Science.gov

Sample records for absolute magnitude range

  1. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  2. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  3. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  4. Near-infrared absolute magnitudes of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Avelino, Arturo; Friedman, Andrew S.; Mandel, Kaisey; Kirshner, Robert; Challis, Peter

    2017-01-01

    Type Ia Supernovae light curves (SN Ia) in the near infrared (NIR) exhibit low dispersion in their peak luminosities and are less vulnerable to extinction by interstellar dust in their host galaxies. The increasing number of high quality NIR SNe Ia light curves, including the recent CfAIR2 sample obtained with PAIRITEL, provides updated evidence for their utility as standard candles for cosmology. Using NIR YJHKs light curves of ~150 nearby SNe Ia from the CfAIR2 and CSP samples, and from the literature, we determine the mean value and dispersion of the absolute magnitude in the range between -10 to 50 rest-frame days after the maximum luminosity in B band. We present the mean light-curve templates and Hubble diagram for YJHKs bands. This work contributes to a firm local anchor for supernova cosmology studies in the NIR which will help to reduce the systematic uncertainties due to host galaxy dust present in optical-only studies. This research is supported by NSF grants AST-156854, AST-1211196, Fundacion Mexico en Harvard, and CONACyT.

  5. THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET

    SciTech Connect

    Brown, Peter J.; Roming, Peter W. A.; Ciardullo, Robin; Gronwall, Caryl; Hoversten, Erik A.; Pritchard, Tyler; Milne, Peter; Bufano, Filomena; Mazzali, Paolo; Elias-Rosa, Nancy; Filippenko, Alexei V.; Li Weidong; Foley, Ryan J.; Hicken, Malcolm; Kirshner, Robert P.; Gehrels, Neil; Holland, Stephen T.; Immler, Stefan; Phillips, Mark M.; Still, Martin

    2010-10-01

    We examine the absolute magnitudes and light-curve shapes of 14 nearby (redshift z = 0.004-0.027) Type Ia supernovae (SNe Ia) observed in the ultraviolet (UV) with the Swift Ultraviolet/Optical Telescope. Colors and absolute magnitudes are calculated using both a standard Milky Way extinction law and one for the Large Magellanic Cloud that has been modified by circumstellar scattering. We find very different behavior in the near-UV filters (uvw1{sub rc} covering {approx}2600-3300 A after removing optical light, and u {approx} 3000-4000 A) compared to a mid-UV filter (uvm2 {approx}2000-2400 A). The uvw1{sub rc} - b colors show a scatter of {approx}0.3 mag while uvm2-b scatters by nearly 0.9 mag. Similarly, while the scatter in colors between neighboring filters is small in the optical and somewhat larger in the near-UV, the large scatter in the uvm2 - uvw1 colors implies significantly larger spectral variability below 2600 A. We find that in the near-UV the absolute magnitudes at peak brightness of normal SNe Ia in our sample are correlated with the optical decay rate with a scatter of 0.4 mag, comparable to that found for the optical in our sample. However, in the mid-UV the scatter is larger, {approx}1 mag, possibly indicating differences in metallicity. We find no strong correlation between either the UV light-curve shapes or the UV colors and the UV absolute magnitudes. With larger samples, the UV luminosity might be useful as an additional constraint to help determine distance, extinction, and metallicity in order to improve the utility of SNe Ia as standardized candles.

  6. The absolute magnitude distribution of cold classical Kuiper belt objects

    NASA Astrophysics Data System (ADS)

    Petit, Jean-Marc; Bannister, Michele T.; Alexandersen, Mike; Chen, Ying-Tung; Gladman, Brett; Gwyn, Stephen; Kavelaars, JJ; Volk, Kathryn

    2016-10-01

    We report measurements of the low inclination component of the main Kuiper Belt showing a size freqency distribution very steep for sizes larger than H_r ~ 6.5-7.0 and then a flattening to shallower slope that is still steeper than the collisional equilibrium slope.The Outer Solar System Origins Survey (OSSOS) is ongoing and is expected to detect over 500 TNOs in a precisely calibrated and characterized survey. Combining our current sample with CFEPS and the Alexandersen et al. (2015) survey, we analyse a sample of ~180 low inclination main classical (cold) TNOs, with absolute magnitude H_r (SDSS r' like flter) in the range 5 to 8.8. We confirm that the H_r distribution can be approximated by an exponential with a very steep slope (>1) at the bright end of the distribution, as has been recognized long ago. A transition to a shallower slope occurs around H_r ~ 6.5 - 7.0, an H_r mag identified by Fraster et al (2014). Faintward of this transition, we find a second exponential to be a good approximation at least until H_r ~ 8.5, but with a slope significantly steeper than the one proposed by Fraser et al. (2014) or even the collisional equilibrium value of 0.5.The transition in the cold TNO H_r distribution thus appears to occur at larger sizes than is observed in the high inclination main classical (hot) belt, an important indicator of a different cosmogony for these two sub-components of the main classical Kuiper belt. Given the largish slope faintward of the transition, the cold population with ~100 km diameter may dominate the mass of the Kuiper belt in the 40 AU < a < 47 au region.

  7. STANDARDIZING TYPE Ia SUPERNOVA ABSOLUTE MAGNITUDES USING GAUSSIAN PROCESS DATA REGRESSION

    SciTech Connect

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Nordin, J.; Thomas, R. C.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E.; and others

    2013-04-01

    We present a novel class of models for Type Ia supernova time-evolving spectral energy distributions (SEDs) and absolute magnitudes: they are each modeled as stochastic functions described by Gaussian processes. The values of the SED and absolute magnitudes are defined through well-defined regression prescriptions, so that data directly inform the models. As a proof of concept, we implement a model for synthetic photometry built from the spectrophotometric time series from the Nearby Supernova Factory. Absolute magnitudes at peak B brightness are calibrated to 0.13 mag in the g band and to as low as 0.09 mag in the z = 0.25 blueshifted i band, where the dispersion includes contributions from measurement uncertainties and peculiar velocities. The methodology can be applied to spectrophotometric time series of supernovae that span a range of redshifts to simultaneously standardize supernovae together with fitting cosmological parameters.

  8. THE ABSOLUTE MAGNITUDE OF RRc VARIABLES FROM STATISTICAL PARALLAX

    SciTech Connect

    Kollmeier, Juna A.; Burns, Christopher R.; Thompson, Ian B.; Preston, George W.; Crane, Jeffrey D.; Madore, Barry F.; Morrell, Nidia; Prieto, José L.; Shectman, Stephen; Simon, Joshua D.; Villanueva, Edward; Szczygieł, Dorota M.; Gould, Andrew; Sneden, Christopher; Dong, Subo

    2013-09-20

    We present the first definitive measurement of the absolute magnitude of RR Lyrae c-type variable stars (RRc) determined purely from statistical parallax. We use a sample of 242 RRc variables selected from the All Sky Automated Survey for which high-quality light curves, photometry, and proper motions are available. We obtain high-resolution echelle spectra for these objects to determine radial velocities and abundances as part of the Carnegie RR Lyrae Survey. We find that M{sub V,RRc} = 0.59 ± 0.10 at a mean metallicity of [Fe/H] = –1.59. This is to be compared with previous estimates for RRab stars (M{sub V,RRab} = 0.76 ± 0.12) and the only direct measurement of an RRc absolute magnitude (RZ Cephei, M{sub V,RRc} = 0.27 ± 0.17). We find the bulk velocity of the halo relative to the Sun to be (W{sub π}, W{sub θ}, W{sub z} ) = (12.0, –209.9, 3.0) km s{sup –1} in the radial, rotational, and vertical directions with dispersions (σ{sub W{sub π}},σ{sub W{sub θ}},σ{sub W{sub z}}) = (150.4, 106.1, 96.0) km s{sup -1}. For the disk, we find (W{sub π}, W{sub θ}, W{sub z} ) = (13.0, –42.0, –27.3) km s{sup –1} relative to the Sun with dispersions (σ{sub W{sub π}},σ{sub W{sub θ}},σ{sub W{sub z}}) = (67.7,59.2,54.9) km s{sup -1}. Finally, as a byproduct of our statistical framework, we are able to demonstrate that UCAC2 proper-motion errors are significantly overestimated as verified by UCAC4.

  9. The absolute magnitude distribution of Kuiper Belt objects

    SciTech Connect

    Fraser, Wesley C.; Brown, Michael E.; Morbidelli, Alessandro; Parker, Alex; Batygin, Konstantin

    2014-02-20

    Here we measure the absolute magnitude distributions (H-distribution) of the dynamically excited and quiescent (hot and cold) Kuiper Belt objects (KBOs), and test if they share the same H-distribution as the Jupiter Trojans. From a compilation of all useable ecliptic surveys, we find that the KBO H-distributions are well described by broken power laws. The cold population has a bright-end slope, α{sub 1}=1.5{sub −0.2}{sup +0.4}, and break magnitude, H{sub B}=6.9{sub −0.2}{sup +0.1} (r'-band). The hot population has a shallower bright-end slope of, α{sub 1}=0.87{sub −0.2}{sup +0.07}, and break magnitude H{sub B}=7.7{sub −0.5}{sup +1.0}. Both populations share similar faint-end slopes of α{sub 2} ∼ 0.2. We estimate the masses of the hot and cold populations are ∼0.01 and ∼3 × 10{sup –4} M {sub ⊕}. The broken power-law fit to the Trojan H-distribution has α{sub 1} = 1.0 ± 0.2, α{sub 2} = 0.36 ± 0.01, and H {sub B} = 8.3. The Kolmogorov-Smirnov test reveals that the probability that the Trojans and cold KBOs share the same parent H-distribution is less than 1 in 1000. When the bimodal albedo distribution of the hot objects is accounted for, there is no evidence that the H-distributions of the Trojans and hot KBOs differ. Our findings are in agreement with the predictions of the Nice model in terms of both mass and H-distribution of the hot and Trojan populations. Wide-field survey data suggest that the brightest few hot objects, with H{sub r{sup ′}}≲3, do not fall on the steep power-law slope of fainter hot objects. Under the standard hierarchical model of planetesimal formation, it is difficult to account for the similar break diameters of the hot and cold populations given the low mass of the cold belt.

  10. Spectrophotometry of Wolf-Rayet stars - Intrinsic colors and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Torres-Dodgen, Ana V.; Massey, Philip

    1988-01-01

    Absolute spectrophotometry of about 10-A resolution in the range 3400-7300 A have been obtained for southern Wolf-Rayet stars, and line-free magnitudes and colors have been constructed. The emission-line contamination in the narrow-band ubvr systems of Westerlund (1966) and Smith (1968) is shown to be small for most WN stars, but to be quite significant for WC stars. It is suggested that the more severe differences in intrinsic color from star to star of the same spectral subtype noted at shorter wavelengths are due to differences in atmospheric extent. True continuum absolute visual magnitudes and intrinsic colors are obtained for the LMC WR stars. The most visually luminous WN6-WN7 stars are found to be located in the core of the 30 Doradus region.

  11. Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations

    NASA Astrophysics Data System (ADS)

    Pravec, Petr; Harris, Alan W.; Kušnirák, Peter; Galád, Adrián; Hornoch, Kamil

    2012-09-01

    We obtained estimates of the Johnson V absolute magnitudes (H) and slope parameters (G) for 583 main-belt and near-Earth asteroids observed at Ondřejov and Table Mountain Observatory from 1978 to 2011. Uncertainties of the absolute magnitudes in our sample are <0.21 mag, with a median value of 0.10 mag. We compared the H data with absolute magnitude values given in the MPCORB, Pisa AstDyS and JPL Horizons orbit catalogs. We found that while the catalog absolute magnitudes for large asteroids are relatively good on average, showing only little biases smaller than 0.1 mag, there is a systematic offset of the catalog values for smaller asteroids that becomes prominent in a range of H greater than ∼10 and is particularly big above H ∼ 12. The mean (Hcatalog - H) value is negative, i.e., the catalog H values are systematically too bright. This systematic negative offset of the catalog values reaches a maximum around H = 14 where the mean (Hcatalog - H) is -0.4 to -0.5. We found also smaller correlations of the offset of the catalog H values with taxonomic types and with lightcurve amplitude, up to ∼0.1 mag or less. We discuss a few possible observational causes for the observed correlations, but the reason for the large bias of the catalog absolute magnitudes peaking around H = 14 is unknown; we suspect that the problem lies in the magnitude estimates reported by asteroid surveys. With our photometric H and G data, we revised the preliminary WISE albedo estimates made by Masiero et al. (Masired, J.R. et al. [2011]. Astrophys. J. 741, 68-89) and Mainzer et al. (Mainzer, A. et al. [2011b]. Astrophys. J. 743, 156-172) for asteroids in our sample. We found that the mean geometric albedo of Tholen/Bus/DeMeo C/G/B/F/P/D types with sizes of 25-300 km is pV = 0.057 with the standard deviation (dispersion) of the sample of 0.013 and the mean albedo of S/A/L types with sizes 0.6-200 km is 0.197 with the standard deviation of the sample of 0.051. The standard errors of the

  12. Absolute stress measurements at the rangely anticline, Northwestern Colorado

    USGS Publications Warehouse

    de la Cruz, R. V.; Raleigh, C.B.

    1972-01-01

    Five different methods of measuring absolute state of stress in rocks in situ were used at sites near Rangely, Colorado, and the results compared. For near-surface measurements, overcoring of the borehole-deformation gage is the most convenient and rapid means of obtaining reliable values for the magnitude and direction of the state of stress in rocks in situ. The magnitudes and directions of the principal stresses are compared to the geologic features of the different areas of measurement. The in situ stresses are consistent in orientation with the stress direction inferred from the earthquake focal-plane solutions and existing joint patterns but inconsistent with stress directions likely to have produced the Rangely anticline. ?? 1972.

  13. AN ACCURATE NEW METHOD OF CALCULATING ABSOLUTE MAGNITUDES AND K-CORRECTIONS APPLIED TO THE SLOAN FILTER SET

    SciTech Connect

    Beare, Richard; Brown, Michael J. I.; Pimbblet, Kevin

    2014-12-20

    We describe an accurate new method for determining absolute magnitudes, and hence also K-corrections, that is simpler than most previous methods, being based on a quadratic function of just one suitably chosen observed color. The method relies on the extensive and accurate new set of 129 empirical galaxy template spectral energy distributions from Brown et al. A key advantage of our method is that we can reliably estimate random errors in computed absolute magnitudes due to galaxy diversity, photometric error and redshift error. We derive K-corrections for the five Sloan Digital Sky Survey filters and provide parameter tables for use by the astronomical community. Using the New York Value-Added Galaxy Catalog, we compare our K-corrections with those from kcorrect. Our K-corrections produce absolute magnitudes that are generally in good agreement with kcorrect. Absolute griz magnitudes differ by less than 0.02 mag and those in the u band by ∼0.04 mag. The evolution of rest-frame colors as a function of redshift is better behaved using our method, with relatively few galaxies being assigned anomalously red colors and a tight red sequence being observed across the whole 0.0 < z < 0.5 redshift range.

  14. Independent coding of absolute duration and distance magnitudes in the prefrontal cortex.

    PubMed

    Marcos, Encarni; Tsujimoto, Satoshi; Genovesio, Aldo

    2017-01-01

    The estimation of space and time can interfere with each other, and neuroimaging studies have shown overlapping activation in the parietal and prefrontal cortical areas. We used duration and distance discrimination tasks to determine whether space and time share resources in prefrontal cortex (PF) neurons. Monkeys were required to report which of two stimuli, a red circle or blue square, presented sequentially, were longer and farther, respectively, in the duration and distance tasks. In a previous study, we showed that relative duration and distance are coded by different populations of neurons and that the only common representation is related to goal coding. Here, we examined the coding of absolute duration and distance. Our results support a model of independent coding of absolute duration and distance metrics by demonstrating that not only relative magnitude but also absolute magnitude are independently coded in the PF.

  15. Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Bottke, William F.; Morbidelli, Alessandro; Jedicke, Robert; Petit, Jean-Marc; Levison, Harold F.; Michel, Patrick; Metcalfe, Travis S.

    2002-04-01

    The orbital and absolute magnitude distribution of the near-Earth objects (NEOs) is difficult to compute, partly because only a modest fraction of the entire NEO population has been discovered so far, but also because the known NEOs are biased by complicated observational selection effects. To circumvent these problems, we created a model NEO population which was fit to known NEOs discovered or accidentally rediscovered by Spacewatch. Our method was to numerically integrate thousands of test particles from five source regions that we believe provide most NEOs to the inner Solar System. Four of these source regions are in or adjacent to the main asteroid belt, while the fifth one is associated with the transneptunian disk. The nearly isotropic comets, which include the Halley-type comets and the long-period comets, were not included in our model. Test bodies from our source regions that passed into the NEO region (perihelia q<1.3 AU and aphelia Q≥0.983 AU) were tracked until they were eliminated by striking the Sun or a planet or were ejected out of the inner Solar System. These integrations were used to create five residence time probability distributions in semimajor axis, eccentricity, and inclination space (one for each source). These distributions show where NEOs from a given source are statistically most likely to be located. Combining these five residence time probability distributions with an NEO absolute magnitude distribution computed from previous work and a probability function representing the observational biases associated with the Spacewatch NEO survey, we produced an NEO model population that could be fit to 138 NEOs discovered or accidentally rediscovered by Spacewatch. By testing a range of possible source combinations, a best-fit NEO model was computed which (i) provided the debiased orbital and absolute magnitude distributions for the NEO population and (ii) indicated the relative importance of each NEO source region. Our best-fit model is

  16. THE ABSOLUTE MAGNITUDES OF RED HORIZONTAL BRANCH STARS IN THE ugriz SYSTEM

    SciTech Connect

    Chen, Y. Q.; Zhao, G.; Zhao, J. K.

    2009-09-10

    Based on photometric data of the central parts of eight globular clusters and one open cluster presented by An and his collaborators, we select red horizontal branch (RHB) stars in the (g - r){sub 0}-g {sub 0} diagram and make a statistical study of the distributions of their colors and absolute magnitudes in the SDSS ugriz system. Meanwhile, absolute magnitudes in the Johnson VRI system are calculated through the translation formulae between gri and VRI in the literature. The calibrations of absolute magnitude as functions of metallicity and age are established by linear regressions of the data. It is found that metallicity coefficients in these calibrations decrease, while age coefficients increase, from the blue u filter to the red z filter. The calibration of M{sub i} = 0.06[Fe/H] + 0.040t + 0.03 has the smallest scatter of 0.04 mag, and thus i is the best filter in the ugriz system when RHB stars are used for distance indicators. The comparison of the M{sub I} calibration from our data with that from red clump stars indicates that the previous suggestion that the I filter is better than the V filter in distance determination may not be true because of its significant dependence on age.

  17. Absolute magnitude estimation and relative judgement approaches to subjective workload assessment

    NASA Technical Reports Server (NTRS)

    Vidulich, Michael A.; Tsang, Pamela S.

    1987-01-01

    Two rating scale techniques employing an absolute magnitude estimation method, were compared to a relative judgment method for assessing subjective workload. One of the absolute estimation techniques used was an unidimensional overall workload scale and the other was the multidimensional NASA-Task Load Index technique. Thomas Saaty's Analytic Hierarchy Process was the unidimensional relative judgment method used. These techniques were used to assess the subjective workload of various single- and dual-tracking conditions. The validity of the techniques was defined as their ability to detect the same phenomena observed in the tracking performance. Reliability was assessed by calculating test-retest correlations. Within the context of the experiment, the Saaty Analytic Hierarchy Process was found to be superior in validity and reliability. These findings suggest that the relative judgment method would be an effective addition to the currently available subjective workload assessment techniques.

  18. Distance and absolute magnitudes of the brightest stars in the dwarf galaxy Sextans A

    NASA Technical Reports Server (NTRS)

    Sandage, A.; Carlson, G.

    1982-01-01

    In an attempt to improve present bright star calibration, data were gathered for the brightest red and blue stars and the Cepheids in the Im V dwarf galaxy, Sextans A. On the basis of a magnitude sequence measured to V and B values of about 22 and 23, respectively, the mean magnitudes of the three brightest blue stars are V=17.98 and B=17.88. The three brightest red supergiants have V=18.09 and B=20.14. The periods and magnitudes measured for five Cepheids yield an apparent blue distance modulus of 25.67 + or - 0.2, via the P-L relation, and the mean absolute magnitudes of V=-7.56 and B=-5.53 for the red supergiants provide additional calibration of the brightest red stars as distance indicators. If Sextans A were placed at the distance of the Virgo cluster, it would appear to have a surface brightness of 23.5 mag/sq arcec. This, together with the large angular diameter, would make such a galaxy easily discoverable in the Virgo cluster by means of ground-based surveys.

  19. The orbit of Phi Cygni measured with long-baseline optical interferometry - Component masses and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Armstrong, J. T.; Hummel, C. A.; Quirrenbach, A.; Buscher, D. F.; Mozurkewich, D.; Vivekanand, M.; Simon, R. S.; Denison, C. S.; Johnston, K. J.; Pan, X.-P.

    1992-01-01

    The orbit of the double-lined spectroscopic binary Phi Cygni, the distance to the system, and the masses and absolute magnitudes of its components are presented via measurements with the Mar III Optical Interferometer. On the basis of a reexamination of the spectroscopic data of Rach & Herbig (1961), the values and uncertainties are adopted for the period and the projected semimajor axes from the present fit to the spectroscopic data and the values of the remaining elements from the present fit to the Mark III data. The elements of the true orbit are derived, and the masses and absolute magnitudes of the components, and the distance to the system are calculated.

  20. Method and apparatus for making absolute range measurements

    DOEpatents

    Earl, Dennis D [Knoxville, TN; Allison, Stephen W [Knoxville, TN; Cates, Michael R [Oak Ridge, TN; Sanders, Alvin J [Knoxville, TN

    2002-09-24

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through a screen at least partially opaque at the wavelength. The screen has an aperture sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector spaced some distance from the screen. The detector detects the central intensity of the beam as well as a set of intensities displaced from a center of the aperture. The distance from the source to the target can then be calculated based upon the known wavelength, aperture radius, and beam intensity.

  1. A Concurrent Mixed Methods Approach to Examining the Quantitative and Qualitative Meaningfulness of Absolute Magnitude Estimation Scales in Survey Research

    ERIC Educational Resources Information Center

    Koskey, Kristin L. K.; Stewart, Victoria C.

    2014-01-01

    This small "n" observational study used a concurrent mixed methods approach to address a void in the literature with regard to the qualitative meaningfulness of the data yielded by absolute magnitude estimation scaling (MES) used to rate subjective stimuli. We investigated whether respondents' scales progressed from less to more and…

  2. Absolute magnitudes and slope parameters for 250,000 asteroids observed by Pan-STARRS PS1 - Preliminary results

    NASA Astrophysics Data System (ADS)

    Vereš, Peter; Jedicke, Robert; Fitzsimmons, Alan; Denneau, Larry; Granvik, Mikael; Bolin, Bryce; Chastel, Serge; Wainscoat, Richard J.; Burgett, William S.; Chambers, Kenneth C.; Flewelling, Heather; Kaiser, Nick; Magnier, Eugen A.; Morgan, Jeff S.; Price, Paul A.; Tonry, John L.; Waters, Christopher

    2015-11-01

    We present the results of a Monte Carlo technique to calculate the absolute magnitudes (H) and slope parameters (G) of ∼240,000 asteroids observed by the Pan-STARRS1 telescope during the first 15 months of its 3-year all-sky survey mission. The system's exquisite photometry with photometric errors ≲ 0.04mag , and well-defined filter and photometric system, allowed us to derive accurate H and G even with a limited number of observations and restricted range in phase angles. Our Monte Carlo method simulates each asteroid's rotation period, amplitude and color to derive the most-likely H and G, but its major advantage is in estimating realistic statistical + systematic uncertainties and errors on each parameter. The method was tested by comparison with the well-established and accurate results for about 500 asteroids provided by Pravec et al. (Pravec, P. et al. [2012]. Icarus 221, 365-387) and then applied to determining H and G for the Pan-STARRS1 asteroids using both the Muinonen et al. (Muinonen, K. et al. [2010]. Icarus 209, 542-555) and Bowell et al. (Bowell, E. et al. [1989]. Asteroids III, Chapter Application of Photometric Models to Asteroids. University of Arizona Press, pp. 524-555) phase functions. Our results confirm the bias in MPC photometry discovered by Jurić et al. (Jurić, M. et al. [2002]. Astrophys. J. 124, 1776-1787).

  3. Flux of optical meteors down to M sub pg = +12. [photographic absolute magnitude

    NASA Technical Reports Server (NTRS)

    Cook, A. F.; Weekes, T. C.; Williams, J. T.; Omongain, E.

    1980-01-01

    Observations of the flux of optical meteors down to photographic magnitudes of +12 are reported. The meteors were detected by photometry using a 10-m optical reflector from December 12-15, 1974, during the Geminid shower. A total of 2222 light pulses is identified as coming from meteors within the 1 deg field of view of the detector, most of which correspond to sporadic meteors traversing the detector beam at various angles and velocities and do not differ with the date, indicating that the Geminid contribution at faint luminosities is small compared to the sporadic contribution. A rate of 1.1 to 3.3 x 10 to the -12th meteors/sq cm per sec is obtained together with a power law meteor spectrum which is used to derive a relationship between cumulative meteor flux and magnitude which is linear for magnitudes from -2.4 through +12. Expressions for the cumulative flux upon the earth's atmosphere and at a test surface at 1 AU far from the earth as a function of magnitude are also obtained along with an estimate of the cumulative number density of particles.

  4. OSSOS. II. A Sharp Transition in the Absolute Magnitude Distribution of the Kuiper Belt’s Scattering Population

    NASA Astrophysics Data System (ADS)

    Shankman, C.; Kavelaars, JJ.; Gladman, B. J.; Alexandersen, M.; Kaib, N.; Petit, J.-M.; Bannister, M. T.; Chen, Y.-T.; Gwyn, S.; Jakubik, M.; Volk, K.

    2016-02-01

    We measure the absolute magnitude, H, distribution, dN(H) ∝ 10αH, of the scattering Trans-Neptunian Objects (TNOs) as a proxy for their size-frequency distribution. We show that the H-distribution of the scattering TNOs is not consistent with a single-slope distribution, but must transition around Hg ˜ 9 to either a knee with a shallow slope or to a divot, which is a differential drop followed by second exponential distribution. Our analysis is based on a sample of 22 scattering TNOs drawn from three different TNO surveys—the Canada-France Ecliptic Plane Survey, Alexandersen et al., and the Outer Solar System Origins Survey, all of which provide well-characterized detection thresholds—combined with a cosmogonic model for the formation of the scattering TNO population. Our measured absolute magnitude distribution result is independent of the choice of cosmogonic model. Based on our analysis, we estimate that the number of scattering TNOs is (2.4-8.3) × 105 for Hr < 12. A divot H-distribution is seen in a variety of formation scenarios and may explain several puzzles in Kuiper Belt science. We find that a divot H-distribution simultaneously explains the observed scattering TNO, Neptune Trojan, Plutino, and Centaur H-distributions while simultaneously predicting a large enough scattering TNO population to act as the sole supply of the Jupiter-Family Comets.

  5. OSSOS. II. A SHARP TRANSITION IN THE ABSOLUTE MAGNITUDE DISTRIBUTION OF THE KUIPER BELT’S SCATTERING POPULATION

    SciTech Connect

    Shankman, C.; Kavelaars, JJ.; Bannister, M. T.; Gwyn, S.; Gladman, B. J.; Alexandersen, M.; Kaib, N.; Petit, J.-M.; Chen, Y.-T.; Jakubik, M.; Volk, K.

    2016-02-15

    We measure the absolute magnitude, H, distribution, dN(H) ∝ 10{sup αH}, of the scattering Trans-Neptunian Objects (TNOs) as a proxy for their size-frequency distribution. We show that the H-distribution of the scattering TNOs is not consistent with a single-slope distribution, but must transition around H{sub g} ∼ 9 to either a knee with a shallow slope or to a divot, which is a differential drop followed by second exponential distribution. Our analysis is based on a sample of 22 scattering TNOs drawn from three different TNO surveys—the Canada–France Ecliptic Plane Survey, Alexandersen et al., and the Outer Solar System Origins Survey, all of which provide well-characterized detection thresholds—combined with a cosmogonic model for the formation of the scattering TNO population. Our measured absolute magnitude distribution result is independent of the choice of cosmogonic model. Based on our analysis, we estimate that the number of scattering TNOs is (2.4–8.3) × 10{sup 5} for H{sub r} < 12. A divot H-distribution is seen in a variety of formation scenarios and may explain several puzzles in Kuiper Belt science. We find that a divot H-distribution simultaneously explains the observed scattering TNO, Neptune Trojan, Plutino, and Centaur H-distributions while simultaneously predicting a large enough scattering TNO population to act as the sole supply of the Jupiter-Family Comets.

  6. Estimating stellar atmospheric parameters, absolute magnitudes and elemental abundances from the LAMOST spectra with Kernel-based principal component analysis

    NASA Astrophysics Data System (ADS)

    Xiang, M.-S.; Liu, X.-W.; Shi, J.-R.; Yuan, H.-B.; Huang, Y.; Luo, A.-L.; Zhang, H.-W.; Zhao, Y.-H.; Zhang, J.-N.; Ren, J.-J.; Chen, B.-Q.; Wang, C.; Li, J.; Huo, Z.-Y.; Zhang, W.; Wang, J.-L.; Zhang, Y.; Hou, Y.-H.; Wang, Y.-F.

    2017-01-01

    Accurate determination of stellar atmospheric parameters and elemental abundances is crucial for Galactic archaeology via large-scale spectroscopic surveys. In this paper, we estimate stellar atmospheric parameters - effective temperature Teff, surface gravity log g and metallicity [Fe/H], absolute magnitudes MV and MKs, α-element to metal (and iron) abundance ratio [α/M] (and [α/Fe]), as well as carbon and nitrogen abundances [C/H] and [N/H] from the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) spectra with a multivariate regression method based on kernel-based principal component analysis, using stars in common with other surveys (Hipparcos, Kepler, Apache Point Observatory Galactic Evolution Experiment) as training data sets. Both internal and external examinations indicate that given a spectral signal-to-noise ratio (SNR) better than 50, our method is capable of delivering stellar parameters with a precision of ˜100 K for Teff, ˜0.1 dex for log g, 0.3-0.4 mag for MV and MKs, 0.1 dex for [Fe/H], [C/H] and [N/H], and better than 0.05 dex for [α/M] ([α/Fe]). The results are satisfactory even for a spectral SNR of 20. The work presents first determinations of [C/H] and [N/H] abundances from a vast data set of LAMOST, and, to our knowledge, the first reported implementation of absolute magnitude estimation directly based on a vast data set of observed spectra. The derived stellar parameters for millions of stars from the LAMOST surveys will be publicly available in the form of value-added catalogues.

  7. Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells.

    PubMed

    Gerencser, Akos A; Mookerjee, Shona A; Jastroch, Martin; Brand, Martin D

    2016-01-01

    The aim of this study was to simplify, improve and validate quantitative measurement of the mitochondrial membrane potential (ΔψM) in pancreatic β-cells. This built on our previously introduced calculation of the absolute magnitude of ΔψM in intact cells, using time-lapse imaging of the non-quench mode fluorescence of tetramethylrhodamine methyl ester and a bis-oxonol plasma membrane potential (ΔψP) indicator. ΔψM is a central mediator of glucose-stimulated insulin secretion in pancreatic β-cells. ΔψM is at the crossroads of cellular energy production and demand, therefore precise assay of its magnitude is a valuable tool to study how these processes interplay in insulin secretion. Dispersed islet cell cultures allowed cell type-specific, single-cell observations of cell-to-cell heterogeneity of ΔψM and ΔψP. Glucose addition caused hyperpolarization of ΔψM and depolarization of ΔψP. The hyperpolarization was a monophasic step increase, even in cells where the ΔψP depolarization was biphasic. The biphasic response of ΔψP was associated with a larger hyperpolarization of ΔψM than the monophasic response. Analysis of the relationships between ΔψP and ΔψM revealed that primary dispersed β-cells responded to glucose heterogeneously, driven by variable activation of energy metabolism. Sensitivity analysis of the calibration was consistent with β-cells having substantial cell-to-cell variations in amounts of mitochondria, and this was predicted not to impair the accuracy of determinations of relative changes in ΔψM and ΔψP. Finally, we demonstrate a significant problem with using an alternative ΔψM probe, rhodamine 123. In glucose-stimulated and oligomycin-inhibited β-cells the principles of the rhodamine 123 assay were breached, resulting in misleading conclusions.

  8. Using A New Model for Main Sequence Turnoff Absolute Magnitudes to Measure Stellar Streams in the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Weiss, Jake; Newberg, Heidi Jo; Arsenault, Matthew; Bechtel, Torrin; Desell, Travis; Newby, Matthew; Thompson, Jeffery M.

    2016-01-01

    Statistical photometric parallax is a method for using the distribution of absolute magnitudes of stellar tracers to statistically recover the underlying density distribution of these tracers. In previous work, statistical photometric parallax was used to trace the Sagittarius Dwarf tidal stream, the so-called bifurcated piece of the Sagittaritus stream, and the Virgo Overdensity through the Milky Way. We use an improved knowledge of this distribution in a new algorithm that accounts for the changes in the stellar population of color-selected stars near the photometric limit of the Sloan Digital Sky Survey (SDSS). Although we select bluer main sequence turnoff stars (MSTO) as tracers, large color errors near the survey limit cause many stars to be scattered out of our selection box and many fainter, redder stars to be scattered into our selection box. We show that we are able to recover parameters for analogues of these streams in simulated data using a maximum likelihood optimization on MilkyWay@home. We also present the preliminary results of fitting the density distribution of major Milky Way tidal streams in SDSS data. This research is supported by generous gifts from the Marvin Clan, Babette Josephs, Manit Limlamai, and the MilkyWay@home volunteers.

  9. Color excesses, intrinsic colors, and absolute magnitudes of Galactic and Large Magellanic Cloud Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Vacca, William D.; Torres-Dodgen, Ana V.

    1990-01-01

    A new method of determining the color excesses of WR stars in the Galaxy and the LMC has been developed and is used to determine the excesses for 44 Galactic and 32 LMC WR stars. The excesses are combined with line-free, narrow-band spectrophotometry to derive intrinsic colors of the WR stars of nearly all spectral subtypes. No correlation of UV spectral index or intrinsic colors with spectral subtype is found for the samples of single WN or WC stars. There is evidence that early WN stars in the LMC have flatter UV continua and redder intrinsic colors than early WN stars in the Galaxy. No separation is found between the values derived for Galactic WC stars and those obtained for LMC WC stars. The intrinsic colors are compared with those calculated from model atmospheres of WR stars and generally good agreement is found. Absolute magnitudes are derived for WR stars in the LMC and for those Galactic WR stars located in clusters and associations for which there are reliable distance estimates.

  10. Novel Absolute Displacement Sensor with Wide Range Based on Malus Law

    PubMed Central

    Li, Wei; Lu, Xiaoping; Lin, Yonggang

    2009-01-01

    The paper presents a novel wide range absolute displacement sensor based on polarized light detection principle. The sensor comprises of two sets of polarized light detecting systems which are coupled by pulleys. The inherent disadvantage in optic system like light source intensity drift is solved and absolute measurement with wide-range is achieved. A prototype and the relevant test bed have been built. The test results are in good agreement with expectation. Its measurement range is 540 mm, and its linearity is better than 0.05%. PMID:22303181

  11. Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells

    PubMed Central

    Gerencser, Akos A.; Mookerjee, Shona A.; Jastroch, Martin; Brand, Martin D.

    2016-01-01

    The aim of this study was to simplify, improve and validate quantitative measurement of the mitochondrial membrane potential (ΔψM) in pancreatic β-cells. This built on our previously introduced calculation of the absolute magnitude of ΔψM in intact cells, using time-lapse imaging of the non-quench mode fluorescence of tetramethylrhodamine methyl ester and a bis-oxonol plasma membrane potential (ΔψP) indicator. ΔψM is a central mediator of glucose-stimulated insulin secretion in pancreatic β-cells. ΔψM is at the crossroads of cellular energy production and demand, therefore precise assay of its magnitude is a valuable tool to study how these processes interplay in insulin secretion. Dispersed islet cell cultures allowed cell type-specific, single-cell observations of cell-to-cell heterogeneity of ΔψM and ΔψP. Glucose addition caused hyperpolarization of ΔψM and depolarization of ΔψP. The hyperpolarization was a monophasic step increase, even in cells where the ΔψP depolarization was biphasic. The biphasic response of ΔψP was associated with a larger hyperpolarization of ΔψM than the monophasic response. Analysis of the relationships between ΔψP and ΔψM revealed that primary dispersed β-cells responded to glucose heterogeneously, driven by variable activation of energy metabolism. Sensitivity analysis of the calibration was consistent with β-cells having substantial cell-to-cell variations in amounts of mitochondria, and this was predicted not to impair the accuracy of determinations of relative changes in ΔψM and ΔψP. Finally, we demonstrate a significant problem with using an alternative ΔψM probe, rhodamine 123. In glucose-stimulated and oligomycin-inhibited β-cells the principles of the rhodamine 123 assay were breached, resulting in misleading conclusions. PMID:27404273

  12. Magnitude and sign of long-range correlated time series: Decomposition and surrogate signal generation.

    PubMed

    Gómez-Extremera, Manuel; Carpena, Pedro; Ivanov, Plamen Ch; Bernaola-Galván, Pedro A

    2016-04-01

    We systematically study the scaling properties of the magnitude and sign of the fluctuations in correlated time series, which is a simple and useful approach to distinguish between systems with different dynamical properties but the same linear correlations. First, we decompose artificial long-range power-law linearly correlated time series into magnitude and sign series derived from the consecutive increments in the original series, and we study their correlation properties. We find analytical expressions for the correlation exponent of the sign series as a function of the exponent of the original series. Such expressions are necessary for modeling surrogate time series with desired scaling properties. Next, we study linear and nonlinear correlation properties of series composed as products of independent magnitude and sign series. These surrogate series can be considered as a zero-order approximation to the analysis of the coupling of magnitude and sign in real data, a problem still open in many fields. We find analytical results for the scaling behavior of the composed series as a function of the correlation exponents of the magnitude and sign series used in the composition, and we determine the ranges of magnitude and sign correlation exponents leading to either single scaling or to crossover behaviors. Finally, we obtain how the linear and nonlinear properties of the composed series depend on the correlation exponents of their magnitude and sign series. Based on this information we propose a method to generate surrogate series with controlled correlation exponent and multifractal spectrum.

  13. Bias Properties of Extragalactic Distance Indicators. XI. Methods to Correct for Observational Selection Bias for RR Lyrae Absolute Magnitudes from Trigonometric Parallaxes Expected from the Full-Sky Astrometric Mapping Explorer Satellite

    NASA Astrophysics Data System (ADS)

    Sandage, Allan; Saha, A.

    2002-04-01

    A short history is given of the development of the correction for observation selection bias inherent in the calibration of absolute magnitudes using trigonometric parallaxes. The developments have been due to Eddington, Jeffreys, Trumpler & Weaver, Wallerstein, Ljunggren & Oja, West, Lutz & Kelker, after whom the bias is named, Turon Lacarrieu & Crézé, Hanson, Smith, and many others. As a tutorial to gain an intuitive understanding of several complicated trigonometric bias problems, we study a toy bias model of a parallax catalog that incorporates assumed parallax measuring errors of various severities. The two effects of bias errors on the derived absolute magnitudes are (1) the Lutz-Kelker correction itself, which depends on the relative parallax error δπ/π and the spatial distribution, and (2) a Malmquist-like ``incompleteness'' correction of opposite sign due to various apparent magnitude cutoffs as they are progressively imposed on the catalog. We calculate the bias properties using simulations involving 3×106 stars of fixed absolute magnitude using Mv=+0.6 to imitate RR Lyrae variables in the mean. These stars are spread over a spherical volume bounded by a radius 50,000 pc with different spatial density distributions. The bias is demonstrated by first using a fixed rms parallax uncertainty per star of 50 μas and then using a variable rms accuracy that ranges from 50 μas at apparent magnitude V=9 to 500 μas at V=15 according to the specifications for the Full-Sky Astrometric Mapping Explorer (FAME) satellite to be launched in 2004. The effects of imposing magnitude limits and limits on the ``observer's'' error, δπ/π, are displayed. We contrast the method of calculating mean absolute magnitude directly from the parallaxes where bias corrections are mandatory, with an inverse method using maximum likelihood that is free of the Lutz-Kelker bias, although a Malmquist bias is present. Simulations show the power of the inverse method. Nevertheless, we

  14. Space density distribution of galaxies in the absolute magnitude - rotation velocity plane: a volume-complete Tully-Fisher relation from CALIFA stellar kinematics

    NASA Astrophysics Data System (ADS)

    Bekeraité, S.; Walcher, C. J.; Falcón-Barroso, J.; Garcia Lorenzo, B.; Lyubenova, M.; Sánchez, S. F.; Spekkens, K.; van de Ven, G.; Wisotzki, L.; Ziegler, B.; Aguerri, J. A. L.; Barrera-Ballesteros, J.; Bland-Hawthorn, J.; Catalán-Torrecilla, C.; García-Benito, R.

    2016-10-01

    We measured the distribution in absolute magnitude - circular velocity space for a well-defined sample of 199 rotating galaxies of the Calar Alto Legacy Integral Field Area Survey (CALIFA) using their stellar kinematics. Our aim in this analysis is to avoid subjective selection criteria and to take volume and large-scale structure factors into account. Using stellar velocity fields instead of gas emission line kinematics allows including rapidly rotating early-type galaxies. Our initial sample contains 277 galaxies with available stellar velocity fields and growth curve r-band photometry. After rejecting 51 velocity fields that could not be modelled because of the low number of bins, foreground contamination, or significant interaction, we performed Markov chain Monte Carlo modelling of the velocity fields, from which we obtained the rotation curve and kinematic parameters and their realistic uncertainties. We performed an extinction correction and calculated the circular velocity vcirc accounting for the pressure support of a given galaxy. The resulting galaxy distribution on the Mr-vcirc plane was then modelled as a mixture of two distinct populations, allowing robust and reproducible rejection of outliers, a significant fraction of which are slow rotators. The selection effects are understood well enough that we were able to correct for the incompleteness of the sample. The 199 galaxies were weighted by volume and large-scale structure factors, which enabled us to fit a volume-corrected Tully-Fisher relation (TFR). More importantly, we also provide the volume-corrected distribution of galaxies in the Mr-vcirc plane, which can be compared with cosmological simulations. The joint distribution of the luminosity and circular velocity space densities, representative over the range of -20 > Mr > -22 mag, can place more stringent constraints on the galaxy formation and evolution scenarios than linear TFR fit parameters or the luminosity function alone. Galaxies main

  15. Kinetics of silicide formation over a wide range of heating rates spanning six orders of magnitude

    SciTech Connect

    Molina-Ruiz, Manel; Lopeandía, Aitor F.; Gonzalez-Silveira, Marta; Garcia, Gemma; Clavaguera-Mora, Maria T.; Peral, Inma; Rodríguez-Viejo, Javier

    2014-07-07

    Kinetic processes involving intermediate phase formation are often assumed to follow an Arrhenius temperature dependence. This behavior is usually inferred from limited data over narrow temperature intervals, where the exponential dependence is generally fully satisfied. However, direct evidence over wide temperature intervals is experimentally challenging and data are scarce. Here, we report a study of silicide formation between a 12 nm film of palladium and 15 nm of amorphous silicon in a wide range of heating rates, spanning six orders of magnitude, from 0.1 to 10{sup 5 }K/s, or equivalently more than 300 K of variation in reaction temperature. The calorimetric traces exhibit several distinct exothermic events related to interdiffusion, nucleation of Pd{sub 2}Si, crystallization of amorphous silicon, and vertical growth of Pd{sub 2}Si. Interestingly, the thickness of the initial nucleation layer depends on the heating rate revealing enhanced mass diffusion at the fastest heating rates during the initial stages of the reaction. In spite of this, the formation of the silicide strictly follows an Arrhenius temperature dependence over the whole temperature interval explored. A kinetic model is used to fit the calorimetric data over the complete heating rate range. Calorimetry is complemented by structural analysis through transmission electron microscopy and both standard and in-situ synchrotron X-ray diffraction.

  16. New apparatus for calibrations in the range of 2 kPa absolute pressure

    NASA Astrophysics Data System (ADS)

    Woo, S. Y.; Choi, I. M.

    2005-12-01

    Capacitance diaphragm gauges (CDGs) are precise electromechanical pressure sensors in which the displacement of a stretched thin metal diaphragm is detected by the measurement of a capacitance. These are very accurate gauges, and are frequently used as transfer gauges. To calibrate such accurate low-pressure gauges, precise mercury manometers have been used. However, complexity, concern about mercury vapour, and cost of mercury manometers have made it difficult to use these manometers in many industrial calibration laboratories. As a substitute, gas-operated piston gauges can be used for the calibration of such low-pressure gauges. However, the minimum pressure that is necessary to balance the tare weight, which generally corresponds to a pressure of several kilopascals, is a major obstacle. To reduce this minimum operating pressure, we adopted a variable bell-jar pressure method. To realize this method effectively, we developed a new mass-handling device that makes it possible to add or remove weights up to 200 g easily, with a resolution of 10 g, without breaking the vacuum during the calibration. This calibration system can be used to measure pressures from 100 Pa to 2 kPa in the absolute mode. In this paper, we also present the calibration results for two types of CDGs with full-scale ranges of 1330 Pa and 1000 Pa, respectively.

  17. Fluvial terrace formation along Wyoming's Laramie Range as a response to increased late Pleistocene flood magnitudes

    NASA Astrophysics Data System (ADS)

    Hanson, Paul R.; Mason, Joseph A.; Goble, Ronald J.

    2006-06-01

    This study evaluates the potential climatic mechanisms involved in fluvial terrace genesis along Wyoming's Laramie Range. We used optical dating methods to determine depositional ages for fluvial fills, and to calculate incision rates for terrace suites along two of the region's larger rivers. Optical ages were determined for the five lowest terrace levels (T5-T1) which were deposited at ˜ 59.6, 39.2, 26.3, 22.7, and 18.5 ka, and incision rates calculated for the two rivers were ˜ 0.29-0.34 m/kyr over the last ˜ 60 kyr. The formation of fluvial terraces in the central Rocky Mountains is commonly attributed to climatically induced changes in sediment input. According to most studies, relatively low incision rates existed during the colder periods of the Pleistocene due to high stream sediment loads, but terraces were formed during warmer interglacial periods when reduced sediment availability facilitated higher incision rates. However, this conceptual model cannot explain the incision records presented here, which show that the streams incised 9-10 m in two to three events during Oxygen Isotope Stage 2, but only 1-2 m during the warmer climates of the last ˜ 18.5 ka. The stream power model we adapted to this setting suggests that late Quaternary streams operated under two basic states. During the colder conditions of the Pleistocene, higher flood magnitudes resulted in higher lateral erosion and incision rates. However, the lower stream discharge common to the warmer interglacial periods resulted in relatively inactive streams when both lateral erosion and incision rates were lowered. This model can explain the high incision rates during the cold conditions of Oxygen Isotope Stage 2, the occurrence of terrace fill ages near cold to warm transitions, and the apparent acceleration in incision rates toward the end of the last glacial cycle. Finally, this study suggests that terrace fill ages and incision rates are similar for the distally glaciated Laramie River

  18. Multi-chromatic analysis of a single SAR image for absolute ranging

    NASA Astrophysics Data System (ADS)

    Bovenga, Fabio; Gallitelli, Leonardo; Nitti, Davide O.

    2012-09-01

    The Multi-Chromatic Analysis (MCA) uses interferometric pairs of SAR images processed at range sub-bands located at different spectrum positions, and explores the phase trend of each pixel in the frequency domain. The phase of stable scatterers evolves linearly with the sub-band central wavelength, the slope being proportional to the absolute optical path difference. Consequently, both phase uwrapping and height computation can be performed on a pixel by pixel basis without spatial integration. Recently the technique has been used to derive ground elevation by processing interferometric pairs acquired in Spotlight mode by both TerraSAR-X and COSMO-SkyMed satellite missions. However, further potential applications are possible. In particular, this work is aimed at experimenting the use of MCA for measuring the optical path between the SAR sensor and the scene by processing a single SAR acquisition. In this configuration, the slope of the phase trend along frequencies depends on the full optical path. In order avoid liasing, we adopted a processing scheme which consists in subtracting from the SAR image phase a term proportional to the distance computed through inverse geocoding. Assuming negligible the positioning errors, the validation of this approach can be performed by comparing the distance measured by MCA with the atmospheric delay computed through analytical models. We carried out a feasibility study aimed at evaluating the maximum value for the errors in satellite and target positions, allowed to perform the reliable validation. Then, in order to reduce the error in the target positions and to guarantee good phase stability, we selected SAR acquisitions which include artificial corner reflectors to be used for MCA processing and the following validation procedure. We present results obtained by exploiting two corner reflectors visible within two TerraSAR-X images acquired in Spotlight mode over Venice Lagoon.

  19. Infants' Auditory Enumeration: Evidence for Analog Magnitudes in the Small Number Range

    ERIC Educational Resources Information Center

    vanMarle, Kristy; Wynn, Karen

    2009-01-01

    Vigorous debate surrounds the issue of whether infants use different representational mechanisms to discriminate small and large numbers. We report evidence for ratio-dependent performance in infants' discrimination of small numbers of auditory events, suggesting that infants can use analog magnitudes to represent small values, at least in the…

  20. Diode-laser-based high-precision absolute distance interferometer of 20 m range.

    PubMed

    Pollinger, Florian; Meiners-Hagen, Karl; Wedde, Martin; Abou-Zeid, Ahmed

    2009-11-10

    We present a hybrid absolute distance measurement method that is based on a combination of frequency sweeping, variable synthetic, and two-wavelength, fixed synthetic wavelength interferometry. Both experiments were realized by two external cavity diode lasers. The measurement uncertainty was experimentally and theoretically demonstrated to be smaller than 12 microm at a measurement distance of 20 m.

  1. Absolute Hugoniot measurements for CH foams in the 1.5-8 Mbar range

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.

    2016-10-01

    We report the absolute Hugoniot measurements for dry CH foams at 10% of solid polystyrene density. The 400 μm thick, 500 μm wide planar foam slabs covered with a 10 μm solid plastic ablator were driven with 4 ns long Nike KrF laser pulses whose intensity was varied between 10 and 50 TW/cm2. The trajectories of the shock front and the ablative piston, as well as the rarefaction fan emerging after the shock breakout from the rear surface of the target were clearly observed using the side-on monochromatic x-ray imaging radiography. From these measurements the shock density compression ratio and the shock pressure are evaluated directly. The observed compression ratios varied between 4 and 8, and the corresponding shock pressures - between 1.5 and 8 Mbar. The data was simulated with the FASTRAD3D hydrocode, using standard models of inverse bremsstrahlung absorption, flux-limited thermal conduction, and multi-group radiation diffusion. The demonstrated diagnostics technique applied in a cryo experiment would make it possible to make the first absolute Hugoniot measurements for liquid deuterium or DT-wetted CH foams, which is relevant for designing the wetted-foam indirect-drive ignition targets for NIF. This work was supported by the US DOE/NNSA.

  2. Determining the Location and Magnitude of Basin and Range and Laramide Faulting, Southern Nevada

    NASA Astrophysics Data System (ADS)

    Brundrett, C. E.; Lamb, M. A.; Beard, S.

    2014-12-01

    Southern Nevada records two recent periods of deformation; the Laramide orogeny and Basin and Range extension. Our research focuses on these events to understand the history of faulting in this area and the resulting landscape. First, we have advanced an on-going research project in the Lake Mead region of Nevada, which was deformed by extension that began around 17 Ma. We are currently working in the White Basin, near Lake Mead. The White Basin is comprised of the Lovell Wash Member, ~14-12 Ma, of the Horse Spring Formation. The Lovell Wash Member contains siliciclastic and carbonate units that vary laterally and vertically throughout this area. This is a change from the fairly homogenous Bitter Ridge Limestone Member below and suggests a change in the style of faulting. To determine the faulting history, we mapped out marker beds, focusing on tuffs and limestone beds that form continuous, well-exposed outcrops in the area. We found abrupt stratigraphic thickening of ~50% across faults, documenting syndepositional faulting. We used dated tuffs to determine that this faulting developed from ~13.7-13.2 Ma. Secondly, we are working on a Laramide uplift project. We are testing the hypothesis that an area in the Kingman Uplift region was deformed by a Laramide age fault, prior to Miocene extensional deformation. We are using U-Th/He Apatite and K-Spar Multiple Diffusion Domain thermochronology, to determine the cooling histories of rocks on either side of the proposed fault. Both of these on-going research projects highlight the complex geology that is found in the Basin and Range province in the United States. Understanding this complex geology will help answer questions about the timing, driving forces, and processes associated with extensional and compressional events.

  3. Absolute Total Photoionization Cross Section of C60 in the Range of 25-120 eV: Revisited

    NASA Astrophysics Data System (ADS)

    Kafle, Bhim P.; Katayanagi, Hideki; Prodhan, Md. Serajul I.; Yagi, Hajime; Huang, Chaoqun; Mitsuke, Koichiro

    2008-01-01

    The absolute total photoionization cross section σabs,I of gaseous C60 is measured in the photon energy hν range from 25 to 120 eV by photoionization mass spectrometry with synchrotron radiation. The absolute detection efficiencies of photoions in different charge states are evaluated. The present σabs,I curve is combined with the photoabsorption cross section curves of C60 at hν=3.5--26 eV in the literature, after appropriate alterations of the vapor pressure are taken into account. The oscillator strengths are computed from the composite curve to be 178.5 and 230.5 for the hν ranges from 3.5 to 40.8 eV and from 3.5 to 119 eV, respectively. These oscillator strengths agree well with those expected from the Thomas-Kuhn-Reiche sum rule and 60 times the photoabsorption cross section of a carbon atom. Moreover, the present σabs,I curve behaves similarly to the relative photoionization cross section curve reported by Reinköster et al.

  4. Two-modality laser diode interferometer for high-accuracy measurement of long-range absolute distance

    NASA Astrophysics Data System (ADS)

    Wang, Bofan; Li, Zhongliang; Wang, Xiangzhao; Bu, Peng

    2010-08-01

    This paper presents a two-modality laser diode (LD) interferometer which combine as two-wavelength sinusoidal phase modulating (SPM) interferometer with a wavelength scanning interferometer (WSI) for measurement of distance over long range with high accuracy. Moreover, the intensity modulation due to power changes of LD is suppressed by appropriately choosing the modulation amplitude of injection current (IC) of LD. Triangle wave is used to modulate the IC of one LD with that of the other LD being constant at first. Thus the interferometer works as a wavelength scanning interferometer. An initial estimate of the distance can be obtained from the phase change of the interference signal. Then sinusoidal wave is used for modulating IC of both LDs to realize a two-wavelength SPM interferometer. However, the modulation of the IC of two LDs results in not only the wavelength modulation but also the intensity modulation. This intensity modulation will cause a measured phase error. To eliminate this error, SPM depths are appropriately chosen, therefore the distance to be measured can be accurately obtained with synthetic-wavelength algorithm. Experimental results indicate that an absolute distance measurement accuracy of 1μm can be achieved over the range of 40mm to 100mm.

  5. Absolute x-ray energy calibration over a wide energy range using a diffraction-based iterative method.

    PubMed

    Hong, Xinguo; Chen, Zhiqiang; Duffy, Thomas S

    2012-06-01

    In this paper, we report a method of precise and fast absolute x-ray energy calibration over a wide energy range using an iterative x-ray diffraction based method. Although accurate x-ray energy calibration is indispensable for x-ray energy-sensitive scattering and diffraction experiments, there is still a lack of effective methods to precisely calibrate energy over a wide range, especially when normal transmission monitoring is not an option and complicated micro-focusing optics are fixed in place. It is found that by using an iterative algorithm the x-ray energy is only tied to the relative offset of sample-to-detector distance, which can be readily varied with high precision of the order of 10(-5) -10(-6) spatial resolution using gauge blocks. Even starting with arbitrary initial values of 0.1 Å, 0.3 Å, and 0.4 Å, the iteration process converges to a value within 3.5 eV for 31.122 keV x-rays after three iterations. Different common diffraction standards CeO(2), Au, and Si show an energy deviation of 14 eV. As an application, the proposed method has been applied to determine the energy-sensitive first sharp diffraction peak of network forming GeO(2) glass at high pressure, exhibiting a distinct behavior in the pressure range of 2-4 GPa. Another application presented is pair distribution function measurement using calibrated high-energy x-rays at 82.273 keV. Unlike the traditional x-ray absorption-based calibration method, the proposed approach does not rely on any edges of specific elements, and is applicable to the hard x-ray region where no appropriate absorption edge is available.

  6. New Measurements of the Absolute Spectral Energy Distribution of Solar Radiation in the Range Double Lambda 650-1070 NM

    NASA Astrophysics Data System (ADS)

    Burlov-Vasilev, K. A.; Vasileva, I. E.; Matveev, Yu. B.

    1996-01-01

    Spectral measurements of the solar disk centre intensity for the near-IR region have been made at he Terskol High-Altitude Station in 1992. These measurements are the continuation of the program for the solar absolute spectral energy distribution investigation. Data published earlier are extended to the longwave spectral region up to 1070 nm. The special-purpose solar telescope SEF-1 was used. We compared the disk centre brightness with brightness of the calibrated region of the standard ribbon tungsten lamp. The atmospheric extinction was taken into account by the Bouguer method with simultaneous control of the atmosphere stability. The 1-nm integrals of the disk centre intensity in the range double lamda 650-1070 nm based on 5-day measurements in March-October 1992 are given. The uncertainty of these values is 2%. In regions with strong telluric absorption by oxygen and water-vapour bands, the reductions are made, using synthetic atmospheric absorption spectra computed on the basis of molecular parameter atlas HITRAN and the standard model atmosphere. By the use of the solar limb darkening coefficients the values of the solar flux at 1 A.U. were derived. Our measurements show the best agreement with the data of Makarova, Kharitonov, and Kazachevskaya as well as with the common data from Shaw and Frohlich. For lambda greater than 850 nm our data are systematically lower than the data by Neckel and Labs.

  7. Interference peak detection based on FPGA for real-time absolute distance ranging with dual-comb lasers

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Dong, Hao; Zhou, Qian; Xu, Mingfei; Li, Xinghui; Wu, Guanhao

    2015-08-01

    Absolute distance measurement using dual femtosecond comb lasers can achieve higher accuracy and faster measurement speed, which makes it more and more attractive. The data processing flow consists of four steps: interference peak detection, fast Fourier transform (FFT), phase fitting and compensation of index of refraction. A realtime data processing system based on Field-Programmable Gate Array (FPGA) for dual-comb ranging has been newly developed. The design and implementation of the interference peak detection algorithm by FPGA and Verilog language is introduced in this paper, which is viewed as the most complicated part and an important guarantee for system precision and reliability. An adaptive sliding window for scanning is used to detect peaks. In the process of detection, the algorithm stores 16 sample data as a detection unit and calculates the average of each unit. The average result is used to determine the vertical center height of the sliding window. The algorithm estimates the noise intensity of each detection unit, and then calculates the average of the noise strength of successive 128 units. The noise average is used to calculate the signal to noise ratio of the current working environment, which is used to adjust the height of the sliding window. This adaptive sliding window helps to eliminate fake peaks caused by noise. The whole design is based on the way of pipeline, which can improves the real-time throughput of the overall peak detection module. Its execution speed is up to 140MHz in the FPGA, and the peak can be detected in 16 clock cycle when it appears.

  8. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  9. Absolute total and partial cross sections for ionization of nucleobases by proton impact in the Bragg peak velocity range

    SciTech Connect

    Tabet, J.; Eden, S.; Feil, S.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Ouaskit, S.; Maerk, T. D.

    2010-08-15

    We present experimental results for proton ionization of nucleobases (adenine, cytosine, thymine, and uracil) based on an event-by-event analysis of the different ions produced combined with an absolute target density determination. We are able to disentangle in detail the various proton ionization channels from mass-analyzed product ion signals in coincidence with the charge-analyzed projectile. In addition we are able to determine a complete set of cross sections for the ionization of these molecular targets by 20-150 keV protons including the total and partial cross sections and the direct-ionization and electron-capture cross sections.

  10. Frequency-range discriminations and absolute pitch in black-capped chickadees (Poecile atricapillus), mountain chickadees (Poecile gambeli), and zebra finches (Taeniopygia guttata).

    PubMed

    Lee, Tiffany T Y; Charrier, Isabelle; Bloomfield, Laurie L; Weisman, Ronald G; Sturdy, Christopher B

    2006-08-01

    The acoustic frequency ranges in birdsongs provide important absolute pitch cues for the recognition of conspecifics. Black-capped chickadees (Poecile atricapillus), mountain chickadees (Poecile gambeli), and zebra finches (Taeniopygia guttata) were trained to sort tones contiguous in frequency into 8 ranges on the basis of associations between response to the tones in each range and reward. All 3 species acquired accurate frequency-range discriminations, but zebra finches acquired the discrimination in fewer trials and to a higher standard than black-capped or mountain chickadees, which did not differ appreciably in the discrimination. Chickadees' relatively poorer accuracy was traced to poorer discrimination of tones in the higher frequency ranges. During transfer tests, the discrimination generalized to novel tones when the training tones were included, but not when they were omitted.

  11. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    SciTech Connect

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L

    2006-10-15

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  12. Comparison in gas media (absolute and gauge mode)in the range from 25 kPa TO 200 kPa (EURAMET.M.P-K8)

    NASA Astrophysics Data System (ADS)

    Wuethrich, C.; Alisic, S.; Altintas, A.; van Andel, I.; C, In­Mook; Eltawil, A. A.; Farár, P.; Hetherington, P.; Koçaş, I.; Lefkopoulos, A.; Otal, P.; Prazak, D.; Sabuga, W.; Salustiano, R.; Sandu, I.; Sardi, M.; Saxholm, S.; Setina, J.; Spohr, I.; Steindl, D.; Testa, N.; Vámossy, C.; Grgec Bermanec, L.

    2016-01-01

    It was decided at the EURAMET TC-M meeting in Torino in 2006 to realize a comparison in gauge and absolute pressure up to 200 kPa as it would allow a link to the CCM.P-K6 and CCM.P-K2 comparisons to be established. This project interested a lot of laboratories from the beginning with 23 participants, 22 of which have submitted results. The circulation of the transfer standard began in July 2009 and lasted until January 2012. No major problems occurred during the transport. The measurand of the comparison is the effective area of a piston-cylinder determined in gauge and absolute pressure from 25 kPa to 200 kPa with pressure steps of 25 kPa. The transfer standard is a gas lubricated tungsten carbide piston-cylinder with an effective area of ~9.8 cm2, fabricated by DH Instruments and compatible with a PG-7601 pressure balance. Some participants used their own pressure balance while a pressure balance with a reference vacuum sensor has been circulated for the participants not equipped with this system. One participant (SMU, Slovakia) has never provided the measurement results and another participant (FORCE Technology, Denmark) submitted a revised set of measurement results after the pilot laboratory mentioned that the equivalence was not met. After the determination of the reference value, all the 22 participants who delivered the results in gauge pressure demonstrated equivalence respective to the reference value on most of the range. In absolute pressure the equivalence is demonstrated, for all nominal pressures, by all 17 participants who submitted results. The comparison is linked to the CCM.P-K6 for gauge pressure and to CCM.P-K2 for absolute pressure. The link does not strongly affect the equivalence of the results and an excellent degree of equivalence is achieved in gauge and absolute pressure. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb

  13. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams

    NASA Astrophysics Data System (ADS)

    Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.

    2016-09-01

    In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.

  14. Absolute rate of the reaction of O/3-P/ with hydrogen sulfide over the temperature range 263 to 495 K

    NASA Technical Reports Server (NTRS)

    Whytock, D. A.; Timmons, R. B.; Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J.

    1976-01-01

    The technique of flash photolysis coupled with time resolved detection of O via resonance fluorescence has been used to obtain rate constants for the reaction of O(3-P) with H2S at temperatures from 263 to 495 K and at pressures in the range 10-400 torr. Under conditions where secondary reactions are avoided, the measured rate constants for the primary step obey the Arrhenius equation k = (7.24 plus or minus 1.07) x 10 to the -12th exp(-3300 plus or minus 100/1.987 T) cu cm/molecules/s. Experiments with D2S show that the reaction exhibits a primary isotope effect, in support of a hydrogen abstraction mechanism.

  15. Mitigation of Atmospheric Delay in SAR Absolute Ranging Using Global Numerical Weather Prediction Data: Corner Reflector Experiments at 3 Different Test Sites

    NASA Astrophysics Data System (ADS)

    Cong, Xiaoying; Balss, Ulrich; Eineder, Michael

    2015-04-01

    The atmospheric delay due to vertical stratification, the so-called stratified atmospheric delay, has a great impact on both interferometric and absolute range measurements. In our current researches [1][2][3], centimeter-range accuracy has been proven based on Corner Reflector (CR) based measurements by applying atmospheric delay correction using the Zenith Path Delay (ZPD) corrections derived from nearby Global Positioning System (GPS) stations. For a global usage, an effective method has been introduced to estimate the stratified delay based on global 4-dimensional Numerical Weather Prediction (NWP) products: the direct integration method [4][5]. Two products, ERA-Interim and operational data, provided by European Centre for Medium-Range Weather Forecast (ECMWF) are used to integrate the stratified delay. In order to access the integration accuracy, a validation approach is investigated based on ZPD derived from six permanent GPS stations located in different meteorological conditions. Range accuracy at centimeter level is demonstrated using both ECMWF products. Further experiments have been carried out in order to determine the best interpolation method by analyzing the temporal and spatial correlation of atmospheric delay using both ECMWF and GPS ZPD. Finally, the integrated atmospheric delays in slant direction (Slant Path Delay, SPD) have been applied instead of the GPS ZPD for CR experiments at three different test sites with more than 200 TerraSAR-X High Resolution SpotLight (HRSL) images. The delay accuracy is around 1-3 cm depending on the location of test site due to the local water vapor variation and the acquisition time/date. [1] Eineder M., Minet C., Steigenberger P., et al. Imaging geodesy - Toward centimeter-level ranging accuracy with TerraSAR-X. Geoscience and Remote Sensing, IEEE Transactions on, 2011, 49(2): 661-671. [2] Balss U., Gisinger C., Cong X. Y., et al. Precise Measurements on the Absolute Localization Accuracy of TerraSAR-X on the

  16. Absolute absorption coefficient of C6H2 in the mid-UV range at low temperature; implications for the interpretation of Titan atmospheric spectra.

    PubMed

    Bénilan, Y; Bruston, P; Raulin, F; Courtin, R; Guillemin, J C

    1995-01-01

    The interpretation of mid-UV albedo spectra of planetary atmospheres, especially that of Titan, is the main goal of the SIPAT (Spectroscopie uv d'Interet Prebiologique dans l'Atmosphere de Titan) research program. This laboratory experiment has been developed in order to systematically determine the absorption coefficients of molecular compounds which are potential absorbers of scattered sunlight in planetary atmospheres, with high spectral resolution, and at various temperatures below room temperature. From photochemical modelling and experimental simulations, we may expect triacetylene (C6H2) to be present in the atmosphere of Titan, even though it has not yet been detected. We present here the first determination of the absolute absorption coefficient of that compound in the 200-300 nm range and at two temperatures (296 K and 233 K). The temperature dependence of the C6H2 absorption coefficient in that wavelength range is compared to that previously observed in the case of cyanoacetylene (HC3N). We then discuss the implications of the present results for the interpretation of Titan UV spectra, where it appears that large uncertainities can be introduced either by the presence of trace impurities in laboratory samples or by the variations of absorption coefficients with temperature.

  17. Absolute measurements of the response function of an NE213 organic liquid scintillator for the neutron energy range up to 206 /MeV

    NASA Astrophysics Data System (ADS)

    Nakao, Noriaki; Kurosawa, Tadahiro; Nakamura, Takashi; Uwamino, Yoshitomo

    2001-05-01

    The absolute values of the neutron response functions of a 12.7 cm diameter by 12.7 cm long NE213 organic liquid scintillator were measured using a quasi-monoenergetic neutron field in the energy range of 66- 206 MeV via the 7Li(p,n) 7Be reaction in the ring cyclotron facility at RIKEN. The measured response functions were compared with calculations using a Monte Carlo code developed by Cecil et al. The measurements clarified that protons escaping through the scintillator wall induced by high-energy neutrons increase from 6% for 66 MeV neutrons to 35% for 206 MeV neutrons, and that this wall effect causes a difficult problem for n-γ discrimination. Measured response functions without the wall-effect events were also obtained by eliminating the escaping-proton events in the analysis, and compared with calculations using a modified Monte Carlo code. Comparisons between the measurements and calculations both with and without any wall-effect events gave a good agreement, but some discrepancy in the light output distribution could be found, mainly because the deuteron generation process was not taken into account in the calculation. The calculated efficiencies for 10 MeVee threshold, however, also gave good agreement within about 10% with the measurements.

  18. Style and magnitude of Mesozoic thrust faulting in the hinterland of the Sevier thrust belt Pequop Mountains-Wood Hills-East Humboldt Range region, northeast Nevada

    SciTech Connect

    Camilleri, P.A. . Dept. of Geology and Geophysics)

    1993-04-01

    The Pequop Mountains (PM), Wood Hills (WH) and East Humboldt Range (EHR), NE Nevada, provide evidence that the hinterland of the Sevier thrust belt experienced large-magnitude Mesozoic shortening ([>=]55 km) and crustal thickening ([>=] 30 km). These ranges expose a structurally continuous crustal cross section of unmetamorphosed to high pressure upper amphibolite facies Triassic to Precambrian miogeoclinal strata. This sequence lies structurally beneath unmetamorphosed extensional klippen that omit metamorphic grade and crustal section, but also repeat stratigraphic units. Because they repeat stratigraphic units, the underlying miogeoclinal section, or footwall, must have once lain beneath a thrust fault (herein named the Windermere thrust). The footwall of the Windermere thrust was exhumed by two generations of top-to-the-W-NW low-angle normal faults that are distinguished by whether they are depositionally overlapped by Eocene volcanic rocks or if they cut the volcanic rocks in their hanging walls. The latter phase is associated with development of the mid-Tertiary extensional mylonitic shear zone in the EHR. An integration of geobarometric, metamorphic, and map data suggest (1) a NW dip of the footwall of the Windermere thrust with metamorphic facies belts trending perpendicular to dip direction and metamorphic grade increasing down dip, and (2) a top-to-the-SE sense-of-slip for the Windermere thrust. Assuming that the Windermere thrust comprised a flat on the youngest rocks exposed in the footwall (Triassic), the Mesozoic depth to the Windermere thrust in the northern PM is [>=] 7 km, in WH is [approximately]10--16 km, and in the EHR[>=]30 km. The Windermere thrust accommodated a minimum of 50 km of shortening associated with the Independence thrust is [>=] 5 km. These data indicate that the amount of hinterland shortening in NE Nevada greatly exceeds that to the south in the Eureka belt.

  19. Absorption spectrum and absolute absorption cross sections of CH3O2 radicals and CH3I molecules in the wavelength range 7473-7497 cm(-1).

    PubMed

    Faragó, Eszter P; Viskolcz, Bela; Schoemaecker, Coralie; Fittschen, Christa

    2013-12-05

    The absorption spectrum of CH3O2 radicals and CH3I molecules has been measured in the range 7473-7497 cm(-1). CH3O2 radicals have been generated by 248 nm laser photolysis of CH3I in the presence of O2, and the relative absorption has been measured by time-resolved continuous-wave cavity ring-down spectroscopy (cw-CRDS). Calibration of the relative absorption spectrum has been carried out on three distinct wavelengths by carefully measuring CH3O2 decays under different experimental conditions and extracting the initial radical concentration (and with this the absolute absorption cross sections) by using the well-known rate constant for the CH3O2 self-reaction. The following, pressure-independent absorption cross sections were determined: 3.41 × 10(-20), 3.40 × 10(-20), and 2.11 × 10(-20) cm(2) at 7748.18, 7489.16, and 7493.33 cm(-1). These values are 2-3 times higher than previous determinations ( Pushkarsky, M. B.; Zalyubovsky, S. J.; Miller, T. A. J. Chem. Phys. 2000, 112 (24), 10695 - 10698 and Atkinson, D. B.; Spillman, J. L. J. Phys. Chem. A 2002, 106 (38), 8891 - 8902). The absorption spectrum of the stable precursor CH3I has also been determined and three characteristic sharp absorption lines with absorption cross sections up to 2 × 10(-21) cm(2) have been observed in this wavelength range.

  20. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  1. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  2. Absolute Photometry

    NASA Astrophysics Data System (ADS)

    Hartig, George

    1990-12-01

    The absolute sensitivity of the FOS will be determined in SV by observing 2 stars at 3 epochs, first in 3 apertures (1.0", 0.5", and 0.3" circular) and then in 1 aperture (1.0" circular). In cycle 1, one star, BD+28D4211 will be observed in the 1.0" aperture to establish the stability of the sensitivity and flat field characteristics and improve the accuracy obtained in SV. This star will also be observed through the paired apertures since these are not calibrated in SV. The stars will be observed in most detector/grating combinations. The data will be averaged to form the inverse sensitivity functions required by RSDP.

  3. Simple adaptations to extend the range of flow cytometry five orders of magnitude for the DNA analysis of uni- and multicellular systems

    SciTech Connect

    Hecht, R.M.; Schomer, D.F.; Oro, J.A.; Bartel, A.H.; Hungerford, E.V. III

    1981-01-01

    Procedures and instrumentation are described to extend the capability of a cytometry system to record samples that exhibit a wide range of fluorescence such as multicellular systems. The method employs a log amplifier in combination with a set of neutral density filters that reduces the incident light reaching the photomultiplier tube. With any given filter, signals within an intensity range of 200-fold can be measured; different filters can be used to obtain an extended overall range. Polystyrene fluorescent microspheres and a variety of mithramycin stained biological samples ranging from yeast cells to Paramecium were processed by the system. The relative DNA content of individual multicellular embryos was determined for a heterogeneous population of embryonic stages isolated from the nematoda, Caenorhahditis elegans. As part of the evaluation of the procedure, the practical upper limit of range extension was determined. The most intense fluorescent signal was produced when untreated pecan pollen stained with ethidium bromide fluoresced with a factor (8.4 +- 1.3) x 10/sup 4/ more than ethidium bromide stained E. coli cells.

  4. Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser

    NASA Astrophysics Data System (ADS)

    Park, J.; Jin, J.; Kim, J.-A.; Kim, J. W.

    2016-12-01

    With the help of the optical comb of a femtosecond pulse laser, a spectral-domain interferometer has been utilized for measuring absolute distances. Even if the technique can measure distances at a high speed and with good precision, it has two fundamental problems: non-measurable range and directional ambiguity. First, the non-measurable range arises due to the sampling limit of the interference spectra at very short distances or the integer multiple of a double non-ambiguity range. Second, the peak corresponding to the desired distance in the Fourier domain has a directional ambiguity owing to the repeated property of the optical comb. Therefore, due to these two fundamental problems, most previous works never measure the absolute distances by itself in a single operation. In this letter, an interferometric method for measuring arbitrary absolute distances based on a spectral-domain interferometer operating with two reference mirrors is proposed and demonstrated. The two reference mirrors generate two distinguishable signals, primary and secondary, with a predetermined offset, thus solving these fundamental problems clearly. More importantly, as a practical advantage, the simple layout of the proposed method makes it readily applicable to most previous studies.

  5. Absolute Zero.

    ERIC Educational Resources Information Center

    Jones, Rebecca

    1997-01-01

    So far the courts have supported most schools' zero-tolerance policies--even those banning toy weapons, over-the-counter drugs, and unseemly conduct. However, wide-ranging get-tough policies can draw criticism. Policy experts advise school boards to ask the community, decide what people want, allow some wiggle room, create an appeals process,…

  6. The Color-Magnitude Distribution of Small Jupiter Trojans

    NASA Astrophysics Data System (ADS)

    Wong, Ian; Brown, Michael E.

    2015-12-01

    We present an analysis of survey observations targeting the leading L4 Jupiter Trojan cloud near opposition using the wide-field Suprime-Cam CCD camera on the 8.2 m Subaru Telescope. The survey covered about 38 deg2 of sky and imaged 147 fields spread across a wide region of the L4 cloud. Each field was imaged in both the g‧ and the i‧ band, allowing for the measurement of g - i color. We detected 557 Trojans in the observed fields, ranging in absolute magnitude from H = 10.0 to H = 20.3. We fit the total magnitude distribution to a broken power law and show that the power-law slope rolls over from 0.45 ± 0.05 to {0.36}-0.09+0.05 at a break magnitude of {H}b={14.93}-0.88+0.73. Combining the best-fit magnitude distribution of faint objects from our survey with an analysis of the magnitude distribution of bright objects listed in the Minor Planet Center catalog, we obtain the absolute magnitude distribution of Trojans over the entire range from H = 7.2 to H = 16.4. We show that the g - i color of Trojans decreases with increasing magnitude. In the context of the less-red and red color populations, as classified in Wong et al. using photometric and spectroscopic data, we demonstrate that the observed trend in color for the faint Trojans is consistent with the expected trend derived from extrapolation of the best-fit color population magnitude distributions for bright cataloged Trojans. This indicates a steady increase in the relative number of less-red objects with decreasing size. Finally, we interpret our results using collisional modeling and propose several hypotheses for the color evolution of the Jupiter Trojan population. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  7. Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells.

    PubMed

    Dale, John; Hughes, Ben; Lancaster, Andrew J; Lewis, Andrew J; Reichold, Armin J H; Warden, Matthew S

    2014-10-06

    We present an implementation of an absolute distance measurement system which uses frequency scanning interferometry (FSI). The technique, referred to as dynamic FSI, uses two frequency scanning lasers, a gas absorption cell and a reference interferometer to determine the unknown optical path length difference (OPD) of one or many measurement interferometers. The gas absorption cell is the length reference for the measurement system and is traceable to international standards through knowledge of the frequencies of its absorption features. The OPD of the measurement interferometers can vary during the measurement and the variation is measured at the sampling rate of the system (2.77 MHz in the system described here). The system is shown to measure distances from 0.2 m to 20 m with a combined relative uncertainty of 0.41 × 10⁻⁶ at the two sigma level (k = 2). It will be shown that within a scan the change in OPD of the measurement interferometer can be determined to a resolution of 40 nm.

  8. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  9. A medium-bright quasar sample - New quasar surface densities in the magnitude range from 16.4 to 17.65 for B

    NASA Technical Reports Server (NTRS)

    Mitchell, K. J.; Warnock, A., III; Usher, P. D.

    1984-01-01

    A new medium-bright quasar sample (MBQS) is constructed from spectroscopic observations of 140 bright objects selected for varying degrees of blue and ultraviolet excess (B-UVX) in five Palomar 1.2 m Schmidt fields. The MBQS contains 32 quasars with B less than 17.65 mag. The new integral surface densities in the B range from 16.45 to 17.65 mag are approximately 40 percent (or more) higher than expected. The MBQS and its redshift distribution increase the area of the Hubble diagram covered by complete samples of quasars. The general spectroscopic results indicate that the three-color classification process used to catalog the spectroscopic candidates (1) has efficiently separated the intrinsically B-UVX stellar objects from the Population II subdwarfs and (2) has produced samples of B-UVX objects which are more complete than samples selected by (U - B) color alone.

  10. Final report on EURAMET.M.P-K4.2010: Key and supplementary comparison of national pressure standards in the range 1 Pa to 15 kPa of absolute and gauge pressure

    NASA Astrophysics Data System (ADS)

    Krajíček, Zdeněk; Bergoglio, Mercede; Jousten, Karl; Otal, Pierre; Sabuga, Wladimir; Saxholm, Sari; Pražák, Dominik; Vičar, Martin

    2014-01-01

    This report describes a EURAMET comparison of five European National Metrology Institutes in low gauge and absolute pressure in gas (nitrogen), denoted as EURAMET.M.P-K4.2010. Its main intention is to state equivalence of the pressure standards, in particular those based on the technology of force-balanced piston gauges such as e.g. FRS by Furness Controls, UK and FPG8601 by DHI-Fluke, USA. It covers the range from 1 Pa to 15 kPa, both gauge and absolute. The comparison in absolute mode serves as a EURAMET Key Comparison which can be linked to CCM.P-K4 and CCM.P-K2 via PTB. The comparison in gauge mode is a supplementary comparison. The comparison was carried out from September 2008 till October 2012. The participating laboratories were the following: CMI, INRIM, LNE, MIKES, PTB-Berlin (absolute pressure 1 kPa and below) and PTB-Braunschweig (absolute pressure 1 kPa and above and gauge pressure). CMI was the pilot laboratory and provided a transfer standard for the comparison. This transfer standard was also the laboratory standard of CMI at the same time, which resulted in a unique and logistically difficult star comparison. Both in gauge and absolute pressures all the participating institutes successfully proved their equivalence with respect to the reference value and all also proved mutual bilateral equivalences in all the points. All the participating laboratories are also equivalent with the reference values of CCM.P-K4 and CCM.P-K2 in the relevant points. The comparison also proved the ability of FPG8601 to serve as a transfer standard. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  11. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  12. Bias Properties of Extragalactic Distance Indicators. VII. Correlation of Absolute Luminosity and Rotational Velocity for SC Galaxies over the Range of Luminosity Class from I to III-IV

    NASA Astrophysics Data System (ADS)

    Sandage, Allan

    1999-01-01

    A distance-limited subset of the complete flux-limited sample of Sc galaxies in the Revised Shapley-Ames Catalog of Bright Galaxies is isolated by means of separate Spaenhauer diagrams for six individual van den Bergh luminosity class intervals from Sc I+I.2,.3 to Sc III-IV. The distribution functions of kinematic absolute B^0,i_T(220,50) magnitudes and 21 cm line widths, W_20, corrected to edge-on orientation, have been determined for the same six bins of luminosity class. The individual luminosity functions for each luminosity class are bounded on both the bright and faint ends, showing that the present sample includes no dwarf Sc spirals fainter than M(B_T)(220,50)=-18 belonging to luminosity classes I to III-IV, as defined by the regularity of the spiral pattern. Star-forming galaxies with spiral structures as regular as the ones found in these luminosity classes have absolute magnitudes brighter than M_B(H=50)=-18 and 21 cm line widths larger than W_20/sini=2v_rot(max)=165 km s^-1. Furthermore, the 21 cm line-width distributions move toward smaller rotational velocities as the luminosity classes change from I to III, showing that rotation is a principal parameter determining the regularity of the spiral pattern. Whether it is the only parameter awaits a similar investigation for spirals of all luminosity classes along the complete Hubble sequence. In particular, it has not yet been proved that all Im and Sm galaxies, where, by definition, the spiral arms are either lacking or are semichaotic, have absolute magnitudes that are fainter than M_B=-18 and whose 21 cm LWs are smaller than ~165 km s^-1, presumably because of smaller mass than the high-luminosity, regular spirals. The Teerikorpi ``cluster population incompleteness bias'' is demonstrated again. Here, however, as in Papers II-IV of this series, we use field galaxies to show that the slope and zero point of the Tully-Fisher (T-F) relation are systematically incorrect for flux-limited samples, the error

  13. Report on BIPM/CIPM key comparison CCAUV.U-K4: absolute calibration of medical hydrophones in the frequency range 0.5 MHz to 20 MHz

    NASA Astrophysics Data System (ADS)

    Rajagopal, S.; Fury, C. R.; Zeqiri, B.; Brandt, M.; Wilkens, V.; Koch, C.; Matsuda, Y.; Yoshioka, M.; Ping, Y.; Yan, Z.; Wenping, B.; Costa-Felix, R. P. B.; Oliveira, E. G.

    2016-01-01

    The key compariosn CCAUV.U-K4 involved measurement of end-of-cable loaded sensitivity in units of volts/pascal of two travelling standards, 1 mm element diamater medical hydrophones at medical ultrasound frequencies. This is a repetition of key comparison CCAUV.U-K2 but the scope has been extended upwards to 20 MHz and downwards to 0.5 MHz. The reduction in the lower frequency provided an overlap with the underwater acoustics key comparison CCAUV.W-K1 which covers the range 1 kHz to 0.5 MHz. The results are analysed and presented in terms of degrees of equivalence, suitable for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  14. Absolute multilateration between spheres

    NASA Astrophysics Data System (ADS)

    Muelaner, Jody; Wadsworth, William; Azini, Maria; Mullineux, Glen; Hughes, Ben; Reichold, Armin

    2017-04-01

    Environmental effects typically limit the accuracy of large scale coordinate measurements in applications such as aircraft production and particle accelerator alignment. This paper presents an initial design for a novel measurement technique with analysis and simulation showing that that it could overcome the environmental limitations to provide a step change in large scale coordinate measurement accuracy. Referred to as absolute multilateration between spheres (AMS), it involves using absolute distance interferometry to directly measure the distances between pairs of plain steel spheres. A large portion of each sphere remains accessible as a reference datum, while the laser path can be shielded from environmental disturbances. As a single scale bar this can provide accurate scale information to be used for instrument verification or network measurement scaling. Since spheres can be simultaneously measured from multiple directions, it also allows highly accurate multilateration-based coordinate measurements to act as a large scale datum structure for localized measurements, or to be integrated within assembly tooling, coordinate measurement machines or robotic machinery. Analysis and simulation show that AMS can be self-aligned to achieve a theoretical combined standard uncertainty for the independent uncertainties of an individual 1 m scale bar of approximately 0.49 µm. It is also shown that combined with a 1 µm m‑1 standard uncertainty in the central reference system this could result in coordinate standard uncertainty magnitudes of 42 µm over a slender 1 m by 20 m network. This would be a sufficient step change in accuracy to enable next generation aerospace structures with natural laminar flow and part-to-part interchangeability.

  15. Absolute-structure reports.

    PubMed

    Flack, Howard D

    2013-08-01

    All the 139 noncentrosymmetric crystal structures published in Acta Crystallographica Section C between January 2011 and November 2012 inclusive have been used as the basis of a detailed study of the reporting of absolute structure. These structure determinations cover a wide range of space groups, chemical composition and resonant-scattering contribution. Defining A and D as the average and difference of the intensities of Friedel opposites, their level of fit has been examined using 2AD and selected-D plots. It was found, regardless of the expected resonant-scattering contribution to Friedel opposites, that the Friedel-difference intensities are often dominated by random uncertainty and systematic error. An analysis of data collection strategy is provided. It is found that crystal-structure determinations resulting in a Flack parameter close to 0.5 may not necessarily be from crystals twinned by inversion. Friedifstat is shown to be a robust estimator of the resonant-scattering contribution to Friedel opposites, very little affected by the particular space group of a structure nor by the occupation of special positions. There is considerable confusion in the text of papers presenting achiral noncentrosymmetric crystal structures. Recommendations are provided for the optimal way of treating noncentrosymmetric crystal structures for which the experimenter has no interest in determining the absolute structure.

  16. A catalog of observed nuclear magnitudes of Jupiter family comets

    NASA Astrophysics Data System (ADS)

    Tancredi, G.; Fernández, J. A.; Rickman, H.; Licandro, J.

    2000-10-01

    A catalog of a sample of 105 Jupiter family (JF) comets (defined as those with Tisserand constants T > 2 and orbital periods P < 20 yr) is presented with our ``best estimates'' of their absolute nuclear magnitudes H_N = V(1,0,0). The catalog includes all the nuclear magnitudes reported after 1950 until August 1998 that appear in the International Comet Quarterly Archive of Cometary Photometric Data, the Minor Planet Center (MPC) data base, IAU Circulars, International Comet Quarterly, and a few papers devoted to some particular comets, together with our own observations. Photometric data previous to 1990 have mainly been taken from the Comet Light Curve Catalogue (CLICC) compiled by Kamél (\\cite{kamel}). We discuss the reliability of the reported nuclear magnitudes in relation to the inherent sources of errors and uncertainties, in particular the coma contamination often present even at large heliocentric distances. A large fraction of the JF comets of our sample indeed shows various degrees of activity at large heliocentric distances, which is correlated with recent downward jumps in their perihelion distances. The reliability of coma subtraction methods to compute the nuclear magnitude is also discussed. Most absolute nuclear magnitudes are found in the range 15 - 18, with no magnitudes fainter than H_N ~ 19.5. The catalog can be found at: http://www.fisica.edu.uy/ ~ gonzalo/catalog/. Table 2 and Appendix B are only available in electronic form at http://www.edpsciences.org Table 5 is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  17. Absolutely classical spin states

    NASA Astrophysics Data System (ADS)

    Bohnet-Waldraff, F.; Giraud, O.; Braun, D.

    2017-01-01

    We introduce the concept of "absolutely classical" spin states, in analogy to absolutely separable states of bipartite quantum systems. Absolutely classical states are states that remain classical (i.e., a convex sum of projectors on coherent states of a spin j ) under any unitary transformation applied to them. We investigate the maximal size of the ball of absolutely classical states centered on the maximally mixed state and derive a lower bound for its radius as a function of the total spin quantum number. We also obtain a numerical estimate of this maximal radius and compare it to the case of absolutely separable states.

  18. Automaticity of Conceptual Magnitude.

    PubMed

    Gliksman, Yarden; Itamar, Shai; Leibovich, Tali; Melman, Yonatan; Henik, Avishai

    2016-02-16

    What is bigger, an elephant or a mouse? This question can be answered without seeing the two animals, since these objects elicit conceptual magnitude. How is an object's conceptual magnitude processed? It was suggested that conceptual magnitude is automatically processed; namely, irrelevant conceptual magnitude can affect performance when comparing physical magnitudes. The current study further examined this question and aimed to expand the understanding of automaticity of conceptual magnitude. Two different objects were presented and participants were asked to decide which object was larger on the screen (physical magnitude) or in the real world (conceptual magnitude), in separate blocks. By creating congruent (the conceptually larger object was physically larger) and incongruent (the conceptually larger object was physically smaller) pairs of stimuli it was possible to examine the automatic processing of each magnitude. A significant congruity effect was found for both magnitudes. Furthermore, quartile analysis revealed that the congruity was affected similarly by processing time for both magnitudes. These results suggest that the processing of conceptual and physical magnitudes is automatic to the same extent. The results support recent theories suggested that different types of magnitude processing and representation share the same core system.

  19. Automaticity of Conceptual Magnitude

    PubMed Central

    Gliksman, Yarden; Itamar, Shai; Leibovich, Tali; Melman, Yonatan; Henik, Avishai

    2016-01-01

    What is bigger, an elephant or a mouse? This question can be answered without seeing the two animals, since these objects elicit conceptual magnitude. How is an object’s conceptual magnitude processed? It was suggested that conceptual magnitude is automatically processed; namely, irrelevant conceptual magnitude can affect performance when comparing physical magnitudes. The current study further examined this question and aimed to expand the understanding of automaticity of conceptual magnitude. Two different objects were presented and participants were asked to decide which object was larger on the screen (physical magnitude) or in the real world (conceptual magnitude), in separate blocks. By creating congruent (the conceptually larger object was physically larger) and incongruent (the conceptually larger object was physically smaller) pairs of stimuli it was possible to examine the automatic processing of each magnitude. A significant congruity effect was found for both magnitudes. Furthermore, quartile analysis revealed that the congruity was affected similarly by processing time for both magnitudes. These results suggest that the processing of conceptual and physical magnitudes is automatic to the same extent. The results support recent theories suggested that different types of magnitude processing and representation share the same core system. PMID:26879153

  20. Color and magnitude dependence of galaxy clustering

    NASA Astrophysics Data System (ADS)

    Müller, Volker

    2016-10-01

    A quantitative study of the clustering properties of galaxies in the cosmic web as a function of absolute magnitude and colour is presented using the SDSS Data Release 7 galaxy redshift survey. We compare our results with mock galaxy samples obtained with four different semi-analytical models of galaxy formation imposed on the merger trees of the Millenium simulation.

  1. Networks of Absolute Calibration Stars for SST, AKARI, and WISE

    NASA Astrophysics Data System (ADS)

    Cohen, M.

    2007-04-01

    I describe the Cohen-Walker-Witteborn (CWW) network of absolute calibration stars built to support ground-based, airborne, and space-based sensors, and how they are used to calibrate instruments on the SPITZER Space Telescope (SST and Japan's AKARI (formerly ASTRO-F), and to support NASA's planned MidEx WISE (the Wide-field Infrared Survey Explorer). All missions using this common calibration share a self-consistent framework embracing photometry and low-resolution spectroscopy. CWW also underpins COBE/DIRBE several instruments used on the Kuiper Airborne Observatory ({KAO}), the joint Japan-USA ``IR Telescope in Space" (IRTS) Near-IR and Mid-IR spectrometers, the European Space Agency's IR Space Observatory (ISO), and the US Department of Defense's Midcourse Space eXperiment (MSX). This calibration now spans the far-UV to mid-infrared range with Sirius (one specific Kurucz synthetic spectrum) as basis, and zero magnitude defined from another Kurucz spectrum intended to represent an ideal Vega (not the actual star with its pole-on orientation and mid-infrared dust excess emission). Precision 4-29 μm radiometric measurements on MSX validate CWW's absolute Kurucz spectrum of Sirius, the primary, and a set of bright K/MIII secondary standards. Sirius is measured to be 1.0% higher than predicted. CWW's definitions of IR zero magnitudes lie within 1.1% absolute of MSX measurements. The US Air Force Research Laboratory's independent analysis of on-orbit {MSX} stellar observations compared with emissive reference spheres show CWW primary and empirical secondary spectra lie well within the ±1.45% absolute uncertainty associated with this 15-year effort. Our associated absolute calibration for the InfraRed Array Camera (IRAC) on the SST lies within ˜2% of the recent extension of the calibration of the Hubble Space Telescope's STIS instrument to NICMOS (Bohlin, these Proceedings), showing the closeness of these two independent approaches to calibration.

  2. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  3. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  4. Magnitude and sign correlations in heartbeat fluctuations

    NASA Technical Reports Server (NTRS)

    Ashkenazy, Y.; Ivanov, P. C.; Havlin, S.; Peng, C. K.; Goldberger, A. L.; Stanley, H. E.

    2001-01-01

    We propose an approach for analyzing signals with long-range correlations by decomposing the signal increment series into magnitude and sign series and analyzing their scaling properties. We show that signals with identical long-range correlations can exhibit different time organization for the magnitude and sign. We find that the magnitude series relates to the nonlinear properties of the original time series, while the sign series relates to the linear properties. We apply our approach to the heartbeat interval series and find that the magnitude series is long-range correlated, while the sign series is anticorrelated and that both magnitude and sign series may have clinical applications.

  5. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  6. Are Earthquake Magnitudes Clustered?

    SciTech Connect

    Davidsen, Joern; Green, Adam

    2011-03-11

    The question of earthquake predictability is a long-standing and important challenge. Recent results [Phys. Rev. Lett. 98, 098501 (2007); ibid.100, 038501 (2008)] have suggested that earthquake magnitudes are clustered, thus indicating that they are not independent in contrast to what is typically assumed. Here, we present evidence that the observed magnitude correlations are to a large extent, if not entirely, an artifact due to the incompleteness of earthquake catalogs and the well-known modified Omori law. The latter leads to variations in the frequency-magnitude distribution if the distribution is constrained to those earthquakes that are close in space and time to the directly following event.

  7. Equivalent comfort contours for vertical vibration of steering wheels: effect of vibration magnitude, grip force, and hand position.

    PubMed

    Morioka, Miyuki; Griffin, Michael J

    2009-09-01

    Vehicle drivers receive tactile feedback from steering-wheel vibration that depends on the frequency and magnitude of the vibration. From an experiment with 12 subjects, equivalent comfort contours were determined for vertical vibration of the hands at two positions with three grip forces. The perceived intensity of the vibration was determined using the method of magnitude estimation over a range of frequencies (4-250 Hz) and magnitudes (0.1-1.58 ms(-2) r.m.s.). Absolute thresholds for vibration perception were also determined for the two hand positions over the same frequency range. The shapes of the comfort contours were strongly dependent on vibration magnitude and also influenced by grip force, indicating that the appropriate frequency weighting depends on vibration magnitude and grip force. There was only a small effect of hand position. The findings are explained by characteristics of the Pacinian and non-Pacinian tactile channels in the glabrous skin of the hand.

  8. Misconceptions about astronomical magnitudes

    NASA Astrophysics Data System (ADS)

    Schulman, Eric; Cox, Caroline V.

    1997-10-01

    The present system of astronomical magnitudes was created as an inverse scale by Claudius Ptolemy in about 140 A.D. and was defined to be logarithmic in 1856 by Norman Pogson, who believed that human eyes respond logarithmically to the intensity of light. Although scientists have known for some time that the response is instead a power law, astronomers continue to use the Pogson magnitude scale. The peculiarities of this system make it easy for students to develop numerous misconceptions about how and why to use magnitudes. We present a useful exercise in the use of magnitudes to derive a cosmologically interesting quantity (the mass-to-light ratio for spiral galaxies), with potential pitfalls pointed out and explained.

  9. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant

  10. Estimating Absolute Site Effects

    SciTech Connect

    Malagnini, L; Mayeda, K M; Akinci, A; Bragato, P L

    2004-07-15

    The authors use previously determined direct-wave attenuation functions as well as stable, coda-derived source excitation spectra to isolate the absolute S-wave site effect for the horizontal and vertical components of weak ground motion. They used selected stations in the seismic network of the eastern Alps, and find the following: (1) all ''hard rock'' sites exhibited deamplification phenomena due to absorption at frequencies ranging between 0.5 and 12 Hz (the available bandwidth), on both the horizontal and vertical components; (2) ''hard rock'' site transfer functions showed large variability at high-frequency; (3) vertical-motion site transfer functions show strong frequency-dependence, and (4) H/V spectral ratios do not reproduce the characteristics of the true horizontal site transfer functions; (5) traditional, relative site terms obtained by using reference ''rock sites'' can be misleading in inferring the behaviors of true site transfer functions, since most rock sites have non-flat responses due to shallow heterogeneities resulting from varying degrees of weathering. They also use their stable source spectra to estimate total radiated seismic energy and compare against previous results. they find that the earthquakes in this region exhibit non-constant dynamic stress drop scaling which gives further support for a fundamental difference in rupture dynamics between small and large earthquakes. To correct the vertical and horizontal S-wave spectra for attenuation, they used detailed regional attenuation functions derived by Malagnini et al. (2002) who determined frequency-dependent geometrical spreading and Q for the region. These corrections account for the gross path effects (i.e., all distance-dependent effects), although the source and site effects are still present in the distance-corrected spectra. The main goal of this study is to isolate the absolute site effect (as a function of frequency) by removing the source spectrum (moment-rate spectrum) from

  11. Telescopic limiting magnitudes

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1990-01-01

    The prediction of the magnitude of the faintest star visible through a telescope by a visual observer is a difficult problem in physiology. Many prediction formulas have been advanced over the years, but most do not even consider the magnification used. Here, the prediction algorithm problem is attacked with two complimentary approaches: (1) First, a theoretical algorithm was developed based on physiological data for the sensitivity of the eye. This algorithm also accounts for the transmission of the atmosphere and the telescope, the brightness of the sky, the color of the star, the age of the observer, the aperture, and the magnification. (2) Second, 314 observed values for the limiting magnitude were collected as a test of the formula. It is found that the formula does accurately predict the average observed limiting magnitudes under all conditions.

  12. Absolute and relative blindsight.

    PubMed

    Balsdon, Tarryn; Azzopardi, Paul

    2015-03-01

    The concept of relative blindsight, referring to a difference in conscious awareness between conditions otherwise matched for performance, was introduced by Lau and Passingham (2006) as a way of identifying the neural correlates of consciousness (NCC) in fMRI experiments. By analogy, absolute blindsight refers to a difference between performance and awareness regardless of whether it is possible to match performance across conditions. Here, we address the question of whether relative and absolute blindsight in normal observers can be accounted for by response bias. In our replication of Lau and Passingham's experiment, the relative blindsight effect was abolished when performance was assessed by means of a bias-free 2AFC task or when the criterion for awareness was varied. Furthermore, there was no evidence of either relative or absolute blindsight when both performance and awareness were assessed with bias-free measures derived from confidence ratings using signal detection theory. This suggests that both relative and absolute blindsight in normal observers amount to no more than variations in response bias in the assessment of performance and awareness. Consideration of the properties of psychometric functions reveals a number of ways in which relative and absolute blindsight could arise trivially and elucidates a basis for the distinction between Type 1 and Type 2 blindsight.

  13. REINFORCER MAGNITUDE ATTENUATES

    PubMed Central

    Pinkston, Jonathan W.; Lamb, R. J.

    2012-01-01

    When given to pigeons, the direct-acting dopamine agonist apomorphine elicits pecking. The response has been likened to foraging pecking because it bears remarkable similarity to foraging behavior, and it is enhanced by food deprivation. On the other hand, other data suggest the response is not related to foraging behavior and may even interfere with food ingestion. Although elicited pecking interferes with food capture, it may selectively alter procurement phases of feeding, which can be isolated in operant preparations. To explore the relation between operant and elicited pecking, we provided pigeons the opportunity to earn different reinforcer magnitudes during experimental sessions. During signaled components, each of 4 pigeons could earn 2-, 4-, or 8-s access to grain for a single peck made at the end of a 5-min interval. In general, responding increased as a function of reinforcer magnitude. Apomorphine increased pecking for 2 pigeons and decreased pecking for the other 2. In both cases, apomorphine was more potent under the component providing the smallest reinforcer magnitude. Analysis of the pattern of pecking across the interval indicated that behavior lost its temporal organization as dose increased. Because apomorphine-induced pecking varied inversely with reinforcer magnitude, we conclude that elicited pecks are not functionally related to food procurement. The data are consistent with the literature on behavioral resistance to change and suggest that the effects of apomorphine may be modulated by prevailing stimulus–reinforcer relationships. PMID:23144505

  14. The discovery and comparison of symbolic magnitudes.

    PubMed

    Chen, Dawn; Lu, Hongjing; Holyoak, Keith J

    2014-06-01

    Humans and other primates are able to make relative magnitude comparisons, both with perceptual stimuli and with symbolic inputs that convey magnitude information. Although numerous models of magnitude comparison have been proposed, the basic question of how symbolic magnitudes (e.g., size or intelligence of animals) are derived and represented in memory has received little attention. We argue that symbolic magnitudes often will not correspond directly to elementary features of individual concepts. Rather, magnitudes may be formed in working memory based on computations over more basic features stored in long-term memory. We present a model of how magnitudes can be acquired and compared based on BARTlet, a representationally simpler version of Bayesian Analogy with Relational Transformations (BART; Lu, Chen, & Holyoak, 2012). BARTlet operates on distributions of magnitude variables created by applying dimension-specific weights (learned with the aid of empirical priors derived from pre-categorical comparisons) to more primitive features of objects. The resulting magnitude distributions, formed and maintained in working memory, are sensitive to contextual influences such as the range of stimuli and polarity of the question. By incorporating psychological reference points that control the precision of magnitudes in working memory and applying the tools of signal detection theory, BARTlet is able to account for a wide range of empirical phenomena involving magnitude comparisons, including the symbolic distance effect and the semantic congruity effect. We discuss the role of reference points in cognitive and social decision-making, and implications for the evolution of relational representations.

  15. Absolute neutrino mass scale

    NASA Astrophysics Data System (ADS)

    Capelli, Silvia; Di Bari, Pasquale

    2013-04-01

    Neutrino oscillation experiments firmly established non-vanishing neutrino masses, a result that can be regarded as a strong motivation to extend the Standard Model. In spite of being the lightest massive particles, neutrinos likely represent an important bridge to new physics at very high energies and offer new opportunities to address some of the current cosmological puzzles, such as the matter-antimatter asymmetry of the Universe and Dark Matter. In this context, the determination of the absolute neutrino mass scale is a key issue within modern High Energy Physics. The talks in this parallel session well describe the current exciting experimental activity aiming to determining the absolute neutrino mass scale and offer an overview of a few models beyond the Standard Model that have been proposed in order to explain the neutrino masses giving a prediction for the absolute neutrino mass scale and solving the cosmological puzzles.

  16. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  17. Absolute calibration of optical tweezers

    SciTech Connect

    Viana, N.B.; Mazolli, A.; Maia Neto, P.A.; Nussenzveig, H.M.; Rocha, M.S.; Mesquita, O.N.

    2006-03-27

    As a step toward absolute calibration of optical tweezers, a first-principles theory of trapping forces with no adjustable parameters, corrected for spherical aberration, is experimentally tested. Employing two very different setups, we find generally very good agreement for the transverse trap stiffness as a function of microsphere radius for a broad range of radii, including the values employed in practice, and at different sample chamber depths. The domain of validity of the WKB ('geometrical optics') approximation to the theory is verified. Theoretical predictions for the trapping threshold, peak position, depth variation, multiple equilibria, and 'jump' effects are also confirmed.

  18. Absolute realization of low BRDF value

    NASA Astrophysics Data System (ADS)

    Liu, Zilong; Liao, Ningfang; Li, Ping; Wang, Yu

    2010-10-01

    Low BRDF value is widespread used in many critical domains such as space and military fairs. These values below 0.1 Sr-1 . So the Absolute realization of these value is the most critical issue in the absolute measurement of BRDF. To develop the Absolute value realization theory of BRDF , defining an arithmetic operators of BRDF , achieving an absolute measurement Eq. of BRDF based on radiance. This is a new theory method to solve the realization problem of low BRDF value. This theory method is realized on a self-designed common double orientation structure in space. By designing an adding structure to extend the range of the measurement system and a control and processing software, Absolute realization of low BRDF value is achieved. A material of low BRDF value is measured in this measurement system and the spectral BRDF value are showed within different angles allover the space. All these values are below 0.4 Sr-1 . This process is a representative procedure about the measurement of low BRDF value. A corresponding uncertainty analysis of this measurement data is given depend on the new theory of absolute realization and the performance of the measurement system. The relative expand uncertainty of the measurement data is 0.078. This uncertainty analysis is suitable for all measurements using the new theory of absolute realization and the corresponding measurement system.

  19. Observations on the magnitude-frequency distribution of Earth-crossing asteroids

    NASA Technical Reports Server (NTRS)

    Shoemaker, Eugene M.; Shoemaker, Carolyn S.

    1987-01-01

    During the past decade, discovery of Earth-crossing asteroids has continued at the pace of several per year; the total number of known Earth crossers reached 70 as of September, 1986. The sample of discovered Earth crossers has become large enough to provide a fairly strong statistical basis for calculations of mean probabilities of asteroid collision with the Earth, the Moon, and Venus. It is also now large enough to begin to address the more difficult question of the magnitude-frequency distribution and size distribution of the Earth-crossing asteroids. Absolute V magnitude, H, was derived from reported magnitudes for each Earth crosser on the basis of a standard algorithm that utilizes a physically realistic phase function. The derived values of H range from 12.88 for (1627) Ivar to 21.6 for the Palomar-Leiden object 6344, which is the faintest and smallest asteroid discovered.

  20. Landslide seismic magnitude

    NASA Astrophysics Data System (ADS)

    Lin, C. H.; Jan, J. C.; Pu, H. C.; Tu, Y.; Chen, C. C.; Wu, Y. M.

    2015-11-01

    Landslides have become one of the most deadly natural disasters on earth, not only due to a significant increase in extreme climate change caused by global warming, but also rapid economic development in topographic relief areas. How to detect landslides using a real-time system has become an important question for reducing possible landslide impacts on human society. However, traditional detection of landslides, either through direct surveys in the field or remote sensing images obtained via aircraft or satellites, is highly time consuming. Here we analyze very long period seismic signals (20-50 s) generated by large landslides such as Typhoon Morakot, which passed though Taiwan in August 2009. In addition to successfully locating 109 large landslides, we define landslide seismic magnitude based on an empirical formula: Lm = log ⁡ (A) + 0.55 log ⁡ (Δ) + 2.44, where A is the maximum displacement (μm) recorded at one seismic station and Δ is its distance (km) from the landslide. We conclude that both the location and seismic magnitude of large landslides can be rapidly estimated from broadband seismic networks for both academic and applied purposes, similar to earthquake monitoring. We suggest a real-time algorithm be set up for routine monitoring of landslides in places where they pose a frequent threat.

  1. A Bayesian perspective on magnitude estimation.

    PubMed

    Petzschner, Frederike H; Glasauer, Stefan; Stephan, Klaas E

    2015-05-01

    Our representation of the physical world requires judgments of magnitudes, such as loudness, distance, or time. Interestingly, magnitude estimates are often not veridical but subject to characteristic biases. These biases are strikingly similar across different sensory modalities, suggesting common processing mechanisms that are shared by different sensory systems. However, the search for universal neurobiological principles of magnitude judgments requires guidance by formal theories. Here, we discuss a unifying Bayesian framework for understanding biases in magnitude estimation. This Bayesian perspective enables a re-interpretation of a range of established psychophysical findings, reconciles seemingly incompatible classical views on magnitude estimation, and can guide future investigations of magnitude estimation and its neurobiological mechanisms in health and in psychiatric diseases, such as schizophrenia.

  2. Limiting magnitude of hypertelescopes

    NASA Astrophysics Data System (ADS)

    Surya, Arun

    Optical stellar interferometers have demonstrated milli-arcsecond resolution with few apertures spaced hundreds of meters apart. To obtain rich direct images, many apertures will be needed, for a better sampling of the incoming wavefront. The coherent imaging thus achievable improves the sensitivity with respect to the incoherent combination of successive fringed exposures, heretofore achieved in the form of optical aperture synthesis. For efficient use of highly diluted apertures, this can be done with pupil densification, a technique also called ``Hypertelescope Imaging". Using numerical simulations we have found out the limiting magnitude of hypertelescopes over different baselines and pupil densifications. Here we discuss the advantages of using hypertelescope systems over classical pairwise optical interferometry.

  3. Global survey of star clusters in the Milky Way. V. Integrated JHKS magnitudes and luminosity functions

    NASA Astrophysics Data System (ADS)

    Kharchenko, N. V.; Piskunov, A. E.; Schilbach, E.; Röser, S.; Scholz, R.-D.

    2016-01-01

    Aims: In this study we determine absolute integrated magnitudes in the J,H,KS passbands for Galactic star clusters from the Milky Way Star Clusters survey. In the wide solar neighbourhood, we derive the open cluster luminosity function (CLF) for different cluster ages. Methods: The integrated magnitudes are based on uniform cluster membership derived from the 2MAst catalogue (a merger of the PPMXL and 2MASS) and are computed by summing up the individual luminosities of the most reliable cluster members. We discuss two different techniques of constructing the CLF, a magnitude-limited and a distance-limited approach. Results: Absolute J,H,KS integrated magnitudes are obtained for 3061 open clusters, and 147 globular clusters. The integrated magnitudes and colours are accurate to about 0.8 and 0.2 mag, respectively. Based on the sample of open clusters we construct the general cluster luminosity function in the solar neighbourhood in the three passbands. In each passband the CLF shows a linear part covering a range of 6 to 7 mag at the bright end. The CLFs reach their maxima at an absolute magnitude of -2 mag, then drop by one order of magnitude. During cluster evolution, the CLF changes its slope within tight, but well-defined limits. The CLF of the youngest clusters has a steep slope of about 0.4 at bright magnitudes and a quasi-flat portion for faint clusters. For the oldest population, we find a flatter function with a slope of about 0.2. The CLFs at Galactocentric radii smaller than that of the solar circle differ from those in the direction of the Galactic anti-centre. The CLF in the inner area is flatter and the cluster surface density higher than the local one. In contrast, the CLF is somewhat steeper than the local one in the outer disk, and the surface density is lower. The corresponding catalogue of integrated magnitudes is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  4. Absolute airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  5. Local magnitudes of small contained explosions.

    SciTech Connect

    Chael, Eric Paul

    2009-12-01

    The relationship between explosive yield and seismic magnitude has been extensively studied for underground nuclear tests larger than about 1 kt. For monitoring smaller tests over local ranges (within 200 km), we need to know whether the available formulas can be extrapolated to much lower yields. Here, we review published information on amplitude decay with distance, and on the seismic magnitudes of industrial blasts and refraction explosions in the western U. S. Next we measure the magnitudes of some similar shots in the northeast. We find that local magnitudes ML of small, contained explosions are reasonably consistent with the magnitude-yield formulas developed for nuclear tests. These results are useful for estimating the detection performance of proposed local seismic networks.

  6. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  7. Evidence for large-magnitude, post-Eocene extension in the northern Shoshone Range, Nevada, and its implications for Carlin-type gold deposits in the lower plate of the Roberts Mountains allochthon

    USGS Publications Warehouse

    Colgan, Joseph P.; Henry, Christopher D.; John, David A.

    2014-01-01

    The northern Shoshone and Toiyabe Ranges in north-central Nevada expose numerous areas of mineralized Paleozoic rock, including major Carlin-type gold deposits at Pipeline and Cortez. Paleozoic rocks in these areas were previously interpreted to have undergone negligible postmineralization extension and tilting, but here we present new data that suggest major post-Eocene extension along west-dipping normal faults. Tertiary rocks in the northern Shoshone Range crop out in two W-NW–trending belts that locally overlie and intrude highly deformed Lower Paleozoic rocks of the Roberts Mountains allochthon. Tertiary exposures in the more extensive, northern belt were interpreted as subvertical breccia pipes (intrusions), but new field data indicate that these “pipes” consist of a 35.8 Ma densely welded dacitic ash flow tuff (informally named the tuff of Mount Lewis) interbedded with sandstones and coarse volcaniclastic deposits. Both tuff and sedimentary rocks strike N-S and dip 30° to 70° E; the steeply dipping compaction foliation in the tuffs was interpreted as subvertical flow foliation in breccia pipes. The southern belt along Mill Creek, previously mapped as undivided welded tuff, includes the tuff of Cove mine (34.4 Ma) and unit B of the Bates Mountain Tuff (30.6 Ma). These tuffs dip 30° to 50° east, suggesting that their west-dipping contacts with underlying Paleozoic rocks (previously mapped as depositional) are normal faults. Tertiary rocks in both belts were deposited on Paleozoic basement and none appear to be breccia pipes. We infer that their present east tilt is due to extension on west-dipping normal faults. Some of these faults may be the northern strands of middle Miocene (ca. 16 Ma) faults that cut and tilted the 34.0 Ma Caetano caldera ~40° east in the central Shoshone Range (

  8. Asteroid magnitudes, UBV colors, and IRAS albedos and diameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1989-01-01

    This paper lists absolute magnitudes and slope parameters for known asteroids numbered through 3318. The values presented are those used in reducing asteroid IR flux data obtained with the IRAS. U-B colors are given for 938 asteroids, and B-V colors are given for 945 asteroids. The IRAS albedos and diameters are tabulated for 1790 asteroids.

  9. Accurate determination of pyridine-poly(amidoamine) dendrimer absolute binding constants with the OPLS-AA force field and direct integration of radial distribution functions.

    PubMed

    Peng, Yong; Kaminski, George A

    2005-08-11

    OPLS-AA force field and direct integration of intermolecular radial distribution functions (RDF) were employed to calculate absolute binding constants of pyridine molecules to amino group (NH2) and amide group hydrogen atoms in and first generation poly(amidoamine) dendrimers in chloroform. The average errors in the absolute and relative association constants, as predicted with the calculations, are 14.1% and 10.8%, respectively, which translate into ca. 0.08 and 0.06 kcal/mol errors in the absolute and relative binding free energies. We believe that this level of accuracy proves the applicability of the OPLS-AA, force field, in combination with the direct RDF integration, to reproducing and predicting absolute intermolecular association constants of low magnitudes (ca. 0.2-2.0 range).

  10. Accurate Determination of Pyridine -- Poly (Amidoamine) Dendrimer Absolute Binding Constants with the OPLS-AA Force Field and Direct Integration of Radial Distribution Functions

    NASA Astrophysics Data System (ADS)

    Peng, Yong; Kaminski, George

    2006-03-01

    OPLS-AA force field and direct integration of intermolecular radial distribution functions (RDF) were employed to calculate absolute binding constants of pyridine molecules to NH2 and amide group hydrogen atoms in 0th and 1st generation poly (amidoamine) dendrimers in chloroform. The average errors in the absolute and relative association constants, as predicted with the calculations, are 14.1% and 10.8%, respectively, which translate into ca. 0.08 kcal/mol and 0.06 kcal/mol errors in the absolute and relative binding free energies. We believe that this level of accuracy proves the applicability of the OPLS-AA, force field, in combination with the direct RDF integration, to reproducing and predicting absolute intermolecular association constants of low magnitudes (ca. 0.2 -- 2.0 range).

  11. Absolute Distance Measurement with the MSTAR Sensor

    NASA Technical Reports Server (NTRS)

    Lay, Oliver P.; Dubovitsky, Serge; Peters, Robert; Burger, Johan; Ahn, Seh-Won; Steier, William H.; Fetterman, Harrold R.; Chang, Yian

    2003-01-01

    The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. The sensor uses a single laser in conjunction with fast phase modulators and low frequency detectors. We describe the design of the system - the principle of operation, the metrology source, beamlaunching optics, and signal processing - and show results for target distances up to 1 meter. We then demonstrate how the system can be scaled to kilometer-scale distances.

  12. A second type of magnitude effect: Reinforcer magnitude differentiates delay discounting between substance users and controls.

    PubMed

    Mellis, Alexandra M; Woodford, Alina E; Stein, Jeffrey S; Bickel, Warren K

    2017-01-01

    Basic research on delay discounting, examining preference for smaller-sooner or larger-later reinforcers, has demonstrated a variety of findings of considerable generality. One of these, the magnitude effect, is the observation that individuals tend to exhibit greater preference for the immediate with smaller magnitude reinforcers. Delay discounting has also proved to be a useful marker of addiction, as demonstrated by the highly replicated finding of greater discounting rates in substance users compared to controls. However, some research on delay discounting rates in substance users, particularly research examining discounting of small-magnitude reinforcers, has not found significant differences compared to controls. Here, we hypothesize that the magnitude effect could produce ceiling effects at small magnitudes, thus obscuring differences in delay discounting between groups. We examined differences in discounting between high-risk substance users and controls over a broad range of magnitudes of monetary amounts ($0.10, $1.00, $10.00, $100.00, and $1000.00) in 116 Amazon Mechanical Turk workers. We found no significant differences in discounting rates between users and controls at the smallest reinforcer magnitudes ($0.10 and $1.00) and further found that differences became more pronounced as magnitudes increased. These results provide an understanding of a second form of the magnitude effect: That is, differences in discounting between populations can become more evident as a function of reinforcer magnitude.

  13. Maximum magnitude earthquakes induced by fluid injection

    NASA Astrophysics Data System (ADS)

    McGarr, A.

    2014-02-01

    Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.

  14. Eosinophil count - absolute

    MedlinePlus

    ... or 0.50 x 10^9/L. Normal value ranges may vary slightly among different laboratories. Talk to your doctor about the meaning of your specific test results. The example above shows the common measurements for results of these tests. Some laboratories use ...

  15. Comparison of TV magnitudes and visual magnitudes of meteors

    NASA Astrophysics Data System (ADS)

    Shigeno, Yoshihiko; Toda, Masayuki

    2008-08-01

    The generally accepted belief is that a meteor, with a large amount of infrared rays, can be captured brighter than it actually is by infrared-sensitive image intensifiers (I.I.) or CCD. We conducted observations of meteors using three methodologies: 1) I.I. with an attached filter that has the same spectral response as the human eye at night vision, 2) I.I. without the filter and 3) visually to determine meteor magnitudes. A total of 31 members of the astronomical club at Meiji University observed 50 Perseid meteors, 19 Geminid meteors as well as 44 sporadic meteors and the results were tabulated. The results helped us understand that on average I.I. can record meteors as brighter than visual observation by the magnitude equivalent of 0.5 for Perseids, 1.0 for Geminids and 0.5 for sporadic meteors. For I.I. with a filter that has the same spectral response the human eye at night vision, it turned out that we could obtain almost the same magnitude with observation by the human eye. We learned that a bright meteor with negative magnitude can be observed by I.I. brighter than the human eye. From several examples, we found I.I. could record a meteor with about -1 visual magnitude as brighter by about three magnitudes. We could probably do so because a bright meteor with negative magnitude may contain more infrared rays and the brightness could be amplified.

  16. Integrated Circuit Stellar Magnitude Simulator

    ERIC Educational Resources Information Center

    Blackburn, James A.

    1978-01-01

    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)

  17. 48 CFR 1852.236-74 - Magnitude of requirement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Magnitude of requirement... 1852.236-74 Magnitude of requirement. As prescribed in 1836.570(d), insert the following provision: Magnitude of Requirement (DEC 1988) The Government estimated price range of this project is...

  18. 48 CFR 1852.236-74 - Magnitude of requirement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Magnitude of requirement... 1852.236-74 Magnitude of requirement. As prescribed in 1836.570(d), insert the following provision: Magnitude of Requirement (DEC 1988) The Government estimated price range of this project is...

  19. 48 CFR 1852.236-74 - Magnitude of requirement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Magnitude of requirement... 1852.236-74 Magnitude of requirement. As prescribed in 1836.570(d), insert the following provision: Magnitude of Requirement (DEC 1988) The Government estimated price range of this project is...

  20. 48 CFR 1852.236-74 - Magnitude of requirement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Magnitude of requirement... 1852.236-74 Magnitude of requirement. As prescribed in 1836.570(d), insert the following provision: Magnitude of Requirement (DEC 1988) The Government estimated price range of this project is...

  1. 48 CFR 1852.236-74 - Magnitude of requirement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Magnitude of requirement... 1852.236-74 Magnitude of requirement. As prescribed in 1836.570(d), insert the following provision: Magnitude of Requirement (DEC 1988) The Government estimated price range of this project is...

  2. Magnitude M w in metropolitan France

    NASA Astrophysics Data System (ADS)

    Cara, Michel; Denieul, Marylin; Sèbe, Olivier; Delouis, Bertrand; Cansi, Yves; Schlupp, Antoine

    2016-12-01

    The recent seismicity catalogue of metropolitan France Sismicité Instrumentale de l'Hexagone (SI-Hex) covers the period 1962-2009. It is the outcome of a multipartner project conducted between 2010 and 2013. In this catalogue, moment magnitudes (M w) are mainly determined from short-period velocimetric records, the same records as those used by the Laboratoire de Détection Géophysique (LDG) for issuing local magnitudes (M L) since 1962. Two distinct procedures are used, whether M L-LDG is larger or smaller than 4. For M L-LDG >4, M w is computed by fitting the coda-wave amplitude on the raw records. Station corrections and regional properties of coda-wave attenuation are taken into account in the computations. For M L-LDG ≤4, M w is converted from M L-LDG through linear regression rules. In the smallest magnitude range M L-LDG <3.1, special attention is paid to the non-unity slope of the relation between the local magnitudes and M w. All M w determined during the SI-Hex project is calibrated according to reference M w of recent events. As for some small events, no M L-LDG has been determined; local magnitudes issued by other French networks or LDG duration magnitude (M D) are first converted into M L-LDG before applying the conversion rules. This paper shows how the different sources of information and the different magnitude ranges are combined in order to determine an unbiased set of M w for the whole 38,027 events of the catalogue.

  3. Absolute Radiation Thermometry in the NIR

    NASA Astrophysics Data System (ADS)

    Bünger, L.; Taubert, R. D.; Gutschwager, B.; Anhalt, K.; Briaudeau, S.; Sadli, M.

    2017-04-01

    A near infrared (NIR) radiation thermometer (RT) for temperature measurements in the range from 773 K up to 1235 K was characterized and calibrated in terms of the "Mise en Pratique for the definition of the Kelvin" (MeP-K) by measuring its absolute spectral radiance responsivity. Using Planck's law of thermal radiation allows the direct measurement of the thermodynamic temperature independently of any ITS-90 fixed-point. To determine the absolute spectral radiance responsivity of the radiation thermometer in the NIR spectral region, an existing PTB monochromator-based calibration setup was upgraded with a supercontinuum laser system (0.45 μm to 2.4 μm) resulting in a significantly improved signal-to-noise ratio. The RT was characterized with respect to its nonlinearity, size-of-source effect, distance effect, and the consistency of its individual temperature measuring ranges. To further improve the calibration setup, a new tool for the aperture alignment and distance measurement was developed. Furthermore, the diffraction correction as well as the impedance correction of the current-to-voltage converter is considered. The calibration scheme and the corresponding uncertainty budget of the absolute spectral responsivity are presented. A relative standard uncertainty of 0.1 % (k=1) for the absolute spectral radiance responsivity was achieved. The absolute radiometric calibration was validated at four temperature values with respect to the ITS-90 via a variable temperature heatpipe blackbody (773 K ...1235 K) and at a gold fixed-point blackbody radiator (1337.33 K).

  4. Silicon Absolute X-Ray Detectors

    SciTech Connect

    Seely, John F.; Korde, Raj; Sprunck, Jacob; Medjoubi, Kadda; Hustache, Stephanie

    2010-06-23

    The responsivity of silicon photodiodes having no loss in the entrance window, measured using synchrotron radiation in the 1.75 to 60 keV range, was compared to the responsivity calculated using the silicon thickness measured using near-infrared light. The measured and calculated responsivities agree with an average difference of 1.3%. This enables their use as absolute x-ray detectors.

  5. The color-magnitude distribution of small Jupiter Trojans

    NASA Astrophysics Data System (ADS)

    Wong, Ian; Brown, Michael E.; Emery, Joshua P.

    2014-11-01

    The Jupiter Trojans constitute a population of minor bodies that are situated in a 1:1 mean motion resonance with Jupiter and are concentrated in two swarms centered about the L4 and L5 Lagrangian points. Current theories of Solar System evolution describe a scenario in which the Trojans originated in a region beyond the primordial orbit of Neptune. It is hypothesized that during a subsequent period of chaotic dynamical disruptions in the outer Solar System, the primordial trans-Neptunian planetesimals were disrupted, and a fraction of them were scattered inwards and captured by Jupiter as Trojan asteroids, while the remaining objects were thrown outwards to larger heliocentric distances and eventually formed the Kuiper belt. If this is the case, a detailed study of the characteristics of Trojans may shed light on the relationships between the Trojans and other minor body populations in the outer Solar System, and more broadly, constrain models of late Solar System evolution. Several past studies of Trojans have revealed significant bimodalities with respect to various spectroscopic and photometric quantities, indicating the existence of two groupings among the Trojans - the so-called red and less-red sub-populations. In a previous work, we used primarily photometric data from the Sloan Digital Sky Survey to categorize several hundred Trojans with absolute magnitudes in the range H<12.3 into the two sub-populations. We demonstrated that the magnitude distributions of the color sub-populations are distinct to a high confidence level, suggesting that the red and less-red Trojans were formed in different locations and/or experienced different evolutionary histories. Most notably, we found that the discrepancy between the two color-magnitude distributions is concentrated at the faint end. Here, we present the results of a follow-up study, in which we analyze color measurements of a large number of small Trojans collected using the Suprime-Cam instrument on the Subaru

  6. Magnitude-dependence of equivalent comfort contours for fore-and-aft, lateral, and vertical vibration at the foot for seated persons

    NASA Astrophysics Data System (ADS)

    Morioka, Miyuki; Griffin, Michael J.

    2010-07-01

    Vibration at the feet can contribute to discomfort in many forms of transport and in some buildings. Knowledge of the frequency-dependence of discomfort caused by foot vibration, and how this varies with vibration magnitude, will assist the prediction of discomfort caused by vibration. With groups of 12 seated subjects, this experimental study determined absolute thresholds for the perception of foot vibration and quantified the discomfort caused by vibration at the foot. The study investigated a wide range of magnitudes (from the threshold of perception to levels associated with severe discomfort) over a wide range of frequencies (from 8 to 315 Hz in one-third octave steps) in each of the three orthogonal translational axes (fore-and-aft, lateral, and vertical). The effects of gender and shoes on absolute thresholds for the perception of vertical vibration at the foot were also investigated. Within each of the three axes, the vibration acceleration corresponding to the absolute thresholds for the perception of vibration, and also all contours showing conditions producing equivalent discomfort, were highly frequency-dependent at frequencies greater than about 40 Hz. The acceleration threshold contours were U-shaped at frequencies greater than 80 Hz in all three axes of excitation, suggesting the involvement of the Pacinian channel in vibration perception. At supra-threshold levels, the frequency-dependence of the equivalent comfort contours in each of the three axes was highly dependent on vibration magnitude. With increasing vibration magnitude, the conditions causing similar discomfort across the frequency range approximated towards constant velocity. Thresholds were not greatly affected by wearing shoes or subject gender. The derived frequency weightings imply that no single linear frequency weighting can provide accurate predictions of discomfort caused by a wide range of magnitudes of foot vibration.

  7. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  8. Bidirectional Modulation of Numerical Magnitude.

    PubMed

    Arshad, Qadeer; Nigmatullina, Yuliya; Nigmatullin, Ramil; Asavarut, Paladd; Goga, Usman; Khan, Sarah; Sander, Kaija; Siddiqui, Shuaib; Roberts, R E; Cohen Kadosh, Roi; Bronstein, Adolfo M; Malhotra, Paresh A

    2016-05-01

    Numerical cognition is critical for modern life; however, the precise neural mechanisms underpinning numerical magnitude allocation in humans remain obscure. Based upon previous reports demonstrating the close behavioral and neuro-anatomical relationship between number allocation and spatial attention, we hypothesized that these systems would be subject to similar control mechanisms, namely dynamic interhemispheric competition. We employed a physiological paradigm, combining visual and vestibular stimulation, to induce interhemispheric conflict and subsequent unihemispheric inhibition, as confirmed by transcranial direct current stimulation (tDCS). This allowed us to demonstrate the first systematic bidirectional modulation of numerical magnitude toward either higher or lower numbers, independently of either eye movements or spatial attention mediated biases. We incorporated both our findings and those from the most widely accepted theoretical framework for numerical cognition to present a novel unifying computational model that describes how numerical magnitude allocation is subject to dynamic interhemispheric competition. That is, numerical allocation is continually updated in a contextual manner based upon relative magnitude, with the right hemisphere responsible for smaller magnitudes and the left hemisphere for larger magnitudes.

  9. Bidirectional Modulation of Numerical Magnitude

    PubMed Central

    Arshad, Qadeer; Nigmatullina, Yuliya; Nigmatullin, Ramil; Asavarut, Paladd; Goga, Usman; Khan, Sarah; Sander, Kaija; Siddiqui, Shuaib; Roberts, R. E.; Cohen Kadosh, Roi; Bronstein, Adolfo M.; Malhotra, Paresh A.

    2016-01-01

    Numerical cognition is critical for modern life; however, the precise neural mechanisms underpinning numerical magnitude allocation in humans remain obscure. Based upon previous reports demonstrating the close behavioral and neuro-anatomical relationship between number allocation and spatial attention, we hypothesized that these systems would be subject to similar control mechanisms, namely dynamic interhemispheric competition. We employed a physiological paradigm, combining visual and vestibular stimulation, to induce interhemispheric conflict and subsequent unihemispheric inhibition, as confirmed by transcranial direct current stimulation (tDCS). This allowed us to demonstrate the first systematic bidirectional modulation of numerical magnitude toward either higher or lower numbers, independently of either eye movements or spatial attention mediated biases. We incorporated both our findings and those from the most widely accepted theoretical framework for numerical cognition to present a novel unifying computational model that describes how numerical magnitude allocation is subject to dynamic interhemispheric competition. That is, numerical allocation is continually updated in a contextual manner based upon relative magnitude, with the right hemisphere responsible for smaller magnitudes and the left hemisphere for larger magnitudes. PMID:26879093

  10. An Integrated Model of Choices and Response Times in Absolute Identification

    ERIC Educational Resources Information Center

    Brown, Scott D.; Marley, A. A. J.; Donkin, Christopher; Heathcote, Andrew

    2008-01-01

    Recent theoretical developments in the field of absolute identification have stressed differences between relative and absolute processes, that is, whether stimulus magnitudes are judged relative to a shorter term context provided by recently presented stimuli or a longer term context provided by the entire set of stimuli. The authors developed a…

  11. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  12. Absolute measurement of length with nanometric resolution

    NASA Astrophysics Data System (ADS)

    Apostol, D.; Garoi, F.; Timcu, A.; Damian, V.; Logofatu, P. C.; Nascov, V.

    2005-08-01

    Laser interferometer displacement measuring transducers have a well-defined traceability route to the definition of the meter. The laser interferometer is de-facto length scale for applications in micro and nano technologies. However their physical unit -half lambda is too large for nanometric resolution. Fringe interpolation-usual technique to improve the resolution-lack of reproducibility could be avoided using the principles of absolute distance measurement. Absolute distance refers to the use of interferometric techniques for determining the position of an object without the necessity of measuring continuous displacements between points. The interference pattern as produced by the interference of two point-like coherent sources is fitted to a geometric model so as to determine the longitudinal location of the target by minimizing least square errors. The longitudinal coordinate of the target was measured with accuracy better than 1 nm, for a target position range of 0.4μm.

  13. Database applicaton for absolute spectrophotometry

    NASA Astrophysics Data System (ADS)

    Bochkov, Valery V.; Shumko, Sergiy

    2002-12-01

    32-bit database application with multidocument interface for Windows has been developed to calculate absolute energy distributions of observed spectra. The original database contains wavelength calibrated observed spectra which had been already passed through apparatus reductions such as flatfielding, background and apparatus noise subtracting. Absolute energy distributions of observed spectra are defined in unique scale by means of registering them simultaneously with artificial intensity standard. Observations of sequence of spectrophotometric standards are used to define absolute energy of the artificial standard. Observations of spectrophotometric standards are used to define optical extinction in selected moments. FFT algorithm implemented in the application allows performing convolution (deconvolution) spectra with user-defined PSF. The object-oriented interface has been created using facilities of C++ libraries. Client/server model with Windows Socket functionality based on TCP/IP protocol is used to develop the application. It supports Dynamic Data Exchange conversation in server mode and uses Microsoft Exchange communication facilities.

  14. Sounding rocket measurement of the absolute solar EUV flux utilizing a silicon photodiode

    SciTech Connect

    Ogawa, H.S.; McMullin, D.; Judge, D.L. ); Canfield, L.R. )

    1990-04-01

    A newly developed stable and high quantum efficiency silicon photodiode was used to obtain an accurate measurement of the integrated absolute magnitude of the solar extreme ultraviolet photon flux in the spectral region between 50 and 800 {angstrom}. The detector was flown aboard a solar point sounding rocket launched from White Sands Missile Range in New Mexico on October 24, 1988. The adjusted daily 10.7-cm solar radio flux and sunspot number were 168.4 and 121, respectively. The unattenuated absolute value of the solar EUV flux at 1 AU in the specified wavelength region was 6.81 {times} 10{sup 10} photons cm{sup {minus}2} s{sup {minus}1}. Based on a nominal probable error of 7% for National Institute of Standards and Technology detector efficiency measurements in the 50- to 500-{angstrom} region (5% on longer wavelength measurements between 500 and 1216 {angstrom}), and based on experimental errors associated with their rocket instrumentation and analysis, a conservative total error estimate of {approximately}14% is assigned to the absolute integral solar flux obtained.

  15. Absolute classification with unsupervised clustering

    NASA Technical Reports Server (NTRS)

    Jeon, Byeungwoo; Landgrebe, D. A.

    1992-01-01

    An absolute classification algorithm is proposed in which the class definition through training samples or otherwise is required only for a particular class of interest. The absolute classification is considered as a problem of unsupervised clustering when one cluster is known initially. The definitions and statistics of the other classes are automatically developed through the weighted unsupervised clustering procedure, which is developed to keep the cluster corresponding to the class of interest from losing its identity as the class of interest. Once all the classes are developed, a conventional relative classifier such as the maximum-likelihood classifier is used in the classification.

  16. Understanding Magnitudes to Understand Fractions

    ERIC Educational Resources Information Center

    Gabriel, Florence

    2016-01-01

    Fractions are known to be difficult to learn and difficult to teach, yet they are vital for students to have access to further mathematical concepts. This article uses evidence to support teachers employing teaching methods that focus on the conceptual understanding of the magnitude of fractions.

  17. Stress magnitudes in the crust: constraints from stress orientation and relative magnitude data

    USGS Publications Warehouse

    Zoback, M.L.; Magee, M.

    1991-01-01

    The World Stress Map Project is a global cooperative effort to compile and interpret data on the orientation and relative magnitudes of the contemporary in situ tectonic stress field in the Earth's lithosphere. The intraplate stress field in both the oceans and continents is largely compressional with one or both of the horizontal stresses greater than the vertical stress. The regionally uniform horizontal intraplate stress orientations are generally consistent with either relative or absolute plate motions indicating that plate-boundary forces dominate the stress distribution within the plates. Current models of stresses due to whole mantle flow inferred from seismic topography models predict a general compressional stress state within continents but do not match the broad-scale horizontal stress orientations. The broad regionally uniform intraplate stress orientations are best correlated with compressional plate-boundary forces and the geometry of the plate boundaries. -from Authors

  18. Absolute distance sensing by two laser optical interferometry.

    PubMed

    Thurner, Klaus; Braun, Pierre-François; Karrai, Khaled

    2013-11-01

    We have developed a method for absolute distance sensing by two laser optical interferometry. A particularity of this technique is that a target distance is determined in absolute and is no longer limited to within an ambiguity range affecting usually multiple wavelength interferometers. We implemented the technique in a low-finesse Fabry-Pérot miniature fiber based interferometer. We used two diode lasers, both operating in the 1550 nm wavelength range. The wavelength difference is chosen to create a 25 μm long periodic beating interferometric pattern allowing a nanometer precise position measurement but limited to within an ambiguity range of 25 μm. The ambiguity is then eliminated by scanning one of the wavelengths over a small range (3.4 nm). We measured absolute distances in the sub-meter range and this with just few nanometer repeatability.

  19. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  20. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  1. Absolute Standards for Climate Measurements

    NASA Astrophysics Data System (ADS)

    Leckey, J.

    2016-10-01

    In a world of changing climate, political uncertainty, and ever-changing budgets, the benefit of measurements traceable to SI standards increases by the day. To truly resolve climate change trends on a decadal time scale, on-orbit measurements need to be referenced to something that is both absolute and unchanging. One such mission is the Climate Absolute Radiance and Refractivity Observatory (CLARREO) that will measure a variety of climate variables with an unprecedented accuracy to definitively quantify climate change. In the CLARREO mission, we will utilize phase change cells in which a material is melted to calibrate the temperature of a blackbody that can then be observed by a spectrometer. A material's melting point is an unchanging physical constant that, through a series of transfers, can ultimately calibrate a spectrometer on an absolute scale. CLARREO consists of two primary instruments: an infrared (IR) spectrometer and a reflected solar (RS) spectrometer. The mission will contain orbiting radiometers with sufficient accuracy to calibrate other space-based instrumentation and thus transferring the absolute traceability. The status of various mission options will be presented.

  2. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  3. Tectonic stress - Models and magnitudes

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Bergman, E. A.; Richardson, R. M.

    1980-01-01

    It is shown that global data on directions of principal stresses in plate interiors can serve as a test of possible plate tectonic force models. Such tests performed to date favor force models in which ridge pushing forces play a significant role. For such models the general magnitude of regional deviatoric stresses is comparable to the 200-300 bar compressive stress exerted by spreading ridges. An alternative approach to estimating magnitudes of regional deviatoric stresses from stress orientations is to seek regions of local stress either demonstrably smaller than or larger than the regional stresses. The regional stresses in oceanic intraplate regions are larger than the 100-bar compression exerted by the Ninetyeast Ridge and less than the bending stresses (not less than 1 kbar) beneath Hawaii.

  4. The differing magnitude distributions of the two Jupiter Trojan color populations

    SciTech Connect

    Wong, Ian; Brown, Michael E.; Emery, Joshua P.

    2014-12-01

    The Jupiter Trojans are a significant population of minor bodies in the middle solar system that have garnered substantial interest in recent years. Several spectroscopic studies of these objects have revealed notable bimodalities with respect to near-infrared spectra, infrared albedo, and color, which suggest the existence of two distinct groups among the Trojan population. In this paper, we analyze the magnitude distributions of these two groups, which we refer to as the red and less red color populations. By compiling spectral and photometric data from several previous works, we show that the observed bimodalities are self-consistent and categorize 221 of the 842 Trojans with absolute magnitudes in the range H<12.3 into the two color populations. We demonstrate that the magnitude distributions of the two color populations are distinct to a high confidence level (>95%) and fit them individually to a broken power law, with special attention given to evaluating and correcting for incompleteness in the Trojan catalog as well as incompleteness in our categorization of objects. A comparison of the best-fit curves shows that the faint-end power-law slopes are markedly different for the two color populations, which indicates that the red and less red Trojans likely formed in different locations. We propose a few hypotheses for the origin and evolution of the Trojan population based on the analyzed data.

  5. Subject position affects EEG magnitudes.

    PubMed

    Rice, Justin K; Rorden, Christopher; Little, Jessica S; Parra, Lucas C

    2013-01-01

    EEG (electroencephalography) has been used for decades in thousands of research studies and is today a routine clinical tool despite the small magnitude of measured scalp potentials. It is widely accepted that the currents originating in the brain are strongly influenced by the high resistivity of skull bone, but it is less well known that the thin layer of CSF (cerebrospinal fluid) has perhaps an even more important effect on EEG scalp magnitude by spatially blurring the signals. Here it is shown that brain shift and the resulting small changes in CSF layer thickness, induced by changing the subject's position, have a significant effect on EEG signal magnitudes in several standard visual paradigms. For spatially incoherent high-frequency activity the effect produced by switching from prone to supine can be dramatic, increasing occipital signal power by several times for some subjects (on average 80%). MRI measurements showed that the occipital CSF layer between the brain and skull decreases by approximately 30% in thickness when a subject moves from prone to supine position. A multiple dipole model demonstrated that this can indeed lead to occipital EEG signal power increases in the same direction and order of magnitude as those observed here. These results suggest that future EEG studies should control for subjects' posture, and that some studies may consider placing their subjects into the most favorable position for the experiment. These findings also imply that special consideration should be given to EEG measurements from subjects with brain atrophy due to normal aging or neurodegenerative diseases, since the resulting increase in CSF layer thickness could profoundly decrease scalp potential measurements.

  6. Scaling relation between earthquake magnitude and the departure time from P wave similar growth

    USGS Publications Warehouse

    Noda, Shunta; Ellsworth, William L.

    2016-01-01

    We introduce a new scaling relation between earthquake magnitude (M) and a characteristic of initial P wave displacement. By examining Japanese K-NET data averaged in bins partitioned by Mw and hypocentral distance, we demonstrate that the P wave displacement briefly displays similar growth at the onset of rupture and that the departure time (Tdp), which is defined as the time of departure from similarity of the absolute displacement after applying a band-pass filter, correlates with the final M in a range of 4.5 ≤ Mw ≤ 7. The scaling relation between Mw and Tdp implies that useful information on the final M can be derived while the event is still in progress because Tdp occurs before the completion of rupture. We conclude that the scaling relation is important not only for earthquake early warning but also for the source physics of earthquakes.

  7. Development of an Empirical Local Magnitude Formula for Northern Oklahoma

    NASA Astrophysics Data System (ADS)

    Spriggs, N.; Karimi, S.; Moores, A. O.

    2015-12-01

    In this paper we focus on determining a local magnitude formula for northern Oklahoma that is unbiased with distance by empirically constraining the attenuation properties within the region of interest based on the amplitude of observed seismograms. For regional networks detecting events over several hundred kilometres, distance correction terms play an important role in determining the magnitude of an event. Standard distance correction terms such as Hutton and Boore (1987) may have a significant bias with distance if applied in a region with different attenuation properties, resulting in an incorrect magnitude. We have presented data from a regional network of broadband seismometers installed in bedrock in northern Oklahoma. The events with magnitude in the range of 2.0 and 4.5, distributed evenly across this network are considered. We find that existing models show a bias with respect to hypocentral distance. Observed amplitude measurements demonstrate that there is a significant Moho bounce effect that mandates the use of a trilinear attenuation model in order to avoid bias in the distance correction terms. We present two different approaches of local magnitude calibration. The first maintains the classic definition of local magnitude as proposed by Richter. The second method calibrates local magnitude so that it agrees with moment magnitude where a regional moment tensor can be computed. To this end, regional moment tensor solutions and moment magnitudes are computed for events with magnitude larger than 3.5 to allow calibration of local magnitude to moment magnitude. For both methods the new formula results in magnitudes systematically lower than previous values computed with Eaton's (1992) model. We compare the resulting magnitudes and discuss the benefits and drawbacks of each method. Our results highlight the importance of correct calibration of the distance correction terms for accurate local magnitude assessment in regional networks.

  8. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  9. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  10. Physics of negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Abraham, Eitan; Penrose, Oliver

    2017-01-01

    Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.

  11. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  12. Magnitude Knowledge: The Common Core of Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert S.

    2016-01-01

    The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: (1) representing increasingly precisely the magnitudes of non-symbolic…

  13. Magnitude Knowledge: The Common Core of Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert S.

    2016-01-01

    The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: 1) representing increasingly precisely the magnitudes of non-symbolic…

  14. The Weight of Time: Affordances for an Integrated Magnitude System

    ERIC Educational Resources Information Center

    Lu, Aitao; Mo, Lei; Hodges, Bert H.

    2011-01-01

    In five experiments we explored the effects of weight on time in different action contexts to test the hypothesis that an integrated magnitude system is tuned to affordances. Larger magnitudes generally seem longer; however, Lu and colleagues (2009) found that if numbers were presented as weights in a range heavy enough to affect lifting, the…

  15. The representation of numerical magnitude

    PubMed Central

    Brannon, Elizabeth M

    2006-01-01

    The combined efforts of many fields are advancing our understanding of how number is represented. Researchers studying numerical reasoning in adult humans, developing humans and non-human animals are using a suite of behavioral and neurobiological methods to uncover similarities and differences in how each population enumerates and compares quantities to identify the neural substrates of numerical cognition. An important picture emerging from this research is that adult humans share with non-human animals a system for representing number as language-independent mental magnitudes and that this system emerges early in development. PMID:16546373

  16. Absolute GPS Positioning Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Ramillien, G.

    A new inverse approach for restoring the absolute coordinates of a ground -based station from three or four observed GPS pseudo-ranges is proposed. This stochastic method is based on simulations of natural evolution named genetic algorithms (GA). These iterative procedures provide fairly good and robust estimates of the absolute positions in the Earth's geocentric reference system. For comparison/validation, GA results are compared to the ones obtained using the classical linearized least-square scheme for the determination of the XYZ location proposed by Bancroft (1985) which is strongly limited by the number of available observations (i.e. here, the number of input pseudo-ranges must be four). The r.m.s. accuracy of the non -linear cost function reached by this latter method is typically ~10-4 m2 corresponding to ~300-500-m accuracies for each geocentric coordinate. However, GA can provide more acceptable solutions (r.m.s. errors < 10-5 m2), even when only three instantaneous pseudo-ranges are used, such as a lost of lock during a GPS survey. Tuned GA parameters used in different simulations are N=1000 starting individuals, as well as Pc=60-70% and Pm=30-40% for the crossover probability and mutation rate, respectively. Statistical tests on the ability of GA to recover acceptable coordinates in presence of important levels of noise are made simulating nearly 3000 random samples of erroneous pseudo-ranges. Here, two main sources of measurement errors are considered in the inversion: (1) typical satellite-clock errors and/or 300-metre variance atmospheric delays, and (2) Geometrical Dilution of Precision (GDOP) due to the particular GPS satellite configuration at the time of acquisition. Extracting valuable information and even from low-quality starting range observations, GA offer an interesting alternative for high -precision GPS positioning.

  17. Absolute Spectrophotometry of 237 Open Cluster Stars

    NASA Astrophysics Data System (ADS)

    Clampitt, L.; Burstein, D.

    1994-12-01

    We present absolute spectrophotometry of 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M 39. The observations were taken using the Wampler single-channel scanner (Wampler 1966) on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. 21 bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwiths ranging from 32Angstroms to 64 Angstroms. Data are standardized to the Hayes--Latham (1975) system. Our measurements are compared to filter colors on the Johnson BV, Stromgren ubvy, and Geneva U V B_1 B_2 V_1 G systems, as well as to spectrophotometry of a few stars published by Gunn, Stryker & Tinsley and in the Spectrophotometric Standards Catalog (Adelman; as distributed by the NSSDC). Both internal and external comparisons to the filter systems indicate a formal statistical accuracy per bandpass of 0.01 to 0.02 mag, with apparent larger ( ~ 0.03 mag) differences in absolute calibration between this data set and existing spectrophotometry. These data will comprise part of the spectrophotometry that will be used to calibrate the Beijing-Arizona-Taipei-Connecticut Color Survey of the Sky (see separate paper by Burstein et al. at this meeting).

  18. Absolute cross-sections for DNA strand breaks and crosslinks induced by low energy electrons.

    PubMed

    Chen, Wenzhuang; Chen, Shiliang; Dong, Yanfang; Cloutier, Pierre; Zheng, Yi; Sanche, Léon

    2016-12-07

    Absolute cross sections (CSs) for the interaction of low energy electrons with condensed macromolecules are essential parameters to accurately model ionizing radiation induced reactions. To determine CSs for various conformational DNA damage induced by 2-20 eV electrons, we investigated the influence of the attenuation length (AL) and penetration factor (f) using a mathematical model. Solid films of supercoiled plasmid DNA with thicknesses of 10, 15 and 20 nm were irradiated with 4.6, 5.6, 9.6 and 14.6 eV electrons. DNA conformational changes were quantified by gel electrophoresis, and the respective yields were extrapolated from exposure-response curves. The absolute CS, AL and f values were generated by applying the model developed by Rezaee et al. The values of AL were found to lie between 11 and 16 nm with the maximum at 14.6 eV. The absolute CSs for the loss of the supercoiled (LS) configuration and production of crosslinks (CL), single strand breaks (SSB) and double strand breaks (DSB) induced by 4.6, 5.6, 9.6 and 14.6 eV electrons are obtained. The CSs for SSB are smaller, but similar to those for LS, indicating that SSB are the main conformational damage. The CSs for DSB and CL are about one order of magnitude smaller than those of LS and SSB. The value of f is found to be independent of electron energy, which allows extending the absolute CSs for these types of damage within the range 2-20 eV, from previous measurements of effective CSs. When comparison is possible, the absolute CSs are found to be in good agreement with those obtained from previous similar studies with double-stranded DNA. The high values of the absolute CSs of 4.6 and 9.6 eV provide quantitative evidence for the high efficiency of low energy electrons to induce DNA damage via the formation of transient anions.

  19. Magnitude and frequency of floods in Washington

    USGS Publications Warehouse

    Cummans, J.E.; Collings, Michael R.; Nasser, Edmund George

    1975-01-01

    Relations are provided to estimate the magnitude and frequency of floods on Washington streams. Annual-peak-flow data from stream gaging stations on unregulated streams having 1 years or more of record were used to determine a log-Pearson Type III frequency curve for each station. Flood magnitudes having recurrence intervals of 2, 5, i0, 25, 50, and 10years were then related to physical and climatic indices of the drainage basins by multiple-regression analysis using the Biomedical Computer Program BMDO2R. These regression relations are useful for estimating flood magnitudes of the specified recurrence intervals at ungaged or short-record sites. Separate sets of regression equations were defined for western and eastern parts of the State, and the State was further subdivided into 12 regions in which the annual floods exhibit similar flood characteristics. Peak flows are related most significantly in western Washington to drainage-area size and mean annual precipitation. In eastern Washington-they are related most significantly to drainage-area size, mean annual precipitation, and percentage of forest cover. Standard errors of estimate of the estimating relations range from 25 to 129 percent, and the smallest errors are generally associated with the more humid regions.

  20. Quantifying Heartbeat Dynamics by Magnitude and Sign Correlations

    NASA Astrophysics Data System (ADS)

    Ivanov, Plamen Ch.; Ashkenazy, Yosef; Kantelhardt, Jan W.; Stanley, H. Eugene

    2003-05-01

    We review a recently developed approach for analyzing time series with long-range correlations by decomposing the signal increment series into magnitude and sign series and analyzing their scaling properties. We show that time series with identical long-range correlations can exhibit different time organization for the magnitude and sign. We apply our approach to series of time intervals between consecutive heartbeats. Using the detrended fluctuation analysis method we find that the magnitude series is long-range correlated, while the sign series is anticorrelated and that both magnitude and sign series may have clinical applications. Further, we study the heartbeat magnitude and sign series during different sleep stages — light sleep, deep sleep, and REM sleep. For the heartbeat sign time series we find short-range anticorrelations, which are strong during deep sleep, weaker during light sleep and even weaker during REM sleep. In contrast, for the heartbeat magnitude time series we find long-range positive correlations, which are strong during REM sleep and weaker during light sleep. Thus, the sign and the magnitude series provide information which is also useful for distinguishing between different sleep stages.

  1. Absolute measurement of the 242Pu neutron-capture cross section

    DOE PAGES

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; ...

    2016-04-21

    Here, the absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n,γ) cross section was made over the incident neutron energy range from thermal to ≈ 6 keV, and the absolute scale of the (n,γ) cross section was set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the crossmore » section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈ 40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n,γ) cross section at the En,R = 2.68 eV resonance is within 2.4% of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30% lower than the evaluated data at En ≈ 1 keV and are approximately 2σ away from the previous measurement at En ≈ 20 keV.« less

  2. Absolute rate constant for the reaction of Cl(/sup 2/P) with CINO

    SciTech Connect

    Nesbitt, F.L.; Nava, D.F.; Payne, W.A.; Stief, L.J.

    1987-09-24

    The room temperature rate constant for the reaction Cl + CINO yields Cl/sub 2/ + NO has been measured by the method of discharge flow mass spectrometry. The rate constant was determined from the decay of CINO in the presence of an excess of Cl atoms at a total pressure of 1 Torr. The rate constant obtained was (7.6 +/- 0.8) X 10/sup -11/ cm/sup 3/ s/sup -1/. This result is compared with previous determinations, the values of which ranged by more than an order of magnitude and all of which depended on knowledge of the absolute concentration of CINO. The authors suggest that the lack of agreement is attributable principally to uncertainties in (CINO) resulting from absorption of this reactive species on glass and metal surfaces. Our result does not depend directly on (CINO) and supports the highest values published for this rate constant.

  3. Absolute Integral Cross Sections for the State-selected Ion-Molecule Reaction N2+(X2Σg+ v+ = 0-2) + C2H2 in the Collision Energy Range of 0.03-10.00 eV

    NASA Astrophysics Data System (ADS)

    Xu, Yuntao; Xiong, Bo; Chung Chang, Yih; Ng, C. Y.

    2016-08-01

    Using the vacuum ultraviolet laser pulsed field ionization-photoion source, together with the double-quadrupole-double-octopole mass spectrometer developed in our laboratory, we have investigated the state-selected ion-molecule reaction {{{{N}}}2}+({X}2{{{{Σ }}}{{g}}}+; v + = 0-2, N+ = 0-9) + C2H2, achieving high internal-state selectivity and high kinetic energy resolution for reactant {{{{N}}}2}+ ions. The charge transfer (CT) and hydrogen-atom transfer (HT) channels, which lead to the respective formation of product {{{C}}}2{{{{H}}}2}+ and N2H+ ions, are observed. The vibrationally selected absolute integral cross sections for the CT [σ CT(v +)] and HT [[σ HT(v +)] channels obtained in the center-of-mass collision energy (E cm) range of 0.03-10.00 eV reveal opposite E cm dependences. The σ CT(v +) is found to increase as E cm is decreased, and is consistent with the long-range exothermic CT mechanism, whereas the E cm enhancement observed for the σ HT(v +) suggests effective coupling of kinetic energy to internal energy, enhancing the formation of N2H+. The σ HT(v +) curve exhibits a step at E cm = 0.70-1.00 eV, suggesting the involvement of the excited {{{C}}}2{{{{H}}}2}+({A}2{{{{Σ }}}{{g}}}+) state in the HT reaction. Contrary to the strong E cm dependences for σ CT(v +) and σ HT(v +), the effect of vibrational excitation of {{{{N}}}2}+ on both the CT and HT channels is marginal. The branching ratios and cross sections for the CT and HT channels determined in the present study are useful for modeling the atmospheric compositions of Saturn's largest moon, Titan. These cross sections and branching ratios are also valuable for benchmarking theoretical calculations on chemical dynamics of the titled reaction.

  4. Induced earthquake magnitudes are as large as (statistically) expected

    NASA Astrophysics Data System (ADS)

    van der Elst, N.; Page, M. T.; Weiser, D. A.; Goebel, T.; Hosseini, S. M.

    2015-12-01

    Key questions with implications for seismic hazard and industry practice are how large injection-induced earthquakes can be, and whether their maximum size is smaller than for similarly located tectonic earthquakes. Deterministic limits on induced earthquake magnitudes have been proposed based on the size of the reservoir or the volume of fluid injected. McGarr (JGR 2014) showed that for earthquakes confined to the reservoir and triggered by pore-pressure increase, the maximum moment should be limited to the product of the shear modulus G and total injected volume ΔV. However, if induced earthquakes occur on tectonic faults oriented favorably with respect to the tectonic stress field, then they may be limited only by the regional tectonics and connectivity of the fault network, with an absolute maximum magnitude that is notoriously difficult to constrain. A common approach for tectonic earthquakes is to use the magnitude-frequency distribution of smaller earthquakes to forecast the largest earthquake expected in some time period. In this study, we show that the largest magnitudes observed at fluid injection sites are consistent with the sampling statistics of the Gutenberg-Richter (GR) distribution for tectonic earthquakes, with no assumption of an intrinsic upper bound. The GR law implies that the largest observed earthquake in a sample should scale with the log of the total number induced. We find that the maximum magnitudes at most sites are consistent with this scaling, and that maximum magnitude increases with log ΔV. We find little in the size distribution to distinguish induced from tectonic earthquakes. That being said, the probabilistic estimate exceeds the deterministic GΔV cap only for expected magnitudes larger than ~M6, making a definitive test of the models unlikely in the near future. In the meantime, however, it may be prudent to treat the hazard from induced earthquakes with the same probabilistic machinery used for tectonic earthquakes.

  5. The absolute absorption cross section of crystalline αg and βg HNO33H2O (NAT) and HNO32H2O (NAD) in the range 180 - 200 K in the mid-IR (4000 to 600 cm-1)

    NASA Astrophysics Data System (ADS)

    Rossi, Michel J.; Iannarelli, Riccardo

    2014-05-01

    Heterogeneous processing in the polar atmosphere requires the presence of polar stratospheric cloud particles (PSC's) that are the seat of interfacial chlorine and NOx chemistry. A subgroup of PSC's, namely PSC Ia, are known to consist of hydrates of nitric acid, mostly nitric acid trihydrate (NAT) as two polymorphs, α- and β-HNO33H2O occurring in the range 185 to 200 K under prevailing stratospheric partial pressure conditions of 10 ppb HNO3 or so. Despite the fact that reference IR spectra in the mid-IR range have been obtained some time ago (Ritzhaupt and Devlin (1991), Koehler et al. (1992)), no absolute absorption cross section of these important ice particles exist to date except a study of its refractive indices (Middlebrook et al. (1994), Berland et al. (1994)). Knowledge of optical cross sections would enable remote sensing of PSC's in the IR region using satellite and/or LIDAR platforms. We have embarked on a multidiagnostic research program aiming at studying the kinetics, thermodynamics and spectroscopy of PSC's using a stirred flow reactor equipped with FTIR absorption spectroscopy in transmission. The gas phase was monitored using electron-impact residual gas mass spectroscopy together with pulsed and steady-state gas admission and thorough characterization of the adsorption of HNO3, H2O and HCl onto the stainless-steel vessel walls under mass balance conditions using measured Langmuir adsorption isotherms. We have grown α- and β-NAT by doping thin (1 μm thick) ice films with metered amounts of HNO3. According to known phase diagrams we have obtained mixtures of pure ice with NAT whose IR spectrum was obtained after spectral subtraction of the pure ice phase. The concentration of HNO3 deposited on the ice film was determined by measuring the inflow and taking into account adsorption of HNO3 on the reactor walls as well as effusive loss out the reactor. We also independently checked the H2O concentration of α-NAT from the decrease of the pure H2O

  6. Effects of Numerical Versus Foreground-Only Icon Displays on Understanding of Risk Magnitudes.

    PubMed

    Stone, Eric R; Gabard, Alexis R; Groves, Aislinn E; Lipkus, Isaac M

    2015-01-01

    The aim of this work is to advance knowledge of how to measure gist and verbatim understanding of risk magnitude information and to apply this knowledge to address whether graphics that focus on the number of people affected (the numerator of the risk ratio, i.e., the foreground) are effective displays for increasing (a) understanding of absolute and relative risk magnitudes and (b) risk avoidance. In 2 experiments, the authors examined the effects of a graphical display that used icons to represent the foreground information on measures of understanding (Experiments 1 and 2) and on perceived risk, affect, and risk aversion (Experiment 2). Consistent with prior findings, this foreground-only graphical display increased perceived risk and risk aversion; however, it also led to decreased understanding of absolute (although not relative) risk magnitudes. Methodologically, this work shows the importance of distinguishing understanding of absolute risk from understanding of relative risk magnitudes, and the need to assess gist knowledge of both types of risk. Substantively, this work shows that although using foreground-only graphical displays is an appealing risk communication strategy to increase risk aversion, doing so comes at the cost of decreased understanding of absolute risk magnitudes.

  7. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  8. Analysis of earthquake body wave spectra for potency and magnitude values: implications for magnitude scaling relations

    NASA Astrophysics Data System (ADS)

    Ross, Zachary E.; Ben-Zion, Yehuda; White, Malcolm C.; Vernon, Frank L.

    2016-11-01

    We develop a simple methodology for reliable automated estimation of the low-frequency asymptote in seismic body wave spectra of small to moderate local earthquakes. The procedure corrects individual P- and S-wave spectra for propagation and site effects and estimates the seismic potency from a stacked spectrum. The method is applied to >11 000 earthquakes with local magnitudes 0 < ML < 4 that occurred in the Southern California plate-boundary region around the San Jacinto fault zone during 2013. Moment magnitude Mw values, derived from the spectra and the scaling relation of Hanks & Kanamori, follow a Gutenberg-Richter distribution with a larger b-value (1.22) from that associated with the ML values (0.93) for the same earthquakes. The completeness magnitude for the Mw values is 1.6 while for ML it is 1.0. The quantity (Mw - ML) linearly increases in the analysed magnitude range as ML decreases. An average earthquake with ML = 0 in the study area has an Mw of about 0.9. The developed methodology and results have important implications for earthquake source studies and statistical seismology.

  9. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; ,

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  10. Probable Maximum Earthquake Magnitudes for the Cascadia Subduction

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Jackson, D. D.; Magistrale, H.; Goldfinger, C.

    2013-12-01

    The concept of maximum earthquake magnitude (mx) is widely used in seismic hazard and risk analysis. However, absolute mx lacks a precise definition and cannot be determined from a finite earthquake history. The surprising magnitudes of the 2004 Sumatra and the 2011 Tohoku earthquakes showed that most methods for estimating mx underestimate the true maximum if it exists. Thus, we introduced the alternate concept of mp(T), probable maximum magnitude within a time interval T. The mp(T) can be solved using theoretical magnitude-frequency distributions such as Tapered Gutenberg-Richter (TGR) distribution. The two TGR parameters, β-value (which equals 2/3 b-value in the GR distribution) and corner magnitude (mc), can be obtained by applying maximum likelihood method to earthquake catalogs with additional constraint from tectonic moment rate. Here, we integrate the paleoseismic data in the Cascadia subduction zone to estimate mp. The Cascadia subduction zone has been seismically quiescent since at least 1900. Fortunately, turbidite studies have unearthed a 10,000 year record of great earthquakes along the subduction zone. We thoroughly investigate the earthquake magnitude-frequency distribution of the region by combining instrumental and paleoseismic data, and using the tectonic moment rate information. To use the paleoseismic data, we first estimate event magnitudes, which we achieve by using the time interval between events, rupture extent of the events, and turbidite thickness. We estimate three sets of TGR parameters: for the first two sets, we consider a geographically large Cascadia region that includes the subduction zone, and the Explorer, Juan de Fuca, and Gorda plates; for the third set, we consider a narrow geographic region straddling the subduction zone. In the first set, the β-value is derived using the GCMT catalog. In the second and third sets, the β-value is derived using both the GCMT and paleoseismic data. Next, we calculate the corresponding mc

  11. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < -1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  12. Earthquakes Magnitude Predication Using Artificial Neural Network in Northern Red Sea Area

    NASA Astrophysics Data System (ADS)

    Alarifi, A. S.; Alarifi, N. S.

    2009-12-01

    Earthquakes are natural hazards that do not happen very often, however they may cause huge losses in life and property. Early preparation for these hazards is a key factor to reduce their damage and consequence. Since early ages, people tried to predicate earthquakes using simple observations such as strange or a typical animal behavior. In this paper, we study data collected from existing earthquake catalogue to give better forecasting for future earthquakes. The 16000 events cover a time span of 1970 to 2009, the magnitude range from greater than 0 to less than 7.2 while the depth range from greater than 0 to less than 100km. We propose a new artificial intelligent predication system based on artificial neural network, which can be used to predicate the magnitude of future earthquakes in northern Red Sea area including the Sinai Peninsula, the Gulf of Aqaba, and the Gulf of Suez. We propose a feed forward new neural network model with multi-hidden layers to predicate earthquakes occurrences and magnitudes in northern Red Sea area. Although there are similar model that have been published before in different areas, to our best knowledge this is the first neural network model to predicate earthquake in northern Red Sea area. Furthermore, we present other forecasting methods such as moving average over different interval, normally distributed random predicator, and uniformly distributed random predicator. In addition, we present different statistical methods and data fitting such as linear, quadratic, and cubic regression. We present a details performance analyses of the proposed methods for different evaluation metrics. The results show that neural network model provides higher forecast accuracy than other proposed methods. The results show that neural network achieves an average absolute error of 2.6% while an average absolute error of 3.8%, 7.3% and 6.17% for moving average, linear regression and cubic regression, respectively. In this work, we show an analysis

  13. Label-Free Absolute Quantitation of Oligosaccharides Using Multiple Reaction Monitoring

    PubMed Central

    2015-01-01

    An absolute quantitation method for measuring free human milk oligosaccharides (HMOs) in milk samples was developed using multiple reaction monitoring (MRM). To obtain the best sensitivity, the instrument conditions were optimized to reduce the source and postsource fragmentation prior to the quadrupole transmission. Fragmentation spectra of HMOs using collision-induced dissociation were studied to obtain the best characteristic fragments. At least two MRM transitions were used to quantify and identify each structure in the same run. The fragment ions corresponded to the production of singly charged mono-, di-, and trisaccharide fragments. The sensitivity and accuracy of the quantitation using MRM were determined, with the detection limit in the femtomole level and the calibration range spanning over 5 orders of magnitude. Seven commercial HMO standards were used to create calibration curves and were used to determine a universal response for all HMOs. The universal response factor was used to estimate absolute amounts of other structures and the total oligosaccharide content in milk. The quantitation method was applied to 20 human milk samples to determine the variations in HMO concentrations from women classified as secretors and nonsecretors, a phenotype that can be identified by the concentration of 2′-fucosylation in their milk. PMID:24502421

  14. From Hubble's Next Generation Spectral Library (NGSL) to Absolute Fluxes

    NASA Astrophysics Data System (ADS)

    Heap, S. R.; Lindler, D.

    2016-05-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R˜1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.03 μ. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsl/. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We have therefore developed an observing procedure, data-reduction procedure, and correction algorithms that should yield fluxes with uncertainties less than 1%.

  15. Automated absolute phase retrieval in across-track interferometry

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Zebker, Howard A.

    1992-01-01

    Discussed is a key element in the processing of topographic radar maps acquired by the NASA/JPL airborne synthetic aperture radar configured as an across-track interferometer (TOPSAR). TOPSAR utilizes a single transmit and two receive antennas; the three-dimensional target location is determined by triangulation based on a known baseline and two measured slant ranges. The slant range difference is determined very accurately from the phase difference between the signals received by the two antennas. This phase is measured modulo 2pi, whereas it is the absolute phase which relates directly to the difference in slant range. It is shown that splitting the range bandwidth into two subbands in the processor and processing each individually allows for the absolute phase. The underlying principles and system errors which must be considered are discussed, together with the implementation and results from processing data acquired during the summer of 1991.

  16. [Experimental test of the ideal free distribution in humans: the effects of reinforcer magnitude and group size].

    PubMed

    Yamaguchi, Tetsuo; Ito, Masato

    2006-02-01

    The ideal free distribution (IFD) theory describes how animals living in the wild distribute themselves between two different resource sites. The IFD theory predicts that the ratio of animals in the two resource sites is equal to the ratio of resources available in those sites. The present study investigated the effects of absolute reinforcer magnitude and group size on the distribution of humans between two resource sites. Two groups of undergraduate students (N = 10 and N = 20) chose blue or red cards to earn points. The ratio of points assigned to each color varied from 1 : 1 to 4 : 1 across five conditions. In each condition, absolute reinforcer magnitude was varied. The generalized ideal free distribution equation was fit to the data obtained under the different magnitude and group size conditions. These results suggest that larger absolute reinforcer magnitude and smaller group size produce higher sensitivity to resource distribution.

  17. The Instructional Dependency of SNARC Effects Reveals Flexibility of the Space-Magnitude Association of Nonsymbolic and Symbolic Magnitudes.

    PubMed

    Lee, Dasom; Chun, Joohyung; Cho, Soohyun

    2016-05-01

    The Spatial-Numerical Association of Response Codes (SNARC) effect refers to the phenomenon that small versus large numbers are responded to faster in the left versus right side of space, respectively. Using a pairwise comparison task, Shaki et al. found that task instruction influences the pattern of SNARC effects of certain types of magnitudes which are less rigid in their space-magnitude association .The present study examined the generalizability of this instruction effect using pairwise comparison of nonsymbolic and symbolic stimuli within a wide range of magnitudes. We contrasted performance between trials in which subjects were instructed to select the stimulus representing the smaller versus larger magnitude within each pair. We found an instruction-dependent pattern of SNARC effects for both nonsymbolic and symbolic magnitudes. Specifically, we observed a SNARC effect for the "Select Smaller" instruction, but a reverse SNARC effect for the "Select Larger" instruction. Considered together with previous studies, our findings suggest that nonsymbolic magnitudes and relatively large symbolic magnitudes have greater flexibility in their space-magnitude association.

  18. Measurement of the B-->pi l nu branching fraction and determination of absolute value of V(ub) with tagged B mesons.

    PubMed

    Aubert, B; Barate, R; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; del Amo Sanchez, P; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, J A; Nikolich, M B; Panduro Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Raven, G; Snoek, H L; Jessop, C P; Losecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; Briand, H; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Martinez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Mihalyi, A; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H

    2006-11-24

    We report a measurement of the B-->pi l nu branching fraction based on 211 fb(-1) of data collected with the BABAR detector. We use samples of B0 and B+ mesons tagged by a second B meson reconstructed in a semileptonic or hadronic decay and combine the results assuming isospin symmetry to obtain B(B(0)-->pi- l+ nu) = (1.33+/-0.17stat+/-0.11syst) x 10(-4). We determine the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element absolute value V(ub) by combining the partial branching fractions measured in ranges of the momentum transfer squared and theoretical calculations of the form factor. Using a recent lattice QCD calculation, we find absolute value V(ub) = (4.5+/-0.5stat+/-0.3syst(+0.7) -0.5FF x 10(-3), where the last error is due to the normalization of the form factor.

  19. Magnitude systems in old star catalogues

    NASA Astrophysics Data System (ADS)

    Fujiwara, Tomoko; Yamaoka, Hitoshi

    2005-06-01

    The current system of stellar magnitudes originally introduced by Hipparchus was strictly defined by Norman Pogson in 1856. He based his system on Ptolemy's star catalogue, the Almagest, recorded in about AD137, and defined the magnitude-intensity relationship on a logarithmic scale. Stellar magnitudes observed with the naked eye recorded in seven old star catalogues were analyzed in order to examine the visual magnitude systems. Although psychophysicists have proposed that human visual sensitivity follows a power-law scale, it is shown here that the degree of agreement is far better for a logarithmic scale than for a power-law scale. It is also found that light ratios in each star catalogue are nearly equal to 2.512, if the brightest (1st magnitude) and the faintest (6th magnitude and dimmer) stars are excluded from the study. This means that the visual magnitudes in the old star catalogues agree fully with Pogson's logarithmic scale.

  20. Absolute calibration of forces in optical tweezers

    NASA Astrophysics Data System (ADS)

    Dutra, R. S.; Viana, N. B.; Maia Neto, P. A.; Nussenzveig, H. M.

    2014-07-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past 15 years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spot, adapting frequently employed video microscopy techniques. Combined with interface spherical aberration, it reveals a previously unknown window of instability for trapping. Comparison with experimental data leads to an overall agreement within error bars, with no fitting, for a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Besides signaling full first-principles theoretical understanding of optical tweezers operation, the results may lead to improved instrument design and control over experiments, as well as to an extended domain of applicability, allowing reliable force measurements, in principle, from femtonewtons to nanonewtons.

  1. ENVIRONMENTAL DEPENDENCE OF ALL OF THE FIVE-BAND LUMINOSITIES FOR THE APPARENT-MAGNITUDE-LIMITED MAIN GALAXY SAMPLE OF THE SDSS DR7

    SciTech Connect

    Deng Xinfa

    2012-01-15

    In this study, I use the apparent-magnitude-limited Main galaxy sample of the Sloan Digital Sky Survey Data Release 7 and investigate the environmental dependence of all of the five-band luminosities. To decrease the radial selection effect, I divide the whole sample into many subsamples with a redshift binning size of {Delta}z = 0.01 and analyze the environmental dependence of all of the five-band luminosities of subsamples in each redshift bin. It turns out that luminous galaxies in M{sub u} (the u-band absolute magnitude) exist preferentially in low-density regions of the universe, while faint galaxies in M{sub u} are located preferentially in high-density regions, especially in the redshift range 0.05 {<=} z {<=} 0.10.

  2. The magnitude-redshift relation in a realistic inhomogeneous universe

    SciTech Connect

    Hada, Ryuichiro; Futamase, Toshifumi E-mail: tof@astr.tohoku.ac.jp

    2014-12-01

    The light rays from a source are subject to a local inhomogeneous geometry generated by inhomogeneous matter distribution as well as the existence of collapsed objects. In this paper we investigate the effect of inhomogeneities and the existence of collapsed objects on the propagation of light rays and evaluate changes in the magnitude-redshift relation from the standard relationship found in a homogeneous FRW universe. We give the expression of the correlation function and the variance for the perturbation of apparent magnitude, and calculate it numerically by using the non-linear matter power spectrum. We use the lognormal probability distribution function for the density contrast and spherical collapse model to truncate the power spectrum in order to estimate the blocking effect by collapsed objects. We find that the uncertainties in Ω{sub m} is ∼ 0.02, and that of w is ∼ 0.04 . We also discuss a possible method to extract these effects from real data which contains intrinsic ambiguities associated with the absolute magnitude.

  3. Does residual force enhancement increase with increasing stretch magnitudes?

    PubMed

    Hisey, Brandon; Leonard, Tim R; Herzog, Walter

    2009-07-22

    It is generally accepted that force enhancement in skeletal muscles increases with increasing stretch magnitudes. However, this property has not been tested across supra-physiological stretch magnitudes and different muscle lengths, thus it is not known whether this is a generic property of skeletal muscle, or merely a property that holds for small stretch magnitudes within the physiological range. Six cat soleus muscles were actively stretched with magnitudes varying from 3 to 24 mm at three different parts of the force-length relationship to test the hypothesis that force enhancement increases with increasing stretch magnitude, independent of muscle length. Residual force enhancement increased consistently with stretch amplitudes on the descending limb of the force-length relationship up to a threshold value, after which it reached a plateau. Force enhancement did not increase with stretch amplitude on the ascending limb of the force-length relationship. Passive force enhancement was observed for all test conditions, and paralleled the behavior of the residual force enhancement. Force enhancement increased with stretch magnitude when stretching occurred at lengths where there was natural passive force within the muscle. These results suggest that force enhancement does not increase unconditionally with increasing stretch magnitude, as is generally accepted, and that increasing force enhancement with stretch appears to be tightly linked to that part of the force-length relationship where there is naturally occurring passive force.

  4. Developmental Foundations of Children's Fraction Magnitude Knowledge.

    PubMed

    Mou, Yi; Li, Yaoran; Hoard, Mary K; Nugent, Lara D; Chu, Felicia W; Rouder, Jeffrey N; Geary, David C

    2016-01-01

    The conceptual insight that fractions represent magnitudes is a critical yet daunting step in children's mathematical development, and the knowledge of fraction magnitudes influences children's later mathematics learning including algebra. In this study, longitudinal data were analyzed to identify the mathematical knowledge and domain-general competencies that predicted 8(th) and 9(th) graders' (n=122) knowledge of fraction magnitudes and its cross-grade gains. Performance on the fraction magnitude measures predicted 9(th) grade algebra achievement. Understanding and fluently identifying the numerator-denominator relation in 7(th) grade emerged as the key predictor of later fraction magnitudes knowledge in both 8(th) and 9(th) grades. Competence at using fraction procedures, knowledge of whole number magnitudes, and the central executive contributed to 9(th) but not 8(th) graders' fraction magnitude knowledge, and knowledge of whole number magnitude contributed to cross-grade gains. The key results suggest fluent processing of numerator-denominator relations presages students' understanding of fractions as magnitudes and that the integration of whole number and fraction magnitudes occurs gradually.

  5. Documentation for the machine-readable version of the Absolute Calibration of Stellar Spectrophotometry

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1982-01-01

    The machine-readable data file of The Absolute Calibration of Stellar Spectrophotometry as distributed by the Astronomical Data Center is described. The data file contains the absolute fluxes for 16 stars published in Tables 1 and 2 of Johnson (1980). The absolute calibrations were accomplished by combining the 13-color photometry calibrations of Johnson and Mitchell (1975) with spectra obtained with a Michelson spectrophotometer and covering the wavelength range 4000 to 10300 A (Johnson 1977). The agreement between this absolute calibration and another recent one based upon data for a Lyr and 109 Vir by Tug, White and Lockwood (1977) is shown by Johnson (1980) to be quite good.

  6. ON A SUFFICIENT CONDITION FOR ABSOLUTE CONTINUITY.

    DTIC Science & Technology

    The formulation of a condition which yields absolute continuity when combined with continuity and bounded variation is the problem considered in the...Briefly, the formulation is achieved through a discussion which develops a proof by contradiction of a sufficiently theorem for absolute continuity which uses in its hypothesis the condition of continuity and bounded variation .

  7. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  8. Monolithically integrated absolute frequency comb laser system

    SciTech Connect

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  9. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  10. Constraining Globular Cluster Age Uncertainties using the IR Color-Magnitude Diagram

    NASA Astrophysics Data System (ADS)

    Correnti, Matteo; Gennaro, Mario; Kalirai, Jason S.; Brown, Thomas M.; Calamida, Annalisa

    2016-05-01

    Globular Clusters (GCs) in the Milky Way are the primary laboratories for establishing the ages of the oldest stellar populations and for measuring the color-magnitude relation of stars. In infrared (IR) color-magnitude diagrams (CMDs), the stellar main sequence (MS) exhibits a “kink” due to opacity effects in M dwarfs such that lower mass and cooler dwarfs become bluer in the IR color baseline. This diagnostic offers a new opportunity to model GC CMDs and to reduce uncertainties on cluster properties (e.g., their derived ages). In this context, we analyzed Hubble Space Telescope Wide Field Camera 3 IR archival observations of four GCs—47 Tuc, M4, NGC 2808, and NGC 6752—for which the data are deep enough to fully sample the low-mass MS, reaching at least ≃2 mag below the “kink.” We derived the fiducial lines for each cluster and compared them with a grid of isochrones over a large range of parameter space, allowing age, metallicity, distance, and reddening to vary within reasonable selected ranges. The derived ages for the four clusters are, respectively, 11.6, 11.5, 11.2, and 12.1 Gyr and their random uncertainties are σ ˜ 0.7-1.1 Gyr. Our results suggest that the near-IR MS “kink,” combined with the MS turn-off, provides a valuable tool to measure GC ages and offers a promising opportunity to push the absolute age of GCs to sub-Gyr accuracy with the next generation IR telescopes such as the James Webb Space Telescope and the Wide-field Infrared Survey Telescope. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  11. Absolute measurement of the 242Pu neutron-capture cross section

    SciTech Connect

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.

    2016-04-21

    Here, the absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n,γ) cross section was made over the incident neutron energy range from thermal to ≈ 6 keV, and the absolute scale of the (n,γ) cross section was set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the cross section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈ 40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n,γ) cross section at the En,R = 2.68 eV resonance is within 2.4% of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30% lower than the evaluated data at En ≈ 1 keV and are approximately 2σ away from the previous measurement at En ≈ 20 keV.

  12. Absolute quantitation of protein posttranslational modification isoform.

    PubMed

    Yang, Zhu; Li, Ning

    2015-01-01

    Mass spectrometry has been widely applied in characterization and quantification of proteins from complex biological samples. Because the numbers of absolute amounts of proteins are needed in construction of mathematical models for molecular systems of various biological phenotypes and phenomena, a number of quantitative proteomic methods have been adopted to measure absolute quantities of proteins using mass spectrometry. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with internal peptide standards, i.e., the stable isotope-coded peptide dilution series, which was originated from the field of analytical chemistry, becomes a widely applied method in absolute quantitative proteomics research. This approach provides more and more absolute protein quantitation results of high confidence. As quantitative study of posttranslational modification (PTM) that modulates the biological activity of proteins is crucial for biological science and each isoform may contribute a unique biological function, degradation, and/or subcellular location, the absolute quantitation of protein PTM isoforms has become more relevant to its biological significance. In order to obtain the absolute cellular amount of a PTM isoform of a protein accurately, impacts of protein fractionation, protein enrichment, and proteolytic digestion yield should be taken into consideration and those effects before differentially stable isotope-coded PTM peptide standards are spiked into sample peptides have to be corrected. Assisted with stable isotope-labeled peptide standards, the absolute quantitation of isoforms of posttranslationally modified protein (AQUIP) method takes all these factors into account and determines the absolute amount of a protein PTM isoform from the absolute amount of the protein of interest and the PTM occupancy at the site of the protein. The absolute amount of the protein of interest is inferred by quantifying both the absolute amounts of a few PTM

  13. Comparison of magnetic probe calibration at nano and millitesla magnitudes.

    PubMed

    Pahl, Ryan A; Rovey, Joshua L; Pommerenke, David J

    2014-01-01

    Magnetic field probes are invaluable diagnostics for pulsed inductive plasma devices where field magnitudes on the order of tenths of tesla or larger are common. Typical methods of providing a broadband calibration of [Formula: see text] probes involve either a Helmholtz coil driven by a function generator or a network analyzer. Both calibration methods typically produce field magnitudes of tens of microtesla or less, at least three and as many as six orders of magnitude lower than their intended use. This calibration factor is then assumed constant regardless of magnetic field magnitude and the effects of experimental setup are ignored. This work quantifies the variation in calibration factor observed when calibrating magnetic field probes in low field magnitudes. Calibration of two [Formula: see text] probe designs as functions of frequency and field magnitude are presented. The first [Formula: see text] probe design is the most commonly used design and is constructed from two hand-wound inductors in a differential configuration. The second probe uses surface mounted inductors in a differential configuration with balanced shielding to further reduce common mode noise. Calibration factors are determined experimentally using an 80.4 mm radius Helmholtz coil in two separate configurations over a frequency range of 100-1000 kHz. A conventional low magnitude calibration using a vector network analyzer produced a field magnitude of 158 nT and yielded calibration factors of 15 663 ± 1.7% and 4920 ± 0.6% [Formula: see text] at 457 kHz for the surface mounted and hand-wound probes, respectively. A relevant magnitude calibration using a pulsed-power setup with field magnitudes of 8.7-354 mT yielded calibration factors of 14 615 ± 0.3% and 4507 ± 0.4% [Formula: see text] at 457 kHz for the surface mounted inductor and hand-wound probe, respectively. Low-magnitude calibration resulted in a larger calibration factor, with an average difference of 9.7% for the surface

  14. Comparison of magnetic probe calibration at nano and millitesla magnitudes

    NASA Astrophysics Data System (ADS)

    Pahl, Ryan A.; Rovey, Joshua L.; Pommerenke, David J.

    2014-01-01

    Magnetic field probes are invaluable diagnostics for pulsed inductive plasma devices where field magnitudes on the order of tenths of tesla or larger are common. Typical methods of providing a broadband calibration of dot{{B}} probes involve either a Helmholtz coil driven by a function generator or a network analyzer. Both calibration methods typically produce field magnitudes of tens of microtesla or less, at least three and as many as six orders of magnitude lower than their intended use. This calibration factor is then assumed constant regardless of magnetic field magnitude and the effects of experimental setup are ignored. This work quantifies the variation in calibration factor observed when calibrating magnetic field probes in low field magnitudes. Calibration of two dot{{B}} probe designs as functions of frequency and field magnitude are presented. The first dot{{B}} probe design is the most commonly used design and is constructed from two hand-wound inductors in a differential configuration. The second probe uses surface mounted inductors in a differential configuration with balanced shielding to further reduce common mode noise. Calibration factors are determined experimentally using an 80.4 mm radius Helmholtz coil in two separate configurations over a frequency range of 100-1000 kHz. A conventional low magnitude calibration using a vector network analyzer produced a field magnitude of 158 nT and yielded calibration factors of 15 663 ± 1.7% and 4920 ± 0.6% {T}/{V {s}} at 457 kHz for the surface mounted and hand-wound probes, respectively. A relevant magnitude calibration using a pulsed-power setup with field magnitudes of 8.7-354 mT yielded calibration factors of 14 615 ± 0.3% and 4507 ± 0.4% {T}/{V {s}} at 457 kHz for the surface mounted inductor and hand-wound probe, respectively. Low-magnitude calibration resulted in a larger calibration factor, with an average difference of 9.7% for the surface mounted probe and 12.0% for the hand-wound probe. The

  15. Absolute calibration of vacuum ultraviolet spectrograph system for plasma diagnostics

    SciTech Connect

    Yoshikawa, M.; Kubota, Y.; Kobayashi, T.; Saito, M.; Numada, N.; Nakashima, Y.; Cho, T.; Koguchi, H.; Yagi, Y.; Yamaguchi, N.

    2004-10-01

    A space- and time-resolving vacuum ultraviolet (VUV) spectrograph system has been applied to diagnose impurity ions behavior in plasmas produced in the tandem mirror GAMMA 10 and the reversed field pinch TPE-RX. We have carried out ray tracing calculations for obtaining the characteristics of the VUV spectrograph and calibration experiments to measure the absolute sensitivities of the VUV spectrograph system for the wavelength range from 100 to 1100 A. By changing the incident angle, 50.6 deg. -51.4 deg., to the spectrograph whose nominal incident angle is 51 deg., we can change the observing spectral range of the VUV spectrograph. In this article, we show the ray tracing calculation results and absolute sensitivities when the angle of incidence into the VUV spectrograph is changed, and the results of VUV spectroscopic measurement in both GAMMA 10 and TPE-RX plasmas.

  16. Magnitude knowledge: the common core of numerical development.

    PubMed

    Siegler, Robert S

    2016-05-01

    The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: (1) representing increasingly precisely the magnitudes of non-symbolic numbers, (2) connecting small symbolic numbers to their non-symbolic referents, (3) extending understanding from smaller to larger whole numbers, and (4) accurately representing the magnitudes of rational numbers. The present review identifies substantial commonalities, as well as differences, in these four aspects of numerical development. With both whole and rational numbers, numerical magnitude knowledge is concurrently correlated with, longitudinally predictive of, and causally related to multiple aspects of mathematical understanding, including arithmetic and overall math achievement. Moreover, interventions focused on increasing numerical magnitude knowledge often generalize to other aspects of mathematics. The cognitive processes of association and analogy seem to play especially large roles in this development. Thus, acquisition of numerical magnitude knowledge can be seen as the common core of numerical development.

  17. Local magnitude calibration of the Hellenic Unified Seismic Network

    NASA Astrophysics Data System (ADS)

    Scordilis, E. M.; Kementzetzidou, D.; Papazachos, B. C.

    2016-01-01

    A new relation is proposed for accurate determination of local magnitudes in Greece. This relation is based on a large number of synthetic Wood-Anderson (SWA) seismograms corresponding to 782 regional shallow earthquakes which occurred during the period 2007-2013 and recorded by 98 digital broad-band stations. These stations are installed and operated by the following: (a) the National Observatory of Athens (HL), (b) the Department of Geophysics of the Aristotle University of Thessaloniki (HT), (c) the Seismological Laboratory of the University of Athens (HA), and (d) the Seismological Laboratory of the Patras University (HP). The seismological networks of the above institutions constitute the recently (2004) established Hellenic Unified Seismic Network (HUSN). These records are used to calculate a refined geometrical spreading factor and an anelastic attenuation coefficient, representative for Greece and surrounding areas, proper for accurate calculation of local magnitudes in this region. Individual station corrections depending on the crustal structure variations in their vicinity and possible inconsistencies in instruments responses are also considered in order to further ameliorate magnitude estimation accuracy. Comparison of such calculated local magnitudes with corresponding original moment magnitudes, based on an independent dataset, revealed that these magnitude scales are equivalent for a wide range of values.

  18. The magnitude of innovation and its evolution in social animals.

    PubMed

    Arbilly, Michal; Laland, Kevin N

    2017-02-08

    Innovative behaviour in animals, ranging from invertebrates to humans, is increasingly recognized as an important topic for investigation by behavioural researchers. However, what constitutes an innovation remains controversial, and difficult to quantify. Drawing on a broad definition whereby any behaviour with a new component to it is an innovation, we propose a quantitative measure, which we call the magnitude of innovation, to describe the extent to which an innovative behaviour is novel. This allows us to distinguish between innovations that are a slight change to existing behaviours (low magnitude), and innovations that are substantially different (high magnitude). Using mathematical modelling and evolutionary computer simulations, we explored how aspects of social interaction, cognition and natural selection affect the frequency and magnitude of innovation. We show that high-magnitude innovations are likely to arise regularly even if the frequency of innovation is low, as long as this frequency is relatively constant, and that the selectivity of social learning and the existence of social rewards, such as prestige and royalties, are crucial for innovative behaviour to evolve. We suggest that consideration of the magnitude of innovation may prove a useful tool in the study of the evolution of cognition and of culture.

  19. Relatively high motivation for context-evoked reward produces the magnitude effect in rats.

    PubMed

    Yuki, Shoko; Okanoya, Kazuo

    2014-09-01

    Using a concurrent-chain schedule, we demonstrated the effect of absolute reinforcement (i.e., the magnitude effect) on choice behavior in rats. In general, animals' simultaneous choices conform to a relative reinforcement ratio between alternatives. However, studies in pigeons and rats have found that on a concurrent-chain schedule, the overall reinforcement ratio, or absolute amount, also influences choice. The effect of reinforcement amount has also been studied in inter-temporal choice situations, and this effect has been referred to as the magnitude effect. The magnitude effect has been observed in humans under various conditions, but little research has assessed it in animals (e.g., pigeons and rats). The present study confirmed the effect of reinforcement amount in rats during simultaneous and inter-temporal choice situations. We used a concurrent-chain procedure to examine the cause of the magnitude effect during inter-temporal choice. Our results suggest that rats can use differences in reinforcement amount as a contextual cue during choice, and the direction of the magnitude effect in rats might be similar to humans when using the present procedure. Furthermore, our results indicate that the magnitude effect was caused by the initial-link effect when the reinforcement amount was relatively small, while a loss aversion tendency was observed when the reinforcement amount changed within a session. The emergence of the initial-link effect and loss aversion suggests that rats make choices through cognitive processes predicted by prospect theory.

  20. Representations of the Magnitudes of Fractions

    ERIC Educational Resources Information Center

    Schneider, Michael; Siegler, Robert S.

    2010-01-01

    We tested whether adults can use integrated, analog, magnitude representations to compare the values of fractions. The only previous study on this question concluded that even college students cannot form such representations and instead compare fraction magnitudes by representing numerators and denominators as separate whole numbers. However,…

  1. Reward Magnitude Effects on Temporal Discrimination

    ERIC Educational Resources Information Center

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2010-01-01

    Changes in reward magnitude or value have been reported to produce effects on timing behavior, which have been attributed to changes in the speed of an internal pacemaker in some instances and to attentional factors in other cases. The present experiments therefore aimed to clarify the effects of reward magnitude on timing processes. In Experiment…

  2. Magnitude Anomalies and Propagation of Local Phases

    DTIC Science & Technology

    1983-01-31

    statistically significant variation of magnitude anomalies versus one of this above parameters. A contrario, we observed a significant dependance between...enough to demand a more detailed analysis. III - Local dependance of magnitude anomalies. A smoothing of our data on all quakes originating in the same

  3. Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna

    2015-09-01

    Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.

  4. Absolute intensity of radiation emitted by uranium plasmas

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Lee, J. H.; Mcfarland, D. R.

    1975-01-01

    The absolute intensity of radiation emitted by fissioning and nonfissioning uranium plasmas in the spectral range from 350 nm to 1000 nm was measured. The plasma was produced in a plasma-focus apparatus and the plasma properties are simular to those anticipated for plasma-core nuclear reactors. The results are expected to contribute to the establishment of design criteria for the development of plasma-core reactors.

  5. Reward magnitude effects on temporal discrimination

    PubMed Central

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2014-01-01

    Changes in reward magnitude or value have been reported to produce effects on timing behavior, which have been attributed to changes in the speed of an internal pacemaker in some instances and to attentional factors in other cases. The present experiments therefore aimed to clarify the effects of reward magnitude on timing processes. In Experiment 1, rats were trained to discriminate a short (2 s) vs. a long (8 s) signal followed by testing with intermediate durations. Then, the reward on short or long trials was increased from 1 to 4 pellets in separate groups. Experiment 2 measured the effect of different reward magnitudes associated with the short vs. long signals throughout training. Finally, Experiment 3 controlled for satiety effects during the reward magnitude manipulation phase. A general flattening of the psychophysical function was evident in all three experiments, suggesting that unequal reward magnitudes may disrupt attention to duration. PMID:24965705

  6. Orion Absolute Navigation System Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2012-01-01

    The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.

  7. Absolute Charge Transfer and Fragmentation Cross Sections in He{sup 2+}-C{sub 60} Collisions

    SciTech Connect

    Rentenier, A.; Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A.; Ruiz, L. F.; Diaz-Tendero, S.; Alcami, M.; Martin, F.; Zarour, B.; Hanssen, J.; Hervieux, P.-A.; Politis, M. F.

    2008-05-09

    We have determined absolute charge transfer and fragmentation cross sections in He{sup 2+}+C{sub 60} collisions in the impact-energy range 0.1-250 keV by using a combined experimental and theoretical approach. We have found that the cross sections for the formation of He{sup +} and He{sup 0} are comparable in magnitude, which cannot be explained by the sole contribution of pure single and double electron capture but also by contribution of transfer-ionization processes that are important even at low impact energies. The results show that multifragmentation is important only at impact energies larger than 40 keV; at lower energies, sequential C{sub 2} evaporation is the dominant process.

  8. Absolute vibrational cross sections for 1-19 eV electron scattering from condensed tetrahydrofuran (THF)

    NASA Astrophysics Data System (ADS)

    Lemelin, V.; Bass, A. D.; Cloutier, P.; Sanche, L.

    2016-02-01

    Absolute cross sections (CSs) for vibrational excitation by 1-19 eV electrons impacting on condensed tetrahydrofuran (THF) were measured with a high-resolution electron energy loss spectrometer. Experiments were performed under ultra-high vacuum (3 × 10-11 Torr) at a temperature of about 20 K. The magnitudes of the vibrational CSs lie within the 10-17 cm2 range. Features observed near 4.5, 9.5, and 12.5 eV in the incident energy dependence of the CSs were compared to the results of theoretical calculations and other experiments on gas and solid-phase THF. These three resonances are attributed to the formation of shape or core-excited shape resonances. Another maximum observed around 2.5 eV is not found in the calculations but has been observed in gas-phase studies; it is attributed to the formation of a shape resonance.

  9. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  10. Magnifying absolute instruments for optically homogeneous regions

    SciTech Connect

    Tyc, Tomas

    2011-09-15

    We propose a class of magnifying absolute optical instruments with a positive isotropic refractive index. They create magnified stigmatic images, either virtual or real, of optically homogeneous three-dimensional spatial regions within geometrical optics.

  11. The Simplicity Argument and Absolute Morality

    ERIC Educational Resources Information Center

    Mijuskovic, Ben

    1975-01-01

    In this paper the author has maintained that there is a similarity of thought to be found in the writings of Cudworth, Emerson, and Husserl in his investigation of an absolute system of morality. (Author/RK)

  12. Absolute cross sections of compound nucleus reactions

    NASA Astrophysics Data System (ADS)

    Capurro, O. A.

    1993-11-01

    The program SEEF is a Fortran IV computer code for the extraction of absolute cross sections of compound nucleus reactions. When the evaporation residue is fed by its parents, only cumulative cross sections will be obtained from off-line gamma ray measurements. But, if one has the parent excitation function (experimental or calculated), this code will make it possible to determine absolute cross sections of any exit channel.

  13. Kelvin and the absolute temperature scale

    NASA Astrophysics Data System (ADS)

    Erlichson, Herman

    2001-07-01

    This paper describes the absolute temperature scale of Kelvin (William Thomson). Kelvin found that Carnot's axiom about heat being a conserved quantity had to be abandoned. Nevertheless, he found that Carnot's fundamental work on heat engines was correct. Using the concept of a Carnot engine Kelvin found that Q1/Q2 = T1/T2. Thermometers are not used to obtain absolute temperatures since they are calculated temperatures.

  14. Improved ranging systems

    NASA Technical Reports Server (NTRS)

    Young, Larry E.

    1989-01-01

    Spacecraft range measurements have provided the most accurate tests, to date, of some relativistic gravitational parameters, even though the measurements were made with ranging systems having error budgets of about 10 meters. Technology is now available to allow an improvement of two orders of magnitude in the accuracy of spacecraft ranging. The largest gains in accuracy result from the replacement of unstable analog components with high speed digital circuits having precisely known delays and phase shifts.

  15. The effect of background galaxy contamination on the absolute magnitude and light curve speed class of type Ia supernovae

    NASA Technical Reports Server (NTRS)

    Boisseau, John R.; Wheeler, J. Craig

    1991-01-01

    Observational data are presented in support of the hypothesis that background galaxy contamination is present in the photometric data of Ia supernovae and that this effect can account for the observed dispersion in the light curve speeds of most of Ia supernovae. The implication is that the observed dispersion in beta is artificial and that most of Ia supernovae have nearly homogeneous light curves. The result supports the notion that Ia supernovae are good standard candles.

  16. A potential for overestimating the absolute magnitudes of second virial coefficients by small-angle X-ray scattering.

    PubMed

    Scott, David J; Patel, Trushar R; Winzor, Donald J

    2013-04-15

    Theoretical consideration is given to the effect of cosolutes (including buffer and electrolyte components) on the determination of second virial coefficients for proteins by small-angle X-ray scattering (SAXS)-a factor overlooked in current analyses in terms of expressions for a two-component system. A potential deficiency of existing practices is illustrated by reassessment of published results on the effect of polyethylene glycol concentration on the second virial coefficient for urate oxidase. This error reflects the substitution of I(0,c3,0), the scattering intensity in the limit of zero scattering angle and solute concentration, for I(0,0,0), the corresponding parameter in the limit of zero cosolute concentration (c3) as well. Published static light scattering results on the dependence of the apparent molecular weight of ovalbumin on buffer concentration are extrapolated to zero concentration to obtain the true value (M2) and thereby establish the feasibility of obtaining the analogous SAXS parameter, I(0,0,0), experimentally.

  17. Determination of the Meteor Limiting Magnitude

    NASA Technical Reports Server (NTRS)

    Kingery, A.; Blaauw, R.; Cooke, W. J.

    2016-01-01

    The limiting meteor magnitude of a meteor camera system will depend on the camera hardware and software, sky conditions, and the location of the meteor radiant. Some of these factors are constants for a given meteor camera system, but many change between meteor shower or sporadic source and on both long and short timescales. Since the limiting meteor magnitude ultimately gets used to calculate the limiting meteor mass for a given data set, it is important to have an understanding of these factors and to monitor how they change throughout the night, as a 0.5 magnitude uncertainty in limiting magnitude translates to a uncertainty in limiting mass by a factor of two.

  18. CODA-DERIVED SOURCE SPECTRA, MOMENT MAGNITUDES, AND ENERGY-MOMENT SCALING IN THE WESTERN ALPS

    SciTech Connect

    Morasca, P; Mayeda, K; Malagnini, L; Walter, W

    2004-02-03

    A stable estimate of the earthquake source spectra in the western Alps is obtained using an empirical method based on coda envelope amplitude measurements described by Mayeda et al. (2003) for events ranging between M{sub W} {approx} 1.0 to {approx}5.0. We calibrated path corrections for consecutive narrow frequency bands ranging between 0.2 and 25.0-Hz using a simple 1-D model for 5 three-component stations of the Regional Seismic network of Northwestern Italy (RSNI). The 1-D assumption performs well, even though the region is characterized by a complex structural setting involving strong lateral variations in the Moho depth. For frequencies less than 1.0-Hz, we tied our dimensionless, distance-corrected coda amplitudes to an absolute scale in units of dyne-cm by using independent moment magnitudes from long-period waveform modeling for 3 moderate magnitude events in the region. For the higher frequencies, we used small events as empirical Green's functions, with corner frequencies above 25.0-Hz. For each station, the procedure yields frequency-dependent corrections that account for site effects, including those related to f{sub max}, as well as those related to S-to-coda transfer function effects. After the calibration was completed, the corrections were applied to the entire data-set composed of 957 events. Our findings using the coda-derived source spectra are summarized as follows: (1) We derived stable estimates of seismic moment, M{sub 0}, (and hence M{sub W}) as well as radiated S-wave energy, (E{sub S}), from waveforms recorded by as few as one station, for events that were too small to be waveform modeled (i.e., events less than M{sub W} {approx}3.5); (2) The source spectra were used to derive an equivalent local magnitude, M{sub L(coda)}, that is in excellent agreement with the network averaged values using direct S-waves; (3) Scaled energy, {tilde e} = E{sub R}/M{sub 0}, where E{sub R}, the radiated seismic energy, is comparable to results from other

  19. Evaluation of the Absolute Regional Temperature Potential

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.

    2012-01-01

    The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  20. An absolute sensitivity calibration of the JET VUV SPRED spectrometer

    NASA Astrophysics Data System (ADS)

    Lawson, K. D.; Coffey, I. H.; Zacks, J.; Stamp, M. F.; contributors, JET-EFDA

    2009-04-01

    The determination of a good relative and absolute sensitivity calibration for wideband VUV spectrometers is challenging. On JET, the possible T and Be contamination of the VUV spectrometer precludes its removal to a synchrotron source and, consequently, a range of alternative in situ techniques have been investigated in depth. This has resulted in a reliable calibration for the complete spectral range, the relative calibration at short wavelengths being particularly accurate. At these wavelengths, a novel approach is used, in which the calibration is extended using a number of Na- and Li-like metal doublets. At longer wavelengths, the Li-like doublets of Ar and Ne have been used in conjunction with CII, CIII and CIV line intensity ratios. Unexplained discrepancies between the measured and modelled C results have meant that the exceptional short wavelength accuracy has not be repeated at these longer wavelengths. The absolute sensitivity has been determined from branching ratios to an absolutely calibrated visible spectrometer. The long term stability of the calibration is discussed.

  1. Simultaneously improving the sensitivity and absolute accuracy of CPT magnetometer.

    PubMed

    Liang, Shang-Qing; Yang, Guo-Qing; Xu, Yun-Fei; Lin, Qiang; Liu, Zhi-Heng; Chen, Zheng-Xiang

    2014-03-24

    A new method to improve the sensitivity and absolute accuracy simultaneously for coherent population trapping (CPT) magnetometer based on the differential detection method is presented. Two modulated optical beams with orthogonal circular polarizations are applied, in one of which two magnetic resonances are excited simultaneously by modulating a 3.4GHz microwave with Larmor frequency. When a microwave frequency shift is introduced, the difference in the power transmitted through the cell in each beam shows a low noise resonance. The sensitivity of 2pT/Hz @ 10Hz is achieved. Meanwhile, the absolute accuracy of ± 0.5nT within the magnetic field ranging from 20000nT to 100000nT is realized.

  2. Self consistent, absolute calibration technique for photon number resolving detectors.

    PubMed

    Avella, A; Brida, G; Degiovanni, I P; Genovese, M; Gramegna, M; Lolli, L; Monticone, E; Portesi, C; Rajteri, M; Rastello, M L; Taralli, E; Traina, P; White, M

    2011-11-07

    Well characterized photon number resolving detectors are a requirement for many applications ranging from quantum information and quantum metrology to the foundations of quantum mechanics. This prompts the necessity for reliable calibration techniques at the single photon level. In this paper we propose an innovative absolute calibration technique for photon number resolving detectors, using a pulsed heralded photon source based on parametric down conversion. The technique, being absolute, does not require reference standards and is independent upon the performances of the heralding detector. The method provides the results of quantum efficiency for the heralded detector as a function of detected photon numbers. Furthermore, we prove its validity by performing the calibration of a Transition Edge Sensor based detector, a real photon number resolving detector that has recently demonstrated its effectiveness in various quantum information protocols.

  3. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed.

  4. Absolute cross-section measurements for ionization of He Rydberg atoms in collisions with K

    NASA Astrophysics Data System (ADS)

    Deng, F.; Renwick, S.; Martínez, H.; Morgan, T. J.

    1995-11-01

    Absolute cross sections for ionization of 1.5-10.0 keV/amu Rydberg helium atoms in principal quantum states 12<=n<=15 due to collisions with potassium have been measured. The data are compared with the free-electron cross section at equal velocity. Our results for the collisional ionization cross sections (σi) agree both in shape and absolute magnitude with the data available for the total electron-scattering cross sections (σe) and support recent theoretical models for ionization of Rydberg atoms with neutral perturbers.

  5. Absolute pitch and pupillary response: effects of timbre and key color.

    PubMed

    Schlemmer, Kathrin B; Kulke, Franziska; Kuchinke, Lars; Van Der Meer, Elke

    2005-07-01

    The pitch identification performance of absolute pitch possessors has previously been shown to depend on pitch range, key color, and timbre of presented tones. In the present study, the dependence of pitch identification performance on key color and timbre of musical tones was examined by analyzing hit rates, reaction times, and pupillary responses of absolute pitch possessors (n = 9) and nonpossessors (n = 12) during a pitch identification task. Results revealed a significant dependence of pitch identification hit rate but not reaction time on timbre and key color in both groups. Among absolute pitch possessors, peak dilation of the pupil was significantly dependent on key color whereas the effect of timbre was marginally significant. Peak dilation of the pupil differed significantly between absolute pitch possessors and nonpossessors. The observed effects point to the importance of learning factors in the acquisition of absolute pitch.

  6. Absolute Radiation Measurements in Earth and Mars Entry Conditions

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2014-01-01

    This paper reports on the measurement of radiative heating for shock heated flows which simulate conditions for Mars and Earth entries. Radiation measurements are made in NASA Ames' Electric Arc Shock Tube at velocities from 3-15 km/s in mixtures of N2/O2 and CO2/N2/Ar. The technique and limitations of the measurement are summarized in some detail. The absolute measurements will be discussed in regards to spectral features, radiative magnitude and spatiotemporal trends. Via analysis of spectra it is possible to extract properties such as electron density, and rotational, vibrational and electronic temperatures. Relaxation behind the shock is analyzed to determine how these properties relax to equilibrium and are used to validate and refine kinetic models. It is found that, for some conditions, some of these values diverge from non-equilibrium indicating a lack of similarity between the shock tube and free flight conditions. Possible reasons for this are discussed.

  7. Measurements of absolute total and partial cross sections for the electron ionization of tungsten hexafluoride (WF6)

    NASA Astrophysics Data System (ADS)

    Basner, R.; Schmidt, M.; Becker, K.

    2004-04-01

    We measured absolute partial cross sections for the formation of positive ions followed by electron impact on tungsten hexafluoride (WF6) from threshold to 900 eV using a time-of-flight mass spectrometer (TOF-MS). Dissociative ionization processes resulting in seven different singly charged ions (F+, W+, WFx+, x=1-5) and five doubly charged ions (W2+, WFx2+, x=1-4) were found to be the dominant ionization channels. The ion spectrum at all impact energies is dominated by WF5+ fragment ions. At 120 eV impact energy, the partial WF5+ ionization cross section has a maximum value of 3.92×10-16 cm2 that corresponds to 43% of the total ion yield. The cross section values of all the other singly charged fragment ions at 120 eV range between 0.39×10-16 and 0.73×10-16 cm2. The ionization cross sections of the doubly charged ions are more than one order of magnitude lower than the cross section of WF5+. Double ionization processes account for 21% of the total ion yield at 120 eV. The absolute total ionization cross section of WF6 was obtained as the sum of all measured partial ionization cross sections and is compared with available calculated cross sections.

  8. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  9. Limiting Maximum Magnitude by Fault Dimensions (Invited)

    NASA Astrophysics Data System (ADS)

    Stirling, M. W.

    2010-12-01

    A standard practise of seismic hazard modeling is to combine fault and background seismicity sources to produce a multidisciplinary source model for a region. Background sources are typically modeled with a Gutenberg-Richter magnitude-frequency distribution developed from historical seismicity catalogs, and fault sources are typically modeled with earthquakes that are limited in size by the mapped fault rupture dimensions. The combined source model typically exhibits a Gutenberg-Richter-like distribution due to there being many short faults relative to the number of longer faults. The assumption that earthquakes are limited by the mapped fault dimensions therefore appears to be consistent with the Gutenberg-Richter relationship, one of the fundamental laws of seismology. Recent studies of magnitude-frequency distributions for California and New Zealand have highlighted an excess of fault-derived earthquakes relative to the log-linear extrapolation of the Gutenberg-Richter relationship from the smaller magnitudes (known as the “bulge”). Relaxing the requirement of maximum magnitude being limited by fault dimensions is a possible solution for removing the “bulge” to produce a perfectly log-linear Gutenberg-Richter distribution. An alternative perspective is that the “bulge” does not represent a significant departure from a Gutenberg-Richter distribution, and may simply be an artefact of a small earthquake dataset relative to the more plentiful data at the smaller magnitudes. In other words the uncertainty bounds of the magnitude-frequency distribution at the moderate-to-large magnitudes may be far greater than the size of the “bulge”.

  10. Standard magnitude prize reinforcers can be as efficacious as larger magnitude reinforcers in cocaine-dependent methadone patients

    PubMed Central

    Petry, Nancy M.; Alessi, Sheila M.; Barry, Danielle; Carroll, Kathleen M.

    2014-01-01

    Objective Contingency management (CM) reduces cocaine use in methadone patients, but only about 50% of patients respond to CM interventions. This study evaluated whether increasing magnitudes of reinforcement will improve outcomes. Methods Cocaine-dependent methadone patients (N = 240) were randomized to one of four 12-week treatment conditions: usual care (UC), UC plus “standard” prize CM in which average expected prize earnings were about $300, UC plus high magnitude prize CM in which average expected prize earnings were about $900, or UC plus voucher CM with an expected maximum of about $900 in vouchers. Results All three CM conditions yielded significant reductions in cocaine use relative to UC, with effect sizes (d) ranging from 0.38 to 0.59. No differences were noted between CM conditions, with at least 55% of patients in each CM condition achieving one week or more of cocaine abstinence versus 35% in UC. During the 12 weeks after the intervention ended, CM increased time until relapse relative to UC, but the effects of CM were no longer significant at a 12-month follow-up. Conclusions Providing the standard magnitude of $300 in prizes was as effective as larger magnitude CM in cocaine-dependent methadone patients in this study. Given its strong evidence base and relatively low costs, standard magnitude prize CM should be considered for adoption in methadone clinics to encourage cocaine abstinence, but new methods need to be developed to sustain abstinence. PMID:25198284

  11. Quantitative standards for absolute linguistic universals.

    PubMed

    Piantadosi, Steven T; Gibson, Edward

    2014-01-01

    Absolute linguistic universals are often justified by cross-linguistic analysis: If all observed languages exhibit a property, the property is taken to be a likely universal, perhaps specified in the cognitive or linguistic systems of language learners and users. In many cases, these patterns are then taken to motivate linguistic theory. Here, we show that cross-linguistic analysis will very rarely be able to statistically justify absolute, inviolable patterns in language. We formalize two statistical methods--frequentist and Bayesian--and show that in both it is possible to find strict linguistic universals, but that the numbers of independent languages necessary to do so is generally unachievable. This suggests that methods other than typological statistics are necessary to establish absolute properties of human language, and thus that many of the purported universals in linguistics have not received sufficient empirical justification.

  12. Absolute Pitch in Boreal Chickadees and Humans: Exceptions that Test a Phylogenetic Rule

    ERIC Educational Resources Information Center

    Weisman, Ronald G.; Balkwill, Laura-Lee; Hoeschele, Marisa; Moscicki, Michele K.; Bloomfield, Laurie L.; Sturdy, Christopher B.

    2010-01-01

    This research examined generality of the phylogenetic rule that birds discriminate frequency ranges more accurately than mammals. Human absolute pitch chroma possessors accurately tracked transitions between frequency ranges. Independent tests showed that they used note naming (pitch chroma) to remap the tones into ranges; neither possessors nor…

  13. Improving Children's Knowledge of Fraction Magnitudes.

    PubMed

    Fazio, Lisa K; Kennedy, Casey A; Siegler, Robert S

    2016-01-01

    We examined whether playing a computerized fraction game, based on the integrated theory of numerical development and on the Common Core State Standards' suggestions for teaching fractions, would improve children's fraction magnitude understanding. Fourth and fifth-graders were given brief instruction about unit fractions and played Catch the Monster with Fractions, a game in which they estimated fraction locations on a number line and received feedback on the accuracy of their estimates. The intervention lasted less than 15 minutes. In our initial study, children showed large gains from pretest to posttest in their fraction number line estimates, magnitude comparisons, and recall accuracy. In a more rigorous second study, the experimental group showed similarly large improvements, whereas a control group showed no improvement from practicing fraction number line estimates without feedback. The results provide evidence for the effectiveness of interventions emphasizing fraction magnitudes and indicate how psychological theories and research can be used to evaluate specific recommendations of the Common Core State Standards.

  14. Representations of the magnitudes of fractions.

    PubMed

    Schneider, Michael; Siegler, Robert S

    2010-10-01

    We tested whether adults can use integrated, analog, magnitude representations to compare the values of fractions. The only previous study on this question concluded that even college students cannot form such representations and instead compare fraction magnitudes by representing numerators and denominators as separate whole numbers. However, atypical characteristics of the presented fractions might have provoked the use of atypical comparison strategies in that study. In our 3 experiments, university and community college students compared more balanced sets of single-digit and multi-digit fractions and consistently exhibited a logarithmic distance effect. Thus, adults used integrated, analog representations, akin to a mental number line, to compare fraction magnitudes. We interpret differences between the past and present findings in terms of different stimuli eliciting different solution strategies.

  15. Magnitude and frequency of floods in Alabama

    USGS Publications Warehouse

    Atkins, J. Brian

    1996-01-01

    Methods of estimating flood magnitudes for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years are described for rural streams in Alabama that are not affected by regulation or urbanization. Flood-frequency characteristics are presented for 198 gaging stations in Alabama having 10 or more years of record through September 1991, that are used in the regional analysis. Regression relations were developed using generalized least-squares regression techniques to estimate flood magnitude and frequency on ungaged streams as a function of the drainage area of a basin. Sites on gaged streams should be weighted with gaging station data that are presented in the report. Graphical relations of peak discharges to drainage areas are also presented for sites along the Alabama, Black Warrior, Cahaba, Choctawhatchee, Conecub, and Tombigbee Rivers. Equations for estimating flood magnitudes on ungaged urban streams (taken from a previous report) that use drainage area and percentage of impervious cover as independent variables also are given.

  16. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed.

  17. The impact of water temperature on the measurement of absolute dose

    NASA Astrophysics Data System (ADS)

    Islam, Naveed Mehdi

    To standardize reference dosimetry in radiation therapy, Task Group 51 (TG 51) of American Association of Physicist's in Medicine (AAPM) recommends that dose calibration measurements be made in a water tank at a depth of 10 cm and at a reference geometry. Methodologies are provided for calculating various correction factors to be applied in calculating the absolute dose. However the protocol does not specify the water temperature to be used. In practice, the temperature of water during dosimetry may vary considerably between independent sessions and different centers. In this work the effect of water temperature on absolute dosimetry has been investigated. Density of water varies with temperature, which in turn may impact the beam attenuation and scatter properties. Furthermore, due to thermal expansion or contraction air volume inside the chamber may change. All of these effects can result in a change in the measurement. Dosimetric measurements were made using a Farmer type ion chamber on a Varian Linear Accelerator for 6 MV and 23 MV photon energies for temperatures ranging from 10 to 40 °C. A thermal insulation was designed for the water tank in order to maintain relatively stable temperature over the duration of the experiment. Dose measured at higher temperatures were found to be consistently higher by a very small magnitude. Although the differences in dose were less than the uncertainty in each measurement, a linear regression of the data suggests that the trend is statistically significant with p-values of 0.002 and 0.013 for 6 and 23 MV beams respectively. For a 10 degree difference in water phantom temperatures, which is a realistic deviation across clinics, the final calculated reference dose can differ by 0.24% or more. To address this effect, first a reference temperature (e.g.22 °C) can be set as the standard; subsequently a correction factor can be implemented for deviations from this reference. Such a correction factor is expected to be of similar

  18. Correlation of symptom clusters of schizophrenia with absolute powers of main frequency bands in quantitative EEG

    PubMed Central

    Gross, Andres; Joutsiniemi, Sirkka-Liisa; Rimon, Ranan; Appelberg, Björn

    2006-01-01

    Background Research of QEEG activity power spectra has shown intriguing results in patients with schizophrenia. Different symptom clusters have been correlated to QEEG frequency bands. The findings have been to some extent inconsistent. Replication of the findings of previous research is thus an important task. In the current study we investigated the correlations between the absolute powers of delta, theta, alpha, and beta frequency bands over the fronto-central scalp area (FC) with the PANSS subscales and the Liddle's factors in 16 patients with schizophrenia. The authors hypothesised a priori the correlations reported by Harris et al (1999) of PANSS negative subscale with delta power, Liddle's psychomotor poverty with delta and beta powers, disorganisation with delta power and reality distortion with alpha power on the midline FC. Methods The sample consisted of 16 patients with chronic schizophrenia considered as having insufficient clinical response to conventional antipsychotic treatment and evidencing a relapse. The correlations between quantitative electroencephalography (QEEG) absolute powers of delta (1.5–3.0 Hz), theta (3.0–7.5 Hz), alpha (7.5–12.5 Hz), and beta (12.5–20.0 Hz) frequency bands over the fronto-central scalp area (FC) with PANSS subscales and Liddle's factors (reality distortion, disorganisation, psychomotor poverty) were investigated. Results Significant positive correlations were found between the beta and psychomotor poverty (p < 0.05). Trends towards positive correlations (p < 0.1) were observed between delta and PANSS negative subscale and psychomotor poverty. Alpha did not correlate with reality distortion and delta did not correlate with disorganisation. Post hoc analysis revealed correlations of the same magnitude between beta and psychopathology generally over FC. Conclusion The a priori hypothesis was partly supported by the correlation of the beta and psychomotor poverty. Liddle's factors showed correlations of the same

  19. A Glossary of Range Terminology

    DTIC Science & Technology

    1981-01-01

    GLOSSARY OF RANGE TERMINOLOGY" Final 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(e) S. CONTRACT OR GRANT NUMUER(e) Documentation Group Range Commanders...Council White Sands Missile Range, NM 88002 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS Same...ABSOLUTE ADDRESS -- The label or number permanently assigned to a specific storage location, device or register. binary words together with an origin

  20. Probability of inducing given-magnitude earthquakes by perturbing finite volumes of rocks

    NASA Astrophysics Data System (ADS)

    Shapiro, Serge A.; Krüger, Oliver S.; Dinske, Carsten

    2013-07-01

    Fluid-induced seismicity results from an activation of finite rock volumes. The finiteness of perturbed volumes influences frequency-magnitude statistics. Previously we observed that induced large-magnitude events at geothermal and hydrocarbon reservoirs are frequently underrepresented in comparison with the Gutenberg-Richter law. This is an indication that the events are more probable on rupture surfaces contained within the stimulated volume. Here we theoretically and numerically analyze this effect. We consider different possible scenarios of event triggering: rupture surfaces located completely within or intersecting only the stimulated volume. We approximate the stimulated volume by an ellipsoid or cuboid and derive the statistics of induced events from the statistics of random thin flat discs modeling rupture surfaces. We derive lower and upper bounds of the probability to induce a given-magnitude event. The bounds depend strongly on the minimum principal axis of the stimulated volume. We compare the bounds with data on seismicity induced by fluid injections in boreholes. Fitting the bounds to the frequency-magnitude distribution provides estimates of a largest expected induced magnitude and a characteristic stress drop, in addition to improved estimates of the Gutenberg-Richter a and b parameters. The observed frequency-magnitude curves seem to follow mainly the lower bound. However, in some case studies there are individual large-magnitude events clearly deviating from this statistic. We propose that such events can be interpreted as triggered ones, in contrast to the absolute majority of the induced events following the lower bound.

  1. Characterization of an atmospheric helium plasma jet by relative and absolute optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiong, Qing; Nikiforov, Anton Yu; González, Manuel Á.; Leys, Christophe; Pei Lu, Xin

    2013-02-01

    The characteristics of plasma temperatures (gas temperature and electron excitation temperature) and electron density in a pulsed-dc excited atmospheric helium plasma jet are studied by relative and absolute optical emission spectroscopy (OES). High-resolution OES is performed for the helium and hydrogen lines for the determination of electron density through the Stark broadening mechanism. A superposition fitting method composed of two component profiles corresponding to two different electron densities is developed to fit the investigated lines. Electron densities of the orders of magnitude of 1021 and 1020 m-3 are characterized for the center and edge regions in the jet discharge when the applied voltage is higher than 13.0 kV. The atomic state distribution function (ASDF) of helium demonstrates that the discharge deviates from the Boltzmann-Saha equilibrium state, especially for the helium lower levels, which are significantly overpopulated. Local electron excitation temperatures T13 and Tspec corresponding to the lower and upper parts of the helium ASDF are defined and found to range from 1.2 eV to 1.4 eV and 0.2 eV to 0.3 eV, respectively. A comparative analysis shows that the Saha balance is valid in the discharge for helium atoms at high excited states.

  2. Crystal structure of meteoritic schreibersites: determination of absolute structure

    NASA Astrophysics Data System (ADS)

    Skála, Roman; Císařová, Ivana

    Minerals of the schreibersite nickelphosphide series (Fe,Ni)3P crystallize in the non-centrosymmetric space group Ibar 4. As a consequence, they can possess two different spatial arrangements of the constituting atoms within the unit cell, related by the inversion symmetry operation. Here, we present the crystal structure refinements from single crystal X-ray diffraction data for schreibersite grains from iron meteorites Acuña, Carlton, Hex River Mts. (three different crystals), Odessa (two different crystals), Sikhote Alin, and Toluca aiming for the determination of the absolute structure of the examined crystals. The crystals studied cover the composition range from 58 mol% to 80 mol% Fe3P end-member. Unit-cell parameter a and volume of the unit cell V, as well as certain topological structural parameters tightly correlate with Fe3P content. Unit-cell parameter c, on the other hand, does not show such strong correlation. Eight of the nine crystal structure refinements allowed unambiguous absolute structure assignment. The single crystal extracted from Toluca is, however, of poor quality and consequently the structure refinement did not provide as good results as the rest of the materials. Also, this crystal has only weak inversion distinguishing power to provide unequivocal absolute structure determination. Six of the eight unambiguous absolute structure determinations indicated inverted atomic arrangement compared to that reported in earlier structure refinements (here called standard). Only two grains, one taken from Odessa iron and the other from the Hex River Mts. meteorite, reveal the dominance of standard crystal structure setting.

  3. Comparative vs. Absolute Judgments of Trait Desirability

    ERIC Educational Resources Information Center

    Hofstee, Willem K. B.

    1970-01-01

    Reversals of trait desirability are studied. Terms indicating conservativw behavior appeared to be judged relatively desirable in comparative judgement, while traits indicating dynamic and expansive behavior benefited from absolute judgement. The reversal effect was shown to be a general one, i.e. reversals were not dependent upon the specific…

  4. New Techniques for Absolute Gravity Measurements.

    DTIC Science & Technology

    1983-01-07

    Hammond, J.A. (1978) Bollettino Di Geofisica Teorica ed Applicata Vol. XX. 8. Hammond, J. A., and Iliff, R. L. (1979) The AFGL absolute gravity system...International Gravimetric Bureau, No. L:I-43. 7. Hammond. J.A. (1978) Bollettino Di Geofisica Teorica ed Applicata Vol. XX. 8. Hammond, J.A., and

  5. An Absolute Electrometer for the Physics Laboratory

    ERIC Educational Resources Information Center

    Straulino, S.; Cartacci, A.

    2009-01-01

    A low-cost, easy-to-use absolute electrometer is presented: two thin metallic plates and an electronic balance, usually available in a laboratory, are used. We report on the very good performance of the device that allows precise measurements of the force acting between two charged plates. (Contains 5 footnotes, 2 tables, and 6 figures.)

  6. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  7. Absolute Positioning Using the Global Positioning System

    DTIC Science & Technology

    1994-04-01

    Global Positioning System ( GPS ) has becom a useful tool In providing relativ survey...Includes the development of a low cost navigator for wheeled vehicles. ABSTRACT The Global Positioning System ( GPS ) has become a useful tool In providing...technique of absolute or point positioning involves the use of a single Global Positioning System ( GPS ) receiver to determine the three-dimenslonal

  8. Improving Children's Knowledge of Fraction Magnitudes

    ERIC Educational Resources Information Center

    Fazio, Lisa K.; Kennedy, Casey A.; Siegler, Robert S.

    2016-01-01

    We examined whether playing a computerized fraction game, based on the integrated theory of numerical development and on the Common Core State Standards' suggestions for teaching fractions, would improve children's fraction magnitude understanding. Fourth and fifth-graders were given brief instruction about unit fractions and played "Catch…

  9. Incentive theory: IV. Magnitude of reward

    PubMed Central

    Killeen, Peter R.

    1985-01-01

    Incentive theory is successfully applied to data from experiments in which the amount of food reward is varied. This is accomplished by assuming that incentive value is a negatively accelerated function of reward duration. The interaction of the magnitude of a reward with its delay is confirmed, and the causes and implications of this interaction are discussed. PMID:16812421

  10. An integrated model of choices and response times in absolute identification.

    PubMed

    Brown, Scott D; Marley, A A J; Donkin, Christopher; Heathcote, Andrew

    2008-04-01

    Recent theoretical developments in the field of absolute identification have stressed differences between relative and absolute processes, that is, whether stimulus magnitudes are judged relative to a shorter term context provided by recently presented stimuli or a longer term context provided by the entire set of stimuli. The authors developed a model (SAMBA: selective attention, mapping, and ballistic accumulation) that integrates shorter and longer term memory processes and accounts for both the choices made and the associated response time distributions, including sequential effects in each. The model's predictions arise as a consequence of its architecture and require estimation of only a few parameters with values that are consistent across numerous data sets. The authors show that SAMBA provides a quantitative account of benchmark choice phenomena in classical absolute identification experiments and in contemporary data involving both choice and response time.

  11. Calibration of magnitude scales for earthquakes of the Mediterranean

    NASA Astrophysics Data System (ADS)

    Gardini, Domenico; di Donato, Maria; Boschi, Enzo

    In order to provide the tools for uniform size determination for Mediterranean earthquakes over the last 50-year period of instrumental seismology, we have regressed the magnitude determinations for 220 earthquakes of the European-Mediterranean region over the 1977-1991 period, reported by three international centres, 11 national and regional networks and 101 individual stations and observatories, using seismic moments from the Harvard CMTs. We calibrate M(M0) regression curves for the magnitude scales commonly used for Mediterranean earthquakes (ML, MWA, mb, MS, MLH, MLV, MD, M); we also calibrate static corrections or specific regressions for individual observatories and we verify the reliability of the reports of different organizations and observatories. Our analysis shows that the teleseismic magnitudes (mb, MS) computed by international centers (ISC, NEIC) provide good measures of earthquake size, with low standard deviations (0.17-0.23), allowing one to regress stable regional calibrations with respect to the seismic moment and to correct systematic biases such as the hypocentral depth for MS and the radiation pattern for mb; while mb is commonly reputed to be an inadequate measure of earthquake size, we find that the ISC mb is still today the most precise measure to use to regress MW and M0 for earthquakes of the European-Mediterranean region; few individual observatories report teleseismic magnitudes requiring specific dynamic calibrations (BJI, MOS). Regional surface-wave magnitudes (MLV, MLH) reported in Eastern Europe generally provide reliable measures of earthquake size, with standard deviations often in the 0.25-0.35 range; the introduction of a small (±0.1-0.2) static station correction is sometimes required. While the Richter magnitude ML is the measure of earthquake size most commonly reported in the press whenever an earthquake strikes, we find that ML has not been computed in the European-Mediterranean in the last 15 years; the reported local

  12. Toward Reconciling Magnitude Discrepancies Estimated from Paleoearthquake Data

    SciTech Connect

    N. Seth Carpenter; Suzette J. Payne; Annette L. Schafer

    2012-06-01

    We recognize a discrepancy in magnitudes estimated for several Basin and Range, U.S.A. faults. For example, magnitudes predicted for the Wasatch (Utah), Lost River (Idaho), and Lemhi (Idaho) faults from fault segment lengths (L{sub seg}) where lengths are defined between geometrical, structural, and/or behavioral discontinuities assumed to persistently arrest rupture, are consistently less than magnitudes calculated from displacements (D) along these same segments. For self-similarity, empirical relationships (e.g. Wells and Coppersmith, 1994) should predict consistent magnitudes (M) using diverse fault dimension values for a given fault (i.e. M {approx} L{sub seg}, should equal M {approx} D). Typically, the empirical relationships are derived from historical earthquake data and parameter values used as input into these relationships are determined from field investigations of paleoearthquakes. A commonly used assumption - grounded in the characteristic-earthquake model of Schwartz and Coppersmith (1984) - is equating L{sub seg} with surface rupture length (SRL). Many large historical events yielded secondary and/or sympathetic faulting (e.g. 1983 Borah Peak, Idaho earthquake) which are included in the measurement of SRL and used to derive empirical relationships. Therefore, calculating magnitude from the M {approx} SRL relationship using L{sub seg} as SRL leads to an underestimation of magnitude and the M {approx} L{sub seg} and M {approx} D discrepancy. Here, we propose an alternative approach to earthquake magnitude estimation involving a relationship between moment magnitude (Mw) and length, where length is L{sub seg} instead of SRL. We analyze seven historical, surface-rupturing, strike-slip and normal faulting earthquakes for which segmentation of the causative fault and displacement data are available and whose rupture included at least one entire fault segment, but not two or more. The preliminary Mw {approx} L{sub seg} results are strikingly consistent

  13. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-01-01

    The need for independent, redundant absolute radiometric calibration methods is discussed with reference to the Thematic Mapper. Uncertainty requirements for absolute calibration of between 0.5 and 4 percent are defined based on the accuracy of reflectance retrievals at an agricultural site. It is shown that even very approximate atmospheric corrections can reduce the error in reflectance retrieval to 0.02 over the reflectance range 0 to 0.4.

  14. Magnitude Estimation with Noisy Integrators Linked by an Adaptive Reference.

    PubMed

    Thurley, Kay

    2016-01-01

    Judgments of physical stimuli show characteristic biases; relatively small stimuli are overestimated whereas relatively large stimuli are underestimated (regression effect). Such biases likely result from a strategy that seeks to minimize errors given noisy estimates about stimuli that itself are drawn from a distribution, i.e., the statistics of the environment. While being conceptually well described, it is unclear how such a strategy could be implemented neurally. The present paper aims toward answering this question. A theoretical approach is introduced that describes magnitude estimation as two successive stages of noisy (neural) integration. Both stages are linked by a reference memory that is updated with every new stimulus. The model reproduces the behavioral characteristics of magnitude estimation and makes several experimentally testable predictions. Moreover, the model identifies the regression effect as a means of minimizing estimation errors and explains how this optimality strategy depends on the subject's discrimination abilities and on the stimulus statistics. The latter influence predicts another property of magnitude estimation, the so-called range effect. Beyond being successful in describing decision-making, the present work suggests that noisy integration may also be important in processing magnitudes.

  15. Absolute distance measurement based on multiple self-mixing interferometry

    NASA Astrophysics Data System (ADS)

    Duan, Zhiwei; Yu, Yangyang; Gao, Bingkun; Jiang, Chunlei

    2017-04-01

    To improve the precision of distance measurement using laser Self-Mixing Interferometry (SMI) and compute short distance, we propose a method of Multiple Self-Mixing Interferometry (MSMI) that is modulated with a triangular wave. The principle of this method has been described in this paper. Experiments at different distances and amplitudes of modulation current are based on the proposed method. Low-priced and easily operated experimental devices are built. Experimental results show that a resolution of 2.7 mm can be achieved for absolute distance ranging from 2.2 to 23 cm.

  16. Absolute Emission Spectroscopy of Electronically Excited Products of Dissociative Recombination

    NASA Astrophysics Data System (ADS)

    Skrzypkowski, M. P.; Gougousi, T.; Golde, M. F.; Johnsen, R.

    1997-10-01

    We have employed spatially-resolved optical emission spectroscopy in a flowing afterglow plasma to investigate radiations in the 200-400 nm range resulting from electron-ion dissociative recombination. Calibrated emission data combined with Langmuir probe electron-density measurements are analyzed to obtain branching ratios for electronically excited recombination products. In particular, we will report absolute yields of CO(a^3Π) resulting from recombining CO_2^+ ions, NO(B^2Π) from N_2O^+, OH(A^2Σ^+) from HCO_2^+, as well as NH(A^3Π_i), and OH(A^2Σ^+) from the recombination of N_2OH^+ ions.

  17. Absolute Temperature Monitoring Using RF Radiometry in the MRI Scanner

    PubMed Central

    El-Sharkawy, AbdEl-Monem M.; Sotiriadis, Paul P.; Bottomley, Paul A.; Atalar, Ergin

    2007-01-01

    Temperature detection using microwave radiometry has proven value for noninvasively measuring the absolute temperature of tissues inside the body. However, current clinical radiometers operate in the gigahertz range, which limits their depth of penetration. We have designed and built a noninvasive radiometer which operates at radio frequencies (64 MHz) with ∼100-kHz bandwidth, using an external RF loop coil as a thermal detector. The core of the radiometer is an accurate impedance measurement and automatic matching circuit of 0.05 Ω accuracy to compensate for any load variations. The radiometer permits temperature measurements with accuracy of ±0.1°K, over a tested physiological range of 28° C–40° C in saline phantoms whose electric properties match those of tissue. Because 1.5 T magnetic resonance imaging (MRI) scanners also operate at 64 MHz, we demonstrate the feasibility of integrating our radiometer with an MRI scanner to monitor RF power deposition and temperature dosimetry, obtaining coarse, spatially resolved, absolute thermal maps in the physiological range. We conclude that RF radiometry offers promise as a direct, noninvasive method of monitoring tissue heating during MRI studies and thereby providing an independent means of verifying patient-safe operation. Other potential applications include titration of hyper- and hypo-therapies. PMID:18026562

  18. A method for determining the V magnitude of asteroids from CCD images

    NASA Astrophysics Data System (ADS)

    Dymock, R.; Miles, R.

    2009-06-01

    We describe a method of obtaining the V magnitude of an asteroid using differential photometry, with the magnitudes of comparison stars derived from Carlsberg Meridian Catalogue 14 (CMC14) data. The availability of a large number of suitable CMC14 stars enables a reasonably accurate magnitude (+/-0.05 mag) to be determined without having to resort to more complicated absolute or all-sky photometry. An improvement in accuracy to +/-0.03 mag is possible if an ensemble of several CMC14 stars is used. This method is expected to be less accurate for stars located within +/-10° of the galactic equator owing to excessive interstellar reddening and stellar crowding. Non-refereed articles

  19. From 'sense of number' to 'sense of magnitude' - The role of continuous magnitudes in numerical cognition.

    PubMed

    Leibovich, Tali; Katzin, Naama; Harel, Maayan; Henik, Avishai

    2016-08-17

    In this review, we are pitting two theories against each other: the more accepted theory-the 'number sense' theory-suggesting that a sense of number is innate and non-symbolic numerosity is being processed independently of continuous magnitudes (e.g., size, area, density); and the newly emerging theory suggesting that (1) both numerosities and continuous magnitudes are processed holistically when comparing numerosities, and (2) a sense of number might not be innate. In the first part of this review, we discuss the 'number sense' theory. Against this background, we demonstrate how the natural correlation between numerosities and continuous magnitudes makes it nearly impossible to study non-symbolic numerosity processing in isolation from continuous magnitudes, and therefore the results of behavioral and imaging studies with infants, adults and animals can be explained, at least in part, by relying on continuous magnitudes. In the second part, we explain the 'sense of magnitude' theory and review studies that directly demonstrate that continuous magnitudes are more automatic and basic than numerosities. Finally, we present outstanding questions. Our conclusion is that there is not enough convincing evidence to support the number sense theory anymore. Therefore, we encourage researchers not to assume that number sense is simply innate, but to put this hypothesis to the test, and to consider if such an assumption is even testable in light of the correlation of numerosity and continuous magnitudes.

  20. Local magnitude scale for earthquakes in Turkey

    NASA Astrophysics Data System (ADS)

    Kılıç, T.; Ottemöller, L.; Havskov, J.; Yanık, K.; Kılıçarslan, Ö.; Alver, F.; Özyazıcıoğlu, M.

    2017-01-01

    Based on the earthquake event data accumulated by the Turkish National Seismic Network between 2007 and 2013, the local magnitude (Richter, Ml) scale is calibrated for Turkey and the close neighborhood. A total of 137 earthquakes (Mw > 3.5) are used for the Ml inversion for the whole country. Three Ml scales, whole country, East, and West Turkey, are developed, and the scales also include the station correction terms. Since the scales for the two parts of the country are very similar, it is concluded that a single Ml scale is suitable for the whole country. Available data indicate the new scale to suffer from saturation beyond magnitude 6.5. For this data set, the horizontal amplitudes are on average larger than vertical amplitudes by a factor of 1.8. The recommendation made is to measure Ml amplitudes on the vertical channels and then add the logarithm scale factor to have a measure of maximum amplitude on the horizontal. The new Ml is compared to Mw from EMSC, and there is almost a 1:1 relationship, indicating that the new scale gives reliable magnitudes for Turkey.

  1. Magnitude and frequency of floods in western Oregon

    USGS Publications Warehouse

    Harris, David Dell; Hubbard, Larry L.; Hubbard, Lawrence E.

    1979-01-01

    A method for estimating the magnitude and frequency of floods is presented for unregulated streams in western Oregon. Equations relating flood magnitude to basin characteristics were developed for exceedance probabilities of 0.5 to 0.01 (2- to 100-year recurrence intervals). Separate equations are presented for four regions: Coast, Willamette, Rogue-Umpqua, and High Cascades. Also presented are values of flood discharges for selected exceedance probabilities and of basin characteristics for all gaging stations used in the analysis. Included are data for 230 stations in Oregon, 6 stations in southwestern Washington, and 3 stations in northwestern California. Drainage areas used in the analysis range from 0.21 to 7,280 square miles. Also included are maximum discharges for all western Oregon stations used in the analysis. (Woodard-USGS)

  2. The new Absolute Quantum Gravimeter (AQG): first results and perspectives

    NASA Astrophysics Data System (ADS)

    Bonvalot, Sylvain; Le Moigne, Nicolas; Merlet, Sebastien; Desruelle, Bruno; Lautier-Gaud, Jean; Menoret, Vincent; Vermeulen, Pierre

    2016-04-01

    Cold atom gravimetry represents one of the most innovative evolution in gravity instrumentation since the last 20 years. The concept of measuring the gravitational acceleration by dropping atoms and the development of the first instrumental devices during this last decade quickly revealed the promising perspectives of this new generation of gravity meters enabling accurate and absolute measurements of the Earth's gravity field for a wide range of applications (geophysics, geodesy, metrology, etc.). The Absolute Quantum Gravimeter (AQG) gravity meter, developed by MUQUANS (Talence, France - http://www.muquans.com/) with the support of RESIF, the French Seismologic and Geodetic Network (http://www.resif.fr/) belongs to this new generation of instruments. It also represents the first commercial device based on the utilization of advanced matter-wave interferometry techniques, which allow to characterize precisely the vertical acceleration experienced by a cloud of cold atoms. Recently, the first operational unit (AQG01) has been achieved as a compact transportable gravimeter with the aim of satisfying absolute gravity measurements in laboratory conditions under the following specifications: measurements the μGal level at a few Hz cycling frequency, sensitivity of 50μGal/√Hz, immunity to ground vibrations, easy and quickness of operation, automated continuous data acquisition for several months, etc. In order to evaluate the current performances of the AQG01, several experiments are carried out in collaboration between RESIF user's teams and the MUQUANS manufacturer on different reference gravity sites and laboratories in France. These measurements performed in indoor conditions including simultaneous observations with classical reference gravity instruments (corner-cube absolute gravity meters, relative superconducting meters) as well with the Cold Atom Gravity meter (CAG) developed by LNE-SYRTE, lead to a first objective characterization of the performances of

  3. Consistent thermostatistics forbids negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Hilbert, Stefan

    2014-01-01

    Over the past 60 years, a considerable number of theories and experiments have claimed the existence of negative absolute temperature in spin systems and ultracold quantum gases. This has led to speculation that ultracold gases may be dark-energy analogues and also suggests the feasibility of heat engines with efficiencies larger than one. Here, we prove that all previous negative temperature claims and their implications are invalid as they arise from the use of an entropy definition that is inconsistent both mathematically and thermodynamically. We show that the underlying conceptual deficiencies can be overcome if one adopts a microcanonical entropy functional originally derived by Gibbs. The resulting thermodynamic framework is self-consistent and implies that absolute temperature remains positive even for systems with a bounded spectrum. In addition, we propose a minimal quantum thermometer that can be implemented with available experimental techniques.

  4. Computer processing of spectrograms for absolute intensities.

    PubMed

    Guttman, A; Golden, J; Galbraith, H J

    1967-09-01

    A computer program was developed to process photographically recorded spectra for absolute intensity. Test and calibration films are subjected to densitometric scans that provide digitally recorded densities on magnetic tapes. The nonlinear calibration data are fitted by least-squares cubic polynomials to yield a good approximation to the monochromatic H&D curves for commonly used emulsions (2475 recording film, Royal-X, Tri-X, 4-X). Several test cases were made. Results of these cases show that the machine processed absolute intensities are accurate to within 15%o. Arbitrarily raising the sensitivity threshold by 0.1 density units above gross fog yields cubic polynomial fits to the H&D curves that are radiometrically accurate within 10%. In addition, curves of gamma vs wavelength for 2475, Tri-X, and 4-X emulsions were made. These data show slight evidence of the photographic Purkinje effect in the 2475 emulsion.

  5. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  6. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum.

  7. Absolute and relative dosimetry for ELIMED

    NASA Astrophysics Data System (ADS)

    Cirrone, G. A. P.; Cuttone, G.; Candiano, G.; Carpinelli, M.; Leonora, E.; Lo Presti, D.; Musumarra, A.; Pisciotta, P.; Raffaele, L.; Randazzo, N.; Romano, F.; Schillaci, F.; Scuderi, V.; Tramontana, A.; Cirio, R.; Marchetto, F.; Sacchi, R.; Giordanengo, S.; Monaco, V.

    2013-07-01

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  8. Apparent LFE Magnitude-Frequency Distributions and the Tremor Source

    NASA Astrophysics Data System (ADS)

    Rubin, A. M.; Bostock, M. G.

    2015-12-01

    Over a decade since its discovery, it is disconcerting that we know so little about the kinematics of the tremor source. One could say we are hampered by low signal-to-noise ratio, but often the LFE signal is large and the "noise" is just other LFEs, often nearly co-located. Here we exploit this feature to better characterize the tremor source. A quick examination of LFE catalogs shows, unsurprisingly, that detected magnitudes are large when the background tremor amplitude is large. A simple interpretation is that small LFEs are missed when tremor is loud. An unanswered question is whether, in addition, there is a paucity of small LFEs when tremor is loud. Because we have both the LFE Green's function (from stacks) and some minimum bound on the overall LFE rate (from our catalogs), tremor waveforms provide a consistency check on any assumed magnitude-frequency (M-f) distribution. Beneath southern Vancouver Island, the magnitudes of >10^5 LFEs range from about 1.2-2.4 (Bostock et al. 2015). Interpreted in terms of a power-law distribution, the b-value is >5. But missed small events make even this large value only a lower bound. Binning by background tremor amplitude, and assuming a time-invariant M-f distribution, the b-value increases to >7, implying (e.g.) more than 10 million M>1.2 events for every M=2.2 event. Such numbers are inconsistent with the observed modest increase in tremor amplitude with LFE magnitude, as well as with geodetically-allowable slips. Similar considerations apply to exponential and log-normal moment-frequency distributions. Our preliminary interpretation is that when LFE magnitudes are large, the same portion of the fault is producing larger LFEs, rather than a greater rate of LFEs pulled from the same distribution. If correct, this distinguishes LFEs from repeating earthquakes, where larger background fault slip rates lead not to larger earthquakes but to more frequent earthquakes of similar magnitude. One possible explanation, that LFEs

  9. Evolution and magnitudes of candidate Planet Nine

    NASA Astrophysics Data System (ADS)

    Linder, Esther F.; Mordasini, Christoph

    2016-05-01

    Context. The recently renewed interest in a possible additional major body in the outer solar system prompted us to study the thermodynamic evolution of such an object. We assumed that it is a smaller version of Uranus and Neptune. Aims: We modeled the temporal evolution of the radius, temperature, intrinsic luminosity, and the blackbody spectrum of distant ice giant planets. The aim is also to provide estimates of the magnitudes in different bands to assess whether the object might be detectable. Methods: Simulations of the cooling and contraction were conducted for ice giants with masses of 5, 10, 20, and 50 M⊕ that are located at 280, 700, and 1120 AU from the Sun. The core composition, the fraction of H/He, the efficiency of energy transport, and the initial luminosity were varied. The atmospheric opacity was set to 1, 50, and 100 times solar metallicity. Results: We find for a nominal 10 M⊕ planet at 700 AU at the current age of the solar system an effective temperature of 47 K, much higher than the equilibrium temperature of about 10 K, a radius of 3.7 R⊕, and an intrinsic luminosity of 0.006 L♃. It has estimated apparent magnitudes of Johnson V, R, I, L, N, Q of 21.7, 21.4, 21.0, 20.1, 19.9, and 10.7, and WISE W1-W4 magnitudes of 20.1, 20.1, 18.6, and 10.2. The Q and W4 band and other observations longward of about 13 μm pick up the intrinsic flux. Conclusions: If candidate Planet 9 has a significant H/He layer and an efficient energy transport in the interior, then its luminosity is dominated by the intrinsic contribution, making it a self-luminous planet. At a likely position on its orbit near aphelion, we estimate for a mass of 5, 10, 20, and 50 M⊕ a V magnitude from the reflected light of 24.3, 23.7, 23.3, and 22.6 and a Q magnitude from the intrinsic radiation of 14.6, 11.7, 9.2, and 5.8. The latter would probably have been detected by past surveys.

  10. Magnitude and frequency of floods in Arkansas

    USGS Publications Warehouse

    Hodge, Scott A.; Tasker, Gary D.

    1995-01-01

    Methods are presented for estimating the magnitude and frequency of peak discharges of streams in Arkansas. Regression analyses were developed in which a stream's physical and flood characteristics were related. Four sets of regional regression equations were derived to predict peak discharges with selected recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years on streams draining less than 7,770 square kilometers. The regression analyses indicate that size of drainage area, main channel slope, mean basin elevation, and the basin shape factor were the most significant basin characteristics that affect magnitude and frequency of floods. The region of influence method is included in this report. This method is still being improved and is to be considered only as a second alternative to the standard method of producing regional regression equations. This method estimates unique regression equations for each recurrence interval for each ungaged site. The regression analyses indicate that size of drainage area, main channel slope, mean annual precipitation, mean basin elevation, and the basin shape factor were the most significant basin and climatic characteristics that affect magnitude and frequency of floods for this method. Certain recommendations on the use of this method are provided. A method is described for estimating the magnitude and frequency of peak discharges of streams for urban areas in Arkansas. The method is from a nationwide U.S. Geeological Survey flood frequency report which uses urban basin characteristics combined with rural discharges to estimate urban discharges. Annual peak discharges from 204 gaging stations, with drainage areas less than 7,770 square kilometers and at least 10 years of unregulated record, were used in the analysis. These data provide the basis for this analysis and are published in the Appendix of this report as supplemental data. Large rivers such as the Red, Arkansas, White, Black, St. Francis, Mississippi, and

  11. Negative absolute temperature for mobile particles

    NASA Astrophysics Data System (ADS)

    Braun, Simon; Ronzheimer, Philipp; Schreiber, Michael; Hodgman, Sean; Bloch, Immanuel; Schneider, Ulrich

    2013-05-01

    Absolute temperature is usually bound to be strictly positive. However, negative absolute temperature states, where the occupation probability of states increases with their energy, are possible in systems with an upper energy bound. So far, such states have only been demonstrated in localized spin systems with finite, discrete spectra. We realized a negative absolute temperature state for motional degrees of freedom with ultracold bosonic 39K atoms in an optical lattice, by implementing the attractive Bose-Hubbard Hamiltonian. This new state strikingly revealed itself by a quasimomentum distribution that is peaked at maximum kinetic energy. The measured kinetic energy distribution and the extracted negative temperature indicate that the ensemble is close to degeneracy, with coherence over several lattice sites. The state is as stable as a corresponding positive temperature state: The negative temperature stabilizes the system against mean-field collapse driven by negative pressure. Negative temperatures open up new parameter regimes for cold atoms, enabling fundamentally new many-body states. Additionally, they give rise to several counterintuitive effects such as heat engines with above unity efficiency.

  12. Measurement of absolute gravity acceleration in Firenze

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  13. System for absolute measurements by interferometric sensors

    NASA Astrophysics Data System (ADS)

    Norton, Douglas A.

    1993-03-01

    The most common problem of interferometric sensors is their inability to measure absolute path imbalance. Presented in this paper is a signal processing system that gives absolute, unambiguous reading of optical path difference for almost any style of interferometric sensor. Key components are a wide band (incoherent) optical source, a polychromator, and FFT electronics. Advantages include no moving parts in the signal processor, no active components at the sensor location, and the use of standard single mode fiber for sensor illumination and signal transmission. Actual absolute path imbalance of the interferometer is determined without using fringe counting or other inferential techniques. The polychromator extracts the interference information that occurs at each discrete wavelength within the spectral band of the optical source. The signal processing consists of analog and digital filtering, Fast Fourier analysis, and a peak detection and interpolation algorithm. This system was originally designed for use in a remote pressure sensing application that employed a totally passive fiber optic interferometer. A performance qualification was made using a Fabry-Perot interferometer and a commercially available laser interferometer to measure the reference displacement.

  14. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound.

  15. Constrained Least Absolute Deviation Neural Networks

    PubMed Central

    Wang, Zhishun; Peterson, Bradley S.

    2008-01-01

    It is well known that least absolute deviation (LAD) criterion or L1-norm used for estimation of parameters is characterized by robustness, i.e., the estimated parameters are totally resistant (insensitive) to large changes in the sampled data. This is an extremely useful feature, especially, when the sampled data are known to be contaminated by occasionally occurring outliers or by spiky noise. In our previous works, we have proposed the least absolute deviation neural network (LADNN) to solve unconstrained LAD problems. The theoretical proofs and numerical simulations have shown that the LADNN is Lyapunov-stable and it can globally converge to the exact solution to a given unconstrained LAD problem. We have also demonstrated its excellent application value in time-delay estimation. More generally, a practical LAD application problem may contain some linear constraints, such as a set of equalities and/or inequalities, which is called constrained LAD problem, whereas the unconstrained LAD can be considered as a special form of the constrained LAD. In this paper, we present a new neural network called constrained least absolute deviation neural network (CLADNN) to solve general constrained LAD problems. Theoretical proofs and numerical simulations demonstrate that the proposed CLADNN is Lyapunov stable and globally converges to the exact solution to a given constrained LAD problem, independent of initial values. The numerical simulations have also illustrated that the proposed CLADNN can be used to robustly estimate parameters for nonlinear curve fitting, which is extensively used in signal and image processing. PMID:18269958

  16. One tamed at a time: A new approach for controlling continuous magnitudes in numerical comparison tasks.

    PubMed

    Salti, Moti; Katzin, Naama; Katzin, David; Leibovich, Tali; Henik, Avishai

    2016-07-20

    Non-symbolic stimuli (i.e., dot arrays) are commonly used to study numerical cognition. However, in addition to numerosity, non-symbolic stimuli entail continuous magnitudes (e.g., total surface area, convex-hull, etc.) that correlate with numerosity. Several methods for controlling for continuous magnitudes have been suggested, all with the same underlying rationale: disassociating numerosity from continuous magnitudes. However, the different continuous magnitudes do not fully correlate; therefore, it is impossible to disassociate them completely from numerosity. Moreover, relying on a specific continuous magnitude in order to create this disassociation may end up in increasing or decreasing numerosity saliency, pushing subjects to rely on it more or less, respectively. Here, we put forward a taxonomy depicting the relations between the different continuous magnitudes. We use this taxonomy to introduce a new method with a complimentary Matlab toolbox that allows disassociating numerosity from continuous magnitudes and equating the ratio of the continuous magnitudes to the ratio of the numerosity in order to balance the saliency of numerosity and continuous magnitudes. A dot array comparison experiment in the subitizing range showed the utility of this method. Equating different continuous magnitudes yielded different results. Importantly, equating the convex hull ratio to the numerical ratio resulted in similar interference of numerical and continuous magnitudes.

  17. Absolute calibration of the EnviSat-1 radar altimeter

    NASA Astrophysics Data System (ADS)

    Roca, Monica; Francis, Richard

    1998-12-01

    The EnviSat-1 satellite will embark an innovative radar altimeter. The calibration of the measurements of range from this instrument will be performed using novel techniques. The range measurement will be calibrated absolutely by establishing the actual geocentric sea-level along the sub- satellite tracks. These tracks are located in a limited and well-controlled region in the western Mediterranean and will include a number of fully-equipped individual sites which will provide higher confidence in the overall analysis, combined with data from the whole area at lower weight. The determination of the geocentric sea-level is performed using tide gauges and geodetic means such as leveling and floating GPS receivers. The altimeter sea-level is derived from the altimeter range corrected for propagation effects and sea- state bias, and a precise restitution of the trajectory of the satellite. These measurements comprise three vectors: range, orbital height and sea-surface height. The difference between orbital-height minus range, and sea-surface height provides the bias. The backscatter coefficient measured by previous altimeters has not been absolutely calibrated. An emerging application of the RA-2 in investigation of surface properties has identified the need to perform this calibration. A number of techniques are under study to determine the feasibility of meeting this need, including the use of well-controlled natural targets, the use of the altimeter receiver as a passive radiometer in order to determine its gain and the use of a transponder to return a precisely known return echo power to the radar.

  18. The study of absolute distance measurement based on the self-mixing interference in laser diode

    NASA Astrophysics Data System (ADS)

    Wang, Ting-ting; Zhang, Chuang

    2009-07-01

    In this work, an absolute distance measurement method based on the self-mixing interference is presented. The principles of the method used three-mirror cavity equivalent model are studied in this paper, and the mathematical model is given. Wavelength modulation of the laser beam is obtained by saw-tooth modulating the infection current of the laser diode. Absolute distance of the external target is determined by Fourier analysis method. The frequency of signal from PD is linearly dependent on absolute distance, but also affected by temperature and fluctuation of current source. A dual-path method which uses the reference technique for absolute distance measurement has been proposed. The theoretical analysis shows that the method can eliminate errors resulting from distance-independent variations in the setup. Accuracy and stability can be improved. Simulated results show that a resolution of +/-0.2mm can be achieved for absolute distance ranging from 250mm to 500mm. In the same measurement range, the resolution we obtained is better than other absolute distance measurement system proposed base on self-mixing interference.

  19. Fine structure of the age-chromospheric activity relation in solar-type stars. I. The Ca II infrared triplet: Absolute flux calibration

    NASA Astrophysics Data System (ADS)

    Lorenzo-Oliveira, D.; Porto de Mello, G. F.; Dutra-Ferreira, L.; Ribas, I.

    2016-10-01

    Context. Strong spectral lines are useful indicators of stellar chromospheric activity. They are physically linked to the convection efficiency, differential rotation, and angular momentum evolution and are a potential indicator of age. However, for ages > 2 Gyr, the age-activity relationship remains poorly constrained thus hampering its full application. Aims: The Ca II infrared triplet (IRT lines, λλ 8498, 8542, and 8662) has been poorly studied compared to classical chromospheric indicators. We report in this paper absolute chromospheric fluxes in the three Ca II IRT lines, based on a new calibration tied to up-to-date model atmospheres. Methods: We obtain the Ca II IRT absolute fluxes for 113 FGK stars from high signal-to-noise ratio (S/N) and high-resolution spectra covering an extensive domain of chromospheric activity levels. We perform an absolute continuum flux calibration for the Ca II IRT lines anchored in atmospheric models calculated as an explicit function of effective temperatures (Teff), metallicity ([Fe/H]), and gravities (log g) avoiding the degeneracy usually present in photometric continuum calibrations based solely on color indices. Results: The internal uncertainties achieved for continuum absolute flux calculations are ≈2% of the solar chromospheric flux, one order of magnitude lower than for photometric calibrations. Using Monte Carlo simulations, we gauge the impact of observational errors on the final chromospheric fluxes due to the absolute continuum flux calibration and find that Teffuncertainties are properly mitigated by the photospheric correction leaving [Fe/H] as the dominating factor in the chromospheric flux uncertainty. Conclusions: Across the FGK spectral types, the Ca II IRT lines are sensitive to chromospheric activity. The reduced internal uncertainties reported here enable us to build a new chromospheric absolute flux scale and explore the age-activity relation from the active regime down to very low activity levels and

  20. 48 CFR 236.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Disclosure of the magnitude of construction projects. 236.204 Section 236.204 Federal Acquisition Regulations System DEFENSE... magnitude of construction projects. Additional price ranges are— (i) Between $10,000,000 and...

  1. 48 CFR 236.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Disclosure of the magnitude of construction projects. 236.204 Section 236.204 Federal Acquisition Regulations System DEFENSE... magnitude of construction projects. Additional price ranges are— (i) Between $10,000,000 and...

  2. 48 CFR 236.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Disclosure of the magnitude of construction projects. 236.204 Section 236.204 Federal Acquisition Regulations System DEFENSE... magnitude of construction projects. Additional price ranges are— (i) Between $10,000,000 and...

  3. 48 CFR 236.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Disclosure of the magnitude of construction projects. 236.204 Section 236.204 Federal Acquisition Regulations System DEFENSE... magnitude of construction projects. Additional price ranges are— (i) Between $10,000,000 and...

  4. 48 CFR 236.204 - Disclosure of the magnitude of construction projects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Disclosure of the magnitude of construction projects. 236.204 Section 236.204 Federal Acquisition Regulations System DEFENSE... magnitude of construction projects. Additional price ranges are— (i) Between $10,000,000 and...

  5. Apparent magnitude of earthshine: a simple calculation

    NASA Astrophysics Data System (ADS)

    Agrawal, Dulli Chandra

    2016-05-01

    The Sun illuminates both the Moon and the Earth with practically the same luminous fluxes which are in turn reflected by them. The Moon provides a dim light to the Earth whereas the Earth illuminates the Moon with somewhat brighter light which can be seen from the Earth and is called earthshine. As the amount of light reflected from the Earth depends on part of the Earth and the cloud cover, the strength of earthshine varies throughout the year. The measure of the earthshine light is luminance, which is defined in photometry as the total luminous flux of light hitting or passing through a surface. The expression for the earthshine light in terms of the apparent magnitude has been derived for the first time and evaluated for two extreme cases; firstly, when the Sun’s rays are reflected by the water of the oceans and secondly when the reflector is either thick clouds or snow. The corresponding values are -1.30 and -3.69, respectively. The earthshine value -3.22 reported by Jackson lies within these apparent magnitudes. This paper will motivate the students and teachers of physics to look for the illuminated Moon by earthlight during the waning or waxing crescent phase of the Moon and to reproduce the expressions derived here by making use of the inverse-square law of radiation, Planck’s expression for the power in electromagnetic radiation, photopic spectral luminous efficiency function and expression for the apparent magnitude of a body in terms of luminous fluxes.

  6. Resurgence and alternative-reinforcer magnitude.

    PubMed

    Craig, Andrew R; Browning, Kaitlyn O; Nall, Rusty W; Marshall, Ciara M; Shahan, Timothy A

    2017-03-01

    Resurgence is defined as an increase in the frequency of a previously reinforced target response when an alternative source of reinforcement is suspended. Despite an extensive body of research examining factors that affect resurgence, the effects of alternative-reinforcer magnitude have not been examined. Thus, the present experiments aimed to fill this gap in the literature. In Experiment 1, rats pressed levers for single-pellet reinforcers during Phase 1. In Phase 2, target-lever pressing was extinguished, and alternative-lever pressing produced either five-pellet, one-pellet, or no alternative reinforcement. In Phase 3, alternative reinforcement was suspended to test for resurgence. Five-pellet alternative reinforcement produced faster elimination and greater resurgence of target-lever pressing than one-pellet alternative reinforcement. In Experiment 2, effects of decreasing alternative-reinforcer magnitude on resurgence were examined. Rats pressed levers and pulled chains for six-pellet reinforcers during Phases 1 and 2, respectively. In Phase 3, alternative reinforcement was decreased to three pellets for one group, one pellet for a second group, and suspended altogether for a third group. Shifting from six-pellet to one-pellet alternative reinforcement produced as much resurgence as suspending alternative reinforcement altogether, while shifting from six pellets to three pellets did not produce resurgence. These results suggest that alternative-reinforcer magnitude has effects on elimination and resurgence of target behavior that are similar to those of alternative-reinforcer rate. Thus, both suppression of target behavior during alternative reinforcement and resurgence when conditions of alternative reinforcement are altered may be related to variables that affect the value of the alternative-reinforcement source.

  7. Orientation and Magnitude of Mars' Magnetic Field

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows the orientation and magnitude of the magnetic field measured by the MGS magnetometer as it sped over the surface of Mars during an early aerobraking pass (Day of the year, 264; 'P6' periapsis pass). At each point along the spacecraft trajectory we've drawn vectors in the direction of the magnetic field measured at that instant; the length of the line is scaled to show the relative magnitude of the field. Imagine traveling along with the MGS spacecraft, holding a string with a magnetized needle on one end: this essentially a compass with a needle that is free to spin in all directions. As you pass over the surface the needle would swing rapidly, first pointing towards the planet and then rotating quickly towards 'up' and back down again. All in a relatively short span of time, say a minute or two, during which time the spacecraft has traveled a couple of hundred miles. You've just passed over one of many 'magnetic anomalies' thus far detected near the surface of Mars. A second major anomaly appears a little later along the spacecraft track, about 1/4 the magnitude of the first - can you find it? The short scale length of the magnetic field signature locates the source near the surface of Mars, perhaps in the crust, a 10 to 75 kilometer thick outer shell of the planet (radius 3397 km).

    The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO. JPL is an operating division of California Institute of Technology (Caltech).

  8. The intensities and magnitudes of volcanic eruptions

    USGS Publications Warehouse

    Sigurdsson, H.

    1991-01-01

    Ever since 1935, when C.F Richter devised the earthquake magnitude scale that bears his name, seismologists have been able to view energy release from earthquakes in a systematic and quantitative manner. The benefits have been obvious in terms of assessing seismic gaps and the spatial and temporal trends of earthquake energy release. A similar quantitative treatment of volcanic activity is of course equally desirable, both for gaining a further understanding of the physical principles of volcanic eruptions and for volcanic-hazard assessment. A systematic volcanologic data base would be of great value in evaluating such features as volcanic gaps, and regional and temporal trends in energy release.  

  9. Precise Relative Earthquake Magnitudes from Cross Correlation

    SciTech Connect

    Cleveland, K. Michael; Ammon, Charles J.

    2015-04-21

    We present a method to estimate precise relative magnitudes using cross correlation of seismic waveforms. Our method incorporates the intercorrelation of all events in a group of earthquakes, as opposed to individual event pairings relative to a reference event. This method works well when a reliable reference event does not exist. We illustrate the method using vertical strike-slip earthquakes located in the northeast Pacific and Panama fracture zone regions. Our results are generally consistent with the Global Centroid Moment Tensor catalog, which we use to establish a baseline for the relative event sizes.

  10. Absolute quantum yield measurement of powder samples.

    PubMed

    Moreno, Luis A

    2012-05-12

    quantum yield calculation. 5. Corrected quantum yield calculation. 6. Chromaticity coordinates calculation using Report Generator program. The Hitachi F-7000 Quantum Yield Measurement System offer advantages for this application, as follows: High sensitivity (S/N ratio 800 or better RMS). Signal is the Raman band of water measured under the following conditions: Ex wavelength 350 nm, band pass Ex and Em 5 nm, response 2 sec), noise is measured at the maximum of the Raman peak. High sensitivity allows measurement of samples even with low quantum yield. Using this system we have measured quantum yields as low as 0.1 for a sample of salicylic acid and as high as 0.8 for a sample of magnesium tungstate. Highly accurate measurement with a dynamic range of 6 orders of magnitude allows for measurements of both sharp scattering peaks with high intensity, as well as broad fluorescence peaks of low intensity under the same conditions. High measuring throughput and reduced light exposure to the sample, due to a high scanning speed of up to 60,000 nm/minute and automatic shutter function. Measurement of quantum yield over a wide wavelength range from 240 to 800 nm. Accurate quantum yield measurements are the result of collecting instrument spectral response and integrating sphere correction factors before measuring the sample. Large selection of calculated parameters provided by dedicated and easy to use software. During this video we will measure sodium salicylate in powder form which is known to have a quantum yield value of 0.4 to 0.5.

  11. The Question of Absolute Space and Time Directions in Relation to Molecular Chirality, Parity Violation, and Biomolecular Homochirality

    SciTech Connect

    Quack, Martin

    2001-03-21

    The questions of the absolute directions of space and time or the “observability” of absolute time direction as well as absolute handedness-left or right- are related to the fundamental symmetries of physics C, P, T as well as their combinations, in particular CPT, and their violations, such as parity violation. At the same time there is a relation to certain still open questions in chemistry concerning the fundamental physical- chemical principles of molecular chirality and in biochemistry concerning the selection of homochirality in evolution. In the lecture we shall introduce the concepts and then report new theoretical results from our work on parity violation in chiral molecules, showing order of magnitude increases with respect to previously accepted values. We discus as well our current experimental efforts. We shall briefly mention the construction of an absolute molecular clock.

  12. The Question of Absolute Space and Time Directions in Relation to Molecular Chirality, Parity Violation, and Biomolecular Homochirality

    SciTech Connect

    Quack, Martin

    2001-03-21

    The questions of the absolute directions of space and time or the 'observability' of absolute time direction as well as absolute handedness - left or right - are related to the fundamental symmetries of physics C, P, T as well as their combinations, in particular CPT, and their violations, such as parity violation. At the same time there is a relation to certain still open questions in chemistry concerning the fundamental physical-chemical principles of molecular chirality and in biochemistry concerning the selection of homochirality in evolution. In the lecture we shall introduce the concepts and then report new theoretical results from our work on parity violation in chiral molecules, showing order of magnitude increases with respect to previously accepted values. We discuss as well our current experimental efforts. We shall briefly mention the construction of an absolute molecular clock.

  13. Absolute calibration of Apollo lunar orbital mass spectrometer.

    NASA Technical Reports Server (NTRS)

    Yeager, P. R.; Smith, A.; Jackson, J. J.; Hoffman, J. H.

    1973-01-01

    Recent experiments were conducted in Langley Research Center's molecular beam system to perform an absolute calibration of the lunar orbital mass spectrometer which was flown on the Apollo 15 and 16 missions. Tests were performed with several models of the instrument using two test gases, argon and neon, in the 1 ntorr to .1 picotorr range. Sensitivity to argon at spacecraft orbital velocity was .00028 A/torr enabling partial pressures in the .01-picotorr range to be measured at the spacecraft altitude. Neon sensitivity was nearly a factor of 5 less. Test data support the feasibility of using the lunar orbital mass spectrometer as a tool to gather information about the lunar atmosphere.

  14. Strong motion duration and earthquake magnitude relationships

    SciTech Connect

    Salmon, M.W.; Short, S.A.; Kennedy, R.P.

    1992-06-01

    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ``strong motion duration`` has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions.

  15. Smoke optical depths - Magnitude, variability, and wavelength dependence

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Russell, P. B.; Colburn, D. A.; Ackerman, T. P.; Allen, D. A.

    1988-01-01

    An airborne autotracking sun-photometer has been used to measure magnitudes, temporal/spatial variabilities, and the wavelength dependence of optical depths in the near-ultraviolet to near-infrared spectrum of smoke from two forest fires and one jet fuel fire and of background air. Jet fuel smoke optical depths were found to be generally less wavelength dependent than background aerosol optical depths. Forest fire smoke optical depths, however, showed a wide range of wavelength depedences, such as incidents of wavelength-independent extinction.

  16. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  17. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  18. The impact of emotion on the perception of graded magnitudes of respiratory resistive loads.

    PubMed

    Tsai, Hsiu-Wen; Chan, Pei-Ying; von Leupoldt, Andreas; Davenport, Paul W

    2013-04-01

    Emotional state can modulate the perception of respiratory loads but the range of respiratory load magnitudes affected by emotional state is unknown. We hypothesized that viewing pleasant, neutral and unpleasant affective pictures would modulate the perception of respiratory loads of different load magnitudes. Twenty-four healthy adults participated in the study. Five inspiratory resistive loads of increasing magnitude (5, 10, 15, 20, 45 cm H(2)O/L/s) were repeatedly presented for one inspiration while participants viewed pleasant, neutral and unpleasant affective picture series. Participants rated how difficult it was to breathe against the load immediately after each presentation. Only at the lowest load, magnitude estimation ratings were greater when subjects viewed the unpleasant series compared to the neutral and pleasant series. These results suggest that negative emotional state increases the sense of respiratory effort for single presentations of a low magnitude resistive load but high magnitude loads are not further modulated by emotional state.

  19. Brownian motion: Absolute negative particle mobility

    NASA Astrophysics Data System (ADS)

    Ros, Alexandra; Eichhorn, Ralf; Regtmeier, Jan; Duong, Thanh Tu; Reimann, Peter; Anselmetti, Dario

    2005-08-01

    Noise effects in technological applications, far from being a nuisance, can be exploited with advantage - for example, unavoidable thermal fluctuations have found application in the transport and sorting of colloidal particles and biomolecules. Here we use a microfluidic system to demonstrate a paradoxical migration mechanism in which particles always move in a direction opposite to the net acting force (`absolute negative mobility') as a result of an interplay between thermal noise, a periodic and symmetric microstructure, and a biased alternating-current electric field. This counterintuitive phenomenon could be used for bioanalytical purposes, for example in the separation and fractionation of colloids, biological molecules and cells.

  20. Arbitrary segments of absolute negative mobility

    NASA Astrophysics Data System (ADS)

    Chen, Ruyin; Nie, Linru; Chen, Chongyang; Wang, Chaojie

    2017-01-01

    In previous research work, investigators have reported only one or two segments of absolute negative mobility (ANM) in a periodic potential. In fact, many segments of ANM also occur in the system considered here. We investigate transport of an inertial particle in a gating ratchet periodic potential subjected to a constant bias force. Our numerical results show that its mean velocity can decrease with the bias force increasing, i.e. ANM phenomenon. Furthermore, the ANM can take place arbitrary segments, even up to more than thirty. Intrinsic physical mechanism and conditions for arbitrary segments of ANM to occur are discussed in detail.

  1. Absolute quantification of myocardial blood flow.

    PubMed

    Yoshinaga, Keiichiro; Manabe, Osamu; Tamaki, Nagara

    2016-07-21

    With the increasing availability of positron emission tomography (PET) myocardial perfusion imaging, the absolute quantification of myocardial blood flow (MBF) has become popular in clinical settings. Quantitative MBF provides an important additional diagnostic or prognostic information over conventional visual assessment. The success of MBF quantification using PET/computed tomography (CT) has increased the demand for this quantitative diagnostic approach to be more accessible. In this regard, MBF quantification approaches have been developed using several other diagnostic imaging modalities including single-photon emission computed tomography, CT, and cardiac magnetic resonance. This review will address the clinical aspects of PET MBF quantification and the new approaches to MBF quantification.

  2. An absolute radius scale for Saturn's rings

    NASA Technical Reports Server (NTRS)

    Nicholson, Philip D.; Cooke, Maren L.; Pelton, Emily

    1990-01-01

    Radio and stellar occultation observations of Saturn's rings made by the Voyager spacecraft are discussed. The data reveal systematic discrepancies of almost 10 km in some parts of the rings, limiting some of the investigations. A revised solution for Saturn's rotation pole has been proposed which removes the discrepancies between the stellar and radio occultation profiles. Corrections to previously published radii vary from -2 to -10 km for the radio occultation, and +5 to -6 km for the stellar occultation. An examination of spiral density waves in the outer A Ring supports that the revised absolute radii are in error by no more than 2 km.

  3. Absolute Rate Theories of Epigenetic Stability

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.; Onuchic, Jose N.; Wolynes, Peter G.

    2006-03-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape, and the transmission factor, depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic and strictly adiabatic regimes, characterized by the relative values of those input rates.

  4. Absolute rate theories of epigenetic stability

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.; Onuchic, José N.; Wolynes, Peter G.

    2005-12-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape and the transmission factor depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic, and strictly adiabatic regimes, characterized by the relative values of those input rates. rate theory | stochastic gene expression | gene switches

  5. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  6. Absolute Priority for a Vehicle in VANET

    NASA Astrophysics Data System (ADS)

    Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad

    In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.

  7. Harmonizing the RR Lyrae and Clump Distance Scales-Stretching the Short Distance Scale to Intermediate Ranges?

    SciTech Connect

    Popowski, P.

    2000-01-31

    I explore the consequences of making the RR Lyrae and clump giant distance scales consistent in the solar neighborhood, Galactic bulge and Large Magellanic Cloud (LMC). I employ two major assumptions: (1) that the absolute magnitude -metallicity, M{sub V}(RR) - [Fe/H], relation for RR Lyrae stars is universal, and (2) that absolute I-magnitudes of clump giants, M{sub I}(RC), in Baade's Window can be inferred from the local Hipparcos calibration of clump giants' magnitudes. A comparison between the solar neighborhood and Baade's Window sets M{sub V}(RR) at [Fe/H] = -1.6 in the range (0.59 {+-} 0.05, 0.70 {+-} 0.05), somewhat brighter than the statistical parallax solution. A comparison between Baade's Window and the LMC sets the M{sub I}{sup LMC}(RC) in the range (-0.33 {+-} 0.09, -0.53 {+-} 0.09). The distance modulus to the LMC is {mu}{sup LMC} {element_of} (18.24 {+-} 0.08, 18.44 {+-} 0.07). I argue that the currently available information slightly favors the short distance scale but is insufficient to select the correct solutions with high confidence.

  8. Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments

    NASA Astrophysics Data System (ADS)

    Kantelhardt, Jan W.; Ashkenazy, Yosef; Ivanov, Plamen Ch.; Bunde, Armin; Havlin, Shlomo; Penzel, Thomas; Peter, Jörg-Hermann; Stanley, H. Eugene

    2002-05-01

    We study correlation properties of the magnitude and the sign of the increments in the time intervals between successive heartbeats during light sleep, deep sleep, and rapid eye movement (REM) sleep using the detrended fluctuation analysis method. We find short-range anticorrelations in the sign time series, which are strong during deep sleep, weaker during light sleep, and even weaker during REM sleep. In contrast, we find long-range positive correlations in the magnitude time series, which are strong during REM sleep and weaker during light sleep. We observe uncorrelated behavior for the magnitude during deep sleep. Since the magnitude series relates to the nonlinear properties of the original time series, while the sign series relates to the linear properties, our findings suggest that the nonlinear properties of the heartbeat dynamics are more pronounced during REM sleep. Thus, the sign and the magnitude series provide information which is useful in distinguishing between the sleep stages.

  9. Asteroid taxonomy and the H,G_{12} magnitude system

    NASA Astrophysics Data System (ADS)

    Oszkiewicz, D.; Bowell, E.; Wasserman, L.; Muinonen, K.; Penttilä, A.

    2014-07-01

    We review the asteroid magnitude systems. The conventionally used H,G system (approved by the IAU in 1985) was recently replaced by the H,G_{12} and H,G_1,G_2 systems (approved by the IAU in 2012). The new phase curves were already applied to a large quantity of photometric data (Oszkiewicz et al, 2011). In particular, absolute magnitudes and slope parameters were computed for about half a million asteroids and are publicly available through the Planetary Research Group (University of Helsinki) websites. Several correlations of the shape of the phase curves with asteroid physical parameters were also explored. In general, the steepness of a phase curve relates to the physical properties of an asteroid's surface such as for example composition, porosity, packing density, roughness, and grain size distribution. However, most of those cannot be studied with the currently available data. Some conclusions regarding links to albedo and taxonomy can still be made. First, the G_1 and G_2 parameters correlate with albedo. Generally, the higher the albedo the lower and higher are the G_1 and G_2 parameters, respectively. Second, the G_{12} parameter distributions for the different asteroid taxonomic complexes are statistically different. For example, the C-complex asteroids tend to have high G_{12}'s, S-complex asteroids low G_{12}'s, and objects from the X-complex lean towards average values (Oszkiewicz et al. 2012). Additionally, asteroid families with a few exceptions show homogeneity of the G_{12} parameter (Figure). This is yet another confirmation of homogeneity of asteroid families and therefore the overall tendency to retain the same physical properties across family members. We study the usability of the G_{12} parameter in topics such as breaking the X-complex degeneracy and taxonomical classification. In particular, we combine the G_{12}'s with the Sloan Digital Sky Survey (SDSS) and the Wide-Field Infrared Survey Explorer (WISE) data (Oszkiewicz et al. 2014) to

  10. Absolute counting of neutrophils in whole blood using flow cytometry.

    PubMed

    Brunck, Marion E G; Andersen, Stacey B; Timmins, Nicholas E; Osborne, Geoffrey W; Nielsen, Lars K

    2014-12-01

    Absolute neutrophil count (ANC) is used clinically to monitor physiological dysfunctions such as myelosuppression or infection. In the research laboratory, ANC is a valuable measure to monitor the evolution of a wide range of disease states in disease models. Flow cytometry (FCM) is a fast, widely used approach to confidently identify thousands of cells within minutes. FCM can be optimised for absolute counting using spiked-in beads or by measuring the sample volume analysed. Here we combine the 1A8 antibody, specific for the mouse granulocyte protein Ly6G, with flow cytometric counting in straightforward FCM assays for mouse ANC, easily implementable in the research laboratory. Volumetric and Trucount™ bead assays were optimized for mouse neutrophils, and ANC values obtained with these protocols were compared to ANC measured by a dual-platform assay using the Orphee Mythic 18 veterinary haematology analyser. The single platform assays were more precise with decreased intra-assay variability compared with ANC obtained using the dual protocol. Defining ANC based on Ly6G expression produces a 15% higher estimate than the dual protocol. Allowing for this difference in ANC definition, the flow cytometry counting assays using Ly6G can be used reliably in the research laboratory to quantify mouse ANC from a small volume of blood. We demonstrate the utility of the volumetric protocol in a time-course study of chemotherapy induced neutropenia using four drug regimens.

  11. Selected Reaction Monitoring Mass Spectrometry for Absolute Protein Quantification.

    PubMed

    Manes, Nathan P; Mann, Jessica M; Nita-Lazar, Aleksandra

    2015-08-17

    Absolute quantification of target proteins within complex biological samples is critical to a wide range of research and clinical applications. This protocol provides step-by-step instructions for the development and application of quantitative assays using selected reaction monitoring (SRM) mass spectrometry (MS). First, likely quantotypic target peptides are identified based on numerous criteria. This includes identifying proteotypic peptides, avoiding sites of posttranslational modification, and analyzing the uniqueness of the target peptide to the target protein. Next, crude external peptide standards are synthesized and used to develop SRM assays, and the resulting assays are used to perform qualitative analyses of the biological samples. Finally, purified, quantified, heavy isotope labeled internal peptide standards are prepared and used to perform isotope dilution series SRM assays. Analysis of all of the resulting MS data is presented. This protocol was used to accurately assay the absolute abundance of proteins of the chemotaxis signaling pathway within RAW 264.7 cells (a mouse monocyte/macrophage cell line). The quantification of Gi2 (a heterotrimeric G-protein α-subunit) is described in detail.

  12. Simulation of absolute amplitudes of ultrasound signals using equivalent circuits.

    PubMed

    Johansson, Jonny; Martinsson, Pär-Erik; Delsing, Jerker

    2007-10-01

    Equivalent circuits for piezoelectric devices and ultrasonic transmission media can be used to cosimulate electronics and ultrasound parts in simulators originally intended for electronics. To achieve efficient system-level optimization, it is important to simulate correct, absolute amplitude of the ultrasound signal in the system, as this determines the requirements on the electronics regarding dynamic range, circuit noise, and power consumption. This paper presents methods to achieve correct, absolute amplitude of an ultrasound signal in a simulation of a pulse-echo system using equivalent circuits. This is achieved by taking into consideration loss due to diffraction and the effect of the cable that connects the electronics and the piezoelectric transducer. The conductive loss in the transmission line that models the propagation media of the ultrasound pulse is used to model the loss due to diffraction. Results show that the simulated amplitude of the echo follows measured values well in both near and far fields, with an offset of about 10%. The use of a coaxial cable introduces inductance and capacitance that affect the amplitude of a received echo. Amplitude variations of 60% were observed when the cable length was varied between 0.07 m and 2.3 m, with simulations predicting similar variations. The high precision in the achieved results show that electronic design and system optimization can rely on system simulations alone. This will simplify the development of integrated electronics aimed at ultrasound systems.

  13. Linear ultrasonic motor for absolute gravimeter.

    PubMed

    Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V

    2017-02-01

    Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters.

  14. Why to compare absolute numbers of mitochondria.

    PubMed

    Schmitt, Sabine; Schulz, Sabine; Schropp, Eva-Maria; Eberhagen, Carola; Simmons, Alisha; Beisker, Wolfgang; Aichler, Michaela; Zischka, Hans

    2014-11-01

    Prompted by pronounced structural differences between rat liver and rat hepatocellular carcinoma mitochondria, we suspected these mitochondrial populations to differ massively in their molecular composition. Aiming to reveal these mitochondrial differences, we came across the issue on how to normalize such comparisons and decided to focus on the absolute number of mitochondria. To this end, fluorescently stained mitochondria were quantified by flow cytometry. For rat liver mitochondria, this approach resulted in mitochondrial protein contents comparable to earlier reports using alternative methods. We determined similar protein contents for rat liver, heart and kidney mitochondria. In contrast, however, lower protein contents were determined for rat brain mitochondria and for mitochondria from the rat hepatocellular carcinoma cell line McA 7777. This result challenges mitochondrial comparisons that rely on equal protein amounts as a typical normalization method. Exemplarily, we therefore compared the activity and susceptibility toward inhibition of complex II of rat liver and hepatocellular carcinoma mitochondria and obtained significant discrepancies by either normalizing to protein amount or to absolute mitochondrial number. Importantly, the latter normalization, in contrast to the former, demonstrated a lower complex II activity and higher susceptibility toward inhibition in hepatocellular carcinoma mitochondria compared to liver mitochondria. These findings demonstrate that solely normalizing to protein amount may obscure essential molecular differences between mitochondrial populations.

  15. The absolute threshold of cone vision

    PubMed Central

    Koeing, Darran; Hofer, Heidi

    2013-01-01

    We report measurements of the absolute threshold of cone vision, which has been previously underestimated due to sub-optimal conditions or overly strict subjective response criteria. We avoided these limitations by using optimized stimuli and experimental conditions while having subjects respond within a rating scale framework. Small (1′ fwhm), brief (34 msec), monochromatic (550 nm) stimuli were foveally presented at multiple intensities in dark-adapted retina for 5 subjects. For comparison, 4 subjects underwent similar testing with rod-optimized stimuli. Cone absolute threshold, that is, the minimum light energy for which subjects were just able to detect a visual stimulus with any response criterion, was 203 ± 38 photons at the cornea, ∼0.47 log units lower than previously reported. Two-alternative forced-choice measurements in a subset of subjects yielded consistent results. Cone thresholds were less responsive to criterion changes than rod thresholds, suggesting a limit to the stimulus information recoverable from the cone mosaic in addition to the limit imposed by Poisson noise. Results were consistent with expectations for detection in the face of stimulus uncertainty. We discuss implications of these findings for modeling the first stages of human cone vision and interpreting psychophysical data acquired with adaptive optics at the spatial scale of the receptor mosaic. PMID:21270115

  16. [Estimation of absolute risk for fracture].

    PubMed

    Fujiwara, Saeko

    2009-03-01

    Osteoporosis treatment aims to prevent fractures and maintain the QOL of the elderly. However, persons at high risk of future fracture cannot be effectively identified on the basis of bone density (BMD) alone, although BMD is used as an diagnostic criterion. Therefore, the WHO recommended that absolute risk for fracture (10-year probability of fracture) for each individual be evaluated and used as an index for intervention threshold. The 10-year probability of fracture is calculated based on age, sex, BMD at the femoral neck (body mass index if BMD is not available), history of previous fractures, parental hip fracture history, smoking, steroid use, rheumatoid arthritis, secondary osteoporosis and alcohol consumption. The WHO has just announced the development of a calculation tool (FRAX: WHO Fracture Risk Assessment Tool) in February this year. Fractures could be prevented more effectively if, based on each country's medical circumstances, an absolute risk value for fracture to determine when to start medical treatment is established and persons at high risk of fracture are identified and treated accordingly.

  17. Absolute stereochemistry of altersolanol A and alterporriols.

    PubMed

    Kanamaru, Saki; Honma, Miho; Murakami, Takanori; Tsushima, Taro; Kudo, Shinji; Tanaka, Kazuaki; Nihei, Ken-Ichi; Nehira, Tatsuo; Hashimoto, Masaru

    2012-02-01

    The absolute stereochemistry of altersolanol A (1) was established by observing a positive exciton couplet in the circular dichroism (CD) spectrum of the C3,C4-O-bis(2-naphthoyl) derivative 10 and by chemical correlations with known compound 8. Before the discussion, the relative stereochemistry of 1 was confirmed by X-ray crystallographic analysis. The shielding effect at C7'-OMe group by C1-O-benzoylation established the relative stereochemical relationship between the C8-C8' axial bonding and the C1-C4/C1'-C4' polyol moieties of alterporriols E (3), an atropisomer of the C8-C8' dimer of 1. As 3 could be obtained by dimerization of 1 in vitro, the absolute configuration of its central chirality elements (C1-C4) must be identical to those of 1. Spectral comparison between the experimental and theoretical CD spectra supported the above conclusion. Axial stereochemistry of novel C4-O-deoxy dimeric derivatives, alterporriols F (4) and G (5), were also revealed by comparison of their CD spectra to those of 2 and 3.

  18. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  19. Standardization of the cumulative absolute velocity

    SciTech Connect

    O'Hara, T.F.; Jacobson, J.P. )

    1991-12-01

    EPRI NP-5930, A Criterion for Determining Exceedance of the Operating Basis Earthquake,'' was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.

  20. Swarm's Absolute Scalar Magnetometers Burst Mode Results

    NASA Astrophysics Data System (ADS)

    Coisson, P.; Vigneron, P.; Hulot, G.; Crespo Grau, R.; Brocco, L.; Lalanne, X.; Sirol, O.; Leger, J. M.; Jager, T.; Bertrand, F.; Boness, A.; Fratter, I.

    2014-12-01

    Each of the three Swarm satellites embarks an Absolute Scalar Magnetometer (ASM) to provide absolute scalar measurements of the magnetic field with high accuracy and stability. Nominal data acquisition of these ASMs is 1 Hz. But they can also run in a so-called "burst mode" and provide data at 250 Hz. During the commissioning phase of the mission, seven burst mode acquisition campaigns have been run simultaneously for all satellites, obtaining a total of ten days of burs-mode data. These campaigns allowed the identification of issues related to the operations of the piezo-electric motor and the heaters connected to the ASM, that do not impact the nominal 1 Hz scalar data. We analyze the burst mode data to identify high frequency geomagnetic signals, focusing the analysis in two regions: the low latitudes, where we seek signatures of ionospheric irregularities, and the high latitudes, to identify high frequency signals related to polar region currents. Since these campaigns have been conducted during the initial months of the mission, the three satellites where still close to each other, allowing to analyze the spatial coherency of the signals. Wavelet analysis have revealed 31 Hz signals appearing in the night-side in the equatorial region.

  1. Extracting infrared absolute reflectance from relative reflectance measurements.

    PubMed

    Berets, Susan L; Milosevic, Milan

    2012-06-01

    Absolute reflectance measurements are valuable to the optics industry for development of new materials and optical coatings. Yet, absolute reflectance measurements are notoriously difficult to make. In this paper, we investigate the feasibility of extracting the absolute reflectance from a relative reflectance measurement using a reference material with known refractive index.

  2. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  3. Surface Characterization of pNIPAM Under Varying Absolute Humidity

    NASA Astrophysics Data System (ADS)

    Chhabra, Arnav; Kanapuram, Ravitej; Leva, Harrison; Trejo, Juan; Kim, Tae Jin; Hidrovo, Carlos

    2012-11-01

    Poly(N-isopropylacrylamide) has become ubiquitously known as a ``smart'' polymer, showing many promising applications in tissue engineering and drug delivery systems. These applications are particularly reliant on its trenchant, thermally induced hydrophilic-hydrophobic transition that occurs at the lower critical solution temperature (LCST). This feature imparts the pNIPAM programmable adsorption and release capabilities, thus eliminating the need for additional enzymes when removing cells from pNIPAM coated surfaces and leaving the extracellular matrix proteins of the cells largely untouched. The dependence of the LCST on molecular weight, solvent systems, and various salts has been studied extensively. However, what has not been explored is the effect of humidity on the characteristic properties of the polymer, specifically the LCST and the magnitude of the hydrophilic-hydrophobic transition. We studied the surface energy variation of pNIPAM as a function of humidity by altering the absolute humidity and keeping the ambient temperature constant. Our experiments were conducted inside a cuboidal environmental chamber with control over the temperature and humidity inside the chamber. A controlled needle was employed to dispense size-regulated droplets. Throughout this process, a CCD camera was used to image the droplet and the static contact angle was determined using image processing techniques. The behavior of pNIPAM as a function of humidity is presented and discussed.

  4. Absolute properties of the eclipsing binary star AP Andromedae

    SciTech Connect

    Sandberg Lacy, Claud H.; Torres, Guillermo; Fekel, Francis C.; Muterspaugh, Matthew W. E-mail: gtorres@cfa.harvard.edu E-mail: matthew1@coe.tsuniv.edu

    2014-06-01

    AP And is a well-detached F5 eclipsing binary star for which only a very limited amount of information was available before this publication. We have obtained very extensive measurements of the light curve (19,097 differential V magnitude observations) and a radial velocity curve (83 spectroscopic observations) which allow us to fit orbits and determine the absolute properties of the components very accurately: masses of 1.277 ± 0.004 and 1.251 ± 0.004 M {sub ☉}, radii of 1.233 ± 0.006 and 1.1953 ± 0.005 R {sub ☉}, and temperatures of 6565 ± 150 K and 6495 ± 150 K. The distance to the system is about 400 ± 30 pc. Comparison with the theoretical properties of the stellar evolutionary models of the Yonsei-Yale series of Yi et al. shows good agreement between the observations and the theory at an age of about 500 Myr and a slightly sub-solar metallicity.

  5. Using absolute gravimeter data to determine vertical gravity gradients

    USGS Publications Warehouse

    Robertson, D.S.

    2001-01-01

    The position versus time data from a free-fall absolute gravimeter can be used to estimate the vertical gravity gradient in addition to the gravity value itself. Hipkin has reported success in estimating the vertical gradient value using a data set of unusually good quality. This paper explores techniques that may be applicable to a broader class of data that may be contaminated with "system response" errors of larger magnitude than were evident in the data used by Hipkin. This system response function is usually modelled as a sum of exponentially decaying sinusoidal components. The technique employed here involves combining the x0, v0 and g parameters from all the drops made during a site occupation into a single least-squares solution, and including the value of the vertical gradient and the coefficients of system response function in the same solution. The resulting non-linear equations must be solved iteratively and convergence presents some difficulties. Sparse matrix techniques are used to make the least-squares problem computationally tractable.

  6. Technique for estimating magnitude and frequency of floods in Illinois

    USGS Publications Warehouse

    Curtis, George W.

    1977-01-01

    A technique is presented for estimating flood magnitudes at recurrence intervals ranging from 2 to 500 years, for unregulated rural streams in Illinois, with drainage areas ranging from 0.02 to 10,000 square miles. Multiple regression analyses, using streamflow data from 241 sampling sites, were used to define the flood-frequency relationships. The independent variables drainage area, slope, rainfall intensity, and an areal factor are used in the estimating equations to determine flood peaks. Examples are given to demonstrate a step-by-step procedure in computing a 100-year flood for a site on an ungaged stream and a site on a gaged stream in Illinois. The report is oriented toward planners and designers of engineering projects such as highways, bridges, culverts, flood-control structures, and drainage systems, and toward planners responsible for planning flood-plain use and establishing flood-insurance rates. (Woodard-USGS)

  7. High-precision absolute distance and vibration measurement with frequency scanned interferometry

    SciTech Connect

    Yang, H.-J.; Deibel, Jason; Nyberg, Sven; Riles, Keith

    2005-07-01

    We report high-precision absolute distance and vibration measurements performed with frequency scanned interferometry using a pair of single-mode optical fibers. Absolute distance was determined by counting the interference fringes produced while scanning the laser frequency. A high-finesse Fabry-Perot interferometer was used to determine frequency changes during scanning. Two multiple-distance-measurement analysis techniques were developed to improve distance precision and to extract the amplitude and frequency of vibrations. Under laboratory conditions, measurement precision of {approx}50 nm was achieved for absolute distances ranging from 0.1 to 0.7 m by use of the first multiple-distance-measurement technique. The second analysis technique has the capability to measure vibration frequencies ranging from 0.1 to 100 Hz with an amplitude as small as a few nanometers without a priori knowledge.

  8. High-precision absolute distance and vibration measurement with frequency scanned interferometry.

    PubMed

    Yang, Hai-Jun; Deibel, Jason; Nyberg, Sven; Riles, Keith

    2005-07-01

    We report high-precision absolute distance and vibration measurements performed with frequency scanned interferometry using a pair of single-mode optical fibers. Absolute distance was determined by counting the interference fringes produced while scanning the laser frequency. A high-finesse Fabry-Perot interferometer was used to determine frequency changes during scanning. Two multiple-distance-measurement analysis techniques were developed to improve distance precision and to extract the amplitude and frequency of vibrations. Under laboratory conditions, measurement precision of approximately 50 nm was achieved for absolute distances ranging from 0.1 to 0.7 m by use of the first multiple-distance-measurement technique. The second analysis technique has the capability to measure vibration frequencies ranging from 0.1 to 100 Hz with an amplitude as small as a few nanometers without a priori knowledge.

  9. The development of a color-magnitude diagram for active galactic nuclei (AGN): hope for a new standard candle

    NASA Astrophysics Data System (ADS)

    McGinnis, G.; Chung, S.; Gonzales, E. V.; Gorjian, V.; Pruett, L.

    2015-12-01

    Of the galaxies in our universe, only a small percentage currently have Active Galactic Nuclei (AGN). These galaxies tend to be further out in the universe and older, and are different from inactive galaxies in that they emit high amounts of energy from their central black holes. These AGN can be classified as either Seyferts or quasars, depending on the amount of energy emitted from the center (less or more). We are studying the correlation between the ratio of dust emission and accretion disk emission to luminosities of AGN in order to determine if there is a relationship strong enough to act as a predictive model for distance within the universe. This relationship can be used as a standard candle if luminosity is found to determine distances in space. We have created a color-magnitude diagram depicting this relationship between luminosity and wavelengths, similar to the Hertzsprung-Russell (HR) diagram. The more luminous the AGN, the more dust surface area over which to emit energy, which results in a greater near-infrared (NIR) luminosity. This differs from previous research because we use NIR to differentiate accretion from dust emission. Using data from the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky Survey (2MASS), we analyzed over one thousand Type 1 Seyferts and quasars. We studied data at different wavelengths in order to show the relationship between color (the ratio of one wavelength to another) and luminosity. It was found that plotting filters i-K (the visible and mid-infrared regions of the electromagnetic spectrum) against the magnitude absolute K (luminosity) showed a strong correlation. Furthermore, the redshift range between 0.14 and 0.15 was the most promising, with an R2 of 0.66.

  10. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  11. Magnitude-based scaling of tsunami propagation

    NASA Astrophysics Data System (ADS)

    Simanjuntak, M. Arthur; Greenslade, Diana J. M.

    2011-07-01

    Most current operational tsunami prediction systems are based upon databases of precomputed tsunami scenarios, where some form of linear scaling is applied to the precomputed model runs in order to represent specific earthquake magnitudes. This can introduce errors due to assumptions made about the rupture width and possible effects on dispersion. In this paper, we perform a series of numerical experiments on uniform depth domains, using the Method of Splitting Tsunamis (MOST) model, and develop estimates of the maximum error that an assumed discrepancy in the width of a rupture will produce in the resulting field of maximum tsunami amplitude. This estimate was produced from fitting the decay of maximum amplitude with normalized distance for various resolutions of the source widths to the grid size, resulting in a simple power law whose coefficients effectively vary with wavelength resolution. This provides a quantification of the effect that linear scaling of precomputed scenarios will have on forecasts of tsunami amplitude. This estimate of scaling bias is investigated in relation to the scenario database that is currently in use within the Joint Australian Tsunami Warning Centre.

  12. Estimating magnitude and duration of incident delays

    SciTech Connect

    Garib, A.; Radwan, A.E.; Al-Deek, H.

    1997-11-01

    Traffic congestion is a major operational problem on urban freeways. In the case of recurring congestion, travelers can plan their trips according to the expected occurrence and severity of recurring congestion. However, nonrecurring congestion cannot be managed without real-time prediction. Evaluating the efficiency of intelligent transportation systems (ITS) technologies in reducing incident effects requires developing models that can accurately predict incident duration along with the magnitude of nonrecurring congestion. This paper provides two statistical models for estimating incident delay and a model for predicting incident duration. The incident delay models showed that up to 85% of variation in incident delay can be explained by incident duration, number of lanes affected, number of vehicles involved, and traffic demand before the incident. The incident duration prediction model showed that 81% of variation in incident duration can be predicted by number of lanes affected, number of vehicles involved, truck involvement, time of day, police response time, and weather condition. These findings have implications for on-line applications within the context of advanced traveler information systems (ATIS).

  13. Clarity™ digital PCR system: a novel platform for absolute quantification of nucleic acids.

    PubMed

    Low, Huiyu; Chan, Shun-Jie; Soo, Guo-Hao; Ling, Belinda; Tan, Eng-Lee

    2017-03-01

    In recent years, digital polymerase chain reaction (dPCR) has gained recognition in biomedical research as it provides a platform for precise and accurate quantification of nucleic acids without the need for a standard curve. However, this technology has not yet been widely adopted as compared to real-time quantitative PCR due to its more cumbersome workflow arising from the need to sub-divide a PCR sample into a large number of smaller partitions prior to thermal cycling to achieve zero or at least one copy of the target RNA/DNA per partition. A recently launched platform, the Clarity™ system from JN Medsys, simplifies dPCR workflow through the use of a novel chip-in-a-tube technology for sample partitioning. In this study, the performance of Clarity™ was evaluated through quantification of the single-copy human RNase P gene. The system demonstrated high precision and accuracy and also excellent linearity across a range of over 4 orders of magnitude for the absolute quantification of the target gene. Moreover, consistent DNA copy measurements were also attained using a panel of different probe- and dye-based master mixes, demonstrating the system's compatibility with commercial master mixes. The Clarity™ was then compared to the QX100™ droplet dPCR system from Bio-Rad using a set of DNA reference materials, and the copy number concentrations derived from both systems were found to be closely associated. Collectively, the results showed that Clarity™ is a reliable, robust and flexible platform for next-generation genetic analysis.

  14. Symbolic magnitude modulates perceptual strength in binocular rivalry.

    PubMed

    Paffen, Chris L E; Plukaard, Sarah; Kanai, Ryota

    2011-06-01

    Basic aspects of magnitude (such as luminance contrast) are directly represented by sensory representations in early visual areas. However, it is unclear how symbolic magnitudes (such as Arabic numerals) are represented in the brain. Here we show that symbolic magnitude affects binocular rivalry: perceptual dominance of numbers and objects of known size increases with their magnitude. Importantly, variations in symbolic magnitude acted like variations in luminance contrast: we found that an increase in numerical magnitude of adding one lead to an equivalent increase in perceptual dominance as a contrast increment of 0.32%. Our results support the claim that magnitude is extracted automatically, since the increase in perceptual dominance came about in the absence of a magnitude-related task. Our findings show that symbolic, acculturated knowledge about magnitude interacts with visual perception and affects perception in a manner similar to lower-level aspects of magnitude such as luminance contrast.

  15. Full field imaging based instantaneous hyperspectral absolute refractive index measurement

    SciTech Connect

    Baba, Justin S; Boudreaux, Philip R

    2012-01-01

    Multispectral refractometers typically measure refractive index (RI) at discrete monochromatic wavelengths via a serial process. We report on the demonstration of a white light full field imaging based refractometer capable of instantaneous multispectral measurement of absolute RI of clear liquid/gel samples across the entire visible light spectrum. The broad optical bandwidth refractometer is capable of hyperspectral measurement of RI in the range 1.30 1.70 between 400nm 700nm with a maximum error of 0.0036 units (0.24% of actual) at 414nm for a = 1.50 sample. We present system design and calibration method details as well as results from a system validation sample.

  16. Absolute nonlocality via distributed computing without communication

    NASA Astrophysics Data System (ADS)

    Czekaj, Ł.; Pawłowski, M.; Vértesi, T.; Grudka, A.; Horodecki, M.; Horodecki, R.

    2015-09-01

    Understanding the role that quantum entanglement plays as a resource in various information processing tasks is one of the crucial goals of quantum information theory. Here we propose an alternative perspective for studying quantum entanglement: distributed computation of functions without communication between nodes. To formalize this approach, we propose identity games. Surprisingly, despite no signaling, we obtain that nonlocal quantum strategies beat classical ones in terms of winning probability for identity games originating from certain bipartite and multipartite functions. Moreover we show that, for a majority of functions, access to general nonsignaling resources boosts success probability two times in comparison to classical ones for a number of large enough outputs. Because there are no constraints on the inputs and no processing of the outputs in the identity games, they detect very strong types of correlations: absolute nonlocality.

  17. In vivo absorption spectroscopy for absolute measurement.

    PubMed

    Furukawa, Hiromitsu; Fukuda, Takashi

    2012-10-01

    In in vivo spectroscopy, there are differences between individual subjects in parameters such as tissue scattering and sample concentration. We propose a method that can provide the absolute value of a particular substance concentration, independent of these individual differences. Thus, it is not necessary to use the typical statistical calibration curve, which assumes an average level of scattering and an averaged concentration over individual subjects. This method is expected to greatly reduce the difficulties encountered during in vivo measurements. As an example, for in vivo absorption spectroscopy, the method was applied to the reflectance measurement in retinal vessels to monitor their oxygen saturation levels. This method was then validated by applying it to the tissue phantom under a variety of absorbance values and scattering efficiencies.

  18. Determining Absolute Zero Using a Tuning Fork

    NASA Astrophysics Data System (ADS)

    Goldader, Jeffrey D.

    2008-04-01

    The Celsius and Kelvin temperature scales, we tell our students, are related. We explain that a change in temperature of 1°C corresponds to a change of 1 Kelvin and that atoms and molecules have zero kinetic energy at zero Kelvin, -273°C. In this paper, we will show how students can derive the relationship between the Celsius and Kelvin temperature scales using a simple, well-known physics experiment. By making multiple measurements of the speed of sound at different temperatures, using the classic physics experiment of determining the speed of sound with a tuning fork and variable-length tube, they can determine the temperature at which the speed of sound is zero—absolute zero.

  19. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  20. An estimate of global absolute dynamic topography

    NASA Technical Reports Server (NTRS)

    Tai, C.-K.; Wunsch, C.

    1984-01-01

    The absolute dynamic topography of the world ocean is estimated from the largest scales to a short-wavelength cutoff of about 6700 km for the period July through September, 1978. The data base consisted of the time-averaged sea-surface topography determined by Seasat and geoid estimates made at the Goddard Space Flight Center. The issues are those of accuracy and resolution. Use of the altimetric surface as a geoid estimate beyond the short-wavelength cutoff reduces the spectral leakage in the estimated dynamic topography from erroneous small-scale geoid estimates without contaminating the low wavenumbers. Comparison of the result with a similarly filtered version of Levitus' (1982) historical average dynamic topography shows good qualitative agreement. There is quantitative disagreement, but it is within the estimated errors of both methods of calculation.

  1. Absolute measurements of fast neutrons using yttrium.

    PubMed

    Roshan, M V; Springham, S V; Rawat, R S; Lee, P; Krishnan, M

    2010-08-01

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f(n) approximately 4.1x10(-4) with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10(8) neutrons per discharge.

  2. Absolute sensitivity calibration of an extreme ultraviolet spectrometer for tokamak measurements

    NASA Astrophysics Data System (ADS)

    Guirlet, R.; Schwob, J. L.; Meyer, O.; Vartanian, S.

    2017-01-01

    An extreme ultraviolet spectrometer installed on the Tore Supra tokamak has been calibrated in absolute units of brightness in the range 10-340 Å. This has been performed by means of a combination of techniques. The range 10-113 Å was absolutely calibrated by using an ultrasoft-X ray source emitting six spectral lines in this range. The calibration transfer to the range 113-182 Å was performed using the spectral line intensity branching ratio method. The range 182-340 Å was calibrated thanks to radiative-collisional modelling of spectral line intensity ratios. The maximum sensitivity of the spectrometer was found to lie around 100 Å. Around this wavelength, the sensitivity is fairly flat in a 80 Å wide interval. The spatial variations of sensitivity along the detector assembly were also measured. The observed trend is related to the quantum efficiency decrease as the angle of the incoming photon trajectories becomes more grazing.

  3. Measured and modelled absolute gravity in Greenland

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Forsberg, R.; Strykowski, G.

    2012-12-01

    Present day changes in the ice volume in glaciated areas like Greenland will change the load on the Earth and to this change the lithosphere will respond elastically. The Earth also responds to changes in the ice volume over a millennial time scale. This response is due to the viscous properties of the mantle and is known as Glaical Isostatic Adjustment (GIA). Both signals are present in GPS and absolute gravity (AG) measurements and they will give an uncertainty in mass balance estimates calculated from these data types. It is possible to separate the two signals if both gravity and Global Positioning System (GPS) time series are available. DTU Space acquired an A10 absolute gravimeter in 2008. One purpose of this instrument is to establish AG time series in Greenland and the first measurements were conducted in 2009. Since then are 18 different Greenland GPS Network (GNET) stations visited and six of these are visited more then once. The gravity signal consists of three signals; the elastic signal, the viscous signal and the direct attraction from the ice masses. All of these signals can be modelled using various techniques. The viscous signal is modelled by solving the Sea Level Equation with an appropriate ice history and Earth model. The free code SELEN is used for this. The elastic signal is modelled as a convolution of the elastic Greens function for gravity and a model of present day ice mass changes. The direct attraction is the same as the Newtonian attraction and is calculated as this. Here we will present the preliminary results of the AG measurements in Greenland. We will also present modelled estimates of the direct attraction, the elastic and the viscous signals.

  4. Absolute bioavailability of quinine formulations in Nigeria.

    PubMed

    Babalola, C P; Bolaji, O O; Ogunbona, F A; Ezeomah, E

    2004-09-01

    This study compared the absolute bioavailability of quinine sulphate as capsule and as tablet against the intravenous (i.v.) infusion of the drug in twelve male volunteers. Six of the volunteers received intravenous infusion over 4 h as well as the capsule formulation of the drug in a cross-over manner, while the other six received the tablet formulation. Blood samples were taken at predetermined time intervals and plasma analysed for quinine (QN) using reversed-phase HPLC method. QN was rapidly absorbed after the two oral formulations with average t(max) of 2.67 h for both capsule and tablet. The mean elimination half-life of QN from the i.v. and oral dosage forms varied between 10 and 13.5 hr and were not statistically different (P > 0.05). On the contrary, the maximum plasma concentration (C(max)) and area under the curve (AUC) from capsule were comparable to those from i.v. (P > 0.05), while these values were markedly higher than values from tablet formulation (P < 0.05). The therapeutic QN plasma levels were not achieved with the tablet formulation. The absolute bioavailability (F) were 73% (C.l., 53.3 - 92.4%) and 39 % (C.I., 21.7 - 56.6%) for the capsule and tablet respectively and the difference was significant (P < 0.05). The subtherapeutic levels obtained from the tablet form used in this study may cause treatment failure during malaria and caution should be taken when predictions are made from results obtained from different formulations of QN.

  5. Total Galaxy Magnitudes and Effective Radii from Petrosian Magnitudes and Radii

    NASA Astrophysics Data System (ADS)

    Graham, Alister W.; Driver, Simon P.; Petrosian, Vahé; Conselice, Christopher J.; Bershady, Matthew A.; Crawford, Steven M.; Goto, Tomotsugu

    2005-10-01

    Petrosian magnitudes were designed to help with the difficult task of determining a galaxy's total light. Although these magnitudes [taken here as the flux within 2RP, with the inverted Petrosian index 1/η(RP)=0.2] can represent most of an object's flux, they do of course miss the light outside the Petrosian aperture (2RP). The size of this flux deficit varies monotonically with the shape of a galaxy's light profile, i.e., its concentration. In the case of a de Vaucouleurs R1/4 profile, the deficit is 0.20 mag; for an R1/8 profile this figure rises to 0.50 mag. Here we provide a simple method for recovering total (Sérsic) magnitudes from Petrosian magnitudes using only the galaxy concentration (R90/R50 or R80/R20) within the Petrosian aperture. The corrections hold to the extent that Sérsic's model provides a good description of a galaxy's luminosity profile. We show how the concentration can also be used to convert Petrosian radii into effective half-light radii, enabling a robust measure of the mean effective surface brightness. Our technique is applied to the Sloan Digital Sky Survey Data Release 2 (SDSS DR2) Petrosian parameters, yielding good agreement with the total magnitudes, effective radii, and mean effective surface brightnesses obtained from the New York University Value-Added Galaxy Catalog Sérsic R1/n fits by Blanton and coworkers. Although the corrective procedure described here is specifically applicable to the SDSS DR2 and DR3, it is generally applicable to all imaging data where any Petrosian index and concentration can be constructed.

  6. Epistemic uncertainty in the location and magnitude of earthquakes in Italy from Macroseismic data

    USGS Publications Warehouse

    Bakun, W.H.; Gomez, Capera A.; Stucchi, M.

    2011-01-01

    Three independent techniques (Bakun and Wentworth, 1997; Boxer from Gasperini et al., 1999; and Macroseismic Estimation of Earthquake Parameters [MEEP; see Data and Resources section, deliverable D3] from R.M.W. Musson and M.J. Jimenez) have been proposed for estimating an earthquake location and magnitude from intensity data alone. The locations and magnitudes obtained for a given set of intensity data are almost always different, and no one technique is consistently best at matching instrumental locations and magnitudes of recent well-recorded earthquakes in Italy. Rather than attempting to select one of the three solutions as best, we use all three techniques to estimate the location and the magnitude and the epistemic uncertainties among them. The estimates are calculated using bootstrap resampled data sets with Monte Carlo sampling of a decision tree. The decision-tree branch weights are based on goodness-of-fit measures of location and magnitude for recent earthquakes. The location estimates are based on the spatial distribution of locations calculated from the bootstrap resampled data. The preferred source location is the locus of the maximum bootstrap location spatial density. The location uncertainty is obtained from contours of the bootstrap spatial density: 68% of the bootstrap locations are within the 68% confidence region, and so on. For large earthquakes, our preferred location is not associated with the epicenter but with a location on the extended rupture surface. For small earthquakes, the epicenters are generally consistent with the location uncertainties inferred from the intensity data if an epicenter inaccuracy of 2-3 km is allowed. The preferred magnitude is the median of the distribution of bootstrap magnitudes. As with location uncertainties, the uncertainties in magnitude are obtained from the distribution of bootstrap magnitudes: the bounds of the 68% uncertainty range enclose 68% of the bootstrap magnitudes, and so on. The instrumental

  7. The functional significance of absolute power with respect to event-related desynchronization.

    PubMed

    Doppelmayr, M M; Klimesch, W; Pachinger, T; Ripper, B

    1998-01-01

    The question is examined whether the extent of changes in relative band power as measured by event-related desynchronization (ERD) depends on absolute band power. The results for target stimuli of a simple oddball task indicate that the prestimulus (reference) level of absolute band power has indeed a strong influence on ERD. Whereas for the alpha band large band power in the reference interval is related to a strong degree of alpha suppression as measured by ERD, the opposite holds true for the theta band. Here, a low level of band power during the reference interval is related to a pronounced increase in band power during the processing of the target stimulus. In contrast to alpha and theta, ERD in the delta band is not influenced by the magnitude of band power in the reference interval.

  8. Estimating earthquake magnitudes from reported intensities in the central and eastern United States

    USGS Publications Warehouse

    Boyd, Oliver; Cramer, Chris H.

    2014-01-01

    A new macroseismic intensity prediction equation is derived for the central and eastern United States and is used to estimate the magnitudes of the 1811–1812 New Madrid, Missouri, and 1886 Charleston, South Carolina, earthquakes. This work improves upon previous derivations of intensity prediction equations by including additional intensity data, correcting magnitudes in the intensity datasets to moment magnitude, and accounting for the spatial and temporal population distributions. The new relation leads to moment magnitude estimates for the New Madrid earthquakes that are toward the lower range of previous studies. Depending on the intensity dataset to which the new macroseismic intensity prediction equation is applied, mean estimates for the 16 December 1811, 23 January 1812, and 7 February 1812 mainshocks, and 16 December 1811 dawn aftershock range from 6.9 to 7.1, 6.8 to 7.1, 7.3 to 7.6, and 6.3 to 6.5, respectively. One‐sigma uncertainties on any given estimate could be as high as 0.3–0.4 magnitude units. We also estimate a magnitude of 6.9±0.3 for the 1886 Charleston, South Carolina, earthquake. We find a greater range of magnitude estimates when also accounting for multiple macroseismic intensity prediction equations. The inability to accurately and precisely ascertain magnitude from intensities increases the uncertainty of the central United States earthquake hazard by nearly a factor of two. Relative to the 2008 national seismic hazard maps, our range of possible 1811–1812 New Madrid earthquake magnitudes increases the coefficient of variation of seismic hazard estimates for Memphis, Tennessee, by 35%–42% for ground motions expected to be exceeded with a 2% probability in 50 years and by 27%–35% for ground motions expected to be exceeded with a 10% probability in 50 years.

  9. Nonlinear Susceptibility Magnitude Imaging of Magnetic Nanoparticles.

    PubMed

    Ficko, Bradley W; Giacometti, Paolo; Diamond, Solomon G

    2015-03-15

    This study demonstrates a method for improving the resolution of susceptibility magnitude imaging (SMI) using spatial information that arises from the nonlinear magnetization characteristics of magnetic nanoparticles (mNPs). In this proof-of-concept study of nonlinear SMI, a pair of drive coils and several permanent magnets generate applied magnetic fields and a coil is used as a magnetic field sensor. Sinusoidal alternating current (AC) in the drive coils results in linear mNP magnetization responses at primary frequencies, and nonlinear responses at harmonic frequencies and intermodulation frequencies. The spatial information content of the nonlinear responses is evaluated by reconstructing tomographic images with sequentially increasing voxel counts using the combined linear and nonlinear data. Using the linear data alone it is not possible to accurately reconstruct more than 2 voxels with a pair of drive coils and a single sensor. However, nonlinear SMI is found to accurately reconstruct 12 voxels (R(2) = 0.99, CNR = 84.9) using the same physical configuration. Several time-multiplexing methods are then explored to determine if additional spatial information can be obtained by varying the amplitude, phase and frequency of the applied magnetic fields from the two drive coils. Asynchronous phase modulation, amplitude modulation, intermodulation phase modulation, and frequency modulation all resulted in accurate reconstruction of 6 voxels (R(2) > 0.9) indicating that time multiplexing is a valid approach to further increase the resolution of nonlinear SMI. The spatial information content of nonlinear mNP responses and the potential for resolution enhancement with time multiplexing demonstrate the concept and advantages of nonlinear SMI.

  10. Fast, Computer Supported Experimental Determination of Absolute Zero Temperature at School

    ERIC Educational Resources Information Center

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2014-01-01

    A simple and fast experimental method of determining absolute zero temperature is presented. Air gas thermometer coupled with pressure sensor and data acquisition system COACH is applied in a wide range of temperature. By constructing a pressure vs temperature plot for air under constant volume it is possible to obtain--by extrapolation to zero…

  11. The moment magnitude M w and the energy magnitude M e: common roots and differences

    NASA Astrophysics Data System (ADS)

    Bormann, Peter; di Giacomo, Domenico

    2011-04-01

    Starting from the classical empirical magnitude-energy relationships, in this article, the derivation of the modern scales for moment magnitude M w and energy magnitude M e is outlined and critically discussed. The formulas for M w and M e calculation are presented in a way that reveals, besides the contributions of the physically defined measurement parameters seismic moment M 0 and radiated seismic energy E S, the role of the constants in the classical Gutenberg-Richter magnitude-energy relationship. Further, it is shown that M w and M e are linked via the parameter Θ = log( E S/ M 0), and the formula for M e can be written as M e = M w + (Θ + 4.7)/1.5. This relationship directly links M e with M w via their common scaling to classical magnitudes and, at the same time, highlights the reason why M w and M e can significantly differ. In fact, Θ is assumed to be constant when calculating M w. However, variations over three to four orders of magnitude in stress drop Δ σ (as well as related variations in rupture velocity V R and seismic wave radiation efficiency η R) are responsible for the large variability of actual Θ values of earthquakes. As a result, for the same earthquake, M e may sometimes differ by more than one magnitude unit from M w. Such a difference is highly relevant when assessing the actual damage potential associated with a given earthquake, because it expresses rather different static and dynamic source properties. While M w is most appropriate for estimating the earthquake size (i.e., the product of rupture area times average displacement) and thus the potential tsunami hazard posed by strong and great earthquakes in marine environs, M e is more suitable than M w for assessing the potential hazard of damage due to strong ground shaking, i.e., the earthquake strength. Therefore, whenever possible, these two magnitudes should be both independently determined and jointly considered. Usually, only M w is taken as a unified magnitude in many

  12. Spatiotemporal evolution of the completeness magnitude of the Icelandic earthquake catalogue from 1991 to 2013

    NASA Astrophysics Data System (ADS)

    Panzera, Francesco; Mignan, Arnaud; Vogfjörð, Kristin S.

    2016-11-01

    In 1991, a digital seismic monitoring network was installed in Iceland with a digital seismic system and automatic operation. After 20 years of operation, we explore for the first time its nationwide performance by analysing the spatiotemporal variations of the completeness magnitude. We use the Bayesian magnitude of completeness (BMC) method that combines local completeness magnitude observations with prior information based on the density of seismic stations. Additionally, we test the impact of earthquake location uncertainties on the BMC results, by filtering the catalogue using a multivariate analysis that identifies outliers in the hypocentre error distribution. We find that the entire North-to-South active rift zone shows a relatively low magnitude of completeness Mc in the range 0.5-1.0, highlighting the ability of the Icelandic network to detect small earthquakes. This work also demonstrates the influence of earthquake location uncertainties on the spatiotemporal magnitude of completeness analysis.

  13. Calibration of the local magnitude scale (M L ) for Peru

    NASA Astrophysics Data System (ADS)

    Condori, Cristobal; Tavera, Hernando; Marotta, Giuliano Sant'Anna; Rocha, Marcelo Peres; França, George Sand

    2017-02-01

    We propose a local magnitude scale (M L ) for Peru, based on the original Richter definition, using 210 seismic events between 2011 and 2014, recorded by 35 broadband stations of the National Seismic Network operated by the Geophysical Institute of Peru. In the solution model, we considered 1057 traces of maximum amplitude records on the vertical channel from simulated Wood-Anderson seismograms of shallow events (depths between 0 and 60 km) and hypocentral distances less than 600 km. The attenuation factor has been evaluated in terms of geometrical spreading and anelastic attenuation coefficients. The magnitude M L was defined as M L = L o g 10 A W A +1.5855L o g 10(R/100)+0.0008(R-100)+3±S, where, A W A is the displacement amplitude in millimeters (Wood-Anderson), R is the hypocentral distance (km), and S is the station correction. The results obtained for M L have good correlation with the m b , M s and M w values reported the ISC and NEIC. The anelastic attenuation curve obtained has a similar behavior to that other highly seismic regions. Station corrections were determined for all stations during the regression analysis resulting in values ranging between -0.97 and +0.73, suggesting a strong influence of local site effects on amplitude.

  14. Passive Ranging

    DTIC Science & Technology

    1988-08-01

    1981). 5. R. Courant and D. Hilbert, Methods of Mathematical Physics , Vol. I, English ed., * Interscience, New York, 1953. 32 32 APPENDIX A CALCULATION...K Courant and D. Hilbert, Methods of Mathematical Physics , Vol. I, English ed., * Interscience, New York, 1953. A-8 APPENDIX B * RANGING ACCURACY IN

  15. Superharp: A wire scanner with absolute position readout for beam energy measurement at CEBAF

    SciTech Connect

    Yan, C.

    1994-09-07

    Superharp is an upgrade CEBAF wire scanner with absolute position readout from shaft encoder. As high precision absolute beam position probe ({Delta}x {approximately} 10{mu}m), three pairs of superharps are installed at the entrance, the mid-point, and the exit of Hall C arc beamline in beam switch yard, which will be tuned in dispersive mode as energy spectrometer performing 10{sup {minus}3} beam energy measurement. With dual sensor system: the direct current pickup and the bremsstrahlung detection electronics, beam profile can be obtained by superharp at wide beam current range from 1 {mu}A to 100 {mu}A.

  16. Moment Magnitude ( M W) and Local Magnitude ( M L) Relationship for Earthquakes in Northeast India

    NASA Astrophysics Data System (ADS)

    Baruah, Santanu; Baruah, Saurabh; Bora, P. K.; Duarah, R.; Kalita, Aditya; Biswas, Rajib; Gogoi, N.; Kayal, J. R.

    2012-11-01

    An attempt has been made to examine an empirical relationship between moment magnitude ( M W) and local magnitude ( M L) for the earthquakes in the northeast Indian region. Some 364 earthquakes that were recorded during 1950-2009 are used in this study. Focal mechanism solutions of these earthquakes include 189 Harvard-CMT solutions ( M W ≥ 4.0) for the period 1976-2009, 61 published solutions and 114 solutions obtained for the local earthquakes (2.0 ≤ M L ≤ 5.0) recorded by a 27-station permanent broadband network during 2001-2009 in the region. The M W- M L relationships in seven selected zones of the region are determined by linear regression analysis. A significant variation in the M W- M L relationship and its zone specific dependence are reported here. It is found that M W is equivalent to M L with an average uncertainty of about 0.13 magnitude units. A single relationship is, however, not adequate to scale the entire northeast Indian region because of heterogeneous geologic and geotectonic environments where earthquakes occur due to collisions, subduction and complex intra-plate tectonics.

  17. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling.

    PubMed

    Zhang, Hongyuan; Wei, Haoyun; Wu, Xuejian; Yang, Honglei; Li, Yan

    2014-03-24

    A dual-comb nonlinear asynchronous optical sampling method is proposed to simplify determination of the time interval and extend the non-ambiguity range in absolute length measurements. Type II second harmonic generation facilitates curve fitting in determining the time interval between adjacent pulses. Meanwhile, the non-ambiguity range is extended by adjusting the repetition rate of the signal laser. The performance of the proposed method is compared with a heterodyne interferometer. Results show that the system achieves a maximum residual of 100.6 nm and an uncertainty of 1.48 μm in a 0.5 ms acquisition time. With longer acquisition time, the uncertainty can be reduced to 166.6 nm for 50 ms and 82.9 nm for 500 ms. Moreover, the extension of the non-ambiguity range is demonstrated by measuring an absolute distance beyond the inherent range determined by the fixed repetition rate.

  18. The Leo I color-magnitude diagram

    NASA Astrophysics Data System (ADS)

    Reid, Neill; Mould, Jeremy

    1991-04-01

    The R-and I-band photometry of the Leo I dwarf galaxy is presented. A relatively narrow giant branch is found, Implying an abundance range of no more than Fe/H/= - 0.7 to - 1.3. This is in contrast to the results is found by Fox and Pritchet (1987) from BV CCD photometry. The distance modulus is estimated as (m - M) = 21.85 + or - 0.15, based on the luminosity of the tip of the red giant branch.

  19. Understanding volatility correlation behavior with a magnitude cross-correlation function

    NASA Astrophysics Data System (ADS)

    Jun, Woo Cheol; Oh, Gabjin; Kim, Seunghwan

    2006-06-01

    We propose an approach for analyzing the basic relation between correlation properties of the original signal and its magnitude fluctuations by decomposing the original signal into its positive and negative fluctuation components. We use this relation to understand the following phenomenon found in many naturally occurring time series: the magnitude of the signal exhibits long-range correlation, whereas the original signal is short-range correlated. The applications of our approach to heart rate variability signals and high-frequency foreign exchange rates reveal that the difference between the correlation properties of the original signal and its magnitude fluctuations is induced by the time organization structure of the correlation function between the magnitude fluctuations of positive and negative components. We show that this correlation function can be described well by a stretched-exponential function and is related to the nonlinearity and the multifractal structure of the signals.

  20. Breach Risk Magnitude: A Quantitative Measure of Database Security

    PubMed Central

    Yasnoff, William A.

    2016-01-01

    A quantitative methodology is described that provides objective evaluation of the potential for health record system breaches. It assumes that breach risk increases with the number of potential records that could be exposed, while it decreases when more authentication steps are required for access. The breach risk magnitude (BRM) is the maximum value for any system user of the common logarithm of the number of accessible database records divided by the number of authentication steps needed to achieve such access. For a one million record relational database, the BRM varies from 5.52 to 6 depending on authentication protocols. For an alternative data architecture designed specifically to increase security by separately storing and encrypting each patient record, the BRM ranges from 1.3 to 2.6. While the BRM only provides a limited quantitative assessment of breach risk, it may be useful to objectively evaluate the security implications of alternative database organization approaches. PMID:28269923

  1. Early Warning for Large Magnitude Earthquakes: Is it feasible?

    NASA Astrophysics Data System (ADS)

    Zollo, A.; Colombelli, S.; Kanamori, H.

    2011-12-01

    The mega-thrust, Mw 9.0, 2011 Tohoku earthquake has re-opened the discussion among the scientific community about the effectiveness of Earthquake Early Warning (EEW) systems, when applied to such large events. Many EEW systems are now under-testing or -development worldwide and most of them are based on the real-time measurement of ground motion parameters in a few second window after the P-wave arrival. Currently, we are using the initial Peak Displacement (Pd), and the Predominant Period (τc), among other parameters, to rapidly estimate the earthquake magnitude and damage potential. A well known problem about the real-time estimation of the magnitude is the parameter saturation. Several authors have shown that the scaling laws between early warning parameters and magnitude are robust and effective up to magnitude 6.5-7; the correlation, however, has not yet been verified for larger events. The Tohoku earthquake occurred near the East coast of Honshu, Japan, on the subduction boundary between the Pacific and the Okhotsk plates. The high quality Kik- and K- networks provided a large quantity of strong motion records of the mainshock, with a wide azimuthal coverage both along the Japan coast and inland. More than 300 3-component accelerograms have been available, with an epicentral distance ranging from about 100 km up to more than 500 km. This earthquake thus presents an optimal case study for testing the physical bases of early warning and to investigate the feasibility of a real-time estimation of earthquake size and damage potential even for M > 7 earthquakes. In the present work we used the acceleration waveform data of the main shock for stations along the coast, up to 200 km epicentral distance. We measured the early warning parameters, Pd and τc, within different time windows, starting from 3 seconds, and expanding the testing time window up to 30 seconds. The aim is to verify the correlation of these parameters with Peak Ground Velocity and Magnitude

  2. Numerical magnitude affects temporal memories but not time encoding.

    PubMed

    Cai, Zhenguang G; Wang, Ruiming

    2014-01-01

    Previous research has suggested that the perception of time is influenced by concurrent magnitude information (e.g., numerical magnitude in digits, spatial distance), but the locus of the effect is unclear, with some findings suggesting that concurrent magnitudes such as space affect temporal memories and others suggesting that numerical magnitudes in digits affect the clock speed during time encoding. The current paper reports 6 experiments in which participants perceived a stimulus duration and then reproduced it. We showed that though a digit of a large magnitude (e.g., 9), relative to a digit of a small magnitude (e.g., 2), led to a longer reproduced duration when the digits were presented during the perception of the stimulus duration, such a magnitude effect disappeared when the digits were presented during the reproduction of the stimulus duration. These findings disconfirm the account that large numerical magnitudes accelerate the speed of an internal clock during time encoding, as such an account incorrectly predicts that a large numerical magnitude should lead to a shorter reproduced duration when presented during reproduction. Instead, the findings suggest that numerical magnitudes, like other magnitudes such as space, affect temporal memories when numerical magnitudes and temporal durations are concurrently held in memory. Under this account, concurrent numerical magnitudes have the chance to influence the memory of the perceived duration when they are presented during perception but not when they are presented at the reproduction stage.

  3. The modulation of implicit magnitude on time estimates.

    PubMed

    Ma, Qingxia; Yang, Zhen; Zhang, Zhijie

    2012-01-01

    Studies in time and quantity have shown that explicit magnitude (e.g. Arabic numerals, luminance, or size) modulates time estimates with smaller magnitude biasing the judgment of time towards underestimation and larger magnitude towards overestimation. However, few studies have examined the effect of implicit magnitude on time estimates. The current study used a duration estimation task to investigate the effects of implicit magnitude on time estimation in three experiments. During the duration estimation task, the target words named objects of various lengths (Experiment 1), weights (Experiment 2) and volumes (Experiment 3) were presented on the screen and participants were asked to reproduce the amount of time the words remained on the screen via button presses. Results indicated that the time estimates were modulated by the implicit magnitude of the word's referent with words named objects of smaller magnitude (shorter, lighter, or smaller) being judged to last a shorter time, and words named objects of greater magnitude (longer, heavier, or bigger) being judged to last a longer time. These findings were consistent with previous studies examining the effect of implicit spatial length on time estimates. More importantly, current results extended the implicit magnitude of length to the implicit magnitude of weight and volume and demonstrated a functional interaction between time and implicit magnitude in all three aspects of quantity, suggesting a common generalized magnitude system. These results provided new evidence to support a theory of magnitude (ATOM).

  4. Optical phase step method for absolute ranging interferometry using computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Deininger, Martin; Wang, Lingli; Gerstner, Klaus; Tschudi, Theo

    1995-09-01

    One main problem of an interferometric measurement is to evaluate the object distance from the interference function. One of the known methods that delivers the object phase is the phase step method. Here we introduce computer-generated holograms to realize parallel phase steps without phase modulation of the reference path.

  5. Close-range photogrammetry with light field camera: from disparity map to absolute distance.

    PubMed

    Yang, Peng; Wang, Zhaomin; Yan, Yizhen; Qu, Weijuan; Zhao, Hongying; Asundi, Anand; Yan, Lei

    2016-09-20

    A new approach to measure the 3D profile of a texture object is proposed utilizing light field imaging, in which three key steps are required: a disparity map is first obtained by detecting the slopes in the epipolar plane image with the multilabel technique; the intrinsic parameters of the light field camera are then extracted by camera calibration; at last, the relationship between disparity values and real distances is built up by depth calibration. In the last step, a linear calibration method is proposed to achieve accurate results. Furthermore, the depth error is also investigated and compensated for by reusing the checkerboard pattern. The experimental results are in good agreement with the 3D models, and also indicate that the light field imaging is a promising 3D measurement technique.

  6. Elevation correction factor for absolute pressure measurements

    NASA Technical Reports Server (NTRS)

    Panek, Joseph W.; Sorrells, Mark R.

    1996-01-01

    With the arrival of highly accurate multi-port pressure measurement systems, conditions that previously did not affect overall system accuracy must now be scrutinized closely. Errors caused by elevation differences between pressure sensing elements and model pressure taps can be quantified and corrected. With multi-port pressure measurement systems, the sensing elements are connected to pressure taps that may be many feet away. The measurement system may be at a different elevation than the pressure taps due to laboratory space or test article constraints. This difference produces a pressure gradient that is inversely proportional to height within the interface tube. The pressure at the bottom of the tube will be higher than the pressure at the top due to the weight of the tube's column of air. Tubes with higher pressures will exhibit larger absolute errors due to the higher air density. The above effect is well documented but has generally been taken into account with large elevations only. With error analysis techniques, the loss in accuracy from elevation can be easily quantified. Correction factors can be applied to maintain the high accuracies of new pressure measurement systems.

  7. What is Needed for Absolute Paleointensity?

    NASA Astrophysics Data System (ADS)

    Valet, J. P.

    2015-12-01

    Many alternative approaches to the Thellier and Thellier technique for absolute paleointensity have been proposed during the past twenty years. One reason is the time consuming aspect of the experiments. Another reason is to avoid uncertainties in determinations of the paleofield which are mostly linked to the presence of multidomain grains. Despite great care taken by these new techniques, there is no indication that they always provide the right answer and in fact sometimes fail. We are convinced that the most valid approach remains the original double heating Thellier protocol provided that natural remanence is controlled by pure magnetite with a narrow distribution of small grain sizes, mostly single domains. The presence of titanium, even in small amount generates biases which yield incorrect field values. Single domain grains frequently dominate the magnetization of glass samples, which explains the success of this selective approach. They are also present in volcanic lava flows but much less frequently, and therefore contribute to the low success rate of most experiments. However the loss of at least 70% of the magnetization at very high temperatures prior to the Curie point appears to be an essential prerequisite that increases the success rate to almost 100% and has been validated from historical flows and from recent studies. This requirement can easily be tested by thermal demagnetization while low temperature experiments can document the detection of single domain magnetite using the δFC/δZFC parameter as suggested (Moskowitz et al, 1993) for biogenic magnetite.

  8. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    SciTech Connect

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  9. Absolute flux measurements for swift atoms

    NASA Technical Reports Server (NTRS)

    Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.

    1987-01-01

    While a torsion balance in vacuum can easily measure the momentum transfer from a gas beam impinging on a surface attached to the balance, this measurement depends on the accommodation coefficients of the atoms with the surface and the distribution of the recoil. A torsion balance is described for making absolute flux measurements independent of recoil effects. The torsion balance is a conventional taut suspension wire design and the Young modulus of the wire determines the relationship between the displacement and the applied torque. A compensating magnetic field is applied to maintain zero displacement and provide critical damping. The unique feature is to couple the impinging gas beam to the torsion balance via a Wood's horn, i.e., a thin wall tube with a gradual 90 deg bend. Just as light is trapped in a Wood's horn by specular reflection from the curved surfaces, the gas beam diffuses through the tube. Instead of trapping the beam, the end of the tube is open so that the atoms exit the tube at 90 deg to their original direction. Therefore, all of the forward momentum of the gas beam is transferred to the torsion balance independent of the angle of reflection from the surfaces inside the tube.

  10. Scaling of frequency-magnitude distributions of fluid-induced seismicity

    NASA Astrophysics Data System (ADS)

    Dinske, Carsten; Shapiro, Serge A.

    2015-04-01

    We compare b value and seismogenic index Σ estimates using two different approaches: a standard Gutenberg-Richter power-law fitting and a frequency-magnitude lower bound probability fitting. The latter takes into account the finite size of the perturbed rock volume. Our results reveal that the smaller is the perturbed rock volume the larger are the deviations between the two sets of derived parameters. It means that the magnitude statistics of the induced events is most affected for low injection volumes and/or short injection times. In sufficiently large stimulated volumes both fitting approaches provide comparable b value and seismogenic index estimates. In particular, the b value is then in the range universally obtained for tectonic earthquakes (b 0.8 - 1.2). We introduce the specific magnitude MΣ as a seismotectonic characteristic of a reservoir location. Defined as the ratio between seismogenic index Σ and b value, this magnitude scaling parameter is unaffected by the size of perturbed rock volumes. Using both seismogenic index model and specific magnitude model we predict frequency-magnitude distributions for two different scenarios and compare these to observed data. We conclude that the seismogenic index model provides reliable predictions which confirm its applicability as a forecast tool. On the other hand, the specific magnitude model can be applied to predict the asymptotical limit of probable frequency-magnitude distributions.

  11. High-accuracy absolute rotation rate measurements with a large ring laser gyro: establishing the scale factor.

    PubMed

    Hurst, Robert B; Mayerbacher, Marinus; Gebauer, Andre; Schreiber, K Ulrich; Wells, Jon-Paul R

    2017-02-01

    Large ring lasers have exceeded the performance of navigational gyroscopes by several orders of magnitude and have become useful tools for geodesy. In order to apply them to tests in fundamental physics, remaining systematic errors have to be significantly reduced. We derive a modified expression for the Sagnac frequency of a square ring laser gyro under Earth rotation. The modifications include corrections for dispersion (of both the gain medium and the mirrors), for the Goos-Hänchen effect in the mirrors, and for refractive index of the gas filling the cavity. The corrections were measured and calculated for the 16  m2 Grossring laser located at the Geodetic Observatory Wettzell. The optical frequency and the free spectral range of this laser were measured, allowing unique determination of the longitudinal mode number, and measurement of the dispersion. Ultimately we find that the absolute scale factor of the gyroscope can be estimated to an accuracy of approximately 1 part in 108.

  12. Pixel-by-pixel absolute phase retrieval using three phase-shifted fringe patterns without markers

    NASA Astrophysics Data System (ADS)

    Jiang, Chufan; Li, Beiwen; Zhang, Song

    2017-04-01

    This paper presents a method that can recover absolute phase pixel by pixel without embedding markers on three phase-shifted fringe patterns, acquiring additional images, or introducing additional hardware component(s). The proposed three-dimensional (3D) absolute shape measurement technique includes the following major steps: (1) segment the measured object into different regions using rough priori knowledge of surface geometry; (2) artificially create phase maps at different z planes using geometric constraints of structured light system; (3) unwrap the phase pixel by pixel for each region by properly referring to the artificially created phase map; and (4) merge unwrapped phases from all regions into a complete absolute phase map for 3D reconstruction. We demonstrate that conventional three-step phase-shifted fringe patterns can be used to create absolute phase map pixel by pixel even for large depth range objects. We have successfully implemented our proposed computational framework to achieve absolute 3D shape measurement at 40 Hz.

  13. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  14. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  15. Positioning, alignment and absolute pointing of the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Fehr, F.; Distefano, C.; Antares Collaboration

    2010-01-01

    A precise detector alignment and absolute pointing is crucial for point-source searches. The ANTARES neutrino telescope utilises an array of hydrophones, tiltmeters and compasses for the relative positioning of the optical sensors. The absolute calibration is accomplished by long-baseline low-frequency triangulation of the acoustic reference devices in the deep-sea with a differential GPS system at the sea surface. The absolute pointing can be independently verified by detecting the shadow of the Moon in cosmic rays.

  16. Exploring the relationship between the magnitudes of seismic events

    NASA Astrophysics Data System (ADS)

    Spassiani, Ilaria; Sebastiani, Giovanni

    2016-02-01

    The distribution of the magnitudes of seismic events is generally assumed to be independent on past seismicity. However, by considering events in causal relation, for example, mother-daughter, it seems natural to assume that the magnitude of a daughter event is conditionally dependent on one of the corresponding mother events. In order to find experimental evidence supporting this hypothesis, we analyze different catalogs, both real and simulated, in two different ways. From each catalog, we obtain the law of the magnitude of the triggered events by kernel density. The results obtained show that the distribution density of the magnitude of the triggered events varies with the magnitude of their corresponding mother events. As the intuition suggests, an increase of the magnitude of the mother events induces an increase of the probability of having "high" values of the magnitude of the triggered events. In addition, we see a statistically significant increasing linear dependence of the magnitude means.

  17. Registration of RF Plasma Radiation in Ultra-Violet Range by Solar-blind Photoreceptor

    NASA Astrophysics Data System (ADS)

    Nguyen-Kuok, Shi; Malakhov, Yury; Korotkikh, Ivan

    2016-09-01

    A spectrum response of a photoreceptor to the RF plasma radiation is determined in the present work by means of a spectrophotometer utilizing a gas-filled photoreceptor. A continuous radiation spectrum was observed in the wavelength interval of 190 - 270 nm. The photoreceptor allows measuring of absolute radiation taking into account the spectral sensitivity of the photoreceptor and the values of quantum output for the given wavelength. A continuous spectrum was observed in all three orders of magnitude of diffraction. Develop and test a technique for measuring the intensity of the plasma radiation in the UV wavelength range measured amount of discharge pulses can be used to determine the spectral sensitivity range of UV radiation receivers. Professor.

  18. Absolute and Convective Instability of a Liquid Jet

    NASA Technical Reports Server (NTRS)

    Lin, S. P.; Hudman, M.; Chen, J. N.

    1999-01-01

    The existence of absolute instability in a liquid jet has been predicted for some time. The disturbance grows in time and propagates both upstream and downstream in an absolutely unstable liquid jet. The image of absolute instability is captured in the NASA 2.2 sec drop tower and reported here. The transition from convective to absolute instability is observed experimentally. The experimental results are compared with the theoretical predictions on the transition Weber number as functions of the Reynolds number. The role of interfacial shear relative to all other relevant forces which cause the onset of jet breakup is explained.

  19. Magnitude and Frequency of Floods on Nontidal Streams in Delaware

    USGS Publications Warehouse

    Ries, Kernell G.; Dillow, Jonathan J.A.

    2006-01-01

    Reliable estimates of the magnitude and frequency of annual peak flows are required for the economical and safe design of transportation and water-conveyance structures. This report, done in cooperation with the Delaware Department of Transportation (DelDOT) and the Delaware Geological Survey (DGS), presents methods for estimating the magnitude and frequency of floods on nontidal streams in Delaware at locations where streamgaging stations monitor streamflow continuously and at ungaged sites. Methods are presented for estimating the magnitude of floods for return frequencies ranging from 2 through 500 years. These methods are applicable to watersheds exhibiting a full range of urban development conditions. The report also describes StreamStats, a web application that makes it easy to obtain flood-frequency estimates for user-selected locations on Delaware streams. Flood-frequency estimates for ungaged sites are obtained through a process known as regionalization, using statistical regression analysis, where information determined for a group of streamgaging stations within a region forms the basis for estimates for ungaged sites within the region. One hundred and sixteen streamgaging stations in and near Delaware with at least 10 years of non-regulated annual peak-flow data available were used in the regional analysis. Estimates for gaged sites are obtained by combining the station peak-flow statistics (mean, standard deviation, and skew) and peak-flow estimates with regional estimates of skew and flood-frequency magnitudes. Example flood-frequency estimate calculations using the methods presented in the report are given for: (1) ungaged sites, (2) gaged locations, (3) sites upstream or downstream from a gaged location, and (4) sites between gaged locations. Regional regression equations applicable to ungaged sites in the Piedmont and Coastal Plain Physiographic Provinces of Delaware are presented. The equations incorporate drainage area, forest cover, impervious

  20. Numerical Magnitude Processing in Children with Mild Intellectual Disabilities

    ERIC Educational Resources Information Center

    Brankaer, Carmen; Ghesquiere, Pol; De Smedt, Bert

    2011-01-01

    The present study investigated numerical magnitude processing in children with mild intellectual disabilities (MID) and examined whether these children have difficulties in the ability to represent numerical magnitudes and/or difficulties in the ability to access numerical magnitudes from formal symbols. We compared the performance of 26 children…

  1. Sign-And-Magnitude Up/Down Counter

    NASA Technical Reports Server (NTRS)

    Cole, Steven W.

    1991-01-01

    Magnitude-and-sign counter includes conventional up/down counter for magnitude part and special additional circuitry for sign part. Negative numbers indicated more directly. Counter implemented by programming erasable programmable logic device (EPLD) or programmable logic array (PLA). Used in place of conventional up/down counter to provide sign and magnitude values directly to other circuits.

  2. Symbolic Magnitude Modulates Perceptual Strength in Binocular Rivalry

    ERIC Educational Resources Information Center

    Paffen, Chris L. E.; Plukaard, Sarah; Kanai, Ryota

    2011-01-01

    Basic aspects of magnitude (such as luminance contrast) are directly represented by sensory representations in early visual areas. However, it is unclear how symbolic magnitudes (such as Arabic numerals) are represented in the brain. Here we show that symbolic magnitude affects binocular rivalry: perceptual dominance of numbers and objects of…

  3. Absolute Plate Velocities from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kreemer, Corné; Zheng, Lin; Gordon, Richard

    2015-04-01

    The orientation of seismic anisotropy inferred beneath plate interiors may provide a means to estimate the motions of the plate relative to the sub-asthenospheric mantle. Here we analyze two global sets of shear-wave splitting data, that of Kreemer [2009] and an updated and expanded data set, to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. We also explore the effect of using geologically current plate velocities (i.e., the MORVEL set of angular velocities [DeMets et al. 2010]) compared with geodetically current plate velocities (i.e., the GSRM v1.2 angular velocities [Kreemer et al. 2014]). We demonstrate that the errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. The SKS-MORVEL absolute plate angular velocities (based on the Kreemer [2009] data set) are determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11° Ma-1 (95% confidence limits) right-handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2° ) differs insignificantly from that for continental lithosphere (σ=21.6° ). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4° ) than for continental

  4. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  5. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  6. Analysis of absolute flatness testing in sub-stitching interferometer

    NASA Astrophysics Data System (ADS)

    Jia, Xin; Xu, Fuchao; Xie, Weimin; Xing, Tingwen

    2016-09-01

    Sub-aperture stitching is an effective way to extend the lateral and vertical dynamic range of a conventional interferometer. The test accuracy can be achieved by removing the error of reference surface by the absolute testing method. When the testing accuracy (repeatability and reproducibility) is close to 1nm, in addition to the reference surface, other factors will also affect the measuring accuracy such as environment, zoom magnification, stitching precision, tooling and fixture, the characteristics of optical materials and so on. In the thousand level cleanroom, we establish a good environment system. Long time stability, temperature controlled at 22°+/-0.02°.The humidity and noise are controlled in a certain range. We establish a stitching system in the clean room. The vibration testing system is used to test the vibration. The air pressure testing system is also used. In the motion system, we control the tilt error no more than 4 second to reduce the error. The angle error can be tested by the autocollimator and double grating reading head.

  7. Robust absolute magnetometry with organic thin-film devices

    PubMed Central

    Baker, W.J.; Ambal, K.; Waters, D.P.; Baarda, R.; Morishita, H.; van Schooten, K.; McCamey, D.R.; Lupton, J.M.; Boehme, C.

    2012-01-01

    Magnetic field sensors based on organic thin-film materials have attracted considerable interest in recent years as they can be manufactured at very low cost and on flexible substrates. However, the technological relevance of such magnetoresistive sensors is limited owing to their narrow magnetic field ranges (∼30 mT) and the continuous calibration required to compensate temperature fluctuations and material degradation. Conversely, magnetic resonance (MR)-based sensors, which utilize fundamental physical relationships for extremely precise measurements of fields, are usually large and expensive. Here we demonstrate an organic magnetic resonance-based magnetometer, employing spin-dependent electronic transitions in an organic diode, which combines the low-cost thin-film fabrication and integration properties of organic electronics with the precision of a MR-based sensor. We show that the device never requires calibration, operates over large temperature and magnetic field ranges, is robust against materials degradation and allows for absolute sensitivities of <50 nT Hz−1/2. PMID:22692541

  8. Hypercholesterolemia magnitude increases sympathetic modulation and coagulation in LDLr knockout mice.

    PubMed

    Evangelho, Juliano S; Casali, Karina Rabello; Campos, Cristina; De Angelis, Kátia; Veiga, Ana B G; Rigatto, Katya

    2011-01-20

    We investigated the effects of low lipoprotein receptor deficiency in cholesterol blood concentrations, blood pressure, hemostatic factors, and the autonomic nervous system in three groups: control mice fed standard diet (CO, n=9), lipoprotein receptor-deficient mice (LDLr(-/-), n=9) fed standard diet (LDLr-S) or hypercholesterolemic diet (LDLr-H, n=8). Frequency domain analysis of heart rate and blood pressure variability was performed with an autoregressive algorithm. The spectral components were expressed in absolute (s(2) or mmHg(2)) and normalized units. Spontaneous baroreflex sensitivity (BRS) was estimated by alpha index, defined as square root ratio between low frequency power in blood pressure variability and heart rate variability. LDLr/- mice presented a significant increase in the cholesterol blood concentration (mean±SD; mg/dl; LDLr-S=202.01±34.38 and LDLr-H=530.7±75.17) compared to CO (79.2±13.6), p=0.001. The receptor deletion was associated with a heart rate variability reduction (p=0.013). The BRS was reduced (p<0.05) in LDLr-S and LDL-H (mean±SD: 0.96±0.39 and 0.59±0.34, respectively) compared to CO (4.02±1.92). Moreover, hypercholesterolemic diet significantly increased the cardiac sympathetic modulation (0V pattern of symbolic analysis: mean±SD, CO=8.04±4.53; LDLr-S=16.49±4.52 and LDLr-H=21.80±8.24, p=0.006). The 0V pattern was statically correlated to coagulation factor VII (r=0.555, p=0.0208). In LDLr-H, the concentration (interquartile range) of plasmatic fibrinogen and hemostatic factors VII (2.8-3.3) and XII (1.1-1.3) were increased compared to CO (0.9-1.1and 0.9-1.0, respectively) and LDLr-S (0.7-1.0 and 0.8-0.9, respectively) (p<0.004 for FVII and p<0.006 for FXII). Taken together, the results indicate that plasmatic cholesterol magnitude is determinant to increase the coagulation and the sympathetic modulation.

  9. Retinal vessel oximetry: toward absolute calibration

    NASA Astrophysics Data System (ADS)

    Smith, Matthew H.; Denninghoff, Kurt R.; Lompado, Arthur; Hillman, Lloyd W.

    2000-06-01

    Accurately measuring the oxygen saturation of blood within retinal arteries and veins has proven to be a deceptively difficult task. Despite the excellent optical accessibility of the vessels and a wide range of reported instrumentation, we are unaware of any measurement technique that has proven to be calibrated across wide ranges of vessel diameter and fundus pigmentation. We present an overview of our retinal oximetry technique, present the results of an in vitro calibration experiment, and present preliminary human data.

  10. Mapping numerical magnitudes along the right lines: differentiating between scale and bias.

    PubMed

    Karolis, Vyacheslav; Iuculano, Teresa; Butterworth, Brian

    2011-11-01

    Previous investigations on the subjective scale of numerical representations assumed that the scale type can be inferred directly from stimulus-response mapping. This is not a valid assumption, as mapping from the subjective scale into behavior may be nonlinear and/or distorted by response bias. Here we present a method for differentiating between logarithmic and linear hypotheses robust to the effect of distorting processes. The method exploits the idea that a scale is defined by transformational rules and that combinatorial operations with stimulus magnitudes should be closed under admissible transformations on the subjective scale. The method was implemented with novel variants of the number line task. In the line-marking task, participants marked the position of an Arabic numeral within an interval defined by various starting numbers and lengths. In the line construction task, participants constructed an interval given its part. Two alternative approaches to the data analysis, numerical and analytical, were used to evaluate the linear and log components. Our results are consistent with the linear hypothesis about the subjective scale with responses affected by a bias to overestimate small magnitudes and underestimate large magnitudes. We also observed that in the line-marking task, participants tended to overestimate as the interval start increased, and in the line construction task, they tended to overconstruct as the interval length increased. This finding suggests that magnitudes were encoded differently in the 2 tasks: in terms of their absolute magnitudes in the line-marking task and in terms of numerical differences in the line construction task.

  11. Prelaunch absolute radiometric calibration of the reflective bands on the LANDSAT-4 protoflight Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Ball, D. L.; Leung, K. C.; Walker, J. A.

    1984-01-01

    The results of the absolute radiometric calibration of the LANDSAT 4 thematic mapper, as determined during pre-launch tests with a 122 cm integrating sphere, are presented. Detailed results for the best calibration of the protoflight TM are given, as well as summaries of other tests performed on the sensor. The dynamic range of the TM is within a few per cent of that required in all bands, except bands 1 and 3. Three detectors failed to pass the minimum SNR specified for their respective bands: band 5, channel 3 (dead), band 2, and channels 2 and 4 (noisy or slow response). Estimates of the absolute calibration accuracy for the TM show that the detectors are typically calibrated to 5% absolute error for the reflective bands; 10% full-scale accuracy was specified. Ten tests performed to transfer the detector absolute calibration to the internal calibrator show a 5% range at full scale in the transfer calibration; however, in two cases band 5 showed a 10% and a 7% difference.

  12. Velocity magnitude estimation with linear arrays using Doppler bandwidth.

    PubMed

    Tortoli, P; Guidi, G; Mantovani, L; Newhouse, V L

    2001-04-01

    The dependence of pulsed wave Doppler bandwidth on parameters typical of linear transducer arrays used in commercial Duplex and color flow mapping systems is investigated experimentally. For a single flow line it is observed that this bandwidth generally depends not only on the scatterer velocity and the beam-to-flow angle, but also on the flow line range and orientation. This is due to the fact that in Duplex and color flow systems the transducer is differently focused in the scan and elevation planes and its aperture and focal lengths are often made to vary, depending on the distance of the flow line from the transducer. It is however experimentally demonstrated that, at points where the ultrasound beamwidths in the scan and elevation planes are both comparable to the sample volume length, the Doppler bandwidth is independent of the beam-to-flow angle. It is also shown that this invariance can be extended to other ranges by appropriately modifying the array aperture. Finally, as an application of this independence, the flow-line velocity magnitude in these beam regions is estimated with better than 5% uncertainty through a simple bandwidth measurement.

  13. How to assess magnitudes of paleo-earthquakes from multiple observations

    NASA Astrophysics Data System (ADS)

    Hintersberger, Esther; Decker, Kurt

    2016-04-01

    An important aspect of fault characterisation regarding seismic hazard assessment are paleo-earthquake magnitudes. Especially in regions with low or moderate seismicity, paleo-magnitudes are normally much larger than those of historical earthquakes and therefore provide essential information about seismic potential and expected maximum magnitudes of a certain region. In general, these paleo-earthquake magnitudes are based either on surface rupture length or on surface displacement observed at trenching sites. Several well-established correlations provide the possibility to link the observed surface displacement to a certain magnitude. However, the combination of more than one observation is still rare and not well established. We present here a method based on a probabilistic approach proposed by Biasi and Weldon (2006) to combine several observations to better constrain the possible magnitude range of a paleo-earthquake. Extrapolating the approach of Biasi and Weldon (2006), the single-observation probability density functions (PDF) are assumed to be independent of each other. Following this line, the common PDF for all observed surface displacements generated by one earthquake is the product of all single-displacement PDFs. In order to test our method, we use surface displacement data for modern earthquakes, where magnitudes have been determined by instrumental records. For randomly selected "observations", we calculated the associated PDFs for each "observation point". We then combined the PDFs into one common PDF for an increasing number of "observations". Plotting the most probable magnitudes against the number of combined "observations", the resultant range of most probable magnitudes is very close to the magnitude derived by instrumental methods. Testing our method with real trenching observations, we used the results of a paleoseismological investigation within the Vienna Pull-Apart Basin (Austria), where three trenches were opened along the normal

  14. Absolute peptide quantification by lutetium labeling and nanoHPLC-ICPMS with isotope dilution analysis.

    PubMed

    Rappel, Christina; Schaumlöffel, Dirk

    2009-01-01

    The need of analytical methods for absolute quantitative protein analysis spurred research on new developments in recent years. In this work, a novel approach was developed for accurate absolute peptide quantification based on metal labeling with lutetium diethylenetriamine pentaacetic acid (Lu-DTPA) and nanoflow high-performance liquid chromatography-inductively coupled plasma isotope dilution mass spectrometry (nanoHPLC-ICP-IDMS). In a two-step procedure peptides were derivatized at amino groups with diethylenetriamine pentaacetic anhydride (DTPAA) followed by chelation of lutetium. Electrospray ionization mass spectrometry (ESI MS) of the reaction product demonstrated highly specific peptide labeling. Under optimized nanoHPLC conditions the labeled peptides were baseline-separated, and the excess labeling reagent did not interfere. A 176Lu-labeled spike was continuously added to the column effluent for quantification by ICP-IDMS. The recovery of a Lu-DTPA-labeled standard peptide was close to 100% indicating high labeling efficiency and accurate absolute quantification. The precision of the entire method was 4.9%. The detection limit for Lu-DTPA-tagged peptides was 179 amol demonstrating that lutetium-specific peptide quantification was by 4 orders of magnitude more sensitive than detection by natural sulfur atoms present in cysteine or methionine residues. Furthermore, the application to peptides in insulin tryptic digest allowed the identification of interfering reagents decreasing the labeling efficiency. An additional advantage of this novel approach is the analysis of peptides, which do not naturally feature ICPMS-detectable elements.

  15. Robust control design with real parameter uncertainty using absolute stability theory. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Hall, Steven R.

    1993-01-01

    The purpose of this thesis is to investigate an extension of mu theory for robust control design by considering systems with linear and nonlinear real parameter uncertainties. In the process, explicit connections are made between mixed mu and absolute stability theory. In particular, it is shown that the upper bounds for mixed mu are a generalization of results from absolute stability theory. Both state space and frequency domain criteria are developed for several nonlinearities and stability multipliers using the wealth of literature on absolute stability theory and the concepts of supply rates and storage functions. The state space conditions are expressed in terms of Riccati equations and parameter-dependent Lyapunov functions. For controller synthesis, these stability conditions are used to form an overbound of the H2 performance objective. A geometric interpretation of the equivalent frequency domain criteria in terms of off-axis circles clarifies the important role of the multiplier and shows that both the magnitude and phase of the uncertainty are considered. A numerical algorithm is developed to design robust controllers that minimize the bound on an H2 cost functional and satisfy an analysis test based on the Popov stability multiplier. The controller and multiplier coefficients are optimized simultaneously, which avoids the iteration and curve-fitting procedures required by the D-K procedure of mu synthesis. Several benchmark problems and experiments on the Middeck Active Control Experiment at M.I.T. demonstrate that these controllers achieve good robust performance and guaranteed stability bounds.

  16. Absolute and relative locations of earthquakes at Mount St. Helens, Washington, using continuous data: implications for magmatic processes: Chapter 4 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Thelen, Weston A.; Crosson, Robert S.; Creager, Kenneth C.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    This study uses a combination of absolute and relative locations from earthquake multiplets to investigate the seismicity associated with the eruptive sequence at Mount St. Helens between September 23, 2004, and November 20, 2004. Multiplets, a prominent feature of seismicity during this time period, occurred as volcano-tectonic, hybrid, and low-frequency earthquakes spanning a large range of magnitudes and lifespans. Absolute locations were improved through the use of a new one-dimensional velocity model with excellent shallow constraints on P-wave velocities. We used jackknife tests to minimize possible biases in absolute and relative locations resulting from station outages and changing station configurations. In this paper, we show that earthquake hypocenters shallowed before the October 1 explosion along a north-dipping structure under the 1980-86 dome. Relative relocations of multiplets during the initial seismic unrest and ensuing eruption showed rather small source volumes before the October 1 explosion and larger tabular source volumes after October 5. All multiplets possess absolute locations very close to each other. However, the highly dissimilar waveforms displayed by each of the multiplets analyzed suggest that different sources and mechanisms were present within a very small source volume. We suggest that multiplets were related to pressurization of the conduit system that produced a stationary source that was highly stable over long time periods. On the basis of their response to explosions occurring in October 2004, earthquakes not associated with multiplets also appeared to be pressure dependent. The pressure source for these earthquakes appeared, however, to be different from the pressure source of the multiplets.

  17. Determination of Absolute Zero Using a Computer-Based Laboratory

    ERIC Educational Resources Information Center

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  18. A Global Forecast of Absolute Poverty and Employment.

    ERIC Educational Resources Information Center

    Hopkins, M. J. D.

    1980-01-01

    Estimates are made of absolute poverty and employment under the hypothesis that existing trends continue. Concludes that while the number of people in absolute poverty is not likely to decline by 2000, the proportion will fall. Jobs will have to grow 3.9% per year in developing countries to achieve full employment. (JOW)

  19. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  20. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  1. The Color–Magnitude Distribution of Hilda Asteroids: Comparison with Jupiter Trojans

    NASA Astrophysics Data System (ADS)

    Wong, Ian; Brown, Michael E.

    2017-02-01

    Current models of solar system evolution posit that the asteroid populations in resonance with Jupiter are comprised of objects scattered inward from the outer solar system during a period of dynamical instability. In this paper, we present a new analysis of the absolute magnitude and optical color distribution of Hilda asteroids, which lie in 3:2 mean-motion resonance with Jupiter, with the goal of comparing the bulk properties with previously published results from an analogous study of Jupiter Trojans. We report an updated power-law fit of the Hilda magnitude distribution through H = 14. Using photometric data listed in the Sloan Moving Object Catalog, we confirm the previously reported strong bimodality in visible spectral slope distribution, indicative of two subpopulations with differing surface compositions. When considering collisional families separately, we find that collisional fragments follow a unimodal color distribution with spectral slope values consistent with the bluer of the two subpopulations. The color distributions of Hildas and Trojans are comparable and consistent with a scenario in which the color bimodality in both populations developed prior to emplacement into their present-day locations. We propose that the shallower magnitude distribution of the Hildas is a result of an initially much larger Hilda population, which was subsequently depleted as smaller bodies were preferentially ejected from the narrow 3:2 resonance via collisions. Altogether, these observations provide a strong case supporting a common origin for Hildas and Trojans as predicted by current dynamical instability theories of solar system evolution.

  2. Development of magnitude processing in children with developmental dyscalculia: space, time, and number.

    PubMed

    Skagerlund, Kenny; Träff, Ulf

    2014-01-01

    Developmental dyscalculia (DD) is a learning disorder associated with impairments in a preverbal non-symbolic approximate number system (ANS) pertaining to areas in and around the intraparietal sulcus (IPS). The current study sought to enhance our understanding of the developmental trajectory of the ANS and symbolic number processing skills, thereby getting insight into whether a deficit in the ANS precedes or is preceded by impaired symbolic and exact number processing. Recent work has also suggested that humans are endowed with a shared magnitude system (beyond the number domain) in the brain. We therefore investigated whether children with DD demonstrated a general magnitude deficit, stemming from the proposed magnitude system, rather than a specific one limited to numerical quantity. Fourth graders with DD were compared to age-matched controls and a group of ability-matched second graders, on a range of magnitude processing tasks pertaining to space, time, and number. Children with DD displayed difficulties across all magnitude dimensions compared to age-matched peers and showed impaired ANS acuity compared to the younger, ability-matched control group, while exhibiting intact symbolic number processing. We conclude that (1) children with DD suffer from a general magnitude-processing deficit, (2) a shared magnitude system likely exists, and (3) a symbolic number-processing deficit in DD tends to be preceded by an ANS deficit.

  3. Detonation charge size versus coda magnitude relations in California and Nevada

    USGS Publications Warehouse

    Brocher, T.M.

    2003-01-01

    Magnitude-charge size relations have important uses in forensic seismology and are used in Comprehensive Nuclear-Test-Ban Treaty monitoring. I derive empirical magnitude versus detonation-charge-size relationships for 322 detonations located by permanent seismic networks in California and Nevada. These detonations, used in 41 different seismic refraction or network calibration experiments, ranged in yield (charge size) between 25 and 106 kg; coda magnitudes reported for them ranged from 0.5 to 3.9. Almost all represent simultaneous (single-fired) detonations of one or more boreholes. Repeated detonations at the same shotpoint suggest that the reported coda magnitudes are repeatable, on average, to within 0.1 magnitude unit. An empirical linear regression for these 322 detonations yields M = 0.31 + 0.50 log10(weight [kg]). The detonations compiled here demonstrate that the Khalturin et al. (1998) relationship, developed mainly for data from large chemical explosions but which fits data from nuclear blasts, can be used to estimate the minimum charge size for coda magnitudes between 0.5 and 3.9. Drilling, loading, and shooting logs indicate that the explosive specification, loading method, and effectiveness of tamp are the primary factors determining the efficiency of a detonation. These records indicate that locating a detonation within the water table is neither a necessary nor sufficient condition for an efficient shot.

  4. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  5. A developmental study of latent absolute pitch memory.

    PubMed

    Jakubowski, Kelly; Müllensiefen, Daniel; Stewart, Lauren

    2017-03-01

    The ability to recall the absolute pitch level of familiar music (latent absolute pitch memory) is widespread in adults, in contrast to the rare ability to label single pitches without a reference tone (overt absolute pitch memory). The present research investigated the developmental profile of latent absolute pitch (AP) memory and explored individual differences related to this ability. In two experiments, 288 children from 4 to12 years of age performed significantly above chance at recognizing the absolute pitch level of familiar melodies. No age-related improvement or decline, nor effects of musical training, gender, or familiarity with the stimuli were found in regard to latent AP task performance. These findings suggest that latent AP memory is a stable ability that is developed from as early as age 4 and persists into adulthood.

  6. Variation of the Tully-Fisher relation as a function of the magnitude interval of a sample of galaxies

    NASA Astrophysics Data System (ADS)

    Ruelas-Mayorga, A.; Sánchez, L. J.; Trujillo-Lara, M.; Nigoche-Netro, A.; Echevarría, J.; García, A. M.; Ramírez-Vélez, J.

    2016-10-01

    In this paper we carry out a preliminary study of the dependence of the Tully-Fisher Relation (TFR) with the width and intensity level of the absolute magnitude interval of a limited sample of 2411 galaxies taken from Mathewson and Ford (Astrophys. J. Suppl. Ser. 107:97, 1996). The galaxies in this sample do not differ significantly in morphological type, and are distributed over an ˜ 11-magnitude interval (-24.4 < I < -13.0). We take as directives the papers by Nigoche-Netro et al. (Astron. Astrophys. 491:731, 2008; Mon. Not. R. Astron. Soc. 392:1060, 2009; Astron. Astrophys. 516:96, 2010) in which they study the dependence of the Kormendy (KR), the Fundamental Plane (FPR) and the Faber-Jackson Relations (FJR) with the magnitude interval within which the observed galaxies used to derive these relations are contained. We were able to characterise the behaviour of the TFR coefficients (α, β ) with respect to the width of the magnitude interval as well as with the brightness of the galaxies within this magnitude interval. We concluded that the TFR for this specific sample of galaxies depends on observational biases caused by arbitrary magnitude cuts, which in turn depend on the width and intensity of the chosen brightness levels.

  7. Comparison enhances size sensitivity: neural correlates of outcome magnitude processing.

    PubMed

    Luo, Qiuling; Qu, Chen

    2013-01-01

    Magnitude is a critical feature of outcomes. In the present study, two event-related potential (ERP) experiments were implemented to explore the neural substrates of outcome magnitude processing. In Experiment 1, we used an adapted gambling paradigm where physical area symbols were set to represent potential relative outcome magnitudes in order to exclude the possibility that the participants would be ignorant of the magnitudes. The context was manipulated as total monetary amount: ¥4 and ¥40. In these two contexts, the relative outcome magnitudes were ¥1 versus ¥3, and ¥10 versus ¥30, respectively. Experiment 2, which provided two area symbols with similar outcome magnitudes, was conducted to exclude the possible interpretation of physical area symbol for magnitude effect of feedback-related negativity (FRN) in Experiment 1. Our results showed that FRN responded to the relative outcome magnitude but not to the context or area symbol, with larger amplitudes for relatively small outcomes. A larger FRN effect (the difference between losses and wins) was found for relatively large outcomes than relatively small outcomes. Relatively large outcomes evoked greater positive ERP waves (P300) than relatively small outcomes. Furthermore, relatively large outcomes in a high amount context elicited a larger P300 than those in a low amount context. The current study indicated that FRN is sensitive to variations in magnitude. Moreover, relative magnitude was integrated in both the early and late stages of feedback processing, while the monetary amount context was processed only in the late stage of feedback processing.

  8. Atmospheric acoustic propagation: Characterization of magnitude and phase variability

    NASA Astrophysics Data System (ADS)

    Norris, David Earl

    This thesis explores the effects of atmospheric turbulence on the variability of propagated acoustic signals. Spatially distributed acoustic and turbulence measurements were made at sixteen frequencies under 600 Hz for both upwind and downwind propagation at ranges of 150 and 200 m, respectively. Observations were collected in convectively neutral and strong wind conditions. From the distributed measurements, ray angles of arrival were calculated. The arrival angles were consistent with direct, upward refracted rays for upwind propagation and direct/ground-reflected, downward refracted rays for downwind propagation. In the downwind case, the arrival angles displayed significant variability at the lower frequencies, possibly due to the presence of a ground wave. Predictions from eigenrays traced through mean wind and temperature profiles agreed well with downwind observations at the higher frequencies. The received complex acoustic signal at each source frequency was recovered by applying a standard Hilbert transform technique. Magnitude and phase fluctuations were calculated and compared to predictions from a scattering model restricted to the inertial subrange of atmospheric turbulence. The measured log-amplitude variances were in excellent agreement with predictions, suggesting that atmospheric length scales of order 1 m most influenced the variability of the signal's magnitude. Phase fluctuations that exhibited strong correlation across frequency were transformed into travel-time fluctuations. The travel-time fluctuations were found to be insensitive to minor path differences and strongly correlated with turbulent velocity fluctuations. The dominant length scales were interpreted to be of order 100 m. These correspond to the large-scale turbulent eddies in the convective boundary layer. A theoretical model based upon the two-dimensional turbulent energy spectrum was derived to predict the cross-correlation between travel-time fluctuations and velocity

  9. Analysis of the magnitude and frequency of floods in Colorado

    USGS Publications Warehouse

    Vaill, J.E.

    2000-01-01

    Regionalized flood-frequency relations need to be updated on a regular basis (about every 10 years). The latest study on regionalized flood-frequency equations for Colorado used data collected through water year 1981. A study was begun in 1994 by the U.S. Geological Survey, in cooperation with the Colorado Department of Transportation and the Bureau of Land Management, to include streamflow data collected since water year 1981 in the regionalized flood-frequency relations for Colorado. Longer periods of streamflow data and improved statistical analysis methods were used to define regression relations for estimating peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years for unregulated streams in Colorado. The regression relations can be applied to sites of interest on gaged and ungaged streams. Ordinary least-squares regression was used to determine the best explanatory basin or climatic characteristic variables for each peak-discharge characteristic, and generalized least-squares regression was used to determine the best regression relation. Drainage-basin area, mean annual precipitation, and mean basin slope were determined to be statistically significant explanatory variables in the regression relations. Separate regression relations were developed for each of five distinct hydrologic regions in the State. The mean standard errors of estimate and average standard error of prediction associated with the regression relations generally ranged from 40 to 80 percent, except for one hydrologic region where the errors ranged from about 200 to 300 percent. Methods are presented for determining the magnitude of peak discharges for sites located at gaging stations, for sites located near gaging stations on the same stream when the ratio of drainage-basin areas is between about 0.5 and 1.5, and for sites where the drainage basin crosses a flood-region boundary or a State boundary. Methods are presented for determining the magnitude of peak

  10. Home range and travels

    USGS Publications Warehouse

    Stickel, L.F.; King, John A.

    1968-01-01

    The concept of home range was expressed by Seton (1909) in the term 'home region,' which Burr (1940, 1943) clarified with a definition of home range and exemplified in a definitive study of Peromyscus in the field. Burt pointed out the ever-changing characteristics of home-range area and the consequent absence of boundaries in the usual sense--a finding verified by investigators thereafter. In the studies summarized in this paper, sizes of home ranges of Peromyscus varied within two magnitudes, approximately from 0.1 acre to ten acres, in 34 studies conducted in a variety of habitats from the seaside dunes of Florida to the Alaskan forests. Variation in sizes of home ranges was correlated with both environmental and physiological factors; with habitat it was conspicuous, both in the same and different regions. Food supply also was related to size of home range, both seasonally and in relation to habitat. Home ranges generally were smallest in winter and largest in spring, at the onset of the breeding season. Activity and size also were affected by changes in weather. Activity was least when temperatures were low and nights were bright. Effects of rainfall were variable. Sizes varied according to sex and age; young mice remained in the parents' range until they approached maturity, when they began to travel more widely. Adult males commonly had larger home ranges than females, although there were a number of exceptions. An inverse relationship between population density and size of home range was shown in several studies and probably is the usual relationship. A basic need for activity and exploration also appeared to influence size of home range. Behavior within the home range was discussed in terms of travel patterns, travels in relation to home sites and refuges, territory, and stability of size of home range. Travels within the home range consisted of repeated use of well-worn trails to sites of food, shelter, and refuge, plus more random exploratory travels

  11. Understanding the magnitude dependence of PGA and PGV in NGA-West 2 data

    USGS Publications Warehouse

    Baltay, Annemarie S.; Hanks, Thomas C.

    2014-01-01

    The Next Generation Attenuation‐West 2 (NGA‐West 2) 2014 ground‐motion prediction equations (GMPEs) model ground motions as a function of magnitude and distance, using empirically derived coefficients (e.g., Bozorgniaet al., 2014); as such, these GMPEs do not clearly employ earthquake source parameters beyond moment magnitude (M) and focal mechanism. To better understand the magnitude‐dependent trends in the GMPEs, we build a comprehensive earthquake source‐based model to explain the magnitude dependence of peak ground acceleration and peak ground velocity in the NGA‐West 2 ground‐motion databases and GMPEs. Our model employs existing models (Hanks and McGuire, 1981; Boore, 1983, 1986; Anderson and Hough, 1984) that incorporate a point‐source Brune model, including a constant stress drop and the high‐frequency attenuation parameter κ0, random vibration theory, and a finite‐fault assumption at the large magnitudes to describe the data from magnitudes 3 to 8. We partition this range into four different magnitude regions, each of which has different functional dependences on M. Use of the four magnitude partitions separately allows greater understanding of what happens in any one subrange, as well as the limiting conditions between the subranges. This model provides a remarkably good fit to the NGA data for magnitudes from 3magnitude data, for which the corner frequency is masked by the attenuation of high frequencies. That this simple, source‐based model matches the NGA‐West 2 GMPEs and data so well suggests that considerable simplicity underlies the parametrically complex NGA GMPEs.

  12. The Type Ia Supernova Color-Magnitude Relation and Host Galaxy Dust: A Simple Hierarchical Bayesian Model

    NASA Astrophysics Data System (ADS)

    Mandel, Kaisey; Scolnic, Daniel; Shariff, Hikmatali; Foley, Ryan; Kirshner, Robert

    2017-01-01

    Inferring peak optical absolute magnitudes of Type Ia supernovae (SN Ia) from distance-independent measures such as their light curve shapes and colors underpins the evidence for cosmic acceleration. SN Ia with broader, slower declining optical light curves are more luminous (“broader-brighter”) and those with redder colors are dimmer. But the “redder-dimmer” color-luminosity relation widely used in cosmological SN Ia analyses confounds its two separate physical origins. An intrinsic correlation arises from the physics of exploding white dwarfs, while interstellar dust in the host galaxy also makes SN Ia appear dimmer and redder. Conventional SN Ia cosmology analyses currently use a simplistic linear regression of magnitude versus color and light curve shape, which does not model intrinsic SN Ia variations and host galaxy dust as physically distinct effects, resulting in low color-magnitude slopes. We construct a probabilistic generative model for the dusty distribution of extinguished absolute magnitudes and apparent colors as the convolution of an intrinsic SN Ia color-magnitude distribution and a host galaxy dust reddening-extinction distribution. If the intrinsic color-magnitude (MB vs. B-V) slope βint differs from the host galaxy dust law RB, this convolution results in a specific curve of mean extinguished absolute magnitude vs. apparent color. The derivative of this curve smoothly transitions from βint in the blue tail to RB in the red tail of the apparent color distribution. The conventional linear fit approximates this effective curve near the average apparent color, resulting in an apparent slope βapp between βint and RB. We incorporate these effects into a hierarchical Bayesian statistical model for SN Ia light curve measurements, and analyze a dataset of SALT2 optical light curve fits of 277 nearby SN Ia at z < 0.10. The conventional linear fit obtains βapp ≈ 3. Our model finds a βint = 2.2 ± 0.3 and a distinct dust law of RB = 3.7 ± 0

  13. Absolute activity measurement of radon gas at IRA-METAS

    NASA Astrophysics Data System (ADS)

    Spring, Philippe; Nedjadi, Youcef; Bailat, Claude; Triscone, Gilles; Bochud, François

    2006-12-01

    This paper describes the system of the Swiss national metrological institute (IRA-METAS) for the absolute standardisation of radon gas. This method relies on condensing radon under vacuum conditions within a specified cold area using a cryogenerator, and detecting its alpha particles with an ion-implanted silicon detector, through a very accurately defined solid angle. The accuracy of this defined solid angle standardisation technique was corroborated by another primary measurement method involving 4 πγ NaI(Tl) integral counting and Monte Carlo efficiency calculations. The 222Rn standard submitted by IRA-METAS to the Système International de Référence (SIR) at the Bureau International des Poids et Mesures (BIPM) has also been found to be consistent with an analogous standard submitted by the German national metrological institute (PTB). IRA-METAS is able to deliver radon standards, with activities ranging from a few kBq to 350 kBq, in NIST-Type ampoules, and glass or steel containers usable for calibrating radon-measuring instruments.

  14. Monochromator-Based Absolute Calibration of a Standard Radiation Thermometer

    NASA Astrophysics Data System (ADS)

    Mantilla, J. M.; Hernanz, M. L.; Campos, J.; Martín, M. J.; Pons, A.; del Campo, D.

    2014-04-01

    Centro Español de Metrología (CEM) is disseminating the International Temperature Scale (ITS-90), at high temperatures, by using the fixed points of Ag and Cu and a standard radiation thermometer. However, the future mise-en-pratique for the definition of the kelvin ( MeP-K) will include the dissemination of the kelvin by primary methods and by indirect approximations capable of exceptionally low uncertainties or increased reliability. Primary radiometry is, at present, able to achieve uncertainties competitive with the ITS-90 above the silver point with one of the possible techniques the calibration for radiance responsivity of an imaging radiometer (radiance method). In order to carry out this calibration, IO-CSIC (Spanish Designated Institute for luminous intensity and luminous flux) has collaborated with CEM, allowing traceability to its cryogenic radiometer. A monochromator integrating sphere-based spectral comparator facility has been used to calibrate one of the CEM standard radiation thermometers. The absolute calibrated standard radiation thermometer has been used to determine the temperatures of the fixed points of Cu, Co-C, Pt-C, and Re-C. The results obtained are 1357.80 K, 1597.10 K, 2011.66 K, and 2747.64 K, respectively, with uncertainties ranging from 0.4 K to 1.1 K.

  15. Cosmic backgrounds of relic gravitons and their absolute normalization

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2014-11-01

    Provided the consistency relations are not violated, the recent BICEP2 observations pin down the absolute normalization, the spectral slope and the maximal frequency of the cosmic graviton background produced during inflation. The properly normalized spectra are hereby computed from the lowest frequencies (of the order of the present Hubble rate) up to the highest frequency range in the GHz region. Deviations from the conventional paradigm cannot be excluded and are examined by allowing for different physical possibilities including, in particular, a running of the tensor spectral index, an explicit breaking of the consistency relations and a spike in the high-frequency tail of the spectrum coming either from a post-inflationary phase dominated by a stiff fluid or from the contribution of waterfall fields in a hybrid inflationary context. The direct determinations of the tensor to scalar ratio at low frequencies, if confirmed by the forthcoming observations, will also affect and constrain the high-frequency uncertainties. The limits on the cosmic graviton backgrounds coming from wide-band interferometers (such as LIGO/Virgo, LISA and BBO/DECIGO) together with a more accurate scrutiny of the tensor B-mode polarization at low frequencies will set direct bounds on the post-inflationary evolution and on other unconventional completions of the standard lore.

  16. Absolute measures of the completeness of the fossil record

    NASA Technical Reports Server (NTRS)

    Foote, M.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1999-01-01

    Measuring the completeness of the fossil record is essential to understanding evolution over long timescales, particularly when comparing evolutionary patterns among biological groups with different preservational properties. Completeness measures have been presented for various groups based on gaps in the stratigraphic ranges of fossil taxa and on hypothetical lineages implied by estimated evolutionary trees. Here we present and compare quantitative, widely applicable absolute measures of completeness at two taxonomic levels for a broader sample of higher taxa of marine animals than has previously been available. We provide an estimate of the probability of genus preservation per stratigraphic interval, and determine the proportion of living families with some fossil record. The two completeness measures use very different data and calculations. The probability of genus preservation depends almost entirely on the Palaeozoic and Mesozoic records, whereas the proportion of living families with a fossil record is influenced largely by Cenozoic data. These measurements are nonetheless highly correlated, with outliers quite explicable, and we find that completeness is rather high for many animal groups.

  17. On the calculation of absolute macromolecular binding free energies

    PubMed Central

    Luo, Hengbin; Sharp, Kim

    2002-01-01

    The standard framework for calculating the absolute binding free energy of a macromolecular association reaction A + B → AB with an association constant KAB is to equate chemical potentials of the species on the left- and right-hand sides of this reaction and evaluate the chemical potentials from theory. This theory involves (usually hidden) assumptions about what constitutes the bound species, AB, and where the contribution of the solvent appears. We present here an alternative derivation that can be traced back to Bjerrum, in which the expectation value of KAB is obtained directly through the statistical mechanical method of evaluating its ensemble (Boltzmann-weighted) average. The generalized Bjerrum approach more clearly delineates: (i) the different contributions to binding; (ii) the origin of the much-discussed and somewhat controversial association entropy term; and (iii) where the solvent contribution appears. This approach also allows approximations required for practical evaluation of the binding constant in complex macromolecular systems, to be introduced in a well defined way. We provide an example, with application to test cases that illustrate a range of binding behavior. PMID:12149474

  18. Experimental absolute cross section for photoionization of Xe^7+

    NASA Astrophysics Data System (ADS)

    Schippers, S.; Müller, A.; Esteves, D.; Habibi, M.; Aguilar, A.; Kilcoyne, A. L. D.

    2010-03-01

    Collision processes with highly charged xenon ions are of interest for UV-radiation generation in plasma discharges, for fusion research and for space craft propulsion. Here we report results for the photoionization of Xe^7+ ionsootnotetextS. Schippers et al., J. Phys.: Conf. Ser. (in print) which were measured at the photon-ion end station of ALS beamline 10.0.1. As compared with the only previous experimental studyootnotetextJ. M. Bizau et al., Phys. Rev. Lett. 84, 435 (2000) of this reaction, the present cross sections were obtained at higher energy resolution (50--80 meV vs. 200--500 meV) and on an absolute cross section scale. In the experimental photon energy range of 95--145 eV the cross section is dominated by resonances associated with 4d->5f excitation and subsequent autoionization. The most prominent feature in the measured spectrum is the 4d^9,s,f, resonance at 121.14±0.02 eV which reaches a peak cross section of 1.2 Gb at 50 meV photon energy spread. The experimental resonance strength of 160 Mb eV (corresponding to an absorption oscillator strength of 1.46) is in fair agreement with the theoretical result^2.

  19. A highly accurate absolute gravimetric network for Albania, Kosovo and Montenegro

    NASA Astrophysics Data System (ADS)

    Ullrich, Christian; Ruess, Diethard; Butta, Hubert; Qirko, Kristaq; Pavicevic, Bozidar; Murat, Meha

    2016-04-01

    The objective of this project is to establish a basic gravity network in Albania, Kosovo and Montenegro to enable further investigations in geodetic and geophysical issues. Therefore the first time in history absolute gravity measurements were performed in these countries. The Norwegian mapping authority Kartverket is assisting the national mapping authorities in Kosovo (KCA) (Kosovo Cadastral Agency - Agjencia Kadastrale e Kosovës), Albania (ASIG) (Autoriteti Shtetëror i Informacionit Gjeohapësinor) and in Montenegro (REA) (Real Estate Administration of Montenegro - Uprava za nekretnine Crne Gore) in improving the geodetic frameworks. The gravity measurements are funded by Kartverket. The absolute gravimetric measurements were performed from BEV (Federal Office of Metrology and Surveying) with the absolute gravimeter FG5-242. As a national metrology institute (NMI) the Metrology Service of the BEV maintains the national standards for the realisation of the legal units of measurement and ensures their international equivalence and recognition. Laser and clock of the absolute gravimeter were calibrated before and after the measurements. The absolute gravimetric survey was carried out from September to October 2015. Finally all 8 scheduled stations were successfully measured: there are three stations located in Montenegro, two stations in Kosovo and three stations in Albania. The stations are distributed over the countries to establish a gravity network for each country. The vertical gradients were measured at all 8 stations with the relative gravimeter Scintrex CG5. The high class quality of some absolute gravity stations can be used for gravity monitoring activities in future. The measurement uncertainties of the absolute gravity measurements range around 2.5 micro Gal at all stations (1 microgal = 10-8 m/s2). In Montenegro the large gravity difference of 200 MilliGal between station Zabljak and Podgorica can be even used for calibration of relative gravimeters

  20. Updating the Magnitudes of the Planets in The Astronomical Almanac

    DTIC Science & Technology

    2003-01-01

    USNO/AA Technical Note 2003-04 Updating the Magnitudes of the Planets in The Astronomical Almanac James L. Hilton The content of this Tech...the magnitudes of Mercury and Venus used in the AsA 2005 and 2006. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden...SUBTITLE Updating The Magnitudes Of The Planets In The Astronomical Almanac 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  1. High Accuracy, Absolute, Cryogenic Refractive Index Measurements of Infrared Lens Materials for JWST NIRCam using CHARMS

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas; Frey, Bradley

    2005-01-01

    The current refractive optical design of the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam) uses three infrared materials in its lenses: LiF, BaF2, and ZnSe. In order to provide the instrument s optical designers with accurate, heretofore unavailable data for absolute refractive index based on actual cryogenic measurements, two prismatic samples of each material were measured using the cryogenic, high accuracy, refraction measuring system (CHARMS) at NASA GSFC, densely covering the temperature range from 15 to 320 K and wavelength range from 0.4 to 5.6 microns. Measurement methods are discussed and graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient for these three materials are presented along with estimates of uncertainty. Coefficients for second order polynomial fits of measured index to temperature are provided for many wavelengths to allow accurate interpolation of index to other wavelengths and temperatures.

  2. A Preliminary Analysis on Empirical Attenuation of Absolute Velocity Response Spectra (1 to 10s) in Japan

    NASA Astrophysics Data System (ADS)

    Dhakal, Y. P.; Kunugi, T.; Suzuki, W.; Aoi, S.

    2013-12-01

    The Mw 9.1 Tohoku-oki earthquake caused strong shakings of super high rise and high rise buildings constructed on deep sedimentary basins in Japan. Many people felt difficulty in moving inside the high rise buildings even on the Osaka basin located at distances as far as 800 km from the epicentral area. Several empirical equations are proposed to estimate the peak ground motions and absolute acceleration response spectra applicable mainly within 300 to 500km from the source area. On the other hand, Japan Meteorological Agency has recently proposed four classes of absolute velocity response spectra as suitable indices to qualitatively describe the intensity of long-period ground motions based on the observed earthquake records, human experiences, and actual damages that occurred in the high rise and super high rise buildings. The empirical prediction equations have been used in disaster mitigation planning as well as earthquake early warning. In this study, we discuss the results of our preliminary analysis on attenuation relation of absolute velocity response spectra calculated from the observed strong motion records including those from the Mw 9.1 Tohoku-oki earthquake using simple regression models with various model parameters. We used earthquakes, having Mw 6.5 or greater, and focal depths shallower than 50km, which occurred in and around Japanese archipelago. We selected those earthquakes for which the good quality records are available over 50 observation sites combined from K-NET and KiK-net. After a visual inspection on approximately 21,000 three component records from 36 earthquakes, we used about 15,000 good quality records in the period range of 1 to 10s within the hypocentral distance (R) of 800km. We performed regression analyses assuming the following five regression models. (1) log10Y (T) = c+ aMw - log10R - bR (2) log10Y (T) = c+ aMw - log10R - bR +gS (3) log10Y (T) = c+ aMw - log10R - bR + hD (4) log10Y (T) = c+ aMw - log10R - bR +gS +hD (5) log10Y

  3. The importance of calculating absolute rather than relative fracture risk.

    PubMed

    Tucker, Graeme; Metcalfe, Andrew; Pearce, Charles; Need, Allan G; Dick, Ian M; Prince, Richard L; Nordin, B E Christopher

    2007-12-01

    The relation between fracture risk and bone mineral density (BMD) is commonly expressed as a multiplicative factor which is said to represent the increase in risk for each standard deviation fall in BMD. This practice assumes that risk increases multiplicatively with each unit fall in bone density, which is not correct. Although odds increase multiplicatively, absolute risk, which lies between 0 and 1, cannot do so though it can be derived from odds by the term Odds/(1+Odds). This concept is illustrated in a prospective study of 1098 women over age 69 followed for 6 years in a calcium trial in which hip BMD was measured in the second year. 304 Women (27.6%) had prevalent fractures and 198 (18.1%) incident fractures with a significant association between them (P 0.005). Age-adjusted hip BMD and T-score were significantly lower in those with prevalent fractures than in those without (P 0.003) and significantly lower in those with incident fractures than in those without (P 0.001). When the data were analysed by univariate logistic regression, the fracture odds at zero T-score were 0.130 and the rise in odds for each unit fall in hip T-score was 1.55. When these odds were converted to risks, there was a progressive divergence between odds and risk at T-scores below zero. Multiple logistic regression yielded significant odds ratios of 1.47 for each 5-year increase in age, 1.47 for prevalent fracture and 1.49 for each unit fall in hip T-score. Calcium therapy was not significant. Poisson regression, logistic regression and Cox's proportional hazards yielded very similar outcomes when converted into absolute risks. A nomogram was constructed to enable clinicians to estimate the approximate 6-year fracture risk from hip T-score, age and prevalent fracture which can probably be applied (with appropriate correction) to men as well as to women. We conclude that multiplicative factors can be applied to odds but not to risk and that multipliers of risk tend to overstate the

  4. Multi-objective control of nonlinear boiler-turbine dynamics with actuator magnitude and rate constraints.

    PubMed

    Chen, Pang-Chia

    2013-01-01

    This paper investigates multi-objective controller design approaches for nonlinear boiler-turbine dynamics subject to actuator magnitude and rate constraints. System nonlinearity is handled by a suitable linear parameter varying system representation with drum pressure as the system varying parameter. Variation of the drum pressure is represented by suitable norm-bounded uncertainty and affine dependence on system matrices. Based on linear matrix inequality algorithms, the magnitude and rate constraints on the actuator and the deviations of fluid density and water level are formulated while the tracking abilities on the drum pressure and power output are optimized. Variation ranges of drum pressure and magnitude tracking commands are used as controller design parameters, determined according to the boiler-turbine's operation range.

  5. Mini-implants and miniplates generate sub-absolute and absolute anchorage.

    PubMed

    Consolaro, Alberto

    2014-01-01

    The functional demand imposed on bone promotes changes in the spatial properties of osteocytes as well as in their extensions uniformly distributed throughout the mineralized surface. Once spatial deformation is established, osteocytes create the need for structural adaptations that result in bone formation and resorption that happen to meet the functional demands. The endosteum and the periosteum are the effectors responsible for stimulating adaptive osteocytes in the inner and outer surfaces. Changes in shape, volume and position of the jaws as a result of skeletal correction of the maxilla and mandible require anchorage to allow bone remodeling to redefine morphology, esthetics and function as a result of spatial deformation conducted by orthodontic appliances. Examining the degree of changes in shape, volume and structural relationship of areas where mini-implants and miniplates are placed allows us to classify mini-implants as devices of subabsolute anchorage and miniplates as devices of absolute anchorage.

  6. The Effects of Exercise Intensity vs. Metabolic State on the Variability and Magnitude of Left Ventricular Twist Mechanics during Exercise.

    PubMed

    Armstrong, Craig; Samuel, Jake; Yarlett, Andrew; Cooper, Stephen-Mark; Stembridge, Mike; Stöhr, Eric J

    2016-01-01

    Increased left ventricular (LV) twist and untwisting rate (LV twist mechanics) are essential responses of the heart to exercise. However, previously a large variability in LV twist mechanics during exercise has been observed, which complicates the interpretation of results. This study aimed to determine some of the physiological sources of variability in LV twist mechanics during exercise. Sixteen healthy males (age: 22 ± 4 years, [Formula: see text]O2peak: 45.5 ± 6.9 ml∙kg-1∙min-1, range of individual anaerobic threshold (IAT): 32-69% of [Formula: see text]O2peak) were assessed at rest and during exercise at: i) the same relative exercise intensity, 40%peak, ii) at 2% above IAT, and, iii) at 40%peak with hypoxia (40%peak+HYP). LV volumes were not significantly different between exercise conditions (P > 0.05). However, the mean margin of error of LV twist was significantly lower (F2,47 = 2.08, P < 0.05) during 40%peak compared with IAT (3.0 vs. 4.1 degrees). Despite the same workload and similar LV volumes, hypoxia increased LV twist and untwisting rate (P < 0.05), but the mean margin of error remained similar to that during 40%peak (3.2 degrees, P > 0.05). Overall, LV twist mechanics were linearly related to rate pressure product. During exercise, the intra-individual variability of LV twist mechanics is smaller at the same relative exercise intensity compared with IAT. However, the absolute magnitude (degrees) of LV twist mechanics appears to be associated with the prevailing rate pressure product. Exercise tests that evaluate LV twist mechanics should be standardised by relative exercise intensity and rate pressure product be taken into account when interpreting results.

  7. Absolute dose verifications in small photon fields using BANGTM gel

    NASA Astrophysics Data System (ADS)

    Scheib, S. G.; Schenkel, Y.; Gianolini, S.

    2004-01-01

    Polymer gel dosimeters change their magnetic resonance (MR) and optical properties with the absorbed dose when irradiated and are suitable for narrow photon beam dosimetry in radiosurgery. Such dosimeters enable relative and absolute 3D dose verifications in order to check the entire treatment chain from imaging to dose application during commissioning and quality assurance. For absolute 3D dose verifications in radiosurgery using Gamma Knife B, commercially available BANGTM Gels (BANG 25 Gy and BANG 3 Gy) together with dedicated phantoms were chosen in order to determine the potential of absolute gel dosimetry in radiosurgery.

  8. Measuring the absolute magnetic field using high-Tc SQUID

    NASA Astrophysics Data System (ADS)

    He, D. F.; Itozaki, H.

    2006-06-01

    SQUID normally can only measure the change of magnetic field instead of the absolute value of magnetic field. Using a compensation method, a mobile SQUID, which could keep locked when moving in the earth's magnetic field, was developed. Using the mobile SQUID, it was possible to measure the absolute magnetic field. The absolute value of magnetic field could be calculated from the change of the compensation output when changing the direction of the SQUID in a magnetic field. Using this method and the mobile SQUID, we successfully measured the earth's magnetic field in our laboratory.

  9. Absolute Antenna Calibration at the US National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.

    2012-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO

  10. On the Absolute Age of the Metal-rich Globular M71 (NGC 6838). I. Optical Photometry

    NASA Astrophysics Data System (ADS)

    Di Cecco, A.; Bono, G.; Prada Moroni, P. G.; Tognelli, E.; Allard, F.; Stetson, P. B.; Buonanno, R.; Ferraro, I.; Iannicola, G.; Monelli, M.; Nonino, M.; Pulone, L.

    2015-08-01

    We investigated the absolute age of the Galactic globular cluster M71 (NGC 6838) using optical ground-based images (u\\prime ,g\\prime ,r\\prime ,i\\prime ,z\\prime ) collected with the MegaCam camera at the Canada-France-Hawaii Telescope (CFHT). We performed a robust selection of field and cluster stars by applying a new method based on the 3D (r\\prime ,u\\prime -g\\prime ,g\\prime -r\\prime ) color-color-magnitude diagram. A comparison between the color-magnitude diagram (CMD) of the candidate cluster stars and a new set of isochrones at the locus of the main sequence turn-off (MSTO) suggests an absolute age of 12 ± 2 Gyr. The absolute age was also estimated using the difference in magnitude between the MSTO and the so-called main sequence knee, a well-defined bending occurring in the lower main sequence. This feature was originally detected in the near-infrared bands and explained as a consequence of an opacity mechanism (collisionally induced absorption of molecular hydrogen) in the atmosphere of cool low-mass stars. The same feature was also detected in the r‧, u\\prime -g\\prime , and in the r\\prime ,g\\prime -r\\prime CMD, thus supporting previous theoretical predictions by Borysow et al. The key advantage in using the {{{Δ }}}{TO}{Knee} as an age diagnostic is that it is independent of uncertainties affecting the distance, the reddening, and the photometric zero point. We found an absolute age of 12 ± 1 Gyr that agrees, within the errors, with similar age estimates, but the uncertainty is on average a factor of two smaller. We also found that the {{{Δ }}}{TO}{Knee} is more sensitive to the metallicity than the MSTO, but the dependence vanishes when using the difference in color between the MSK and the MSTO.

  11. First Absolutely Calibrated Localized Measurements of Ion Velocity in the MST in Locked and Rotating Plasmas

    NASA Astrophysics Data System (ADS)

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; Munaretto, S.

    2015-11-01

    An Ion Doppler Spectrometer (IDS) is used on MST for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometer records data within 0.3 nm of the C+5 line of interest, and commercial calibration lamps do not produce lines in this narrow range . A novel optical system was designed to absolutely calibrate the IDS. The device uses an UV LED to produce a broad emission curve in the desired region. A Fabry-Perot etalon filters this light, cutting transmittance peaks into the pattern of the LED emission. An optical train of fused silica lenses focuses the light into the IDS with f/4. A holographic diffuser blurs the light cone to increase homogeneity. Using this light source, the absolute Doppler shift of ion emissions can be measured in MST plasmas. In combination with charge exchange recombination spectroscopy, localized ion velocities can now be measured. Previously, a time-averaged measurement along the chord bisecting the poloidal plane was used to calibrate the IDS; the quality of these central chord calibrations can be characterized with our absolute calibration. Calibration errors may also be quantified and minimized by optimizing the curve-fitting process. Preliminary measurements of toroidal velocity in locked and rotating plasmas will be shown. This work has been supported by the US DOE.

  12. Absolute rate of the reaction of hydrogen atoms with ozone from 219-360 K

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J.

    1978-01-01

    Absolute rate constants for the reaction of atomic hydrogen with ozone were obtained over the temperature range 219-360 K by the flash photolysis-resonance fluorescence technique. The results can be expressed in Arrhenius form by K = (1.33 plus or minus 0.32)x10 to the minus 10 power exp (-449 plus or minus 58/T) cu cm/molecule/s (two standard deviations). The present work is compared to two previous determinations and is discussed theoretically.

  13. Absolute distance measurement by chirped pulse interferometry using a femtosecond pulse laser.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Meng, Fei; Li, Jianshuang; Qu, Xinghua

    2015-11-30

    We propose here a method for absolute distance measurement by chirped pulse interferometry using frequency comb. The principle is introduced, and the distance can be measured via the shift of the widest fringe. The experimental results show an agreement within 26 μm in a range up to 65 m, corresponding to a relative precision of 4 × 10-7, compared with a reference distance meter.

  14. Absolute determination of cross sections for resonant Raman scattering on silicon

    NASA Astrophysics Data System (ADS)

    Müller, Matthias; Beckhoff, Burkhard; Ulm, Gerhard; Kanngießer, Birgit

    2006-07-01

    We studied the resonant Raman scattering of x rays in the vicinity of the K absorption edge of silicon. The investigation was carried out at the plane grating monochromator beamline for undulator radiation of the PTB laboratory at BESSY II in Berlin. Cross sections were determined absolutely for a wide energy range of incident photons with small relative uncertainties employing calibrated instrumentation avoiding any reference samples. The experimentally determined values differ clearly from the theoretical ones found in the literature.

  15. Energy dispersive X-ray analysis on an absolute scale in scanning transmission electron microscopy.

    PubMed

    Chen, Z; D'Alfonso, A J; Weyland, M; Taplin, D J; Allen, L J; Findlay, S D

    2015-10-01

    We demonstrate absolute scale agreement between the number of X-ray counts in energy dispersive X-ray spectroscopy using an atomic-scale coherent electron probe and first-principles simulations. Scan-averaged spectra were collected across a range of thicknesses with precisely determined and controlled microscope parameters. Ionization cross-sections were calculated using the quantum excitation of phonons model, incorporating dynamical (multiple) electron scattering, which is seen to be important even for very thin specimens.

  16. Absolute Geodetic Rotation Measurement Using Atom Interferometry

    SciTech Connect

    Stockton, J. K.; Takase, K.; Kasevich, M. A.

    2011-09-23

    We demonstrate a cold-atom interferometer gyroscope which overcomes accuracy and dynamic range limitations of previous atom interferometer gyroscopes. We show how the instrument can be used for precise determination of latitude, azimuth (true north), and Earth's rotation rate. Spurious noise terms related to multiple-path interferences are suppressed by employing a novel time-skewed pulse sequence. Extended versions of this instrument appear capable of meeting the stringent requirements for inertial navigation, geodetic applications of Earth's rotation rate determination, and tests of general relativity.

  17. Uneven Magnitude of Disparities in Cancer Risks from Air Toxics

    PubMed Central

    James, Wesley; Jia, Chunrong; Kedia, Satish

    2012-01-01

    This study examines race- and income-based disparities in cancer risks from air toxics in Cancer Alley, LA, USA. Risk estimates were obtained from the 2005 National Air Toxics Assessment and socioeconomic and race data from the 2005 American Community Survey, both at the census tract level. Disparities were assessed using spatially weighted ordinary least squares (OLS) regression and quantile regression (QR) for five major air toxics, each with cancer risk greater than 10−6. Spatial OLS results showed that disparities in cancer risks were significant: People in low-income tracts bore a cumulative risk 12% more than those in high-income tracts (p < 0.05), and those in black-dominant areas 16% more than in white-dominant areas (p < 0.01). Formaldehyde and benzene were the two largest contributors to the disparities. Contributions from emission sources to disparities varied by compound. Spatial QR analyses showed that magnitude of disparity became larger at the high end of exposure range, indicating worsened disparity in the poorest and most highly concentrated black areas. Cancer risk of air toxics not only disproportionately affects socioeconomically disadvantaged and racial minority communities, but there is a gradient effect within these groups with poorer and higher minority concentrated segments being more affected than their counterparts. Risk reduction strategies should target emission sources, risk driver chemicals, and especially the disadvantaged neighborhoods. PMID:23208297

  18. Preliminary OARE absolute acceleration measurements on STS-50

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James

    1993-01-01

    On-orbit Orbital Acceleration Research Experiment (OARE) data on STS-50 was examined in detail during a 2-day time period. Absolute acceleration levels were derived at the OARE location, the orbiter center-of-gravity, and at the STS-50 spacelab Crystal Growth Facility. The tri-axial OARE raw acceleration measurements (i.e., telemetered data) during the interval were filtered using a sliding trimmed mean filter in order to remove large acceleration spikes (e.g., thrusters) and reduce the noise. Twelve OARE measured biases in each acceleration channel during the 2-day interval were analyzed and applied to the filtered data. Similarly, the in situ measured x-axis scale factors in the sensor's most sensitive range were also analyzed and applied to the data. Due to equipment problem(s) on this flight, both y- and z- axis sensitive range scale factors were determined in a separate process (using the OARE maneuver data) and subsequently applied to the data. All known significant low-frequency corrections at the OARE location (i.e., both vertical and horizontal gravity-gradient, and rotational effects) were removed from the filtered data in order to produce the acceleration components at the orbiter's center-of-gravity, which are the aerodynamic signals along each body axes. Results indicate that there is a force of unknown origin being applied to the Orbiter in addition to the aerodynamic forces. The OARE instrument and all known gravitational and electromagnetic forces were reexamined, but none produce the observed effect. Thus, it is tentatively concluded that the Orbiter is creating the environment observed.

  19. An empirical evolutionary magnitude estimation for earthquake early warning

    NASA Astrophysics Data System (ADS)

    Wu, Yih-Min; Chen, Da-Yi

    2016-04-01

    For earthquake early warning (EEW) system, it is a difficult mission to accurately estimate earthquake magnitude in the early nucleation stage of an earthquake occurrence because only few stations are triggered and the recorded seismic waveforms are short. One of the feasible methods to measure the size of earthquakes is to extract amplitude parameters within the initial portion of waveform after P-wave arrival. However, a large-magnitude earthquake (Mw > 7.0) may take longer time to complete the whole ruptures of the causative fault. Instead of adopting amplitude contents in fixed-length time window, that may underestimate magnitude for large-magnitude events, we suppose a fast, robust and unsaturated approach to estimate earthquake magnitudes. In this new method, the EEW system can initially give a bottom-bund magnitude in a few second time window and then update magnitude without saturation by extending the time window. Here we compared two kinds of time windows for adopting amplitudes. One is pure P-wave time widow (PTW); the other is whole-wave time window after P-wave arrival (WTW). The peak displacement amplitude in vertical component were adopted from 1- to 10-s length PTW and WTW, respectively. Linear regression analysis were implemented to find the empirical relationships between peak displacement, hypocentral distances, and magnitudes using the earthquake records from 1993 to 2012 with magnitude greater than 5.5 and focal depth less than 30 km. The result shows that using WTW to estimate magnitudes accompanies with smaller standard deviation. In addition, large uncertainties exist in the 1-second time widow. Therefore, for magnitude estimations we suggest the EEW system need to progressively adopt peak displacement amplitudes form 2- to 10-s WTW.

  20. Comparison of local magnitude scales in Central Europe

    NASA Astrophysics Data System (ADS)

    Kysel, Robert; Kristek, Jozef; Moczo, Peter; Cipciar, Andrej; Csicsay, Kristian; Srbecky, Miroslav; Kristekova, Miriam

    2015-04-01

    Efficient monitoring of earthquakes and determination of their magnitudes are necessary for developing earthquake catalogues at a regional and national levels. Unification and homogenization of the catalogues in terms of magnitudes has great importance for seismic hazard assessment. Calibrated local earthquake magnitude scales are commonly used for determining magnitudes of regional earthquakes by all national seismological services in the Central Europe. However, at the local scale, each seismological service uses its own magnitude determination procedure. There is no systematic comparison of the approaches and there is no unified procedure. We present a comparison of the local magnitude scales used by the national seismological services of Slovakia (Geophysical Institute, Slovak Academy of Sciences), Czech Republic (Institute of Geophysics, Academy of Sciences of the Czech Republic), Austria (ZAMG), Hungary (Geodetic and Geophysical Institute, Hungarian Academy of Sciences) and Poland (Institute of Geophysics, Polish Academy of Sciences), and by the local network of seismic stations located around the Nuclear Power Plant Jaslovske Bohunice, Slovakia. The comparison is based on the national earthquake catalogues and annually published earthquake bulletins for the period from 1985 to 2011. A data set of earthquakes has been compiled based on identification of common events in the national earthquake catalogues and bulletins. For each pair of seismic networks, magnitude differences have been determined and investigated as a function of time. The mean and standard deviations of the magnitude differences as well as regression coefficients between local magnitudes from the national seismological networks have been computed. Results show relatively big scatter between different national local magnitudes and its considerable time variation. A conversion between different national local magnitudes in a scale 1:1 seems inappropriate, especially for the compilation of the

  1. Subnanometer absolute displacement measurement using a frequency comb referenced dual resonance tracking Fabry-Perot interferometer.

    PubMed

    Zhu, Minhao; Wei, Haoyun; Zhao, Shijie; Wu, Xuejian; Li, Yan

    2015-05-10

    Fabry-Perot (F-P) interferometry is a traceable high-resolution method for displacement metrology that has no nonlinearity. Compared with the single resonance tracking F-P interferometry, the dual resonance tracking (DRT) F-P interferometer system is able to realize tens of millimeters measurement range while maintaining the intrinsic high resolution. A DRT F-P system is thus developed for absolute displacement measurement in metrology applications. Two external cavity diode lasers (ECDLs) are simultaneously locked to two resonances of a high-finesse F-P cavity using the Pound-Drever-Hall locking scheme. The absolute optical frequencies of the locked ECDLs are measured using a reference diode laser, with the frequency stabilized and controlled by an optical frequency comb. The absolute cavity resonance order numbers are investigated. The measurement range is experimentally tested to achieve 20 mm, while the resolution reaches ~10 pm level, mainly limited by the mechanical stability of the F-P cavity. Compared with the measurement results from a self-developed displacement-angle heterodyne interferometer, the displacement residuals are within 10 nm in the range of 20 mm. This high-resolution interferometer may become a candidate for length metrology such as in Watt balance or Joule balance projects.

  2. Hubble Space Telescope Observations of M32: The Color-Magnitude Diagram

    NASA Technical Reports Server (NTRS)

    Grillmair, C. J.; Lauer, T. R.; Worthey, G.; Faber, S. M.; Freedman, W. L.; Madore, B. F.; Ajhar, E. A.; Baum, W. A.; Holtzman, J. A.; Lynds, C. R.; O'NeilJr., E. J.; Stetson, P. B.

    1996-01-01

    We present a V--I color-magnitude diagram for a region 1'--2' the center of M32 based on Hubble Space Telescope WFPC2 images. The broad color-luminosity distribution of red giants shows that the stellar population comprises stars with a wide range in metallicity.

  3. Effect of Reinforcer Magnitude on Performance Maintained by Progressive-Ratio Schedules

    ERIC Educational Resources Information Center

    Rickard, J. F.; Body, S.; Zhang, Z.; Bradshaw, C. M.; Szabadi, E.

    2009-01-01

    This experiment examined the relationship between reinforcer magnitude and quantitative measures of performance on progressive-ratio schedules. Fifteen rats were trained under a progressive-ratio schedule in seven phases of the experiment in which the volume of a 0.6-M sucrose solution reinforcer was varied within the range 6-300 microliters.…

  4. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    ERIC Educational Resources Information Center

    Trosclair-Lasserre, Nicole M.; Lerman, Dorothea C.; Call, Nathan A.; Addison, Laura R.; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current…

  5. Some Effects of Magnitude of Reinforcement on Persistence of Responding

    ERIC Educational Resources Information Center

    McComas, Jennifer J.; Hartman, Ellie C.; Jimenez, Angel

    2008-01-01

    The influence of magnitude of reinforcement was examined on both response rate and behavioral persistence. During Phase 1, a multiple schedule of concurrent reinforcement was implemented in which reinforcement for one response option was held constant at VI 30 s across both components, while magnitude of reinforcement for the other response option…

  6. Congruency Effects between Number Magnitude and Response Force

    ERIC Educational Resources Information Center

    Vierck, Esther; Kiesel, Andrea

    2010-01-01

    Numbers are thought to be represented in space along a mental left-right oriented number line. Number magnitude has also been associated with the size of grip aperture, which might suggest a connection between number magnitude and intensity. The present experiment aimed to confirm this possibility more directly by using force as a response…

  7. The Effects of Reinforcer Magnitude on Timing in Rats

    ERIC Educational Resources Information Center

    Ludvig, Elliot A.; Conover, Kent; Shizgal, Peter

    2007-01-01

    The relation between reinforcer magnitude and timing behavior was studied using a peak procedure. Four rats received multiple consecutive sessions with both low and high levels of brain stimulation reward (BSR). Rats paused longer and had later start times during sessions when their responses were reinforced with low-magnitude BSR. When estimated…

  8. Monochromator-Based Absolute Calibration of Radiation Thermometers

    NASA Astrophysics Data System (ADS)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Hartmann, J.

    2011-08-01

    A monochromator integrating-sphere-based spectral comparator facility has been developed to calibrate standard radiation thermometers in terms of the absolute spectral radiance responsivity, traceable to the PTB cryogenic radiometer. The absolute responsivity calibration has been improved using a 75 W xenon lamp with a reflective mirror and imaging optics to a relative standard uncertainty at the peak wavelength of approximately 0.17 % ( k = 1). Via a relative measurement of the out-of-band responsivity, the spectral responsivity of radiation thermometers can be fully characterized. To verify the calibration accuracy, the absolutely calibrated radiation thermometer is used to measure Au and Cu freezing-point temperatures and then to compare the obtained results with the values obtained by absolute methods, resulting in T - T 90 values of +52 mK and -50 mK for the gold and copper fixed points, respectively.

  9. Gibbs Paradox Revisited from the Fluctuation Theorem with Absolute Irreversibility

    NASA Astrophysics Data System (ADS)

    Murashita, Yûto; Ueda, Masahito

    2017-02-01

    The inclusion of the factor ln (1 /N !) in the thermodynamic entropy proposed by Gibbs is shown to be equivalent to the validity of the fluctuation theorem with absolute irreversibility for gas mixing.

  10. Absolute Value Boundedness, Operator Decomposition, and Stochastic Media and Equations

    NASA Technical Reports Server (NTRS)

    Adomian, G.; Miao, C. C.

    1973-01-01

    The research accomplished during this period is reported. Published abstracts and technical reports are listed. Articles presented include: boundedness of absolute values of generalized Fourier coefficients, propagation in stochastic media, and stationary conditions for stochastic differential equations.

  11. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  12. The Effects Of Reinforcement Magnitude On Functional Analysis Outcomes

    PubMed Central

    2005-01-01

    The duration or magnitude of reinforcement has varied and often appears to have been selected arbitrarily in functional analysis research. Few studies have evaluated the effects of reinforcement magnitude on problem behavior, even though basic findings indicate that this parameter may affect response rates during functional analyses. In the current study, 6 children with autism or developmental disabilities who engaged in severe problem behavior were exposed to three separate functional analyses, each of which varied in reinforcement magnitude. Results of these functional analyses were compared to determine if a particular reinforcement magnitude was associated with the most conclusive outcomes. In most cases, the same conclusion about the functions of problem behavior was drawn regardless of the reinforcement magnitude. PMID:16033163

  13. Reinforcement magnitude: an evaluation of preference and reinforcer efficacy.

    PubMed

    Trosclair-Lasserre, Nicole M; Lerman, Dorothea C; Call, Nathan A; Addison, Laura R; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current study was to evaluate the relations among reinforcer magnitude, preference, and efficacy by drawing on the procedures and results of basic experimentation in this area. Three children who engaged in problem behavior that was maintained by social positive reinforcement (attention, access to tangible items) participated. Results indicated that preference for different magnitudes of social reinforcement may predict reinforcer efficacy and that magnitude effects may be mediated by the schedule requirement.

  14. Absolute flux calibration of optical spectrophotometric standard stars

    NASA Technical Reports Server (NTRS)

    Colina, Luis; Bohlin, Ralph C.

    1994-01-01

    A method based on Landolt photometry in B and V is developed to correct for a wavelength independent offset of the absolute flux level of optical spectrophotometric standards. The method is based on synthetic photometry techniques in B and V and is accurate to approximately 1%. The correction method is verified by Hubble Space Telescope Faint Object Spectrograph absolute fluxes for five calibration stars, which agree with Landolt photometry to 0.5% in B and V.

  15. Using Google Earth to Teach the Magnitude of Deep Time

    ERIC Educational Resources Information Center

    Parker, Joel D.

    2011-01-01

    Most timeline analogies of geologic and evolutionary time are fundamentally flawed. They trade off the problem of grasping very long times for the problem of grasping very short distances. The result is an understanding of relative time with little comprehension of absolute time. Earlier work has shown that the distances most easily understood by…

  16. An empirical evolutionary magnitude estimation for early warning of earthquakes

    NASA Astrophysics Data System (ADS)

    Chen, Da-Yi; Wu, Yih-Min; Chin, Tai-Lin

    2017-03-01

    The earthquake early warning (EEW) system is difficult to provide consistent magnitude estimate in the early stage of an earthquake occurrence because only few stations are triggered and few seismic signals are recorded. One of the feasible methods to measure the size of earthquakes is to extract amplitude parameters using the initial portion of the recorded waveforms after P-wave arrival. However, for a large-magnitude earthquake (Mw > 7.0), the time to complete the whole ruptures resulted from the corresponding fault may be very long. The magnitude estimations may not be correctly predicted by the initial portion of the seismograms. To estimate the magnitude of a large earthquake in real-time, the amplitude parameters should be updated with ongoing waveforms instead of adopting amplitude contents in a predefined fixed-length time window, since it may underestimate magnitude for large-magnitude events. In this paper, we propose a fast, robust and less-saturated approach to estimate earthquake magnitudes. The EEW system will initially give a lower-bound of the magnitude in a time window with a few seconds and then update magnitude with less saturation by extending the time window. Here we compared two kinds of time windows for measuring amplitudes. One is P-wave time window (PTW) after P-wave arrival; the other is whole-wave time window after P-wave arrival (WTW), which may include both P and S wave. One to ten second time windows for both PTW and WTW are considered to measure the peak ground displacement from the vertical component of the waveforms. Linear regression analysis are run at each time step (1- to 10-s time interval) to find the empirical relationships among peak ground displacement, hypocentral distances, and magnitudes using the earthquake records from 1993 to 2012 in Taiwan with magnitude greater than 5.5 and focal depth less than 30 km. The result shows that considering WTW to estimate magnitudes has smaller standard deviation than PTW. The

  17. Prospects for the Moon as an SI-Traceable Absolute Spectroradiometric Standard for Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Cramer, C. E.; Stone, T. C.; Lykke, K.; Woodward, J. T.

    2015-12-01

    The Earth's Moon has many physical properties that make it suitable for use as a reference light source for radiometric calibration of remote sensing satellite instruments. Lunar calibration has been successfully applied to many imagers in orbit, including both MODIS instruments and NPP-VIIRS, using the USGS ROLO model to predict the reference exoatmospheric lunar irradiance. Sensor response trending was developed for SeaWIFS with a relative accuracy better than 0.1 % per year with lunar calibration techniques. However, the Moon rarely is used as an absolute reference for on-orbit calibration, primarily due to uncertainties in the ROLO model absolute scale of 5%-10%. But this limitation lies only with the models - the Moon itself is radiometrically stable, and development of a high-accuracy absolute lunar reference is inherently feasible. A program has been undertaken by NIST to collect absolute measurements of the lunar spectral irradiance with absolute accuracy <1 % (k=2), traceable to SI radiometric units. Initial Moon observations were acquired from the Whipple Observatory on Mt. Hopkins, Arizona, elevation 2367 meters, with continuous spectral coverage from 380 nm to 1040 nm at ~3 nm resolution. The lunar spectrometer acquired calibration measurements several times each observing night by pointing to a calibrated integrating sphere source. The lunar spectral irradiance at the top of the atmosphere was derived from a time series of ground-based measurements by a Langley analysis that incorporated measured atmospheric conditions and ROLO model predictions for the change in irradiance resulting from the changing Sun-Moon-Observer geometry throughout each night. Two nights were selected for further study. An extensive error analysis, which includes instrument calibration and atmospheric correction terms, shows a combined standard uncertainty under 1 % over most of the spectral range. Comparison of these two nights' spectral irradiance measurements with predictions

  18. Absolute versus convective helical magnetorotational instability in a Taylor-Couette flow.

    PubMed

    Priede, Jānis; Gerbeth, Gunter

    2009-04-01

    We analyze numerically the magnetorotational instability of a Taylor-Couette flow in a helical magnetic field [helical magnetorotational instability (HMRI)] using the inductionless approximation defined by a zero magnetic Prandtl number (Pr_{m}=0) . The Chebyshev collocation method is used to calculate the eigenvalue spectrum for small-amplitude perturbations. First, we carry out a detailed conventional linear stability analysis with respect to perturbations in the form of Fourier modes that corresponds to the convective instability which is not in general self-sustained. The helical magnetic field is found to extend the instability to a relatively narrow range beyond its purely hydrodynamic limit defined by the Rayleigh line. There is not only a lower critical threshold at which HMRI appears but also an upper one at which it disappears again. The latter distinguishes the HMRI from a magnetically modified Taylor vortex flow. Second, we find an absolute instability threshold as well. In the hydrodynamically unstable regime before the Rayleigh line, the threshold of absolute instability is just slightly above the convective one although the critical wavelength of the former is noticeably shorter than that of the latter. Beyond the Rayleigh line the lower threshold of absolute instability rises significantly above the corresponding convective one while the upper one descends significantly below its convective counterpart. As a result, the extension of the absolute HMRI beyond the Rayleigh line is considerably shorter than that of the convective instability. The absolute HMRI is supposed to be self-sustained and, thus, experimentally observable without any external excitation in a system of sufficiently large axial extension.

  19. Absolute density measurements in the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Rapp, M.; Gumbel, J.; Lübken, F.-J.

    2001-05-01

    In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N) to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT) region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.

  20. Absolute Position Encoders With Vertical Image Binning

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2005-01-01

    Improved optoelectronic patternrecognition encoders that measure rotary and linear 1-dimensional positions at conversion rates (numbers of readings per unit time) exceeding 20 kHz have been invented. Heretofore, optoelectronic pattern-recognition absoluteposition encoders have been limited to conversion rates <15 Hz -- too low for emerging industrial applications in which conversion rates ranging from 1 kHz to as much as 100 kHz are required. The high conversion rates of the improved encoders are made possible, in part, by use of vertically compressible or binnable (as described below) scale patterns in combination with modified readout sequences of the image sensors [charge-coupled devices (CCDs)] used to read the scale patterns. The modified readout sequences and the processing of the images thus read out are amenable to implementation by use of modern, high-speed, ultra-compact microprocessors and digital signal processors or field-programmable gate arrays. This combination of improvements makes it possible to greatly increase conversion rates through substantial reductions in all three components of conversion time: exposure time, image-readout time, and image-processing time.

  1. Magnitude and Frequency of Floods in New York

    USGS Publications Warehouse

    Lumia, Richard; Freehafer, Douglas A.; Smith, Martyn J.

    2006-01-01

    Techniques are presented for estimating the magnitude and frequency of flood discharges on rural, unregulated streams in New York, excluding Long Island. Peak-discharge-frequency data and basin characteristics from 388 streamflow-gaging stations in New York and adjacent states were used to develop multiple linear regression equations for flood discharges with recurrence intervals ranging from 1.25 to 500 years. A generalized least-squares (GLS) procedure was used to develop the regression equations. Separate sets of equations were developed for each of six hydrologic regions of New York; standard errors of prediction range from 14 to 43 percent. Statistically significant explanatory variables in the regression equations include drainage area, main-channel slope, percent basin storage, mean annual precipitation, percent forested area, a basin lag factor, a ratio of main-channel slope to basin slope, mean annual runoff, maximum snow depth, and percentage of basin above 1,200 feet. Drainage areas for the 388 sites used in the analyses ranged from 0.41 to 4,773 square miles. Methods of computing flood discharges from the regression equations differ, depending on whether the estimate is for a gaged or ungaged basin, and whether the basin crosses hydrologic-region or state boundaries. Examples of computations are included. Discharge-frequency estimates for an additional 122 streamflow-gaging stations with significant regulation or urbanization (including Long Island) are also included as at-site estimates. Basin characteristics, log-Pearson Type III statistics, and regression and weighted estimates of the discharge-frequency relations are tabulated for the streamflow-gaging stations used in the regression analyses. Sensitivity analyses showed that mean-annual precipitation, drainage area, mean annual runoff, and maximum snow depth are the variables to which computed discharges are most sensitive in the regression equations. Included with the report is a DVD that provides

  2. Adolescents with Developmental Dyscalculia Do Not Have a Generalized Magnitude Deficit – Processing of Discrete and Continuous Magnitudes

    PubMed Central

    McCaskey, Ursina; von Aster, Michael; O’Gorman Tuura, Ruth; Kucian, Karin

    2017-01-01

    The link between number and space has been discussed in the literature for some time, resulting in the theory that number, space and time might be part of a generalized magnitude system. To date, several behavioral and neuroimaging findings support the notion of a generalized magnitude system, although contradictory results showing a partial overlap or separate magnitude systems are also found. The possible existence of a generalized magnitude processing area leads to the question how individuals with developmental dyscalculia (DD), known for deficits in numerical-arithmetical abilities, process magnitudes. By means of neuropsychological tests and functional magnetic resonance imaging (fMRI) we aimed to examine the relationship between number and space in typical and atypical development. Participants were 16 adolescents with DD (14.1 years) and 14 typically developing (TD) peers (13.8 years). In the fMRI paradigm participants had to perform discrete (arrays of dots) and continuous magnitude (angles) comparisons as well as a mental rotation task. In the neuropsychological tests, adolescents with dyscalculia performed significantly worse in numerical and complex visuo-spatial tasks. However, they showed similar results to TD peers when making discrete and continuous magnitude decisions during the neuropsychological tests and the fMRI paradigm. A conjunction analysis of the fMRI data revealed commonly activated higher order visual (inferior and middle occipital gyrus) and parietal (inferior and superior parietal lobe) magnitude areas for the discrete and continuous magnitude tasks. Moreover, no differences were found when contrasting both magnitude processing conditions, favoring the possibility of a generalized magnitude system. Group comparisons further revealed that dyscalculic subjects showed increased activation in domain general regions, whilst TD peers activate domain specific areas to a greater extent. In conclusion, our results point to the existence of a

  3. Induced earthquake magnitudes are as large as (statistically) expected

    NASA Astrophysics Data System (ADS)

    Elst, Nicholas J.; Page, Morgan T.; Weiser, Deborah A.; Goebel, Thomas H. W.; Hosseini, S. Mehran

    2016-06-01

    A major question for the hazard posed by injection-induced seismicity is how large induced earthquakes can be. Are their maximum magnitudes determined by injection parameters or by tectonics? Deterministic limits on induced earthquake magnitudes have been proposed based on the size of the reservoir or the volume of fluid injected. However, if induced earthquakes occur on tectonic faults oriented favorably with respect to the tectonic stress field, then they may be limited only by the regional tectonics and connectivity of the fault network. In this study, we show that the largest magnitudes observed at fluid injection sites are consistent with the sampling statistics of the Gutenberg-Richter distribution for tectonic earthquakes, assuming no upper magnitude bound. The data pass three specific tests: (1) the largest observed earthquake at each site scales with the log of the total number of induced earthquakes, (2) the order of occurrence of the largest event is random within the induced sequence, and (3) the injected volume controls the total number of earthquakes rather than the total seismic moment. All three tests point to an injection control on earthquake nucleation but a tectonic control on earthquake magnitude. Given that the largest observed earthquakes are exactly as large as expected from the sampling statistics, we should not conclude that these are the largest earthquakes possible. Instead, the results imply that induced earthquake magnitudes should be treated with the same maximum magnitude bound that is currently used to treat seismic hazard from tectonic earthquakes.

  4. Derivation of Johnson-Cousins Magnitudes from DSLR Camera Observations

    NASA Astrophysics Data System (ADS)

    Park, Woojin; Pak, Soojong; Shim, Hyunjin; Le, Huynh Anh N.; Im, Myungshin; Chang, Seunghyuk; Yu, Joonkyu

    2016-01-01

    The RGB Bayer filter system consists of a mosaic of R, G, and B filters on the grid of the photo sensors which typical commercial DSLR (Digital Single Lens Reflex) cameras and CCD cameras are equipped with. Lot of unique astronomical data obtained using an RGB Bayer filter system are available, including transient objects, e.g. supernovae, variable stars, and solar system bodies. The utilization of such data in scientific research requires that reliable photometric transformation methods are available between the systems. In this work, we develop a series of equations to convert the observed magnitudes in the RGB Bayer filter system (RB, GB, and BB) into the Johnson-Cousins BVR filter system (BJ, VJ, and RC). The new transformation equations derive the calculated magnitudes in the Johnson-Cousins filters (BJcal, VJcal, and RCcal) as functions of RGB magnitudes and colors. The mean differences between the transformed magnitudes and original magnitudes, i.e. the residuals, are (BJ - BJcal) = 0.064 mag, (VJ - VJcal) = 0.041 mag, and (RC - RCcal) = 0.039 mag. The calculated Johnson-Cousins magnitudes from the transformation equations show a good linear correlation with the observed Johnson-Cousins magnitudes.

  5. A scheme to set preferred magnitudes in the ISC Bulletin

    NASA Astrophysics Data System (ADS)

    Di Giacomo, Domenico; Storchak, Dmitry A.

    2016-04-01

    One of the main purposes of the International Seismological Centre (ISC) is to collect, integrate and reprocess seismic bulletins provided by agencies around the world in order to produce the ISC Bulletin. This is regarded as the most comprehensive bulletin of the Earth's seismicity, and its production is based on a unique cooperation in the seismological community that allows the ISC to complement the work of seismological agencies operating at global and/or local-regional scale. In addition, by using the seismic wave measurements provided by reporting agencies, the ISC computes, where possible, its own event locations and magnitudes such as short-period body wave m b and surface wave M S . Therefore, the ISC Bulletin contains the results of the reporting agencies as well as the ISC own solutions. Among the most used seismic event parameters listed in seismological bulletins, the event magnitude is of particular importance for characterizing a seismic event. The selection of a magnitude value (or multiple ones) for various research purposes or practical applications is not always a straightforward task for users of the ISC Bulletin and related products since a multitude of magnitude types is currently computed by seismological agencies (sometimes using different standards for the same magnitude type). Here, we describe a scheme that we intend to implement in routine ISC operations to mark the preferred magnitudes in order to help ISC users in the selection of events with magnitudes of their interest.

  6. Magnitude and Frequency of Floods on Small Rural Streams in Alabama

    USGS Publications Warehouse

    Hedgecock, Timothy S.

    2004-01-01

    Equations for estimating the magnitude and frequency of floods for small rural streams in Alabama are presented for recurrence intervals ranging from 2 to 500 years. Floodfrequency characteristics are documented for 43 streamflow gaging stations included in the analysis. Each station used has a drainage area less than 15 square miles and at least 10 years of record prior to 2003. None of these stations were affected by regulation or urbanization. Regression relations were developed using generalized least-square techniques to estimate flood magnitude and frequency on ungaged streams as a function of the drainage area of a basin.

  7. Absolute Measurements of Methane on Mars

    NASA Astrophysics Data System (ADS)

    Mumma, M. J.; Villanueva, G. L.; Novak, R. E.

    2009-12-01

    On Mars, methane has been sought for nearly 40 years because of its potential biological significance, but it was detected only recently [1-5]. Its distribution on the planet is found to be patchy and to vary with time [1,2,4,5], suggesting that methane is released from the subsurface in localized areas, and is then rapidly destroyed [1,6]. To date, we have detected four spectral lines of the CH4 ν3 band near 3.3 µm, along with H2O and HDO [1,5,7]. Our observational campaign resumed in August 2009, now using CRIRES/VLT along with CSHELL/NASA-IRTF and NIRSPEC/Keck. Our study of methane on Mars now extends over four Mars years, sampling a wide range of seasons (Ls) with significant spatial coverage. For a typical observation, the spectrometer's long entrance slit is held to the central meridian of Mars while spectra are taken sequentially in time. For each snapshot in time, spectra are acquired simultaneously at contiguous positions along the entire slit length, sampling latitudinally resolved spatial footprints on the planet (35 footprints along the N-S meridian, when Mars is 7 arc-sec in diameter). Successive longitudes are presented as the planet rotates, and the combination then permits partial mapping of the planet. In Northern summer 2003, methane was notably enriched over several localized areas: A (East of Arabia Terra, where water vapor is also greatly enriched), B1 (Nili Fossae), and B2 (southeast quadrant of Syrtis Major) [1,5]. The combined plume contained ~19,000 metric tons of methane, and the estimated source strength (≥ 0.6 kilogram per second) was comparable to that of the massive hydrocarbon seep at Coal Oil Point in Santa Barbara, California. By vernal equinox about one-half the released methane had been lost. When averaged over latitude and season, spectral data from Mars Express also imply an enhancement in methane in this longitude range [4]. The most compelling results from these searches are: 1) the unambiguous detection of multiple

  8. Design of piezoresistive MEMS absolute pressure sensor

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Pant, B. D.

    2012-10-01

    MEMS pressure sensors are one of the most widely commercialized microsensors in the MEMS industry. They have a plethora of applications in various fields including the automobile, space, biomedical, aviation and military sectors. One of the simplest and most efficient methods in MEMS pressure sensors for measuring pressure is to use the phenomenon of piezoresistance. The piezoresistive effect causes change in the resistance of certain doped materials when they are subjected to stress, as a result of energy band deformation. Piezoresistive pressure sensors consist of piezoresistors placed over a thin diaphragm which deflects under the action of the pressure to be measured. The result of this deflection causes the piezoresistors to change their resistance due to the stress experienced by them. The change is converted into electrical signals and measured in order to find the value of applied pressure. In this work, a high range (30 Bar) pressure sensor is designed based on the principle of piezoresistivity. The inaccuracies in the analytical models that are generally used to model the pressure sensor diaphragm have also been analysed. Thus, the Finite Element Method (FEM) is adopted to optimize the pressure sensor for parameters like sensitivity and linearity. This is achieved by choosing the proper shape of piezoresistor, thickness of diaphragm and the position of the piezoresistor on the pressure sensor diaphragm. For the square diaphragm, sensitivity of 5.18 mV/V/Bar and a linearity error of 0.02% are obtained. For the circular diaphragm, sensitivity of 3.69 mV/V/Bar and a linearity error of 0.011% are obtained.

  9. Regression between earthquake magnitudes having errors with known variances

    NASA Astrophysics Data System (ADS)

    Pujol, Jose

    2016-07-01

    Recent publications on the regression between earthquake magnitudes assume that both magnitudes are affected by error and that only the ratio of error variances is known. If X and Y represent observed magnitudes, and x and y represent the corresponding theoretical values, the problem is to find the a and b of the best-fit line y = a x + b. This problem has a closed solution only for homoscedastic errors (their variances are all equal for each of the two variables). The published solution was derived using a method that cannot provide a sum of squares of residuals. Therefore, it is not possible to compare the goodness of fit for different pairs of magnitudes. Furthermore, the method does not provide expressions for the x and y. The least-squares method introduced here does not have these drawbacks. The two methods of solution result in the same equations for a and b. General properties of a discussed in the literature but not proved, or proved for particular cases, are derived here. A comparison of different expressions for the variances of a and b is provided. The paper also considers the statistical aspects of the ongoing debate regarding the prediction of y given X. Analysis of actual data from the literature shows that a new approach produces an average improvement of less than 0.1 magnitude units over the standard approach when applied to Mw vs. mb and Mw vs. MS regressions. This improvement is minor, within the typical error of Mw. Moreover, a test subset of 100 predicted magnitudes shows that the new approach results in magnitudes closer to the theoretically true magnitudes for only 65 % of them. For the remaining 35 %, the standard approach produces closer values. Therefore, the new approach does not always give the most accurate magnitude estimates.

  10. The Relationship between Spatial and Temporal Magnitude Estimation of Scientific Concepts at Extreme Scales

    NASA Astrophysics Data System (ADS)

    Price, Aaron; Lee, H.

    2010-01-01

    Many astronomical objects, processes, and events exist and occur at extreme scales of spatial and temporal magnitudes. Our research draws upon the psychological literature, replete with evidence of linguistic and metaphorical links between the spatial and temporal domains, to compare how students estimate spatial and temporal magnitudes associated with objects and processes typically taught in science class.. We administered spatial and temporal scale estimation tests, with many astronomical items, to 417 students enrolled in 12 undergraduate science courses. Results show that while the temporal test was more difficult, students’ overall performance patterns between the two tests were mostly similar. However, asymmetrical correlations between the two tests indicate that students think of the extreme ranges of spatial and temporal scales in different ways, which is likely influenced by their classroom experience. When making incorrect estimations, students tended to underestimate the difference between the everyday scale and the extreme scales on both tests. This suggests the use of a common logarithmic mental number line for both spatial and temporal magnitude estimation. However, there are differences between the two tests in the errors student make in the everyday range. Among the implications discussed is the use of spatio-temporal reference frames, instead of smooth bootstrapping, to help students maneuver between scales of magnitude and the use of logarithmic transformations between reference frames. Implications for astronomy range from learning about spectra to large scale galaxy structure.

  11. Evaluation of Optical Magnitude of Deep Space Spacecraft

    NASA Astrophysics Data System (ADS)

    Wei, L.; Zheng-Hong, T.; Yong-da, L.

    2007-12-01

    Optical-electric technology can measure the tangential position and velocity of spacecraft. To know the feasibility of the use of optical-electric technology, it is necessary to estimate the magnitude of spacecraft first. Since the spacecrafts are non-self-illumination objects, the estimation formulas of the optical magnitude of spacecraft is constructed according to the radiation theory and the extra-atmospheric radiant emittance of the Sun in the visible light wave band. Taking Chang'e-1 as an example, the magnitude of it in different situations is calculated.

  12. Absolute differential cross sections for electron capture and loss by kilo-electron-volt hydrogen atoms

    NASA Technical Reports Server (NTRS)

    Smith, G. J.; Johnson, L. K.; Gao, R. S.; Smith, K. A.; Stebbings, R. F.

    1991-01-01

    This paper reports measurements of absolute differential cross sections for electron capture and loss for fast hydrogen atoms incident on H2, N2, O2, Ar, and He. Cross sections have been determined in the 2.0- to 5.0-keV energy range over the laboratory angular range 0.02-2 deg, with an angular, resolution of 0.02 deg. The high angular resolution allows observation of the structure at small angles in some of the cross sections. Comparison of the present results with those of other authors generally shows very good agreement.

  13. Development of a graphite probe calorimeter for absolute clinical dosimetry

    SciTech Connect

    Renaud, James; Seuntjens, Jan; Sarfehnia, Arman; Marchington, David

    2013-02-15

    The aim of this work is to present the numerical design optimization, construction, and experimental proof of concept of a graphite probe calorimeter (GPC) conceived for dose measurement in the clinical environment (U.S. provisional patent 61/652,540). A finite element method (FEM) based numerical heat transfer study was conducted using a commercial software package to explore the feasibility of the GPC and to optimize the shape, dimensions, and materials used in its design. A functioning prototype was constructed inhouse and used to perform dose to water measurements under a 6 MV photon beam at 400 and 1000 MU/min, in a thermally insulated water phantom. Heat loss correction factors were determined using FEM analysis while the radiation field perturbation and the graphite to water absorbed dose conversion factors were calculated using Monte Carlo simulations. The difference in the average measured dose to water for the 400 and 1000 MU/min runs using the TG-51 protocol and the GPC was 0.2% and 1.2%, respectively. Heat loss correction factors ranged from 1.001 to 1.002, while the product of the perturbation and dose conversion factors was calculated to be 1.130. The combined relative uncertainty was estimated to be 1.4%, with the largest contributors being the specific heat capacity of the graphite (type B, 0.8%) and the reproducibility, defined as the standard deviation of the mean measured dose (type A, 0.6%). By establishing the feasibility of using the GPC as a practical clinical absolute photon dosimeter, this work lays the foundation for further device enhancements, including the development of an isothermal mode of operation and an overall miniaturization, making it potentially suitable for use in small and composite radiation fields. It is anticipated that, through the incorporation of isothermal stabilization provided by temperature controllers, a subpercent overall uncertainty will be achieved.

  14. Absolute Measurements Of Methane On Mars: The Current Status.

    NASA Astrophysics Data System (ADS)

    Mumma, Michael J.; Villanueva, G. L.; Novak, R. E.; Hewagama, T.; Bonev, B. P.; DiSanti, M. A.; Smith, M. D.

    2008-09-01

    Our study of methane on Mars now extends over three Mars years, sampling a wide range of seasons with significant spatial coverage. Three spectrometer-telescope combinations were used. With the spectrometer slit oriented North-South on the planet, we obtain simultaneous spectra at latitudes along the central meridian. Successive longitudes are sampled as the planet rotates, and the combination then permits partial mapping of the planet. We earlier reported differential detections of methane and water on Mars. Here, we present absolute extractions of methane, based on improved analytical procedures developed since 2005. We now identify and correct instrumental effects such as variations in resolving power along the slit, second-order optical fringe removal, and correction of (minor) internal scattered light. We synthesize the fully-resolved terrestrial transmittance spectrum, convolve it to the instrumental resolution, and subtract it from the measured Mars-Earth spectrum. Fraunhofer lines are removed from the residual Mars spectra along with spectral lines of water and of (newly identified by us) carbon dioxide isotopomers. The residuals are then inspected for signatures of methane and other possible trace constituents such as HDO and H2O (Villanueva et al., this Conference). On certain dates, the residual spectra display spectral lines at the Doppler-shifted positions expected for methane on Mars. The positive indications favor certain seasons (e.g., Ls = 121° & 155°) and locations. Mixing ratios derived from those residuals (up to 60 ppb) greatly exceed upper limits obtained at other seasons (e.g., < 3ppb at Ls = 17°) these variations could be consistent with episodic release. The CH4 spatial extent requires transport over large distances (coupled with eddy diffusion), and destruction lifetimes of order one year. Details will be presented and implications will be discussed. This work was supported by NASA's Astrobiology, Planetary Astronomy, and Postdoctoral

  15. Characterizing flow in oil reservoir rock using SPH: absolute permeability

    NASA Astrophysics Data System (ADS)

    Holmes, David W.; Williams, John R.; Tilke, Peter; Leonardi, Christopher R.

    2016-04-01

    In this paper, a three-dimensional smooth particle hydrodynamics (SPH) simulator for modeling grain scale fluid flow in porous rock is presented. The versatility of the SPH method has driven its use in increasingly complex areas of flow analysis, including flows related to permeable rock for both groundwater and petroleum reservoir research. While previous approaches to such problems using SPH have involved the use of idealized pore geometries (cylinder/sphere packs etc), in this paper we detail the characterization of flow in models with geometries taken from 3D X-ray microtomographic imaging of actual porous rock; specifically 25.12 % porosity dolomite. This particular rock type has been well characterized experimentally and described in the literature, thus providing a practical `real world' means of verification of SPH that will be key to its acceptance by industry as a viable alternative to traditional reservoir modeling tools. The true advantages of SPH are realized when adding the complexity of multiple fluid phases, however, the accuracy of SPH for single phase flow is, as yet, under developed in the literature and will be the primary focus of this paper. Flow in reservoir rock will typically occur in the range of low Reynolds numbers, making the enforcement of no-slip boundary conditions an important factor in simulation. To this end, we detail the development of a new, robust, and numerically efficient method for implementing no-slip boundary conditions in SPH that can handle the degree of complexity of boundary surfaces, characteristic of an actual permeable rock sample. A study of the effect of particle density is carried out and simulation results for absolute permeability are presented and compared to those from experimentation showing good agreement and validating the method for such applications.

  16. a Portable Apparatus for Absolute Measurements of the Earth's Gravity.

    NASA Astrophysics Data System (ADS)

    Zumberge, Mark Andrew

    We have developed a new, portable apparatus for making absolute measurements of the acceleration due to the earth's gravity. We use the method of interferometrically determining the acceleration of a freely falling corner -cube prism. The falling object is surrounded by a chamber which is driven vertically inside a fixed vacuum chamber. This falling chamber is servoed to track the falling corner -cube to shield it from drag due to background gas. In addition, the drag-free falling chamber removes the need for a magnetic release, shields the falling object from electrostatic forces, and provides a means of both gently arresting the falling object and quickly returning it to its start position, to allow rapid acquisition of data. A synthesized long period isolation device reduces the noise due to seismic oscillations. A new type of Zeeman laser is used as the light source in the interferometer, and is compared with the wavelength of an iodine stabilized laser. The times of occurrence of 45 interference fringes are measured to within 0.2 nsec over a 20 cm drop and are fit to a quadratic by an on-line minicomputer. 150 drops can be made in ten minutes resulting in a value of g having a precision of 3 to 6 parts in 10('9). Systematic errors have been determined to be less than 5 parts in 10('9) through extensive tests. Three months of gravity data have been obtained with a reproducibility ranging from 5 to 10 parts in 10('9). The apparatus has been designed to be easily portable. Field measurements are planned for the immediate future. An accuracy of 6 parts in 10('9) corresponds to a height sensitivity of 2 cm. Vertical motions in the earth's crust and tectonic density changes that may precede earthquakes are to be investigated using this apparatus.

  17. Absolute Timing of the Crab Pulsar with RXTE

    NASA Technical Reports Server (NTRS)

    Rots, Arnold H.; Jahoda, Keith; Lyne, Andrew G.

    2004-01-01

    We have monitored the phase of the main X-ray pulse of the Crab pulsar with the Rossi X-ray Timing Explorer (RXTE) for almost eight years, since the start of the mission in January 1996. The absolute time of RXTE's clock is sufficiently accurate to allow this phase to be compared directly with the radio profile. Our monitoring observations of the pulsar took place bi-weekly (during the periods when it was at least 30 degrees from the Sun) and we correlated the data with radio timing ephemerides derived from observations made at Jodrell Bank. We have determined the phase of the X-ray main pulse for each observation with a typical error in the individual data points of 50 microseconds. The total ensemble is consistent with a phase that is constant over the monitoring period, with the X-ray pulse leading the radio pulse by 0.01025 plus or minus 0.00120 period in phase, or 344 plus or minus 40 microseconds in time. The error estimate is dominated by a systematic error of 40 microseconds, most likely constant, arising from uncertainties in the instrumental calibration of the radio data. The statistical error is 0.00015 period, or 5 microseconds. The separation of the main pulse and interpulse appears to be unchanging at time scales of a year or less, with an average value of 0.4001 plus or minus 0.0002 period. There is no apparent variation in these values with energy over the 2-30 keV range. The lag between the radio and X-ray pulses ma be constant in phase (i.e., rotational in nature) or constant in time (i.e., due to a pathlength difference). We are not (yet) able to distinguish between these two interpretations.

  18. A new method to calibrate the absolute sensitivity of a soft X-ray streak camera

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Liu, Shenye; Li, Jin; Yang, Zhiwen; Chen, Ming; Guo, Luting; Yao, Li; Xiao, Shali

    2016-12-01

    In this paper, we introduce a new method to calibrate the absolute sensitivity of a soft X-ray streak camera (SXRSC). The calibrations are done in the static mode by using a small laser-produced X-ray source. A calibrated X-ray CCD is used as a secondary standard detector to monitor the X-ray source intensity. In addition, two sets of holographic flat-field grating spectrometers are chosen as the spectral discrimination systems of the SXRSC and the X-ray CCD. The absolute sensitivity of the SXRSC is obtained by comparing the signal counts of the SXRSC to the output counts of the X-ray CCD. Results show that the calibrated spectrum covers the range from 200 eV to 1040 eV. The change of the absolute sensitivity in the vicinity of the K-edge of the carbon can also be clearly seen. The experimental values agree with the calculated values to within 29% error. Compared with previous calibration methods, the proposed method has several advantages: a wide spectral range, high accuracy, and simple data processing. Our calibration results can be used to make quantitative X-ray flux measurements in laser fusion research.

  19. Absolute and comparative subcutaneous bioavailability of ardeparin sodium, a low molecular weight heparin.

    PubMed

    Troy, S; Fruncillo, R; Ozawa, T; Mammen, E; Holloway, S; Chiang, S

    1997-08-01

    Ardeparin sodium (Normiflo, Wyeth-Ayerst) is a low molecular weight heparin undergoing clinical evaluation as an antithrombotic agent. The objective of this study was to evaluate the absolute and comparative bioavailability of ardeparin following subcutaneous administration of three different formulations [two formulations of ardeparin at 10,000 anti-factor Xa (aXa) U/ml, but with different preservatives, and a 20,000 aXa U/ml formulation]. The study was conducted using a randomized 4-period crossover design (three subcutaneous treatments and one intravenous treatment) in 24 healthy subjects, and the pharmacokinetics of ardeparin were characterized by plasma anti-factor IIa (aIIa) and anti-factor Xa (aXa) activities. The mean absolute bioavailability of ardeparin based on aIIa activity ranged from 62% to 64% and the mean absolute bioavailability based on aXa activity ranged from 88% to 97%. Based on bioequivalence testing criteria, the three ardeparin formulations were bioequivalent.

  20. Absolute calibration of 10Be AMS standards

    NASA Astrophysics Data System (ADS)

    Nishiizumi, Kunihiko; Imamura, Mineo; Caffee, Marc W.; Southon, John R.; Finkel, Robert C.; McAninch, Jeffrey

    2007-05-01

    The increased detection sensitivity offered by AMS has dramatically expanded the utility of 10Be. As these applications become more sophisticated attention has focused on the accuracy of the 10Be standards used to calibrate the AMS measurements. In recent years it has become apparent that there is a discrepancy between two of the most widely used 10Be AMS standards, the ICN 10Be standard and the NIST 10Be standard. The ICN (ICN Chemical & Radioisotope Division) 10Be AMS standard was calibrated by radioactive decay counting. Dilutions, ranging from 5 × 10 -13 to 3 × 10 -1110Be/Be, have been prepared and are extensively used in many AMS laboratories. The NIST 10Be standard, prepared at the National Institute of Standards and Technology (NIST), is calibrated by mass spectrometric isotope ratio measurements. To provide an independent calibration of the 10Be standards we implanted a known number of 10Be atoms in both Si detectors and Be foil targets. The 10Be concentrations in these targets were measured by AMS. The results were compared with both the ICN and NIST AMS standards. Our 10Be measurements indicate that the 10Be/ 9Be isotopic ratio of the ICN AMS standard, which is based on a 10Be half-life of 1.5 × 10 6 yr, is 1.106 ± 0.012 times lower than the nominal value. Since the decay rate of the ICN standard is well determined, the decrease in 10Be/ 9Be ratio requires that the 10Be half-life be reduced to (1.36 ± 0.07) × 10 6 yr. The quoted uncertainty includes a ±5% uncertainty in the activity measurement carried out by ICN. In a similar fashion, we determined that the value of the NIST 10Be standard (SRM4325) is (2.79 ± 0.03) × 10 -1110Be/ 9Be, within error of the certified value of (2.68 ± 0.14) × 10 -11. The Lawrence Livermore National Laboratory (LLNL) internal standards were also included in this study. We conclude that the 9Be(n, γ) neutron cross section is 7.8 ± 0.23 mb, without taking into account the uncertainty in the neutron irradiation.

  1. Auditory working memory predicts individual differences in absolute pitch learning.

    PubMed

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  2. Experimental feasibility of the airborne measurement of absolute oil fluorescence spectral conversion efficiency

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne lidar oil spill experiments carried out to determine the practicability of the AOFSCE (absolute oil fluorescence spectral conversion efficiency) computational model are described. The results reveal that the model is suitable over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency are also conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. Whereas the AOFSCE model is seen as highly promising, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are thought necessary for a final determination of suitability.

  3. Absolute terahertz power measurement of a time-domain spectroscopy system.

    PubMed

    Globisch, Björn; Dietz, Roman J B; Göbel, Thorsten; Schell, Martin; Bohmeyer, Werner; Müller, Ralf; Steiger, Andreas

    2015-08-01

    We report on, to the best of our knowledge, the first absolute terahertz (THz) power measurement of a photoconductive emitter developed for time-domain spectroscopy (TDS). The broadband THz radiation emitted by a photoconductor optimized for the excitation with 1550-nm femtosecond pulses was measured by an ultrathin pyroelectric thin-film (UPTF) detector. We show that this detector has a spectrally flat transmission between 100 GHz and 5 THz due to special conductive electrodes on both sides of the UPTF. Its flat responsivity allows the calibration with a standard detector that is traceable to the International System of Units (SI) at the THz detector calibration facility of PTB. Absolute THz power in the range from below 1 μW to above 0.1 mW was measured.

  4. MARQUIS: A Multiplex Method for Absolute Quantification of Peptides and Post-Translational Modifications

    PubMed Central

    Curran, Timothy G; Zhang, Yi; Ma, Daniel J.; Sarkaria, Jann N.; White, Forest M

    2014-01-01

    Absolute quantification of protein expression and post-translational modifications by mass spectrometry has been challenging due to a variety of factors, including the potentially large dynamic range of phosphorylation response. To address these issues, we have developed MARQUIS — Multiplex Absolute Regressed Quantification with Internal Standards — a novel mass spectrometry-based approach using a combination of isobaric tags and heavy-labeled standard peptides to construct internal standard curves for peptides derived from key nodes in signal transduction networks. We applied MARQUIS to quantify phosphorylation dynamics within the EGFR network at multiple time points following stimulation with several ligands, enabling a quantitative comparison of EGFR phosphorylation sites and demonstrating that receptor phosphorylation is qualitatively similar but quantitatively distinct for each EGFR ligand tested. MARQUIS was also applied to quantify the effect of EGFR kinase inhibition on glioblastoma patient derived xenografts. MARQUIS is a versatile method, broadly applicable and extendable to multiple mass spectrometric platforms. PMID:25581283

  5. Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb.

    PubMed

    Wu, Xuejian; Wei, Haoyun; Zhang, Hongyuan; Ren, Libing; Li, Yan; Zhang, Jitao

    2013-04-01

    We present a frequency-sweeping heterodyne interferometer to measure an absolute distance based on a frequency-tunable diode laser calibrated by an optical frequency comb (OFC) and an interferometric phase measurement system. The laser frequency-sweeping process is calibrated by the OFC within a range of 200 GHz and an accuracy of 1.3 kHz, which brings about a precise temporal synthetic wavelength of 1.499 mm. The interferometric phase measurement system consisting of the analog signal processing circuit and the digital phase meter achieves a phase difference resolution better than 0.1 deg. As the laser frequency is sweeping, the absolute distance can be determined by measuring the phase difference variation of the interference signals. In the laboratory condition, our experimental scheme realizes micrometer accuracy over meter distance.

  6. Exact Theory of Optical Tweezers and Its Application to Absolute Calibration.

    PubMed

    Dutra, Rafael S; Viana, Nathan B; Neto, Paulo A Maia; Nussenzveig, H Moysés

    2017-01-01

    Optical tweezers have become a powerful tool for basic and applied research in cell biology. Here, we describe an experimentally verified theory for the trapping forces generated by optical tweezers based on first principles that allows absolute calibration. For pedagogical reasons, the steps that led to the development of the theory over the past 15 years are outlined. The results are applicable to a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Protocols for implementing absolute calibration are given, explaining how to measure all required experimental parameters, and including a link to an applet for stiffness calculations.

  7. A Liquid-Helium-Cooled Absolute Reference Cold Load forLong-Wavelength Radiometric Calibration

    SciTech Connect

    Bensadoun, M.; Witebsky, C.; Smoot, George F.; De Amici,Giovanni; Kogut, A.; Levin, S.

    1990-05-01

    We describe a large (78-cm) diameter liquid-helium-cooled black-body absolute reference cold load for the calibration of microwave radiometers. The load provides an absolute calibration near the liquid helium (LHe) boiling point, accurate to better than 30 mK for wavelengths from 2.5 to 25 cm (12-1.2 GHz). The emission (from non-LHe temperature parts of the cold load) and reflection are small and well determined. Total corrections to the LHe boiling point temperature are {le} 50 mK over the operating range. This cold load has been used at several wavelengths at the South Pole and at the White Mountain Research Station. In operation, the average LHe loss rate was {le} 4.4 l/hr. Design considerations, radiometric and thermal performance and operational aspects are discussed. A comparison with other LHe-cooled reference loads including the predecessor of this cold load is given.

  8. Calibration of the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Barnes, Robert; Baize, Rosemary; O'Connell, Joseph; Hair, Jason

    2010-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements.

  9. Relative and absolute level populations in beam-foil-excited neutral helium

    NASA Technical Reports Server (NTRS)

    Davidson, J.

    1975-01-01

    Relative and absolute populations of 19 levels in beam-foil-excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n to the -3rd power, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range from 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number.

  10. Veridical mapping in savant abilities, absolute pitch, and synesthesia: an autism case study.

    PubMed

    Bouvet, Lucie; Donnadieu, Sophie; Valdois, Sylviane; Caron, Chantal; Dawson, Michelle; Mottron, Laurent

    2014-01-01

    An enhanced role and autonomy of perception are prominent in autism. Furthermore, savant abilities, absolute pitch, and synesthesia are all more commonly found in autistic individuals than in the typical population. The mechanism of veridical mapping has been proposed to account for how enhanced perception in autism leads to the high prevalence of these three phenomena and their structural similarity. Veridical mapping entails functional rededication of perceptual brain regions to higher order cognitive operations, allowing the enhanced detection and memorization of isomorphisms between perceptual and non-perceptual structures across multiple scales. In this paper, we present FC, an autistic individual who possesses several savant abilities in addition to both absolute pitch and synesthesia-like associations. The co-occurrence in FC of abilities, some of them rare, which share the same structure, as well as FC's own accounts of their development, together suggest the importance of veridical mapping in the atypical range and nature of abilities displayed by autistic people.

  11. Three-dimensional convective and absolute instabilities in pressure-driven two-layer channel flow

    NASA Astrophysics Data System (ADS)

    Sahu, Kirti; Matar, Omar

    2011-11-01

    A generalized linear stability analysis of three-dimensional disturbance in a pressure-driven two-layer channel flow, focusing on the range of parameters for which Squire's theorem does not exist is considered. Three-dimensional linear stability equations, in which both the spatial wavenumber and temporal frequency are complex, are derived and solved using an efficient spectral collocation method. A Briggs-type analysis is then carried out to delineate the boundaries between convective and absolute instabilities in m-Re space. We find that although three-dimensional disturbances are temporally more unstable than the two-dimensional disturbances, absolute modes of instability are most unstable for two-dimensional disturbances. An energy ``budget'' analysis also shows that the most dangerous modes are ``interfacial'' ones.

  12. A liquid-helium-cooled absolute reference cold load for long-wavelength radiometric calibration

    NASA Technical Reports Server (NTRS)

    Bensadoun, Marc; Witebsky, Chris; Smoot, George; De Amici, Giovanni; Kogut, AL; Levin, Steve

    1992-01-01

    Design, radiometric and thermal performance, and operation of a large diameter (78 cm) liquid-helium-cooled blackbody absolute reference cold load (CL) for the calibration of microwave radiometers is described. CL provides an absolute calibration near the liquid-helium (LHe) boiling point, with total uncertainty in the radiometric temperature of less than 30 mK over the 2.5-23 cm wavelength operating range. CL was used at several wavelengths at the South Pole, Antarctica and the White Mountain Research Center, California. Results show that, for the instruments operated at 20-, 12-, 7.9-, and 4.0 cm wavelength at the South Pole, the total corrections to the LHe boiling-point temperature (about 3.8 K) were 48 +/-23, 18 +/-10, 10 +/-18, and 15 +/-mK.

  13. Colour-magnitude diagrams of star clusters in the Magellanic Clouds from wide-field electronography. II - NGC 2210

    NASA Astrophysics Data System (ADS)

    Andersen, J.; Blecha, A.; Walker, M. F.

    1986-04-01

    The authors report photometric observations in B and V to V = 23.1 for 235 stars in an annular field 39arcsec ≤ R ≤ 60arcsec centered on the LMC cluster NGC 2210. Corrected for the effects of non-member stars, the colour-magnitude diagram (CMD) of NGC 2210 is found to closely resemble the diagram for the old, very metal-poor galactic globular cluster M92. The detailed CMD for the cluster then confirms the assignment of NGC 2210 by Searle et al. (1980) to the oldest, most metal-poor population in the LMC (SWB class VII), based on its integrated colours. From the fit of the CMD to those of M92 and M3, the authors find for NGC 2210 a distance modulus of (m-M)0 = 17.9 - 18.4 under various assumptions concerning the reddening and metal abundance of the cluster and the absolute magnitudes of its HB stars.

  14. Numerical and physical magnitudes are mapped into time.

    PubMed

    Ben-Meir, Shachar; Ganor-Stern, Dana; Tzelgov, Joseph

    2012-01-01

    In two experiments we investigated mapping of numerical and physical magnitudes with temporal order. Pairs of digits were presented sequentially for a size comparison task. An advantage for numbers presented in ascending order was found when participants were comparing the numbers' physical and numerical magnitudes. The effect was more robust for comparisons of physical size, as it was found using both select larger and select smaller instructions, while for numerical comparisons it was found only for select larger instructions. Varying both the digits' numerical and physical sizes resulted in a size congruity effect, indicating automatic processing of the irrelevant magnitude dimension. Temporal order and the congruency between numerical and physical magnitudes affected comparisons in an additive manner, thus suggesting that they affect different stages of the comparison process.

  15. Reinforcement magnitude and responding during treatment with differential reinforcement.

    PubMed Central

    Lerman, Dorothea C; Kelley, Michael E; Vorndran, Christina M; Kuhn, Stephanie A C; LaRue, Robert H

    2002-01-01

    Basic findings indicate that the amount or magnitude of reinforcement can influence free-operant responding prior to and during extinction. In this study, the relation between reinforcement magnitude and adaptive behavior was evaluated with 3 children as part of treatment with differential reinforcement. In the first experiment, a communicative response was shaped and maintained by the same reinforcer that was found to maintain problem behavior. Two reinforcement magnitudes (20-s or 60-s access to toys or escape from demands) were compared and found to be associated with similar levels of resistance to extinction. The relation between reinforcement magnitude and response maintenance was further evaluated in the second experiment by exposing the communicative response to 20-s or 300-s access to toys or escape. Results for 2 participants suggested that this factor may alter the duration of postreinforcement pauses. PMID:11936544

  16. When Should Zero Be Included on a Scale Showing Magnitude?

    ERIC Educational Resources Information Center

    Kozak, Marcin

    2011-01-01

    This article addresses an important problem of graphing quantitative data: should one include zero on the scale showing magnitude? Based on a real time series example, the problem is discussed and some recommendations are proposed.

  17. Number games, magnitude representation, and basic number skills in preschoolers.

    PubMed

    Whyte, Jemma Catherine; Bull, Rebecca

    2008-03-01

    The effect of 3 intervention board games (linear number, linear color, and nonlinear number) on young children's (mean age = 3.8 years) counting abilities, number naming, magnitude comprehension, accuracy in number-to-position estimation tasks, and best-fit numerical magnitude representations was examined. Pre- and posttest performance was compared following four 25-min intervention sessions. The linear number board game significantly improved children's performance in all posttest measures and facilitated a shift from a logarithmic to a linear representation of numerical magnitude, emphasizing the importance of spatial cues in estimation. Exposure to the number card games involving nonsymbolic magnitude judgments and association of symbolic and nonsymbolic quantities, but without any linear spatial cues, improved some aspects of children's basic number skills but not numerical estimation precision.

  18. Magnitude and distribution pattern of zinc in oysters

    SciTech Connect

    Koki, A.K.; Whitmore, R.; Lester, L.C. Jr.

    1986-06-01

    This study was an attempt to assess the magnitude and distribution pattern of trace element zinc in oysters to see if the problem of the magnitude of zinc contamination was evident in the South Carolina Fishery. It would identify potentially hazardous situations and persons affected would be made aware of the problem. Where high zinc concentration are found in oysters, it would then attempt to identify the source of pollution.

  19. I love my baffling, backward, counterintuitive, overly complicated magnitudes

    NASA Astrophysics Data System (ADS)

    Sirola, Christopher

    2017-02-01

    All professions have their jargon. But astronomy goes the extra parsec. Here's an example. Vega, one of the brighter stars in the night sky, has an apparent magnitude (i.e., an apparent brightness) of approximately zero. Polaris, the North Star, has an apparent magnitude of about +2. Despite this, Vega appears brighter than Polaris, and not by two, but by a factor of about six times.

  20. 3D absolute hypocentral determination - 13 years of seismicity in Ecuadorian subduction zone

    NASA Astrophysics Data System (ADS)

    Font, Yvonne; Segovia, Monica; Theunissen, Thomas

    2010-05-01

    In Ecuador, the Nazca plate is subducting beneath the North Andean Block. This subduction triggered, during the last century, 4 major earthquakes of magnitude greater than 7.7. Between 1994 and 2007, the Geophysical Institute (Escuela National Politecnica, Quito) recorded about 40 000 events in whole Ecuador ranging from Mb 1.5 to 6.9. Unfortunately, the local network shows great density discrepancy between the Coastal and Andean regions where numerous stations were installed to survey volcanic activity. Consequently, seismicity in and around the interplate seismogenic zone - producer of the most destructive earthquakes and tsunamis - is not well constrained. This study aims to improve the location of 13 years seismicity occurred during an interseismic period in order to better localize the seismic deformation and gaps. The first step consists in the construction of a 3D "georealistic" velocity model. Because local tomography cannot provide satisfactory model, we combined all local crustal/lithospheric information on the geometry and velocity properties of different geological units. Those information cover the oceanic Nazca plate and sedimentary coverture the subducting plate dip angle; the North Andean Block margin composed of accreted oceanic plateaus (the Moho depth is approximated using gravity modeling); the metamorphic volcanic chain (oceanic nature for the occidental cordillera and inter-andean valley, continental one for the oriental cordillera); The continental Guyana shield and sedimentary basins. The resulting 3D velocity model extends from 2°N to 6.5°S and 277°E to 283°E and reaches a depth of 300 km. It is discretized in constant velocity blocks of 12 x 12 x 3 km in x, y and z, respectively. The second step consists in selecting an adequate sub-set of seismic stations in order to correct the effect of station density disequilibrium between coastal and volcanic regions. Consequently, we only keep the most representative volcanic stations in terms