heat calculations and in many other applications. In this work, the beta decay of 125Sb has been studied in detail. The complete published experimental data of relative gamma ray intensities in the beta decay of the radionuclide 125Sb has been compiled. The consistency analysis was performed and discrepancies found at several gamma ray energies. Evaluation of the discrepant data was carried out using Normalized Residual and RAJEVAL methods. The decay scheme balance was carried out using beta branching ratios, internal conversion coefficients, populating and depopulating gamma transitions to 125Te levels. The work has resulted in the consistent conversion factor equal to 29.59(13) %, and determined a new evaluated set of the absolute gamma ray emission probabilities. The work has also shown 22.99% of the delayed intensity fraction as outgoing from the 58 d isomeric 144 keV energy level and 77.01% of the prompt intensity fraction reaching to the ground state from the other excited states. The results are discussed and compared with previous evaluations. The present work includes additional experimental data sets which were not included in the previous evaluations. A new set of recommended relative and absolute gamma ray emission probabilities is presented.

  10. Empowering line intensity mapping to study early galaxies

    NASA Astrophysics Data System (ADS)

    Comaschi, P.; Ferrara, A.

    2016-09-01

    Line intensity mapping is a superb tool to study the collective radiation from early galaxies. However, the method is hampered by the presence of strong foregrounds, mostly produced by low-redshift interloping lines. We present here a general method to overcome this problem which is robust against foreground residual noise and based on the cross-correlation function ψαL(r) between diffuse line emission and Lyα emitters (LAE). We compute the diffuse line (Lyα is used as an example) emission from galaxies in a (800Mpc)3 box at z = 5.7 and 6.6. We divide the box in slices and populate them with 14000(5500) LAEs at z = 5.7(6.6), considering duty cycles from 10-3 to 1. Both the LAE number density and slice volume are consistent with the expected outcome of the Subaru HSC survey. We add gaussian random noise with variance σN up to 100 times the variance of the Lyα emission, σα, to simulate residual foregrounds and compute ψαL(r). We find that the signal-to-noise of the observed ψαL(r) does not change significantly if σN ≤ 10σα and show that in these conditions the mean line intensity, ILyα, can be precisely recovered independently of the LAE duty cycle. Even if σN = 100σα, Iα can be constrained within a factor 2. The method works equally well for any other line (e.g. [CII], HeII) used for the intensity mapping experiment.

  11. High intensity line source for x-ray spectrometer calibration

    SciTech Connect

    Thoe, R.S.

    1986-06-01

    A high intensity electron-impact x-ray source using a one-dimensional Pierce lens has been built for the purpose of calibrating a bent crystal x-ray spectrometer. This source focuses up to 100 mA of 20-keV electrons to a line on a liquid-cooled anode. The line (which can serve as a virtual slit for the spectrometer) measures approximately 800 ..mu.. x 2 cm. The source is portable and therefore adaptable to numerous types of spectrometer applications. One particular application, the calibration of a high resolution (r = 10/sup 4/) time-resolved cyrstal spectrometer, will be discussed in detail.

  12. Asymmetric variations of the coronal green line intensity

    NASA Astrophysics Data System (ADS)

    Tritakis, V. P.; Petropoulos, B.; Mavromichalaki, H.

    1988-09-01

    The analysis of the daily measurements of the coronal green line intensity, which have been extensively tested for homogeneity and freedom of trends observed at the Pic-du-Midi observatory during the period 1944 - 1974, has revealed some characteristic asymmetric variations. The NW solar-quarter appears to be the most active of all in the 22-yr cycle 1949 - 1971, while in the periods 1944 - 1948 and 1972 - 1974 the SW quarter is the most active. The green line intensity distribution shows that the maximum values of the asymmetries occur in heliocentric sectors ±10° - 20° far from the solar equator on both sides of the central meridian. Physical mechanisms like different starting time of an 11-yr solar cycle in the two solar hemispheres, the motion of the Sun towards the Apex, and short-lived "active" solar longitudes formed by temporal clustering of solar active centers, have been discussed.

  13. Absolute oscillator strengths for lines of neutral cobalt between 2276 A and 9357 A and a redetermination of the solar cobalt abundance

    NASA Astrophysics Data System (ADS)

    Cardon, B. L.; Smith, P. L.; Scalo, J. M.; Testerman, L.; Whaling, W.

    1982-09-01

    Absolute oscillator strengths of neutral cobalt have been determined from hook measurements for 159 transitions and emission intensity measurements for 314 transitions between 2276 Å and 9357 Å. Ninety-five of these transitions were subjected to the procedure developed by Cardon, Smith, and Whaling which fits combined absorption and emission data to a set of consistent, optimum, relative oscillator strengths and upper level lifetimes. These relative values were normalized to the radiative lifetimes of Figger et al. and of Marek and Vogt obtained by pulsed laser fluorescence. Absolute oscillator strengths for 362 transitions and 36 lifetimes were determined. Typical uncertainties in the reported absolute oscillator strengths are ±15-25% (2/3 confidence level). Equivalent widths were obtained for nineteen solar cobalt lines with the McMath solar telescope at Kitt Peak National Observatory. These widths were used to redetermine the solar cobalt abundance, assuming the photospheric model of Holweger and a microturbulence velocity of 1.0 km s-1. The adopted solar cobalt abundance is the mean value log Co/NH> + 12 = 4.92 ± 0.08 (±19%), from the 19 cobalt transitions. This value is in excellent agreement with the solar values of Ross and Aller, of Biemont, and of Holweger and that of Cameron for carbonaceous chondrites.

  14. Absolute oscillator strengths for lines of neutral cobalt between 2276 A and 9357 A and a redetermination of the solar cobalt abundance

    SciTech Connect

    Cardon, B.L.; Smith, P.L.; Scalo, J.M.; Testerman, L.; Whaling, W.

    1982-09-01

    Absolute oscillator strengths of neutral cobalt have been determined from hook measurements for 159 transitions and emission intensity measurements for 314 transitions between 2276 A and 9357 A. Ninety-five of these transitions were subjected to the procedure developed by Cardon, Smith, and Whaling which fits combined absorption and emission data to a set of consistent, optimum, relative oscillator strengths and upper level lifetimes. These relative values were normalized to the radiative lifetimes of Figger et al. and of Marek and Vogt obtained by pulsed laser fluorescence. Absolute oscillator strengths for 362 transitions and 36 lifetimes were determined. Typical uncertainties in the reported absolute oscillator strengths are +- 15-25% (2/3 confidence level). Equivalent widths were obtained for nineteen solar cobalt lines with the McMath solar telescope at Kitt Peak National Observatory. These widths were used to redetermine the solar cobalt abundance, assuming the photospheric model of Holweger and a microturbulence velocity of 1.0 km s/sup -1/. The adopted solar cobalt abundance is the mean value log +12 = 4.92 +- 0.08 ( +- 19%), from the 19 cobalt transitions. This value is in excellent agreement with the solar values of Ross and Aller, of Biemont, and of Holweger and that of Cameron for carbonaceous chondrites.

  15. Interpreting the Unresolved Intensity of Cosmologically Redshifted Line Radiation

    NASA Astrophysics Data System (ADS)

    Switzer, E. R.; Chang, T.-C.; Masui, K. W.; Pen, U.-L.; Voytek, T. C.

    2015-12-01

    Intensity mapping experiments survey the spectrum of diffuse line radiation rather than detect individual objects at high signal-to-noise ratio. Spectral maps of unresolved atomic and molecular line radiation contain three-dimensional information about the density and environments of emitting gas and efficiently probe cosmological volumes out to high redshift. Intensity mapping survey volumes also contain all other sources of radiation at the frequencies of interest. Continuum foregrounds are typically ~102-103 times brighter than the cosmological signal. The instrumental response to bright foregrounds will produce new spectral degrees of freedom that are not known in advance, nor necessarily spectrally smooth. The intrinsic spectra of foregrounds may also not be well known in advance. We describe a general class of quadratic estimators to analyze data from single-dish intensity mapping experiments and determine contaminated spectral modes from the data themselves. The key attribute of foregrounds is not that they are spectrally smooth, but instead that they have fewer bright spectral degrees of freedom than the cosmological signal. Spurious correlations between the signal and foregrounds produce additional bias. Compensation for signal attenuation must estimate and correct this bias. A successful intensity mapping experiment will control instrumental systematics that spread variance into new modes, and it must observe a large enough volume that contaminant modes can be determined independently from the signal on scales of interest.

  16. Interpreting The Unresolved Intensity Of Cosmologically Redshifted Line Radiation

    NASA Technical Reports Server (NTRS)

    Switzer, E. R.; Chang, T.-C.; Masui, K. W.; Pen, U.-L.; Voytek, T. C.

    2016-01-01

    Intensity mapping experiments survey the spectrum of diffuse line radiation rather than detect individual objects at high signal-to-noise ratio. Spectral maps of unresolved atomic and molecular line radiation contain three-dimensional information about the density and environments of emitting gas and efficiently probe cosmological volumes out to high redshift. Intensity mapping survey volumes also contain all other sources of radiation at the frequencies of interest. Continuum foregrounds are typically approximately 10(sup 2)-10(Sup 3) times brighter than the cosmological signal. The instrumental response to bright foregrounds will produce new spectral degrees of freedom that are not known in advance, nor necessarily spectrally smooth. The intrinsic spectra of fore-grounds may also not be well known in advance. We describe a general class of quadratic estimators to analyze data from single-dish intensity mapping experiments and determine contaminated spectral modes from the data themselves. The key attribute of foregrounds is not that they are spectrally smooth, but instead that they have fewer bright spectral degrees of freedom than the cosmological signal. Spurious correlations between the signal and foregrounds produce additional bias. Compensation for signal attenuation must estimate and correct this bias. A successful intensity mapping experiment will control instrumental systematics that spread variance into new modes, and it must observe a large enough volume that contaminant modes can be determined independently from the signal on scales of interest.

  17. Absolute Rovibrational Intensities for the Chi(sup 1)Sigma(sup +) v=3 <-- 0 Band of (12)C(16)O Obtained with Kitt Peak and BOMEM FTS Instruments

    NASA Technical Reports Server (NTRS)

    Chackerian, Charles, Jr.; Kshirsagar, R. J.; Giver, L. P.; Brown, L. R.; Condon, Estelle P. (Technical Monitor)

    1999-01-01

    This work was initiated to compare absolute line intensities retrieved with the Kitt Peak FTS (Fourier Transform Spectrometer) and Ames BOMEM FTS. Since thermal contaminations can be a problem using the BOMEM instrument if proper precautions are not taken it was thought that measurements done at 6300 per cm would more easily result in satisfactory intercomparisons. Very recent measurements of the CO 3 <-- 0 band fine intensities confirms results reported here that the intensities listed in HITRAN (High Resolution Molecular Absorption Database) for this band are on the order of six to seven percent too low. All of the infrared intensities in the current HITRAN tabulation are based on the electric dipole moment function reported fifteen years ago. The latter in turn was partly based on intensities for the 3 <-- 0 band reported thirty years ago. We have, therefore, redetermined the electric dipole moment function of ground electronic state CO.

  18. On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach

    NASA Astrophysics Data System (ADS)

    Gerstmayr, Johannes; Irschik, Hans

    2008-12-01

    In finite element methods that are based on position and slope coordinates, a representation of axial and bending deformation by means of an elastic line approach has become popular. Such beam and plate formulations based on the so-called absolute nodal coordinate formulation have not yet been verified sufficiently enough with respect to analytical results or classical nonlinear rod theories. Examining the existing planar absolute nodal coordinate element, which uses a curvature proportional bending strain expression, it turns out that the deformation does not fully agree with the solution of the geometrically exact theory and, even more serious, the normal force is incorrect. A correction based on the classical ideas of the extensible elastica and geometrically exact theories is applied and a consistent strain energy and bending moment relations are derived. The strain energy of the solid finite element formulation of the absolute nodal coordinate beam is based on the St. Venant-Kirchhoff material: therefore, the strain energy is derived for the latter case and compared to classical nonlinear rod theories. The error in the original absolute nodal coordinate formulation is documented by numerical examples. The numerical example of a large deformation cantilever beam shows that the normal force is incorrect when using the previous approach, while a perfect agreement between the absolute nodal coordinate formulation and the extensible elastica can be gained when applying the proposed modifications. The numerical examples show a very good agreement of reference analytical and numerical solutions with the solutions of the proposed beam formulation for the case of large deformation pre-curved static and dynamic problems, including buckling and eigenvalue analysis. The resulting beam formulation does not employ rotational degrees of freedom and therefore has advantages compared to classical beam elements regarding energy-momentum conservation.

  19. Model for the intense molecular line emission from OMC-1

    SciTech Connect

    Draine, B.T.; Roberge, W.G.

    1982-08-15

    We present a model which attributes the observed H/sub 2/ and CO line emission OMC-1 to a magnetohydrodynamic shock propagating into magnetized molecular gas. By requiring the shock to reporoduce the observed line intensities, we determine the shock speed to be v/sub s/roughly-equal38 km s/sup -1/ and the preshock density and (transverse) magnetic field to be n/sub H/roughly-equal7 x 10/sup 5/ cm/sup -3/, B/sub O/roughly-equal1.5 milligauss. The model is compared to observations of H/sub 2/, CO, OH, O I, and C I in emission and of CO in absorption. The shock gas may be detectible in H I 21 cm emission.

  20. Atomic data and spectral line intensities for S IX

    NASA Astrophysics Data System (ADS)

    Bhatia, A. K.; Landi, E.

    2003-09-01

    Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for the O-like ion S IX. The configurations used are 2s 22p 4, 2s2p 5, 2p 6, 2s 22p 33s, 2s 22p 33p, and 2s 22p 33d giving rise to 86 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 25, 50, 75, 100, and 125 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at several electron temperatures in the 5.6 ⩽log Te (K)⩽6.2 range, where S IX is formed. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10 8-10 14 cm -3. Relative spectral line intensities are calculated. Proton excitation rates among the lowest three levels have been included in the statistical equilibrium equations. The predicted S IX line intensities are compared with SUMER (SOHO) observations of the quiet Sun.

  1. Atomic Data and Spectral Line Intensities for Ne III

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Thomas, R. J.; Landi, E.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ne III. The configurations used are 2s(sup 2) 2p(sup 4),2s2p(sup 5),2s(sup 2) 2p(sup 3)3s, and 2s(sup 2)3p(sup 3)3d giving rise to 57 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 5, 10, 15, 20, and 25 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of logT,(K)=5.0, corresponding to maximum abundance of Ne III. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8)-10(exp 14) per cubic centimeter. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted Ne III line intensities are compared with SERTS rocket measurements of a solar active region and of a laboratory EUV light source.

  2. A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity.

    PubMed

    Snelling, David R; Smallwood, Gregory J; Liu, Fengshan; Gülder, Omer L; Bachalo, William D

    2005-11-01

    Laser-induced incandescence (LII) has proved to be a useful diagnostic tool for spatially and temporally resolved measurement of particulate (soot) volume fraction and primary particle size in a wide range of applications, such as steady flames, flickering flames, and Diesel engine exhausts. We present a novel LII technique for the determination of soot volume fraction by measuring the absolute incandescence intensity, avoiding the need for ex situ calibration that typically uses a source of particles with known soot volume fraction. The technique developed in this study further extends the capabilities of existing LII for making practical quantitative measurements of soot. The spectral sensitivity of the detection system is determined by calibrating with an extended source of known radiance, and this sensitivity is then used to interpret the measured LII signals. Although it requires knowledge of the soot temperature, either from a numerical model of soot particle heating or experimentally determined by detecting LII signals at two different wavelengths, this technique offers a calibration-independent procedure for measuring soot volume fraction. Application of this technique to soot concentration measurements is demonstrated in a laminar diffusion flame. PMID:16270566

  3. Absolute geomagnetic intensity determinations on Formative potsherds (1400-700 BC) from the Oaxaca Valley, Southwestern Mexico

    NASA Astrophysics Data System (ADS)

    Pétronille, Marie; Goguitchaichvili, Avto; Morales, Juan; Carvallo, Claire; Hueda-Tanabe, Yuki

    2012-11-01

    New Thellier-Coe archeointensity determinations have been measured on 15 potsherds from the Oaxaca Valley belonging to three of the four Formative Periods (Pre-Classical) of Mesoamerica, spanning 1400-700 BC. Seven of these are considered to be reliable and indicate a geomagnetic field strength of about 30 μT. This value is some 75% of the present geomagnetic field strength but is in agreement with the absolute intensities predicted from global models for this time and location, and consistent with coeval published determinations. These data thus provide significant evidence for the geomagnetic field strength in an area and for a time that was previously poorly constrained, thus providing an important contribution towards establishing a local master curve for the last 3500 yr. When established, such a curve would be a useful dating tool and also enable establishing for field strength correlations with climatic events and civilization evolutions in a region that is particularly strong in archeological and geological features. Such potential is examined for aridity events, although such observations can only be considered tentative at this stage.

  4. Atomic Data and Emission Line Intensities for CA VII

    NASA Technical Reports Server (NTRS)

    Landi, E.; Bhatia, A. K.

    2003-01-01

    In the present work we calculate energy levels, transition probabilities and electron-ion collisional excitation rates for the 3s(sup 2)3p(sup 2), 3s3p(sup 3) and 3s(sup 2)3p3d configurations of the silicon-like ion Ca VII. The total number of intermediate coupling levels considered is 27. Collision strengths are calculated at seven incident electron energies: 8, 10, 15, 20, 30,40 and 60 Ry, using the Distorted Wave approximation and a 5-configuration model. Excitation rate coefficients are calculated by assuming a Maxwellian distribution of velocities and are used to calculate level populations and line emissivities under the assumption of statistical equilibrium. Line intensity ratios are calculated and compared with observed values measured from SERTS and SOHO/CDS spectra. The diagnostic potential of Ca VII is demonstrated, with particular emphasis on the possibility to measure the Ne/Ca relative abundance through simultaneous observations of Ca VII and N VI lines. Ca VII proves to be an excellent tool for the study of the FIP effect in the solar transition region.

  5. Absolute extinction and the influence of environment - Dark cloud sight lines toward VCT 10, 30, and Walker 67

    NASA Technical Reports Server (NTRS)

    Cardelli, Jason A.; Clayton, Geoffrey C.

    1991-01-01

    The range of validity of the average absolute extinction law (AAEL) proposed by Cardelli et al. (1988 and 1989) is investigated, combining published visible and NIR data with IUE UV observations for three lines of sight through dense dark cloud environments with high values of total-to-selective extinction. The characteristics of the data sets and the reduction and parameterization methods applied are described in detail, and the results are presented in extensive tables and graphs. Good agreement with the AAEL is demonstrated for wavelengths from 3.4 microns to 250 nm, but significant deviations are found at shorter wavelengths (where previous studies of lines of sight through bright nebulosity found good agreement with the AAEL). These differences are attributed to the effects of coatings on small-bump and FUV grains.

  6. Atomic Data and Spectral Line Intensities for Ni XXI

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Landi, E.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ni XXI. The configurations used are 2s(sup 2)2p(sup 4), 2s2p(sup 5), 2p(sup 6), 2s(sup 2)2p(sup 3)3s, and 2s(sup 2)3p(sup 3)3d giving rise to 58 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 85, 170, 255, 340, and 425 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of log T(sub e)(K)=6.9, corresponding to maximum abundance of Ni XXI. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities 10(exp 8)-10(exp 14) per cubic centimeter. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted intensity ratios are compared with available observations.

  7. Absolute redshifts in the CIV 1548 A line in the transition region of the quiet sun

    NASA Technical Reports Server (NTRS)

    Henze, William; Engvold, Oddbjorn

    1992-01-01

    Observations with the Ultraviolet Spectrometer and Polarimeter instrument on the SMM spacecraft were made at the polar limb and disk center for the accurate determination of Doppler shifts of the CIV 1548 A emission line formed at 10 exp -5 K in the transition region of the quiet sun. Individual data points representing 3 arcsec square pixels yield both redshifts and blueshifts, but the mean values from four different days of observations are toward the red. The mean redshifts are in the range 4-8 km/s and are produced by nearly vertically directed flows; the uncertainty associated with the mean values corresponds to +/- 0.5 km/s. The redshift increases with brightness of the CIV line.

  8. Absolute frequency measurements of the lithium D lines using an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Simien, Clayton; Brewer, Samuel; Tan, Joseph; Gillaspy, John; Sansonetti, Craig

    2010-03-01

    High precision spectroscopic measurements of the isotope shift of low-lying lithium transitions can be combined with precise theory to probe the relative nuclear charge radii of various lithium isotopes. This technique is of particular interest for exotic isotopes for which scattering experiments are not feasible. But recently measured isotope shifts for the D1 and D2 lines of the stable isotopes ^6Li and ^7Li remain in strong disagreement with each other and with theory. Experimental values for the splitting isotope shift (SIS), believed to be the most reliable prediction, are not even consistent as to sign and disagree with theory by as much as 16 standard deviations. We will report results from a new experiment in progress at the NIST. We observe the D lines by crossing a highly collimated lithium beam with a very stable tunable laser. Unlike previous experiments, we directly measure the optical frequency of the laser at every data point by using an optical frequency comb referenced to a cesium clock. Initial results suggest that fully resolved lithium hyperfine components will be determined with an uncertainty of a few tens of kilohertz. We expect to obtain precise new values for the fine structure, hyperfine structure, and isotope shifts of the lithium D lines and a definitive test of the calculated SIS.

  9. a Nonhydrostatic Modeling Analysis of AN Intense Midlatitude Squall Line.

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Jen

    1995-01-01

    Nonhydrostatic modeling shows that the convective cells of a squall line, which occurred over Kansas and Oklahoma on 10-11 June 1985, behaves as gravity waves. In the simulation, the gust front generates a continuous low -level updraft. Updraft cells periodically break away from the gust-front updraft and move at their associated gravity -wave phase speeds. Linear theory shows that waves are trapped in the troposphere because of the strong decrease of Scorer parameter with height. Linear theory predicts the gravity-wave amplitudes, quadrature relations, and the gravity-wave periods. The stronger front-to-rear propagation mode dominates in the mature stage of the storm. The decrease of Scorer parameter with height encountered by the rearward propagating waves is a product of the storm circulation. The drop-off in Scorer parameter with height is a manifestation of the shear between ascending front-to-rear and descending rear-to-front flows of the squall-line system. The squall line produces an environment conducive to trapping rearward propagating gravity waves generated at the gust front. Numerical experiments show that the rear inflow and related aspects of storm structure are sensitive to hydrometer types, ice-phase microphysics, and the midlevel environmental humidity. Ice-phase microphysics is important for the model to produce realistic air motions and precipitation in the stratiform region. With the occurrence of heavy hailstones, there is no enhanced rear-to-front flow at the back edge of the storm. Evaporation is the most important latent cooling process determining the structure and strength of the descending rear inflow and the mesoscale downdraft. Latent cooling by melting snow enhances the strength of the rear -to-front flow at the back edge of storm and the intensity of mesoscale downdraft. Mesoscale downdraft is initiated above the rm 0^circC level by sublimational cooling. With the environmental midlevel moisture reduced by half, mesoscale downdrafts

  10. Absolute Rovibrational Intensities, Self-Broadening and Self-Shift Coefficients for the X(sup 1) Sigma(+) V=3 (left arrow) V=0 Band (C-12)(O-16)

    NASA Technical Reports Server (NTRS)

    Chackerian, Charles, Jr.; Freedman, R.; Giver, L. P.; Brown, L. R.

    2001-01-01

    The rotationless transition moment squared for the x(sup 1) sigma (sup +) v=3 (left arrow) v=0 band of CO is measured to be the absolute value of R (sub 3-0) squared = 1.7127(25)x 10(exp -7) Debye squared. This value is about 8.6 percent smaller than the value assumed for HITRAN 2000. The Herman-Wallis intensity factor of this band is F=1+0.01168(11)m+0.0001065(79)m squared. The determination of self-broadening coefficients is improved with the inclusion of line narrowing; self-shifts are also reported.

  11. Line Positions, Intensities And Line Shape Parameters Of PH3 Near 4.4 µm

    NASA Astrophysics Data System (ADS)

    Venkataraman, Malathy; Benner, D. C.; Kleiner, I.; Brown, L. R.; Sams, R. L.; Fletcher, L. N.

    2012-10-01

    Accurate knowledge of spectral line parameters in the 2000 to 2400 cm-1 region of PH3 is important for the CASSINI/VIMS exploration of dynamics and chemistry of Saturn and for the correct interpretation of future Jovian observations by JUNO and ESA’s newly-selected mission JUICE. Since the available intensity information for phosphine is inconsistent, we measured line positions and intensities for over 4000 individual transitions in the 2ν2, ν2+ν4, 2ν4, ν1 and the ν3 bands from analyzing high-resolution, high S/N spectra recorded at room temperature using two Fourier transform spectrometers (FTS); the Bruker IFS 125 HR FTS at PNNL and the Kitt Peak FTS at the National Solar Observatory in Arizona. In addition to line positions and intensities, self-broadened half width and self-induced pressure-shift coefficients were also measured for about 800 transitions for the various bands. The strong Coriolis and other types of interactions occurring among the various vibrational levels result in a large number of forbidden transitions as well as cause A+A- splittings in transitions with K″ that are multiples of 3. Line mixing was detected between several A+A- pairs of transitions; and self- line mixing coefficients were measured for several such pairs of transitions by applying the off-diagonal relaxation matrix formalism of Levy et al.1 A multispectrum nonlinear least squares technique2 employing a non-Voigt line shape including line mixing and speed dependence was used in fitting all the spectra simultaneously. Present results are compared with other reported values. This research is supported by NASA’s Outer Planets Research Program. References [1] A. Lévy et al., In “Spectroscopy of the Earth’s Atmosphere and Interstellar Medium”, Ed. K, Narahari Rao and A. Weber, Boston, Academic Press; p, 261-337 (1992). [2] D. C. Benner et al., J Quant. Spectrosc. Radiat. Transfer 53, 705, 1995.

  12. Laser-excitation technique for the measurement of absolute transition probabilities of weak atomic lines

    NASA Technical Reports Server (NTRS)

    Kwong, H. S.; Smith, P. L.; Parkinson, W. H.

    1982-01-01

    A new technique is presented for the measurement of transition probabilities for weak allowed, intersystem, and forbidden lines. The method exploits the fact that oscillator strength is proportional to the number of stimulated absorptions and emissions produced by a narrow-band laser pulse of known energy which is in resonance with an atomic transition. The method is tested for a particular transition of Mg I with a known oscillator strength value and of appropriate magnitude. The number densities are measured using a Mach-Zehnder interferometer and the hook method for the lower level population and by measuring an absorption-equivalent width for the other. The apparatus consisted of a high-power tunable laser and a magnesium oven to produce excited Mg vapor, and a laser-plasma background continuum. The results are in good agreement with theoretical and other experimental data.

  13. Absolute Quantification of the Host-To-Parasite DNA Ratio in Theileria parva-Infected Lymphocyte Cell Lines

    PubMed Central

    Gotia, Hanzel T.; Munro, James B.; Knowles, Donald P.; Daubenberger, Claudia A.; Bishop, Richard P.; Silva, Joana C.

    2016-01-01

    Theileria parva is a tick-transmitted intracellular apicomplexan pathogen of cattle in sub-Saharan Africa that causes East Coast fever (ECF). ECF is an acute fatal disease that kills over one million cattle annually, imposing a tremendous burden on African small-holder cattle farmers. The pathology and level of T. parva infections in its wildlife host, African buffalo (Syncerus caffer), and in cattle are distinct. We have developed an absolute quantification method based on quantitative PCR (qPCR) in which recombinant plasmids containing single copy genes specific to the parasite (apical membrane antigen 1 gene, ama1) or the host (hypoxanthine phosphoribosyltransferase 1, hprt1) are used as the quantification reference standards. Our study shows that T. parva and bovine cells are present in similar numbers in T. parva-infected lymphocyte cell lines and that consequently, due to its much smaller genome size, T. parva DNA comprises between 0.9% and 3% of the total DNA samples extracted from these lines. This absolute quantification assay of parasite and host genome copy number in a sample provides a simple and reliable method of assessing T. parva load in infected bovine lymphocytes, and is accurate over a wide range of host-to-parasite DNA ratios. Knowledge of the proportion of target DNA in a sample, as enabled by this method, is essential for efficient high-throughput genome sequencing applications for a variety of intracellular pathogens. This assay will also be very useful in future studies of interactions of distinct host-T. parva stocks and to fully characterize the dynamics of ECF infection in the field. PMID:26930209

  14. Absolute Quantification of the Host-To-Parasite DNA Ratio in Theileria parva-Infected Lymphocyte Cell Lines.

    PubMed

    Gotia, Hanzel T; Munro, James B; Knowles, Donald P; Daubenberger, Claudia A; Bishop, Richard P; Silva, Joana C

    2016-01-01

    Theileria parva is a tick-transmitted intracellular apicomplexan pathogen of cattle in sub-Saharan Africa that causes East Coast fever (ECF). ECF is an acute fatal disease that kills over one million cattle annually, imposing a tremendous burden on African small-holder cattle farmers. The pathology and level of T. parva infections in its wildlife host, African buffalo (Syncerus caffer), and in cattle are distinct. We have developed an absolute quantification method based on quantitative PCR (qPCR) in which recombinant plasmids containing single copy genes specific to the parasite (apical membrane antigen 1 gene, ama1) or the host (hypoxanthine phosphoribosyltransferase 1, hprt1) are used as the quantification reference standards. Our study shows that T. parva and bovine cells are present in similar numbers in T. parva-infected lymphocyte cell lines and that consequently, due to its much smaller genome size, T. parva DNA comprises between 0.9% and 3% of the total DNA samples extracted from these lines. This absolute quantification assay of parasite and host genome copy number in a sample provides a simple and reliable method of assessing T. parva load in infected bovine lymphocytes, and is accurate over a wide range of host-to-parasite DNA ratios. Knowledge of the proportion of target DNA in a sample, as enabled by this method, is essential for efficient high-throughput genome sequencing applications for a variety of intracellular pathogens. This assay will also be very useful in future studies of interactions of distinct host-T. parva stocks and to fully characterize the dynamics of ECF infection in the field. PMID:26930209

  15. Atomic Data and Spectral Line Intensities for Ca IX

    NASA Technical Reports Server (NTRS)

    Landi, E.; Bhatia, A. K.

    2012-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ca IX. We include in the calculations the 33 lowest configurations in the n = 3, 4, 5 complexes, corresponding to 283 fine structure levels in the 3l3l ', 3l4l'' and 3l4l''' configurations, where l,l' = s, p, d, l '' = s, p, d, f and l''' = s, p, d, f, g. Collision strengths are calculated at five incident energies for all transitions: 5.8, 13.6, 24.2, 38.6 and 57.9 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.0055 Ry and 0.23 Ry depending on the levels involved. Calculations have been carried out using the Flexible Atomic Code and the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates calculated in the present work, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14)/cubic cm range and at an electron temperature of log T(sub e)(K)=5.8, corresponding to the maximum abundance of Ca IX. Spectral line intensities are calculated, and their diagnostic relevance is discussed.

  16. Atomic Data and Spectral Line Intensities for Ni XV

    NASA Technical Reports Server (NTRS)

    Landi, E.; Bhatia, A. K.

    2011-01-01

    Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XV.Weinclude in the calculations the 9 lowest configurations, corresponding to 126 fine structure levels: 3s23p2, 3s3p3, 3s23p3d, 3p4, 3s3p23d, and 3s2 3p4l with l =, s, p, d, f. Collision strengths are calculated at five incident energies for all transitions: 7.8, 18.5, 33.5, 53.5, and 80.2 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.004 and 0.28 Ry depending on the levels involved. Calculations have been carried out using the Flexible Atomic Code and the distorted-wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates calculated in the present work, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14)/cu cm range and at an electron temperature of log T(sub e)(K) = 6.4, corresponding to the maximum abundance of Ni XV. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database.

  17. Atomic Data and Spectral Line Intensities for NI XVII

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Landi, E.

    2011-01-01

    Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XVII. We include in the calculations the 23 lowest configurations, corresponding to 159 fine-structure levels: 3l3l', 3l4l0'' , and 3s5l0''' , with l,l' = s,p,d, l'' = s,p,d, f, and l''' = s,p,d. Collision strengths are calculated at five incident energies for all transitions at varying energies above the threshold of each transition. One additional energy, very close to the threshold of each transition, has also been included. Calculations have been carried out using the Flexible Atomic Code in the distorted wave approximation. Additional calculations have been performed with the University College London suite of codes for comparison. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8) - 10(exp 14) / cubic cm and at an electron temperature of logT(sub e)e(K) = 6.5, corresponding to the maximum abundance of Ni XVII. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database

  18. Determination of vibration-rotation lines intensities from absorption Fourier spectra

    NASA Technical Reports Server (NTRS)

    Mandin, J. Y.

    1979-01-01

    The method presented allows the line intensities to be calculated from either their equivalent widths, heights, or quantities deduced from spectra obtained by Fourier spectrometry. This method has proven its effectiveness in measuring intensities of 60 lines of the molecule H2O with a precision of 10%. However, this method cannot be applied to isolated lines.

  19. Atomic Data and Spectral Line Intensities for Ni XI

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Landi, E.

    2010-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ni XI. We include in the calculations the 10 lowest configurations, corresponding to 164 fine structure levels: 3s(sup 2)3p(sup 6), 3s(sup 2)3p(sup 5)3d, 3s(sup 2)3p(sup 4)3d(sup 2), 3s3p(sup 6)3d, 3s(sup 2)3p(sup 5)4l and 3s3p6 4l with l =.s, p, d. Collision strengths are calculated at five incident energies for all transitions: 7.1, 16.8, 30.2, 48.7 and 74.1 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.06 Ry and 0.25 Ry depending on the lower level. Calculations have been carried out using the Flexible Atomic Code and the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, combined with Close Coupling collision excitation rate coefficient available in the literature for the lowest 17 levels, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14) cu cm range and at an electron temperature of logT(sub c)(K)=6.1, corresponding to the maximum abundance of Ni XI. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database.

  20. Atomic data and spectral line intensities for Ca IX

    SciTech Connect

    Landi, E.; Bhatia, A.K.

    2014-11-15

    Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ca IX. We include in the calculations the 33 lowest configurations in the n=3,4, and 5 complexes, corresponding to 283 fine-structure levels in the 3l3l{sup ′}, 3l4l{sup ″}, and 3l5l{sup ‴} configurations, where l,l{sup ′}=s,p,d, l{sup ″}=s,p,d,f and l{sup ‴}=s,p,d,f,g. Collision strengths are calculated at five incident energies for all transitions: 5.8, 13.6, 24.2, 38.6, and 57.9 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.0055 Ry and 0.23 Ry depending on the levels involved. Calculations have been carried out using the Flexible Atomic Code and the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates calculated in the present work, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10{sup 8}–10{sup 14}  cm{sup −3} and at an electron temperature of logT{sub e}(K)=5.8, corresponding to the maximum abundance of Ca IX. Spectral line intensities are calculated, and their diagnostic relevance is discussed.

  1. Atomic Data and Spectral Line Intensities for CA XVII

    NASA Technical Reports Server (NTRS)

    Bhatia, A.K.; Landi, E.

    2007-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ca XVII. The configurations used are 2s(sup 2), 2s2p, 2p(sup 2), 2l3l', 214l' and 2s5l', with l = s,p and l' = s,p, d giving rise to 92 fine-structure levels in intermediate coupling. Collision strengths are calculated at seven incident energies (15, 30, 75, 112.5, 150, 187.5 and 225 Ry) for the transitions within the three lowest configurations corresponding to the 10 lowest energy levels, and five incident energies (75, 112.5, 150, 187.5 and 225 Ry) for transitions between the lowest five levels and the n = 3,4,5 configurations. Calculations have been carried out using the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, and R-Matrix results for the 2s2, 2s2p, 2p2 configurations available in the literature, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8)-10(exp 14)/cu cm at an electron temperature of log Te(K)=6.7, corresponding to the maximum abundance of Ca XVII. Spectral line intensities are calculated, and their diagnostic relevance L; discussed. This dataset will be made available in the next version of the CHIANTI database.

  2. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  3. Effect of Sodium Chloride on the Intensity of the Spectral Lines of Elements During ARC Discharge

    NASA Astrophysics Data System (ADS)

    Strunina, N. N.; Baisova, B. T.

    2016-01-01

    The effect of the carrier (NaCl) during arc discharge on the intensity of the lines for elements with various ionization potentials (Al, Ca, Fe, Mg, Si, Ti, Zn) was investigated. It was found that the intensity of the spectral lines of the elements increases with increase in the concentration of the carrier. The relative roles of the factors responsible for the increase in the intensity of the spectral lines (the plasma temperature, the intensity of the spectral lines of the elements, and the degree of ionization of the elements, the fl ow rate and residence time of the atoms in the plasma) were analyzed.

  4. Combining relative and absolute paleointensity methods to obtain high-resolution geomagnetic field intensity records: a case study of the Big Island, Hawaii (USA)

    NASA Astrophysics Data System (ADS)

    de Groot, L. V.; Dekkers, M. J.; Herrero-Bervera, E.; Biggin, A. J.

    2012-12-01

    Reliable records of absolute paleointensity as function of time for a given region are notoriously difficult to obtain. Yet such records are indispensible for model descriptions of the behavior of the geomagnetic field. Here, we take a new approach to compile a regional paleointensity curve for the Big Island of Hawaii (USA), completing the full vector description of the Earth's magnetic field for this region since its directional behavior is well known. Our approach consists of applying both absolute and relative paleointensity techniques on a sample set that comprises 57 independent sites on Hawaii; we provide a paleointensity curve for the past 1500 years. Firstly, we obtained a relative paleointensity record using the 'pseudo-Thellier' technique. The record was calibrated using 29 flows from the IGRF age range. To calibrate our relative record for older ages, we applied absolute paleointensity techniques: both Thellier-Thellier and multispecimen experiments. The large number of sites allows us to use stringent criteria to select only the most reliable absolute paleointensities. With this approach regional intensity curves with high resolution and precision can be successfully acquired. The obtained paleointensity curve for the Big Island of Hawaii reveals a step-wise decay of the intensity of the Earth's magnetic field since 1000 AD. We find an intensity of ~58 microTesla around 1000 AD, decaying to ~40 microTesla around 1400 AD, at a rate of about 0.5 microTesla per decade. Between 1400 and 1800 AD a relatively constant field intensity is suggested (a decay of just 0.05 microTesla per decade). The historically observed decay from 1800 AD onwards has a rate of approximately 0.3 microTesla per decade to the current field intensity of ~35 microTesla and is consistent with our data. Our results, although regional in character, support the trend proposed by Gubbins et al. (2006) rather than the trend of the GUFM1 model by Jackson et al. (2000). Gubbins, D., Jones

  5. Crystalline sulfur dioxide: Crystal field splittings, absolute band intensities, and complex refractive indices derived from infra-red spectra

    NASA Astrophysics Data System (ADS)

    Khanna, R. K.; Zhao, Guizhi; Ospina, M. J.; Pearl, J. C.

    The infra-red absorption spectra of thin crystalline films of sulfur dioxide at 90 K are reported in the 2700-450 cm -1 region. The observed multiplicity of the bands in the regions of fundamental modes is attributed to crystal field effects, including factor group and LO—TO splittings, and naturally present minor 34S, 36S and 18O substituted isotopic species. Complex refractive indices determined by an iterative Kramers—Kronig analysis of the extinction data, and absolute band strengths derived from them, are also reported in this region.

  6. Calculation of Intensity Ratios of Observed Infrared [Fe II] Lines

    NASA Astrophysics Data System (ADS)

    Deb, Narayan C.; Hibbert, Alan

    2010-03-01

    Two recent observational studies of the [Fe II] λ12567/λ16435 line ratio by Smith & Hartigan and Rodriguez-Ardila et al. have suggested that the available theoretical A-values could be incorrect to 10%-40%. We have carried out an extensive configuration interaction calculation of [Fe II] lines to investigate this claim, as well as the variability in observed line ratios for λ8617/λ9052 and λ8892/λ9227 of Dennefeld. For these transitions, we are generally in good agreement with the results of Nussbaumer & Storey, less so with those of Quinet et al. In comparison, the ratios derived from observations appear either to be less secure, or other factors influence those results.

  7. Spectrum line intensity as a surrogate for solar irradiance variations.

    PubMed

    Livingston, W C; Wallace, L; White, O R

    1988-06-24

    Active Cavity Radiometer Irradiance Monitor (ACRIM) solar constant measurements from 1980 to 1986 are compared with ground-based, irradiance spectrophotometry of selected Fraunhofer lines. Both data sets were identically sampled and smoothed with an 85-day running mean, and the ACRIM total solar irradiance (S) values were corrected for sunspot blocking (S(c)). The strength of the mid-photospheric manganese 539.4-nanometer line tracks almost perfectly with ACRIM S(e), Other spectral features formed high in the photosphere and chromosphere also track well. These comparisons independently confirm the variability in the ACRIM S(e), signal, indicate that the source of irradiance is faculae, and indicate that ACRIM S(e), follows the 11-year activity cycle. PMID:17842428

  8. A brief review of the intensity of lines 3C and 3D in neon-like Fe XVII

    SciTech Connect

    Brown, G V

    2007-06-13

    X-ray emission from neon-like Fe XVII has been measured with high-resolution spectrometers from laboratory or celestial sources for nearly seven decades. Two of the strongest lines regularly identified in these spectra are the {sup 1}P{sub 1} {yields} {sup 1}S{sub 0} resonance, and {sup 3}D{sub 1} {yields} {sup 1}S{sub 0} intercombination line, known as 3C and 3D, respectively. This paper gives a brief overview of measurements of the intensities of the lines 3C and 3D from laboratory and celestial sources, and their comparison to model calculations, with an emphasis on measurements completed using an electron beam ion trap. It includes a discussion of the measured absolute cross sections compared to results from modern atomic theory calculations, as well as the diagnostic utility of the relative intensity, R = I{sub 3C}/I{sub 3D}, as it applies to the interpretation of spectra measured from the Sun and extra-Solar sources.

  9. Atomic Data and Spectral Line Intensities for Ne III

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Thomas, R. J.; Landi, E.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    A number of satellites and rockets have been launched to observe radiation from the Sun and other astrophysical objects. Line radiation is emitted when the electron impact excited levels decay to the lower levels by photon emission. From this radiation, the physical parameters such as electron temperature and density of the astrophysical plasma, elemental abundance, and opacity can be inferred. Ne III lines have been observed in H II regions, Ne-rich filaments in supernovae, and planetary nebulae. The allowed line at 489.50 Angstroms due to the transition 2s(sup 2) 2p(sup 5) (sup 3) P2 (goes to) 2s(sup 2)2p(sup 4)(sup 3)P2 has been identified in the solar spectrum by Vernazza and Reeves using Skylab observations. Other Ne III lines in the solar EUV spectrum have been reported by Thomas and Neupert based on observations from the Solar EUV Rocket Telescope and Spectrograph (SERTS) instrument. Atomic data for Ne III have been calculated by using a set of programs developed at, University College, London. The Superstructure and Distorted Wave (DW) programs have been updated over the years. In the Superstructure program, configuration interaction can be taken into account and radial functions are calculated in a modified Thomas-Fermi-Amaldi potential. This is a statistical potential and depends on parameters lambda 1 which are determined by optimizing the weighted sum of term energies. They are found to be lambda(sub 0)=1.2467, lambda(sub 1)=1.1617, and lambda(sub 2)=1.0663. The relativistic corrections are included by using the Breit-Pauli Hamiltonian as a perturbation to the nonrelativistic Hamiltonian. The same potential is used to calculate reactance matrices in the DW approximation in LS coupling. Collision strengths in intermediate coupling are obtained by using term coupling coefficients obtained from the Superstructure program. In this calculation, the configurations used are 2s(sup 2)2p(sup 4), 2s2p(sup 5), 2s(sup 2)2p(sup 3)3s, 2s(sup 2)p(sup 3)3d giving rise

  10. Catalogue of equivalent widths and line intensities for prominences observed during 1964-1965

    NASA Technical Reports Server (NTRS)

    Rakhubovskiy, A. S.

    1973-01-01

    The method of observation and processing of the prominence spectra are described briefly. The equivalent widths, central intensities, half-widths and Doppler halfwidths are presented of the emission lines of the prominences.

  11. A room temperature CO2 line list with ab initio computed intensities

    NASA Astrophysics Data System (ADS)

    Zak, Emil; Tennyson, Jonathan; Polyansky, Oleg L.; Lodi, Lorenzo; Zobov, Nikolay F.; Tashkun, Sergey A.; Perevalov, Valery I.

    2016-07-01

    Atmospheric carbon dioxide concentrations are being closely monitored by remote sensing experiments which rely on knowing line intensities with an uncertainty of 0.5% or better. We report a theoretical study providing rotation-vibration line intensities substantially within the required accuracy based on the use of a highly accurate ab initio dipole moment surface (DMS). The theoretical model developed is used to compute CO2 intensities with uncertainty estimates informed by cross comparing line lists calculated using pairs of potential energy surfaces (PES) and DMS's of similar high quality. This yields lines sensitivities which are utilized in reliability analysis of our results. The final outcome is compared to recent accurate measurements as well as the HITRAN2012 database. Transition frequencies are obtained from effective Hamiltonian calculations to produce a comprehensive line list covering all 12C16O2 transitions below 8000cm-1 and stronger than 10-30 cm/molecule at T = 296 K.

  12. The determination of absolute intensity of 234mPa's 1001 keV gamma emission using Monte Carlo simulation.

    PubMed

    Begy, Robert-Csaba; Cosma, Constantin; Timar, Alida; Fulea, Dan

    2009-05-01

    The 1001 keV gamma line of (234m)Pa became important in gamma spectrometric measurements of samples with (238)U content with the advent of development of HpGe detectors of great dimension and high efficiency. In this study the emission probability of the 1001 keV (Y(gamma)) peak of (234m)Pa, was determined by gamma-ray spectrometric measurements performed on glass with Uranium content using Monte Carlo simulation code for efficiency calibration. This method of calculation was not applied for the values quoted in literature so far, at least to our knowledge. The measurements gave an average of 0.836 +/- 0.022%, a value that is in very good agreement to some of the recent results previously presented. PMID:19384056

  13. On the line intensity ratios of prominent Si II, Si III, and Si IV multiplets

    NASA Astrophysics Data System (ADS)

    Djeniže, S.; Srećković, A.; Bukvić, S.

    2010-01-01

    Line intensities of singly, doubly and triply ionized silicon (Si II, Si III, and Si IV, respectively) belonging to the prominent higher multiplets, are of interest in laboratory and astrophysical plasma diagnostics. We measured these line intensities in the emission spectra of pulsed helium discharge. The Si II line intensity ratios in the 3 s3 p22D-3 s24 p2Po, 3 s23 d2D-3 s24 f2Fo, and 3 s24 p2Po-3 s24 d2D transitions, the Si III line intensity ratios in the 3 s3 d3D-3 s4 p3Po, 3 s4 p3Po-3 s4 d3D, 3 s4 p3Po-3 s5 s3S, 3 s4 s3S-3 s4 p3Po, and 3 s4 f3Fo-3 s5 g3G transitions, and the Si IV line intensity ratios in the 4 p2Po-4 d2D and 4 p2Po-5 s2S transitions were obtained in a helium plasma at an electron temperature of about 17,000 ± 2000 K. Line shapes were recorded using a spectrograph and an ICCD camera as a highly-sensitive detection system. The silicon atoms were evaporated from a Pyrex discharge tube designed for the purpose. They represent impurities in the optically thin helium plasma at the silicon ionic wavelengths investigated. The line intensity ratios obtained were compared with those available in the literature, and with values calculated on the basis of available transition probabilities. The experimental data corresponded well with line intensity ratios calculated using the transition probabilities obtained from a Multi Configuration Hartree-Fock approximation for Si III and Si IV spectra. We recommend corrections of some Si II transition probabilities.

  14. Absolute integrated intensities of vapor-phase hydrogen peroxide (H202) in the mid-infrared at atmospheric pressure

    SciTech Connect

    Johnson, Timothy J.; Sams, Robert L.; Burton, Sarah D.; Blake, Thomas A.

    2009-09-01

    We report quantitative broadband infrared spectra of vapor-phase hydrogen peroxide (H2O2) with all spectra pressure broadened to atmospheric pressure. The spectra were generated by flowing a concentrated solution (83 weight%) of H2O2 into a gently heated disseminator and diluting with a flow of pure nitrogen carrier gas. The water vapor lines were subtracted from the resulting spectra to yield the spectrum of pure H2O2. Comparison with previous results for the ν6 band strength (including hot bands) compares favorably with the results of Klee et al. [(1999) J. Mol. Spectr. 195, 154] as well as HITRAN. The present results are 433 and 467 cm-2 atm-1 (±8% and ±3% at 298 and 323 K, respectively) for the band strength, matching well the Klee value (S = 467 cm-2 atm-1 at 296 K) for the integrated band. Other bands in the 520-7500 cm-1 interval and their potential for atmospheric monitoring are discussed.

  15. Emission intensities and line ratios from a fast neutral helium beam

    NASA Astrophysics Data System (ADS)

    Ahn, J.-W.; Craig, D.; Fiksel, G.; Den Hartog, D. J.; Anderson, J. K.; O'Mullane, M. G.

    2007-08-01

    The emission intensities and line ratios from a fast neutral helium beam is investigated in the Madison Symmetric Torus (MST) [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 1991]. Predicted He I line intensities and line ratios from a recently developed collisional-radiative model are compared with experiment. The intensity of singlet lines comes mostly (>95%) from the contribution of the ground state population and is very weakly dependent on the initial metastable fraction at the observation point in the plasma core. On the other hand, the intensity of triplet lines is strongly affected by the local metastable state (21S and 23S) populations and the initial metastable fraction plays an important role in determining line intensities. The fraction of local metastable states can only be estimated by making use of electron temperature (Te), electron density (ne), and effective ion charge (Zeff) profiles as inputs to the population balance equations. This leads triplet lines to be unusable for the investigation of their local plasma parameter dependence. The ratio of singlet lines at 667.8nm and 492.2nm (I667/I492) as well as the ratio of 667.8nm and 501.6nm lines (I667/I501) has been investigated for the dependence on Te and ne both theoretically and experimentally. I667/I492 shows strong dependence on ne with weak sensitivity to Te. Measurements and predictions agree quantitatively within a factor of 2. There has been no ratio of singlet lines identified to have strong enough Te dependence yet. The ratios are expected to be reasonably insensitive to the variation of Zeff.

  16. Emission intensities and line ratios from a fast neutral helium beam

    SciTech Connect

    Ahn, J-W.; Craig, D.; Fiksel, G.; Den Hartog, D. J.; Anderson, J. K.; O'Mullane, M. G.

    2007-08-15

    The emission intensities and line ratios from a fast neutral helium beam is investigated in the Madison Symmetric Torus (MST) [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 1991]. Predicted He I line intensities and line ratios from a recently developed collisional-radiative model are compared with experiment. The intensity of singlet lines comes mostly (>95%) from the contribution of the ground state population and is very weakly dependent on the initial metastable fraction at the observation point in the plasma core. On the other hand, the intensity of triplet lines is strongly affected by the local metastable state (2{sup 1}S and 2{sup 3}S) populations and the initial metastable fraction plays an important role in determining line intensities. The fraction of local metastable states can only be estimated by making use of electron temperature (T{sub e}), electron density (n{sub e}), and effective ion charge (Z{sub eff}) profiles as inputs to the population balance equations. This leads triplet lines to be unusable for the investigation of their local plasma parameter dependence. The ratio of singlet lines at 667.8 nm and 492.2 nm (I{sub 667}/I{sub 492}) as well as the ratio of 667.8 nm and 501.6 nm lines (I{sub 667}/I{sub 501}) has been investigated for the dependence on T{sub e} and n{sub e} both theoretically and experimentally. I{sub 667}/I{sub 492} shows strong dependence on n{sub e} with weak sensitivity to T{sub e}. Measurements and predictions agree quantitatively within a factor of 2. There has been no ratio of singlet lines identified to have strong enough T{sub e} dependence yet. The ratios are expected to be reasonably insensitive to the variation of Z{sub eff}.

  17. Forbidden lines of np/q/ ions. I - Detailed balance and line intensity ratios

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Lynch, J. P.

    1980-01-01

    The detailed balance equations are solved in the ground state terms of 37 ions of C, N, O, Ne, Mg, Si, S and Fe; atomic data for 235 transitions of these ions are tabulated, and 14 line ratios of q = 2,4 ions and eight line ratios of q = 3 ions are graphed. Forbidden emission lines of these ions are in the far and near UV, visible, and near and far IR regions of the spectrum. In addition, detailed calculations of the relative populations of the levels of the ground state are presented as a function of temperature and density.

  18. An attempt to determine the absolute geomagnetic field intensity in Southwestern Iceland during the Gauss-Matuyama reversal

    NASA Astrophysics Data System (ADS)

    Goguitchaichvili, Avto; Prévot, Michel; Thompson, John; Roberts, Neil

    1999-08-01

    We have measured the variation in the intensity of the geomagnetic field during the Gauss-Matuyama (N4-R3) polarity reversal by application of the Thelliers' method to specimens of lava flows from Hvalfjördur district in Western Iceland (Reynivallahals Mts.). Eleven lava flows all show very similar directions corresponding to an equatorial VGP (Plat=2.9°N, Plong=81.9°E, A95=4.2, K=119). Twenty-nine specimens from nine of the flows were pre-selected for palaeointensity determination on the basis that specimens from the same drill cores showed a single component of magnetisation upon thermal or AF demagnetisation, and possessed low magnetic viscosity and reversible susceptibility curves upon heating at 600-650°C. Observation that the directional data obtained in the course of the palaeointensity experiments occasionally showed substantial non-linearity indicates that a significant chemical remanent magnetization (CRM) can be acquired in the direction of the laboratory field during heating at T. For each double heating step we calculated the ratio of CRM( T) to the magnitude of the natural remanent magnetization (NRM( T)) in the direction of characteristic remanence (obtained independently from another specimen from the same core). When this ratio exceeded 15%, the paleointensity data was rejected. In addition, specimens for which the quality factor was less than 5 were rejected. Twelve reliable palaeointensity values were obtained from specimens representing five lava flows. The results confirm that the palaeointensity was substantially reduced during the N4-R3 reversal. The range of mean palaeointensity values obtained for the five flows is 8.8 to 20.5 and the overall mean is 14.8±4.6 μT. This corresponds to an equivalent VDM of 3.81±1.19 (10 22 A m 2). A comparison of all Thellier palaeointensity data from the R3 magnetozone in the Rayinivallahals Mts. area reveals a progressive although irregular increase in the palaeointensity between the Gauss

  19. Quantitative Kα line spectroscopy for energy transport in ultra-intense laser plasma interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Nishimura, H.; Fujioka, S.; Arikawa, Y.; Nakai, M.; Chen, H.; Park, J.; Williams, G. J.; Ozaki, T.; Shiraga, H.; Kojima, S.; Johzaki, T.; Sunahara, A.; Miyanaga, N.; Kawanaka, J.; Nakata, Y.; Jitsuno, T.; Azechi, H.

    2016-03-01

    Absolute Ka line spectroscopy is proposed for studying laser-plasma interactions taking place in the cone-guided fast ignition targets. X-ray spectra ranging from 20 to 100 keV were quantitatively measured with a Laue spectrometer. The absolute sensitivities of the Laue spectrometer system were calibrated using pre-characterized laser-produced x-ray sources and radioisotopes. The integrated reflectivity for the crystal is in good agreement with predictions by an open code for x-ray diffraction. The energy transfer efficiency from incident laser beams to hot electrons, as the energy transfer agency, is derived as a consequence of this work. The absolute yield of Au and Ta Ka lines were measured in the fast ignition experimental campaign performed at Institute of Laser Engineering, Osaka University. Applying the hot electron spectrum information from the electron spectrometer, an energy transfer efficiency of the incident LFEX [1], a kJ-class PW laser, to hot electrons was derived for a planar and cone-guided geometry.

  20. Intensity oscillations in Na(I) D1 and D2 lines

    NASA Technical Reports Server (NTRS)

    Kariyappa, R.; Pap, Judit M.

    1995-01-01

    The central intensities of Na(I) D1 and D2 linear profiles at the sites of the chromospheric bright points in the interior of the supergranulation cells were derived from photographic spectra. The observation scheme sampled spectra simultaneously in seven lines at a repetition rate of 12 sec. It is shown that the Na(I) D1 and D2 lines exhibit a four minute periodicity in their intensity oscillations. It is seen that the period of intensity oscillations decreases outwardly from the photosphere to the corona. It is surmised that the spatial and temporal relationships between intensity and/or velocity in the photosphere and chromosphere may explain the physical mechanisms of the underlying oscillations.

  1. Operation of the intensity monitors in beam transport lines at Fermilab during Run II¹

    DOE PAGESBeta

    Crisp, J.; Fellenz, B.; Fitzgerald, J.; Heikkinen, D.; Ibrahim, M. A.

    2011-10-06

    The intensity of charged particle beams at Fermilab must be kept within pre-determined safety and operational envelopes in part by assuring all beam within a few percent has been transported from any source to destination. Beam instensity monitors with toroidial pickups provide such beam intensity measurements in the transport lines between accelerators at FNAL. With Run II, much effort was made to continually improve the resolution and accuracy of the system.

  2. Intensity increases of actin layer-lines on activation of the Limulus muscle.

    PubMed Central

    Maéda, Y; Boulin, C; Gabriel, A; Sumner, I; Koch, M H

    1986-01-01

    Small angle x-ray diffraction patterns were recorded from isometrically contracting Limulus (horseshoe crab) telson levator muscle using a multiwire proportional-area detector on the storage ring DORIS. In the pattern a substantial increase in intensity is observed on the thin-filament-associated layer-line at 1/38 nm-1 (the first actin layer-line) with a maximum increase at a radial spacing of R = 0.07 nm-1 but there is a much smaller change in the intensity of the 5.9-nm layer-line, which also arises from the thin filament structure. The results suggest that during contraction the myosin heads, presumably being attached to the thin filaments, are arranged along the long-stranded helical tracks of the thin filaments but that the spatial relationship between the heads and the actin monomers varies. Intensity increases have also been observed (Maéda et al., manuscript in preparation) in the part of the patterns from frog muscle and barnacle muscle, which are attributable to the first actin layer-line. It is thus likely that the intensity increase of the first actin layer-line on the Limulus pattern is associated not with structural features which are special to Limulus muscle, but with the tension generating processes that are shared by muscles in general. Images FIGURE 1 FIGURE 2 PMID:3801566

  3. Ratios of molecular hydrogen line intensities in shocked gas - Evidence for cooling zones

    NASA Technical Reports Server (NTRS)

    Brand, P. W. J. L.; Moorhouse, A.; Bird, M.; Burton, M. G.; Geballe, T. R.

    1988-01-01

    Column densities of molecular hydrogen have been calculated from 19 infrared vibration-rotation and pure rotational line intensities measured at peak 1 of the Orion molecular outflow. The run of column density with energy level is similar to a simple coolng zone model of the line-emitting region, but is not well fitted by predictions of C-shock models current in the literature.

  4. Intensities and N2 collision-broadening coefficients measured for selected H2O absorption lines between 715 and 732 nm

    NASA Technical Reports Server (NTRS)

    Wilkerson, T. D.; Schwemmer, G.; Gentry, B.; Giver, L. P.

    1979-01-01

    Intensities and N2 collision-broadening coefficients are measured for 62 water vapor absorption lines between 715 and 732 nm potentially applicable to laser remote sensing of atmospheric water vapor. Absolute line strengths and widths were determined from spectra corrected for instrument resolution, air-path absorption and Lorentz and Doppler broadening for pure water vapor and water vapor-nitrogen mixtures in a multipass absorption cell with a base path length of 25 m (White cell). Line strengths are observed to range from 4 x 10 to the -25th to 4 x 10 to the -23rd kayser/molecule per sq cm, and collision broadening coefficients are found to be approximately equal to 0.1 kayser/atm.

  5. Small angle neutron scattering on an absolute intensity scale and the internal surface of diatom frustules from three species of differing morphologies.

    PubMed

    Garvey, C J; Strobl, M; Percot, A; Saroun, J; Haug, J; Vyverman, W; Chepurnov, V A; Ferris, J M

    2013-05-01

    The internal nanostructure of the diatoms Cyclotella meneghiniana, Seminavis robusta and Achnanthes subsessilis was investigated using small angle neutron scattering (SANS) to examine thin biosilica samples, consisting of isotropic (powder) from their isolated cell walls. The interpretation of SANS data was assisted by several other measurements. The N2 adsorption, interpreted within the Branuer-Emmet-Teller isotherm, yielded the specific surface area of the material. Fourier transform infrared (FTIR) and Raman spectroscopy indicates that the isolated material is amorphous silica with small amounts of organic cell wall materials acting as a filling material between the silica particles. A two-phase (air and amorphous silica) model was used to interpret small angle neutron scattering data. After correction for instrumental resolution, the measurements on two SANS instruments covered an extended range of scattering vectors 0.0011 nm(-1) < q < 5.6 nm(-1), giving an almost continuous SANS curve over a range of scattering vectors, q, on an absolute scale of intensity for each sample. Each of the samples gave a characteristic scattering curve where log (intensity) versus log (q) has a -4 dependence, with other features superimposed. In the high-q regime, departure from this behaviour was observed at a length-scales equivalent to the proposed unitary silica particle. The limiting Porod scattering law was used to determine the specific area per unit of volume of each sample illuminated by the neutron beam. The Porod behaviour, and divergence from this behaviour, is discussed in terms of various structural features and the proposed mechanisms for the bio-assembly of unitary silica particles in frustules. PMID:23377745

  6. Line intensities and self-broadening coefficients for the ν2 band of methyl chloride

    NASA Astrophysics Data System (ADS)

    Barbouchi Ramchani, A.; Jacquemart, D.

    2016-08-01

    The present report concerns measurements of lines intensities and self-broadening coefficients for 170 transitions of the ν2 band of both 12CH335Cl and 12CH337Cl isotopologues between 1291 and 1403 cm-1. This work is the continuation of a previous effort on the ν5 band (Barbouchi Ramchani et al., 2013). For these studies, spectra of CH3Cl have been recorded at room temperature using a rapid scan Bruker IFS120 HR interferometer. The line parameters have been retrieved using a Voigt profile and a multispectrum fitting procedure. The average accuracy of the line parameters obtained in this work has been estimated to be between 2% and 5% for line intensities and between 5% and 10% for self-broadening coefficients depending on the transitions. A global comparison with the experimental values existing in the literature has been performed. The measurements of line intensities have also been compared to calculated values from HITRAN and GEISA databases.

  7. Extracellular calcium is not an absolute requirement for tumoricidal activation of RAW-264 macrophage-like cell line.

    PubMed

    Gorecka-Tisera, A M; McCulloch, M A

    1986-08-01

    The purpose of these studies was to establish whether extracellular calcium (Cao2+) plays a role in the process of activation of RAW-264 macrophages for tumor cell killing. We found that these cells were capable of developing a significant level of cytolytic activity under treatment with lymphokine (LK) and lipopolysaccharide (LPS), in the absence of Cao2+ and that responses developed in Ca2+-free media were only 6-18% lower in comparison with the responses developed in the presence of Cao2+. The determination of 45calcium uptake in RAW-264 cells treated with LK and LPS showed that the rate of 45calcium uptake has displayed no increase during either the course of activation or in activated, highly cytolytic cells. Finally, three calcium channel blockers examined here: verapamil, diltiazem and flunarizine, with concentrations ranging from 1 X 10(-7) M - 2.5 X 10(-5) M, showed no inhibitory effect on the process of activation. Nifedipine, another calcium channel blocker, inhibited the development of cytolytic activity with concentrations ranging from 1 X 10(-6) M - 2.5 X 10(-5) M. It could be argued, however, that this inhibition was nonspecific, since this agent was 13 times more potent with regard to the calcium ionophore A23187-induced release of beta-glucuronidase, the function which is entirely dependent on Cao2+. Taken together, these results suggest that Cao2+ is not an absolute requirement for the process of tumoricidal activation of RAW-264 macrophages but it may play some supportive role in this process. PMID:3461096

  8. Absorption by ground-state lead atoms of the 283. 3-nm resonant line from a lead hollow cathode lamp. An absolute number density calibration

    SciTech Connect

    Simons, J.W. ); Oldenborg, R.C.; Baughcum, S.L. )

    1989-10-19

    An accurate absolute number density calibration curve for absorption by gaseous lead atoms of the 283.3-nm resonant line from a typical lead hollow cathode lamp is reported. This calibration shows the usual curvature in the Beer-Lambert plot for atomic absorption at moderate to high absorbances that is commonly attributed to self-absorption leading to line reversal in the source and/or preferential absorption at the line center when the absorber temperature is not much greater than the source Doppler temperature. A theoretical calculation utilizing a Doppler-limited Fourier transform spectrum of the 283.3-nm emission from the lamp and a tabulated value of the absorption cross section and accounting for the isotopic and nuclear hyperfine components in both the emission and absorption due to naturally occurring lead quantitatively reproduces the experimental calibration curve without any parameter adjustments. It is found that the curvature in the Beer-Lambert plot has more to do with the fact that the absorbing and emitting atoms are a mixture of isotopes giving several isotopic and nuclear hyperfine transitions at slightly different frequencies than it does with preferential absorption at line centers.

  9. Relation of the green coronal line intensity to sunspot areas and magnetic fields of different scales

    NASA Astrophysics Data System (ADS)

    Badalyan, O. G.; Bludova, N. G.

    2014-07-01

    The intensity of Fe XIV 530.3-nm green coronal line is compared quantitatively with the strength of magnetic fields of small and large scales and also with total sunspot areas for 1977-2001. A degree of similarity of appropriate synoptic maps is evaluated using correlation analysis. The green line intensity maps are constructed from data of its daily monitoring. Strengths of magnetic fields are calculated in a potential approximation using the photosphere observations of Wilcox Solar Observatory for a distance of 1.1 The calculations are performed separately for fields of large and small spatial scales. The total area of sunspots is obtained using data from the Greenwich Catalogue and its continuation by USAF/NOAA. The correlation has been calculated for the aggregate of areas (with a size of 20° in latitude and 30° in longitude) coinciding spatially on all maps. It is found that the most correlation between the green line intensity and coronal fields of small scales is observed in a zone of 0°-20°. The correlation with total sunspot areas (i.e., with local fields at the photosphere level) is substantially less here. In the higher-latitude zone 20°-40°, correlation of the green-line intensity with spot areas and small-scale coronal fields decreases. The large-scale fields have little influence on the green-line emission in the spot-formation zone. These results are the evidence of a complex nature of the effect of different-scale fields, arising as a result of dynamo activity in the subsurface (leptocline) and deep-lying (tachocline) layers of the convective zone, on the processes of the Sun's corona heating and green coronal line emission.

  10. Examining Helium Line Intensities and Ratios in a Linear Helium Plasma to Identify Te and ne

    NASA Astrophysics Data System (ADS)

    Ray, H.; Biewer, T. M.; Unterberg, E. A.; Fehling, D. T.; Isler, R. C.

    2015-11-01

    Oak Ridge National Laboratory's prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device dedicated to the understanding of plasma material interaction physics. A photomultiplier tube (PMT) based diagnostic system called a filterscope examines the visible light emission from Proto-MPEX. The filterscope is a non-invasive, high sensitivity, and high temporal resolution compact system with multiple PMT channels. Three PMTs contain He I narrow bandpass filters of wavelengths 667.9, 723.6, and 706.7 nm for line ratio analysis. Helium line intensities and ratios have been widely applied on astrophysical plasmas and machines such as JET and NSTX to determine profiles of electron temperatures, Te, and densities, ne. Ratios of the He I intensities measured by the filterscope are compared to calculated intensity ratios determined through a collisional radiative model (CRM) as follows: An excited He atom in state P will de-excite to a lower energy level Q by emitting a photon of a specific wavelength. A CRM uses the interactions P has with Q and other energy levels to calculate the population density of P. The calculated population density is used to determine the spectral line intensity of the wavelength analyzed. The aforementioned process is performed for each of the He I bandpass filters, and ratios dependent on Te and ne are calculated and compared to the filterscopes measured ratios. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  11. INTENSITY ENHANCEMENT OF O VI ULTRAVIOLET EMISSION LINES IN SOLAR SPECTRA DUE TO OPACITY

    SciTech Connect

    Keenan, F. P.; Mathioudakis, M.; Doyle, J. G.; Madjarska, M. S.; Rose, S. J.; Bowler, L. A.; Britton, J.; McCrink, L.

    2014-04-01

    Opacity is a property of many plasmas. It is normally expected that if an emission line in a plasma becomes optically thick, then its intensity ratio to that of another transition that remains optically thin should decrease. However, radiative transfer calculations undertaken both by ourselves and others predict that under certain conditions the intensity ratio of an optically thick to an optically thin line can show an increase over the optically thin value, indicating an enhancement in the former. These conditions include the geometry of the emitting plasma and its orientation to the observer. A similar effect can take place between lines of differing optical depths. While previous observational studies have focused on stellar point sources, here we investigate the spatially resolved solar atmosphere using measurements of the I(1032 Å)/I(1038 Å) intensity ratio of O VI in several regions obtained with the Solar Ultraviolet Measurements of Emitted Radiation instrument on board the Solar and Heliospheric Observatory satellite. We find several I(1032 Å)/I(1038 Å) ratios observed on the disk to be significantly larger than the optically thin value of 2.0, providing the first detection (to our knowledge) of intensity enhancement in the ratio arising from opacity effects in the solar atmosphere. The agreement between observation and theory is excellent and confirms that the O VI emission originates from a slab-like geometry in the solar atmosphere, rather than from cylindrical structures.

  12. Determination of sulfur in biodiesel microemulsions using the summation of the intensities of multiple emission lines.

    PubMed

    Young, Carl G; Amais, Renata S; Schiavo, Daniela; Garcia, Edivaldo E; Nóbrega, Joaquim A; Jones, Bradley T

    2011-05-15

    A method for the determination of sulfur in biodiesel samples by inductively coupled plasma optical emission spectrometry which uses microemulsion for sample preparation and the summation of the intensities of multiple emission lines has been developed. Microemulsions were prepared using 0.5 mL of 20% v/v HNO(3), 0.5 mL of Triton X-100, 2-3 mL of biodiesel sample, and diluted with n-propanol to a final volume of 10 mL. Summation of the emission intensities of multiple sulfur lines allowed for increased accuracy and sensitivity. The amounts of sulfur determined experimentally were between 2 and 7 mg L(-1), well below legislative standards for many countries. Recoveries obtained ranged from 72 to 119%, and recoveries obtained for the 182.562 nm line were slightly lower. This is most likely due to its lower sensitivity. Using microemulsion for sample preparation and the summation of the intensities of multiple emission lines for the successful determination of sulfur in biodiesel has been demonstrated. PMID:21482315

  13. Calculation of the water vapor line intensities for rotational transitions between high-excited energy levels

    NASA Astrophysics Data System (ADS)

    Egorov, O. V.; Voitsekhovskaya, O. K.; Kashirskii, D. E.

    2015-11-01

    The intensities of water vapor in the range of pure rotational transitions were calculated up to high quantum numbers (Jmax ~ 30 and Ka max ~ 25). The diagonalization of the effective rotational Hamiltonian, approximated by Pade-Borel method, is applied to obtain the eigenvectors. The centrifugal distortion perturbations in line intensities were taken into account by the traditional equations for matrix elements of the transformed dipole moment, including eight parameters, and previously developed by authors Pade approximant. Moreover, to conduct the calculations, the rotational wavefunctions of the symmetric rotor molecule were applied. The results were compared with the known theoretical data.

  14. Electron-impact excitation collision strengths and theoretical line intensities for transitions in S III

    SciTech Connect

    Grieve, M. F. R.; Ramsbottom, C. A.; Hudson, C. E.; Keenan, F. P.

    2014-01-01

    We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log T{sub e} (K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels arising from the six configurations—3s {sup 2}3p {sup 2}, 3s3p {sup 3}, 3s {sup 2}3p3d, 3s {sup 2}3p4s, 3s {sup 2}3p4p, and 3s {sup 2}3p4d—giving rise to 1378 individual lines and is undertaken using the recently developed RMATRX II plus FINE95 suite of codes. A detailed comparison is made with a previous R-matrix calculation and significant differences are found for some transitions. The atomic data are subsequently incorporated into the modeling code CLOUDY to generate line intensities for a range of plasma parameters, with emphasis on allowed ultraviolet extreme-ultraviolet emission lines detected from the Io plasma torus. Electron density-sensitive line ratios are calculated with the present atomic data and compared with those from CHIANTI v7.1, as well as with Io plasma torus spectra obtained by Far-Ultraviolet Spectroscopic Explorer and Extreme-Ultraviolet Explorer. The present line intensities are found to agree well with the observational results and provide a noticeable improvement on the values predicted by CHIANTI.

  15. Line positions, intensities and self-broadening coefficients for the ν5 band of methyl chloride

    NASA Astrophysics Data System (ADS)

    Barbouchi Ramchani, A.; Jacquemart, D.; Dhib, M.; Aroui, H.

    2013-05-01

    High resolution Fourier transform spectra have been recorded around 6.9 μm at room temperature using a rapid scan Bruker IFS 120 HR interferometer (unapodized Bruker resolution=0.005 cm-1). Transitions of both 12CH335Cl and 12CH337Cl isotopologues belonging to the ν5 perpendicular band have been studied. Line positions, intensities, and self-broadening coefficients have been retrieved using a multispectrum fitting procedure that allowed to fit simultaneously the whole set of experimental spectra recorded at various pressures of CH3Cl. The wavenumber calibration has been performed using the frequencies of CO2 transitions. The transition dipole moments squared have been determined for each measured line and the whole set of measurements has been compared with previous measurements and with values from HITRAN and GEISA databases. The rotational J and K dependencies of the self-broadening coefficients have been clearly observed and modeled using empirical polynomial expansions. The average accuracy of the line parameters obtained in this work has been estimated to be between 0.1×10-3 and 1×10-3 cm-1 for line positions, between 2% and 5% for line intensities and between 5% and 10% for self-broadening coefficients depending on the transitions.

  16. Communication: Visible line intensities of the triatomic hydrogen ion from experiment and theory

    NASA Astrophysics Data System (ADS)

    Petrignani, Annemieke; Berg, Max H.; Grussie, Florian; Wolf, Andreas; Mizus, Irina I.; Polyansky, Oleg L.; Tennyson, Jonathan; Zobov, Nikolai F.; Pavanello, Michele; Adamowicz, Ludwik

    2014-12-01

    The visible spectrum of H3 + is studied using high-sensitivity action spectroscopy in a cryogenic radiofrequency multipole trap. Advances are made to measure the weak ro-vibrational transitions from the lowest rotational states of H3 + up to high excitation energies providing visible line intensities and, after normalisation to an infrared calibration line, the corresponding Einstein B coefficients. Ab initio predictions for the Einstein B coefficients are obtained from a highly precise dipole moment surface of H3 + and found to be in excellent agreement, even in the region where states have been classified as chaotic.

  17. Communication: Visible line intensities of the triatomic hydrogen ion from experiment and theory

    SciTech Connect

    Petrignani, Annemieke; Berg, Max H.; Grussie, Florian; Wolf, Andreas; Mizus, Irina I.; Zobov, Nikolai F.; Polyansky, Oleg L.; Tennyson, Jonathan; Pavanello, Michele; Adamowicz, Ludwik

    2014-12-28

    The visible spectrum of H{sub 3}{sup +} is studied using high-sensitivity action spectroscopy in a cryogenic radiofrequency multipole trap. Advances are made to measure the weak ro-vibrational transitions from the lowest rotational states of H{sub 3}{sup +} up to high excitation energies providing visible line intensities and, after normalisation to an infrared calibration line, the corresponding Einstein B coefficients. Ab initio predictions for the Einstein B coefficients are obtained from a highly precise dipole moment surface of H{sub 3}{sup +} and found to be in excellent agreement, even in the region where states have been classified as chaotic.

  18. Study of NH3 Line Intensities in the THz and Far-IR Region

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan

    Ammonia (NH3) exists in the interstellar medium, late-type stars and giant planets of our solar system. Its temperature and abundance profiles in these environments, which are derived with its line parameters as fixed input , are commonly used to provide constraints on retrieving minor species. Therefore NH3 line parameters are essential for interpreting astrophysical and planetary spectra from Herschel, SOFIA, ALMA and JWST. However, our work under a predecessor grant with the APRA program revealed significant deficiencies in NH3 intensities in the terahertz and FIR region, including some weak Delta(K)=3 forbidden transitions predicted to be 100 times stronger. The Delta(K)=3 transitions are the ones connecting levels with different K values and therefore the only way other than collisions and l-doubled states to excite NH3 to K>0 levels. Their intensities have to be corrected to explain the observed high K excitation, such as the detection of NH3 (J,K) = (1,1), (2,2)&(14,14) and (18,18) transitions toward the galactic center star forming region Sgr B2, and to provide insights into the radiative- transfer vs. collision excitation mechanics of interstellar NH3. This proposal will remedy the serious deficiencies in the current databases involving NH3 line parameters in the terahertz and FIR region. We will target transitions with intensities greater than 10^{-23} cm-1/ (molecule/cm2) at 296 K, which will be among new astrophysical detections made by SOFIA, ALMA and JWST, and are 1000 times weaker than the strongest ground state transitions. We will retrieve new positions and intensities from existing laboratory spectra, use them to evaluate the current databases and ab initio calculations, and repair the line positions and intensities by replacing poorly calculated values with our new measurements. The proposed research will result in (1) a validated linelist containing the positions, intensities and lower state energies for the very important Delta(K)=3 NH3 FIR

  19. Line Positions and Intensities for the ν12 Band of 13C12CH_6

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Mantz, Arlan; Smith, Mary Ann H.

    2014-06-01

    High-resolution, high signal-to-noise spectra of mono-substituted 13C-ethane (13C12CH_6) in the 12.2 μm region were recorded with a Bruker IFS 125HR Fourier transform spectrometer. The spectra were obtained for four sample pressures at three different temperatures between 130 and 208 K using a 99% 13C-enriched ethane sample contained in a 20.38-cm long coolable absorption cell. A multispectrum nonlinear least squares fitting technique was used to fit the same intervals in the four spectra simultaneously to determine line positions and intensities. Similar to our previous analyses of 12C_2H_6 spectra in this same region, constraints were applied to accurately fit each pair of doublet components arising from torsional Coriolis interaction of the excited ν12 = 1 state with the nearby torsional ν_6 = 3 state. Line intensities corresponding to each spectrum temperature (130 K, 178 K and 208 K) are reported for 1660 ν12 absorption lines for which the assignments are known, and integrated intensities are estimated as the summation of the measured values. The measured line positions and intensities (re-scaled to 296 K) are compared with values in recent editions of spectroscopic databases. K. Sung, A. W. Mantz, L. R. Brown, et al., J. Mol. Spectrosc., 162 (2010) 124-134. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. Atkins, JQSRT, 53 (1995) 705-721. V. Malathy Devi, C. P. Rinsland, D. Chris Benner, et al., JQSRT, 111 (2010) 1234-1251 V. Malathy Devi, D. Chris Benner, C. P. Rinsland, et al., JQSRT, 111 (2010) 2481-2504. Research described in this paper was performed at Connecticut College, the College of William and Mary, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  20. Line Positions and Intensities of Monodeuterated Methane Between 2.2 and 2.5 Microns

    NASA Astrophysics Data System (ADS)

    Brown, Linda R.; Sung, K.; Nikitin, A. V.; Smith, M. H.; Mantz, A. W.; Tyuterev, V. G.; Rey, M.

    2012-10-01

    A new study of 12CH3D line positions and intensities was performed for the upper portion of the Enneadecad polyad between 4000 and 4550 cm-1. For this, FTIR spectra were recorded with D-enriched methane samples (at 80 K with a Bruker 125 IFS at 0.005 cm-1 resolution and at 291 K with the McMath-Pierce FTS at 0.011 cm-1 resolution, respectively). Line positions and intensities were retrieved by least square curve-fitting procedures and analyzed using the effective Hamiltonian and the effective Dipole moment expressed in terms of irreducible tensors operators adapted to symmetric top molecules. Initially, only the cold spectrum was used to identify quantum assignments and predict 12CH3D relative intensities in this region. Combining the two temperature datasets confirmed the assumed quantum assignments and also demonstrated the relative accuracies to be better than ±0.0002 cm-1 for line positions and at least ±6% for 1160 selected features. Including additional assignments from the room temperature spectra alone permitted 1362 line intensities of 12 bands (involving 23 vibrational symmetry components) to be reproduced with an RMS of 9%. Over 4085 selected positions for 12 bands were modeled to 0.008 cm-1. More work is needed to obtain a complete characterization of this complex polyad. This work is part of the ANR project "CH4@Titan" (ref: BLAN08-2_321467). Research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, the NASA Langley Research Center and Connecticut College under contracts and grants with the National Aeronautics and Space Administration. We acknowledge the LEFE-CHAT INSU project APOA1 (CNRS, France); the Groupement de Recherche International SAMIA between CNRS (France), RFBR (Russia) and CAS (China).

  1. Generalized in-line digital holographic technique based on intensity measurements at two different planes

    NASA Astrophysics Data System (ADS)

    Situ, Guohai; Ryle, James P.; Gopinathan, Unnikrishnan; Sheridan, John T.

    2008-02-01

    In-line digital holography based on two-intensity measurements [Zhang et al. Opt. Lett. 29, 1787 (2004)], is modified by introducing a π shifting in the reference phase. Such an improvement avoids the assumption that the object beam must be much weaker than the reference beam in strength and results in a simplified experimental implementation. Computer simulations and optical experiments are carried out to validate the method, which we refer to as position-phase-shifting digital holography.

  2. Line Intensities in the Far-Infrared Spectrum of H 2O 2

    NASA Astrophysics Data System (ADS)

    Perrin, A.; Flaud, J.-M.; Camy-Peyret, C.; Schermaul, R.; Winnewisser, M.; Mandin, J.-Y.; Dana, V.; Badaoui, M.; Koput, J.

    1996-04-01

    Using high resolution Fourier transform spectra (resolution 0.002 cm -1) recorded at the Instituto Ricerca Onde Electromagnetiche Firenze and at the Justus Liebig University Giessen, it has been possible to measure the relative intensities of lines in the far-infrared spectrum of H 2O 2in the 25-400 cm -1spectral region. These intensities were used as input data in a least-squares fit calculation in order to obtain the expansion parameters of the transition moment operator of the pure torsional-rotational transitions of H 2O 2. For these intensity calculations, the theoretical model takes into account the cos γ-type dependence of the dipole moment due to the large amplitude motion of the H atoms relative to the O-O bond, where 2γ is the torsion angle. The value of the dipole moment obtained from the fit of the observed intensities was then scaled to the value obtained from Stark effect measurements. Finally, a synthetic spectrum of the far infrared band of H 2O 2was generated, using the dipole moment expansion determined in this work for the line intensities and the parameters and the Hamiltonian matrix given in a previous analysis (C. Camy-Peyret, J.-M. Flaud, J. W. C. Johns, and M. Noel, J. Mol. Spectrosc.155,84-104 (1992)) for the line positions. In addition to the (Δ n= ±1, Δ Ka= ∓2) torsional-rotational resonances within the ground vibrational state, which are usually observed for H 2O 2, the Hamiltonian model takes explicitly into account both the vibration-rotation resonances involving the ground state and the v3= 1 vibrational state and the "staggering" effect which is due to the cispotential barrier.

  3. Absolute band intensities in the nu19/nu23 (530 cm(-1)) and nu7 (777 cm(-1)) bands of acetone ((CH3)2CO) from 232 to 295 K

    NASA Technical Reports Server (NTRS)

    Wang, W. F.; Stevenson, A.; Reuter, D. C.; Sirota, J. M.

    2000-01-01

    Absolute band intensities of acetone ((CH3)2CO) in the nu19/nu23 and nu7 band systems near 530 and 777 cm(-1), respectively, were measured at temperatures of 232, 262 and 295 K, using a Fourier transform infrared (FTIR) spectrometer. No evident temperature dependence for the band intensities was observed. The dipole moments and the fundamental band intensities were derived in the harmonic oscillator approximation. The results are useful for the spectroscopic retrieval of acetone concentrations in the upper atmosphere.

  4. Intensity Mapping across Cosmic Times with the Lyα Line

    NASA Astrophysics Data System (ADS)

    Pullen, Anthony R.; Doré, Olivier; Bock, Jamie

    2014-05-01

    We present a quantitative model of Lyα emission throughout cosmic history and determine the prospects for intensity mapping spatial fluctuations in the Lyα signal. Since (1) our model assumes at z > 6 the minimum star formation required to sustain reionization and (2) is based at z < 6 on a luminosity function (LF) extrapolated from the few observed bright Lyα emitters, this should be considered a lower limit. Mapping the line emission allows probes of reionization, star formation, and large-scale structure (LSS) as a function of redshift. While Lyα emission during reionization has been studied, we also predict the postreionization signal to test predictions of the intensity and motivate future intensity mapping probes of reionization. We include emission from massive dark matter halos and the intergalactic medium (IGM) in our model. We find agreement with current, measured LFs of Lyα emitters at z < 8. However, diffuse IGM emission, not associated with Lyα emitters, dominates the intensity up to z ~ 10. While our model is applicable for deep-optical or near-infrared observers like the James Webb Space Telescope, only intensity mapping will detect the diffuse IGM emission. We also construct a three-dimensional power spectrum model of the Lyα emission. Finally, we consider the prospects of an intensity mapper for measuring Lyα fluctuations while identifying interloper contamination for removal. Our results suggest that while the reionization signal is challenging, Lyα fluctuations can be an interesting new probe of LSS at late times when used in conjunction with other lines, e.g., Hα, to monitor low-redshift foreground confusion.

  5. Intensity mapping across cosmic times with the Lyα line

    SciTech Connect

    Pullen, Anthony R.; Doré, Olivier; Bock, Jamie

    2014-05-10

    We present a quantitative model of Lyα emission throughout cosmic history and determine the prospects for intensity mapping spatial fluctuations in the Lyα signal. Since (1) our model assumes at z > 6 the minimum star formation required to sustain reionization and (2) is based at z < 6 on a luminosity function (LF) extrapolated from the few observed bright Lyα emitters, this should be considered a lower limit. Mapping the line emission allows probes of reionization, star formation, and large-scale structure (LSS) as a function of redshift. While Lyα emission during reionization has been studied, we also predict the postreionization signal to test predictions of the intensity and motivate future intensity mapping probes of reionization. We include emission from massive dark matter halos and the intergalactic medium (IGM) in our model. We find agreement with current, measured LFs of Lyα emitters at z < 8. However, diffuse IGM emission, not associated with Lyα emitters, dominates the intensity up to z ∼ 10. While our model is applicable for deep-optical or near-infrared observers like the James Webb Space Telescope, only intensity mapping will detect the diffuse IGM emission. We also construct a three-dimensional power spectrum model of the Lyα emission. Finally, we consider the prospects of an intensity mapper for measuring Lyα fluctuations while identifying interloper contamination for removal. Our results suggest that while the reionization signal is challenging, Lyα fluctuations can be an interesting new probe of LSS at late times when used in conjunction with other lines, e.g., Hα, to monitor low-redshift foreground confusion.

  6. Variations of intensity in Rb D2 line at weak/intermediate fields

    NASA Astrophysics Data System (ADS)

    Ummal Momeen, M.; Rangarajan, G.; Deshmukh, P. C.

    2007-08-01

    Zeeman splitting in the D2 line of rubidium atoms (87Rb and 85Rb) has been studied using 'Doppler broadened' as well as 'saturation absorption spectroscopy'. While a linearly polarized beam was used for the former experiment, in the latter case a (π, σ±) polarization configuration was employed for both pump and probe beams. Zeeman lines have been observed by applying a field up to 5 mT. The field variation of relative line intensities in Doppler-broadened spectrum was determined following Tremblay et al and Nakayama's four-level model. For the saturation spectrum, a four-level model was used. Because the enhancement of absorption at the field is as low as 1 mT, the Fg = 2 to Fe = 3 transition for 87Rb can be used as the reference for laser locking. Level crossing is observed in 85Rb at fields less than 5 mT.

  7. Radiative and magnetic properties of solar active regions. I. Global magnetic field and EUV line intensities

    NASA Astrophysics Data System (ADS)

    Fludra, A.; Ireland, J.

    2008-05-01

    Context: The relationships between the photospheric magnetic flux and either the X-ray or extreme ultraviolet emission from the solar atmosphere have been studied by several authors. Power-law relations have been found between the total magnetic flux and X-ray flux or intensities of the chromospheric, transition region, and coronal emission lines in solar active regions. These relations were then used to infer the mechanism of the coronal heating. Aims: We derive accurate power laws between EUV line intensities and the total magnetic flux in solar active regions and discuss their applications. We examine whether these global power laws are capable of providing the diagnostics of the coronal heating mechanism. Methods: This analysis is based on EUV lines recorded by the Coronal Diagnostic Spectrometer (CDS) on SOHO for 48 solar active regions, as they crossed the central meridian in years 1996-1998. Four spectral lines are used: He I 584.3 Å (3×104 K), O V 629.7 Å (2.2×105 K), Mg IX 368.06 Å (9.5×105 K), and Fe XVI 360.76 Å (2.0×106 K). In particular, the Fe XVI 360.76 Å line, seen only in areas of enhanced heating in active regions or bright points, has not been used before for this analysis. Results: Empirical power laws are established between the total active region intensity in the lines listed above and the total magnetic flux. We demonstrate the usefulness of some spatially integrated EUV line intensities, I_T, as a proxy for the total magnetic flux, Φ, in active regions. We point out the approximate, empirical nature of the I_T-Φ relationships and discuss the interpretation of the global power index. Different power index values for transition region and coronal lines are explained by their different dependence on pressure under the assumption of hydrostatic loop models. However, the global power laws are dominated by the size of the active regions, and we demonstrate for the first time the difficulties in uniquely relating the power index in the

  8. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  9. INTENSITY MAPPING OF THE [C II] FINE STRUCTURE LINE DURING THE EPOCH OF REIONIZATION

    SciTech Connect

    Gong Yan; Cooray, Asantha; Silva, Marta; Santos, Mario G.; Bock, James; Bradford, C. Matt; Zemcov, Michael

    2012-01-20

    The atomic C II fine-structure line is one of the brightest lines in a typical star-forming galaxy spectrum with a luminosity {approx}0.1%-1% of the bolometric luminosity. It is potentially a reliable tracer of the dense gas distribution at high redshifts and could provide an additional probe to the era of reionization. By taking into account the spontaneous, stimulated, and collisional emission of the C II line, we calculate the spin temperature and the mean intensity as a function of the redshift. When averaged over a cosmologically large volume, we find that the C II emission from ionized carbon in individual galaxies is larger than the signal generated by carbon in the intergalactic medium. Assuming that the C II luminosity is proportional to the carbon mass in dark matter halos, we also compute the power spectrum of the C II line intensity at various redshifts. In order to avoid the contamination from CO rotational lines at low redshift when targeting a C II survey at high redshifts, we propose the cross-correlation of C II and 21 cm line emission from high redshifts. To explore the detectability of the C II signal from reionization, we also evaluate the expected errors on the C II power spectrum and C II-21 cm cross power spectrum based on the design of the future millimeter surveys. We note that the C II-21 cm cross power spectrum contains interesting features that capture physics during reionization, including the ionized bubble sizes and the mean ionization fraction, which are challenging to measure from 21 cm data alone. We propose an instrumental concept for the reionization C II experiment targeting the frequency range of {approx}200-300 GHz with 1, 3, and 10 m apertures and a bolometric spectrometer array with 64 independent spectral pixels with about 20,000 bolometers.

  10. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response

    SciTech Connect

    Troussel, Ph.; Villette, B.; Oudot, G.; Tassin, V.; Bridou, F.; Delmotte, F.; Krumrey, M.

    2014-01-15

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  11. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response.

    PubMed

    Troussel, Ph; Villette, B; Emprin, B; Oudot, G; Tassin, V; Bridou, F; Delmotte, F; Krumrey, M

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods. PMID:24517761

  12. Measuring Galaxy Clustering and the Evolution of [C II] Mean Intensity with Far-IR Line Intensity Mapping during 0.5 < z < 1.5

    NASA Astrophysics Data System (ADS)

    Uzgil, Bade; Aguirre, James E.; Bradford, Charles; Lidz, Adam

    2016-01-01

    Infrared fine-structure emission lines from trace metals are powerful diagnostics of the interstellar medium in galaxies. We explore the possibility of studying the redshifted far-IR fine-structure line emission using the three-dimensional (3D) power spectra obtained with an imaging spectrometer. The intensity mapping approach measures the spatio-spectral fluctuations due to line emission from all galaxies, including those below the individual detection threshold. The technique provides 3D measurements of galaxy clustering and moments of the galaxy luminosity function. Furthermore, the linear portion of the power spectrum can be used to measure the total line emission intensity including all sources through cosmic time with redshift information naturally encoded. As a case study, we consider measurement of [C II] autocorrelation in the 0.5 < z < 1.5 epoch, where interloper lines are minimized, using far-IR/submillimeter balloon-borne and future space-borne instruments with moderate and high sensitivity, respectively. In this context, we compare the intensity mapping approach to blind galaxy surveys based on individual detections. We find that intensity mapping is nearly always the best way to obtain the total line emission because blind, wide-field galaxy surveys lack sufficient depth and deep pencil beams do not observe enough galaxies in the requisite luminosity and redshift bins. Also, intensity mapping is often the most efficient way to measure the power spectrum shape, depending on the details of the luminosity function and the telescope aperture.

  13. Electron Temperature Measurement by a Helium Line Intensity Ratio Method in Helicon Plasmas

    NASA Astrophysics Data System (ADS)

    Boivin, R. F.; Balkey, M. M.; Blackburn, M. A.; Keiter, P. A.; Kline, J. L.; Scime, E. E.; Spangler, R.

    1999-10-01

    Te measurements in helicon plasmas are not an easy task. The presence of intense RF fields complicates the interpretation of the Langmuir probe curves. A spectroscopy technique based on the relative intensities of He I lines is used to measure Te in the HELIX plasmas. This non-intrusive diagnostic is based on the fact that the dependence on the electron energy of the excitation rate differs between singlet and triplet lines of the He atom. This method has been applied to measure Te in many plasma conditions and, lately has been extended to high-density, fusion edge plasmas. The validity of this technique to measure Te in RF plasmas has not yet been established. The wide range in density that can generated by HELIX (10^10 to 10^13 cm-3) makes it an ideal source to verify if this diagnostic can be used in such RF plasmas. At low density, this diagnostic is believed to be very reliable since the population of the emitting levels can be accurately estimated by assuming that all excitation originate from the ground state. At higher density, secondary processes become important and can seriously affect the validity of the diagnostic. We measured the excitation rate for many He lines and compared them to the excitation rate from ground state previously published. The validity density range for the diagnostic is presented together with the apparent excitation rate observed for the different transitions.

  14. Measuring galaxy clustering and the evolution of [C II] mean intensity with far-IR line intensity mapping during 0.5 < z < 1.5

    SciTech Connect

    Uzgil, B. D.; Aguirre, J. E.; Lidz, A.; Bradford, C. M.

    2014-10-01

    Infrared fine-structure emission lines from trace metals are powerful diagnostics of the interstellar medium in galaxies. We explore the possibility of studying the redshifted far-IR fine-structure line emission using the three-dimensional (3D) power spectra obtained with an imaging spectrometer. The intensity mapping approach measures the spatio-spectral fluctuations due to line emission from all galaxies, including those below the individual detection threshold. The technique provides 3D measurements of galaxy clustering and moments of the galaxy luminosity function. Furthermore, the linear portion of the power spectrum can be used to measure the total line emission intensity including all sources through cosmic time with redshift information naturally encoded. Total line emission, when compared to the total star formation activity and/or other line intensities, reveals evolution of the interstellar conditions of galaxies in aggregate. As a case study, we consider measurement of [C II] autocorrelation in the 0.5 < z < 1.5 epoch, where interloper lines are minimized, using far-IR/submillimeter balloon-borne and future space-borne instruments with moderate and high sensitivity, respectively. In this context, we compare the intensity mapping approach to blind galaxy surveys based on individual detections. We find that intensity mapping is nearly always the best way to obtain the total line emission because blind, wide-field galaxy surveys lack sufficient depth and deep pencil beams do not observe enough galaxies in the requisite luminosity and redshift bins. Also, intensity mapping is often the most efficient way to measure the power spectrum shape, depending on the details of the luminosity function and the telescope aperture.

  15. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  16. On-line measurement of wavefront aberration on optics caused by intense lasers

    NASA Astrophysics Data System (ADS)

    Xu, Zuodong; Liu, Fuhua; Jiang, Chang; Wang, Fei; Shao, Bibo; Ji, Yunfeng

    2015-05-01

    It is presented that the thermally induced transmitted wavefront aberration of a high-reflectivity sampling mirror was detected on line using a Shack-Hartmann wavefront sensor (SHWS) in the beam quality measurement of an intense laser. As a result of heat absorption in the sampling mirror with active aperture of 120 mm, thermally induced wavefront aberration emerged when the mirror was exposed to high laser intensity of several kilowatts per centimeter square. Time-dependent wavefront aberration curves were acquired, and the transmitted wavefronts were reconstructed based on Zernike mode reconstruction theory. The experimental results indicate that the magnitude of the dynamic transmitted wavefront aberration increases gradually with the growing heat deposit during laser irradiation. The maximum of wavefront aberration observed after irradiation for 5 seconds reaches 0.11 μm of root-mean-square value. After further analysis, the experimental results of dynamic aberration can be applied in modifications for the measurement results of intense laser beam quality or tests for the thermal stability of optics used in the intense laser systems.

  17. Measurement of the Relative Intensity of the Ly-(alpha) Lines in Fe 25+

    SciTech Connect

    Wong, K L; Beiersdorfer, P; Reed, K J; Osterheld, A L

    2002-06-18

    The intensity of the polarized Ly-{alpha}{sub 1} (2p{sub 3/2} {yields} 1s{sub 1/2}) transition has been measured relative to that of the unpolarized Ly-{alpha}{sub 2} (2p{sub 1/2} {yields} 1s{sub 1/2}) transition in Fe{sup 25+}. The measurements were made with the Livermore electron beam ion trap EBIT-II for beam energies from threshold to 2.5 times threshold. The results are compared to the corresponding intensity ratio predicted using excitation cross sections from distorted-wave calculations, which includes polarization, the M1(2s{sub 1/2} {yields} 1s{sub 1/2}) transition, and cascade contributions. Discrepancies are found that tend to confirm a recent report of a measurement of the Ly-{alpha} lines in Ti{sup 21+} performed on the Tokyo electron beam ion trap.

  18. Computer program for determining rotational line intensity factors for diatomic molecules

    NASA Technical Reports Server (NTRS)

    Whiting, E. E.

    1973-01-01

    A FORTRAN IV computer program, that provides a new research tool for determining reliable rotational line intensity factors (also known as Honl-London factors), for most electric and magnetic dipole allowed diatomic transitions, is described in detail. This users manual includes instructions for preparing the input data, a program listing, detailed flow charts, and three sample cases. The program is applicable to spin-allowed dipole transitions with either or both states intermediate between Hund's case (a) and Hund's case (b) coupling and to spin-forbidden dipole transitions with either or both states intermediate between Hund's case (c) and Hund's case (b) coupling.

  19. The neutral oxygen spectrum. 1: Collisionally excited level populations and line intensities under optically thin conditions

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Kastner, S. O.

    1995-01-01

    This is the first paper in a projected program to produce quantitative information on the spectrum of the neutral oxygen atom under a variety of excitation conditions. Radiative rates and effective collision strengths are assembled from the recent literature where available, or are calculated for as yet untreated transitions using the University College superstructure/distorted-wave computer package, to produce a complete set of atomic data for a 13 hybrid level model of neutral oxygen. Level populations and relative intensities for 28 allowed, inter-combination, and forbidden oxygen lines are computed, under optically thin conditions, for the electron density range 4.0 less than log N(sub e) less than 12.0 and the electron temperature values T(sub e) = 5000, 10,000, 20,000, 50,000, and 100,000 K. Preliminary applications to observed intercombination/allowed and forbidden/allowed line ratios are discussed.

  20. Low intensity noise and narrow line-width diode laser light at 540 nm

    NASA Astrophysics Data System (ADS)

    Wang, Lirong; Tamaki, Ryo; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun

    2015-05-01

    We present a convenient method to generate high quality single-frequency green light at a wavelength of 540 nm. It consists of a noise suppressed external cavity diode laser at a wavelength of 1080 nm by optical filtering and resonant optical feedback, and a frequency doubling of the fundamental light with an a-cut KTP crystal. Highly efficient conversion is realized by type II non-critical phase matching. A stable single-frequency operation with a maximum power of about 20 mW is performed for more than 3 h. Both the intensity noise and line-width reach the level of a monolithic nonplanar ring laser, which is well known for its extraordinarily narrow line-width and extremely low noise among available single-frequency operating lasers.

  1. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  2. Temperature Measurements in the Solar Transition Region Using N III Line Intensity Ratios

    NASA Technical Reports Server (NTRS)

    Doron, R.; Doschek, G. A.; Laming, J. M.; Feldman, U.; Bhatia, A. K.

    2003-01-01

    UV emission from B-like N and O ions a rather rare opportunity for recording spectral lines in a narrow wavelength range that can potentially be used to derive temperatures relevant to the solar transition region. In these ions, the line intensity ratios of the type (2s2p(sup 2) - 2p(sup 3)) / (2s(sup 2)2p - 2s2p(sup 2)) are very sensitive to the electron temperature. Additionally, the lines involving the ratios fall within a range of only - 12 A; in N III the lines fall in the 980 - 992 A range and in O IV in the 780 - 791 A range. In this work, we explore the use of these atomic systems, primarily in N III, for temperature diagnostics of the transition region by analyzing UV spectra obtained by the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer flown on the Solar and Heliospheric Observatory (SOHO). The N III temperature-sensitive line ratios are measured in more than 60 observations. Most of the measured ratios correspond to temperatures in the range 5.7x10(exp 4) - 6.7x10(exp 4) K. This range is considerably lower than the calculated temperature of maximum abundance of N III, which is approx. 7.6x10(exp 4) K. Detailed analysis of the spectra further indicates that the measured ratios are probably somewhat overestimated due to resonant scattering effects in the 2s(sup 2)2p - 2s2p(sup 2) lines and small blends in the 2s2p(sup 2) - 2p3 lines. Actual lower ratios would only increase the disagreement between the ionization balance calculations and present temperature measurements based on a collisional excitation model. In the case of the O IV spectra, we determined that due to the close proximity in wavelength of the weak line (2s2p(sup 2)-2p3 transitions) to a strong Ne VIII line, sufficiently accurate ratio measurements cannot be obtained. Subject headings: atomic data --- atomic processes --- Sun: transition region --- Sun: U V radiation --- techniques: spectroscopic

  3. The relative line strength and intensity of the N II 2143 doublet

    NASA Technical Reports Server (NTRS)

    Bucsela, Eric J.; Sharp, William E.

    1989-01-01

    The doublet emission from N II at 2139.7 A and 2143.6 A was observed by a 1.4-m scanning spectrometer with 3.1 A resolution in the daytime, high-altitude thermosphere during moderate levels of solar activity. The spectrometer viewed the earth's limb 5 deg below the local horizontal to give a nominal tangent height of 152 km. Both sub band heads of the nitric oxide gamma band system were resolved in the data at the resolution used. The emission features from N II are clearly evident on the short wavelength shoulder of the (1, 0) band. Synthetic profiles of the (1, 0) gamma band and the (0, 3) delta band of nitric oxide were fitted to the data using a chi-square analysis. These contributions were removed from the data leaving a residual emission, considered to be the N II doublet. A chi-square minimization of the data relative to a synthetic intensity profile was done. The minimum was for a line strength ratio between the 2139 A and 2143 A lines of 0.58 + or - 0.08. The mean solar EUV flux deduced from the intensity of the N II emission in this experiment is lower than other reported observations, consistent with a lower solar activity level.

  4. Line Intensities of Isotopic Carbonyl Sulfide (ocs) at 2.5 Micrometer

    NASA Astrophysics Data System (ADS)

    Toth, Robert A.; Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.

    2009-06-01

    We have measured line intensities of ^{16}O^{12}C^{32}S, ^{16}O^{13}C^{32}S, ^{16}O^{12}C^{33}S, ^{16}O^{12}C^{34}S, and ^{18}O^{12}C^{32}S in the 2.5 μm region for the first time to support planetary studies of the Venus atmosphere. Laboratory absorption spectra of OCS were recorded at 0.0033 cm^{-1} resolution at room temperature using a Bruker IFS 125-HR Fourier transform spectrometer at the Jet Propulsion Laboratory. Normal samples of OCS were used in this study, and sample impurities and isotopic abundances were determined from mass spectrum analysis. Optical densities sufficient to observe isotopic bands and weaker hot bands were achieved by using a multi-pass White cell and single pass gas cells in various path lengths, which were validated by analyzing near-IR CO_2 spectra. We present line intensities for almost 30 bands of the OCS isotopes excluding ground state bands of ^{16}O^{12}C^{32}S, which we have reported recently. We have Herman-Wallis factors determined for the individual bands. In some cases, it has been observed that band intensities normalized to 100% isotopic species show a significant deviation from that of the primary isotopic species (up to by 12.5%). No earlier measurements have been reported for these bands. Measurement precision and accuracies will be discussed. Research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration. We thank Drs. Stojan Madzunkov, John A. MacAskill, and Murray R. Darrach from the Atomic and Molecular Collision Group at Jet Propulsion Laboratory for recording mass spectrum of the OCS sample used in this work.

  5. Limitations to Accuracy in Extracting Characteristic Line Intensities From X-Ray Spectra

    PubMed Central

    Statham, Peter J.

    2002-01-01

    The early development of quantitative electron probe microanalysis, first using crystal spectrometers, then energy dispersive x-ray spectrometers (EDXS), demonstrated that elements could be detected at 0.001 mass fraction level and major concentrations measured within 2 % relative uncertainty. However, during this period of extensive investigation and evaluation, EDXS detectors were not able to detect x rays below 1 keV and all quantitative analysis was performed using a set of reference standards measured on the instrument. Now that EDXS systems are often used without standards and are increasingly being used to analyse elements using lines well below 1 keV, accuracy can be considerably worse than is documented in standard textbooks. Spectrum processing techniques found most applicable to EDXS have now been integrated into total system solutions and can give excellent results on selected samples. However, the same techniques fail in some applications because of a variety of instrumental effects. Prediction of peak shape, width and position for every characteristic line and measurement of background intensity is complicated by variations in response from system to system and with changing count rate. However, with an understanding of the fundamental sources of error, even a total system can be tested like a “black box” in areas where it is most likely to fail and thus establish the degree of confidence that should apply in the intended application. This approach is particularly important when the microanalysis technique is applied at lower electron beam voltages where the extraction of line intensities is complicated by extreme peak overlap and higher background levels.

  6. Predicting the intensity mapping signal for multi-J CO lines

    NASA Astrophysics Data System (ADS)

    Mashian, Natalie; Sternberg, Amiel; Loeb, Abraham

    2015-11-01

    We present a novel approach to estimating the intensity mapping signal of any CO rotational line emitted during the Epoch of Reionization (EoR). Our approach is based on large velocity gradient (LVG) modeling, a radiative transfer modeling technique that generates the full CO spectral line energy distribution (SLED) for a specified gas kinetic temperature, volume density, velocity gradient, molecular abundance, and column density. These parameters, which drive the physics of CO transitions and ultimately dictate the shape and amplitude of the CO SLED, can be linked to the global properties of the host galaxy, mainly the star formation rate (SFR) and the SFR surface density. By further employing an empirically derived SFR-M relation for high redshift galaxies, we can express the LVG parameters, and thus the specific intensity of any CO rotational transition, as functions of the host halo mass M and redshift z. Integrating over the range of halo masses expected to host CO-luminous galaxies, we predict a mean CO(1-0) brightness temperature ranging from ~ 0.6 μK at z = 6 to ~ 0.03 μK at z = 10 with brightness temperature fluctuations of ΔCO2 ~ 0.1 and 0.005 μK respectively, at k = 0.1 Mpc-1. In this model, the CO emission signal remains strong for higher rotational levels at z = 6, with langle TCO rangle ~ 0.3 and 0.05 μK for the CO J = 6arrow5 and CO J = 10arrow9 transitions respectively. Including the effects of CO photodissociation in these molecular clouds, especially at low metallicities, results in the overall reduction in the amplitude of the CO signal, with the low- and high-J lines weakening by 2-20% and 10-45%, respectively, over the redshift range 4 < z < 10.

  7. Line position and line intensity analyses of the high-resolution spectrum of H218O up to the First Triad and J = 17

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.; Chelin, P.

    2016-08-01

    Line position and line intensity analyses of the high-resolution spectrum of the H218O isotopic species of the water molecule are performed with the Bending-Rotation approach up to J = 17 and the First Triad of interacting states, (0 2 0), (1 0 0), and (0 0 1). The line position analysis involves microwave and terahertz transitions, ground state combination differences, far infrared and infrared lines, and experimental energy levels which were reproduced with a 1.2 unitless standard deviation. The data set considered in the line intensity analysis consists of 3707 infrared transitions recorded using absorption spectroscopy at room temperature which were fitted with a 1.4 unitless standard deviation. The results of both analyses are compared with previous investigations and are used to build a line position and line intensity database to update the HITRAN and GEISA databases. A comparison with the HITRAN 2012 database reveals that the new database yields intensity values closer to the experimental ones.

  8. Impact of intense pulsed light irradiation on cultured primary fibroblasts and a vascular endothelial cell line

    PubMed Central

    WU, DI; ZHOU, BINGRONG; XU, YANG; YIN, ZHIQIANG; LUO, DAN

    2012-01-01

    The aim of this study was to determine the effects of intense pulsed light (IPL) on cell proliferation and the secretion of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in human fibroblasts and vascular endothelial cell lines, and to investigate the effects of IPL on the mRNA expression levels of type I and III procollagens in cultured human fibroblasts. Foreskin fibroblasts and a vascular endothelial cell line (ECV034) were cultured and treated with various wavelengths and doses of IPL irradiation. After culture for 1, 12, 24 and 48 h following IPL irradiation, fibroblasts and the vascular endothelial cell line were harvested for investigation of morphological changes by light microscopy, cell proliferation viability by MTT assay, and VEGF and MMP secretions by ELISA. The mRNA expression levels of type I and III procollagens in the fibroblasts were detected by RT-PCR. No marked morphological changes were observed in the cultured fibroblasts compared with the control. Cell growth and cellular viability were increased in fibroblasts 24 and 48 h after IPL irradiation. The levels of type I and III procollagen mRNA expression in fibroblasts increased in a time-dependent manner. However, the IPL management had no impact on VEGF and MMP secretion levels in fibroblasts and the ECV034 cell line at any time-point after irradiation as well as cell morphology and cellular proliferation. IPL irradiation may induce cellular proliferation and promote the expression of procollagen mRNAs directly in cultured primary fibroblasts, which may primarily contribute to photorejuvenation. PMID:23170124

  9. A comparison of theoretical and solar-flare intensity ratios for the Fe XIX X-ray lines

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Fawcett, B. C.; Phillips, K. J. H.; Lemen, J. R.; Mason, H. E.

    1989-01-01

    Atomic data including energy levels, gf-values, and wavelengths are given for the Fe XIX transitions that give rise to lines in solar-flare and active-region X-ray spectra. Collision strengths and theoretical intensity ratios are presented for lines which occur in the 13.2-14.3-A range. Observed spectra are found to be consistent with those derived from the present Fe XIX atomic data. For the case of spectra in which the Fe XIX lines are very strong, such as those at the maxima of hot flares, two observed line features due to Fe XIX are shown to have larger intensities than calculated. The calculated Fe XIX and Ne IX line spectra are used to determine electron densities from Ne IX line ratios.

  10. Coronal line intensities for ions with fine-structured ground states - SI X

    NASA Astrophysics Data System (ADS)

    Saha, H. P.; Trefftz, E.

    1982-12-01

    The data of Saha and Trefftz (1982) are used to determine populations of the 15 lowest levels (2s2 2p, 2s2p2, 2p3) of Si X observed in the solar corona. A simple formula for the balance between the two ground state levels makes it possible to quickly estimate the relative importance of radiative and collisional excitations, and to determine the cascade contribution to the effective impact excitation rate. The present line intensity ratios diverge from those of Flower and Nussbaumer (1975) by approximately 5%, except for I272/I258, which is more than 10% less in the present calculations due to a 10% higher emissivity in I258.

  11. Hydrogen Balmer alpha intensity distributions and line profiles from multiple scattering theory using realistic geocoronal models

    NASA Technical Reports Server (NTRS)

    Anderson, D. E., Jr.; Meier, R. R.; Hodges, R. R., Jr.; Tinsley, B. A.

    1987-01-01

    The H Balmer alpha nightglow is investigated by using Monte Carlo models of asymmetric geocoronal atomic hydrogen distributions as input to a radiative transfer model of solar Lyman-beta radiation in the thermosphere and atmosphere. It is shown that it is essential to include multiple scattering of Lyman-beta radiation in the interpretation of Balmer alpha airglow data. Observations of diurnal variation in the Balmer alpha airglow showing slightly greater intensities in the morning relative to evening are consistent with theory. No evidence is found for anything other than a single sinusoidal diurnal variation of exobase density. Dramatic changes in effective temperature derived from the observed Balmer alpha line profiles are expected on the basis of changing illumination conditions in the thermosphere and exosphere as different regions of the sky are scanned.

  12. Line intensities and collisional-broadening parameters for the nu4 and nu6 bands of carbonyl fluoride

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1992-01-01

    Line intensities, air- and self-broadening parameters have been measured for selected lines in the nu4 (1243/cm) and nu6 (774/cm) bands of carbonyl fluoride at 296 and 215 K using a tunable diode-laser spectrometer. Measured line intensities are in good agreement +/- 6 percent with recently reported values derived from rotational analyses of the nu4 and nu6 bands. The measured average air-broadening coefficient at 296 K also agrees well (+/- 5 percent) with N2-broadening coefficients determined from microwave studies, while the average self-broadening coefficient reported here is smaller than a previously reported value by 45 percent.

  13. Nitrogen, oxygen and air broadened widths and relative intensities of N2O lines near 2450/cm

    NASA Technical Reports Server (NTRS)

    Hawkins, R. L.

    1982-01-01

    Spectra of the v sub 1 + 2v sub 2 and the weak underlying v sub 1 + 3v sub 2 - v sub 2 band of N2O near 2450/cm were analyzed by the nonlinear, least squares, whole band technique. The oxygen, nitrogen, and air broadened line widths and the relative line intensities were determined. The air broadened widths, for/m/3, are in agreement with those in the 1980 AFGL line listing and the relative band intensities also agree, within about 20% with the values in this listing.

  14. Line Intensities of CH3D in the Triad Region: 6-10 mu m

    SciTech Connect

    Brown, L. R.; Nikitin, A.; Benner, D. C.; Devi, V. M.; Smith, M.A.H.; Fejard, L.; Champion, J. P.; Tyuterev, Vl G.; Sams, Robert L.

    2004-06-30

    Line intensities of the three fundamentals of the 12CH3D Triad are modeled with an RMS of 3.2% using over 2100 observed values retrieved by multispectrum fitting of enriched sample spectra recorded with two Fourier transform spectrometers. The band strengths of the Triad in units of 10-18 cm-1/(molecule cm-2) at 296 K are, respectively, 2.33 for v6 (E) at 1161 cm-1, 1.75 for v3 (A1) at 1307 cm-1 and 0.571 for v5 (E) at 1472 cm-1. The total calculated absorption arising from 12CH3D Triad fundamentals is 4.65x10-18 cm-1/molecule cm-2) at 296K. In addition, some 740 intensities of nine hotbands are fitted to 8.1%; most of the hotband measurements belong to 2v6-v6 and v3+v6-v3 near 1160 cm-1, 2v3-v3 near 1304 cm-1. The other observed hotbands are v5 + v6-v6 2v5-v5, v5+v6-v5, v3+v5-v3, and v3+v5-v5.

  15. Transport of intense ion beams and space charge compensation issues in low energy beam lines (invited)

    SciTech Connect

    Chauvin, N.; Delferriere, O.; Duperrier, R.; Gobin, R.; Nghiem, P. A. P.; Uriot, D.

    2012-02-15

    Over the last few years, the interest of the international scientific community for high power accelerators in the megawatt range has been increasing. For such machines, the ion source has to deliver a beam intensity that ranges from several tens up to a hundred of mA. One of the major challenges is to extract and transport the beam while minimizing the emittance growth and optimizing its injection into the radio frequency quadrupole. Consequently, it is crucial to perform precise simulations and cautious design of the low energy beam transport (LEBT) line. In particular, the beam dynamics calculations have to take into account not only the space charge effects but also the space charge compensation of the beam induced by ionization of the residual gas. The physical phenomena occurring in a high intensity LEBT and their possible effects on the beam are presented, with a particular emphasis on space charge compensation. Then, beam transport issues in different kind of LEBTs are briefly reviewed. The SOLMAXP particle-in-cell code dedicated to the modeling of the transport of charge particles under a space charge compensation regime is described. Finally, beam dynamics simulations results obtained with SOLMAXP are presented in the case of international fusion materials irradiation facility injector.

  16. Intense gamma-ray lines from hidden vector dark matter decay

    SciTech Connect

    Arina, Chiara; Hambye, Thomas; Ibarra, Alejandro; Weniger, Christoph E-mail: thambye@ulb.ac.be E-mail: christoph.weniger@desy.de

    2010-03-01

    Scenarios with hidden, spontaneously broken, non-abelian gauge groups contain a natural dark matter candidate, the hidden vector, whose longevity is due to an accidental custodial symmetry in the renormalizable Lagrangian. Nevertheless, non-renormalizable dimension six operators break the custodial symmetry and induce the decay of the dark matter particle at cosmological times. We discuss in this paper the cosmic ray signatures of this scenario and we show that the decay of hidden vector dark matter particles generically produce an intense gamma ray line which could be observed by the Fermi-LAT experiment, if the scale of custodial symmetry breaking is close to the Grand Unification scale. This gamma line proceeds directly from a tree level dark matter 2-body decay in association with a Higgs boson. Within this model we also perform a determination of the relic density constraints taking into account the dark matter annihilation processes with one dark matter particle in the final state. The corresponding direct detection rates can be easily of order the current experimental sensitivities.

  17. Fourier transform spectroscopy of CO2 isotopologues at 1.6 μm: Line positions and intensities

    NASA Astrophysics Data System (ADS)

    Jacquemart, D.; Borkov, Yu. G.; Lyulin, O. M.; Tashkun, S. A.; Perevalov, V. I.

    2015-07-01

    The line positions and intensities of carbon dioxide isotopologues have been retrieved between 5900 and 6400 cm-1 region from Fourier transform spectra of 17O- and 18O-enriched carbon dioxide recorded in LADIR (Paris, France) with the Bruker IFS 125-HR. In total 1634 line positions and intensities of 20 bands of the 5 major CO2 isotopologues present in our sample 16O12C17O (39.48%), 17O12C17O (27.73%), 16O12C16O (15.20%), 16O12C18O (7.32%) and 17O12C18O (8.25%) are retrieved. All studied bands belong to the ΔP=8 (only for asymmetric species) and 9 series of transitions, where P = 2V1 +V2 + 3V3 is the polyad number (Vi are vibrational quantum numbers). The accuracy of the line position determination is about 0.3×10-3 cm-1 for the unblended and not very weak lines and the accuracy for the line intensities varies from 4% to 30% depending on the intensity of the line and on the extent of the line overlapping. For the 16O12C17O, 17O12C17O, 16O12C18O and 17O12C18O isotopologues the systematic comparisons have been performed with the recent CRDS measurements.

  18. Numerical and experimental study of atomic transport and Balmer line intensity in Linac4 negative ion source

    SciTech Connect

    Shibata, T. Nishida, K.; Hatayama, A.; Mattei, S.; Lettry, J.

    2015-04-08

    Time structure of Balmer H{sub α} line intensity in Linac4 RF plasma has been analyzed by the combined simulation model of atomic transport and Collisional-Radiative models. As a preliminary result, time variation of the line intensity in the ignition phase of RF plasma is calculated and compared with the experimental results by photometry. For the comparison, spatial distribution of the local H{sub α} photon emission rate at each time is calculated from the numerical model. The contribution of the local photon emission rates to the observed line intensity via optical viewing port is also investigated by application of the mock-up of the optical viewing port and the known light source. It has been clarified from the analyses that the higher and the lower peaks of the H{sub α} line intensity observed during 1 RF cycle is mainly due to the different spatial distributions in the electron energy distribution function and the resultant local photon emission rate. These results support previous suggestion that the existence of the capacitive electric field in axial direction leads to the higher/lower peaks of the line intensity.

  19. Absolute infrared intensities for F-113 and F-114 and an assessment of their greenhouse warming potential relative to other chlorofluorocarbons

    NASA Astrophysics Data System (ADS)

    Rogers, Jerry D.; Stephens, Robert D.

    1988-03-01

    The literature concerning the "greenhouse" warming potentials of Chlorofluorocarbons F-11, F-12, F-22, F-113, F-114, F-134a, and F-142b is reviewed. Additionally, infrared intensities are reported for each of the fundamental absorption bands of F-113 (CF2ClCFCl2) and F-114 (CF2ClCF2Cl) in the region between 8 and 20 μm. The measurements were made with a Fourier transform infrared spectrometer operated at 0.04 cm-1 apodized resolution. The total intensities measured for this region were 4905 cm-2 atm-1 for F-113 and 6064 cm-2 atm-1 for F-114, compared to a total intensity of 3404 cm-2 atm-1 for F-12 (CF2Cl2) in the same region. On the basis of these infrared intensities and the atmospheric lifetimes of F-113 and of F-114 relative to F-12, and on a per unit mass basis, F-113 and F-114 are about 0.8 and 1.9 times as effective, respectively, as F-12 in the "greenhouse" warming of the Earth.

  20. Recombination line intensities for hydrogenic ions. II - Case B calculations for C VI, N VII and O VIII

    NASA Technical Reports Server (NTRS)

    Storey, P. J.; Hummer, D. G.

    1988-01-01

    The intensities of recombination lines formed in extended, optically thim, photoionized plasmas such as those found in PN, H II regions, and winds of certain hot stars are an important source of information on chemical abundances and can sometimes provide estimates of electron temperature. In this paper, the intensities of the recombination lines of C VI, N VII, and O VIII are calculated, accounting for both electron and heavy particle collisions and assuming case B of Baker and Menzel. The computational procedure is explained. The intensities of lines formed by transitions n(u) - n(l) are tabulated for n(u) of 50 or less, n(l) of 29 or less, at log N(e) = 4(1)13 and 10 values of electron temperature in the interval 10,000 K to 500,000 K.

  1. Coupling between meridional wind nightly behavior and mid-latitude oxygen red 630.0 nm line intensity predawn enhancement

    NASA Astrophysics Data System (ADS)

    Didebulidze, Goderdzi; Gudadze, Nikoloz; Lomidze, Levan; Todua, Maya

    The coupling between meridional wind nightly behavior and winter time predawn enhancement (PE) in the mid-latitude oxygen red 630.0 nm line intensity at Abastumani (41.75 N, 42.82 E) is investigated. It is shown that red line intensity PE, which was considered as a result of increase in the photoelectron flux from magnetically conjugate regions, also can be caused by increase in the mid-latitude northward wind (or decrease in the southward one). In this case the observed mean monthly/seasonal nightly behavior of the red line intensity can be verified by the ionosphere F2 layer parameters observed at Tbilisi ionosphere station (41.65 N, 44.75 E -neighboring Abastumani) and the meridional component of the thermosphere wind given by Horizontal Wind Model 93 (HWM93). The estimation shows that the mean monthly/seasonal northward wind for 1957-1993 and the observed F2 layer peak density NmF2 and height hmF2 can be responsible for the PE in the red line intensity (LT 03 h-05 h), which is also noticeable in early spring and later fall. The observed seasonal midnight negative trend in the red line intensity is accompanied by its wintertime positive trend before morning twilight, which includes the PE and can be explained by long-term increase in the northward wind velocity. In these cases, the increase in the mid-latitude northward wind or decrease in the southward one following to the equatorial midnight temperature maximum (MTM) or similar phenomena could be important in the observed mid-latitude PE of the red line intensity.

  2. Electric dipole moment function and line intensities for the ground state of carbon monxide

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Jun; Wu, Jie; Liu, Hao; Cheng, Xin-Lu

    2015-08-01

    An accurate electric dipole moment function (EDMF) is obtained for the carbon monoxide (CO) molecule (X1Σ+) by fitting the experimental rovibrational transitional moments. Additionally, an accurate ab initio EDMF is found using the highly accurate, multi-reference averaged coupled-pair functional (ACPF) approach with the basis set, aug-cc-pV6Z, and a finite-field with ±0.005 a.u. (The unit a.u. is the abbreviation of atomic unit). This ab initio EDMF is very consistent with the fitted ones. The vibrational transition matrix moments and the Herman-Wallis factors, calculated with the Rydberg-Klein-Rees (RKR) potential and the fitted and ab initio EDMFs, are compared with experimental measurements. The consistency of these line intensities with the high-resolution transmission (HITRAN) molecular database demonstrates the improved accuracy of the fitted and ab initio EDMFs derived in this work. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374217 and 11474207).

  3. Extended line positions, intensities, empirical lower state energies and quantum assignments of NH3 from 6300 to 7000 cm-1

    NASA Astrophysics Data System (ADS)

    Sung, Keeyoon; Brown, Linda R.; Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.; Coy, Stephen L.; Lehmann, Kevin K.

    2012-07-01

    Nearly 4800 features of ammonia between 6300 and 7000 cm-1 with intensities ≥4×10-24 cm-1/(molecule·cm-2) at 296 K were measured using 16 pure NH3 spectra recorded at various temperatures (296-185 K) with the McMath-Pierce Fourier Transform Spectrometer at Kitt Peak National Observatory, AZ. The line positions and intensities were retrieved by fitting individual spectra based on a Voigt line shape profile and then averaging the values to form the experimental linelist. The integrated intensity of the region was 4.68×10-19 cm-1/(molecule·cm-2) at 296 K. Empirical lower state energies were also estimated for 3567 absorption line features using line intensities retrieved from 10 spectra recorded at gas temperature between 185 and 233 K. Finally, using Ground State Combination Differences (GSCDs) and the empirical lower state energy estimates, the quantum assignments were determined for 1096 transitions in the room temperature linelist, along with empirical upper state energies for 434 levels. The assignments correspond to seven vibrational states, as confirmed from recent ab initio calculations. The resulting composite database of 14NH3 line parameters will provide experimental constraints to ab initio calculations and support remote sensing of gaseous bodies including the atmospheres of Earth, (exo)planets, brown dwarfs, and other astrophysical environments.

  4. Theoretical intensity ratios for the UV lines of Mg VII, Si IX and S XI. [observation of solar atmosphere

    NASA Technical Reports Server (NTRS)

    Mason, H. E.; Bhatia, A. K.

    1978-01-01

    Energy levels, oscillator strengths, and electron collision strengths have been computed for the configurations 2s2 2p2, 2s 2p3, 2p4 of Mg VII, Si IX, and S XI. Level populations for the ground configuration and theoretical intensity ratios for the UV lines are tabulated for electron densities and temperatures appropriate to the solar atmosphere. The identification of the Mg VII, Si IX, and S XI UV lines is discussed.

  5. Discovery of Time Variation of the Intensity of Molecular Lines in IRC+10216 in The Submillimeter and Far Infrared Domains

    PubMed Central

    Cernicharo, J.; Teyssier, D.; Quintana-Lacaci, G.; Daniel, F.; Agúndez, M.; Prieto, L. Velilla; Decin, L.; Guélin, M.; Encrenaz, P.; García-Lario, P.; de Beck, E.; Barlow, M.J.; Groenewegen, M.A.T.; Neufeld, D.; Pearson, J.

    2015-01-01

    We report on the discovery of strong intensity variations in the high rotational lines of abundant molecular species towards the archetypical circumstellar envelope of IRC+10216. The observations have been carried out with the HIFI instrument on board Herschel1 and with the IRAM2 30-m telescope. They cover several observing periods spreading over 3 years. The line intensity variations for molecules produced in the external layers of the envelope most probably result from time variations in the infrared pumping rates. We analyze the main implications this discovery has on the interpretation of molecular line emission in the envelopes of Mira-type stars. Radiative transfer calculations have to take into account both the time variability of infrared pumping and the possible variation of the dust and gas temperatures with stellar phase in order to reproduce the observation of molecular lines at different epochs. The effect of gas temperature variations with stellar phase could be particularly important for lines produced in the innermost regions of the envelope. Each layer of the circumstellar envelope sees the stellar light radiation with a different lag time (phase). Our results show that this effect must be included in the models. The sub-mm and FIR lines of AGB stars cannot anymore be considered as safe intensity calibrators. PMID:26722620

  6. On the variations of O III forbidden line intensities in the spectrum of the planetary nebula IC 4997

    NASA Astrophysics Data System (ADS)

    Egikyan, A. G.

    1997-10-01

    The causes of asynchronous variations in the intensities of forbidden O III lines in the spectrum of the planetary nebula IC 4997 are considered. It is shown that the strengthening of the 4363-A line with a simultaneous weakening of the N1 and N2 lines can be explained by a severalfold increase of the mass-loss rate from the nucleus, up to 1-2 x 10 exp -7 solar mass/yr, over several years. The ionization model of the nebula under the combined effect of nucleus emission and the emission from a variable hot stellar wind with electron temperature of 500,000 K is used to calculate the theoretical line intensities. The calculations included 12 levels of O III. In the region of O III line formation, the electron density of 10 exp 6/cu cm and Te, which varies from 12,000 to 15,000 K, yield theoretical line intensities that are in best agreement with observations. The X-ray luminosity of the stellar wind from the nucleus at energies not less than 0.2 keV is on the order of 10 exp 35 erg/s, but the interstellar extinction rules out the possibility of observing this object.

  7. Using Multivariate Regression Model with Least Absolute Shrinkage and Selection Operator (LASSO) to Predict the Incidence of Xerostomia after Intensity-Modulated Radiotherapy for Head and Neck Cancer

    PubMed Central

    Ting, Hui-Min; Chang, Liyun; Huang, Yu-Jie; Wu, Jia-Ming; Wang, Hung-Yu; Horng, Mong-Fong; Chang, Chun-Ming; Lan, Jen-Hong; Huang, Ya-Yu; Fang, Fu-Min; Leung, Stephen Wan

    2014-01-01

    Purpose The aim of this study was to develop a multivariate logistic regression model with least absolute shrinkage and selection operator (LASSO) to make valid predictions about the incidence of moderate-to-severe patient-rated xerostomia among head and neck cancer (HNC) patients treated with IMRT. Methods and Materials Quality of life questionnaire datasets from 206 patients with HNC were analyzed. The European Organization for Research and Treatment of Cancer QLQ-H&N35 and QLQ-C30 questionnaires were used as the endpoint evaluation. The primary endpoint (grade 3+ xerostomia) was defined as moderate-to-severe xerostomia at 3 (XER3m) and 12 months (XER12m) after the completion of IMRT. Normal tissue complication probability (NTCP) models were developed. The optimal and suboptimal numbers of prognostic factors for a multivariate logistic regression model were determined using the LASSO with bootstrapping technique. Statistical analysis was performed using the scaled Brier score, Nagelkerke R2, chi-squared test, Omnibus, Hosmer-Lemeshow test, and the AUC. Results Eight prognostic factors were selected by LASSO for the 3-month time point: Dmean-c, Dmean-i, age, financial status, T stage, AJCC stage, smoking, and education. Nine prognostic factors were selected for the 12-month time point: Dmean-i, education, Dmean-c, smoking, T stage, baseline xerostomia, alcohol abuse, family history, and node classification. In the selection of the suboptimal number of prognostic factors by LASSO, three suboptimal prognostic factors were fine-tuned by Hosmer-Lemeshow test and AUC, i.e., Dmean-c, Dmean-i, and age for the 3-month time point. Five suboptimal prognostic factors were also selected for the 12-month time point, i.e., Dmean-i, education, Dmean-c, smoking, and T stage. The overall performance for both time points of the NTCP model in terms of scaled Brier score, Omnibus, and Nagelkerke R2 was satisfactory and corresponded well with the expected values. Conclusions

  8. Real Distribution of the Coronal Green Line Intensity and Modelling Study of Galactic Cosmic Ray Propagation

    NASA Astrophysics Data System (ADS)

    Gushchina, R. T.; Alania, M. V.; Gil, A.; Iskra, K.; Siluszyk, M.

    2003-07-01

    transport equation of galactic cosmic rays (GCR) has been numerically solved for different qA>0 (1996) and qA<0 (1987) epochs assuming that free path of GCR scattering in the interplanetary space is controlled by the Sun's coronal green line intensity (CGLI). We found some distinctions in the distribution of the expected heliolatitudinal gradients of GCR for two and three dimensional interplanetary magnetic field. INTRODUCTION. modulation of GCR in the interplanetary space is generally determined by four processesdiffusion, convection, drift and energy change of GCR particles due to interaction with the solar wind. The joint effect of all above mentioned processes result the 11year variation of GCR. In papers [1-3] are assumed that the general reason of the 11-year variation of GCR in the energy range more than 1 GeV is different structure of the irregularities of the IMF in the maxima and minima epochs of solar activity (SA) caused the radical changes of the dependence of diffusion coefficient on the rigidity of GCR particles. EXPERIMENTAL DATA AND METHOD OF INVESTIGATION. experimental data of sunspot numbers, sunspots' areas and CGLI (λ = 5303˚) show a considerable changes during the 11-year cycle of SA, while e.g. A the changes of the solar wind velocity are not so noticeable [4, 5]. An attempt to take into account influences of the real distributions of the sunspot's areas and the Sun's CGLI on the modulation of GCR considering delay time of the phenomena in the interplanetary space with respect to the processes on the Sun have been undertaken in papers [6-8]. One of parameters of SA contentiously observed on the Earth is the Sun's CGLI. One can suppose that a modulation of GCR by some means is controlled by the changes of the CGLI; particularly there is assumed that a scattering free path of GCR transport is related with the

  9. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  10. Infrared line intensity measurements in the v = 0-1 band of the ClO radical

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Howard, Carleton J.; Hammer, Philip D.; Goldman, Aaron

    1989-01-01

    Integrated line intensity measurements in the ClO-radical fundamental vibrational v = 0-1 band were carried out using a high-resolution Fourier transform spectrometer coupled to a long-path-length absorption cell. The results of a series of measurements designed to minimize systematic errors, yielded a value of the fundamental IR band intensity of the ClO-radical equal to 9.68 + or - 1.45/sq cm per atm at 296 K. This result is consistent with all the earlier published results, with the exception of measurements reported by Kostiuk et al. (1986) and Lang et al. (1988).

  11. Absolute frequency spectroscopy of CO2 lines at around 2.09 μm by combined use of an Er:fiber comb and a Ho:YLF amplifier.

    PubMed

    Gatti, D; Coluccelli, N; Gambetta, A; Di Lieto, A; Tonelli, M; Galzerano, G; Laporta, P; Marangoni, M

    2011-10-01

    The low-frequency tail of an octave-spanning supercontinuum (SC) generated by an Er:fiber comb is enhanced by a multipass Ho:YLF amplifier and used in a sum-frequency-generation scheme to obtain absolute referencing of a single-mode Tm-Ho:YAG laser tunable around 2.09 μm. By tuning the comb repetition frequency, the probing laser is scanned across the absorption lines of a CO(2) gas sample and highly accurate absorption profiles are measured. This approach can be readily scaled to any wavelength above ~2 μm. PMID:21964142

  12. Use of generalized population ratios to obtain Fe XV line intensities and linewidths at high electron densities

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1980-01-01

    A generalized method for obtaining individual level population ratios is used to obtain relative intensities of extreme ultraviolet Fe XV emission lines in the range 284-500 A, which are density dependent for electron densities in the tokamak regime or higher. Four lines in particular are found to attain quite high intensities in the high-density limit. The same calculation provides inelastic contributions to linewidths. The method connects level populations and level widths through total probabilities t(ij), related to 'taboo' probabilities of Markov chain theory. The t(ij) are here evaluated for a real atomic system, being therefore of potential interest to random-walk theorists who have been limited to idealized systems characterized by simplified transition schemes.

  13. Proposed rocket experiments to measure the profile and intensity of the solar He1584A resonance line

    NASA Technical Reports Server (NTRS)

    Judge, D. L.

    1978-01-01

    The intensity and profile of the helium resonance line at 584 A from the entire disc of the sun was investigated using a rocket-borne helium-filled spectrometer and a curve of growth technique. The line profile was found to be accurately represented by a Gaussian profile with full width at half maximum of 122 plus or minus 10m A while the integrated intensity was measured to be (2.6 plus or minus 1.3) x 10 to the 9th power/photons sec sq cm at solar levels of F sub 10.7 = 90.8 x 10 to the minus 22th power/sq m H sub z and R sub z = 27. The measured linewidth is in good agreement with previous spectrographic measurement but the integrated intensity is larger than most previous photoelectric measurements. However, the derived line center flux of (2.0 plus or minus 1.0) x 10 to the 10th power/photons sec sq cm A is in good agreement with values inferred from airglow measurements.

  14. Determination of plume temperature distribution based on the ratios of the radiation intensities of multiple CO2 lines

    NASA Astrophysics Data System (ADS)

    Cieszczyk, S.

    2015-05-01

    New inversion scheme for gas temperature distribution retrieval utilized CO2 spectrum between 2350 cm-1 and 2400 cm-1 is proposed. Inversion model is build base on neural networks. Considered spectral remote sensing method is commonly used for industrial and environmental monitoring. It is a passive single-ended sensor technique in which radiation intensity emerging from a studied object is analyzed. Quantitative investigation of heated gas radiation emission to determine temperature and gas mixture by infrared spectroscopy requires two components apart from optical radiation sensor. First appropriate spectral database and second efficient inversion techniques. In this study calculation of one-dimensional radiative transfer equation have been used for simulation of spectral radiation intensity. To increase quality of retrieval a spectrum preprocessing and feature extraction method is applied. Simulated spectra were parameterized and expressed as ratios of intensities of multiple rotational lines. Each neural network estimates temperature (NN response) at one point on studied path basing on given spectrum (NN input).

  15. Estimation of calcified tissues hardness via calcium and magnesium ionic to atomic line intensity ratio in laser induced breakdown spectra

    NASA Astrophysics Data System (ADS)

    Abdel-Salam, Z. A.; Galmed, A. H.; Tognoni, E.; Harith, M. A.

    2007-12-01

    Calcified tissues representing three different matrices, namely enamel of human teeth, shells and eggshell, have been studied via Laser Induced Breakdown Spectroscopy (LIBS) technique. The experimental CaII/CaI and MgII/MgI ratios have been measured, in view of the expected correlation between the extent of ionization caused by the laser induced shock wave (SW) and the hardness of the target. The ratio CaII/CaI between the ionic calcium line at 373.69 nm and the neutral line at 428.9 nm is obtained for enamel, shells and eggshell spectra, as well as the ratio MgII/MgI between the ionic magnesium line at 280.26 nm and the neutral line at 285.22 nm. The results show that such spectral lines intensities ratio differs for different matrices and is indeed related to the target materials hardness. It is also found that the MgII/MgI ratio is preferable as an indicator of hardness since these lines are less affected by self absorption. The SW front speed has been measured in the three cases and the obtained values confirm the proportionality to the target hardness. The results here obtained suggest the feasibility of the quantitative estimation of hardness for any other calcified tissues.

  16. Inequalities, Absolute Value, and Logical Connectives.

    ERIC Educational Resources Information Center

    Parish, Charles R.

    1992-01-01

    Presents an approach to the concept of absolute value that alleviates students' problems with the traditional definition and the use of logical connectives in solving related problems. Uses a model that maps numbers from a horizontal number line to a vertical ray originating from the origin. Provides examples solving absolute value equations and…

  17. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  18. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity.

    PubMed

    DeGregorio, Brett A; Weatherhead, Patrick J; Sperry, Jinelle H

    2014-05-01

    1 Anthropogenic alteration of landscapes can affect avian nest success by influencing the abundance, distribution, and behavior of predators. Understanding avian nest predation risk necessitates understanding how landscapes affect predator distribution and behavior. 2 From a sample of 463 nests of 17 songbird species, we evaluated how landscape features (distance to forest edge, unpaved roads, and power lines) influenced daily nest survival. We also used video cameras to identify nest predators at 137 nest predation events and evaluated how landscape features influenced predator identity. Finally, we determined the abundance and distribution of several of the principal predators using surveys and radiotelemetry. 3 Distance to power lines was the best predictor of predator identity: predation by brown-headed cowbirds (Molothrus ater), corvids (Corvus sp. and Cyanocitta cristata), racers (Coluber constrictor), and coachwhips (Masticophis flagellum) increased with proximity to power lines, whereas predation by rat snakes (Elaphe obsoleta) and raptors decreased. In some cases, predator density may reliably indicate nest predation risk because racers, corvids, and cowbirds frequently used power line right-of-ways. 4 Of five bird species with enough nests to analyze individually, daily nest survival of only indigo buntings (Passerina cyanea) decreased with proximity to power lines, despite predation by most predators at our site being positively associated with power lines. For all nesting species combined, distance to unpaved road was the model that most influenced daily nest survival. This pattern is likely a consequence of rat snakes, the locally dominant nest predator (28% of predation events), rarely using power lines and associated areas. Instead, rat snakes were frequently associated with road edges, indicating that not all edges are functionally similar. 5 Our results suggest that interactions between predators and landscape features are likely to be specific to

  19. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity

    PubMed Central

    DeGregorio, Brett A; Weatherhead, Patrick J; Sperry, Jinelle H

    2014-01-01

    1 Anthropogenic alteration of landscapes can affect avian nest success by influencing the abundance, distribution, and behavior of predators. Understanding avian nest predation risk necessitates understanding how landscapes affect predator distribution and behavior. 2 From a sample of 463 nests of 17 songbird species, we evaluated how landscape features (distance to forest edge, unpaved roads, and power lines) influenced daily nest survival. We also used video cameras to identify nest predators at 137 nest predation events and evaluated how landscape features influenced predator identity. Finally, we determined the abundance and distribution of several of the principal predators using surveys and radiotelemetry. 3 Distance to power lines was the best predictor of predator identity: predation by brown-headed cowbirds (Molothrus ater), corvids (Corvus sp. and Cyanocitta cristata), racers (Coluber constrictor), and coachwhips (Masticophis flagellum) increased with proximity to power lines, whereas predation by rat snakes (Elaphe obsoleta) and raptors decreased. In some cases, predator density may reliably indicate nest predation risk because racers, corvids, and cowbirds frequently used power line right-of-ways. 4 Of five bird species with enough nests to analyze individually, daily nest survival of only indigo buntings (Passerina cyanea) decreased with proximity to power lines, despite predation by most predators at our site being positively associated with power lines. For all nesting species combined, distance to unpaved road was the model that most influenced daily nest survival. This pattern is likely a consequence of rat snakes, the locally dominant nest predator (28% of predation events), rarely using power lines and associated areas. Instead, rat snakes were frequently associated with road edges, indicating that not all edges are functionally similar. 5 Our results suggest that interactions between predators and landscape features are likely to be specific to

  20. Line intensities and temperature-dependent line broadening coefficients of Q-branch transitions in the v2 band of ammonia near 10.4 μm

    NASA Astrophysics Data System (ADS)

    Sur, Ritobrata; Spearrin, R. Mitchell; Peng, Wen Y.; Strand, Christopher L.; Jeffries, Jay B.; Enns, Gregory M.; Hanson, Ronald K.

    2016-05-01

    We report measured line intensities and temperature-dependent broadening coefficients of NH3 with Ar, N2, O2, CO2, H2O, and NH3 for nine sQ(J,K) transitions in the ν2 fundamental band in the frequency range 961.5-967.5 cm-1. This spectral region was chosen due to the strong NH3 absorption strength and lack of spectral interference from H2O and CO2 for laser-based sensing applications. Spectroscopic parameters were determined by multi-line fitting using Voigt lineshapes of absorption spectra measured with two quantum cascade lasers in thermodynamically-controlled optical cells. The temperature dependence of broadening was measured over a range of temperatures between 300 and 600 K. These measurements aid the development of mid-infrared NH3 sensors for a broad range of gas mixtures and at elevated temperatures.

  1. Line positions and intensities of the phosphine (PH3) Pentad near 4.5μm

    SciTech Connect

    Malathy Devi, V.; Kleiner, Isabelle; Sams, Robert L.; Brown, Linda R.; Benner, D. Chris; Fletcher, Leigh N.

    2014-04-01

    In order to improve the spectroscopic database for remote sensing of the giant planets, line positions and intensities are determined for the five bands (2ν2, ν2 + ν4, 2ν4, ν1 and ν3) that comprise the Pentad of PH3 between 1950 and 2450 cm-1. Knowledge of PH3 spectral line parameters in this region is important for the exploration of dynamics and chemistry on Saturn, (using existing Cassini/VIMS observations) and future near-IR data of Jupiter from Juno and ESA’s Jupiter Icy Moons Explorer (JUICE). For this study, spectra of pure PH3 from two Fourier transform spectrometers were obtained: (a) five high-resolution (0.00223 cm-1), high signal-to-noise (~1800) spectra recorded at room temperature (298.2 K) with the Bruker IFS 125HR Fourier transform spectrometer (FTS) at the Pacific Northwest National Laboratory (PNNL), Richland, Washington and (b) four high-resolution (at 0.0115 cm-1 resolution), high signal-to-noise (~700) spectra recorded at room temperature in the region 1800–5200 cm-1 using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory (NSO) on Kitt Peak. Individual line parameters above 2150 cm-1 were retrieved by simultaneous multispectrum fittings of all five Bruker spectra, while retrievals with the four Kitt Peak spectra were done in the 1938–2168 cm-1 range spectrum by spectrum and averaged. In all, positions and intensities were obtained for more than 4400 lines. These included 53 A+A- split pairs of transitions (arising due to vibration–rotation interactions (Coriolis-type interaction) between the ν3 and ν1 fundamental bands) for K" = 3, 6, and 9. Over 3400 positions and 1750 intensities of these lines were ultimately identified as relatively unblended and modeled up to J = 14 and K = 12 with rms values of 0

  2. Reading between the Lines: The Case for Qualitative Research in Intensive Family Preservation Services.

    ERIC Educational Resources Information Center

    Wells, Kathleen; Freer, Richard

    1994-01-01

    Focuses on current knowledge of families' involvement in intensive family preservation services. Identifies gaps in knowledge pertaining to the context of service delivery, the theory of family preservation practice, the process of service delivery, and the conceptualization and meaning of service outcomes. Suggests that gaps might be…

  3. Recombination line intensities for hydrogenic ions. III - Effects of finite optical depth and dust

    NASA Technical Reports Server (NTRS)

    Hummer, D. G.; Storey, P. J.

    1992-01-01

    The effect on the recombination spectrum of hydrogen arising from: (1) finite optical thickness in the Lyman lines; (2) the overlapping of Lyman lines near the series limit; (3) the absorption of Lyman lines by dust or photoionization, and (4) the long-wave radiation emitted by dust is examined. Full account is taken of electron and heavy particle collisions in redistributing energy and angular momentum. It is seen that each of these deviations from the classical Case B leads to observable effects, and that dust influences the recombination spectrum in characteristic ways that may make possible new observational constraints on dust properties in nebulosities. On the basis of these calculations it is believed that the uncertainty in the determination of the helium-to-hydrogen abundance ratio in the universe may be larger than currently claimed.

  4. Ft-Ir Measurements of NH_3 Line Intensities in the 60 - 550 CM-1 Using Soleil/ailes Beamline

    NASA Astrophysics Data System (ADS)

    Sung, Keeyoon; Yu, Shanshan; Pearson, John; Manceron, Laurent; Kwabia Tchana, F.; Pirali, Olivier

    2015-06-01

    Ammonia (NH_3) has been found ubiquitous, e.g., in the interstellar medium, low-mass stars, Jovian planets of our solar system, and possibly in the low temperature exoplanets. Their spectroscopic line parameters are essential in the accurate interpretation of the planetary and astrophysical spectra observed with Herschel, SOFIA, ALMA, and JWST. In our previous paper, the NH_3 line positions in the far-IR region were studied for the ground state and ν_2 in an unprecedented accuracy, which revealed significant deficiencies in the NH_3 intensities, for instance, some weak ΔK = 3 lines were predicted to be ~100 times stronger. Measurement of line intensity for these lines in a consistent manner is demanded because the ΔK = 3 forbidden lines are only way other than collisions and l-doubled states to excite NH_3 to K > 0 levels. Recalling that NH_3 transition lines in the high J and K up to 18 were detected toward the galactic center in the star forming region of Sgr B_2, their accurate intensity measurements are critical in explaining the observed high K excitation, which will provide insights into radiative-transfer vs.levels. The interaction between a large amplitude torsional motion and the hyperfine coupling may also lead to a less known hyperfine effect, the so-called magnetic spin-torsion coupling, which was first studied by Heuvel and Dymanus and which has not yet been conclusively evidenced. In this talk, the magnetic hyperfine structure of the non-rigid methanol molecule will be investigated experimentally and theoretically. 13 hyperfine patterns were recorded using two molecular beam microwave spectrometers. These patterns, along with previously recorded ones,^c were analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling. The theoretical approach setup to analyze the observed data accounts for the spin-torsion coupling, in addition to the familiar magnetic spin-rotation and spin-spin couplings, and relies on symmetry

  5. A region of intense plasma wave turbulence on auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Frank, L. A.

    1976-01-01

    This report presents a detailed study of the plasma wave turbulence observed by HAWKEYE-1 and IMP-6 on high latitude auroral field lines and investigates the relationship of this turbulence to magnetic field and plasma measurements obtained in the same region.

  6. Monitoring the Intensity of Ice Formation on Overhead Electric Power Lines and Contact Networks

    SciTech Connect

    Titov, D. E.; Ugarov, G. G.; Soshinov, A. G.

    2015-05-15

    The conditions for ice to form on a conductor are explained. A hypothesis on the existence of a functional relation between the rate of growth of a mass deposited on a non-live conductor, the dew and desublimation points, and the temperature of the wire surface when there is no wind is suggested and proved. Equations for determining the density, maximum possible mass of the coating and the intensity with which they are formed are proposed, which take into account the temperature of the conductor, the temperature and humidity of the air, the direction and velocity of the wind and the electric field strength of the conductor. The equations are the basis of a proposed thermodynamic method of monitoring the intensity of ice formation. Versions of a technical method and algorithms of the functioning of ice-formation monitoring are proposed.

  7. Molecular iodine absolute frequencies. Final report

    SciTech Connect

    Sansonetti, C.J.

    1990-06-25

    Fifty specified lines of {sup 127}I{sub 2} were studied by Doppler-free frequency modulation spectroscopy. For each line the classification of the molecular transition was determined, hyperfine components were identified, and one well-resolved component was selected for precise determination of its absolute frequency. In 3 cases, a nearby alternate line was selected for measurement because no well-resolved component was found for the specified line. Absolute frequency determinations were made with an estimated uncertainty of 1.1 MHz by locking a dye laser to the selected hyperfine component and measuring its wave number with a high-precision Fabry-Perot wavemeter. For each line results of the absolute measurement, the line classification, and a Doppler-free spectrum are given.

  8. Study of the line intensity in the optical and magnetooptical spectra in holmium-containing paramagnetic garnets

    NASA Astrophysics Data System (ADS)

    Valiev, Uygun V.; Gruber, John B.; Burdick, Gary W.; Pelenovich, Vasiliy O.; Fu, Dejun; Dzhuraev, Davron R.

    2016-01-01

    Studies of line intensity in the optical and magneto-optical spectra in the holmium-containing paramagnetic garnet Ho3+:YAG were carried out within the visible spectrum at T = 85 K. Detailed investigation of the magnetic circularly polarized luminescence spectra at 85 and 300 K on 5S2 → 5I8 emission transition in Ho3+:YAG was carried out. A quasi-doublet state in the energy spectrum of the Ho3+ ions was observed, characterized by a significant magneto-optical activity, which is caused by a large Zeeman splitting of the quasi-doublet. The measurement of the magnetic circular polarized luminescence spectrum carried out within one of the emission lines of the luminescence band 5S2 → 5I8 in Ho3+:YAG at 85 K shows significant magneto-optical effects of the intensity change of the emitted light, compared to that measured for the other emission lines in the same luminescent band.

  9. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  10. Atomic Data and Spectral Line Intensities for Be-like Ions

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand; Landi, E.

    2008-01-01

    Atomic data and collision rates are needed to model the spectrum of optically thin astrophysical sources. Recent observations from solar instrumentation such as SOH0 and Hinode have revealed the presence of hosts of lines emitted by high-energy configurations from ions belonging to the Be-like to the 0-like isoelectronic sequences. Data for such configurations are often unavailable in the literature. We have started a program to calculate the atomic parameters and rates for the high-energy configurations of Be-like ions of the type ls2.21.nl' where n=3,4,5. We report on the results of this project and on the diagnostic application of the predicted spectral lines.

  11. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    NASA Astrophysics Data System (ADS)

    Hofmann, K. M.; Schell, S.; Wilkens, J. J.

    2013-07-01

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  12. NH3 quantum rotators in Hofmann clathrates: intensity and width of rotational transition lines

    NASA Astrophysics Data System (ADS)

    Vorderwisch, Peter; Sobolev, Oleg; Desmedt, Arnaud

    2004-07-01

    Inelastic structure factors for rotational transitions of uniaxial NH3 quantum rotators, measured in a Hofmann clathrate with biphenyl as guest molecule, agree with those calculated for free rotators. A finite intrinsic line width, found for rotational transitions involving the rotational level j=3 at low temperature, supports a recently suggested model based on resonant rotor-rotor coupling. Present address: LPCM, CNRS-Université de Bordeaux I, 351 Cours de Libération, Talence F-33405, France.

  13. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    SciTech Connect

    Hofmann, K. M.; Schell, S.; Wilkens, J. J.

    2013-07-26

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  14. A Central Line Care Maintenance Bundle for the Prevention of Central Line-Associated Bloodstream Infection in Non-Intensive Care Unit Settings.

    PubMed

    O'Neil, Caroline; Ball, Kelly; Wood, Helen; McMullen, Kathleen; Kremer, Pamala; Jafarzadeh, S Reza; Fraser, Victoria; Warren, David

    2016-06-01

    OBJECTIVE To evaluate a central line care maintenance bundle to reduce central line-associated bloodstream infection (CLABSI) in non-intensive care unit settings. DESIGN Before-after trial with 12-month follow-up period. SETTING A 1,250-bed teaching hospital. PARTICIPANTS Patients with central lines on 8 general medicine wards. Four wards received the intervention and 4 served as controls. INTERVENTION A multifaceted catheter care maintenance bundle consisting of educational programs for nurses, update of hospital policies, visual aids, a competency assessment, process monitoring, regular progress reports, and consolidation of supplies necessary for catheter maintenance. RESULTS Data were collected for 25,542 catheter-days including 43 CLABSI (rate, 1.68 per 1,000 catheter-days) and 4,012 catheter dressing observations. Following the intervention, a 2.5% monthly decrease in the CLABSI incidence density was observed on intervention floors but this was not statistically significant (95% CI, -5.3% to 0.4%). On control floors, there was a smaller but marginally significant decrease in CLABSI incidence during the study (change in monthly rate, -1.1%; 95% CI, -2.1% to -0.1%). Implementation of the bundle was associated with improvement in catheter dressing compliance on intervention wards (78.8% compliance before intervention vs 87.9% during intervention/follow-up; P<.001) but improvement was also observed on control wards (84.9% compliance before intervention vs 90.9% during intervention/follow-up; P=.001). CONCLUSIONS A multifaceted program to improve catheter care was associated with improvement in catheter dressing care but no change in CLABSI rates. Additional study is needed to determine strategies to prevent CLABSI in non-intensive care unit patients. Infect Control Hosp Epidemiol 2016;37:692-698. PMID:26999746

  15. A possible E-W asymmetry of the coronal emission line intensities and K-corona brightness

    NASA Astrophysics Data System (ADS)

    Mavromichalaki, H.; Tritakis, V.; Petropoulos, B.; Marmatsouri, E.; Vassilaki, A.; Belehaki, A.; Raphios, X.; Noens, J. C.; Pech, B.

    1994-08-01

    The analysis of the daily measurements of the coronal green and red line intensities as well as the K-corona brightness, which have been collected by the Pic-du-Midi Observatory, for the time period 1944-1974, has revealed some very interesting features. North-South (N-S) asymmetries for all these coronal intensities are confirmed again for this time period. The main point of this analysis is a strong evidence of longitudinal distribution of the coronal intensities as derived from the data record. In our effort to confirm this asymmetry, we have examined the yearly and monthly distribution of the asymmetry coefficient in each solar quadrant showing that the northeast (NE) quadrant appears the most active of all. We have also examined the intensity ratios measured at the East and West solar limbs which is continuously greater than the unit. A seasonal variation of this ratio has also been reported with a maximum during the winter period and a minimum during the summer period.

  16. Reduction of Central Line-Associated Bloodstream Infection Rates in Patients in the Adult Intensive Care Unit.

    PubMed

    Wallace, Mary C; Macy, Deborah L

    2016-01-01

    Central line-associated bloodstream infections (CLABSIs) prolong hospital stays and increase cost, morbidity, and mortality. An intensive care unit (ICU) in a suburban Baltimore hospital reduced CLABSI rates to zero in 2012, by revising central venous access device policies and initiatives, which included a bloodstream infection alert system, bundle compliance monitoring and routine evaluation, and use of positive displacement needleless connectors. The hospital's ICU infection rate decreased from 2.9/1000 central-line days in 2010 to 0.8 by 2011, 0 by 2012, and 0.91 in 2013. The utilization ratio was 0.64 in 2011, 0.60 in 2012, and 0.58 in 2013. CLABSI prevention involves all disciplines and requires staff accountability for patient safety. PMID:26714119

  17. Aerodynamic Mixing Downstream from Line Source of Heat in High-intensity Sound Field

    NASA Technical Reports Server (NTRS)

    Mickelson, William R; Baldwin, Lionel V

    1956-01-01

    Theory and measurement showed that the heat wake downstream from a line source is displaced by a transverse standing sound wave in a manner similar to a flag waving in a harmonic mode. With a 147 db, 104 cps standing wave, time-mean temperatures were reduced by an order of magnitude except near the displacement-pattern nodal points. The theory showed that a 161 db, 520 cps standing wave considerably increased the mixing in both the time-mean and instantaneous senses.

  18. The effect of sideband ratio on line intensity for Herschel/HIFI

    NASA Astrophysics Data System (ADS)

    Higgins, Ronan; Teyssier, David; Borys, Colin; Braine, Jonathan; Comito, Claudia; Delforge, Bertrand; Helmich, Frank; Olberg, Michael; Ossenkopf, Volker; Pearson, John; Shipman, Russell

    2014-07-01

    The Heterodyne Instrument for the Far Infrared (HIFI) on board the Herschel Space Observatory is composed of a set of fourteen double sideband mixers. We discuss the general problem of the sideband ratio (SBR) determination and the impact of an imbalanced sideband ratio on the line calibration in double sideband heterodyne receivers. The HIFI SBR is determined from a combination of data taken during pre-launch gas cell tests and in-flight. The results and some of the calibration artefacts discovered in the gas cell test data are presented here along with some examples of how these effects appear in science data taken in orbit.

  19. Association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury after intensity-modulated radiotherapy in lung cancer: a retrospective analysis.

    PubMed

    Chen, Jinmei; Hong, Jinsheng; Zou, Xi; Lv, Wenlong; Guo, Feibao; Hong, Hualan; Zhang, Weijian

    2015-11-01

    The aim of this study was to investigate the association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury (RILI) after intensity-modulated radiotherapy (IMRT) for lung cancer. The normal lung relative volumes receiving greater than 5, 10, 20 and 30 Gy (V5-30) mean lung dose (MLD), and absolute volumes spared from greater than 5, 10, 20 and 30 Gy (AVS5-30) for the bilateral and ipsilateral lungs of 83 patients were recorded. Any association of clinical factors and dose-volume parameters with Grade ≥2 RILI was analyzed. The median follow-up was 12.3 months; 18 (21.7%) cases of Grade 2 RILI, seven (8.4%) of Grade 3 and two (2.4%) of Grade 4 were observed. Univariate analysis revealed the located lobe of the primary tumor. V5, V10, V20, MLD of the ipsilateral lung, V5, V10, V20, V30 and MLD of the bilateral lung, and AVS5 and AVS10 of the ipsilateral lung were associated with Grade ≥2 RILI (P < 0.05). Multivariate analysis indicated AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI (P = 0.010, OR = 0.272, 95% CI: 0.102-0.729). Receiver operating characteristic curves indicated Grade ≥2 RILI could be predicted using AVS5 of the ipsilateral lung (area under curve, 0.668; cutoff value, 564.9 cm(3); sensitivity, 60.7%; specificity, 70.4%). The incidence of Grade ≥2 RILI was significantly lower with AVS5 of the ipsilateral lung ≥564.9 cm(3) than with AVS5 < 564.9 cm(3) (P = 0.008). Low-dose irradiation relative volumes and MLD of the bilateral or ipsilateral lung were associated with Grade ≥2 RILI, and AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI for lung cancer after IMRT. PMID:26454068

  20. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  1. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  2. Tracking objects outside the line of sight using 2D intensity images

    PubMed Central

    Klein, Jonathan; Peters, Christoph; Martín, Jaime; Laurenzis, Martin; Hullin, Matthias B.

    2016-01-01

    The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that using rare and expensive optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. Here we show that occluded objects can be tracked in real time using much simpler means, namely a standard 2D camera and a laser pointer. Our method fundamentally differs from previous solutions by approaching the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time. PMID:27577969

  3. Tracking objects outside the line of sight using 2D intensity images.

    PubMed

    Klein, Jonathan; Peters, Christoph; Martín, Jaime; Laurenzis, Martin; Hullin, Matthias B

    2016-01-01

    The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that using rare and expensive optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. Here we show that occluded objects can be tracked in real time using much simpler means, namely a standard 2D camera and a laser pointer. Our method fundamentally differs from previous solutions by approaching the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time. PMID:27577969

  4. Critical datasets for benchmarking atomic codes: Calibrated line intensities emitted by well-diagnosed solar plasmas

    NASA Astrophysics Data System (ADS)

    Feldman, U.; Landi, E.; Doschek, G. A.

    2006-10-01

    The accuracy of available spectral codes is dependent on the quality of the atomic data and transition rates that they include, and can only be tested by benchmarking predicted line emissivities with observations from plasmas whose physical properties are known with precision. In the present work we describe a few high-resolution spectra emitted by solar flare plasmas under condition of ionization equilibrium, and one quiet Sun off-disk region spectrum, and we propose these datasets as benchmarks for the assessment of the accuracy of existing spectral codes in the 1.84-1.90 Å and 3.17-3.22 Å X-ray ranges and in the 500-1600 Å far ultraviolet range.

  5. Ultraviolet observations of cool stars. IV - Intensities of Lyman-alpha and Mg II in epsilon Pegasi and epsilon Eridani, and line width-luminosity correlations

    NASA Technical Reports Server (NTRS)

    Mcclintock, W.; Linsky, J. L.; Henry, R. C.; Moos, H. W.

    1975-01-01

    A spectrometer on the Copernicus satellite has been used to confirm the existence of a line width-luminosity relation for the Ly-alpha and Mg II 2800-A chromospheric emission lines in K-type stars by observation of a K2 dwarf (epsilon Eri) and a K2 supergiant (epsilon Peg). Combined with previously reported observations of lines in three K giants (alpha Boo, alpha Tau, and beta Gem), the data are consistent with an identical dependence of line width on absolute visual magnitude for the Ca II K, Ly-alpha, and Mg II 2795-A lines. Surface fluxes of Ly-alpha, Mg II 2800-A, and O V 1218-A (upper limit) for epsilon Eri, and of Mg II 2800-A for epsilon Peg are also compared with values reported previously for the three giant stars.

  6. Designing a Method for AN Automatic Earthquake Intensities Calculation System Based on Data Mining and On-Line Polls

    NASA Astrophysics Data System (ADS)

    Liendo Sanchez, A. K.; Rojas, R.

    2013-05-01

    Seismic intensities can be calculated using the Modified Mercalli Intensity (MMI) scale or the European Macroseismic Scale (EMS-98), among others, which are based on a serie of qualitative aspects related to a group of subjective factors that describe human perception, effects on nature or objects and structural damage due to the occurrence of an earthquake. On-line polls allow experts to get an overview of the consequences of an earthquake, without going to the locations affected. However, this could be a hard work if the polls are not properly automated. Taking into account that the answers given to these polls are subjective and there is a number of them that have already been classified for some past earthquakes, it is possible to use data mining techniques in order to automate this process and to obtain preliminary results based on the on-line polls. In order to achieve these goal, a predictive model has been used, using a classifier based on a supervised learning techniques such as decision tree algorithm and a group of polls based on the MMI and EMS-98 scales. It summarized the most important questions of the poll, and recursive divides the instance space corresponding to each question (nodes), while each node splits the space depending on the possible answers. Its implementation was done with Weka, a collection of machine learning algorithms for data mining tasks, using the J48 algorithm which is an implementation of the C4.5 algorithm for decision tree models. By doing this, it was possible to obtain a preliminary model able to identify up to 4 different seismic intensities with 73% correctly classified polls. The error obtained is rather high, therefore, we will update the on-line poll in order to improve the results, based on just one scale, for instance the MMI. Besides, the integration of automatic seismic intensities methodology with a low error probability and a basic georeferencing system, will allow to generate preliminary isoseismal maps

  7. First on-line isotopic characterization of N2O above intensively managed grassland

    NASA Astrophysics Data System (ADS)

    Wolf, B.; Merbold, L.; Decock, C.; Tuzson, B.; Harris, E.; Six, J.; Emmenegger, L.; Mohn, J.

    2015-04-01

    The analysis of the four main isotopic N2O species (14N14N16O, 14N15N16O, 15N14N16O, 14N14N18O) and especially the intramolecular distribution of 15N ("site preference", SP) has been suggested as a tool to distinguish source processes and to help constrain the global N2O budget. However, current studies suffer from limited spatial and temporal resolution capabilities due to the combination of discrete flask sampling with subsequent laboratory-based mass-spectrometric analysis. Quantum cascade laser absorption spectroscopy (QCLAS) allows the selective high-precision analysis of N2O isotopic species at trace levels and is suitable for in situ measurements. Here, we present results from the first field campaign, conducted on an intensively managed grassland site in central Switzerland. N2O mole fractions and isotopic composition were determined in the atmospheric surface layer (at 2.2 m height) at a high temporal resolution with a modified state-of-the-art laser spectrometer connected to an automated N2O preconcentration unit. The analytical performance was determined from repeated measurements of a compressed air tank and resulted in measurement repeatability of 0.20, 0.12 and 0.11‰ for δ15Nα, δ15Nβ and δ18O, respectively. Simultaneous eddy-covariance N2O flux measurements were used to determine the flux-averaged isotopic signature of soil-emitted N2O. Our measurements indicate that, in general, nitrifier-denitrification and denitrification were the prevalent sources of N2O during the campaign and that variations in isotopic composition were due to alterations in the extent to which N2O was reduced to N2 rather than to other pathways, such as hydroxylamine oxidation. Management and rewetting events were characterized by low values of the intramolecular 15N site preference (SP), δ15Nbulk and δ18O, suggesting that nitrifier-denitrification and incomplete heterotrophic bacterial denitrification responded most strongly to the induced disturbances. The flux

  8. First on-line isotopic characterization of N2O emitted from intensively managed grassland

    NASA Astrophysics Data System (ADS)

    Wolf, B.; Merbold, L.; Decock, C.; Tuzson, B.; Harris, E.; Six, J.; Emmenegger, L.; Mohn, J.

    2015-01-01

    The analysis of the four main isotopic N2O species (14N14N16O, 14N15N16O, 15N14N16O, 14N14N18O) and especially the intramolecular distribution of 15N (site preference, SP) has been suggested as a tool to distinguish source processes and to help constrain the global N2O budget. However, current studies suffer from limited spatial and temporal resolution capabilities due to the combination of discrete flask sampling with subsequent laboratory-based mass spectrometric analysis. Quantum cascade laser absorption spectroscopy (QCLAS) allows selective high-precision analysis of N2O isotopic species at trace levels and is suitable for in situ measurements. Here, we present results from the first field campaign, conducted on an intensively managed grassland in central Switzerland. N2O mole fractions and isotopic composition were determined in the atmospheric surface layer (2 m height) at high temporal resolution with a modified state-of-the-art laser spectrometer connected to an automated N2O preconcentration unit. The analytical performance was determined from repeated measurements of a compressed air tank and resulted in measurement repeatability of 0.20, 0.12 and 0.11‰ for δ15Nα, δ15Nβ and δ18O, respectively. Simultaneous eddy-covariance N2O flux measurements were used to determine the flux-averaged isotopic signature of soil-emitted N2O. Our measurements indicate that in general, nitrifier-denitrification and denitrification were the prevalent sources of N2O during the campaign, and that variations in isotopic composition were rather due to alterations in the extent to which N2O was reduced to N2, than other pathways such as hydroxylamine oxidation. Management and rewetting events were characterized by low values of the intra-molecular 15N site preference (SP), δ15Nbulk and δ18O, suggesting nitrifier denitrification and incomplete heterotrophic bacterial denitrification responded most strongly to the induced disturbances. Flux-averaged isotopic composition of N

  9. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  10. Water absorption lines, 931-961 nm - Selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Gentry, B.; Schwemmer, G.; Wilkerson, T. D.

    1982-01-01

    Intensities were measured for 97 lines of H2O vapor between 932 and 961 nm. The lines were selected for their potential usefulness for remote laser measurements of H2O vapor in the earth's atmosphere. The spectra were obtained with several different H2O vapor abundances and N2 broadening gas pressures; the spectral resolution was 0.046/cm FWHM. Measured H2O line intensities range from 7 x 10 to the -25th to 7 x 10 to the -22nd/cm per (molecules/sq cm). H2O self-broadening coefficients were measured for 13 of these strongest lines; the mean value was 0.5/cm per atm. N2-collision-broadening coefficients were measured for 73 lines, and the average was 0.11 cm per atm HWHM. Pressure shifts in air were determined for a sample of six lines between 948 and 950 nm; these lines shift to lower frequency by an amount comparable to 0.1 of the collision-broadened widths measured in air or N2. The measured intensities of many lines of 300-000 band are much larger than expected from prior computations, in some cases by over an order of magnitude. Coriolis interactions with the stronger 201-000 band appear to be the primary cause of the enhancement of these line intensities.

  11. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  12. Detection of Formaldehyde Emission in Comet C/2002 T7 (LINEAR) at Infrared Wavelengths: Line-by-Line Validation of Modeled Fluorescent Intensities

    NASA Astrophysics Data System (ADS)

    DiSanti, M. A.; Bonev, B. P.; Magee-Sauer, K.; Dello Russo, N.; Mumma, M. J.; Reuter, D. C.; Villanueva, G. L.

    2006-10-01

    Formaldehyde (H2CO) was observed in comet C/2002 T7 (LINEAR) with spectral resolving power λ/Δλ~2.5×104 using the Cryogenic Echelle Spectrometer (CSHELL) at the NASA Infrared Telescope Facility, on UT 2004 May 5, 7, and 9. The observations, which sampled emission in the ν1 and ν5 rovibrational bands between 3.53 and 3.62 μm, represent the first spectrally resolved detection, at infrared wavelengths, of monomeric H2CO spanning a range of rotational energies. A comparison of measured line intensities with an existing fluorescence model permitted extraction of rotational temperatures and production rates. Two complementary approaches were used: (1) a correlation analysis that provided a direct global comparison of the observed cometary emissions with the model and (2) an excitation analysis that provided a robust line-by-line comparison. Our results validate the fluorescence model. The overall correlation coefficient was near or above 0.9 in our two principal grating settings. The excitation analysis provided accurate measures of rotational excitation (rotational temperature) on all three dates, with retrieved values of Trot clustering near 100 K. Through simultaneous measurement of OH prompt emission, which we use as a proxy for H2O, we obtained native production rates and mixing ratios for H2CO. The native production of H2CO varied from day to day, but its abundance relative to H2O, Xnative, remained approximately constant within the errors, which may suggest an overall homogeneous composition of the nucleus. We measured a mean mixing ratio Xnative= (0.79+/-0.09) × 10-2 for the three dates.

  13. Absolute quantification of UGT1A1 in various tissues and cell lines using isotope label-free UPLC-MS/MS method determines its turnover number and correlates with its glucuronidation activities.

    PubMed

    Xu, Beibei; Gao, Song; Wu, Baojian; Yin, Taijun; Hu, Ming

    2014-01-01

    Uridine 5'-diphosphate-glucuronosyltransferase (UGT)1A1 is a major phase II metabolism enzyme responsible for glucuronidation of drugs and endogenous compounds. The purpose of this study was to determine the expression level of UGT1A1 in human liver microsomes and human cell lines by using an isotope label-free LC-MS/MS method. A Waters Ultra performance liquid chromatography (UPLC) system coupled with an API 5500Qtrap mass spectrometer was used for the analysis. Two signature peptides (Pep-1, and Pep-2) were employed to quantify UGT1A1 by multiple reaction monitoring (MRM) approach. Standard addition method was used to validate the assay to account for the matrix effect. 17β-Estradiol was used as the marker substrate to determine UGT1A1 activities. The validated method has a linear range of 200-0.0195nM for both signature peptides. The precision, accuracy, and matrix effect were in acceptable ranges. UGT1A1 expression levels were then determined using 8 individual human liver microsomes, a pooled human liver microsomes, three UGT1A1 genotyped human liver microsomes, and four cell lines (Caco-2, MCF-7, Hela, and HepG2). The correlations study showed that the UGT1A1 protein levels were strongly correlated with its glucuronidation activities in human liver microsomes (R(2)=0.85) and in microsomes prepared from cell lines (R(2)=0.95). Isotope-labeled peptides were not necessary for LC-MS/MS quantitation of proteins. The isotope label-free absolute quantification method used here had good accuracy, sensitivity, linear range, and reproducibility, and were used successfully for the accurate determination of UGT1A1 from tissues and cell lines. PMID:24055854

  14. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  15. Measurements of [O I] λ6300/Hα Line Intensity Ratios for Four O Star H II Regions

    NASA Astrophysics Data System (ADS)

    Hausen, N. R.; Reynolds, R. J.; Haffner, L. M.

    2002-12-01

    We have used the Wisconsin Hα Mapper facility to measure the [O I] λ6300/Hα line intensity ratios for four O star H II regions: S27 (observation coordinates l=6.3d,b=+23.6d), S252 (l=190.1d,b=+0.6d), S261 (l=194.1d,b=-1.9d), and S264 (l=195.1d,b=-12.0d). We find that the ratios range from 0.0015 to 0.0053. These results are roughly a factor of 10 lower than measured [O I]/Hα ratios in directions that sample the warm ionized component of the interstellar medium. This difference implies a significantly lower hydrogen ionization ratio n(H+)/n(H0) or higher electron temperature in the diffuse ionized gas compared with that in the bright discrete O star H II regions.

  16. Laboratory Measurements of the X-ray Line Emission from Neon-like Fe XVII

    NASA Technical Reports Server (NTRS)

    Brown, G. V.; Beiersdorfer, P.; Chen, H.; Scofield, J. H.; Boyce, K. R.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Gu, M. F.; Kahn, S. M.

    2006-01-01

    We have conducted a systematic study of the dominant x-ray line emission from Fe XVII. These studies include relative line intensities in the optically thin limit, intensities in the presence of radiation from satellite lines from lower charge states of iron, and the absolute excitation cross sections of some of the strongest lines. These measurements were conducted at the Lawrence Livermore National Laboratory electron beam ion trap facility using crystal spectrometers and a NASA-Goddard Space Flight Center microcalorimeter array.

  17. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  18. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed. PMID:26022836

  19. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  20. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  1. Infrared spectroscopy of 17O- and 18O-enriched carbon dioxide: Line positions and intensities in the 4681-5337 cm-1 region

    NASA Astrophysics Data System (ADS)

    Borkov, Yu. G.; Jacquemart, D.; Lyulin, O. M.; Tashkun, S. A.; Perevalov, V. I.

    2015-07-01

    The line positions and intensities of carbon dioxide isotopologues have been retrieved in the 4681-5337 cm-1 spectral range from Fourier transform spectra of carbon dioxide recorded in LADIR (Paris, France) with the Bruker IFS 125-HR [Jacquemart D, et al., J Quant Spectrosc Radiat Transf 2012;113:961-975]. In total 6386 line positions and intensities of 89 bands of 12 isotopologues 16O12C16O, 16O13C16O, 16O12C18O, 16O12C17O, 16O13C18O, 16O13C17O, 18O12C18O, 17O12C18O, 17O12C17O, 18O13C18O, 17O13C18O, and 17O13C17O have been retrieved. 23 bands were newly assigned. All studied bands belong to the ΔP=7 series of transitions, where P = 2V1 +V2 + 3V3 is the polyad number (Vi are vibrational quantum numbers). The accuracy of the line position measurement is about 0.3×10-3 cm-1 for the unblended and not very weak lines. The accuracy of the line intensities varies from 4% to 15% depending on the isotopologue, on the intensity of the line and on the extent of the line overlapping. The observed intensities were used to fit the effective dipole moment parameters for the ΔP=7 series of transitions in 16O12C18O, 16O12C17O, 12C17O2, 17O12C18O, 16O13C17O, 13C17O2 and 17O13C18O isotopologues of carbon dioxide.

  2. Calculation of K Shell Intensity Ratios and Line Widths of Ti and some of its compounds by means of 5,96 keV energy

    NASA Astrophysics Data System (ADS)

    Kağan Köksal, Oğuz; Apaydın, Gökhan; Cengiz, Erhan; Karabulut, Kazım

    2016-04-01

    K shell intensity ratios and Line Widths of pure Ti and some of its compounds have been determined experimentally using an Ultra-LEGe detector with resolution 140 eV at 5.9 keV. The samples were excited 5.96 keV photons emitted from a 55Fe radioisotope source with 50 mCi activity. The experimental values of the K shell intensity ratios have been compared with the experimental and theoretical values available in the literature for pure Ti and line widths have been only compared with a theoretical value for pure Ti.

  3. Relative coronal abundances derived from X-ray observations 3: The effect of cascades on the relative intensity of Fe (XVII) line fluxes, and a revised iron abundance

    NASA Technical Reports Server (NTRS)

    Walker, A. B. C., Jr.; Rugge, H. R.; Weiss, K.

    1974-01-01

    Permitted lines in the optically thin coronal X-ray spectrum were analyzed to find the distribution of coronal material, as a function of temperature, without special assumptions concerning coronal conditions. The resonance lines of N, O, Ne, Na, Mg, Al, Si, S, and Ar which dominate the quiet coronal spectrum below 25A were observed. Coronal models were constructed and the relative abundances of these elements were determined. The intensity in the lines of the 2p-3d transitions near 15A was used in conjunction with these coronal models, with the assumption of coronal excitation, to determine the Fe XVII abundance. The relative intensities of the 2p-3d Fe XVII lines observed in the corona agreed with theoretical prediction. Using a more complete theoretical model, and higher resolution observations, a revised calculation of iron abundance relative to hydrogen of 0.000026 was made.

  4. Implementing a multifaceted intervention to decrease central line-associated bloodstream infections in SEHA (Abu Dhabi Health Services Company) intensive care units: the Abu Dhabi experience.

    PubMed

    Latif, Asad; Kelly, Bernadette; Edrees, Hanan; Kent, Paula S; Weaver, Sallie J; Jovanovic, Branislava; Attallah, Hadeel; de Grouchy, Kristin K; Al-Obaidli, Ali; Goeschel, Christine A; Berenholtz, Sean M

    2015-07-01

    OBJECTIVE To determine whether implementation of a multifaceted intervention would significantly reduce the incidence of central line-associated bloodstream infections. DESIGN Prospective cohort collaborative. SETTING AND PARTICIPANTS Intensive care units of the Abu Dhabi Health Services Company hospitals in the Emirate of Abu Dhabi. INTERVENTIONS A bundled intervention consisting of 3 components was implemented as part of the program. It consisted of a multifaceted approach that targeted clinician use of evidence-based infection prevention recommendations, tools that supported the identification of local barriers to these practices, and implementation ideas to help ensure patients received the practices. Comprehensive unit-based safety teams were created to improve safety culture and teamwork. Finally, the measurement and feedback of monthly infection rate data to safety teams, senior leaders, and staff in participating intensive care units was encouraged. The main outcome measure was the quarterly rate of central line-associated bloodstream infections. RESULTS Eighteen intensive care units from 7 hospitals in Abu Dhabi implemented the program and achieved an overall 38% reduction in their central line-associated bloodstream infection rate, adjusted at the hospital and unit level. The number of units with a quarterly central line-associated bloodstream infection rate of less than 1 infection per 1,000 catheter-days increased by almost 40% between the baseline and postintervention periods. CONCLUSION A significant reduction in the global morbidity and mortality associated with central line-associated bloodstream infections is possible across intensive care units in disparate settings using a multifaceted intervention. PMID:25871927

  5. Quantum Cascade Laser Measurements of Line Intensities, N2-, O2- and Ar- Collisional Broadening Coefficients of N2O in the ν3 Band Near 4.5 µm.

    PubMed

    Es-Sebbar, Et-Touhami; Deli, Meriem; Farooq, Aamir

    2016-06-01

    This study deals with precise measurements of absolute line intensities, N2-, O2- and Ar- collisional broadening coefficients of N2O in the P-branch of the ν3 vibrational band near 4.5 µm. Collisional broadening coefficients of N2O-air are derived from the N2- and O2- broadening contributions by considering an ideal atmospheric composition. Studies are performed at room temperature for 10 rotational transitions over 2190-2202 cm(-1) spectral range using a distributed-feedback quantum cascade laser. To retrieve spectroscopic parameters for each individual transition, measured absorption line shape is simulated within Voigt and Galatry profiles. The obtained results compare well with previous experimental data available in the literature: the discrepancies being less than 4% for most of the probed transitions. The spectroscopic data reported here are very useful for the design of sensors used to monitor the abundance of N2O in earth's atmosphere. PMID:27091906

  6. Discovery of Time Variation of the Intensity of Molecular Lines in IRC+10216 in the Submillimeter and Far-Infrared Domains

    NASA Astrophysics Data System (ADS)

    Cernicharo, J.; Teyssier, D.; Quintana-Lacaci, G.; Daniel, F.; Agúndez, M.; Velilla-Prieto, L.; Decin, L.; Guélin, M.; Encrenaz, P.; García-Lario, P.; de Beck, E.; Barlow, M. J.; Groenewegen, M. A. T.; Neufeld, D.; Pearson, J.

    2014-11-01

    We report on the discovery of strong intensity variations in the high rotational lines of abundant molecular species toward the archetypical circumstellar envelope of IRC+10216. The observations have been carried out with the Heterodyne Instrument for the Far-Infrared (HIFI) instrument on board Herschel and with the IRAM30 m telescope. They cover several observing periods spreading over three years. The line intensity variations for molecules produced in the external layers of the envelope most likely result from time variations in the infrared pumping rates. We analyze the main implications this discovery has on the interpretation of molecular line emission in the envelopes of Mira-type stars. Radiative transfer calculations must take into account both the time variability of infrared pumping and the possible variation of the dust and gas temperatures with stellar phase in order to reproduce the observation of molecular lines at different epochs. The effect of gas temperature variations with stellar phase could be particularly important for lines produced in the innermost regions of the envelope. Each layer of the circumstellar envelope sees the stellar light radiation with a different lag time (phase). Our results show that this effect must be included in the models. The submillimeter and far infrared lines of asymptotic giant branch stars can no longer be considered as safe intensity calibrators.

  7. DISCOVERY OF TIME VARIATION OF THE INTENSITY OF MOLECULAR LINES IN IRC+10216 IN THE SUBMILLIMETER AND FAR-INFRARED DOMAINS

    SciTech Connect

    Cernicharo, J.; Quintana-Lacaci, G.; Agúndez, M.; Velilla-Prieto, L.; Daniel, F.; Decin, L.; Guélin, M.; Encrenaz, P.; De Beck, E.; Barlow, M. J.; Groenewegen, M. A. T.; Neufeld, D.; Pearson, J.

    2014-11-20

    We report on the discovery of strong intensity variations in the high rotational lines of abundant molecular species toward the archetypical circumstellar envelope of IRC+10216. The observations have been carried out with the Heterodyne Instrument for the Far-Infrared (HIFI) instrument on board Herschel and with the IRAM30 m telescope. They cover several observing periods spreading over three years. The line intensity variations for molecules produced in the external layers of the envelope most likely result from time variations in the infrared pumping rates. We analyze the main implications this discovery has on the interpretation of molecular line emission in the envelopes of Mira-type stars. Radiative transfer calculations must take into account both the time variability of infrared pumping and the possible variation of the dust and gas temperatures with stellar phase in order to reproduce the observation of molecular lines at different epochs. The effect of gas temperature variations with stellar phase could be particularly important for lines produced in the innermost regions of the envelope. Each layer of the circumstellar envelope sees the stellar light radiation with a different lag time (phase). Our results show that this effect must be included in the models. The submillimeter and far infrared lines of asymptotic giant branch stars can no longer be considered as safe intensity calibrators.

  8. Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy.

    PubMed

    Chen, Shun-Li; Fu, Li; Gan, Wei; Wang, Hong-Fei

    2016-01-21

    In this report, we show that the ability to measure the sub-1 cm(-1) resolution phase-resolved and intensity high-resolution broadband sum frequency generation vibrational spectra of the -CN stretch vibration of the Langmuir-Blodgett (LB) monolayer of the 4-n-octyl-4'-cyanobiphenyl (8CB) on the z-cut α-quartz surface allows the direct comparison and understanding of the homogeneous and inhomogeneous broadenings in the imaginary and intensity SFG vibrational spectral line shapes in detail. The difference of the full width at half maximum (FWHM) of the imaginary and intensity sum-frequency generation vibrational spectroscopy spectra of the same vibrational mode is the signature of the Voigt line shape and it measures the relative contribution to the overall line shape from the homogeneous and inhomogeneous broadenings in SFG vibrational spectra. From the phase-resolved and intensity spectra, we found that the FWHM of the 2238.00 ± 0.02 cm(-1) peak in the phase-resolved imaginary and intensity spectra is 19.2 ± 0.2 cm(-1) and 21.6 ± 0.4 cm(-1), respectively, for the -CN group of the 8CB LB monolayer on the z-cut α-quartz crystal surface. The FWHM width difference of 2.4 cm(-1) agrees quantitatively with a Voigt line shape with a homogeneous broadening half width of Γ = 5.29 ± 0.08 cm(-1) and an inhomogeneous standard derivation width Δω = 5.42 ± 0.07 cm(-1). These results shed new lights on the understanding and interpretation of the line shapes of both the phase-resolved and the intensity SFG vibrational spectra, as well as other incoherent and coherent spectroscopic techniques in general. PMID:26801040

  9. Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Shun-Li; Fu, Li; Gan, Wei; Wang, Hong-Fei

    2016-01-01

    In this report, we show that the ability to measure the sub-1 cm-1 resolution phase-resolved and intensity high-resolution broadband sum frequency generation vibrational spectra of the -CN stretch vibration of the Langmuir-Blodgett (LB) monolayer of the 4-n-octyl-4'-cyanobiphenyl (8CB) on the z-cut α-quartz surface allows the direct comparison and understanding of the homogeneous and inhomogeneous broadenings in the imaginary and intensity SFG vibrational spectral line shapes in detail. The difference of the full width at half maximum (FWHM) of the imaginary and intensity sum-frequency generation vibrational spectroscopy spectra of the same vibrational mode is the signature of the Voigt line shape and it measures the relative contribution to the overall line shape from the homogeneous and inhomogeneous broadenings in SFG vibrational spectra. From the phase-resolved and intensity spectra, we found that the FWHM of the 2238.00 ± 0.02 cm-1 peak in the phase-resolved imaginary and intensity spectra is 19.2 ± 0.2 cm-1 and 21.6 ± 0.4 cm-1, respectively, for the -CN group of the 8CB LB monolayer on the z-cut α-quartz crystal surface. The FWHM width difference of 2.4 cm-1 agrees quantitatively with a Voigt line shape with a homogeneous broadening half width of Γ = 5.29 ± 0.08 cm-1 and an inhomogeneous standard derivation width Δω = 5.42 ± 0.07 cm-1. These results shed new lights on the understanding and interpretation of the line shapes of both the phase-resolved and the intensity SFG vibrational spectra, as well as other incoherent and coherent spectroscopic techniques in general.

  10. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  11. New Measurements of H2 16O Line Intensities around 8800 CM-1 and 1300 CM-1

    NASA Astrophysics Data System (ADS)

    Oudot, C.; Regalia, L.; Le Wang; Daumont, L.; Thomas, X.; von der Heyden, P.; Decatoire, D.

    2010-06-01

    A precise knowledge of spectroscopic parameters for atmospheric molecules is necessary for the control and the modelling of the Earth's atmosphere. The water vapor take a special key as it participate to the global radiative balance of the atmosphere. Our laboratory is engaged since many years in the study of H216O vapor and its isotopologues [1, 2, 3]. An important work has been already made in the spectral region of 4000 to 6600 cm-1 [3] and it continues now in the following spectral window : 6600-9000 cm-1. We have focused on the lines around 8800 cm-1, as the latest version of HITRAN database still relies on the work of Mandin et al. performed in 1988 [4, 5]. We have recorded several spectra of water vapor with our step-by-step Fourier Transform Spectrometer built in our laboratory [6, 7]. We present here our intensity measurements compared to recent literature data [8] and HITRAN2008 database. Also we have performed a study around 1300 cm-1. The precise knowledge of water vapor for this spectral range is very useful for inversion of IASI spectra. We show some comparisons between our new intensity measurements and LISA database, HITRAN2004, and recent literature data [9]. References: [1] M. Carleer, A. Jenouvrier, A.-C. Vandaele, M.-F. Mérienne, R. Colin, N. F. Zobov, O. L. Polyansky, J. Tennyson and V. A. Savin, J. Chem Phys 111 (1999) 2444-2450. [2] M.-F. Mérienne, A. Jenouvrier, C. Hermans, A.-C. Vandaele, M. Carleer, C. Clerbaux, P.-F. Coheur, R. Colin, S. Fally, M. Bachc J. Quant. Spectrosc. Rad. Trans. 82 (2003) 99-117. [3] A. Jenouvrier, L. Daumont, L. RÉgalia-Jarlot, Vl. G. Tyuterev, M. Carleer, A. C. Vandaele, S. Mikhailenko and S. Fally, JQSRT, 105 (2007) 326-355. [4] J.-Y. Mandin, J.-P. Chevillard, J.-M. Flaud, C. Camy-Peyret, Can. J. Phys, 66 (1988) 997-1011. [5] J.-Y. Mandin, J.-P. Chevillard, J.-M. Flaud, C. Camy-Peyret, J. Mol. Spectrosc, 132 (1988) 352-360. [6] J-J. Plateaux, A. Barbe and A. Delahaigue, Spectrochim. Acta, 51A (1995) 1169

  12. Intensities and self-broadening coefficients of the strongest water vapour lines in the 2.7 and 6.25 μm absorption bands

    NASA Astrophysics Data System (ADS)

    Ptashnik, Igor V.; McPheat, Robert; Polyansky, Oleg L.; Shine, Keith P.; Smith, Kevin M.

    2016-07-01

    Intensities and self-broadening coefficients are presented for about 460 of the strongest water vapour lines in the spectral regions 1400-1840 cm-1 and 3440-3970 cm-1 at room temperature, obtained from rather unique measurements using a 5-mm-path-length cell. The retrieved spectral line parameters are compared with those in the HITRAN database ver. 2008 and 2012 and with recent ab-initio calculations. Both the retrieved intensities and half-widths are on average in reasonable agreement with those in HITRAN-2012. Maximum systematic differences do not exceed 4% for intensities (1600 cm-1 band) and 7% for self-broadening coefficients (3600 cm-1 band). For many lines however significant disagreements were detected with the HITRAN-2012 data, exceeding the average uncertainty of the retrieval. In addition, water vapour line parameters for 5300 cm-1 (1.9 μm) band reported by us in 2005 were also compared with HITRAN-2012, and show average differences of 4-5% for both intensities and half-widths.

  13. Cellular effects of low-intensity pulsed ultrasound and X-irradiation in combination in two human leukaemia cell lines.

    PubMed

    Buldakov, Mikhail A; Hassan, Mariame A; Jawaid, Paras; Cherdyntseva, Nadejda V; Kondo, Takashi

    2015-03-01

    Previously, we have shown that a combination between X-irradiation and low-intensity pulsed ultrasound (US) could synergistically suppress cell survival post exposure (Buldakov et al., 2014). In this study, the cellular effects underlying the enhanced cell killing are investigated. U937 and Molt-4 cell lines were exposed to 1.0 MHz US with 50% duty factor at 0.3 W/cm(2) and pulsed at 1, 5 and 10 Hz immediately after exposure to X-rays at 0, 0.5, 2.5 and 5 Gy. The cells were assayed at different time points to depict the major cellular events that culminated in cell death. For instance, membrane damage and cell lysis were estimated immediately following exposure and 24 h later. Intracellular reactive oxygen species (ROS) were also determined flow cytometrically after treatment. Moreover, the extent of DNA damage and cell cycle progression were determined at 6 and 24 h, respectively. Despite the general trend for synergism, there was a disproportionation of mediating factors depending on the cell type and its specific biological makeup. Immediately, US could induce appreciable necrotic cell death through extensive membrane damage in U937 but induced cell lysis in Molt-4 cells. ROS might have contributed to cell killing in Molt-4 but not in U937 cells. Although both of the physical modalities are significantly DNA-damaging alone, no additional damage was observed in combination. Moreover, override in some arrested cell cycle phases was also observed following combination. Collectively, the interaction between X-rays and US seems to depend mainly on the acoustic environment determined by the setup and this might explain the contradictory data among reports. PMID:25287395

  14. The absolute disparity anomaly and the mechanism of relative disparities.

    PubMed

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  15. The absolute disparity anomaly and the mechanism of relative disparities

    PubMed Central

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-01-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  16. Radial profile measurement of electron temperature in edge stochastic magnetic field layer of LHD using intensity ratio of extreme ultraviolet line emissions

    SciTech Connect

    Wang Erhui; Morita, Shigeru; Kobayashi, Masahiko; Murakami, Izumi; Goto, Motoshi; Dong Chunfeng

    2012-10-15

    Vertical profile of neon line emissions in 30-650 A wavelength range has been observed in horizontally elongated plasma cross section of Large Helical Device (LHD). Intensity ratio between the neon line emissions is studied to measure the radial profile of electron temperature in the edge stochastic magnetic field layer of LHD. The edge temperature profile successfully obtained from the line ratio of NeVIII 2s-3p to 2p-3s transitions is compared with the simulation based on three-dimensional edge transport code. The result shows a reasonably good agreement with the edge temperature profile analyzed from atomic data and analysis structure code. The electron temperature at last closed flux surface measured from the intensity ratio is also in good agreement with that measured from Thomson scattering.

  17. Absolute sensitivity calibration of vacuum and extreme ultraviolet spectrometer systems and Z(eff) measurement based on bremsstrahlung continuum in HL-2A tokamak.

    PubMed

    Zhou, Hangyu; Cui, Zhengying; Morita, Shigeru; Fu, Bingzhong; Goto, Motoshi; Sun, Ping; Dong, Chunfeng; Gao, Yadong; Xu, Yuan; Lu, Ping; Yang, Qingwei; Duan, Xuru

    2012-10-01

    A grazing-incidence flat-field extreme ultraviolet (EUV) spectrometer has been newly developed in HL-2A tokamak. Typical spectral lines are observed from intrinsic impurities of carbon, oxygen, iron, and extrinsic impurity of helium in the wavelength range of 20 Å-500 Å. Bremsstrahlung continuum is measured at different electron densities of HL-2A discharges to calibrate absolute sensitivity of the EUV spectrometer system and to measure effective ionic charge, Z(eff). The sensitivity of a vacuum ultraviolet (VUV) spectrometer system is also absolutely calibrated in overlapped wavelength range of 300 Å-500 Å by comparing the intensity between VUV and EUV line emissions. PMID:23126850

  18. Absolute sensitivity calibration of vacuum and extreme ultraviolet spectrometer systems and Z{sub eff} measurement based on bremsstrahlung continuum in HL-2A tokamak

    SciTech Connect

    Zhou Hangyu; Cui Zhengying; Fu Bingzhong; Sun Ping; Gao Yadong; Xu Yuan; Lu Ping; Yang Qingwei; Duan Xuru; Morita, Shigeru; Goto, Motoshi; Dong Chunfeng

    2012-10-15

    A grazing-incidence flat-field extreme ultraviolet (EUV) spectrometer has been newly developed in HL-2A tokamak. Typical spectral lines are observed from intrinsic impurities of carbon, oxygen, iron, and extrinsic impurity of helium in the wavelength range of 20 A-500 A. Bremsstrahlung continuum is measured at different electron densities of HL-2A discharges to calibrate absolute sensitivity of the EUV spectrometer system and to measure effective ionic charge, Z{sub eff}. The sensitivity of a vacuum ultraviolet (VUV) spectrometer system is also absolutely calibrated in overlapped wavelength range of 300 A-500 A by comparing the intensity between VUV and EUV line emissions.

  19. Analysis of the ν 8+ ν 9Band of HNO 3, Line Positions and Intensities, and Resonances Involving the v6= v7= 1 Dark State

    NASA Astrophysics Data System (ADS)

    Perrin, A.; Flaud, J.-M.; Keller, F.; Goldman, A.; Blatherwick, R. D.; Murcray, F. J.; Rinsland, C. P.

    1999-03-01

    Using a high-resolution (R= 0.0025 cm-1) Fourier transform spectrum of nitric acid recorded at room temperature in the 1100-1240 cm-1region, it has been possible to perform a more extended analysis of the ν8+ ν9band of HNO3centered at 1205.7075 cm-1. As in a recent analysis of this band [W. F. Wang, P. P. Ong, T. L. Tan, E. C. Looi, and H. H. Teo,J. Mol. Spectrosc.183, 407-413 (1997)], the Hamiltonian used for the line positions calculation takes into account, for the upper state, the ΔK= ±2 anharmonic resonance linking the rotational levels of thev8=v9= 1 "bright" vibrational state and those of the "dark"v6=v7= 1 vibrational state. More than 4800 lines were assigned in the ν8+ ν9band, which involve significantly higher rotational quantum numbers than in previous works. On the other hand, and surprisingly as compared to previous studies, the ν8+ ν9band appears to be a hybrid band. In fact, nonnegligibleB-type transitions could be clearly identified among the much strongerA-type lines. Accordingly, a set of individual line intensities were measured for lines of both types and were introduced in a least-squares fit to get theA- andB-type components of the transition moment operator. Finally, a synthetic spectrum of the 8.3-μm region of HNO3has been generated, using for the line positions and line intensities the Hamiltonian constants and the expansion of the transition moment operator which were determined in this work. In this way, theB-type and theA-type components of the ν8+ ν9band appear to contribute for about {1}/{4} and {3}/{4}, respectively, to the total band intensity.

  20. The on-line each hour and each minute automatically correction data of total NM intensity and different multiplicities on snow effect

    NASA Astrophysics Data System (ADS)

    Lev, Dorman; Zukerman, Igor; Pustilnik, Lev; Dai, Uri; Shternlib, Abracham; Shai Applbaum, David; Kazantsev, Vasilii; Kozliner, Lev; Ben Israel, Isaac

    In our report Dorman et al. “Snow effect for total NM intensity and different multiplicities on Mt. Hermon during 1998 - 2014”, we described the method to determine the snow effect in the total NM intensity and different multiplicities. By using regression coefficients obtained for the long period of observations, obtained in this paper, we developed method of automatically correction on-line each hour and each minute data of total NM intensity and different multiplicities on snow effect. We show that expected average errors in this method for one hour observation is about 0.2%, what is comparable with the statistical error. We show also how to correct on-line automatically one-minute data on snow effect. Corrected on-line one minute data can be now used for the forecasting of great radiation hazards from solar flares and estimation of expected total fluency and radiation hazards for satellites electronics and astronauts health, as well as for people and electronics on regular airlines at altitudes about 10 km. Corrected on-line one hour data can be now used for the forecasting of great magnetic storms, dangerous for satellites, technologies, and people health. https://www.cospar-assembly.org/user/download2.php?id=29566&type=preview

  1. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  2. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    NASA Astrophysics Data System (ADS)

    Niu, Kai; Lee, Soo-Y.

    2015-12-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  3. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    SciTech Connect

    Niu, Kai; Lee, Soo-Y.

    2015-12-15

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  4. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  5. An Improved Optical Spectral Line List for RR Telescopii

    NASA Technical Reports Server (NTRS)

    Crawford, F. L.; McKenna, F. C.; Keenan, F. P.; Allen, L. H.; Feibelman, W. A.; Ryan, S. G.

    1999-01-01

    The symbiotic nova RR Telescopli has been observed with the 3.9m telescope of the Anglo-Australian Observatory (AAO), using the University College London Echelle Spectrograph in conjunction with a Tek CCD. It displays a rich emission line spectrum, ranging in excitation from N I to [Ni VIII]. We present a list of 824 measured lines, with their suggested identifications and absolute line intensities, covering a wavelength range from 3180 A to 9455 A. The absolute line intensities have been derived by comparing the high resolution data with a flux-calibrated low resolution spectrum taken with the Australian National University 2.3 m telescope. All of the lines have been successfully identified. Comparing our results with those of previous studies indicates that the RR Tel system is advancing towards higher degrees of ionization.

  6. Electron impact excitation of Mg VIII . Collision strengths, transition probabilities and theoretical EUV and soft X-ray line intensities for Mg VIII

    NASA Astrophysics Data System (ADS)

    Grieve, M. F. R.; Ramsbottom, C. A.; Keenan, F. P.

    2013-08-01

    Context. Mg viii emission lines are observed in a range of astronomical objects such as the Sun, other cool stars and in the coronal line region of Seyfert galaxies. Under coronal conditions Mg viii emits strongly in the extreme ultraviolet (EUV) and soft X-ray spectral regions which makes it an ideal ion for plasma diagnostics. Aims: Two theoretical atomic models, consisting of 125 fine structure levels, are developed for the Mg viii ion. The 125 levels arise from the 2s22p, 2s2p2, 2p3, 2s23s, 2s23p, 2s23d, 2s2p3s, 2s2p3p, 2s2p3d, 2p23s, 2p23p and 2p23d configurations. Electron impact excitation collision strengths and radiative transition probabilities are calculated for both Mg viii models, compared with existing data, and the best model selected to generate a set of theoretical emission line intensities. The EUV lines, covering 312-790 Å, are compared with existing solar spectra (SERTS-89 and SUMER), while the soft X-ray transitions (69-97 Å) are examined for potential density diagnostic line ratios and also compared with the limited available solar and stellar observational data. Methods: The R-matrix codes Breit-Pauli RMATRXI and RMATRXII are utilised, along with the PSTGF code, to calculate the collision strengths for two Mg viii models. Collision strengths are averaged over a Maxwellian distribution to produce the corresponding effective collision strengths for use in astrophysical applications. Transition probabilities are also calculated using the CIV3 atomic structure code. The best data are then incorporated into the modelling code CLOUDY and line intensities generated for a range of electron temperatures and densities appropriate to solar and stellar coronal plasmas. Results: The present effective collision strengths are compared with two previous calculations. Good levels of agreement are found with the most recent, but there are large differences with the other for forbidden transitions. The resulting line intensities compare favourably with the

  7. The Role of Velocity Redistribution in Enhancing the Intensity of the He II 304 A Line in the Quiet Sun Spectrum

    NASA Technical Reports Server (NTRS)

    Andretta, Vincenzo; Jordan, Stuart D.; Brosius, Jeffrey W.; Davila, Joseph M.; Thomas, Roger J.; Behring, William E.; Thompson, William T.; Garcia, Adriana

    1999-01-01

    We present observational evidence of the effect of small scale ("microturbulent") velocities in enhancing the intensity of the He II lambda304 line with respect to other transition region emission lines, a process we call "velocity redistribution". We first show results from the 1991 and 1993 flights of SERTS (Solar EUV Rocket Telescope and Spectrograph). The spectral resolution of the SERTS instrument was sufficient to infer that, at the spatial resolution of 5", the line profile is nearly gaussian both in the quiet Sun and in active regions. We were then able to determine, for the quiet Sun, a lower limit for the amplitude of non-thermal motions in the region of formation of the 304 A line of the order of 10 km/s. We estimated that, in the presence of the steep temperature gradients of the solar Transition Region (TR), velocities of this magnitude can significantly enhance the intensity of that line, thus at least helping to bridge the gap between calculated and observed values. We also estimated the functional dependence of such an enhancement on the relevant parameters (non-thermal velocities, temperature gradient, and pressure). We then present results from a coordinated campaign, using SOHO/CDS and H-alpha spectroheliograms from Coimbra Observatory, aimed at determining the relationship between regions of enhanced helium emission and chromospheric velocity fields and transition region emission in the quiescent atmosphere. Using these data, we examined the behavior of the He II lambda304 line in the quiet Sun supergranular network and compared it with other TR lines, in particular with O III lambda600. We also examined the association of 304 A emission with the so-called "coarse dark mottle", chromospheric structures seen in H-alpha red wing images and associated with spicules. We found that all these observations are consistent with the velocity redistribution picture.

  8. Influence of laser pulse energy on emission lines intensity in the femtosecond laser-induced breakdown spectroscopy of iron in aqua solution

    NASA Astrophysics Data System (ADS)

    Golik, S. S.; Ilyin, A. A.; Babiy, M. Y.; Biryukova, Yu. S.; Lisitsa, V. V.; Shmirko, K. A.

    2015-11-01

    The influence of pulse energy on the time evolution of the intensity of the continuum and emission lines of plasma generated on the surface of aqueous solutions of iron by focused radiation Ti: sapphire laser with a wavelength of 800 nm and pulse duration of 45 fs and a range of energy 3-7 mJ was investigated. The calibration curve for iron in water and 3-ó limit of detection of iron in water was obtained.

  9. The solar XUV He I and He II emission lines. I - Intensities and gross center-to-limb behavior

    NASA Technical Reports Server (NTRS)

    Mango, S. A.; Bohlin, J. D.; Glackin, D. L.; Linsky, J. L.

    1978-01-01

    The center-to-limb variation of the He II 304- and 256-A lines and He I 584- and 537-A lines is derived for different solar features, but averaged over the chromospheric supergranulation structure. The general trend is for limb brightening in quiet-sun regions, limb neutrality in unipolar magnetic regions (UMR), and limb darkening in polar coronal holes. The center-to-limb behavior in these optically thick emission lines indicates collisional excitation and decreasing transition-region temperature gradients with respect to optical depth in the sequence quiet sun to UMR to coronal hole.

  10. Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laser-induced plasma emission spectra

    NASA Astrophysics Data System (ADS)

    Lee, Yonghoon; Ham, Kyung-Sik; Han, Song-Hee; Yoo, Jonghyun; Jeong, Sungho

    2014-11-01

    We have investigated the discriminating power of the elements in edible sea salts using Laser-Induced Breakdown Spectroscopy (LIBS). For the ten different sea salts from South Korea, China, Japan, France, Mexico and New Zealand, LIBS spectra were recorded in the spectral range between 190 and 1040 nm, identifying the presence of Na, Cl, K, Ca, Mg, Li, Sr, Al, Si, Ti, Fe, C, O, N, and H. Intensity correlation analysis of the observed emission lines provided a valuable insight into the discriminating power of the different elements in the sea salts. The correlation analysis suggests that the elements with independent discrimination power can be categorized into three groups; those that represent dissolved ions in seawater (K, Li, and Mg), those that are associated with calcified particles (Ca and Sr), and those that are present in soils contained in the sea salts (Al, Si, Ti, and Fe). Classification models using a few emission lines selected based on the results from intensity correlation analysis and full broadband LIBS spectra were developed based on Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) and their performances were compared. Our results indicate that effective combination of a few emission lines can provide a dependable model for discriminating the edible sea salts and the performance is not much degraded from that based on the full broadband spectra. This can be rationalized by the intensity correlation results.

  11. Intensity measurements in the nu4-fundamental of (C-13)H4 at planetary atmospheric temperatures

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Giver, L. P.; Valero, F. P. J.

    1983-01-01

    Measurements of spectral transmittance have been performed in the nu4-fundamental band of (C-13)H4 at low temperatures of planetary atmospheric interest with spectral resolution of 0.06 per cm. Comparison of observed and computed spectral transmittance on a line-by-line basis has yielded line strengths. Best agreement between measured and computed spectra was obtained when the absolute intensity of the band was taken as 123 per (sq cm atm) at 296 K.

  12. Implants as absolute anchorage.

    PubMed

    Rungcharassaeng, Kitichai; Kan, Joseph Y K; Caruso, Joseph M

    2005-11-01

    Anchorage control is essential for successful orthodontic treatment. Each tooth has its own anchorage potential as well as propensity to move when force is applied. When teeth are used as anchorage, the untoward movements of the anchoring units may result in the prolonged treatment time, and unpredictable or less-than-ideal outcome. To maximize tooth-related anchorage, techniques such as differential torque, placing roots into the cortex of the bone, the use of various intraoral devices and/or extraoral appliances have been implemented. Implants, as they are in direct contact with bone, do not possess a periodontal ligament. As a result, they do not move when orthodontic/orthopedic force is applied, and therefore can be used as "absolute anchorage." This article describes different types of implants that have been used as orthodontic anchorage. Their clinical applications and limitations are also discussed. PMID:16463910

  13. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  14. Recent high resolution laboratory determinations of line broadening and intensity parameters: PH3, CH3D, and CO2

    NASA Technical Reports Server (NTRS)

    Suarez, C. B.; Chackerian, C., Jr.; Valero, F. P. J.; Tarrago, G.

    1990-01-01

    Recent unpublished laboratory work on rovibrational line strengths and broadening coefficients which is of interest in the study of planetary atmospheres was reviewed. The molecules discussed are PH3, CH3D and CO2.

  15. Spectral line and white-light intensities in the corona in the presence of propagating or standing shocks

    NASA Technical Reports Server (NTRS)

    Esser, Ruth; Habbal, Shadia Rifai

    1990-01-01

    The effect of a propagating shock on the H I Ly-alpha line and the polarization brightness in the inner solar wind region is investigated. The shock produces measurable changes in both, and, provided the measurements are made simultaneously, the alteration of the density and velocity across the shock can be derived. For a standing shock, the effect of the Ly-alpha line and the white-light radiation is much smaller.

  16. Comparison of simulation to absolute X-ray emission of CH plasma created with the Nike laser

    NASA Astrophysics Data System (ADS)

    Busquet, M.; Weaver, J. L.; Colombant, D. G.; Mostovych, A. N.; Feldman, U.; Klapisch, M.; Seely, J. F.; Holland, G.

    2006-06-01

    The Nike laser group at the Naval Research Laboratory has an ongoing effort to improve and benchmark the radiation hydrodynamic simulations used to develop pellet designs for inertial confinement fusion. A new postprocessor, Virtual Spectro, has been added to the FAST code suite for detailed simulation of non-LTE spectra, including radiation transport effects and Stark line profile. This new combination enhances our ability to predict the absolute emission of soft x-rays. An absolutely calibrated transmission grating spectrometer and a high resolution grazing incidence spectrometer have been used to collect time integrated and time resolved spectra emitted by CH targets irradiated at laser intensities of ˜10 TW/cm^2. Comparison between these observations and simulations using Virtual Spectro demonstrates excellent agreement (within factor of ˜1.5) for the absolute emission.

  17. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  18. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  19. A Solar-pumped Fluorescence Model for Line-by-line Emission Intensities in the B–X, A–X, and X–X Band Systems of 12C14N

    NASA Astrophysics Data System (ADS)

    Paganini, L.; Mumma, M. J.

    2016-09-01

    We present a new quantitative model for detailed solar-pumped fluorescent emission of the main isotopologue of CN. The derived fluorescence efficiencies permit estimation and interpretation of ro-vibrational infrared line intensities of CN in exospheres exposed to solar (or stellar) radiation. Our g-factors are applicable to astronomical observations of CN extending from infrared to optical wavelengths, and we compare them with previous calculations in the literature. The new model enables extraction of rotational temperature, column abundance, and production rate from astronomical observations of CN in the inner coma of comets. Our model accounts for excitation and de-excitation of rotational levels in the ground vibrational state by collisions, solar excitation to the {A}2{{{\\Pi }}}{{i}} and {B}2{{{Σ }}}+ electronically excited states followed by cascade to ro-vibrational levels of {X}2{{{Σ }}}+, and direct solar infrared pumping of ro-vibrational levels in the {X}2{{{Σ }}}+ state. The model uses advanced solar spectra acquired at high spectral resolution at the relevant infrared and optical wavelengths and considers the heliocentric radial velocity of the comet (the Swings effect) when assessing the exciting solar flux for a given transition. We present model predictions for the variation of fluorescence rates with rotational temperature and heliocentric radial velocity. Furthermore, we test our fluorescence model by comparing predicted and measured line-by-line intensities for {X}2{{{Σ }}}+ (1–0) in comet C/2014 Q2 (Lovejoy), thereby identifying multiple emission lines observed at IR wavelengths.

  20. A color graphics display of the field intensity around the insulator on 13. 2 kv distribution lines

    SciTech Connect

    Yamashita, H.; Nakamae, E. ); Okano, T. ); Hammam, M.S.A.A. ); Burns, C.; Adams, G. )

    1993-10-01

    Covered conductors have been used, especially in wooded areas on low as well as high voltage overhead distribution lines for preventing brush contact and short circuit faults between conductors. Burndown on covered conductors has become a significant problem. The burndown mechanism is complicated since it is determined by combinations of the various types of insulators, ties, and conductors. In order to investigate the burndown mechanism for this paper a finite element analysis has been carried out to identify the electric field around the insulator. In this paper a newly developed electric field simulation system is reported; the finite element analysis method considering isoparametric triangular and line elements has been developed and a new color display method for electric potential and electric field distributions with lines of electric force has also been developed in order to easily observe the results.

  1. Absolute neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Wolf, Joachim

    2011-10-01

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

  2. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  3. Using satellite data to aid in diagnosing and forecasting convective development and intensity along arc cloud lines

    NASA Technical Reports Server (NTRS)

    Purdom, James F. W.; Sinclair, Peter C.

    1988-01-01

    The convective scale interactions associated with the arc cloud line are studied using GOES data. Studies of convective scale interactions are reviewed and the convective scale interaction phenomena is described. The use of satellite data in nowcasting and forecasting convective storms is discussed.

  4. FT-IR measurements of mid-IR propene (C3H6) cross sections and far-IR ammonia (NH3) line intensities

    NASA Astrophysics Data System (ADS)

    Sung, Keeyoon; Toon, Geoffrey C.; Crawford, Timothy J.; Yu, Shanshan; Pearson, John C.; Kwabia Tchana, Fridolin; Manceron, Laurent; Pirali, Olivier

    2015-11-01

    We present spectroscopy measurements of propene (C3H6) in the mid-infrared and ammonia (NH3) in the far-infrared from two different laboratory studies. [1] For propene (CH2-CH-CH3, alias. propylene), which was detected in the stratosphere of Titan [Nixon et al. 2013], temperature dependent cross sections in the 650 - 1530 cm-1 (6.5 - 15.3 μm) have been measured from a series of high-resolution (0.0022 cm-1) spectra of pure and N2-mixture samples of C3H6 recorded at 150 - 296 K at Jet Propulsion Laboratory. The observed spectral features cover the strongest v19 band with its outstanding Q-branch peak at 912 cm-1 and three other strong bands of v18, v16 and v7 at 990, 1442, and 1459 cm-1, respectively. In addition, we have generated a HITRAN-format empirical ‘pseudoline list' containing line positions, intensities, and effective lower state energies by fitting all the observed spectra simultaneously. The results are compared with early work from relatively warm temperatures (278 - 323 K). [2] For ammonia (NH3), we obtained multiple sets of high-resolution spectra in the THz and far-infrared region (50 - 650 cm-1) at room temperature using AILES beamline at Synchrotron SOLEIL, France (NH3). In this work, we have measured line intensities for more than 4500 transitions, and made quantum assignments for ~2900 lines including ~960 very weak ΔK = 3 forbidden lines. Final results will be compared with the current databases (e.g., HITRAN, GEISA) and ab initio calculations. [Research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Sung and Yu acknowledge the Synchrotron Soleil for the AILES beam line time.

  5. Conversion efficiency and spectral broadening of the K-{alpha} line emitted from planar titanium targets irradiated with ultra-short laser pulses of high intensity

    SciTech Connect

    Arora, V.; Singhal, H.; Naik, P. A.; Gupta, P. D.

    2011-10-15

    A study of the conversion efficiency and line shape of the K-{alpha} x-ray line radiation from a planar titanium target irradiated by an ultra-short laser pulse is performed. The conversion efficiency and spectral broadening are studied as a function of laser intensity (5 x 10{sup 16}-10{sup 18} W cm{sup -2}), laser pulse duration (45 fs-800 fs), and laser fluence (2 x 10{sup 3}-4.2 x 10{sup 4} J cm{sup -2}). The K-{alpha}{sub 1} line (4510 eV) is observed to be broadened (up to {approx}9 eV), predominantly towards the higher energy side and strongly depends on the laser fluence rather than on laser intensity. The reason for the spectral broadening is attributed to K-{alpha} emission in warm dense plasma. The role of hot electrons and direct laser heating on spectral broadening is outlined. In addition to this, our observations indicates that the presence of pre-plasma strongly contribute to the observed broadening through the inner-shell transitions in multiply charged titanium ions in the pre-plasma. The appropriate laser irradiation parameters to achieve high conversion efficiency and minimum spectral width of the K-{alpha} radiation are identified. The study is important, since the control of the spectral profile is of general interest for diffraction or scattering experiments in view of its potential in increasing temporal resolution.

  6. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  7. Seyfert galaxy ultraviolet emission-line intensities and variability - A self-consistent photoionization analysis applied to broad-line-emitting gas in NGC 3783

    NASA Technical Reports Server (NTRS)

    Koratkar, Anuradha P.; Macalpine, Gordon M.

    1992-01-01

    Well-constrained photoionization models for the Seyfert I galaxy NGC 3783 are developed. Both cross-correlation analyses and line variability trends with varying ionizing radiation flux require a multicomponent picture. All the data for He II 1640 A, C IV 1549 A, and semiforbidden C III 1909 A can be reasonably well reproduced by two cloud components. One has a source-cloud distance of 24 lt-days, gas density around 3 x 10 exp 10/cu cm, ionization parameter range of 0.04-0.2, and cloud thickness such that about half of the carbon is doubly ionized and about half is triply ionized. The other component is located approximately 96 lt-days from the source, is shielded from the source by the inner cloud, has a density about 3 x 10 to the 9th/cu cm, and is characterized by an ionization parameter range of 0.001-0.03, The cloud thickness is such that about 45 percent carbon is doubly ionized and about 55 percent is singly ionized.

  8. Intensity of lines from low-lying levels in C II, N III, O IV, NE VI, MG VIII, SI X, and SI II

    NASA Astrophysics Data System (ADS)

    Chandra, S.

    1982-01-01

    The populations of the excited state 2P 0 3/2 relative to the ground state 2P 0 1/2 are obtained, in a study of line intensities of the transition between those two states in C II, N III, O IV, Ne VI, Mg VIII, Si X, and Si II in the chromosphere-corona transition region, by considering all the radiative and collisional transition processes. The collisional transitions to the higher states which cascade to the upper level are included among these processes. It is found that the intensity, which may be expressed as a function of temperature alone, increases in the transition region with the charge on the ion for a sequence.

  9. Line Positions and Intensities in the 2nu2/nu4 Vibrational System of 14NH3 near 5-7 micron

    NASA Astrophysics Data System (ADS)

    Cottaz, C.; Kleiner, I.; Tarrago, G.; Brown, L. R.; Margolis, J. S.; Poynter, R. L.; Pickett, H. M.; Fouchet, T.; Drossart, P.; Lellouch, E.

    2000-10-01

    Line positions and intensities belonging to the vibrational system 2nu2/nu4 of ammonia 14NH3 are measured and analyzed between 1200 and 2200 cm-1 in order to improve the molecular database. For this, laboratory spectra are obtained at 0.006 and 0.011 cm-1 unapodized resolution and with 4% precisions for the intensities using Fourier transform spectrometers located at the Kitt Peak National Observatory and the Jet Propulsion Laboratory. The observed data contain transitions of the nu4 fundamental band near 1626.276(1) and 1627.375(2) cm-1 (for s and a inversion upper states, respectively) and the 2nu2 overtone band near 1597.470(3) and 1882.179(5) cm-1 (for s and a inversion states, respectively). A total of 2345 lines with J'<=15 is assigned from which 2114 line positions with J'<=15 are fitted using an effective rotation-inversion-rotation Hamiltonian to achieve an rms of 0.003 cm-1 with 57 molecular parameters. Over 1200 intensity measurements are modeled to +/-4.7% using 16 terms of the dipole moment expansion. A dyad model is used in order to model all the interactions expected within the 2nu2/nu4 system. The bandstrength of 2nu2 (s <- a), 2nu2 (a <- s) and nu4 (s <- s and a <- a) are estimated to be 6.68(24), 0.201(5) and 116(3) cm-1 atm-1, respectively, at 296 K. The prediction generated by this study is available for planetary studies.

  10. Impact of dose intensity on outcome of fludarabine, cyclophosphamide, and rituximab regimen given in the first-line therapy for chronic lymphocytic leukemia

    PubMed Central

    Bouvet, Emmanuelle; Borel, Cécile; Obéric, Lucie; Compaci, Gisèle; Cazin, Bruno; Michallet, Anne-Sophie; Laurent, Guy; Ysebaert, Loic

    2013-01-01

    Fludarabine-cyclophosphamide-rituximab is the most efficient first-line treatment for chronic lymphocytic leukemia patients. Many dose adjustments of the original MD Anderson Cancer Center regimen have been proposed. However, whether fludarabine-cyclophosphamide-rituximab relative dose intensity may have an impact on outcome has not yet been investigated. We retrospectively assessed relative dose intensity in 106 community-based patients included in our regional healthcare network from 2004-11, all receiving fludarabine-cyclophosphamide-rituximab as first-line treatment outside clinical trials. Dose reductions were observed in 51.4% of patients, mainly decided by the individual physician and not based on recommendations (52.7%), while there were fewer reports of toxicity or dose reduction because of impaired renal function. Progression-free survival was significantly reduced in patients who had a reduction in dose intensity of more than 20% in fludarabine-cyclophosphamide and/or rituximab. Multivariate analysis showed dose of rituximab had a significant impact on minimal residual disease and progression-free survival. Although prophylactic granulocyte-colony stimulating factor significantly reduced the rate of grade 3-4 neutropenia and febrile neutropenia, it had no impact on relative dose intensity and outcome. This study shows that, in routine clinical practice, there is low adherence to the original MD Anderson Cancer Center fludarabine-cyclophosphamide-rituximab schedule, and that the decision to modify dosage was mostly taken by the individual physician and was based on anticipated toxicity. This study shows that reduction of fludarabine-cyclophosphamide and, more importantly, of rituximab doses seriously interferes with progression-free survival. PMID:23065520

  11. Rotational line intensities of the c4‧1Σu+(1)-X1Σg+(0-2) bands of N2

    NASA Astrophysics Data System (ADS)

    C.; Lavín | A., M.; | I., Velasco; Martín

    2010-02-01

    Oscillator strengths and integrated cross-sections for rotational lines of the c4'1Σu+(1)-X1Σg+(0-2) bands of N 2 have been calculated with the molecular quantum defect orbital (MQDO) method. The known strong homogeneous interaction of the c4'1Σu+(1) Rydberg state with the b' 1Σu+(4) valence state has been presently dealt with through an interaction matrix for each value of the rotational quantum number, J. Because of perturbations, the intensity distribution of the rotational lines within each of the vibronic bands deviates from the predictions based on Hönl-London factors. Band oscillator strengths are also reported and their J-dependence has been analyzed.

  12. Design of a high-current low-energy beam transport line for an intense D-T/D-D neutron generator

    NASA Astrophysics Data System (ADS)

    Lu, Xiaolong; Wang, Junrun; Zhang, Yu; Li, Jianyi; Xia, Li; Zhang, Jie; Ding, Yanyan; Jiang, Bing; Huang, Zhiwu; Ma, Zhanwen; Wei, Zheng; Qian, Xiangping; Xu, Dapeng; Lan, Changlin; Yao, Zeen

    2016-03-01

    An intense D-T/D-D neutron generator is currently being developed at the Lanzhou University. The Cockcroft-Walton accelerator, as a part of the neutron generator, will be used to accelerate and transport the high-current low-energy beam from the duoplasmatron ion source to the rotating target. The design of a high-current low-energy beam transport (LEBT) line and the dynamics simulations of the mixed beam were carried out using the TRACK code. The results illustrate that the designed beam line facilitates smooth transportation of a deuteron beam of 40 mA, and the number of undesired ions can be reduced effectively using two apertures.

  13. Atomic gas temperature in a nonequilibrium high-intensity discharge lamp determined from the red wing of the resonance mercury line 254 nm

    SciTech Connect

    Drakakis, E.; Karabourniotis, D.

    2012-09-01

    For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousand degrees difference was obtained between atomic and electron temperatures at the maximum current phase.

  14. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  15. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  16. Analysis of chemical abundances in planetary nebulae with [WC] central stars. I. Line intensities and physical conditions

    NASA Astrophysics Data System (ADS)

    García-Rojas, J.; Peña, M.; Morisset, C.; Mesa-Delgado, A.; Ruiz, M. T.

    2012-02-01

    Context. Planetary nebulae (PNe) around Wolf-Rayet [WR] central stars ([WR]PNe) constitute a particular photoionized nebula class that represents about 10% of the PNe with classified central stars. Aims: We analyse deep high-resolution spectrophotometric data of 12 [WR] PNe. This sample of [WR]PNe represents the most extensive analysed so far, at such high spectral resolution. We aim to select the optimal physical conditions in the nebulae to be used in ionic abundance calculations that will be presented in a forthcoming paper. Methods: We acquired spectra at Las Campanas Observatory with the 6.5-m telescope and the Magellan Inamori Kyocera (MIKE) spectrograph, covering a wavelength range from 3350 Å to 9400 Å. The spectra were exposed deep enough to detect, with signal-to-noise ratio higher than three, the weak optical recombination lines (ORLs) of O ii, C ii, and other species. We detect and identify about 2980 emission lines, which, to date, is the most complete set of spectrophotometric data published for this type of objects. From our deep data, numerous diagnostic line ratios for Te and ne are determined from collisionally excited lines (CELs), ORLs, and continuum measurements (H i Paschen continuum in particular). Results: Densities are closely described by the average of all determined values for objects with ne < 104 cm-3, and by ne([Cl iii]) for the densest objects. For some objects, ne([Ar iv]) is adopted as the characteristic density of the high ionization zone. For Te, we adopt a three-zone ionization scheme, where the low ionization zone is characterised by Te([N ii]), the medium ionization zone by Te([O iii]), and the highest ionization one by Te([Ar iv]) when available. We compute Te from the H i Paschen discontinuity and from He i lines. For each object, Te(H i) is, in general, consistent with Te derived from CELs, although it has a very large error. Values of Te(He i) are systematically lower than the Te derived from CELs. When comparing Te(H i

  17. Implementation of central venous catheter bundle in an intensive care unit in Kuwait: Effect on central line-associated bloodstream infections.

    PubMed

    Salama, Mona F; Jamal, Wafaa; Al Mousa, Haifa; Rotimi, Vincent

    2016-01-01

    Central line-associated bloodstream infection (CLABSIs) is an important healthcare-associated infection in the critical care units. It causes substantial morbidity, mortality and incurs high costs. The use of central venous line (CVL) insertion bundle has been shown to decrease the incidence of CLABSIs. Our aim was to study the impact of CVL insertion bundle on incidence of CLABSI and study the causative microbial agents in an intensive care unit in Kuwait. Surveillance for CLABSI was conducted by trained infection control team using National Health Safety Network (NHSN) case definitions and device days measurement methods. During the intervention period, nursing staff used central line care bundle consisting of (1) hand hygiene by inserter (2) maximal barrier precautions upon insertion by the physician inserting the catheter and sterile drape from head to toe to the patient (3) use of a 2% chlorohexidine gluconate (CHG) in 70% ethanol scrub for the insertion site (4) optimum catheter site selection. (5) Examination of the daily necessity of the central line. During the pre-intervention period, there were 5367 documented catheter-days and 80 CLABSIs, for an incidence density of 14.9 CLABSIs per 1000 catheter-days. After implementation of the interventions, there were 5052 catheter-days and 56 CLABSIs, for an incidence density of 11.08 per 1000 catheter-days. The reduction in the CLABSI/1000 catheter days was not statistically significant (P=0.0859). This study demonstrates that implementation of a central venous catheter post-insertion care bundle was associated with a reduction in CLABSI in an intensive care area setting. PMID:26138518

  18. The measurement of absolute absorption of millimeter radiation in gases - The absorption of CO and O2

    NASA Technical Reports Server (NTRS)

    Read, William G.; Cohen, Edward A.; Pickett, Herbert M.; Hillig, Kurt W., II

    1988-01-01

    An apparatus is described that will measure absolute absorption of millimeter radiation in gases. The method measures the change in the quality factor of a Fabry-Perot resonator with and without gas present. The magnitude of the change is interpreted in terms of the absorption of the lossy medium inside the resonator. Experiments have been performed on the 115-GHz CO line and the 119-GHz O2 line at two different temperatures to determine the linewidth parameter and the peak absorption value. These numbers can be combined to give the integrated intensity which can be accurately calculated from results of spectroscopy measurements. The CO results are within 2 percent percent of theoretically predicted valves. Measurements on O2 have shown that absorption can be measured as accurately as 0.5 dB/km with this technique. Results have been obtained for oxygen absolute absorption in the 60-80-GHz region.

  19. X-ray line polarization of He-like Si satellite spectra in plasmas driven by high-intensity ultrashort pulsed lasers.

    PubMed

    Hakel, Peter; Mancini, Roberto C; Gauthier, Jean-Claude; Mínguez, Emilio; Dubau, Jacques; Cornille, Marguerite

    2004-05-01

    We present a modeling study of x-ray line polarization in plasmas driven by high-intensity, ultrashort duration pulsed lasers. Electron kinetics simulations of these transient and nonequilibrium plasmas predict non-Maxwellian and anisotropic electron distribution functions. Under these conditions, the magnetic sublevels within fine structure levels can be unequally populated which leads to the emission of polarized lines. We have developed a time-dependent, collisional-radiative atomic kinetics model of magnetic sublevels to understand the underlying processes and mechanisms leading to the formation of polarized x-ray line emission in plasmas with anisotropic electron distribution functions. The electron distribution function consists of a thermal component extracted from hydrodynamic calculations and a beam component determined by PIC simulations of the laser-plasma interaction. We focus on the polarization properties of the He-like Si satellites of the L y(alpha) line, discuss the time evolution of polarized satellite spectra, and identify suitable polarization markers that are sensitive to the anisotropy of the electron distribution function and can be used for diagnostic applications. PMID:15244949

  20. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 8: An intensive HST, IUE, and ground-based study of NGC 5548

    NASA Technical Reports Server (NTRS)

    Korista, K.; Alloin, D.; Barr, P.; Clavel, J.; Cohen, R. D.; Crenshaw, D. M.; Evans, I. N.; Horne, K.; Koratkar, A. P.; Kriss, G. A.

    1994-01-01

    We present the data and initial results from a combined HST/IUE/ground-based spectroscopic monitoring campaign on the Seyfert 1 galaxy NGC 5548 that was undertaken in order to address questions that require both higher temporal resolution and higher signal-to-noise ratios than were obtained in our previous multiwavelength monitoring of this galaxy in 1988-89. IUE spectra were obtained once every two days for a period of 74 days beginning on 14 March 1993. During the last 39 days of this campaign, spectroscopic observations were also made with the HST Faint Object Spectrograph (FOS) on a daily basis. Ground-based observations, consisting of 165 optical spectra and 77 photometric observations (both CCD imaging and aperture photometry), are reported for the period 1992 October to 1993 September, although much of the data are concentrated around the time of the satellite-based program. These data constitute a fifth year of intensive optical monitoring of this galaxy. In this contribution, we describe the acquisition and reduction of all of the satellite and ground-based data obtained in this program. We describe in detail various photometric problems with the FOS and explain how we identified and corrected for various anomalies. During the HST portion of the monitoring campaign, the 1350 A continuum flux is found to have varied by nearly a factor of two. In other wavebands, the continuum shows nearly identical behavior, except that the amplitude of variability is larger at shorter wavelengths, and the continuum light curves appear to show more short time-scale variability at shorter wavelengths. The broad emission lines also vary in flux, with amplitudes that are slightly smaller than the UV continuum variations and with a small time delay relative to the UV continuum. On the basis of simple time-series analysis of the UV and optical continuum and emission line light curves, we find (1) that the ultraviolet and optical continuum variations are virtually simultaneous

  1. CARES: Completely Automated Robust Edge Snapper for carotid ultrasound IMT measurement on a multi-institutional database of 300 images: a two stage system combining an intensity-based feature approach with first order absolute moments

    NASA Astrophysics Data System (ADS)

    Molinari, Filippo; Acharya, Rajendra; Zeng, Guang; Suri, Jasjit S.

    2011-03-01

    The carotid intima-media thickness (IMT) is the most used marker for the progression of atherosclerosis and onset of the cardiovascular diseases. Computer-aided measurements improve accuracy, but usually require user interaction. In this paper we characterized a new and completely automated technique for carotid segmentation and IMT measurement based on the merits of two previously developed techniques. We used an integrated approach of intelligent image feature extraction and line fitting for automatically locating the carotid artery in the image frame, followed by wall interfaces extraction based on Gaussian edge operator. We called our system - CARES. We validated the CARES on a multi-institutional database of 300 carotid ultrasound images. IMT measurement bias was 0.032 +/- 0.141 mm, better than other automated techniques and comparable to that of user-driven methodologies. Our novel approach of CARES processed 96% of the images leading to the figure of merit to be 95.7%. CARES ensured complete automation and high accuracy in IMT measurement; hence it could be a suitable clinical tool for processing of large datasets in multicenter studies involving atherosclerosis.pre-

  2. Transition dipole matrix elements for 14NH 3 from the line intensities of the 2 ν2 and ν4 bands

    NASA Astrophysics Data System (ADS)

    Urban, Š.; Papoušek, D.; Malathy Devi, V.; Fridovich, B.; D'Cunha, Romola; Narahari Rao, K.

    1984-07-01

    Line intensities as well as self- and nitrogen-broadening coefficients have been determined for 20 transitions in the 2 ν2 and ν4 bands of 14NH 3 using a diode laser spectrometer. Vibrational-inversional transition moments have been determined for transitions from the ground state to the ν2, 2 ν2 and ν4 states by a least-squares fit to the line intensities, taking into account Coriolis and l-type interactions between the nν2 ( n = 1, 2, 3), ν4 and ν2 + ν4 states [Š. Urban, V. Špirko, D. Papoušek, R. S. McDowell, N. G. Nereson, S. P. Belov, L. I. Gershtein, A. V. Maslovskij, A. F. Krupnov, J. Curtis, and K. Narahari Rao, J. Mol. Spectrosc.79, 455-495 (1980)]. The values of these transition moments have been combined with the previously obtained transition moments for NH 3 and its isotopomers to obtain an improved fit to the μz component of the electric dipole moment function of ammonia [cf. V. Špirko, J. Mol. Spectrosc.74, 456-464 (1979)].

  3. Absolute calibration of the Auger fluorescence detectors

    SciTech Connect

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  4. Fast electron heating in ultra-intense laser-solid interaction by shifted Kα line fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Martinolli, E.; Koenig, M.; Santos, J. J.; Amiranoff, F.; Baton, S. D.; Batani, D.; Perelli, E.; Scianitti, F.; Gremillet, L.; Rabec, M.; Rousseaux, C.; Hall, T. A.; Key, M. H.; MacKinnon, A. J.; Koch, J. A.; Freeman, R. R.; Snavely, R. A.; King, J. A.; Andersen, C.; Hill, J. M.; Stephens, R. B.; Cowan, T. E.; Ng, A.; Ao, T.

    2002-11-01

    In the context of the fast ignition studies[1], the heating of the dense fuel by fast electrons appears to be one of the most relevant aspects currently investigated [2]. In order to estimate the energy deposition and the efficiency of the fast electron transport in solid targets, we have performed experiments on LULI and RAL high power lasers, at irradiances up to a few 10^19 W/cm^2. Shifted Kα lines from an aluminum fluorescer layer buried at different depths in multilayered targets were detected using a Bragg conical-crystal spectrograph. The results were used to infer the ionization stage of the Al layer. Monte Carlo and hybrid transport codes[3] were used to study fast electron energy release by collisions and ohmic effect. The energy coupling to the target is described within an ionization model for dense matter[4] and compared to the experimental data. Despite some uncertainties of the modeling, the results give an indication of a deep heating of the target up to 30 eV after propagation in 100 μm Al. [1] M Tabak et al., Phys. of Plasmas 1, 1626 (1994) [2] E Martinolli et al., submitted to PRL, may 2002 [3] L Gremillet et al. Phys. of Plasmas 9, 941, (2002) [4] G Chiu and A Ng, PRE 59, 1024, (1999)

  5. Absolute dosimetry for extreme-ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Berger, Kurt W.; Campiotti, Richard H.

    2000-06-01

    The accurate measurement of an exposure dose reaching the wafer on an extreme ultraviolet (EUV) lithographic system has been a technical challenge directly applicable to the evaluation of candidate EUV resist materials and calculating lithography system throughputs. We have developed a dose monitoring sensor system that can directly measure EUV intensities at the wafer plane of a prototype EUV lithographic system. This sensor system, located on the wafer stage adjacent to the electrostatic chuck used to grip wafers, operates by translating the sensor into the aerial image, typically illuminating an 'open' (unpatterned) area on the reticle. The absolute signal strength can be related to energy density at the wafer, and thus used to determine resist sensitivity, and the signal as a function of position can be used to determine illumination uniformity at the wafer plane. Spectral filtering to enhance the detection of 13.4 nm radiation was incorporated into the sensor. Other critical design parameters include the packaging and amplification technologies required to place this device into the space and vacuum constraints of a EUV lithography environment. We describe two approaches used to determine the absolute calibration of this sensor. The first conventional approach requires separate characterization of each element of the sensor. A second novel approach uses x-ray emission from a mildly radioactive iron source to calibrate the absolute response of the entire sensor system (detector and electronics) in a single measurement.

  6. High sensitivity cavity ring down spectroscopy of N2O near 1.22 μm: (II) 14N216O line intensity modeling and global fit of 14N218O line positions

    NASA Astrophysics Data System (ADS)

    Tashkun, S. A.; Perevalov, V. I.; Karlovets, E. V.; Kassi, S.; Campargue, A.

    2016-06-01

    In a recent work (Karlovets et al., 2016 [1]), we reported the measurement and rovibrational assignments of more than 3300 transitions belonging to 64 bands of five nitrous oxide isotopologues (14N216O, 14N15N16O, 15N14N16O, 14N218O and 14N217O) in the high sensitivity CRDS spectrum recorded in the 7915-8334 cm-1 spectral range. The assignments were performed by comparison with predictions of the effective Hamiltonian models developed for each isotopologue. In the present paper, the large amount of measurements from our previous work mentioned above and literature are gathered to refine the modeling of the nitrous oxide spectrum in two ways: (i) improvement of the intensity modeling for the principal isotopologue, 14N216O, near 8000 cm-1 from a new fit of the relevant effective dipole moment parameters, (ii) global modeling of 14N218O line positions from a new fit of the parameters of the global effective Hamiltonian using an exhaustive input dataset collected in the literature in the 12-8231 cm-1 region. The fitted set of 81 parameters allowed reproducing near 5800 measured line positions with an RMS deviation of 0.0016 cm-1. The dimensionless weighted standard deviation of the fit is 1.22. As an illustration of the improvement of the predictive capabilities of the obtained effective Hamiltonian, two new 14N218O bands could be assigned in the CRDS spectrum in the 7915-8334 cm-1 spectral range. A line list at 296 K has been generated in the 0-10,700 cm-1 range for 14N218O in natural abundance with a 10-30 cm/molecule intensity cutoff.

  7. Physical processes in an electron current layer causing intense plasma heating and formation of x-lines

    SciTech Connect

    Singh, Nagendra; Wells, B. E.; Khazanov, Igor

    2015-05-15

    We study the evolution of an electron current layer (ECL) through its several stages by means of three-dimensional particle-in-cell (PIC) simulations with ion to electron mass ratio M/m{sub e} = 400. An ECL evolves through the following stages: (i) Electrostatic (ES) current-driven instability (CDI) soon after its formation with half width w about 2 electron skin depth (d{sub e}), (ii) current disruption in the central part of the ECL by trapping of electrons and generation of anomalous resistivity, (iii) electron tearing instability (ETI) with significantly large growth rates in the lower end of the whistler frequency range, (iv) widening of the ECL and modulation of its width by the ETI, (v) gradual heating of electrons by the CDI-driven ES ion modes create the condition that the electrons become hotter than the ions, (vi) despite the reduced electron drift associated with the current disruption by the CDI, the enhanced electron temperature continues to favor a slow growth of the ion waves reaching nonlinear amplitudes, (vii) the nonlinear ion waves undergo modulation and collapse into localized density cavities containing spiky electric fields like in double layers (DLs), (viii) such spiky electric fields are very effective in further rapid heating of both electrons and ions. As predicted by the electron magnetohydrodynamic (EMHD) theories, the ETI growth rate maximizes at wave numbers in the range 0.4 < k{sub x}W < 0.8 where k{sub x} is the wave number parallel to the ECL magnetic field and w is the evolving half width of the ECL. The developing ETI generates in-plane currents that support out-of-plane magnetic fields around the emerging x-lines. The ETI and the spiky electrostatic structures are accompanied by fluctuations in the magnetic fields near and above the lower-hybrid (ion plasma) frequency, including the whistler frequency range. We compare our results with experimental results and satellite observation.

  8. Absolute calibration of ultraviolet filter photometry

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Fairchild, T.; Code, A. D.

    1972-01-01

    The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.

  9. Status of the "ARC", a Quad of High-Intensity Beam Lines at the National Ignition Facility

    SciTech Connect

    Crane, J K; Arnold, P; Beach, R J; Betts, S; Boley, C; Chang, M; Chrisp, M; Clark, W; Dawson, J W; Erlandson, A; Henesian, M; Hernandez, J E; Jovanovic, I; Kanz, V; Key, M; Lucianetti, A; Messerly, M J; Page, R; Rushford, M; Semenov, V; Seppala, L; Siders, C; Stolz, C; Trummer, D J; Williams, W; Wong, J N; Tiebohl, G; Barty, C J

    2006-06-21

    We present the status of plans to commission a short-pulse, quad of beams on the National Ignition Facility (NIF), capable of generating > 10 kJ of energy in 10 ps. These beams will initially provide an advanced radiographic capability (ARC) to generate brilliant, x-ray back-lighters for diagnosing fuel density and symmetry during ignition experiments. A fiber, mode-locked oscillator generates the seed pulse for the ARC beam line in the NIF master oscillator room (MOR). The 200 fs, 1053 nm oscillator pulse is amplified and stretched in time using a chirped-fiber-Bragg grating. The stretched pulse is split to follow two separate beam paths through the chain. Each pulse goes to separate pulse tweakers where the dispersion can be adjusted to generate a range of pulse widths and delays at the compressor output. After further fiber amplification the two pulses are transported to the NIF preamplifier area and spatially combined using shaping masks to form a split-spatial-beam profile that fits in a single NIF aperture. This split beam propagates through a typical NIF chain where the energy is amplified to several kilojoules. A series of mirrors directs the amplified, split beam to a folded grating compressor that is located near the equator of the NIF target chamber. Figure 1 shows a layout of the beam transport and folded compressor, showing the split beam spatial profile. The folder compressor contains four pairs of large, multi-layer-dielectric gratings; each grating in a pair accepts half of the split beam. The compressed output pulse can be 0.7-50 ps in duration, depending on the setting of the pulse tweaker in the MOR. The compressor output is directed to target chamber center using four additional mirrors that include a 9 meter, off-axis parabola. The final optic, immediately following the parabola, is a pair of independently adjustable mirrors that can direct the pair of ARC beams to individual x-ray backlighter targets. The first mirror after the compressor

  10. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes

    SciTech Connect

    Lisnyak, M.; Pipa, A. V.; Gorchakov, S. E-mail: weltmann@inp-greifswald.de; Iseni, S.; Franke, St.; Khapour, A.; Methling, R.; Weltmann, K.-D. E-mail: weltmann@inp-greifswald.de

    2015-09-28

    Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350–810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution was used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.

  11. Emission intensity of the λ = 1.54 μm line in ZnO films grown by magnetron sputtering, diffusion doped with Ce, Yb, Er

    SciTech Connect

    Mezdrogina, M. M. Eremenko, M. V.; Smirnov, A. N.; Petrov, V. N.; Terukov, E. I.

    2015-08-15

    The effect of the Er{sup 3+}-ion excitation type on the photoluminescence spectra of crystalline ZnO(ZnO〈Ce, Yb, Er〉) films is determined in the cases of resonant (λ = 532 nm, Er{sup 3+}-ion transition from {sup 4}S{sub 3/2}, {sup 2}H{sub 11/2} levels to {sup 4}I{sub 15/2}) and non-resonant (λ = 325 nm, in the region near the ZnO band-edge emission) excitation. It is shown that resonant excitation gives rise to lines with various emission intensities, characteristic of the Er{sup 3+}-ion intracenter 4f transition with λ = 1535 nm when doping crystalline ZnO films with three rare-earth ions (REIs, Ce, Yb, Er) or with two impurities (Ce, Er) or (Er, Yb), independently of the measurement temperature (T = 83 and 300 K). The doping of crystalline ZnO films with rare-earth impurities (Ce, Yb, Er) leads to the efficient transfer of energy to REIs, a consequence of which is the intense emission of an Er{sup 3+} ion in the IR spectral region at λ{sub max} = 1535 nm. The kick-out diffusion mechanism is used upon the sequential introduction of impurities into semiconductor matrices and during the postgrowth annealing of the ZnO films under study. The crystalline ZnO films doped with Ce, Yb, Er also exhibit intense emission in the visible spectral region at room temperature, which makes them promising materials for optoelectronics.

  12. Design of the axial beam line for the injection of high intensity beams into the Laboratorio Nazionale del Sud superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Gammino, S.; Ciavola, G.

    1996-03-01

    At Laboratorio Nazionale del Sud the superconducting electron cyclotron resonance source SERSE will be used as injector for the K-800 Superconducting Cyclotron which in the future will provide the intense light ion beams to be used as primary beams for the radioactive beam project EXCYT. The goal is to inject and accelerate a few pμA of fully stripped carbon and oxygen into the cyclotron with an emittance as close as possible to the typical acceptance of the cyclotron, which should be in the order of 50π mm mrad. The study of the beam line has been carried out by taking into account both the phase space growth due to space charge and the aberrations inside the magnets. The design has been based on the results of different codes (TRANSPORT, GIOSP, PARMILA). A few details on the diagnostics will also be given. The assembly of the beam line is scheduled for the summer of 1996, just before the transfer of the source SERSE from Grenoble to Catania.

  13. Mesosphere-thermosphere regions coupling with the lower atmosphere through the inter-annual variations of the hydroxyl OH(8-3) bands, the oxygen 557.7 nm and 630.0 nm lines nightglow intensities

    NASA Astrophysics Data System (ADS)

    Didebulidze, Goderdzi; Javakhishvili, Giorgi; Todua, Maya; Toriashvili, Lekso

    2016-04-01

    The characteristics of the inter-annual/seasonal distributions of the mid-latitude nightglow intensities of the mesopause hydroxyl OH(8-3) bands (maximum luminous layer about 87 km), the thermosphere oxygen green 557.7 nm (main maximum of luminous layer in the lower thermosphere at about 95 km) and the red 630.0 nm line (emitted from the ionosphere F2 region with maximum luminous layer about 230-280 km) intensities are considered by observations from Abastumani (41.75 E; 42.82 E). The observed inter-annual variations of the OH bands and green line, along with the maximal values at spring (March-April) and fall (September-October) equinoxial periods which are noticed also from other regions, exhibit maxima in June as well. The red line intensity mainly tends to decrease at equinoxial months, while it is maximal in summer and is accompanied by relatively small increase in June (compared to May and July). Maximal values of OH band and green line intensities in June are observed both in maximum and minimum phases of solar activity. This is considered as a manifestation of the features of upper and lower atmosphere dynamical coupling of this region of the South Caucasus. Such dynamical coupling can involve the ionosphere F2 region and can be accompanied by relative decrease of the red line intensity in June. It is observed that the increase of OH band and green line intensities is accompanied by the red line intensity decrease at the end of March and beginning of April, which also is considered as a manifestation of lower and upper atmosphere dynamical coupling. Acknowledgements: This work has been supported by Shota Rustaveli National Science Foundation Grants no. 31/56 and 31/81.

  14. The epidemiology of tick-borne haemoparasites as determined by the reverse line blot hybridization assay in an intensively studied cohort of calves in western Kenya

    PubMed Central

    Njiiri, Nyawira E.; Bronsvoort, B. Mark deC.; Collins, Nicola E.; Steyn, Helena C.; Troskie, Milana; Vorster, Ilse; Thumbi, S.M.; Sibeko, Kgomotso P.; Jennings, Amy; van Wyk, Ilana Conradie; Mbole-Kariuki, Mary; Kiara, Henry; Poole, E. Jane; Hanotte, Olivier; Coetzer, Koos; Oosthuizen, Marinda C.; Woolhouse, Mark; Toye, Philip

    2015-01-01

    The development of sensitive surveillance technologies using PCR-based detection of microbial DNA, such as the reverse line blot assay, can facilitate the gathering of epidemiological information on tick-borne diseases, which continue to hamper the productivity of livestock in many parts of Africa and elsewhere. We have employed a reverse line blot assay to detect the prevalence of tick-borne parasites in an intensively studied cohort of indigenous calves in western Kenya. The calves were recruited close to birth and monitored for the presence of infectious disease for up to 51 weeks. The final visit samples from 453 calves which survived for the study period were analyzed by RLB. The results indicated high prevalences of Theileria mutans (71.6%), T. velifera (62.8%), Anaplasma sp. Omatjenne (42.7%), A. bovis (39.9%), Theileria sp. (sable) (32.7%), T. parva (12.9%) and T. taurotragi (8.5%), with minor occurrences of eight other haemoparasites. The unexpectedly low prevalence of the pathogenic species Ehrlichia ruminantium was confirmed by a species-specific PCR targeting the pCS20 gene region. Coinfection analyses of the seven most prevalent haemoparasites indicated that they were present as coinfections in over 90% of the cases. The analyses revealed significant associations between several of the Theileria parasites, in particular T. velifera with Theileria sp. sable and T. mutans, and T. parva with T. taurotragi. There was very little coinfection of the two most common Anaplasma species, although they were commonly detected as coinfections with the Theileria parasites. The comparison of reverse line blot and serological results for four haemoparasites (T. parva, T. mutans, A. marginale and B. bigemina) indicated that, except for the mostly benign T. mutans, indigenous cattle seem capable of clearing infections of the three other, pathogenic parasites to below detectable levels. Although the study site was located across four agroecological zones, there was

  15. Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Reichmann, Edwin J.

    1987-01-01

    Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.

  16. Improved cavity-type absolute total-radiation radiometer

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Sr.; Plamondon, J. A., Jr.

    1967-01-01

    Conical cavity-type absolute radiometer measures the intensity of radiant energy to an accuracy of one to two percent in a vacuum of ten to the minus fifth torr or lower. There is a uniform response over the ultraviolet, visible, and infrared range, and it requires no calibration or comparison with a radiation standard.

  17. Normal incidence spectrophotometer using high density transmission grating technology and highly efficiency silicon photodiodes for absolute solar EUV irradiance measurements

    NASA Technical Reports Server (NTRS)

    Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Korde, R.

    1992-01-01

    New developments in transmission grating and photodiode technology now make it possible to realize spectrometers in the extreme ultraviolet (EUV) spectral region (wavelengths less than 1000 A) which are expected to be virtually constant in their diffraction and detector properties. Time dependent effects associated with reflection gratings are eliminated through the use of free standing transmission gratings. These gratings together with recently developed and highly stable EUV photodiodes have been utilized to construct a highly stable normal incidence spectrophotometer to monitor the variability and absolute intensity of the solar 304 A line. Owing to its low weight and compactness, such a spectrometer will be a valuable tool for providing absolute solar irradiance throughout the EUV. This novel instrument will also be useful for cross-calibrating other EUV flight instruments and will be flown on a series of Hitchhiker Shuttle Flights and on SOHO. A preliminary version of this instrument has been fabricated and characterized, and the results are described.

  18. On the dependence of solar flare X-ray spectral line intensity ratios of highly ionized sulfur, calcium, and iron on electron temperature, differential emission measure, and atomic physics

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.; Fludra, A.; Bentley, R. D.; Lang, J.; Phillips, K. J. H.

    1990-01-01

    This paper focuses on what can be learned about the emission measure distribution and certain atomic physics parameters from spectral lines of highly ionized ions of sulfur, calcium, and iron that appear in solar flare spectra. The particular lines chosen for analysis allow the electron temperature to be determined independently of the assumption of ionization equilibrium. An attempt is made to find emission measure models based on selected functional dependences of emission measure on temperature that reproduce the observed temperatures deduced from spectral line ratios as well as the relative intensities of resonance lines of different elements.

  19. Absolute spectrophotometry of northern compact planetary nebulae

    NASA Astrophysics Data System (ADS)

    Wright, S. A.; Corradi, R. L. M.; Perinotto, M.

    2005-06-01

    We present medium-dispersion spectra and narrowband images of six northern compact planetary nebulae (PNe): BoBn 1, DdDm 1, IC 5117, M 1-5, M 1-71, and NGC 6833. From broad-slit spectra, total absolute fluxes and equivalent widths were measured for all observable emission lines. High signal-to-noise emission line fluxes of Hα, Hβ, [Oiii], [Nii], and HeI may serve as emission line flux standards for northern hemisphere observers. From narrow-slit spectra, we derive systemic radial velocities. For four PNe, available emission line fluxes were measured with sufficient signal-to-noise to probe the physical properties of their electron densities, temperatures, and chemical abundances. BoBn 1 and DdDm 1, both type IV PNe, have an Hβ flux over three sigma away from previous measurements. We report the first abundance measurements of M 1-71. NGC 6833 measured radial velocity and galactic coordinates suggest that it is associated with the outer arm or possibly the galactic halo, and its low abundance ([O/H]=1.3× 10-4) may be indicative of low metallicity within that region.

  20. Spectroscopic line parameters of NH3 and PH3 in the far infrared

    NASA Technical Reports Server (NTRS)

    Husson, N.; Goldman, A.; Orton, G.

    1982-01-01

    NH3 and PH3 rotation and rotation-inversion line parameters in the far to medium IR are calculated for remote sounding purposes of planetary atmospheres; 1607 lines of (N-14)H3, 362 lines of (N-15)H3 and 325 lines of PH3 are compiled. The absolute intensity formulation has been reviewed in the case of rotation and rotation-inversion lines of molecules with C(3v) symmetry. The justification for the general agreement between the authors, and comparisons with other published expressions are given.

  1. Low-intensity pulsed ultrasound stimulates cell proliferation, proteoglycan synthesis and expression of growth factor-related genes in human nucleus pulposus cell line.

    PubMed

    Kobayashi, Y; Sakai, D; Iwashina, T; Iwabuchi, S; Mochida, J

    2009-01-01

    Low-intensity pulsed ultrasound (LIPUS) stimulation has been shown to effect differentiation and activation of human chondrocytes. A study involving stimulation of rabbit disc cells with LIPUS revealed upregulation of cell proliferation and proteoglycan (PG) synthesis. However, the effect of LIPUS on human nucleus pulposus cells has not been investigated. In the present study, therefore, we investigated whether LIPUS stimulation of a human nucleus pulposus cell line (HNPSV-1) exerted a positive effect on cellular activity. HNPSV-1 cells were encapsulated in 1.2% sodium alginate solution at 1x10(5) cells/ml and cultured at 10 beads/well in 6-well plates. The cells were stimulated for 20 min each day using a LIPUS generator, and the effects of LIPUS were evaluated by measuring DNA and PG synthesis. Furthermore, mRNA expression was analyzed by cDNA microarray using total RNA extracted from the cultured cells. Our study revealed no significant difference in cell proliferation between the control and the ultrasound treated groups. However, PG production was significantly upregulated in HNPSV cells stimulated at intensities of 15, 30, 60, and 120 mW/cm(2) compared with the control. The results of cDNA array showed that LIPUS significantly stimulated the gene expression of growth factors and their receptors (BMP2, FGF7, TGFbetaR1 EGFRF1, VEGF). These findings suggest that LIPUS stimulation upregulates PG production in human nucleus pulposus cells by the enhancement of several matrix-related genes including growth factor-related genes. Safe and non-invasive stimulation using LIPUS may be a useful treatment for delaying the progression of disc degeneration. PMID:19598131

  2. Low Intensity Pulsed Ultrasound (LIPUS) Influences the Multilineage Differentiation of Mesenchymal Stem and Progenitor Cell Lines through ROCK-Cot/Tpl2-MEK-ERK Signaling Pathway*

    PubMed Central

    Kusuyama, Joji; Bandow, Kenjiro; Shamoto, Mitsuo; Kakimoto, Kyoko; Ohnishi, Tomokazu; Matsuguchi, Tetsuya

    2014-01-01

    Mesenchymal stem cells (MSCs) are pluripotent cells that can differentiate into multilineage cell types, including adipocytes and osteoblasts. Mechanical stimulus is one of the crucial factors in regulating MSC differentiation. However, it remains unknown how mechanical stimulus affects the balance between adipogenesis and osteogenesis. Low intensity pulsed ultrasound (LIPUS) therapy is a clinical application of mechanical stimulus and facilitates bone fracture healing. Here, we applied LIPUS to adipogenic progenitor cell and MSC lines to analyze how multilineage cell differentiation was affected. We found that LIPUS suppressed adipogenic differentiation of both cell types, represented by impaired lipid droplet appearance and decreased gene expression of peroxisome proliferator-activated receptor γ2 (Pparg2) and fatty acid-binding protein 4 (Fabp4). LIPUS also down-regulated the phosphorylation level of peroxisome proliferator-activated receptor γ2 protein, inhibiting its transcriptional activity. In contrast, LIPUS promoted osteogenic differentiation of the MSC line, characterized by increased cell calcification as well as inductions of runt-related transcription factor 2 (Runx2) and Osteocalcin mRNAs. LIPUS induced phosphorylation of cancer Osaka thyroid oncogene/tumor progression locus 2 (Cot/Tpl2) kinase, which was essential for the phosphorylation of mitogen-activated kinase kinase 1 (MEK1) and p44/p42 extracellular signal-regulated kinases (ERKs). Notably, effects of LIPUS on both adipogenesis and osteogenesis were prevented by a Cot/Tpl2-specific inhibitor. Furthermore, effects of LIPUS on MSC differentiation as well as Cot/Tpl2 phosphorylation were attenuated by the inhibition of Rho-associated kinase. Taken together, these results indicate that mechanical stimulus with LIPUS suppresses adipogenesis and promotes osteogenesis of MSCs through Rho-associated kinase-Cot/Tpl2-MEK-ERK signaling pathway. PMID:24550383

  3. A survey of Preventive Measures Used and their Impact on Central Line-Associated Bloodstream Infections (CLABSI) in Intensive Care Units (SPIN-BACC)

    PubMed Central

    2013-01-01

    Background The Quebec central line-associated bloodstream infections (CLABSI) in intensive care units (ICUs) Surveillance Program saw a decrease in CLABSI rates in most ICUs. Given the surveillance trends observed in recent years, we aimed to determine what preventive measures have been implemented, if compliance to measures was monitored and its impact on CLABSI incidence rates. Methods All hospitals participating in the Quebec healthcare-associated infections surveillance program (SPIN-BACC – n = 48) received a 77-question survey about preventive measures implemented and monitored in their ICU. The questionnaire was validated for construct, content, face validity, and reliability. We used Poisson regression to measure the association between compliance monitoring to preventive measures and CLABSI rates. Results Forty-two (88%) eligible hospitals completed the survey. Two components from the maximum barrier precautions were used less optimally: cap (88%) and full sterile body drape (71%). Preventive measures reported included daily review of catheter need (79%) and evaluation of insertion site for the presence of inflammation (90%). Two hospitals rewired lines even if an infection was suspected or documented. In adult ICUs, there was a statistically significant greater decrease in CLABSI rates in ICUs that monitored compliance to preventive insertion measures, after adjusting for teaching status and the number of hospital beds (p = 0.036). Conclusions Hospitals participating to the SPIN-BACC program follow recommendations for CLABSI prevention, but only a minority locally monitor their application. Compliance monitoring of preventive measures for catheter insertion was associated with a decrease in CLABSI incidence rates. PMID:24289473

  4. Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway.

    PubMed

    Kusuyama, Joji; Bandow, Kenjiro; Shamoto, Mitsuo; Kakimoto, Kyoko; Ohnishi, Tomokazu; Matsuguchi, Tetsuya

    2014-04-11

    Mesenchymal stem cells (MSCs) are pluripotent cells that can differentiate into multilineage cell types, including adipocytes and osteoblasts. Mechanical stimulus is one of the crucial factors in regulating MSC differentiation. However, it remains unknown how mechanical stimulus affects the balance between adipogenesis and osteogenesis. Low intensity pulsed ultrasound (LIPUS) therapy is a clinical application of mechanical stimulus and facilitates bone fracture healing. Here, we applied LIPUS to adipogenic progenitor cell and MSC lines to analyze how multilineage cell differentiation was affected. We found that LIPUS suppressed adipogenic differentiation of both cell types, represented by impaired lipid droplet appearance and decreased gene expression of peroxisome proliferator-activated receptor γ2 (Pparg2) and fatty acid-binding protein 4 (Fabp4). LIPUS also down-regulated the phosphorylation level of peroxisome proliferator-activated receptor γ2 protein, inhibiting its transcriptional activity. In contrast, LIPUS promoted osteogenic differentiation of the MSC line, characterized by increased cell calcification as well as inductions of runt-related transcription factor 2 (Runx2) and Osteocalcin mRNAs. LIPUS induced phosphorylation of cancer Osaka thyroid oncogene/tumor progression locus 2 (Cot/Tpl2) kinase, which was essential for the phosphorylation of mitogen-activated kinase kinase 1 (MEK1) and p44/p42 extracellular signal-regulated kinases (ERKs). Notably, effects of LIPUS on both adipogenesis and osteogenesis were prevented by a Cot/Tpl2-specific inhibitor. Furthermore, effects of LIPUS on MSC differentiation as well as Cot/Tpl2 phosphorylation were attenuated by the inhibition of Rho-associated kinase. Taken together, these results indicate that mechanical stimulus with LIPUS suppresses adipogenesis and promotes osteogenesis of MSCs through Rho-associated kinase-Cot/Tpl2-MEK-ERK signaling pathway. PMID:24550383

  5. In-line silica capillary tube all-silica fiber-optic Fabry-Perot interferometric sensor for detecting high intensity focused ultrasound fields.

    PubMed

    Wang, D H; Wang, S J; Jia, P G

    2012-06-01

    Aiming at detecting high intensity focused ultrasound (HIFU) fields, this letter reports on a novel in-line silica capillary tube all-silica fiber-optic Fabry-Perot (ILSCT-ASFP) interferometric sensor fabricated by splicing a commercially available silica capillary tube to two single-mode fibers. The experimental results show that such a novel ILSCT-ASFP interferometric sensor with a cavity length of ∼60.76 μm has an excellent fringe visibility of up to ∼20 dB, and the fringe visibility is still good when the cavity length extends up to ∼1031.07 μm. The measured wavelength-temperature sensitivity of 0.000858 nm/°C shows that the wavelength drift of the fabricated ILSCT-ASFP interferometric sensor towards temperature is extremely low. Meanwhile, the measurement of HIFU fields by this novel sensor is demonstrated, and the experimental results indicate that the signal-to-noise ratio of the sensing system for sensing a 0.93 MHz HIFU field with a pressure of 2.69 MPa in the focus area can reach 42.8 dB. The corresponding noise equivalent pressure is 0.0194 MPa, and the calculated acoustic sensitivity is 65.4 mV/MPa over a 2.5 MHz measurement bandwidth. PMID:22660116

  6. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  7. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  8. Quantitative spectroscopy of x-ray lines and continua in Tokamaks

    SciTech Connect

    Peacock, N.J.; Barnsley, R.; Lawson, K.D.; Melnick, I.M.; OMullane, M.G.; Singleton, M.A.; Patel, A.

    1997-04-01

    Crystal and synthetic multilayer diffractors, deployed either as flat Bragg reflectors, or curved, as in the Johann configuration, are used to study the spectrum of COMPASS-D and other tokamaks in the wavelength region of 1{endash}100 {Angstrom}. In this article, we concentrate on the measurement of absolute photon fluxes and the derivation of volume emissivities of the lines and continua in the x-ray region. The sensitivities of these instruments to absolute photon flux have been constructed {ital ab initio} from the individual component efficiencies, including published values of the diffractor reflectivities, which have been checked or supplemented by measurements using a double-axis goniometer or from line branching ratios. For those tokamak plasmas, where the elemental abundances and effective ion charge are documented, the x-ray continuum intensity itself has been used as a calibration source to derive absolute instrument sensitivity, in reasonable agreement with the {ital ab initio} method. In the COMPASS-D Tokamak, changes in the effective ion charge state, {ital Z}{sub eff}, have been derived for different operating conditions, from the absolute intensity of the continuum at {approximately}4 {Angstrom}. From the radiances of the line emission, changes in the absolute level of impurities following {open_quotes}boronization{close_quotes} of the vacuum vessel have also been documented. {copyright} {ital 1997 American Institute of Physics.}

  9. The response of the inductively coupled argon plasma to solvent plasma load: spatially resolved maps of electron density obtained from the intensity of one argon line

    NASA Astrophysics Data System (ADS)

    Weir, D. G. J.; Blades, M. W.

    1994-12-01

    A survey of spatially resolved electron number density ( ne) in the tail cone of the inductively coupled argon plasma (ICAP) is presented: all of the results of the survey have been radially inverted by numerical, asymmetric Abel inversion. The survey extends over the entire volume of the plasma beyond the exit of the ICAP torch; It extends over distances of z = 5-25 mm downstream from the induction coil, and over radial distances of ± 8 mm from the discharge axis. The survey also explores a range of inner argon flow rates ( QIN), solvent plasma load ( Qspl) and r.f. power: moreover, it explores loading by water, methanol and chloroform. Throughout the survey, ne was determined from the intensity of one, optically thin argon line, by a method which assumes that the atomic state distribution function (ASDF) for argon lies close to local thermal equilibrium (LTE). The validity of this assumption is reviewed. Also examined are the discrepancies between ne from this method and ne from Stark broadening measurements. With the error taken into account, the results of the survey reveal how time averaged values of ne in the ICAP respond over an extensive, previously unexplored range of experimental parameters. Moreover, the spatial information lends insight into how the thermal conditions and the transport of energy respond. Overall, the response may be described in terms of energy consumption along the axial channel and thermal pinch within the induction region. The predominating effect depends on the solvent plasma load, the solvent composition, the robustness of the discharge, and the distribution of solvent material over the argon stream.

  10. Absolute OH density determination by laser induced fluorescence spectroscopy in an atmospheric pressure RF plasma jet

    NASA Astrophysics Data System (ADS)

    Xiong, Q.; Nikiforov, A. Yu.; Li, L.; Vanraes, P.; Britun, N.; Snyders, R.; Lu, X. P.; Leys, C.

    2012-11-01

    In this paper, the ground state OH density is measured in high pressure plasma by laser-induced fluorescence (LIF) spectroscopy. The OH density determination is based on the simulation of the intensity fraction of fluorescence from the laser-excited level of OH (A) in the total detected LIF signal. The validity of this approach is verified in an atmospheric pressure Ar + H2O plasma jet sustained by a 13.56 MHz power supply. The transition line P1 (4) from OH (A, v' = 1, J' = 3) → OH (X, v'' = 0, J'' = 4) is used for the LIF excitation. The absolute OH density is determined to be 2.5 × 1019 m-3 at 1 mm away from the jet nozzle. It corresponds to a dissociation of 0.06% of the water vapor in the working gas. Different mechanisms of OH (X) production in the core of the plasma jet are discussed and analyzed.

  11. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  12. Tunable diode laser measurements of line strengths in the nu4 band of C-12H4

    NASA Technical Reports Server (NTRS)

    Fox, K.; Reisfeld, M. J.; Mcdowell, R. S.

    1979-01-01

    Absolute intensities have been measured, using a diode laser spectrometer for several vibration-rotation lines in the nu4 fundamental of methane. The data have been analyzed, with the inclusion of Coriolis interactions, to obtain a transition moment of (0.0508 plus or minus 0.0015) x 10 to the minus 18th esu cm. This work appears to resolve some earlier difficulties in interpreting measurements and calculations of intensities in nu4 of CH4.

  13. ExoMol line lists XV: A new hot line list for hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Al-Refaie, Ahmed F.; Polyansky, Oleg L.; Ovsyannikov, Roman I.; Tennyson, Jonathan; Yurchenko, Sergei N.

    2016-05-01

    A computed line list for hydrogen peroxide, H216O2, applicable to temperatures up to T = 1250 K is presented. A semi-empirical high accuracy potential energy surface is constructed and used with an ab initio dipole moment surface as input TROVE to compute 7.5 million rotational-vibrational states and around 20 billion transitions with associated Einstein-A coefficients for rotational excitations up to J = 85. The resulting APTY line list is complete for wavenumbers below 6 000 cm-1 (λ < 1.67 μm) and temperatures up to 1250 K. Room-temperature spectra are compared with laboratory measurements and data currently available in the HITRAN database and literature. Our rms with line positions from the literature is 0.152 cm-1 and our absolute intensities agree better than 10%. The full line list is available from the CDS database as well as at www.exomol.com.

  14. ExoMol line lists - XV. A new hot line list for hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Al-Refaie, Ahmed F.; Polyansky, Oleg L.; Ovsyannikov, Roman I.; Tennyson, Jonathan; Yurchenko, Sergei N.

    2016-09-01

    A computed line list for hydrogen peroxide, H216O2, applicable to temperatures up to T = 1250 K is presented. A semi-empirical high-accuracy potential energy surface is constructed and used with an ab initio dipole moment surface as input TROVE to compute 7.5 million rotational-vibrational states and around 20 billion transitions with associated Einstein-A coefficients for rotational excitations up to J = 85. The resulting APTY line list is complete for wavenumbers below 6000 cm-1 (λ < 1.67 μm) and temperatures up to 1250 K. Room-temperature spectra are compared with laboratory measurements and data currently available in the HITRAN data base and literature. Our rms with line positions from the literature is 0.152 cm-1 and our absolute intensities agree better than 10 per cent. The full line list is available from the CDS data base as well as at www.exomol.com.

  15. A multicenter quasi-experimental study: impact of a central line infection control program using auditing and performance feedback in five Belgian intensive care units

    PubMed Central

    2013-01-01

    Background We analyzed the impact associated with an intervention based on process control and performance feedback to decrease central line-associated bloodstream infection (CLABSI) rates. This study was conducted from March 2011 to September 2012 in five adult intensive care units (ICU) located in two Belgian tertiary hospitals A and B, with a total of 53 beds. Methods This study was divided in three phases: P1 (baseline), P2 (intervention) and P3 (post intervention). During P2, external monitoring of five central venous catheters (CVC) care critical processes and monthly reporting (meetings and feedbacks reports posted) of performance indicators (CLABSI rate, CVC utilization ratio, compliance rate with each care process, and insertion site) to ICU workers were performed. The external monitoring of process measures was assessed by the same trained research nurse. A Poisson regression analysis was used to compare CLABSI incidence density rate per phase. Statistical significance was achieved with 2-sided p-value of <0.05. For the analysis, we separated the five ICU in hospital A and B when appropriate. Results Significantly improved total mean compliance was achieved for hand hygiene, CVC handling and CVC dressing. CLABSI rate declined from 4.00 (95% confidence interval (CI): 1.94-6.06) to 1.81 (0.46-3.17) per 1,000 CVC-days in P2 with an incidence rate ratio (IRR) of 0.49 (0.24-0.98, p = 0.043). A better response was observed in hospital A where the nurse participation at the monthly meeting was significantly higher than in hospital B (p < 0.001) as the percentage of feedbacks reports posted in ICU (p < 0.001). The decline in the CLABSI rate observed during P2 in comparison with P1 was independent of the insertion site (femoral or non-femoral; p = 0.054). The overall CLABSI rate increased to 2.73 (1.17-4.29) per 1,000 CVC-days with IRR of 0.67 (0.36-1.26, p = 0.212) in P3 compared to P1, but a high nursing turnover was observed in both hospitals. Conclusions Our

  16. Absolute wind measurements in the lower thermosphere of Venus using infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Goldstein, Jeffrey J.

    1990-01-01

    The first absolute wind velocities above the Venusian cloud-tops were obtained using NASA/Goddard infrared heterodyne spectrometers at the NASA Infrared Telescope Facility (IRTF) and the McMath Solar Telescope. Beam-integrated Doppler displacements in the non-thermal emission core of (12)C(16)O2 10.33 micron R(8) sampled the line of sight projection of the lower thermospheric wind field (100 to 120 km). A field-usable Lamb-dip laser stabilization system, developed for spectrometer absolute frequency calibration to less than + or - 0.1 MHz, allowed S/N-limited line of sight velocity resolution at the 1 m/s level. The spectrometer's diffraction-limited beam (1.7 arc-second HPBW at McMath, 0.9 arc-second HPBW at IRTF), and 1 to 2 arc-second seeing, provided the spatial resolution necessary for circulation model discrimination. Qualitative analysis of beam-integrated winds provided definitive evidence of a dominant subsolar-antisolar circulation in the lower thermosphere. Beam-integrated winds were modelled with a 100x100 grid over the beam, incorporating beam spatial rolloff and across-the-beam gradients in non-thermal emission intensity, line of sight projection geometry, and horizontal wind velocity. Horizontal wind velocity was derived from a 2-parameter model wind field comprised of subsolar-antisolar and zonal components. Best-fit models indicated a dominant subsolar-antisolar flow with 120 m/s cross-terminator winds and a retrograde zonal component with a 25 m/s equatorial velocity. A review of all dynamical indicators above the cloud-tops allowed development of an integrated and self-consistent picture of circulation in the 70 to 200 km range.

  17. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  18. Gamma ray lines from solar flares. [with 2.2 MeV line being strongest

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1974-01-01

    The strongest line, both predicted theoretically and detected observationally at 2.2 MeV, is due to neutron capture by protons in the photosphere. The neutrons are produced in nuclear reactions of flare accelerated particles which also positrons and prompt nuclear gamma rays. From the comparison of the observed and calculated intensities of the lines at 4.4 or 6.1 MeV to that of the 2.2 MeV line, it is possible to deduce the spectrum of accelerated nuclei in the flare region; and from the absolute intensities of these lines, it is possible to obtain the total number of accelerated nuclei at the sun. The study of the 2.2 MeV line also gives information on the amount of He-3 in the photosphere. The study of the line at 0.51 MeV resulting from positron annihilation complements the data obtained from the other lines; in addition it gives information on the temperature and density in the annihilation region.

  19. Improving HST Pointing & Absolute Astrometry

    NASA Astrophysics Data System (ADS)

    Lallo, Matthew; Nelan, E.; Kimmer, E.; Cox, C.; Casertano, S.

    2007-05-01

    Accurate absolute astrometry is becoming increasingly important in an era of multi-mission archives and virtual observatories. Hubble Space Telescope's (HST's) Guidestar Catalog II (GSC2) has reduced coordinate error to around 0.25 arcsecond, a factor 2 or more compared with GSC1. With this reduced catalog error, special attention must be given to calibrate and maintain the Fine Guidance Sensors (FGSs) and Science Instruments (SIs) alignments in HST to a level well below this in order to ensure that the accuracy of science product's astrometry keywords and target positioning are limited only by the catalog errors. After HST Servicing Mission 4, such calibrations' improvement in "blind" pointing accuracy will allow for more efficient COS acquisitions. Multiple SIs and FGSs each have their own footprints in the spatially shared HST focal plane. It is the small changes over time in primarily the whole-body positions & orientations of these instruments & guiders relative to one another that is addressed by this work. We describe the HST Cycle 15 program CAL/OTA 11021 which, along with future variants of it, determines and maintains positions and orientations of the SIs and FGSs to better than 50 milli- arcseconds and 0.04 to 0.004 degrees of roll, putting errors associated with the alignment sufficiently below GSC2 errors. We present recent alignment results and assess their errors, illustrate trends, and describe where and how the observer sees benefit from these calibrations when using HST.

  20. Absolute oral bioavailability of ciprofloxacin.

    PubMed

    Drusano, G L; Standiford, H C; Plaisance, K; Forrest, A; Leslie, J; Caldwell, J

    1986-09-01

    We evaluated the absolute bioavailability of ciprofloxacin, a new quinoline carboxylic acid, in 12 healthy male volunteers. Doses of 200 mg were given to each of the volunteers in a randomized, crossover manner 1 week apart orally and as a 10-min intravenous infusion. Half-lives (mean +/- standard deviation) for the intravenous and oral administration arms were 4.2 +/- 0.77 and 4.11 +/- 0.74 h, respectively. The serum clearance rate averaged 28.5 +/- 4.7 liters/h per 1.73 m2 for the intravenous administration arm. The renal clearance rate accounted for approximately 60% of the corresponding serum clearance rate and was 16.9 +/- 3.0 liters/h per 1.73 m2 for the intravenous arm and 17.0 +/- 2.86 liters/h per 1.73 m2 for the oral administration arm. Absorption was rapid, with peak concentrations in serum occurring at 0.71 +/- 0.15 h. Bioavailability, defined as the ratio of the area under the curve from 0 h to infinity for the oral to the intravenous dose, was 69 +/- 7%. We conclude that ciprofloxacin is rapidly absorbed and reliably bioavailable in these healthy volunteers. Further studies with ciprofloxacin should be undertaken in target patient populations under actual clinical circumstances. PMID:3777908

  1. Absolute Instability in Coupled-Cavity TWTs

    NASA Astrophysics Data System (ADS)

    Hung, D. M. H.; Rittersdorf, I. M.; Zhang, Peng; Lau, Y. Y.; Simon, D. H.; Gilgenbach, R. M.; Chernin, D.; Antonsen, T. M., Jr.

    2014-10-01

    This paper will present results of our analysis of absolute instability in a coupled-cavity traveling wave tube (TWT). The structure mode at the lower and upper band edges are respectively approximated by a hyperbola in the (omega, k) plane. When the Briggs-Bers criterion is applied, a threshold current for onset of absolute instability is observed at the upper band edge, but not the lower band edge. The nonexistence of absolute instability at the lower band edge is mathematically similar to the nonexistence of absolute instability that we recently demonstrated for a dielectric TWT. The existence of absolute instability at the upper band edge is mathematically similar to the existence of absolute instability in a gyroton traveling wave amplifier. These interesting observations will be discussed, and the practical implications will be explored. This work was supported by AFOSR, ONR, and L-3 Communications Electron Devices.

  2. Absolute Calibration of Kodak Biomax-MS Film Response to X Rays in the 1.5- to 8-keV Energy Range

    SciTech Connect

    Marshall, F.J.; Knauer, J.P.; Anderson, D.; Schmitt, B.L.

    2006-09-28

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory e-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations.

  3. Absolute negative mobility of interacting Brownian particles

    NASA Astrophysics Data System (ADS)

    Ou, Ya-li; Hu, Cai-tian; Wu, Jian-chun; Ai, Bao-quan

    2015-12-01

    Transport of interacting Brownian particles in a periodic potential is investigated in the presence of an ac force and a dc force. From Brownian dynamic simulations, we find that both the interaction between particles and the thermal fluctuations play key roles in the absolute negative mobility (the particle noisily moves backwards against a small constant bias). When no the interaction acts, there is only one region where the absolute negative mobility occurs. In the presence of the interaction, the absolute negative mobility may appear in multiple regions. The weak interaction can be helpful for the absolute negative mobility, while the strong interaction has a destructive impact on it.

  4. Some features of the radial-velocity variations of lines of different intensity in the spectrum of HD 93521. Variability of the stellar wind

    NASA Astrophysics Data System (ADS)

    Rzaev, A. Kh.

    2007-12-01

    CCD spectra taken with the PFES echelle spectrograph of the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences are used to perform a detailed study of the variability of the profiles of Hell, H β, and H α lines in the spectrum of HD 93521. The pattern and nature of the variability of the Hell lines are similar to those of weak HeI lines and are due to nonradial pulsations. The period and amplitude of the radial-velocity variations are the same for the blue and red halves of the absorption profile but their phases are opposite. The behavior of the variations of H β and H α hydrogen lines relative to their mean profiles is the same as that of strong HeI line and is due to nonradial pulsations. The period and phase of the radial-velocity oscillations are the same for the blue and red halves of the absorption profile but their amplitude are different. The behavior of the radial-velocity variations of the absorption and emission components of the H α line indicates that the latter also are caused by nonradial pulsations. All this is indicative of the complex structure of the stellar wind in the region of its origin. The behavior of variability and wind kinematics differ in different directions and for different regions of the atmosphere and/or envelope.

  5. Temperature measurement of laser-induced plasmas from the intensity ratio of two lines emitted from different elements with the same ionization degree.

    PubMed

    Hou, Huaming; Tian, Ye; Lu, Yuan; Li, Ying; Zheng, Ronger

    2014-01-01

    A new laser induced plasma temperature measuring method with two lines emitted from different elements with the same ionization degree is proposed, assuming local thermodynamic equilibrium condition of the plasma. The influence of measurement error on deduced temperature accuracy was simulated in theory. A solution containing Cu, K, and Cr elements was used as the sample. Plasma was generated at the surface of the solution, and time-resolved spectra were recorded. Two atomic lines, Cu I 324 nm and K I 766 nm, were used to determine the plasma temperature with the proposed method. Four atomic lines and two ionic lines of Cr were selected to deduce plasma temperature with the Saha-Boltzmann plot method for comparison. The temperatures deduced from the two different methods showed similar behavior as a function of time. The results suggested that this method can be useful in cases where only very few lines from a single element are available in the spectrum and Boltzmann or Saha-Boltzmann plots cannot be built. PMID:25226263

  6. ExoMol line lists - VIII. A variationally computed line list for hot formaldehyde

    NASA Astrophysics Data System (ADS)

    Al-Refaie, Ahmed F.; Yachmenev, Andrey; Tennyson, Jonathan; Yurchenko, Sergei N.

    2015-04-01

    A computed line list for formaldehyde, H212C16O, applicable to temperatures up to T = 1500 K is presented. An empirical potential energy and ab initio dipole moment surfaces are used as the input to the nuclear motion program TROVE. The resulting line list, referred to as AYTY, contains 10.3 million rotational-vibrational states and around 10 billion transition frequencies. Each transition includes associated Einstein-A coefficients and absolute transition intensities, for wavenumbers below 10 000 cm-1 and rotational excitations up to J = 70. Room-temperature spectra are compared with laboratory measurements and data currently available in the HITRAN data base. These spectra show excellent agreement with experimental spectra and highlight the gaps and limitations of the HITRAN data. The full line list is available from the CDS data base as well as at www.exomol.com.

  7. Absolute Abundance Measurements in Solar Flares

    NASA Astrophysics Data System (ADS)

    Warren, Harry

    2014-06-01

    We present measurements of elemental abundances in solar flares with EVE/SDO and EIS/Hinode. EVE observes both high temperature Fe emission lines Fe XV-XXIV and continuum emission from thermal bremsstrahlung that is proportional to the abundance of H. By comparing the relative intensities of line and continuum emission it is possible to determine the enrichment of the flare plasma relative to the composition of the photosphere. This is the first ionization potential or FIP bias (F). Since thermal bremsstrahlung at EUV wavelengths is relatively insensitive to the electron temperature it is important to account for the distribution of electron temperatures in the emitting plasma. We accomplish this by using the observed spectra to infer the differential emission measure distribution and FIP bias simultaneously. In each of the 21 flares that we analyze we find that the observed composition is close to photospheric. The mean FIP bias in our sample is F=1.17+-0.22. Furthermore, we have compared the EVE measurements with corresponding flare observations of intermediate temperature S, Ar, Ca, and Fe emission lines taken with EIS. Our initial calculations also indicate a photospheric composition for these observations. This analysis suggests that the bulk of the plasma evaporated during a flare comes from deep in the chromosphere, below the region where elemental fractionation in the non-flaring corona occurs.

  8. Determination of absolute internal conversion coefficients using the SAGE spectrometer

    NASA Astrophysics Data System (ADS)

    Sorri, J.; Greenlees, P. T.; Papadakis, P.; Konki, J.; Cox, D. M.; Auranen, K.; Partanen, J.; Sandzelius, M.; Pakarinen, J.; Rahkila, P.; Uusitalo, J.; Herzberg, R.-D.; Smallcombe, J.; Davies, P. J.; Barton, C. J.; Jenkins, D. G.

    2016-03-01

    A non-reference based method to determine internal conversion coefficients using the SAGE spectrometer is carried out for transitions in the nuclei of 154Sm, 152Sm and 166Yb. The Normalised-Peak-to-Gamma method is in general an efficient tool to extract internal conversion coefficients. However, in many cases the required well-known reference transitions are not available. The data analysis steps required to determine absolute internal conversion coefficients with the SAGE spectrometer are presented. In addition, several background suppression methods are introduced and an example of how ancillary detectors can be used to select specific reaction products is given. The results obtained for ground-state band E2 transitions show that the absolute internal conversion coefficients can be extracted using the methods described with a reasonable accuracy. In some cases of less intense transitions only an upper limit for the internal conversion coefficient could be given.

  9. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  10. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  11. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  12. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  13. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  14. Method and apparatus for making absolute range measurements

    DOEpatents

    Earl, Dennis D [Knoxville, TN; Allison, Stephen W [Knoxville, TN; Cates, Michael R [Oak Ridge, TN; Sanders, Alvin J [Knoxville, TN

    2002-09-24

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through a screen at least partially opaque at the wavelength. The screen has an aperture sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector spaced some distance from the screen. The detector detects the central intensity of the beam as well as a set of intensities displaced from a center of the aperture. The distance from the source to the target can then be calculated based upon the known wavelength, aperture radius, and beam intensity.

  15. Thermal infrared lines of methane broadened by nitrogen at low temperatures

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Giver, L. P.; Valero, F. P. J.

    1983-01-01

    Measurements of spectral transmittance in the nu4-fundamental band of (C-12)H4 have been performed at low temperatures using a Fourier transform spectrometer with apodized spectral resolution of 0.06 per cm. With applications to lines formed in the atmospheres of Titan and earth in mind, N2 has been used as the broadening gas. Comparisons of observed and computed spectral transmittances on a line-by-line basis have yielded line strengths, N2-broadened half-widths and their variation with temperature. Best agreement between measured and computed spectra was obtained when the absolute intensity of the band was taken as 128 per (sq cm-atm) at 296 K. Line widths were found to vary as T to the n power with n = -1.0 for lines of the F-species and 0.63 for the A-species. The measured line widths are considerably larger than those used in the AFGL compilation.

  16. Direct comparisons between absolute and relative geomagnetic paleointensities: Absolute calibration of a relative paleointensity stack

    NASA Astrophysics Data System (ADS)

    Mochizuki, N.; Yamamoto, Y.; Hatakeyama, T.; Shibuya, H.

    2013-12-01

    Absolute geomagnetic paleointensities (APIs) have been estimated from igneous rocks, while relative paleomagnetic intensities (RPIs) have been reported from sediment cores. These two datasets have been treated separately, as correlations between APIs and RPIs are difficult on account of age uncertainties. High-resolution RPI stacks have been constructed from globally distributed sediment cores with high sedimentation rates. Previous studies often assumed that the RPI stacks have a linear relationship with geomagnetic axial dipole moments, and calibrated the RPI values to API values. However, the assumption of a linear relationship between APIs and RPIs has not been evaluated. Also, a quantitative calibration method for the RPI is lacking. We present a procedure for directly comparing API and RPI stacks, thus allowing reliable calibrations of RPIs. Direct comparisons between APIs and RPIs were conducted with virtually no associated age errors using both tephrochronologic correlations and RPI minima. Using the stratigraphic positions of tephra layers in oxygen isotope stratigraphic records, we directly compared the RPIs and APIs reported from welded tuffs contemporaneously extruded with the tephra layers. In addition, RPI minima during geomagnetic reversals and excursions were compared with APIs corresponding to the reversals and excursions. The comparison of APIs and RPIs at these exact points allowed a reliable calibration of the RPI values. We applied this direct comparison procedure to the global RPI stack PISO-1500. For six independent calibration points, virtual axial dipole moments (VADMs) from the corresponding APIs and RPIs of the PISO-1500 stack showed a near-linear relationship. On the basis of the linear relationship, RPIs of the stack were successfully calibrated to the VADMs. The direct comparison procedure provides an absolute calibration method that will contribute to the recovery of temporal variations and distributions of geomagnetic axial dipole

  17. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  18. Absolute optical instruments without spherical symmetry

    NASA Astrophysics Data System (ADS)

    Tyc, Tomáš; Dao, H. L.; Danner, Aaron J.

    2015-11-01

    Until now, the known set of absolute optical instruments has been limited to those containing high levels of symmetry. Here, we demonstrate a method of mathematically constructing refractive index profiles that result in asymmetric absolute optical instruments. The method is based on the analogy between geometrical optics and classical mechanics and employs Lagrangians that separate in Cartesian coordinates. In addition, our method can be used to construct the index profiles of most previously known absolute optical instruments, as well as infinitely many different ones.

  19. Verification of Absolute Calibration of Quantum Efficiency for LSST CCDs

    NASA Astrophysics Data System (ADS)

    Coles, Rebecca; Chiang, James; Cinabro, David; Gilbertson, Woodrow; Haupt, justine; Kotov, Ivan; Neal, Homer; Nomerotski, Andrei; O'Connor, Paul; Stubbs, Christopher; Takacs, Peter

    2016-01-01

    We describe a system to measure the Quantum Efficiency in the wavelength range of 300nm to 1100nm of 40x40 mm n-channel CCD sensors for the construction of the 3.2 gigapixel LSST focal plane. The technique uses a series of instruments to create a very uniform flux of photons of controllable intensity in the wavelength range of interest across the face of the sensor. This allows the absolute Quantum Efficiency to be measured with an accuracy in the 1% range. This system will be part of a production facility at Brookhaven National Lab for the basic components of the LSST camera.

  20. Dual-wavelength in-line phase-shifting interferometry based on two dc-term-suppressed intensities with a special phase shift for quantitative phase extraction.

    PubMed

    Xu, Xiaoqing; Wang, Yawei; Xu, Yuanyuan; Jin, Weifeng

    2016-06-01

    To efficiently promote the phase retrieval in quantitative phase imaging, a new approach of quantitative phase extraction is proposed based on two intensities with dual wavelength after filtering the corresponding dc terms for each wavelength, in which a special phase shift is used. In this approach, only the combination of the phase-shifting technique and subtraction procedures is needed, and no additional algorithms are required. The thickness of the phase object can be achieved from the phase image, which is related to the synthetic beat wavelength. The feasibility of this method is verified by the simulated experiments of the optically transparent objects. PMID:27244381

  1. Measurements of Absolute Abundances in Solar Flares

    NASA Astrophysics Data System (ADS)

    Warren, Harry P.

    2014-05-01

    We present measurements of elemental abundances in solar flares with the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory. EVE observes both high temperature Fe emission lines (Fe XV-Fe XXIV) and continuum emission from thermal bremsstrahlung that is proportional to the abundance of H. By comparing the relative intensities of line and continuum emission it is possible to determine the enrichment of the flare plasma relative to the composition of the photosphere. This is the first ionization potential or FIP bias (f). Since thermal bremsstrahlung at EUV wavelengths is relatively insensitive to the electron temperature, it is important to account for the distribution of electron temperatures in the emitting plasma. We accomplish this by using the observed spectra to infer the differential emission measure distribution and FIP bias simultaneously. In each of the 21 flares that we analyze we find that the observed composition is close to photospheric. The mean FIP bias in our sample is f = 1.17 ± 0.22. This analysis suggests that the bulk of the plasma evaporated during a flare comes from deep in the chromosphere, below the region where elemental fractionation occurs.

  2. MEASUREMENTS OF ABSOLUTE ABUNDANCES IN SOLAR FLARES

    SciTech Connect

    Warren, Harry P.

    2014-05-01

    We present measurements of elemental abundances in solar flares with the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory. EVE observes both high temperature Fe emission lines (Fe XV-Fe XXIV) and continuum emission from thermal bremsstrahlung that is proportional to the abundance of H. By comparing the relative intensities of line and continuum emission it is possible to determine the enrichment of the flare plasma relative to the composition of the photosphere. This is the first ionization potential or FIP bias (f). Since thermal bremsstrahlung at EUV wavelengths is relatively insensitive to the electron temperature, it is important to account for the distribution of electron temperatures in the emitting plasma. We accomplish this by using the observed spectra to infer the differential emission measure distribution and FIP bias simultaneously. In each of the 21 flares that we analyze we find that the observed composition is close to photospheric. The mean FIP bias in our sample is f = 1.17 ± 0.22. This analysis suggests that the bulk of the plasma evaporated during a flare comes from deep in the chromosphere, below the region where elemental fractionation occurs.

  3. Quantum assignments and intensity measures for methane between 1100 and 1800 per cm - A comparison between theory and experiment. [in outer planets atmospheres

    NASA Technical Reports Server (NTRS)

    Lutz, B. L.; Pierre, C.; Pierre, G.; Champion, J. P.

    1982-01-01

    The paper analyzes line positions and absolute line strengths of Blatherwick et al. (1979), based on moderately high resolution spectra of methane between 1100 and 1800 per cm, obtained using the Fourier transform spectrometer and the multiple-pass cold cell at the NASA Ames Research Center. Hamiltonian models are used to calculate theoretical relative line strengths, which, in combination with measured line strengths, yield integrated band strengths for the fundamentals v2 and v4. Ratios of calculated intensities to experimental intensities are analyzed, and the systematic deviations in the P- and R-branches of the v2 band are found to be represented by a Herman-Wallis type factor for Coriolis interactions. An analysis of ratios of calculated to experimental intensities of the v4 band yields a small correction to the Herman-Wallis factor.

  4. A capillary discharge plasma source of intense VUV radiation

    SciTech Connect

    Sobel'man, Igor I; Shevelko, A P; Yakushev, O F; Knight, L V; Turley, R S

    2003-01-31

    The results of investigation of a capillary discharge plasma, used as a source of intense VUV radiation and soft X-rays, are presented. The plasma was generated during the discharge of low-inductance condensers in a gas-filled ceramic capillary. Intense line radiation was observed in a broad spectral range (30-400 A) in various gases (CO{sub 2}, Ne, Ar, Kr, Xe). The absolute radiation yield for the xenon discharge was {approx}5 mJ (2{pi} sr){sup -1} pulse{sup -1} within a spectral band of width 9 A at 135 A. Such a radiation source can be used for various practical applications, such as EUV projection lithography, microscopy of biological objects in a 'water window', reflectometry, etc. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  5. Absolute magnitudes of trans-neptunian objects

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.

    2015-10-01

    Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.

  6. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  7. Measurement of Absolute Carbon Isotope Ratios: Mechanisms and Implications

    NASA Astrophysics Data System (ADS)

    Vogel, J. S.; Giacomo, J. A.; Dueker, S. R.

    2012-12-01

    An accelerator mass spectrometer (AMS) produced absolute isotope ratio measurements for 14C/13C as tested against >500 samples of NIST SRM-4990-C (OxII 14C standard) to an accuracy of 2.2±0.6‰ over a period of one year with measurements made to 1% counting statistics. The spectrometer is not maximized for 13C/12C, but measured ∂13C to 0.4±0.1‰ accuracy, with known methods for improvement. An AMS produces elemental anions from a sputter ion source and includes a charge-changing collision in a gas cell to isolate the rare 14C from the common isotopes and molecular isobars. Both these physical processes have been modeled to determine the parameters providing such absolute measures. Neutral resonant ionization in a cesium plasma produces mass-independent ionization, while velocity dependent charge-state distributions in gas collisions produce relative ion beam intensities that are linear in mass at specific collision energies. The mechanisms are not specific to carbon isotopes, but stand alone absolute IRMS (AIR-MS) instruments have not yet been made. Aside from the obvious applications in metrology, AIR-MS is particularly valuable in coupled separatory MS because no internal or external standards are required. Sample definition processes can be compared, even if no exact standard reference sample exists. Isotope dilution measurements do not require standards matching the dilution end-points and can be made over an extended, even extrapolated, range.

  8. Determination of absolute structure using Bayesian statistics on Bijvoet differences

    PubMed Central

    Hooft, Rob W. W.; Straver, Leo H.; Spek, Anthony L.

    2008-01-01

    A new probabilistic approach is introduced for the determination of the absolute structure of a compound which is known to be enantiopure based on Bijvoet-pair intensity differences. The new method provides relative probabilities for different models of the chiral composition of the structure. The outcome of this type of analysis can also be cast in the form of a new value, along with associated standard uncertainty, that resembles the value of the well known Flack x parameter. The standard uncertainty we obtain is often about half of the standard uncertainty in the value of the Flack x parameter. The proposed formalism is suited in particular to absolute configuration determination from diffraction data of biologically active (pharmaceutical) compounds where the strongest resonant scattering signal often comes from oxygen. It is shown that a reliable absolute configuration assignment in such cases can be made on the basis of Cu Kα data, and in some cases even with carefully measured Mo Kα data. PMID:19461838

  9. A spatially encoded dose difference maximal intensity projection map for patient dose evaluation: A new first line patient quality assurance tool

    SciTech Connect

    Hu Weigang; Graff, Pierre; Boettger, Thomas; Pouliot, Jean; and others

    2011-04-15

    Purpose: To develop a spatially encoded dose difference maximal intensity projection (DD-MIP) as an online patient dose evaluation tool for visualizing the dose differences between the planning dose and dose on the treatment day. Methods: Megavoltage cone-beam CT (MVCBCT) images acquired on the treatment day are used for generating the dose difference index. Each index is represented by different colors for underdose, acceptable, and overdose regions. A maximal intensity projection (MIP) algorithm is developed to compress all the information of an arbitrary 3D dose difference index into a 2D DD-MIP image. In such an algorithm, a distance transformation is generated based on the planning CT. Then, two new volumes representing the overdose and underdose regions of the dose difference index are encoded with the distance transformation map. The distance-encoded indices of each volume are normalized using the skin distance obtained on the planning CT. After that, two MIPs are generated based on the underdose and overdose volumes with green-to-blue and green-to-red lookup tables, respectively. Finally, the two MIPs are merged with an appropriate transparency level and rendered in planning CT images. Results: The spatially encoded DD-MIP was implemented in a dose-guided radiotherapy prototype and tested on 33 MVCBCT images from six patients. The user can easily establish the threshold for the overdose and underdose. A 3% difference between the treatment and planning dose was used as the threshold in the study; hence, the DD-MIP shows red or blue color for the dose difference >3% or {<=}3%, respectively. With such a method, the overdose and underdose regions can be visualized and distinguished without being overshadowed by superficial dose differences. Conclusions: A DD-MIP algorithm was developed that compresses information from 3D into a single or two orthogonal projections while hinting the user whether the dose difference is on the skin surface or deeper.

  10. Absolute length measurement using manually decided stereo correspondence for endoscopy

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Koishi, T.; Nakaguchi, T.; Tsumura, N.; Miyake, Y.

    2009-02-01

    In recent years, various kinds of endoscope have been developed and widely used to endoscopic biopsy, endoscopic operation and endoscopy. The size of the inflammatory part is important to determine a method of medical treatment. However, it is not easy to measure absolute size of inflammatory part such as ulcer, cancer and polyp from the endoscopic image. Therefore, it is required measuring the size of those part in endoscopy. In this paper, we propose a new method to measure the absolute length in a straight line between arbitrary two points based on the photogrammetry using endoscope with magnetic tracking sensor which gives camera position and angle. In this method, the stereo-corresponding points between two endoscopic images are determined by the endoscopist without any apparatus of projection and calculation to find the stereo correspondences, then the absolute length can be calculated on the basis of the photogrammetry. The evaluation experiment using a checkerboard showed that the errors of the measurements are less than 2% of the target length when the baseline is sufficiently-long.

  11. Comparison of new experimental and atrophysical f-values for some Ru II lines, observed in HST spectra of chi Lupi

    NASA Technical Reports Server (NTRS)

    Johansson, Sveneric G.; Joueizadeh, Ali; Litzen, Ulf; Larsson, Jorgen; Persson, Anders; Wahlstrom, Claes-Goran; Svanberg, Sune; Leckrone, David S.; Wahlgren, Glenn M.

    1994-01-01

    We report an experimental absolute oscillator strengths for 18 UV lines of Ru II, obtained by combining laser-induced flourescence measurements of radiative lifetimes and branching fractions from line intensities in a calibrated Fourier-transform spectrum Hubble Space Telescope/Goddard High Resolution Spectrograph (HST/GHRS) observations of the spectrum of the sharp-lined B star chi Lupi contain six of these lines, for which 'astrophysical' relative f-values have been determined. The agreement is within 0.10 dex for a Ru abundance of log N(Ru)/N(H) = -7.90, which is 2.3 dex above the solar abundance.

  12. Biochip Image Grid Normalization Absolute Signal Fluorescence Measurement Using

    2001-04-17

    This software was developed to measure absolute fluorescent intensities of gel pads on a microchip in units defined by a standard fluorescent slide. It can accomodate varying measurement conditions (e.g. exposure time, sensitivity of detector, resolution of detector, etc.) as well as fluorescent microscopes with non-uniform sensitivity across their field of view allowing the user to compare measurements done on different detectors with varying exposure times, sensitivities, and resolutions. The software is designed both tomore » operate Roper Scientific, Inc. cameras and to use image files produced by the program supplied with that equipment for its calculations. the intensity of the gel pad signal is computed so as to reduce background influence.« less

  13. Comparison of high energy gamma rays from absolute value of b greater than 30 deg with the galactic neutral hydrogen distribution

    NASA Technical Reports Server (NTRS)

    Ozel, M. E.; Ogelman, H.; Tumer, T.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, F. J.

    1978-01-01

    High-energy gamma-ray (energy above 35 MeV) data from the SAS 2 satellite have been used to compare the intensity distribution of gamma rays with that of neutral hydrogen (H I) density along the line of sight, at high galactic latitudes (absolute values greater than 30 deg). A model has been constructed for the case where the observed gamma-ray intensity has been assumed to be the sum of a galactic component proportional to the H I distribution plus an isotropic extragalactic emission. A chi-squared test of the model parameters indicates that about 30% of the total high-latitude emission may originate within the Galaxy.

  14. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams.

    PubMed

    Popescu, I A; Shaw, C P; Zavgorodni, S F; Beckham, W A

    2005-07-21

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 x 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 x 10(13) +/- 1.0% electrons incident on the target and a total dose of 20.87 cGy +/- 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations. PMID:16177516

  15. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams

    NASA Astrophysics Data System (ADS)

    Popescu, I. A.; Shaw, C. P.; Zavgorodni, S. F.; Beckham, W. A.

    2005-07-01

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 × 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 × 1013 ± 1.0% electrons incident on the target and a total dose of 20.87 cGy ± 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.

  16. Wolbachia in the flesh: symbiont intensities in germ-line and somatic tissues challenge the conventional view of Wolbachia transmission routes.

    PubMed

    Frost, Crystal L; Pollock, Steven W; Smith, Judith E; Hughes, William O H

    2014-01-01

    Symbionts can substantially affect the evolution and ecology of their hosts. The investigation of the tissue-specific distribution of symbionts (tissue tropism) can provide important insight into host-symbiont interactions. Among other things, it can help to discern the importance of specific transmission routes and potential phenotypic effects. The intracellular bacterial symbiont Wolbachia has been described as the greatest ever panzootic, due to the wide array of arthropods that it infects. Being primarily vertically transmitted, it is expected that the transmission of Wolbachia would be enhanced by focusing infection in the reproductive tissues. In social insect hosts, this tropism would logically extend to reproductive rather than sterile castes, since the latter constitute a dead-end for vertically transmission. Here, we show that Wolbachia are not focused on reproductive tissues of eusocial insects, and that non-reproductive tissues of queens and workers of the ant Acromyrmex echinatior, harbour substantial infections. In particular, the comparatively high intensities of Wolbachia in the haemolymph, fat body, and faeces, suggest potential for horizontal transmission via parasitoids and the faecal-oral route, or a role for Wolbachia modulating the immune response of this host. It may be that somatic tissues and castes are not the evolutionary dead-end for Wolbachia that is commonly thought. PMID:24988478

  17. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed. PMID:19831037

  18. Is it Possible to Use the Green Coronal Line Instead of X rays to Cancel an Effect of the Coronal Emissivity Deficit in Estimation of the Prominence Total Mass from Decrease of the EUV-corona Intensities?

    NASA Astrophysics Data System (ADS)

    Schwartz, P.; Heinzel, P.; Jejčič, S.; Rybák, J.; Kotrč, P.; Fárník, F.; Kupryakov, Yu. A.; Deluca, E. E.; Golub, L.; Jibben, P. R.; Anzer, U.; Tlatov, A. G..; Guseva, S. A.

    2016-04-01

    Total masses of six quiescent prominences observed from April through June 2011 were estimated using multi-spectral observations (in EUV, X-rays, Hα, and Ca II H). The method for the total mass estimation is based on the fact that the intensity of the EUV solar corona at wavelengths below 912 Å is reduced at a prominence by the absorption in resonance continua (photoionisation) of hydrogen and possibly by helium and subsequently an amount of absorbed radiation is proportional to the column density of hydrogen and helium plasma. Moreover, the deficit of the coronal emissivity in volume occupied by the cool prominence plasma also contributes to the intensity decrease. The observations in X-rays which are not absorbed by the prominence plasma, allow us to separate these two mechanisms from each other. The X-ray observations of XRT onboard the Hinode satellite made with the Al-mesh focal filter were used because the X-ray coronal radiation formed in plasma of temperatures of the order of 106 K was registered and EUV spectral lines occurring in the 193, 211 and 335 Å channels of the Atmospheric Imaging Assembly of the Solar Dynamics Observatory satellite are also formed at such temperatures. Unfortunately, the Al-mesh filter has a secondary peak of the transmittance at around 171 Å which causes a contribution from the EUV corona to the measured data of up to 11 % in the quiet corona. Thus, absorption in prominence plasma influences XRT X-ray data when using the Al-mesh filter. On the other hand, other X-ray XRT filters are more sensitive to plasma of much higher temperatures (log T of the order of 7), thus observations using these filters cannot be used together with the AIA observations in the method for mass estimations. This problem could be solved using observations in the green coronal line instead of X-rays. Absorption of the green coronal line by a prominence plasma is negligible and this line is formed at temperatures of the order of 106 K. We

  19. Fe II fluorescence and anomalous C IV doublet intensities in symbiotic novae

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Kafatos, M.; Meier, S. R.

    1992-01-01

    The variation of absolute intensities of Bowen-excited Fe II emission in the symbiotic stars RR Tel, RX Pup, and AG Peg is examined. The C IV doublet intensity ratios in RR Tel were not anomalous between 1979 and 1989, and the ratio had typical values within the optically thin range. The intensity of individual Fe II Bowen-excited lines is correlated with the C IV 1548.2 A flux, suggesting the presence of a foreground Fe II region in which fluorescent-excited material responds to flux variations of C IV 1548.2 A. In RX Pup the combined fluxes of Fe II Bowen-pumped lines can account for an appreciable fraction of the flux deficit in the C IV 1548.2 A line when the C IV doublet ratio is less than the optically thick limit of unity. The Fe II Bowen lines in RX Pup exhibit a velocity range from 0 to 80 km/s, where several strong Fe II emission lines correspond to deep absorption structure in the C IV 1548.2 A line profile. In AG Peg and C IV 1548.2 A flux deficit cannot be explained by Fe II fluorescent absorption alone when the C IV doublet ratio anomaly is at an extreme.

  20. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  1. SPRED spectrograph upgrade: high resolution grating and improved absolute calibrations

    SciTech Connect

    Stratton, B.C.; Fonck, R.J.; Ida, K.; Jaehnig, K.P.; Ramsey, A.T.

    1986-05-01

    Two improvements to the SPRED multichannel VUV spectrographs used on the TFTR and PBX tokamaks have been made: (1) A new 2100-g/mm grating covering the 100 to 320 A region with 0.4 A resolution (FWHM) has been added to the existing 450 g/mm grating (100 to 1100 A with 2 A resolution), and (2) the TFTR SPRED has been absolutely calibrated using synchrotron radiation from the NBS SURF II facility, while the PBX system has been calibrated using conventional branching ratios along with line ratios from charge-exchange-recombination-excited lines. The availability of high resolution spectra in the 100 to 320 A range provides improved measurements of metallic ion emissions and, when the instrument views across a neutral beam as in PBX, allows carbon and oxygen densities to be measured via charge exchange recombination spectroscopy.

  2. State estimation and absolute image registration for geosynchronous satellites

    NASA Technical Reports Server (NTRS)

    Nankervis, R.; Koch, D. W.; Sielski, H.

    1980-01-01

    Spacecraft state estimation and the absolute registration of Earth images acquired by cameras onboard geosynchronous satellites are described. The basic data type of the procedure consists of line and element numbers of image points called landmarks whose geodetic coordinates, relative to United States Geodetic Survey topographic maps, are known. A conventional least squares process is used to estimate navigational parameters and camera pointing biases from observed minus computed landmark line and element numbers. These estimated parameters along with orbit and attitude dynamic models are used to register images, using an automated grey level correlation technique, inside the span represented by the landmark data. In addition, the dynamic models can be employed to register images outside of the data span in a near real time mode. An important application of this mode is in support of meteorological studies where rapid data reduction is required for the rapid tracking and predicting of dynamic phenomena.

  3. Absolute isotopic abundances of TI in meteorites

    NASA Astrophysics Data System (ADS)

    Niederer, F. R.; Papanastassiou, D. A.; Wasserburg, G. J.

    1985-03-01

    The absolute isotope abundance of Ti has been determined in Ca-Al-rich inclusions from the Allende and Leoville meteorites and in samples of whole meteorites. The absolute Ti isotope abundances differ by a significant mass dependent isotope fractionation transformation from the previously reported abundances, which were normalized for fractionation using 46Ti/48Ti. Therefore, the absolute compositions define distinct nucleosynthetic components from those previously identified or reflect the existence of significant mass dependent isotope fractionation in nature. The authors provide a general formalism for determining the possible isotope compositions of the exotic Ti from the measured composition, for different values of isotope fractionation in nature and for different mixing ratios of the exotic and normal components.

  4. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record PMID:26478959

  5. Absolute calibration in vivo measurement systems

    SciTech Connect

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

  6. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    SciTech Connect

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L

    2006-10-15

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  7. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L.

    2006-10-01

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si (Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3keV but has reduced sensitivity above 3keV (˜50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  8. Precise Measurement of the Absolute Fluorescence Yield

    NASA Astrophysics Data System (ADS)

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2011-09-01

    We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.

  9. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  10. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  11. Teaching Absolute Value Inequalities to Mature Students

    ERIC Educational Resources Information Center

    Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea

    2011-01-01

    This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…

  12. Increasing Capacity: Practice Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Dodds, Pennie; Donkin, Christopher; Brown, Scott D.; Heathcote, Andrew

    2011-01-01

    In most of the long history of the study of absolute identification--since Miller's (1956) seminal article--a severe limit on performance has been observed, and this limit has resisted improvement even by extensive practice. In a startling result, Rouder, Morey, Cowan, and Pfaltz (2004) found substantially improved performance with practice in the…

  13. On Relative and Absolute Conviction in Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2015-01-01

    Conviction is a central construct in mathematics education research on justification and proof. In this paper, we claim that it is important to distinguish between absolute conviction and relative conviction. We argue that researchers in mathematics education frequently have not done so and this has lead to researchers making unwarranted claims…

  14. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  15. Nonequilibrium equalities in absolutely irreversible processes

    NASA Astrophysics Data System (ADS)

    Murashita, Yuto; Funo, Ken; Ueda, Masahito

    2015-03-01

    Nonequilibrium equalities have attracted considerable attention in the context of statistical mechanics and information thermodynamics. Integral nonequilibrium equalities reveal an ensemble property of the entropy production σ as = 1 . Although nonequilibrium equalities apply to rather general nonequilibrium situations, they break down in absolutely irreversible processes, where the forward-path probability vanishes and the entropy production diverges. We identify the mathematical origins of this inapplicability as the singularity of probability measure. As a result, we generalize conventional integral nonequilibrium equalities to absolutely irreversible processes as = 1 -λS , where λS is the probability of the singular part defined based on Lebesgue's decomposition theorem. The acquired equality contains two physical quantities related to irreversibility: σ characterizing ordinary irreversibility and λS describing absolute irreversibility. An inequality derived from the obtained equality demonstrates the absolute irreversibility leads to the fundamental lower bound on the entropy production. We demonstrate the validity of the obtained equality for a simple model.

  16. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  17. Precision absolute positional measurement of laser beams.

    PubMed

    Fitzsimons, Ewan D; Bogenstahl, Johanna; Hough, James; Killow, Christian J; Perreur-Lloyd, Michael; Robertson, David I; Ward, Henry

    2013-04-20

    We describe an instrument which, coupled with a suitable coordinate measuring machine, facilitates the absolute measurement within the machine frame of the propagation direction of a millimeter-scale laser beam to an accuracy of around ±4 μm in position and ±20 μrad in angle. PMID:23669658

  18. Absolute versus relative ascertainment of pedophilia in men.

    PubMed

    Blanchard, Ray; Kuban, Michael E; Blak, Thomas; Cantor, James M; Klassen, Philip E; Dickey, Robert

    2009-12-01

    There are at least two different criteria for assessing pedophilia in men: absolute ascertainment (their sexual interest in children is intense) and relative ascertainment (their sexual interest in children is greater than their interest in adults). The American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders, 3rd edition (DSM-III) used relative ascertainment in its diagnostic criteria for pedophilia; this was abandoned and replaced by absolute ascertainment in the DSM-III-R and all subsequent editions. The present study was conducted to demonstrate the continuing need for relative ascertainment, particularly in the laboratory assessment of pedophilia. A total of 402 heterosexual men were selected from a database of patients referred to a specialty clinic. These had undergone phallometric testing, a psychophysiological procedure in which their penile blood volume was monitored while they were presented with a standardized set of laboratory stimuli depicting male and female children, pubescents, and adults.The 130 men selected for the Teleiophilic Profile group responded substantially to prepubescent girls but even more to adult women; the 272 men selected for the Pedophilic Profile group responded weakly to prepubescent girls but even less to adult women. In terms of absolute magnitude, every patient in the Pedophilic Profile group had a lesser penile response to prepubescent girls than every patient in the Teleiophilic Profile group. Nevertheless, the Pedophilic Profile group had a significantly greater number of known sexual offenses against prepubescent girls, indicating that they contained a higher proportion of true pedophiles. These results dramatically demonstrate the utility-or perhaps necessity-of relative ascertainment in the laboratory assessment of erotic age-preference. PMID:19901237

  19. Mechanism of biological effects observed in honey bees (Apis mellifera, L. ) hived under extra-high-voltage transmission lines: implications derived from bee exposure to simulated intense electric fields and shocks

    SciTech Connect

    Bindokas, V.P.; Gauger, J.R.; Greenberg, B.

    1988-01-01

    This work explores mechanisms for disturbance of honey bee colonies under a 765 kV, 60-Hz transmission line (electric (E) field = 7 kV/m) observed in previous studies. Proposed mechanisms fell into two categories: direct bee perception of enhanced in-hive E fields and perception of shock from induced currents. The adverse biological effects could be reproduced in simulations where only the worker bees were exposed to shock or to E field in elongated hive entranceways (= tunnels). We now report the results of full-scale experiments using the tunnel exposure scheme, which assesses the contribution of shock and intense E field to colony disturbance. Exposure of worker bees (1400 h) to 60-Hz E fields including 100 kV/m under moisture-free conditions within a nonconductive tunnel causes no deleterious affect on colony behavior. Exposure of bees in conductive (e.g., wet) tunnels produces bee disturbance, increased mortality, abnormal propolization, and possible impairment of colony growth. We propose that this substrate dependence of bee disturbance is the result of perception of shock from coupled body currents and enhanced current densities postulated to exist in the legs and thorax of bees on conductors. Similarly, disturbance occurs when bees are exposed to step-potential-induced currents. At 275-350 nA single bees are disturbed; at 600 nA bees begin abnormal propolization behavior; and stinging occurs at 900 nA. We conclude that biological effects seen in bee colonies under a transmission line are primarily the result of electric shock from induced hive currents. This evaluation is based on the limited effects of E-field exposure in tunnels, the observed disturbance thresholds caused by shocks in tunnels, and the ability of hives exposed under a transmission line to source currents 100-1,000 times the shock thresholds.

  20. Combined Use of Absolute and Differential Seismic Arrival Time Data to Improve Absolute Event Location

    NASA Astrophysics Data System (ADS)

    Myers, S.; Johannesson, G.

    2012-12-01

    Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement

  1. Relaxed Intensity

    ERIC Educational Resources Information Center

    Ramey, Kyle

    2004-01-01

    Relaxed intensity refers to a professional philosophy, demeanor, and way of life. It is the key to being an effective educational leader. To be successful one must be relaxed, which means managing stress efficiently, having fun, and enjoying work. Intensity allows one to get the job done and accomplish certain tasks or goals. Educational leaders…

  2. The preference of visualization in teaching and learning absolute value

    NASA Astrophysics Data System (ADS)

    Cihan Konyalioğlu, Alper; Aksu, Zeki; Özge Şenel, Esma

    2012-07-01

    Visualization is mostly despised although it complements and - sometimes - guides the analytical process. This study mainly investigates teachers' preferences concerning the use of the visualization method and determines the extent to which they encourage their students to make use of it within the problem-solving process. This study was conducted for the ninth-grade students and their mathematics teacher in a social science intensive public school in the city of Erzurum, Turkey. Utilizing case study as the preferred method, data were collected through observations, interviews and student evaluations. This study revealed that visualization has a positive effect at the preliminary phases of teaching the absolute value concept but generates a lack of stimulation during problem solving in further phases of the instruction. This could be explained as a result of current examination system which requires a habituation of the analytical process in solving mathematical questions.

  3. Measurements of Band Intensities, Herman-Wallis Parameters, and Self-Broadening Line-Widths of the 30011 - 00001 and 30014 - 00001 Bands of CO2 at 6503 cm(exp -1) and 6076 cm(exp -1)

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Brown, L. R.; Wattson, R. B.; Spencer, M. N.; Chackerian, C., Jr.; Strawa, Anthony W. (Technical Monitor)

    1995-01-01

    Rotationless band intensities and Herman-Wallis parameters are listed in HITRAN tabulations for several hundred CO2 overtone-combination bands. These parameters are based on laboratory measurements when available, and on DND calculations for the unmeasured bands. The DND calculations for the Fermi interacting nv(sub 1) + v(sub 3) polyads show the a(sub 2) Herman-Wallis parameter varying smoothly from a negative value for the first member of the polyad to a positive value for the final member. Measurements of the v(sub 1) + v(sub 3) dyad are consistent with the DND calculations for the a(sub 2) parameter, as are our recent measurements of the 4v(sub 1) + v(sub 3) pentad. However, the measurement-based values in the HITRAN tables for the 2v(sub 1) + v(sub 3) triad and the 3v(sub 1) + v(sub 3) tetrad do not support the DND calculated values for the a(sub 2) parameters. We therefore decided to make new measurements to improve some of these intensity parameters. With the McMath FTS at Kitt Peak National Observatory/National Solar Observatory we recorded several spectra of the. 4000 to 8000 cm(exp -1) region of pure CO2 at 0.011 cm(exp -1) resolution using the 6 meter White absorption cell. The signal/noise and absorbance of the first and fourth bands of the 3v(sub 1) + v(sub 3) tetrad of C-12O-16 were ideal on these spectra for measuring line intensities and broadening widths. Our selfbroadening results agree with the HITRAN parameterization, while our measurements of the rotationless band intensities are about 15% less than the HITRAN values. We find a negative value of a(sub 2) for the 30011-00001 band and a positive value for the 30014-00001 band, whereas the HITRAN values of a(sub 2) are positive for all four tetrad bands. Our a(sub 1) and a(sub 2) Herman-Wallis parameters are closer to DND calculated values than the 1992 HITRAN values for both the 30011-00001 and the 30014-00001 band.

  4. Selected Reaction Monitoring Mass Spectrometry for Absolute Protein Quantification.

    PubMed

    Manes, Nathan P; Mann, Jessica M; Nita-Lazar, Aleksandra

    2015-01-01

    Absolute quantification of target proteins within complex biological samples is critical to a wide range of research and clinical applications. This protocol provides step-by-step instructions for the development and application of quantitative assays using selected reaction monitoring (SRM) mass spectrometry (MS). First, likely quantotypic target peptides are identified based on numerous criteria. This includes identifying proteotypic peptides, avoiding sites of posttranslational modification, and analyzing the uniqueness of the target peptide to the target protein. Next, crude external peptide standards are synthesized and used to develop SRM assays, and the resulting assays are used to perform qualitative analyses of the biological samples. Finally, purified, quantified, heavy isotope labeled internal peptide standards are prepared and used to perform isotope dilution series SRM assays. Analysis of all of the resulting MS data is presented. This protocol was used to accurately assay the absolute abundance of proteins of the chemotaxis signaling pathway within RAW 264.7 cells (a mouse monocyte/macrophage cell line). The quantification of Gi2 (a heterotrimeric G-protein α-subunit) is described in detail. PMID:26325288

  5. Simulation of absolute amplitudes of ultrasound signals using equivalent circuits.

    PubMed

    Johansson, Jonny; Martinsson, Pär-Erik; Delsing, Jerker

    2007-10-01

    Equivalent circuits for piezoelectric devices and ultrasonic transmission media can be used to cosimulate electronics and ultrasound parts in simulators originally intended for electronics. To achieve efficient system-level optimization, it is important to simulate correct, absolute amplitude of the ultrasound signal in the system, as this determines the requirements on the electronics regarding dynamic range, circuit noise, and power consumption. This paper presents methods to achieve correct, absolute amplitude of an ultrasound signal in a simulation of a pulse-echo system using equivalent circuits. This is achieved by taking into consideration loss due to diffraction and the effect of the cable that connects the electronics and the piezoelectric transducer. The conductive loss in the transmission line that models the propagation media of the ultrasound pulse is used to model the loss due to diffraction. Results show that the simulated amplitude of the echo follows measured values well in both near and far fields, with an offset of about 10%. The use of a coaxial cable introduces inductance and capacitance that affect the amplitude of a received echo. Amplitude variations of 60% were observed when the cable length was varied between 0.07 m and 2.3 m, with simulations predicting similar variations. The high precision in the achieved results show that electronic design and system optimization can rely on system simulations alone. This will simplify the development of integrated electronics aimed at ultrasound systems. PMID:18019234

  6. Absolute and relative dosimetry for ELIMED

    SciTech Connect

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  7. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum. PMID:25423049

  8. Absolute-magnitude distributions of supernovae

    SciTech Connect

    Richardson, Dean; Wright, John; Jenkins III, Robert L.; Maddox, Larry

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  9. Absolute radiometry and the solar constant

    NASA Technical Reports Server (NTRS)

    Willson, R. C.

    1974-01-01

    A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).

  10. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  11. Absolute calibration of TFTR helium proportional counters

    SciTech Connect

    Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L.; Barnes, C.W. |; Loughlin, M. |

    1995-06-01

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments.

  12. Absolute enantioselective separation: optical activity ex machina.

    PubMed

    Bielski, Roman; Tencer, Michal

    2005-11-01

    The paper describes methodology of using three independent macroscopic factors affecting molecular orientation to accomplish separation of a racemic mixture without the presence of any other chiral compounds, i. e., absolute enantioselective separation (AES) which is an extension of a concept of applying these factors to absolute asymmetric synthesis. The three factors may be applied simultaneously or, if their effects can be retained, consecutively. The resulting three mutually orthogonal or near orthogonal directors constitute a true chiral influence and their scalar triple product is the measure of the chirality of the system. AES can be executed in a chromatography-like microfluidic process in the presence of an electric field. It may be carried out on a chemically modified flat surface, a monolithic polymer column made of a mesoporous material, each having imparted directional properties. Separation parameters were estimated for these media and possible implications for the natural homochirality are discussed. PMID:16342798

  13. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  14. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  15. Principles and procedures for determining absolute differential electron-molecule (atom) scattering cross sections

    NASA Technical Reports Server (NTRS)

    Nickel, J. C.; Zetner, P. W.; Shen, G.; Trajmar, S.

    1989-01-01

    Procedures and calibration techniques for measuring the absolute elastic and inelastic differential cross sections (DCS) for electron impact on molecular (atomic) species are described and illustrated by examples. The elastic DCS for the molecule under study is first determined by calibration against helium using the relative flow technique. The second step involves the production of energy-loss spectra for the instrument response function, the unfolding of overlapping inelastic structures and the normalization of inelastic intensities to the elastic cross sections. It is concluded that this method of determining absolute differential electron-molecule (atom) scattering cross sections is generally applicable and provides reliable results.

  16. Metallic Magnetic Calorimeters for Absolute Activity Measurement

    NASA Astrophysics Data System (ADS)

    Loidl, M.; Leblanc, E.; Rodrigues, M.; Bouchard, J.; Censier, B.; Branger, T.; Lacour, D.

    2008-05-01

    We present a prototype of metallic magnetic calorimeters that we are developing for absolute activity measurements of low energy emitting radionuclides. We give a detailed description of the realization of the prototype, containing an 55Fe source inside the detector absorber. We present the analysis of first data taken with this detector and compare the result of activity measurement with liquid scintillation counting. We also propose some ways for reducing the uncertainty on the activity determination with this new technique.

  17. Silicon Absolute X-Ray Detectors

    SciTech Connect

    Seely, John F.; Korde, Raj; Sprunck, Jacob; Medjoubi, Kadda; Hustache, Stephanie

    2010-06-23

    The responsivity of silicon photodiodes having no loss in the entrance window, measured using synchrotron radiation in the 1.75 to 60 keV range, was compared to the responsivity calculated using the silicon thickness measured using near-infrared light. The measured and calculated responsivities agree with an average difference of 1.3%. This enables their use as absolute x-ray detectors.

  18. Blood pressure targets and absolute cardiovascular risk.

    PubMed

    Odutayo, Ayodele; Rahimi, Kazem; Hsiao, Allan J; Emdin, Connor A

    2015-08-01

    In the Eighth Joint National Committee guideline on hypertension, the threshold for the initiation of blood pressure-lowering treatment for elderly adults (≥60 years) without chronic kidney disease or diabetes mellitus was raised from 140/90 mm Hg to 150/90 mm Hg. However, the committee was not unanimous in this decision, particularly because a large proportion of adults ≥60 years may be at high cardiovascular risk. On the basis of Eighth Joint National Committee guideline, we sought to determine the absolute 10-year risk of cardiovascular disease among these adults through analyzing the National Health and Nutrition Examination Survey (2005-2012). The primary outcome measure was the proportion of adults who were at ≥20% predicted absolute cardiovascular risk and above goals for the Seventh Joint National Committee guideline but reclassified as at target under the Eighth Joint National Committee guideline (reclassified). The Framingham General Cardiovascular Disease Risk Score was used. From 2005 to 2012, the surveys included 12 963 adults aged 30 to 74 years with blood pressure measurements, of which 914 were reclassified based on the guideline. Among individuals reclassified as not in need of additional treatment, the proportion of adults 60 to 74 years without chronic kidney disease or diabetes mellitus at ≥20% absolute risk was 44.8%. This corresponds to 0.8 million adults. The proportion at high cardiovascular risk remained sizable among adults who were not receiving blood pressure-lowering treatment. Taken together, a sizable proportion of reclassified adults 60 to 74 years without chronic kidney disease or diabetes mellitus was at ≥20% absolute cardiovascular risk. PMID:26056340

  19. Relative errors can cue absolute visuomotor mappings.

    PubMed

    van Dam, Loes C J; Ernst, Marc O

    2015-12-01

    When repeatedly switching between two visuomotor mappings, e.g. in a reaching or pointing task, adaptation tends to speed up over time. That is, when the error in the feedback corresponds to a mapping switch, fast adaptation occurs. Yet, what is learned, the relative error or the absolute mappings? When switching between mappings, errors with a size corresponding to the relative difference between the mappings will occur more often than other large errors. Thus, we could learn to correct more for errors with this familiar size (Error Learning). On the other hand, it has been shown that the human visuomotor system can store several absolute visuomotor mappings (Mapping Learning) and can use associated contextual cues to retrieve them. Thus, when contextual information is present, no error feedback is needed to switch between mappings. Using a rapid pointing task, we investigated how these two types of learning may each contribute when repeatedly switching between mappings in the absence of task-irrelevant contextual cues. After training, we examined how participants changed their behaviour when a single error probe indicated either the often-experienced error (Error Learning) or one of the previously experienced absolute mappings (Mapping Learning). Results were consistent with Mapping Learning despite the relative nature of the error information in the feedback. This shows that errors in the feedback can have a double role in visuomotor behaviour: they drive the general adaptation process by making corrections possible on subsequent movements, as well as serve as contextual cues that can signal a learned absolute mapping. PMID:26280315

  20. Absolute distance measurements by variable wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Bien, F.; Camac, M.; Caulfield, H. J.; Ezekiel, S.

    1981-02-01

    This paper describes a laser interferometer which provides absolute distance measurements using tunable lasers. An active feedback loop system, in which the laser frequency is locked to the optical path length difference of the interferometer, is used to tune the laser wavelengths. If the two wavelengths are very close, electronic frequency counters can be used to measure the beat frequency between the two laser frequencies and thus to determine the optical path difference between the two legs of the interferometer.

  1. Relative judgement is relatively difficult: Evidence against the role of relative judgement in absolute identification.

    PubMed

    Guest, Duncan; Adelman, James S; Kent, Christopher

    2016-06-01

    A variety of processes have been put forward to explain absolute identification performance. One difference between current models of absolute identification is the extent to which the task involves accessing stored representations in long-term memory (e.g. exemplars in memory, Kent & Lamberts, Journal of Experimental Psychology: Learning Memory and Cognition, 31, 289-305, 2005) or relative judgement (comparison of the current stimulus to the stimulus on the previous trial, Stewart, Brown & Chater, Psychological Review, 112, 881-911, 2005). In two experiments we explored this by tapping into these processes. In Experiment 1 participants completed an absolute identification task using eight line lengths whereby a single stimulus was presented on each trial for identification. They also completed a matching task aimed at mirroring exemplar comparison in which eight line lengths were presented in a circular array and the task was to report which of these matched a target presented centrally. Experiment 2 was a relative judgement task and was similar to Experiment 1 except that the task was to report the difference (jump-size) between the current stimulus and that on the previous trial. The absolute identification and matching data showed clear similarities (faster and more accurate responding for stimuli near the edges of the range and similar stimulus-response confusions). In contrast, relative judgment performance was poor suggesting relative judgement is not straightforward. Moreover, performance as a function of jump-size differed considerably between the relative judgement and absolute identification tasks. Similarly, in the relative judgement task, predicting correct stimulus identification based on successful relative judgement yielded the reverse pattern of performance observed in the absolute identification task. Overall, the data suggest that relative judgement does not underlie absolute identification and that the task is more likely reliant on an exemplar

  2. A three-axis SQUID-based absolute vector magnetometer

    NASA Astrophysics Data System (ADS)

    Schönau, T.; Zakosarenko, V.; Schmelz, M.; Stolz, R.; Anders, S.; Linzen, S.; Meyer, M.; Meyer, H.-G.

    2015-10-01

    We report on the development of a three-axis absolute vector magnetometer suited for mobile operation in the Earth's magnetic field. It is based on low critical temperature dc superconducting quantum interference devices (LTS dc SQUIDs) with sub-micrometer sized cross-type Josephson junctions and exhibits a white noise level of about 10 fT/Hz1/2. The width of superconducting strip lines is restricted to less than 6 μm in order to avoid flux trapping during cool-down in magnetically unshielded environment. The long-term stability of the flux-to-voltage transfer coefficients of the SQUID electronics is investigated in detail and a method is presented to significantly increase their reproducibility. We further demonstrate the long-term operation of the setup in a magnetic field varying by about 200 μT amplitude without the need for recalibration.

  3. Absolute Te_2 reference for barium ion at 4554 nm

    NASA Astrophysics Data System (ADS)

    Dutta, Tarun; De Munshi, Debashis; Mukherjee, Manas

    2016-06-01

    Precision atomic spectroscopy is presently the work horse in quantum information technology, metrology, trace analysis and even for fundamental tests in physics. Stable lasers are inherent part of precision spectroscopy which in turn requires absolute wavelength markers suitably placed corresponding to the atomic species being probed. Here we present, new lines of tellurium (Te$_2$) which allows locking of external cavity diode laser (ECDL) for precision spectroscopy of singly charged barium ions. In addition, we have developed an ECDL with over 100 GHz mod-hop-free tuning range using commercially available diode from $\\textit{Nichia}$. These two developments allow nearly drift-free operation of a barium ion trap set-up with one single reference cell thereby reducing the complexity of the experiment.

  4. ABSOLUTE PROPERTIES OF THE ECLIPSING BINARY STAR V335 SERPENTIS

    SciTech Connect

    Lacy, Claud H. Sandberg; Fekel, Francis C.; Claret, Antonio E-mail: fekel@evans.tsuniv.edu

    2012-08-15

    V335 Ser is now known to be an eccentric double-lined A1+A3 binary star with fairly deep (0.5 mag) partial eclipses. Previous studies of the system are improved with 7456 differential photometric observations from the URSA WebScope and 5666 from the NFO WebScope, and 67 high-resolution spectroscopic observations from the Tennessee State University 2 m automatic spectroscopic telescope. From dates of minima, the apsidal period is about 880 years. Accurate (better than 2%) masses and radii are determined from analysis of the two new light curves and the radial velocity curve. Theoretical models match the absolute properties of the stars at an age of about 380 Myr, though the age agreement for the two components is poor. Tidal theory correctly confirms that the orbit should still be eccentric, but we find that standard tidal theory is unable to match the observed asynchronous rotation rates of the components' surface layers.

  5. ABSOLUTE PROPERTIES OF THE ECLIPSING BINARY STAR HY VIRGINIS

    SciTech Connect

    Sandberg Lacy, Claud H.; Fekel, Francis C. E-mail: fekel@evans.tsuniv.edu

    2011-12-15

    HY Vir is found to be a double-lined F0m+F5 binary star with relatively shallow (0.3 mag) partial eclipses. Previous studies of the system are improved with 7509 differential photometric observations from the URSA WebScope and 8862 from the NFO WebScope, and 68 high-resolution spectroscopic observations from the Tennessee State University 2 m automatic spectroscopic telescope, and the 1 m coude-feed spectrometer at Kitt Peak National Observatory. Very accurate (better than 0.5%) masses and radii are determined from analysis of the new light curves and radial velocity curves. Theoretical models match the absolute properties of the stars at an age of about 1.35 Gy.

  6. A three-axis SQUID-based absolute vector magnetometer

    SciTech Connect

    Schönau, T.; Schmelz, M.; Stolz, R.; Anders, S.; Linzen, S.; Meyer, H.-G.; Zakosarenko, V.; Meyer, M.

    2015-10-15

    We report on the development of a three-axis absolute vector magnetometer suited for mobile operation in the Earth’s magnetic field. It is based on low critical temperature dc superconducting quantum interference devices (LTS dc SQUIDs) with sub-micrometer sized cross-type Josephson junctions and exhibits a white noise level of about 10 fT/Hz{sup 1/2}. The width of superconducting strip lines is restricted to less than 6 μm in order to avoid flux trapping during cool-down in magnetically unshielded environment. The long-term stability of the flux-to-voltage transfer coefficients of the SQUID electronics is investigated in detail and a method is presented to significantly increase their reproducibility. We further demonstrate the long-term operation of the setup in a magnetic field varying by about 200 μT amplitude without the need for recalibration.

  7. Absolute photometric calibration of detectors to 0.3 mmag using amplitude-stabilized lasers and a helium-cooled absolute radiometer

    NASA Technical Reports Server (NTRS)

    Miller, Peter J.

    1988-01-01

    Laser sources whose intensity is determined with a cryogenic electrical substitution radiometer are described. Detectors are then calibrated against this known flux, with an overall error of 0.028 percent (0.3 mmag). Ongoing research has produced laser intensity stabilizers with flicker and drift of less than 0.01 percent. Recently, the useful wavelength limit of these stabilizers have been extended to 1.65 microns by using a new modular technology and InGaAs detector systems. Data from Si photodiode calibration using the method of Zalewski and Geist are compared against an absolute cavity radiometer calibration as an internal check on the calibration system.

  8. Absolute magnetic helicity and the cylindrical magnetic field

    NASA Astrophysics Data System (ADS)

    Low, B. C.

    2011-05-01

    The different magnetic helicities conserved under conditions of perfect electrical conductivity are expressions of the fundamental property that every evolving fluid surface conserves its net magnetic flux. This basic hydromagnetic point unifies the well known Eulerian helicities with the Lagrangian helicity defined by the conserved fluxes frozen into a prescribed set of disjoint toroidal tubes of fluid flowing as a permanent partition of the entire fluid [B. C. Low, Astrophys. J. 649, 1064 (2006)]. This unifying theory is constructed from first principles, beginning with an analysis of the Eulerian and Lagrangian descriptions of fluids, separating the ideas of fluid and magnetic-flux tubes and removing the complication of the magnetic vector potential's free gauge from the concept of helicity. The analysis prepares for the construction of a conserved Eulerian helicity, without that gauge complication, to describe a 3D anchored flux in an upright cylindrical domain, this helicity called absolute to distinguish it from the well known relative helicity. In a version of the Chandrasekhar-Kendall representation, the evolving field at any instant is a unique superposition of a writhed, untwisted axial flux with a circulating flux of field lines all closed and unlinked within the cylindrical domain. The absolute helicity is then a flux-weighted sum of the writhe of that axial flux and its mutual linkage with the circulating flux. The absolute helicity is also conserved if the frozen-in field and its domain are continuously deformed by changing the separation between the rigid cylinder-ends with no change of cylinder radius. This hitherto intractable cylindrical construction closes a crucial conceptual gap for the fundamentals to be complete at last. The concluding discussion shows the impact of this development on our understanding of helicity, covering (i) the helicities of wholly contained and anchored fields; (ii) the Eulerian and Lagrangian descriptions of field

  9. Measurement of Absolute Excitation Cross Sections in Highly-Charged Ions Using Electron Energy Loss and Merged Beams

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Smith, Steven J.; Lozano, J.

    2002-01-01

    There is increasing emphasis during this decade on understanding energy balance and phenomena observed in high electron temperature plasmas. The UV spectral return from FUSE, the X-ray spectral return from the HETG on Chandra and the LETGS 011 XMM-Newton are just beginning. Line emissions are almost entirely from highly-charged ions (HCIs) of C, N, 0, Ne, Mg, S, Si, Ca, and Fe. The Constellation-X mission will provide X-ray spectroscopy up to photon energies of 0.12 nm (10 keV) where primary line emitters will be HCIs. A variety of atomic parameters are required to model the stellar and solar plasma. These include cross sections for excitation, ionization, charge-exchange, X-ray emission, direct and indirect recombination, lifetimes and branching ratios, and dependences on l, m mixing by external E and B fields. In almost all cases the atomic quantities are calculated, and few comparisons to experiment have been carried out. Collision strengths and Einstein A-values are required to convert the observed spectral intensities to electron temperatures and densities in the stellar plasma. The JPL electron energy-loss and merged beam approach has been used to measure absolute collision strengths in a number of ions, with critical comparison made to the best available theories.

  10. Radiometric Calibration of EUNIS-06 With Theoretical Predicted `Insensitive' Line Ratios

    NASA Astrophysics Data System (ADS)

    Wang, T.; Brosius, J. W.; Thomas, R. J.; Rabin, D. M.

    2007-12-01

    The Extreme-Ultraviolet Normal-Incidence Spectrograph (EUNIS) is a sounding-rocket payload that obtains imaged high-resolution spectra of solar active and quiet-Sun regions, providing information about the corona and upper transition region. EUNIS incorporates two independent, co-pointing imaging spectrographs, one covering EUV lines between 300 and 370 Å\\ seen in first order (the longwave [LW] channel), and a second covering lines between 170 and 205 Å\\ seen in second order (the shortwave [SW] channel). Shortly after the payload's initial successful flight on 2006 April 12, a complete end-to-end radiometric calibration of its LW bandpass was carried out at the Rutherford Appleton Laboratory in England. Here we develop and apply a technique for deriving the absolute radiometric calibration of its SW bandpass from these direct LW results by means of density- and temperature-insensitive line intensity ratios. The first step is to use the EUNIS LW calibration to get absolute intensities for EUV lines recorded from solar positions along its LW slit during the 2006 flight. Then co-registered SOHO/CDS images taken within minutes of the flight are used to transfer these absolute values to solar locations observed by the EUNIS SW slit, spatially offset by about 1 arcmin. Finally, theoretical `insensitive' line ratios obtained from CHIANTI allow us to determine absolute intensities of emission lines within the EUNIS SW bandpass from those observed in its LW channel. A total of 29 ratios composed of 11 LW and 15 SW emission lines from Fe~X - Fe~XIII yield an instrumental response curve that matches very well to a relative calibration which relied on combining measurements of individual optical components. The second EUNIS flight, now scheduled for 2007 October 30, will make coordinated observations and provide similar calibration updates for Hinode/EIS. We will also present some preliminary results from the new observations. EUNIS is supported by the NASA Heliophysics

  11. Central line infections - hospitals

    MedlinePlus

    ... risk is higher if you: Are in the intensive care unit (ICU) Have a weakened immune system or serious ... unless you have washed your hands. Tell your nurse if your central line: Gets dirty Is coming ...

  12. Modeling Optical Emission Intensities of Rapid Small-Scale Aurora

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Minow, J. I.

    2014-12-01

    Auroral transitional line emissions have often been used to infer the fluence and characteristic energy of precipitating electrons. A common practice is to use emissions from an allowed transition to infer absolute particle flux since the odds of quenching before photon emission are negligible. Characteristic energy is then determined by line emission intensity ratios between a forbidden and allowed transitions: The intensity of a forbidden transition will increase with altitude since the probability for quenching drops with decreasing density. Bright metastable lines such as 630.0 nm O(1D) -> O(3P) and the 557.7 nm O(1S) -> O(1D) are often used with a prompt line such as 427.8 nm N2+(1N) to determine characteristic energy. With the advances in scientific cameras, narrow-band filtered video of pulsing aurora up to 32 fps are now in use. The question then becomes, if the transitional lifetimes of the metastable species are significantly greater (or even comparable to) the aurora pulsing period, how can the ratio technique be used to determine the characteristic energy of the precipitating electrons? Once it is realized that the quoted lifetimes are average values, we note that there will be a fraction of photons that are emitted before the species is quenched. With this study, we present results from the GLOW model for different metastable species to determine the optimal combination of lines that would be helpful in determination of precipitating electron characteristics in pulsing aurora up to 100 Hz. Enabling technology and optimal configurations will be presented, along with suggested applications for linking different optical signatures with their corresponding precipitating electron distribution shape.

  13. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  14. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  15. The National Geodetic Survey absolute gravity program

    NASA Astrophysics Data System (ADS)

    Peter, George; Moose, Robert E.; Wessells, Claude W.

    1989-03-01

    The National Geodetic Survey absolute gravity program will utilize the high precision afforded by the JILAG-4 instrument to support geodetic and geophysical research, which involves studies of vertical motions, identification and modeling of other temporal variations, and establishment of reference values. The scientific rationale of these objectives is given, the procedures used to collect gravity and environmental data in the field are defined, and the steps necessary to correct and remove unwanted environmental effects are stated. In addition, site selection criteria, methods of concomitant environmental data collection and relative gravity observations, and schedule and logistics are discussed.

  16. An absolute radius scale for Saturn's rings

    NASA Technical Reports Server (NTRS)

    Nicholson, Philip D.; Cooke, Maren L.; Pelton, Emily

    1990-01-01

    Radio and stellar occultation observations of Saturn's rings made by the Voyager spacecraft are discussed. The data reveal systematic discrepancies of almost 10 km in some parts of the rings, limiting some of the investigations. A revised solution for Saturn's rotation pole has been proposed which removes the discrepancies between the stellar and radio occultation profiles. Corrections to previously published radii vary from -2 to -10 km for the radio occultation, and +5 to -6 km for the stellar occultation. An examination of spiral density waves in the outer A Ring supports that the revised absolute radii are in error by no more than 2 km.

  17. Characterization of the DARA solar absolute radiometer

    NASA Astrophysics Data System (ADS)

    Finsterle, W.; Suter, M.; Fehlmann, A.; Kopp, G.

    2011-12-01

    The Davos Absolute Radiometer (DARA) prototype is an Electrical Substitution Radiometer (ESR) which has been developed as a successor of the PMO6 type on future space missions and ground based TSI measurements. The DARA implements an improved thermal design of the cavity detector and heat sink assembly to minimize air-vacuum differences and to maximize thermal symmetry of measuring and compensating cavity. The DARA also employs an inverted viewing geometry to reduce internal stray light. We will report on the characterization and calibration experiments which were carried out at PMOD/WRC and LASP (TRF).

  18. Absolute angular positioning in ultrahigh vacuum

    SciTech Connect

    Schief, H.; Marsico, V.; Kern, K.

    1996-05-01

    Commercially available angular resolvers, which are routinely used in machine tools and robotics, are modified and adapted to be used under ultrahigh-vacuum (UHV) conditions. They provide straightforward and reliable measurements of angular positions for any kind of UHV sample manipulators. The corresponding absolute reproducibility is on the order of 0.005{degree}, whereas the relative resolution is better than 0.001{degree}, as demonstrated by high-resolution helium-reflectivity measurements. The mechanical setup and possible applications are discussed. {copyright} {ital 1996 American Institute of Physics.}

  19. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  20. Absolute Priority for a Vehicle in VANET

    NASA Astrophysics Data System (ADS)

    Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad

    In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.

  1. Method and apparatus for making absolute range measurements

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Key, William S.; Sanders, Alvin J.; Earl, Dennis D.

    1999-01-01

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through an object which causes it to be split (hereinafter referred to as a "beamsplitter"), and then to a target. The beam is reflected from the target onto a screen containing an aperture spaced a known distance from the beamsplitter. The aperture is sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector, spaced a known distance from the screen. The detector detects the central intensity of the beam. The distance from the object which causes the beam to be split to the target can then be calculated based upon the known wavelength, aperture radius, beam intensity, and distance from the detector to the screen. Several apparatus embodiments are disclosed for practicing the method embodiments of the present invention.

  2. Method and apparatus for making absolute range measurements

    DOEpatents

    Allison, S.W.; Cates, M.R.; Key, W.S.; Sanders, A.J.; Earl, D.D.

    1999-06-22

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through an object which causes it to be split (hereinafter referred to as a beam splitter''), and then to a target. The beam is reflected from the target onto a screen containing an aperture spaced a known distance from the beam splitter. The aperture is sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector, spaced a known distance from the screen. The detector detects the central intensity of the beam. The distance from the object which causes the beam to be split to the target can then be calculated based upon the known wavelength, aperture radius, beam intensity, and distance from the detector to the screen. Several apparatus embodiments are disclosed for practicing the method embodiments of the present invention. 9 figs.

  3. Luminous-flux measurements by an absolute integrating sphere

    NASA Astrophysics Data System (ADS)

    Rastello, Maria Luisa; Miraldi, Elio; Pisoni, Paolo

    1996-08-01

    We present an original implementation of the absolute-sphere method recently proposed by Ohno. The luminous-flux unit, the lumen, is realized by means of an integrating sphere with an opening calibrated by a luminous-intensity standard placed outside. The adapted experimental setup permits one to measure luminous-flux values between 5 and 2500 lm with a significant improvement with respect to the simulated performances reported in the literature. Traditionally, the luminous-flux unit, the lumen, is realized by goniophotometric techniques in which the luminous-intensity distribution is measured and integrated over the whole solid angle. Thus sphere results are compared with those obtained with the Istituto Elettrotecnico Nazionale goniophotometer. In particular, a set of standards, characterized by luminous-flux values of approximately 2000 lm, has been calibrated with both techniques. We highlight some of the problems encountered. Experimental results show that the agreement between the two methods is within the estimated uncertainty and suggest promising areas for future research.

  4. Absolute paleointensity from Hawaiian lavas younger than 35 ka

    USGS Publications Warehouse

    Valet, J.-P.; Tric, E.; Herrero-Bervera, E.; Meynadier, L.; Lockwood, J.P.

    1998-01-01

    Paleointensity studies have been conducted in air and in argon atmosphere on nine lava flows with radiocarbon ages distributed between 3.3 and 28.2 ka from the Mauna Loa volcano in the big island of Hawaii. Determinations of paleointensity obtained at eight sites depict the same overall pattern as the previous results for the same period in Hawaii, although the overall average field intensity appears to be lower. Since the present results were determined at higher temperatures than in the previous studies, this discrepancy raises questions regarding the selection of low versus high-temperature segments that are usually made for absolute paleointensity. The virtual dipole moments are similar to those displayed by the worldwide data set obtained from dated lava flows. When averaged within finite time intervals, the worldwide values match nicely the variations of the Sint-200 synthetic record of relative paleointensity and confirm the overall decrease of the dipole field intensity during most of this period. The convergence between the existing records at Hawaii and the rest of the world does not favour the presence of persistent strong non-dipole components beneath Hawaii for this period.

  5. Line strength and self-broadening coefficient of the pure rotational S(1) quadrupole line in H2

    NASA Technical Reports Server (NTRS)

    Reuter, Dennis C.; Sirota, J. Marcos

    1994-01-01

    The absolute intensity, S(sub 1), and self-broadening coefficient, gamma(sub L), for H2 S(sub zero)(1) pure rotational line at 17.0348 micrometers (587.032 cm(exp -1)) have been measured for the first time using a tunable diode laser spectrometer with a resolution of approximately 1 x 10(exp -3) cm(exp -1). By fitting a Galatry line shape convolved with a 1 x 10(exp -3) cm(exp -1) Gaussian instrument profile to absorption profiles, for H2 pressures ranging from 0.34 to 1.30 atm, values of s(sub 1) = (7.0 +/- 0.4) x 10(exp -8) cm(exp -2) atm(exp -1) and gamma(sub L) = (1.73 +/- 0.12) x 10(exp -3) cm(exp -1) atm(exp -1) were obtained.

  6. Determination of the absolute contours of optical flats

    NASA Technical Reports Server (NTRS)

    Primak, W.

    1969-01-01

    Emersons procedure is used to determine true absolute contours of optical flats. Absolute contours of standard flats are determined and a comparison is then made between standard and unknown flats. Contour differences are determined by deviation of Fizeau fringe.

  7. Chiral liquid chromatography contribution to the determination of the absolute configuration of enantiomers.

    PubMed

    Roussel, Christian; Del Rio, Alberto; Pierrot-Sanders, Johanna; Piras, Patrick; Vanthuyne, Nicolas

    2004-05-28

    The review covers examples in which chiral HPLC, as a source of pure enantiomers, has been combined with classical methods (X-ray, vibrational circular dichroism (VCD), enzymatic resolutions, nuclear magnetic resonance (NMR) techniques, optical rotation, circular dichroism (CD)) for the on- or off-line determination of absolute configuration of enantiomers. Furthermore, it is outlined that chiral HPLC, which associates enantioseparation process and classical purification process, opens new perspectives in the classical determination of absolute configuration by chemical correlation or chemical interconversion methods. The review also contains a discussion about the various approaches to predict the absolute configuration from the retention behavior of the enantiomers on chiral stationary phases (CSPs). Some examples illustrate the advantages and limitations of molecular modeling methods and the use of chiral recognition models. The assumptions underlying some of these methods are critically analyzed and some possible emerging new strategies are outlined. PMID:15214673

  8. NEUTRON FLUX INTENSITY DETECTION

    DOEpatents

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  9. Line strengths of rovibrational and rotational transitions in the X2 Π ground state of OH

    NASA Astrophysics Data System (ADS)

    Brooke, James S. A.; Bernath, Peter F.; Western, Colin M.; Sneden, Christopher; Afşar, Melike; Li, Gang; Gordon, Iouli E.

    2016-01-01

    A new line list including positions and absolute transition strengths (in the form of Einstein A values and oscillator strengths) has been produced for the OH ground X2 Π state rovibrational (Meinel system) and pure rotational transitions. All possible transitions are included with v‧ and v ″ up to 13, and J up to between 9.5 and 59.5, depending on the band. An updated fit to determine molecular constants has been performed, which includes some new rotational data and a simultaneous fitting of all molecular constants. The absolute transition strengths are based on a new dipole moment function, which is a combination of two high level ab initio calculations. The calculations show good agreement with an experimental v = 1 lifetime, experimental μv values, and Δv=2 line intensity ratios from an observed spectrum. To achieve this good agreement, an alteration in the method of converting matrix elements from Hund's case (b) to (a) was made. Partitions sums have been calculated using the new energy levels, for the temperature range 5-6000 K, which extends the previously available (in HITRAN) 70-3000 K range. The resulting absolute transition strengths have been used to calculate O abundances in the Sun, Arcturus, and two red giants in the Galactic open and globular clusters M67 and M71. Literature data based mainly on [O I] lines are available for the Sun and Arcturus, and excellent agreement is found.

  10. Standardization of the cumulative absolute velocity

    SciTech Connect

    O'Hara, T.F.; Jacobson, J.P. )

    1991-12-01

    EPRI NP-5930, A Criterion for Determining Exceedance of the Operating Basis Earthquake,'' was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.

  11. Absolute rates of hole transfer in DNA.

    PubMed

    Senthilkumar, Kittusamy; Grozema, Ferdinand C; Guerra, Célia Fonseca; Bickelhaupt, F Matthias; Lewis, Frederick D; Berlin, Yuri A; Ratner, Mark A; Siebbeles, Laurens D A

    2005-10-26

    Absolute rates of hole transfer between guanine nucleobases separated by one or two A:T base pairs in stilbenedicarboxamide-linked DNA hairpins were obtained by improved kinetic analysis of experimental data. The charge-transfer rates in four different DNA sequences were calculated using a density-functional-based tight-binding model and a semiclassical superexchange model. Site energies and charge-transfer integrals were calculated directly as the diagonal and off-diagonal matrix elements of the Kohn-Sham Hamiltonian, respectively, for all possible combinations of nucleobases. Taking into account the Coulomb interaction between the negative charge on the stilbenedicarboxamide linker and the hole on the DNA strand as well as effects of base pair twisting, the relative order of the experimental rates for hole transfer in different hairpins could be reproduced by tight-binding calculations. To reproduce quantitatively the absolute values of the measured rate constants, the effect of the reorganization energy was taken into account within the semiclassical superexchange model for charge transfer. The experimental rates could be reproduced with reorganization energies near 1 eV. The quantum chemical data obtained were used to discuss charge carrier mobility and hole-transport equilibria in DNA. PMID:16231945

  12. Transient absolute robustness in stochastic biochemical networks.

    PubMed

    Enciso, German A

    2016-08-01

    Absolute robustness allows biochemical networks to sustain a consistent steady-state output in the face of protein concentration variability from cell to cell. This property is structural and can be determined from the topology of the network alone regardless of rate parameters. An important question regarding these systems is the effect of discrete biochemical noise in the dynamical behaviour. In this paper, a variable freezing technique is developed to show that under mild hypotheses the corresponding stochastic system has a transiently robust behaviour. Specifically, after finite time the distribution of the output approximates a Poisson distribution, centred around the deterministic mean. The approximation becomes increasingly accurate, and it holds for increasingly long finite times, as the total protein concentrations grow to infinity. In particular, the stochastic system retains a transient, absolutely robust behaviour corresponding to the deterministic case. This result contrasts with the long-term dynamics of the stochastic system, which eventually must undergo an extinction event that eliminates robustness and is completely different from the deterministic dynamics. The transiently robust behaviour may be sufficient to carry out many forms of robust signal transduction and cellular decision-making in cellular organisms. PMID:27581485

  13. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  14. Sentinel-2/MSI absolute calibration: first results

    NASA Astrophysics Data System (ADS)

    Lonjou, V.; Lachérade, S.; Fougnie, B.; Gamet, P.; Marcq, S.; Raynaud, J.-L.; Tremas, T.

    2015-10-01

    Sentinel-2 is an optical imaging mission devoted to the operational monitoring of land and coastal areas. It is developed in partnership between the European Commission and the European Space Agency. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. It will offer a unique combination of global coverage with a wide field of view (290km), a high revisit (5 days with two satellites), a high resolution (10m, 20m and 60m) and multi-spectral imagery (13 spectral bands in visible and shortwave infra-red domains). CNES is involved in the instrument commissioning in collaboration with ESA. This paper reviews all the techniques that will be used to insure an absolute calibration of the 13 spectral bands better than 5% (target 3%), and will present the first results if available. First, the nominal calibration technique, based on an on-board sun diffuser, is detailed. Then, we show how vicarious calibration methods based on acquisitions over natural targets (oceans, deserts, and Antarctica during winter) will be used to check and improve the accuracy of the absolute calibration coefficients. Finally, the verification scheme, exploiting photometer in-situ measurements over Lacrau plain, is described. A synthesis, including spectral coherence, inter-methods agreement and temporal evolution, will conclude the paper.

  15. Absolute Spectrophotometry of 237 Open Cluster Stars

    NASA Astrophysics Data System (ADS)

    Clampitt, L.; Burstein, D.

    1994-12-01

    We present absolute spectrophotometry of 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M 39. The observations were taken using the Wampler single-channel scanner (Wampler 1966) on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. 21 bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwiths ranging from 32Angstroms to 64 Angstroms. Data are standardized to the Hayes--Latham (1975) system. Our measurements are compared to filter colors on the Johnson BV, Stromgren ubvy, and Geneva U V B_1 B_2 V_1 G systems, as well as to spectrophotometry of a few stars published by Gunn, Stryker & Tinsley and in the Spectrophotometric Standards Catalog (Adelman; as distributed by the NSSDC). Both internal and external comparisons to the filter systems indicate a formal statistical accuracy per bandpass of 0.01 to 0.02 mag, with apparent larger ( ~ 0.03 mag) differences in absolute calibration between this data set and existing spectrophotometry. These data will comprise part of the spectrophotometry that will be used to calibrate the Beijing-Arizona-Taipei-Connecticut Color Survey of the Sky (see separate paper by Burstein et al. at this meeting).

  16. Intensive chemotherapy of metastatic colorectal cancer: weighing between safety and clinical efficacy: Evaluation of Masi G, Loupakis F, Salvatore L, et al. Bevacizumab with FOLFOXIRI (irinotecan, oxaliplatin, fluorouracil, and folinate) as first-line treatment for metastatic colorectal cancer: a phase 2 trial. Lancet Oncol 2010;11:845-52.

    PubMed

    Bruera, Gemma; Ricevuto, Enrico

    2011-06-01

    This paper evaluates a recent study whereby a four-drug combination regimen adding bevacizumab to triplet fluorouracil, oxaliplatin and irinotecan chemotherapy is described for the first-line treatment of metastatic colorectal cancer. It extends the use of intensive medical treatments combining chemotherapy and the VEGF inhibitor bevacizumab, opening new perspectives for the design of four-drug intensive regimen-associating chemotherapy and targeted agents. In the future, these four-drug intensive regimens should be further improved for efficacy:toxicity ratio and verification in randomized trials. PMID:21545334

  17. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  18. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a...

  19. Swarm Absolute Scalar Magnetometers first in-orbit results

    NASA Astrophysics Data System (ADS)

    Fratter, Isabelle; Léger, Jean-Michel; Bertrand, François; Jager, Thomas; Hulot, Gauthier; Brocco, Laura; Vigneron, Pierre

    2016-04-01

    The ESA Swarm mission will provide the best ever survey of the Earth's magnetic field and its temporal evolution. This will be achieved by a constellation of three identical satellites, launched together on the 22nd of November 2013. In order to observe the magnetic field thoroughly, each satellite carries two magnetometers: a Vector Field Magnetometer (VFM) coupled with a star tracker camera, to measure the direction of the magnetic field in space, and an Absolute Scalar Magnetometer (ASM), to measure its intensity. The ASM is the French contribution to the Swarm mission. This new generation instrument was designed by CEA-Leti and developed in close partnership with CNES, with scientific support from IPGP. Its operating principle is based on the atomic spectroscopy of the helium 4 metastable state. It makes use of the Zeeman's effect to transduce the magnetic field into a frequency, the signal being amplified by optical pumping. The primary role of the ASM is to provide absolute measurements of the magnetic field's strength at 1 Hz, for the in-flight calibration of the VFM. As the Swarm magnetic reference, the ASM scalar performance is crucial for the mission's success. Thanks to its innovative design, the ASM offers the best precision, resolution and absolute accuracy ever attained in space, with similar performance all along the orbit. In addition, thanks to an original architecture, the ASM implements on an experimental basis a capacity for providing simultaneously vector measurements at 1 Hz. This new feature makes it the first instrument capable of delivering both scalar and vector measurements simultaneously at the same point. Swarm offers a unique opportunity to validate the ASM vector data in orbit by comparison with the VFM's. Furthermore, the ASM can provide scalar data at a much higher sampling rate, when run in "burst" mode at 250 Hz, with a 100 Hz measurement bandwidth. An analysis of the spectral content of the magnetic field above 1 Hz becomes thus

  20. A low absolute number of expanded transcripts is involved in myotonic dystrophy type 1 manifestation in muscle.

    PubMed

    Gudde, Anke E E G; González-Barriga, Anchel; van den Broek, Walther J A A; Wieringa, Bé; Wansink, Derick G

    2016-04-15

    Muscular manifestation of myotonic dystrophy type 1 (DM1), a common inheritable degenerative multisystem disorder, is mainly caused by expression of RNA from a (CTG·CAG)n-expanded DM1 locus. Here, we report on comparative profiling of expression of normal and expanded endogenous or transgenic transcripts in skeletal muscle cells and biopsies from DM1 mouse models and patients in order to help us in understanding the role of this RNA-mediated toxicity. In tissue ofHSA(LR)mice, the most intensely used 'muscle-only' model in the DM1 field, RNA from the α-actin (CTG)250 transgene was at least 1000-fold more abundant than that from theDmpkgene, or theDMPKgene in humans. Conversely, theDMPKtransgene in another line, DM500/DMSXL mice, was expressed ∼10-fold lower than the endogenous gene. Temporal regulation of expanded RNA expression differed between models. Onset of expression occurred remarkably late inHSA(LR)myoblasts duringin vitromyogenesis whereasDmpkorDMPK(trans)genes were expressed throughout proliferation and differentiation phases. Importantly, quantification of absolute transcript numbers revealed that normal and expandedDmpk/DMPKtranscripts in mouse models and DM1 patients are low-abundance RNA species. Northern blotting, reverse transcriptase-quantitative polymerase chain reaction, RNA-sequencing and fluorescentin situhybridization analyses showed that they occur at an absolute number between one and a few dozen molecules per cell. Our findings refine the current RNA dominance theory for DM1 pathophysiology, as anomalous factor binding to expanded transcripts and formation of soluble or insoluble ribonucleoprotein aggregates must be nucleated by only few expandedDMPKtranscripts and therefore be a small numbers game. PMID:26908607

  1. A low absolute number of expanded transcripts is involved in myotonic dystrophy type 1 manifestation in muscle

    PubMed Central

    Gudde, Anke E. E. G.; González-Barriga, Anchel; van den Broek, Walther J. A. A.; Wieringa, Bé; Wansink, Derick G.

    2016-01-01

    Muscular manifestation of myotonic dystrophy type 1 (DM1), a common inheritable degenerative multisystem disorder, is mainly caused by expression of RNA from a (CTG·CAG)n-expanded DM1 locus. Here, we report on comparative profiling of expression of normal and expanded endogenous or transgenic transcripts in skeletal muscle cells and biopsies from DM1 mouse models and patients in order to help us in understanding the role of this RNA-mediated toxicity. In tissue of HSALR mice, the most intensely used ‘muscle-only’ model in the DM1 field, RNA from the α-actin (CTG)250 transgene was at least 1000-fold more abundant than that from the Dmpk gene, or the DMPK gene in humans. Conversely, the DMPK transgene in another line, DM500/DMSXL mice, was expressed ∼10-fold lower than the endogenous gene. Temporal regulation of expanded RNA expression differed between models. Onset of expression occurred remarkably late in HSALR myoblasts during in vitro myogenesis whereas Dmpk or DMPK (trans)genes were expressed throughout proliferation and differentiation phases. Importantly, quantification of absolute transcript numbers revealed that normal and expanded Dmpk/DMPK transcripts in mouse models and DM1 patients are low-abundance RNA species. Northern blotting, reverse transcriptase–quantitative polymerase chain reaction, RNA-sequencing and fluorescent in situ hybridization analyses showed that they occur at an absolute number between one and a few dozen molecules per cell. Our findings refine the current RNA dominance theory for DM1 pathophysiology, as anomalous factor binding to expanded transcripts and formation of soluble or insoluble ribonucleoprotein aggregates must be nucleated by only few expanded DMPK transcripts and therefore be a small numbers game. PMID:26908607

  2. First Absolutely Calibrated Localized Measurements of Ion Velocity in the MST in Locked and Rotating Plasmas

    NASA Astrophysics Data System (ADS)

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; Munaretto, S.

    2015-11-01

    An Ion Doppler Spectrometer (IDS) is used on MST for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometer records data within 0.3 nm of the C+5 line of interest, and commercial calibration lamps do not produce lines in this narrow range . A novel optical system was designed to absolutely calibrate the IDS. The device uses an UV LED to produce a broad emission curve in the desired region. A Fabry-Perot etalon filters this light, cutting transmittance peaks into the pattern of the LED emission. An optical train of fused silica lenses focuses the light into the IDS with f/4. A holographic diffuser blurs the light cone to increase homogeneity. Using this light source, the absolute Doppler shift of ion emissions can be measured in MST plasmas. In combination with charge exchange recombination spectroscopy, localized ion velocities can now be measured. Previously, a time-averaged measurement along the chord bisecting the poloidal plane was used to calibrate the IDS; the quality of these central chord calibrations can be characterized with our absolute calibration. Calibration errors may also be quantified and minimized by optimizing the curve-fitting process. Preliminary measurements of toroidal velocity in locked and rotating plasmas will be shown. This work has been supported by the US DOE.

  3. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  4. Absolute equation of state measurements of iron using laser driven shocks

    NASA Astrophysics Data System (ADS)

    Benuzzi-Mounaix, A.; Koenig, M.; Huser, G.; Faral, B.; Batani, D.; Henry, E.; Tomasini, M.; Marchet, B.; Hall, T. A.; Boustie, M.; de Rességuier, Th.; Hallouin, M.; Guyot, F.; Andrault, D.; Charpin, Th.

    2002-06-01

    First absolute equation of state measurements obtained for iron with laser driven shock waves are presented. The shock velocity and the free surface velocity of compressed iron have been simultaneously measured by using a VISAR diagnostic, and step targets. The pressure range 1-8 Mbar has been investigated, which is directly relevant to planetary physics. The experiments have been performed at the Laboratoire pour l'Utilisation des Lasers Intenses of the Ecole Polytechnique.

  5. Absolute calibration of photon-number-resolving detectors with an analog output using twin beams

    NASA Astrophysics Data System (ADS)

    Peřina, Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria

    2014-01-01

    A method for absolute calibration of a photon-number resolving detector producing analog signals as the output is developed using a twin beam. The method gives both analog-to-digital conversion parameters and quantum detection efficiency for the photon fields. Characteristics of the used twin beam are also obtained. A simplified variant of the method applicable to fields with high signal to noise ratios and suitable for more intense twin beams is suggested.

  6. Absolute Bunch Length Measurements at the ALS by Incoherent Synchrotron Radiation Fluctuation Analysis

    SciTech Connect

    Filippetto, D.; Sannibale, F.; Zolotorev, Max Samuil; Stupakov, G.V.; /SLAC

    2008-01-24

    By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and tested a simple scheme based on this principle that allows for the absolute measurement of the bunch length. A description of the method and the experimental results are presented.

  7. Absolute calibration of photon-number-resolving detectors with an analog output using twin beams

    SciTech Connect

    Peřina, Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria

    2014-01-27

    A method for absolute calibration of a photon-number resolving detector producing analog signals as the output is developed using a twin beam. The method gives both analog-to-digital conversion parameters and quantum detection efficiency for the photon fields. Characteristics of the used twin beam are also obtained. A simplified variant of the method applicable to fields with high signal to noise ratios and suitable for more intense twin beams is suggested.

  8. Absolute spectral irradiance measurements of lightning from 375 to 880 nm

    NASA Technical Reports Server (NTRS)

    Orville, R. E.; Henderson, R. W.

    1984-01-01

    The time-integrated emissions from cloud-to-ground lightning have been recorded in the 375-880 nm region, using a spectrometer-detector and multichannel analyzer system capable of absolute spectral irradiance measurements. A schematic drawing of the detector-analyzer system is presented, and the experimental setup is described. A total of ten flashes containing 46 individual strikes were recorded and compared to recordings of 500 flashes from 1981. The average spectral irradiance from 375 to 695 nm for flashes at about 15 km was 3.5 x 10 to the -5th J/sq m per stroke with a standard deviation of 2.0 x 10 to the -5th and a range from 0.7 x 10 to the 0.7-6.8 x 10 to the -5th J/sq m per stroke. The average stroke spectra irradiance from 650 to 880 nm for the same strokes was 1.2 x 10 to the -5th, with a standard deviation of 0.7 x 10 to the -5th and a range from 0.5 to 3.2 x 10 to the -5th J/sq m per stroke. A summary table of spectral irradiance values in 50 nm increment is presented. Analysis of the spectral emission data show that unresolved neutral hydrogen lines (NI) at 744.2 nm were more intense than H-alpha emission at 656.3 nm. The strong emission of a flash with a continuing current was identified as cyanogen (CN) emission.

  9. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  10. Absolute geostrophic currents in global tropical oceans

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Yuan, Dongliang

    2016-03-01

    A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.

  11. Absolute Measurement of Electron Cloud Density

    SciTech Connect

    Covo, M K; Molvik, A W; Cohen, R H; Friedman, A; Seidl, P A; Logan, G; Bieniosek, F; Baca, D; Vay, J; Orlando, E; Vujic, J L

    2007-06-21

    Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 {micro}s duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.

  12. Absolute instability of a viscous hollow jet

    NASA Astrophysics Data System (ADS)

    Gañán-Calvo, Alfonso M.

    2007-02-01

    An investigation of the spatiotemporal stability of hollow jets in unbounded coflowing liquids, using a general dispersion relation previously derived, shows them to be absolutely unstable for all physical values of the Reynolds and Weber numbers. The roots of the symmetry breakdown with respect to the liquid jet case, and the validity of asymptotic models are here studied in detail. Asymptotic analyses for low and high Reynolds numbers are provided, showing that old and well-established limiting dispersion relations [J. W. S. Rayleigh, The Theory of Sound (Dover, New York, 1945); S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1961)] should be used with caution. In the creeping flow limit, the analysis shows that, if the hollow jet is filled with any finite density and viscosity fluid, a steady jet could be made arbitrarily small (compatible with the continuum hypothesis) if the coflowing liquid moves faster than a critical velocity.

  13. Stitching interferometry: recent results and absolute calibration

    NASA Astrophysics Data System (ADS)

    Bray, Michael

    2004-02-01

    Stitching Interferometry is a method of analysing large optical components using a standard "small" interferometer. This result is obtained by taking multiple overlapping images of the large component, and numerically "stitching" these sub-apertures together. We have already reported the industrial use our Stitching Interferometry systems (Previous SPIE symposia), but experimental results had been lacking because this technique is still new, and users needed to get accustomed to it before producing reliable measurements. We now have more results. We will report user comments and show new, unpublished results. We will discuss sources of error, and show how some of these can be reduced to arbitrarily small values. These will be discussed in some detail. We conclude with a few graphical examples of absolute measurements performed by us.

  14. Swarm's Absolute Scalar Magnetometer metrological performances

    NASA Astrophysics Data System (ADS)

    Leger, J.; Fratter, I.; Bertrand, F.; Jager, T.; Morales, S.

    2012-12-01

    The Absolute Scalar Magnetometer (ASM) has been developed for the ESA Earth Observation Swarm mission, planned for launch in November 2012. As its Overhauser magnetometers forerunners flown on Oersted and Champ satellites, it will deliver high resolution scalar measurements for the in-flight calibration of the Vector Field Magnetometer manufactured by the Danish Technical University. Latest results of the ground tests carried out to fully characterize all parameters that may affect its accuracy, both at instrument and satellite level, will be presented. In addition to its baseline function, the ASM can be operated either at a much higher sampling rate (burst mode at 250 Hz) or in a dual mode where it also delivers vector field measurements as a by-product. The calibration procedure and the relevant vector performances will be discussed.

  15. Absolute nonlocality via distributed computing without communication

    NASA Astrophysics Data System (ADS)

    Czekaj, Ł.; Pawłowski, M.; Vértesi, T.; Grudka, A.; Horodecki, M.; Horodecki, R.

    2015-09-01

    Understanding the role that quantum entanglement plays as a resource in various information processing tasks is one of the crucial goals of quantum information theory. Here we propose an alternative perspective for studying quantum entanglement: distributed computation of functions without communication between nodes. To formalize this approach, we propose identity games. Surprisingly, despite no signaling, we obtain that nonlocal quantum strategies beat classical ones in terms of winning probability for identity games originating from certain bipartite and multipartite functions. Moreover we show that, for a majority of functions, access to general nonsignaling resources boosts success probability two times in comparison to classical ones for a number of large enough outputs. Because there are no constraints on the inputs and no processing of the outputs in the identity games, they detect very strong types of correlations: absolute nonlocality.

  16. OH emission intensity measurements during the 1969 NASA Airborne Auroral Expedition

    NASA Technical Reports Server (NTRS)

    Moreels, G.; Blamont, J. E.; Chahrokhi, D.

    1976-01-01

    Absolute intensity measurements of the (8, 6) OH band obtained during 10 flights of the December 1969 NASA Auroral Airborne Expedition are presented. Nightglow intensities higher by a factor of 2 than the usual values are recorded during flights 8, 14, and 15. The OH variations are compared with the evolution of the green line and O2(1 Delta g) emissions measured by other experimenters on board the aircraft. Before sunrise the twilight variations of OH down to a solar depression angle of 5 deg show a rapid decrease. A theoretical prediction of the OH, O I 5577 A, and O2(1 Delta g) emissions is evaluated by means of an extensive time-dependent oxygen-hydrogen model of the 25- to 150-km region. Twilight decrease of the OH emission is interpreted in terms of mesospheric ozone photodissociation. Nighttime variations of the emissions may be reproduced if modifications of the dynamic regime are introduced into the model.

  17. The Absolute Calibration of the HiRes Detectors

    NASA Astrophysics Data System (ADS)

    Matthews, J. N.; Thomas, S. B.; HiRes Collaboration

    2003-07-01

    The HiRes experiment studies ultra high energy cosmic rays using the air fluorescence technique. The experiment uses large mirrors that collect the fluorescence light and fo cus it onto arrays of photomultiplier tubes (PMTs). The PMTs measure the intensity and time of arrival of the collected light. Our primary system for in situ calibration of the PMTs uses a high stability (<1%) portable light source. This source is transferred from the lab to the field where it is employed as a standard candle to calibrate the 64 detectors (>16,000 PMTs). To determine the absolute response it is necessary to understand the absolute light output of this source. We have measured the source irradiance using a hybrid photo dio de system, two NIST calibrated photo-dio des, and by observing the photo electron statistics of the PMTs. 2. Introduction The goal of the High Resolution Fly's Eye (HiRes) project is to study cosmic rays at the highest energies. An ultra high energy cosmic ray entering the earth's atmosphere collides with atmospheric nuclei triggering the development of an Extensive Air Shower (EAS). The EAS emits fluorescence light as it develops. HiRes uses the air fluorescence signal to measure properties of the primary cosmic ray particle. The fundamental detector elements in HiRes are photomultiplier tubes (PMTs). The light from an EAS is collected by large mirrors and fo cused into cameras each consisting of 256 PMTs [1]. Routine monitoring and calibration of the PMTs and associated electronics are crucial to the proper interpretation of the data. The primary system for in situ calibration of the PMTs involves the use of a high stability portable xenon flash lamp. The Roving Xenon Flasher (RXF) offers several advantages. The pulse-to-pulse variation in intensity is very small ˜0.3% and the stability over a night is better than 2%. The emission spectrum of the RXF is sufficiently broad to allow calibration over a wide range of wavelengths. It is also readily transported

  18. Spectrophotometry of Wolf-Rayet stars - Intrinsic colors and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Torres-Dodgen, Ana V.; Massey, Philip

    1988-01-01

    Absolute spectrophotometry of about 10-A resolution in the range 3400-7300 A have been obtained for southern Wolf-Rayet stars, and line-free magnitudes and colors have been constructed. The emission-line contamination in the narrow-band ubvr systems of Westerlund (1966) and Smith (1968) is shown to be small for most WN stars, but to be quite significant for WC stars. It is suggested that the more severe differences in intrinsic color from star to star of the same spectral subtype noted at shorter wavelengths are due to differences in atmospheric extent. True continuum absolute visual magnitudes and intrinsic colors are obtained for the LMC WR stars. The most visually luminous WN6-WN7 stars are found to be located in the core of the 30 Doradus region.

  19. Absolute linestrengths in the H2O2 nu6 band

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1991-01-01

    Absolute linestrengths at 295 K have been measured for selected lines in the nu6 band of H2O2 using a tunable diode-laser spectrometer. H2O2 concentrations in a flowing gas mixture were determined by ultraviolet (uv) absorption at 254 nm using a collinear infrared (ir) and uv optical arrangement. The measured linestrengths are approx. 60 percent larger than previously reported values when absorption by hot bands in H2O2 is taken into account.

  20. A new approach to spectral line shapes of the weak oxygen transitions for atmospheric applications

    NASA Astrophysics Data System (ADS)

    Domysławska, Jolanta; Wójtewicz, Szymon; Masłowski, Piotr; Cygan, Agata; Bielska, Katarzyna; Trawiński, Ryszard S.; Ciuryło, Roman; Lisak, Daniel

    2016-01-01

    We propose to construct a new database of O2 molecular spectral lines for atmospheric application, consistent with recent IUPAC recommendation [Tennyson et al. Pure Appl Chem 2014;86:1931] going beyond Voigt profile by incorporation of the speed dependence of collisional broadening and shifting. For this purpose we collected the laboratory data for the self-perturbed oxygen B-band transitions. Line shapes were measured at low pressures by the Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectrometer linked to the optical frequency comb. Data were analyzed by means of the quadratic speed-dependent Voigt profile. The absolute transition frequencies are determined with accuracy even as good as 150 kHz. Line intensities, pressure width and shift coefficients and the speed-dependent parameters are determined with subpercent accuracy.

  1. Estimation of absolute protein quantities of unlabeled samples by selected reaction monitoring mass spectrometry.

    PubMed

    Ludwig, Christina; Claassen, Manfred; Schmidt, Alexander; Aebersold, Ruedi

    2012-03-01

    For many research questions in modern molecular and systems biology, information about absolute protein quantities is imperative. This information includes, for example, kinetic modeling of processes, protein turnover determinations, stoichiometric investigations of protein complexes, or quantitative comparisons of different proteins within one sample or across samples. To date, the vast majority of proteomic studies are limited to providing relative quantitative comparisons of protein levels between limited numbers of samples. Here we describe and demonstrate the utility of a targeting MS technique for the estimation of absolute protein abundance in unlabeled and nonfractionated cell lysates. The method is based on selected reaction monitoring (SRM) mass spectrometry and the "best flyer" hypothesis, which assumes that the specific MS signal intensity of the most intense tryptic peptides per protein is approximately constant throughout a whole proteome. SRM-targeted best flyer peptides were selected for each protein from the peptide precursor ion signal intensities from directed MS data. The most intense transitions per peptide were selected from full MS/MS scans of crude synthetic analogs. We used Monte Carlo cross-validation to systematically investigate the accuracy of the technique as a function of the number of measured best flyer peptides and the number of SRM transitions per peptide. We found that a linear model based on the two most intense transitions of the three best flying peptides per proteins (TopPep3/TopTra2) generated optimal results with a cross-correlated mean fold error of 1.8 and a squared Pearson coefficient R(2) of 0.88. Applying the optimized model to lysates of the microbe Leptospira interrogans, we detected significant protein abundance changes of 39 target proteins upon antibiotic treatment, which correlate well with literature values. The described method is generally applicable and exploits the inherent performance advantages of SRM

  2. Relative intensity calculations for nitrous oxide.

    NASA Technical Reports Server (NTRS)

    Young, L. D. G.

    1972-01-01

    A tabulation of calculated rotational line intensities, relative to the integrated intensity of a vibration-rotation band, is given for Sigma-Sigma, Pi-Sigma, Sigma-Pi, Pi-Pi, and Delta-Pi transitions of nitrous oxide. These calculations were made for temperatures of 250 K and 300 K. A summary of band-intensity measurements is also presented.

  3. Monochromator-Based Absolute Calibration of a Standard Radiation Thermometer

    NASA Astrophysics Data System (ADS)

    Mantilla, J. M.; Hernanz, M. L.; Campos, J.; Martín, M. J.; Pons, A.; del Campo, D.

    2014-04-01

    Centro Español de Metrología (CEM) is disseminating the International Temperature Scale (ITS-90), at high temperatures, by using the fixed points of Ag and Cu and a standard radiation thermometer. However, the future mise-en-pratique for the definition of the kelvin ( MeP-K) will include the dissemination of the kelvin by primary methods and by indirect approximations capable of exceptionally low uncertainties or increased reliability. Primary radiometry is, at present, able to achieve uncertainties competitive with the ITS-90 above the silver point with one of the possible techniques the calibration for radiance responsivity of an imaging radiometer (radiance method). In order to carry out this calibration, IO-CSIC (Spanish Designated Institute for luminous intensity and luminous flux) has collaborated with CEM, allowing traceability to its cryogenic radiometer. A monochromator integrating sphere-based spectral comparator facility has been used to calibrate one of the CEM standard radiation thermometers. The absolute calibrated standard radiation thermometer has been used to determine the temperatures of the fixed points of Cu, Co-C, Pt-C, and Re-C. The results obtained are 1357.80 K, 1597.10 K, 2011.66 K, and 2747.64 K, respectively, with uncertainties ranging from 0.4 K to 1.1 K.

  4. Absolute position total internal reflection microscopy with an optical tweezer

    PubMed Central

    Liu, Lulu; Woolf, Alexander; Rodriguez, Alejandro W.; Capasso, Federico

    2014-01-01

    A noninvasive, in situ calibration method for total internal reflection microscopy (TIRM) based on optical tweezing is presented, which greatly expands the capabilities of this technique. We show that by making only simple modifications to the basic TIRM sensing setup and procedure, a probe particle’s absolute position relative to a dielectric interface may be known with better than 10 nm precision out to a distance greater than 1 μm from the surface. This represents an approximate 10× improvement in error and 3× improvement in measurement range over conventional TIRM methods. The technique’s advantage is in the direct measurement of the probe particle’s scattering intensity vs. height profile in situ, rather than relying on assumptions, inexact system analogs, or detailed knowledge of system parameters for calibration. To demonstrate the improved versatility of the TIRM method in terms of tunability, precision, and range, we show our results for the hindered near-wall diffusion coefficient for a spherical dielectric particle. PMID:25512542

  5. Bottom Line, Bottom Line

    ERIC Educational Resources Information Center

    Trachtenberg, Stephen Joel

    2008-01-01

    Unlike most businesses, universities are both capital-and labor-intensive; yet contrary to standard business practice, they wring the most use and value out of their plants and payrolls for fewer than seven months a year. University presidents may appear to be very much like chief executive officers, but their powers to change course--or even a…

  6. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    SciTech Connect

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  7. Absolute surface energy for zincblende semiconductors

    NASA Astrophysics Data System (ADS)

    Zhang, S. B.; Wei, Su-Huai

    2003-03-01

    Recent advance in nanosciences requires the determination of surface (or facet) energy of semiconductors, which is often difficult due to the polar nature of some of the most important surfaces such as the (111)A/(111)B surfaces. Several approaches have been developed in the past [1-3] to deal with the problem but an unambiguous division of the polar surface energies is yet to come [2]. Here we show that an accurate division is indeed possible for the zincblende semiconductors and will present the results for GaAs, ZnSe, and CuInSe2 [4], respectively. A general trend emerges, relating the absolute surface energy to the ionicity of the bulk materials. [1] N. Chetty and R. M. Martin, Phys. Rev. B 45, 6074 (1992). [2] N. Moll, et al., Phys. Rev. B 54, 8844 (1996). [3] S. Mankefors, Phys. Rev. B 59, 13151 (1999). [4] S. B. Zhang and S.-H. Wei, Phys. Rev. B 65, 081402 (2002).

  8. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  9. Absolute decay width measurements in 16O

    NASA Astrophysics Data System (ADS)

    Wheldon, C.; Ashwood, N. I.; Barr, M.; Curtis, N.; Freer, M.; Kokalova, Tz; Malcolm, J. D.; Spencer, S. J.; Ziman, V. A.; Faestermann, Th; Krücken, R.; Wirth, H.-F.; Hertenberger, R.; Lutter, R.; Bergmaier, A.

    2012-09-01

    The reaction 126C(63Li, d)168O* at a 6Li bombarding energy of 42 MeV has been used to populate excited states in 16O. The deuteron ejectiles were measured using the high-resolution Munich Q3D spectrograph. A large-acceptance silicon-strip detector array was used to register the recoil and break-up products. This complete kinematic set-up has enabled absolute α-decay widths to be measured with high-resolution in the 13.9 to 15.9 MeV excitation energy regime in 16O; many for the first time. This energy region spans the 14.4 MeV four-α breakup threshold. Monte-Carlo simulations of the detector geometry and break-up processes yield detection efficiencies for the two dominant decay modes of 40% and 37% for the α+12C(g.s.) and a+12C(2+1) break-up channels respectively.

  10. Absolute calibration of forces in optical tweezers

    NASA Astrophysics Data System (ADS)

    Dutra, R. S.; Viana, N. B.; Maia Neto, P. A.; Nussenzveig, H. M.

    2014-07-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past 15 years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spot, adapting frequently employed video microscopy techniques. Combined with interface spherical aberration, it reveals a previously unknown window of instability for trapping. Comparison with experimental data leads to an overall agreement within error bars, with no fitting, for a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Besides signaling full first-principles theoretical understanding of optical tweezers operation, the results may lead to improved instrument design and control over experiments, as well as to an extended domain of applicability, allowing reliable force measurements, in principle, from femtonewtons to nanonewtons.

  11. Spectral line lists of a nitrogen gas discharge for wavelength calibration in the range 4500-11 000 cm-1

    NASA Astrophysics Data System (ADS)

    Boesch, A.; Reiners, A.

    2015-10-01

    Context. A discharge of nitrogen gas, as created in a microwave-induced plasma, exhibits a very dense molecular emission line spectrum. Emission spectra of this kind could serve as wavelength calibrators for high-resolution astrophysical spectrographs in the near-infrared, where only very few calibration sources are currently available. Aims: The compilation of a spectral line list and the characterization of line intensities and line density belong to the initial steps when investigating the feasibility of potential wavelength calibration sources. Although the molecular nitrogen spectrum was extensively studied in the past, to our knowledge, no line list exists that covers a continuous range of several thousand wavenumbers in the near-infrared. Methods: We recorded three high-resolution (Δ tilde{ν = 0.018} cm-1) spectra of a nitrogen gas discharge operated at different microwave powers. The nitrogen gas is kept inside a sealed glass cell at a pressure of 2 mbar. The emission lines in the spectra were fitted by a superposition of Gaussian profiles to determine their position, relative intensity, and width. The line parameters were corrected for an absolute wavelength scale, instrumental line broadening, and intensity modulation. Molecular and atomic transitions of nitrogen were identified with available line positions from the literature. Results: We report line lists with more than 40 000 emission lines in the spectral range 4500-11 000 cm-1 (0.9-2.2 μm). The spectra exhibit emission lines over the complete spectral range under investigation with about 350-1300 lines per 100 cm-1. Depending on the microwave power, a fraction of 35-55% of all lines are blended. The total dynamic range of the detected lines covers about four orders of magnitude. Conclusions: Line density and peak intensities qualify the recorded discharge as a useful wavelength calibrator, and the line list provides an empirical reference for nitrogen spectra in the near-infrared. The line lists

  12. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  13. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  14. Voyager absolute far-ultraviolet spectrophotometry of hot stars

    NASA Technical Reports Server (NTRS)

    Holberg, J. B.; Forrester, W. T.; Shemansky, D. E.; Barry, D. C.

    1982-01-01

    Voyager observations in the 912-1200 A spectral region are used to indirectly intercompare absolute stellar spectrophotometry from previous experiments. Measurements of hot stars obtained by the Voyager 1 and 2 ultraviolet spectrometers show considerably higher 912-1200 A continuum fluxes than the recent observations of Brune et al. (1979) and Carruthers et al. (1981). The intercomparisons show all observations in basic agreement near 1200 A. The Carruthers et al. flux measurements are preferred down to 1050 A at which point the Voyager and Brune et al. values are respectively 60% higher and 60% lower. Below 1050 A the diasgreement among the observations becomes very large and the fluxes predicted by model atmospheres have been adopted. The pure hydrogen line-blanketed model atmosphere calculations of Wesemael et al. 1980) in comparison with Voyager observations of HZ 43 are used to adjust the Voyager calibration below 1050 A. This adjusted Voyager calibration, which is in good agreement with current model atmosphere fluxes for both early-type stars and DA white dwarfs, will be used for Voyager astronomical observations.

  15. ABSOLUTE PROPERTIES OF THE ECLIPSING BINARY STAR BF DRACONIS

    SciTech Connect

    Sandberg Lacy, Claud H.; Torres, Guillermo; Fekel, Francis C.; Sabby, Jeffrey A.; Claret, Antonio E-mail: gtorres@cfa.harvard.edu E-mail: jsabby@siue.edu

    2012-06-15

    BF Dra is now known to be an eccentric double-lined F6+F6 binary star with relatively deep (0.7 mag) partial eclipses. Previous studies of the system are improved with 7494 differential photometric observations from the URSA WebScope and 9700 from the NFO WebScope, 106 high-resolution spectroscopic observations from the Tennessee State University 2 m automatic spectroscopic telescope and the 1 m coude-feed spectrometer at Kitt Peak National Observatory, and 31 accurate radial velocities from the CfA. Very accurate (better than 0.6%) masses and radii are determined from analysis of the two new light curves and four radial velocity curves. Theoretical models match the absolute properties of the stars at an age of about 2.72 Gyr and [Fe/H] = -0.17, and tidal theory correctly confirms that the orbit should still be eccentric. Our observations of BF Dra constrain the convective core overshooting parameter to be larger than about 0.13 H{sub p}. We find, however, that standard tidal theory is unable to match the observed slow rotation rates of the components' surface layers.

  16. CORONAL EMISSION LINES AS THERMOMETERS

    SciTech Connect

    Judge, Philip G.

    2010-01-10

    Coronal emission-line intensities are commonly used to measure electron temperatures using emission measure and/or line ratio methods. In the presence of systematic errors in atomic excitation calculations and data noise, the information on underlying temperature distributions is fundamentally limited. Increasing the number of emission lines used does not necessarily improve the ability to discriminate between different kinds of temperature distributions.

  17. Development of Statistical Typhoon Intensity Prediction: Application to Satellite-Observed Surface Evaporation and Rain Rate (STIPER)

    NASA Astrophysics Data System (ADS)

    Gao, S.; Chiu, L.

    2012-12-01

    A statistical-dynamical model has been used for operational guidance for tropical cyclone (TC) intensity prediction. In this study, several multiple linear regression models and neural network (NN) models are developed for the intensity prediction of western North Pacific TCs at 24-, 48-, and 72-h intervals. The multiple linear regression models include a model of climatology and persistence (CLIPER), a model based on the Statistical Typhoon Intensity Prediction System (STIPS), which serves as the base regression model (BASE), and a model of STIPS with additional satellite estimates of surface evaporation (SLHF) and innercore rain rate (IRR, STIPER model). A revised equation for the TC maximum potential intensity is derived using Tropical Rainfall Measuring Mission Microwave Imager optimally interpolated sea surface temperature data, which have higher temporal and spatial resolutions. Analyses of the resulting models show the marginal improvement of STIPER over BASE. However, IRR and SLHF are found to be significant predictors in the predictor pool. Neural network models using the same predictors as STIPER show reductions of the mean absolute errors of 7%, 11%, and 16% relative to STIPER for 24-, 48-, and 72-h forecasts, respectively. The largest improvement is found for the intensity forecasts of the rapidly intensifying and rapidly decaying TCs. (top) The 24-h BASE, STIPER, and NN24 model mean absolute errors (MAEs) stratified by best-track initial intensity (MWS0) in 5-kt bins and (bottom) 24-h intensity change (DELV) in 5-kt bins for all nine verification years. Lower values of MAEs represent better forecasts. Dashed dotted lines represent the numbers of valid observations within a particular bin.

  18. Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry

    SciTech Connect

    Le Floch, Sebastien; Salvade, Yves; Mitouassiwou, Rostand; Favre, Patrick

    2008-06-01

    We present a new technique applied to the variable optical synthetic wavelength generation in optical interferometry. It consists of a chain of optical injection locking among three lasers: first a distributed-feedback laser is used as a master to injection lock an intensity-modulated laser that is directly modulated around 15 GHz by a radio frequency generator on a sideband. A second distributed-feedback laser is injection locked on another sideband of the intensity-modulated laser. The variable synthetic wavelength for absolute distance measurement is simply generated by sweeping the radio frequency over a range of several hundred megahertz, which corresponds to the locking range of the two slave lasers. In this condition, the uncertainty of the variable synthetic wavelength is equivalent to the radio frequency uncertainty. This latter has a relative accuracy of 10{sup -7} or better, resulting in a resolution of {+-}25 {mu}m for distances exceeding tens of meters. The radio frequency generator produces a linear frequency sweep of 1 ms duration (i.e., exactly equal to one absolute distance measurement acquisition time), with frequency steps of about 1 MHz. Finally, results of absolute distance measurements for ranges up to 10 m are presented.

  19. Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry.

    PubMed

    Le Floch, Sébastien; Salvadé, Yves; Mitouassiwou, Rostand; Favre, Patrick

    2008-06-01

    We present a new technique applied to the variable optical synthetic wavelength generation in optical interferometry. It consists of a chain of optical injection locking among three lasers: first a distributed-feedback laser is used as a master to injection lock an intensity-modulated laser that is directly modulated around 15 GHz by a radio frequency generator on a sideband. A second distributed-feedback laser is injection locked on another sideband of the intensity-modulated laser. The variable synthetic wavelength for absolute distance measurement is simply generated by sweeping the radio frequency over a range of several hundred megahertz, which corresponds to the locking range of the two slave lasers. In this condition, the uncertainty of the variable synthetic wavelength is equivalent to the radio frequency uncertainty. This latter has a relative accuracy of 10(-7) or better, resulting in a resolution of +/-25 microm for distances exceeding tens of meters. The radio frequency generator produces a linear frequency sweep of 1 ms duration (i.e., exactly equal to one absolute distance measurement acquisition time), with frequency steps of about 1 MHz. Finally, results of absolute distance measurements for ranges up to 10 m are presented. PMID:18516123

  20. The Absolute Rate of LGRB Formation

    NASA Astrophysics Data System (ADS)

    Graham, J. F.; Schady, P.

    2016-06-01

    We estimate the long-duration gamma-ray burst (LGRB) progenitor rate using our recent work on the effects of environmental metallically on LGRB formation in concert with supernovae (SNe) statistics via an approach patterned loosely off the Drake equation. Beginning with the cosmic star formation history, we consider the expected number of broad-line Type Ic events (the SNe type associated with LGRBs) that are in low-metallicity host environments adjusted by the contribution of high-metallicity host environments at a much reduced rate. We then compare this estimate to the observed LGRB rate corrected for instrumental selection effects to provide a combined estimate of the efficiency fraction of these progenitors to produce LGRBs and the fraction of which are beamed in our direction. From this we estimate that an aligned LGRB occurs for approximately every 4000 ± 2000 low-metallically broad-lined SNe Ic. Therefore, if one assumes a semi-nominal beaming factor of 100, then only about one such supernova out of 40 produce an LGRB. Finally, we propose an off-axis LGRB search strategy of targeting only broad-line Type Ic events that occur in low-metallicity hosts for radio observation.