Re-creating Gauss's method for non-electrical absolute measurements of magnetic fields and moments
NASA Astrophysics Data System (ADS)
Van Baak, D. A.
2013-10-01
In 1832, Gauss made the first absolute measurements of magnetic fields and of magnetic moments in experiments that are straightforward and instructive to replicate. We show, using rare-earth permanent magnets and a variation of Gauss's technique, that the horizontal component of the ambient geomagnetic field, as well as the size of the magnetic moments of such magnets, can be found. The method shows the connection between the SI and cgs emu unit systems for these quantities and permits an absolute realization of the Ampere with considerable precision.
NASA Astrophysics Data System (ADS)
Hwang, C. S.; Yeh, Shuting; Teng, P. K.; Uen, T. M.
1996-05-01
A highly automatic system with a three-angle rotation mechanism has been designed and constructed to measure several thousand permanent magnet blocks. The system's main features include its high speed, highly automatic measurement, and the ease with which the different size magnet blocks can be installed and removed. This system provides precise and accurate measurements of the three orthogonal magnetic moment components to accurately characterize each block, as deemed necessary to assess the field quality of undulators and wigglers. A three-angle in rotation mechanism, together with a simple mathematical algorithm is used to measure and analyze the magnetic moments of the magnet block. The system includes the Helmholtz coil pair, block holder, the three-degree rotation mechanism, and the control and data acquisition system. A power train system consists of one motor coupled with a nonmagnetic stainless steel for 360° rotation and two motors individually coupled with two groups of nonmagnetic time belts for rotation angles of 0°, 180°, 0°, and 90°. The control system uses a microcomputer together with a stepping motor control card and a digital fluxmeter connected by the general purpose interface bus. The measurement speed of this system is 40 blocks per h. One reference magnet was measured, with those results verifying the long term precision of the order of 0.04% for the easy component and 0.02° for two minor components. The coil-pair geometry factor is calibrated via the voltage-field reciprocity principle, indicating that the system absolute accuracy is around 0.43%.
NMR absolute shielding scale and nuclear magnetic dipole moment of (207)Pb.
Adrjan, Bożena; Makulski, Włodzimierz; Jackowski, Karol; Demissie, Taye B; Ruud, Kenneth; Antušek, Andrej; Jaszuński, Michał
2016-06-28
An absolute shielding scale is proposed for (207)Pb nuclear magnetic resonance (NMR) spectroscopy. It is based on ab initio calculations performed on an isolated tetramethyllead Pb(CH3)4 molecule and the assignment of the experimental resonance frequency from the gas-phase NMR spectra of Pb(CH3)4, extrapolated to zero density of the buffer gas to obtain the result for an isolated molecule. The computed (207)Pb shielding constant is 10 790 ppm for the isolated molecule, leading to a shielding of 10799.7 ppm for liquid Pb(CH3)4 which is the accepted reference standard for (207)Pb NMR spectra. The new experimental and theoretical data are used to determine μ((207)Pb), the nuclear magnetic dipole moment of (207)Pb, by applying the standard relationship between NMR frequencies, shielding constants and nuclear moments of two nuclei in the same external magnetic field. Using the gas-phase (207)Pb and (reference) proton results and the theoretical value of the Pb shielding in Pb(CH3)4, we find μ((207)Pb) = 0.59064 μN. The analysis of new experimental and theoretical data obtained for the Pb(2+) ion in water solutions provides similar values of μ((207)Pb), in the range of 0.59000-0.59131 μN. PMID:27265668
NASA Technical Reports Server (NTRS)
Cooper, D. M.
1979-01-01
Electronic transition moments of seven C2 singlet and triplet band systems in the 0.2-1.2 micron spectral region were measured. The measurements were made in emission behind incident shock waves in C2H2-argon mixtures. Narrow bandpass radiometers were used to obtain absolute measurements of shock-excited C2 radiation from which absolute electronic transition moments are derived by a synthetic spectrum analysis. New results are reported for the Ballik-Ramsay, Phillips, Swan, Deslandres-d'Azambuja, Fox-Herzberg, Mulliken, and Freymark systems.
König, Gerhard; Bruckner, Stefan; Boresch, Stefan
2013-01-01
Most proteins perform their function in aqueous solution. The interactions with water determine the stability of proteins and the desolvation costs of ligand binding or membrane insertion. However, because of experimental restrictions, absolute solvation free energies of proteins or amino acids are not available. Instead, solvation free energies are estimated based on side chain analog data. This approach implies that the contributions to free energy differences are additive, and it has often been employed for estimating folding or binding free energies. However, it is not clear how much the additivity assumption affects the reliability of the resulting data. Here, we use molecular dynamics–based free energy simulations to calculate absolute hydration free energies for 15 N-acetyl-methylamide amino acids with neutral side chains. By comparing our results with solvation free energies for side chain analogs, we demonstrate that estimates of solvation free energies of full amino acids based on group-additive methods are systematically too negative and completely overestimate the hydrophobicity of glycine. The largest deviation of additive protocols using side chain analog data was 6.7 kcal/mol; on average, the deviation was 4 kcal/mol. We briefly discuss a simple way to alleviate the errors incurred by using side chain analog data and point out the implications of our findings for the field of biophysics and implicit solvent models. To support our results and conclusions, we calculate relative protein stabilities for selected point mutations, yielding a root-mean-square deviation from experimental results of 0.8 kcal/mol. PMID:23442867
Technology Transfer Automated Retrieval System (TEKTRAN)
Soil and aquifer materials have a finite capacity for colloid 20 retention. Blocking of the limited number of available retention sites further decreases the rate of retention over time and enhances risks (e.g., pathogens or colloid associated contaminants) or benefits (e.g., remediation by microorg...
Antušek, A. Holka, F.
2015-08-21
We present coupled cluster calculations of NMR shielding constants of aluminum, gallium, and indium in water-ion clusters. In addition, relativistic and dynamical corrections and the influence of the second solvation shell are evaluated. The final NMR shielding constants define new absolute shielding scales, 600.0 ± 4.1 ppm, 2044.4 ± 31.4 ppm, and 4507.7 ± 63.7 ppm for aluminum, gallium, and indium, respectively. The nuclear magnetic dipole moments for {sup 27}Al, {sup 69}Ga, {sup 71}Ga, {sup 113}In, and {sup 115}In isotopes are corrected by combining the computed shielding constants with experimental NMR frequencies. The absolute magnitude of the correction increases along the series and for indium isotopes it reaches approximately −8.0 × 10{sup −3} of the nuclear magneton.
Li, Q.; Lynn, J.W.; Gotaas, J.A.
1987-04-01
Powder neutron diffraction measurements have been performed on ferromagnetic (Er/sub 1-//sub x/Ho/sub x/)Rh/sub 4/B/sub 4/ for concentrations x = 1.0, 0.89, 0.84, and 0.75 to determine the ordered magnetic moment and form factor for holmium. The magnetic scattering intensities have been put on an absolute basis by comparison with pure copper-powder Bragg peaks in order to avoid systematic errors that might be associated with the evaluation of the nuclear structure factors of the samples themselves. For HoRh/sub 4/B/sub 4/ the saturated magnetic moment was determined to be <..mu../sup z/> = (8.61 +- 0.06)..mu../sub B/, which is in good agreement with our previous determination. The measurements on the alloys gave the same holmium moment within experimental error. This value is considerably smaller than the prediction of 10..mu../sub B/ based on a single-ion crystal-field model. The magnetic form factor for the pure holmium compound has also been determined as a function of sin(theta)/lambda, and is found to be in good agreement with the calculated form factor for Ho/sup 3+/. Thus any rhodium moment which contributes to the ferromagnetic component of the magnetization must be less than 0.07..mu../sub B/.
Easy Absolute Values? Absolutely
ERIC Educational Resources Information Center
Taylor, Sharon E.; Mittag, Kathleen Cage
2015-01-01
The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…
NASA Astrophysics Data System (ADS)
Wassermann, J.; Krüger, F.
2001-12-01
In the ongoing Indonesian-German MERAPI project the seismic signals at Merapi volcano are recorded continuously since July 1997 with a combined seismic network-array approach. With this network it was possible to record the seismicity before the onset of the eruption in July 1998 with a high dynamic and broad frequency range. The automatic standard analysis of the recorded seismic data before the first of two larger pyroclastic density flows emphasized the importance of a seismic swarm of VT-B type events in order to forecast the location of the newly formed lava lobe during this eruptive phase. To improve the location accuracy, we relocate these events using an extended cluster analysis technique. We first estimate the amount of events in three different seismic clusters. After this we estimate the relative onset times of all event combinations within one cluster using the SmoothedCOherencyTransform algorithm. Further we use the amplitude of the computed cross-correlation coefficients of each event-event waveform pair to further restrict our hypocenter constrain. In the final step we invert iteratively all estimated travel times, the relative travel times within the different arrays and the correlation coefficients in one single matrix. The resulting high precision hypocenter determination of the distinct clusters indicate a small source volume in the intersection of a old crater floor and the active part of Mt. Merapi. The high precision in hypocenter determination make a detailed analysis of the source mechanisms of these VTB events feasible. We use a point source full moment tensor inversion and simple source time functions to invert for the source mechanism. Greens functions are calculated with the reflectivity method and local 1D models based on refraction on different scales. The bias in the results due to not modelled topography and 3D-structure is estimated using a bootstrap approach.
NASA Astrophysics Data System (ADS)
Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.
2006-12-01
Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.
ERIC Educational Resources Information Center
Williams, Kate
2012-01-01
The informatics moment is the moment when a person seeks help in using some digital technology that is new to him or her. This article examines the informatics moment in people's everyday lives as they sought help at a branch public library. Four types of literacy were involved: basic literacy (reading and writing), computer literacy (use of a…
NASA Astrophysics Data System (ADS)
Phillips, Alfred, Jr.
Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .
Electronic Absolute Cartesian Autocollimator
NASA Technical Reports Server (NTRS)
Leviton, Douglas B.
2006-01-01
An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the
Teaching Absolute Value Meaningfully
ERIC Educational Resources Information Center
Wade, Angela
2012-01-01
What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…
Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...
Absolute nuclear material assay
Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.
2012-05-15
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
Absolute nuclear material assay
Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.
2010-07-13
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
McLeod, Stephen
2014-07-01
Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876
Moment-to-Moment Emotions during Reading
ERIC Educational Resources Information Center
Graesser, Arthur C.; D'Mello, Sidney
2012-01-01
Moment-to-moment emotions are affective states that dynamically change during reading and potentially influence comprehension. Researchers have recently identified these emotions and the emotion trajectories in reading, tutoring, and problem solving. The primary learning-centered emotions are boredom, frustration, confusion, flow (engagement),…
2012-05-11
The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less
Moody, A.
2012-05-11
The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.
... Block Explore Heart Block What Is... Electrical System & EKG Results Types Causes Who Is at Risk Signs & ... heart block. Doctors use a test called an EKG (electrocardiogram) to help diagnose heart block. This test ...
Solvents level dipole moments.
Liang, Wenkel; Li, Xiaosong; Dalton, Larry R; Robinson, Bruce H; Eichinger, Bruce E
2011-11-01
The dipole moments of highly polar molecules measured in solution are usually smaller than the molecular dipole moments that are calculated with reaction field methods, whereas vacuum values are routinely calculated in good agreement with available vapor phase data. Whether from Onsager's theory (or variations thereof) or from quantum mechanical methods, the calculated molecular dipoles in solution are found to be larger than those measured. The reason, of course, is that experiments measure the net dipole moment of solute together with the polarized (perturbed) solvent "cloud" surrounding it. Here we show that the reaction field charges that are generated in the quantum mechanical self-consistent reaction field (SCRF) method give a good estimate of the net dipole moment of the solute molecule together with the moment arising from the reaction field charges. This net dipole is a better description of experimental data than the vacuum dipole moment and certainly better than the bare dipole moment of the polarized solute molecule. PMID:21923185
Moment equations for chromatography based on Langmuir type reaction kinetics.
Miyabe, Kanji
2014-08-22
Moment equations were derived for chromatography, in which the reaction kinetics between solute molecules and functional ligands on the stationary phase was represented by the Langmuir type rate equation. A set of basic equations of the general rate model of chromatography representing the mass balance, mass transfer rate, and reaction kinetics in the column were analytically solved in the Laplace domain. The moment equations for the first absolute moment and the second central moment in the real time domain were derived from the analytical solution in the Laplace domain. The moment equations were used for predicting the chromatographic behavior under hypothetical HPLC conditions. The influence of the parameters relating to the adsorption equilibrium and to the reaction kinetics on the chromatographic behavior was quantitatively evaluated. It is expected that the moment equations are effective for a detailed analysis of the influence of the mass transfer rates and of the Langmuir type reaction kinetics on the column efficiency. PMID:24999066
OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.
2007-09-10
Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.
Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu
2002-03-29
Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.
ERIC Educational Resources Information Center
Zichittella, Jack
1998-01-01
Discusses Henri Cartier-Bresson's notion of the "aesthetic of the decisive moment" and its role in photographic composition. Argues that recording spontaneous moments from real life can produce significant and complex photographs. Suggests that instilling this technique in photography students frees them to experiment without fear of failure. (DSK)
Valentine, Christine
2007-01-01
The "moment of death," once a dominant concept in preparing for a "good death", has been eclipsed by a focus on the wider concept of the "dying trajectory". However, findings from interviews with 25 bereaved individuals suggest that dying loved ones' final moments may still be experienced as highly significant in their own right. In some accounts the dying individual's final moments did not feature or made little impression, either because the survivor was not present, or there was no obviously definable moment, or because other, usually medical factors, such as whether to resuscitate the person, took precedence. However, in six cases such moments were constructed as profound, special, and memorable occasions. These constructions are explored in relation to achieving a good death, the dying trajectory as a whole, and making sense of the bereavement experience. Their implications for sociological theories of identity and embodiment are also considered. PMID:18214069
Implants as absolute anchorage.
Rungcharassaeng, Kitichai; Kan, Joseph Y K; Caruso, Joseph M
2005-11-01
Anchorage control is essential for successful orthodontic treatment. Each tooth has its own anchorage potential as well as propensity to move when force is applied. When teeth are used as anchorage, the untoward movements of the anchoring units may result in the prolonged treatment time, and unpredictable or less-than-ideal outcome. To maximize tooth-related anchorage, techniques such as differential torque, placing roots into the cortex of the bone, the use of various intraoral devices and/or extraoral appliances have been implemented. Implants, as they are in direct contact with bone, do not possess a periodontal ligament. As a result, they do not move when orthodontic/orthopedic force is applied, and therefore can be used as "absolute anchorage." This article describes different types of implants that have been used as orthodontic anchorage. Their clinical applications and limitations are also discussed. PMID:16463910
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1997-01-01
The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.
Moment inference from tomograms
Day-Lewis, F. D.; Chen, Y.; Singha, K.
2007-01-01
Time-lapse geophysical tomography can provide valuable qualitative insights into hydrologic transport phenomena associated with aquifer dynamics, tracer experiments, and engineered remediation. Increasingly, tomograms are used to infer the spatial and/or temporal moments of solute plumes; these moments provide quantitative information about transport processes (e.g., advection, dispersion, and rate-limited mass transfer) and controlling parameters (e.g., permeability, dispersivity, and rate coefficients). The reliability of moments calculated from tomograms is, however, poorly understood because classic approaches to image appraisal (e.g., the model resolution matrix) are not directly applicable to moment inference. Here, we present a semi-analytical approach to construct a moment resolution matrix based on (1) the classic model resolution matrix and (2) image reconstruction from orthogonal moments. Numerical results for radar and electrical-resistivity imaging of solute plumes demonstrate that moment values calculated from tomograms depend strongly on plume location within the tomogram, survey geometry, regularization criteria, and measurement error. Copyright 2007 by the American Geophysical Union.
Chang, D. . Dept. of Physics and Astronomy Fermi National Accelerator Lab., Batavia, IL ); Senjanovic, G. . Dept. of Theoretical Physics)
1990-01-01
We review attempts to achieve a large neutrino magnetic moment ({mu}{sub {nu}} {le} 10{sup {minus}11}{mu}{sub B}), while keeping neutrino light or massless. The application to the solar neutrino puzzle is discussed. 24 refs.
NASA Technical Reports Server (NTRS)
Bock, G.
1946-01-01
When flying in a turn or pulling out of a dive, the airscrew exerts a gyroscopic moment on the aircraft, In the case of airscrews with three or more blades, arranged symmetrically, the value of the gyroscopic moment is J(sub x) omega(sub x) omega(sub y), where J(sub x) denotes the axial moment of inertia about the axis of rotation of the airscrew, omega(sub x) the angular upeed of the airscrew about its axis, and omega (sub Y) the rotary speed of the whole aircraft about an axis parallel to the plane of the airscrew (e.g., when pulling up, the transverse axis of the aircraft). The gyroscopic moment then tends to rotate the aircraft about an axis perpendicular to those of the two angular speeds and, in the came of airscrews with three or more blades, is constant during a revolution of the airscrew. With two-bladed airscrews, on the contrary, although the calculate gyroscopic moment represents the mean value in time, it fluctuates about this value with a frequency equal to twice the revolutions per minute. In addition, pulsating moments likewise occur about the other two axes. This fact is known from the theory of the asymmetrical gyro; the calculations that have been carried out for the determination of the various gyroscopic moments, however, mostly require an exact knowledge of the gyro theory. The problem will therefore be approached in another manner based on quite elementary considerations. The considerations are of importance, not only in connection with the gyroscopic moments exerted by the two-bladed airscrew on the aircraft, but also with the stressing of the blades of airscrews with an arbitrary number of blades.
Absolute neutrino mass measurements
NASA Astrophysics Data System (ADS)
Wolf, Joachim
2011-10-01
The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.
Absolute neutrino mass measurements
Wolf, Joachim
2011-10-06
The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.
ERIC Educational Resources Information Center
Smith, Martin H.
1992-01-01
Describes an educational game called "Population Blocks" that is designed to illustrate the concept of exponential growth of the human population and some potential effects of overpopulation. The game material consists of wooden blocks; 18 blocks are painted green (representing land), 7 are painted blue (representing water); and the remaining…
Absolute Identification by Relative Judgment
ERIC Educational Resources Information Center
Stewart, Neil; Brown, Gordon D. A.; Chater, Nick
2005-01-01
In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…
Be Resolute about Absolute Value
ERIC Educational Resources Information Center
Kidd, Margaret L.
2007-01-01
This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…
Temporal Moments in Hydrogeophysics
NASA Astrophysics Data System (ADS)
Pollock, D.; Cirpka, O. A.
2007-12-01
Electrical Resistivity Tomography (ERT) has been tested as monitoring tool for salt-tracer experiments by various authors. So far, the analysis of such experiments has been done by a two-step procedure [Kemna et al., 2002; Vanderborght et al., 2005; Singha and Gorelick, 2005]. In the first step, classical geophysical inversion methods have been used to infer the distribution of electrical conductivity, which is transferred to an estimated concentration distribution of the tracer. Subsequently, the inferred concentration images were analyzed to estimate hydraulic quantities such as the velocity distribution. This approach has two disadvantages: The concentration distribution is reconstructed with a high spatial resolution, but the estimate is uncertain, and the estimation uncertainty is spatially correlated. These correlated uncertainties should be accounted for in the estimation of hydraulic conductivity from concentration values. The latter, unfortunately, is not practical because the reconstructed data sets are very large. The geophysical inversion is not enforced to be in agreement with basic hydromechanical constraints. E.g., Singha and Gorelick [2005] observed an apparent loss of solute mass when using ERT as monitoring tool. We propose considering the temporal moments of potential-difference time series. These temporal moments depend on temporal moments of concentration, which have already been used in the inference of hydraulic- conductivity distributions (Cirpka and Kitanidis, 2000). In our contribution, we present the complete set of equations leading from hydraulic conductivity via hydraulic heads, velocities, temporal moments of concentrations to temporal moments of potential differences for given flow and transport boundary conditions and electrode configurations. We also present how the sensitivity of temporal moments of potential differences on the hydraulic conductivity field can be computed without the need of storing intermediate sensitivities
NASA Astrophysics Data System (ADS)
Mochizuki, N.; Yamamoto, Y.; Hatakeyama, T.; Shibuya, H.
2013-12-01
Absolute geomagnetic paleointensities (APIs) have been estimated from igneous rocks, while relative paleomagnetic intensities (RPIs) have been reported from sediment cores. These two datasets have been treated separately, as correlations between APIs and RPIs are difficult on account of age uncertainties. High-resolution RPI stacks have been constructed from globally distributed sediment cores with high sedimentation rates. Previous studies often assumed that the RPI stacks have a linear relationship with geomagnetic axial dipole moments, and calibrated the RPI values to API values. However, the assumption of a linear relationship between APIs and RPIs has not been evaluated. Also, a quantitative calibration method for the RPI is lacking. We present a procedure for directly comparing API and RPI stacks, thus allowing reliable calibrations of RPIs. Direct comparisons between APIs and RPIs were conducted with virtually no associated age errors using both tephrochronologic correlations and RPI minima. Using the stratigraphic positions of tephra layers in oxygen isotope stratigraphic records, we directly compared the RPIs and APIs reported from welded tuffs contemporaneously extruded with the tephra layers. In addition, RPI minima during geomagnetic reversals and excursions were compared with APIs corresponding to the reversals and excursions. The comparison of APIs and RPIs at these exact points allowed a reliable calibration of the RPI values. We applied this direct comparison procedure to the global RPI stack PISO-1500. For six independent calibration points, virtual axial dipole moments (VADMs) from the corresponding APIs and RPIs of the PISO-1500 stack showed a near-linear relationship. On the basis of the linear relationship, RPIs of the stack were successfully calibrated to the VADMs. The direct comparison procedure provides an absolute calibration method that will contribute to the recovery of temporal variations and distributions of geomagnetic axial dipole
ERIC Educational Resources Information Center
Terr, Lenore C.; McDermott, John F.; Benson, Ronald M.; Blos, Peter, Jr.; Deeney, John M.; Rogers, Rita R.; Zrull, Joel P.
2005-01-01
In the summer of 2004, a number of psychotherapists with old ties to the University of Michigan or UCLA decided to write 500-word vignettes that attempted to capture a turning point in one of their child patient's psychotherapies. What did the child and adolescent psychiatrist do to elicit such a moment? Upon receiving seven vignettes, one of us…
ERIC Educational Resources Information Center
Child & Youth Services, 2004
2004-01-01
This chapter presents additional stories and interpretations by John Korsmo, Molly Weingrod, Joseph Stanley, Quinn Wilder, Amy Evans, Rick Flowers, Arcelia Martinez, and Pam Ramsey. The stories and interpretations are presented as teachable moments that are examples of how people are learning to understand youthwork and, as such, are open to…
ERIC Educational Resources Information Center
Higgins, Chris
2014-01-01
In "The Humanist Moment," Chris Higgins sets out to recover a tenable, living humanism, rejecting both the version vilified by the anti-humanists and the one sentimentalized by the reactionary nostalgists. Rescuing humanism from such polemics is only the first step, as we find at least nine rival, contemporary definitions of humanism.…
ERIC Educational Resources Information Center
Goodrow, Mary Ellen
2000-01-01
Details how an unplanned activity involving spinning wool presented a teachable moment for children in a family child care setting. Notes how activities related to farming, spinning wool, and using wool cloth resulted from following the children's lead. Concludes that everyday activities provide opportunities to listen to children, learn about…
ERIC Educational Resources Information Center
Sevcik, Richard S.; Gamble, Rex; Martinez, Elizabet; Schultz, Linda D.; Alexander, Susan V.
2008-01-01
"Ionic Blocks" is a teaching tool designed to help middle school students visualize the concepts of ions, ionic compounds, and stoichiometry. It can also assist high school students in reviewing their subject mastery. Three dimensional blocks are used to represent cations and anions, with color indicating charge (positive or negative) and size…
Multiplicity moments in deep inelastic scattering at HERA
NASA Astrophysics Data System (ADS)
ZEUS Collaboration; Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Stanek, R.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Aghuzumtsyan, G.; Brock, I.; Goers, S.; Hartmann, H.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Kind, O.; Paul, E.; Rautenberg, J.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K. C.; Weber, A.; Wieber, H.; Bailey, D. S.; Brook, N. H.; Cole, J. E.; Foster, B.; Heath, G. P.; Heath, H. F.; Robins, S.; Rodrigues, E.; Scott, J.; Tapper, R. J.; Wing, M.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Jeoung, H. Y.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Ma, K. J.; Pac, M. Y.; Caldwell, A.; Helbich, M.; Liu, W.; Liu, X.; Mellado, B.; Paganis, S.; Sampson, S.; Schmidke, W. B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Olkiewicz, K.; Przybycień, M. B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowal, A. M.; Kowal, M.; Kowalski, T.; Mindur, B.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Szuba, D.; Kotański, A.; Bauerdick, L. A. T.; Behrens, U.; Borras, K.; Chiochia, V.; Crittenden, J.; Dannheim, D.; Desler, K.; Drews, G.; Fox-Murphy, A.; Fricke, U.; Geiser, A.; Goebel, F.; Göttlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G. F.; Hebbel, K.; Hillert, S.; Koch, W.; Kötz, U.; Kowalski, H.; Labes, H.; Löhr, B.; Mankel, R.; Martens, J.; Martínez, M.; Milite, M.; Moritz, M.; Notz, D.; Petrucci, M. C.; Polini, A.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Stonjek, S.; Wolf, G.; Wollmer, U.; Whitmore, J. J.; Wichmann, R.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P. G.; Bamberger, A.; Benen, A.; Coppola, N.; Markun, P.; Raach, H.; Wölfle, S.; Bell, M.; Bussey, P. J.; Doyle, A. T.; Glasman, C.; Lee, S. W.; Lupi, A.; McCance, G. J.; Saxon, D. H.; Skillicorn, I. O.; Bodmann, B.; Gendner, N.; Holm, U.; Salehi, H.; Wick, K.; Yildirim, A.; Ziegler, A.; Carli, T.; Garfagnini, A.; Gialas, I.; Lohrmann, E.; Foudas, C.; Gonçalo, R.; Long, K. R.; Metlica, F.; Miller, D. B.; Tapper, A. D.; Walker, R.; Cloth, P.; Filges, D.; Ishii, T.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.; Ahn, S. H.; Lee, S. B.; Park, S. K.; Lim, H.; Son, D.; Barreiro, F.; García, G.; González, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terrón, J.; Vázquez, M.; Barbi, M.; Corriveau, F.; Padhi, S.; Stairs, D. G.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, P.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Golubkov, Y. A.; Katkov, I. I.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Y.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Vlasov, N. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Schagen, S.; van Sighem, A.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J. J.; Vossebeld, J.; Wiggers, L.; de Wolf, E.; Brümmer, N.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Boogert, S.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Große-Knetter, J.; Matsushita, T.; Rigby, M.; Ruske, O.; Sutton, M. R.; Walczak, R.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Limentani, S.; Longhin, A.; Parenti, A.; Posocco, M.; Stanco, L.; Turcato, M.; Adamczyk, L.; Iannotti, L.; Oh, B. Y.; Saull, P. R. B.; Toothacker, W. S.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J. C.; McCubbin, N. A.; Epperson, D.; Heusch, C.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Park, I. H.; Pavel, N.; Abramowicz, H.; Dagan, S.; Gabareen, A.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Koop, T.; Levman, G. M.; Martin, J. F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J. M.; Gwenlan, C.; Hayes, M. E.; Heaphy, E. A.; Jones, T. W.; Lane, J. B.; West, B. J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Plucinski, P.; Smalska, B.; Tymieniecka, T.; Ukleja, J.; Zakrzewski, J. A.; Z˙arnecki, A. F.; Adamus, M.; Sztuk, J.; Deppe, O.; Eisenberg, Y.; Gladilin, L. K.; Hochman, D.; Karshon, U.; Breitweg, J.; Chapin, D.; Cross, R.; Kçira, D.; Lammers, S.; Reeder, D. D.; Smith, W. H.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Straub, P. B.; Bhadra, S.; Catterall, C. D.; Frisken, W. R.; Hall-Wilton, R.; Khakzad, M.; Menary, S.
2001-06-01
Multiplicity moments of charged particles in deep inelastic e+p scattering have been measured with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb-1. The moments for Q2>1000 GeV2 were studied in the current region of the Breit frame. The evolution of the moments was investigated as a function of restricted regions in polar angle and, for the first time, both in the transverse momentum and in absolute momentum of final-state particles. Analytic perturbative QCD predictions in conjunction with the hypothesis of Local Parton-Hadron Duality (LPHD) reproduce the trends of the moments in polar-angle regions, although some discrepancies are observed. For the moments restricted either in transverse or absolute momentum, the analytic results combined with the LPHD hypothesis show considerable deviations from the measurements. The study indicates a large influence of the hadronisation stage on the multiplicity distributions in the restricted phase-space regions studied here, which is inconsistent with the expectations of the LPHD hypothesis.
Absolute transition probabilities of phosphorus.
NASA Technical Reports Server (NTRS)
Miller, M. H.; Roig, R. A.; Bengtson, R. D.
1971-01-01
Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-
Nonzero Quadrupole Moments of Candidate Tetrahedral Bands
Bark, R. A.; Lawrie, E. A.; Lawrie, J. J.; Mullins, S. M.; Murray, S. H. T.; Ncapayi, N. J.; Smit, F. D.; Sharpey-Schafer, J. F.; Lindsay, R.
2010-01-15
Negative-parity bands in the vicinity of {sup 156}Gd and {sup 160}Yb have been suggested as candidates for the rotation of tetrahedral nuclei. We report the observation of the odd and even-spin members of the lowest energy negative-parity bands in {sup 160}Yb and {sup 154}Gd. The properties of these bands are similar to the proposed tetrahedral band of {sup 156}Gd and its even-spin partner. Band-mixing calculations are performed and absolute and relative quadrupole moments deduced for {sup 160}Yb and {sup 154}Gd. The values are inconsistent with zero, as required for tetrahedral shape, and the bands are interpreted as octupole vibrational bands. The failure to observe the in-band E2 transitions of the bands at low spins can be understood using the measured B(E1) and B(E2) values.
Multipole moments of stellar oscillation modes
NASA Technical Reports Server (NTRS)
Reisenegger, Andreas
1994-01-01
The oscillating mass 2(exp l)-pole moment, M(sub nl), of a star in a given (normalized) oscillation mode determines the energy that can be absorbed by the mode in a tidal interaction and the power radiated by the mode in gravitational waves, both of which are proportional to (absolute value of M(sub nl))(exp 2). The coefficients in the expansion of the vector fields del(r(exp l)Y(sub lm)(theta, phi)) in terms of the displacement fields of modes of given l and m are proportional to M(sub nl). This expansion leads to a sum rule sum over n(absolute value of M(sub nl))(exp 2) = constant. For stars of weak to moderate central condensation (such as neutron stars), the f-mode is well approximated by the vector field being expanded, and therefore it takes the lion's share of the sum. Thus the multipole moments of all other modes must be small. In there numerical evaluation, it is necessary to know the shape of the eigenfunctions quite precisly, since a small f-mode contamination can significantly increase the obtained values. This contamination occurs in some `hybrid' numerical computations of neutron star oscillations with relativistic equilibrium stars and Newtonian dynamics (e.g., McDermott et al. 1988). In this case, it is due to a slight inconsistency in the models and leads to a large overestimate of the power radiated in gravitational waves by modes other than the f-mode, although their oscillation periods are nearly unaffected.
Optomechanics for absolute rotation detection
NASA Astrophysics Data System (ADS)
Davuluri, Sankar
2016-07-01
In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.
The Absolute Spectrum Polarimeter (ASP)
NASA Technical Reports Server (NTRS)
Kogut, A. J.
2010-01-01
The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.
Absolute calibration of optical flats
Sommargren, Gary E.
2005-04-05
The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.
Inquiry-Based Science: Turning Teachable Moments into Learnable Moments
ERIC Educational Resources Information Center
Haug, Berit S.
2014-01-01
This study examines how an inquiry-based approach to teaching and learning creates teachable moments that can foster conceptual understanding in students, and how teachers capitalize upon these moments. Six elementary school teachers were videotaped as they implemented an integrated inquiry-based science and literacy curriculum in their…
Measurements of the electronic transition moments of C2-band systems
NASA Technical Reports Server (NTRS)
Cooper, D. M.; Nicholls, R. W.
1975-01-01
Electronic transition moments of seven C2 singlet and triplet band systems, which are in the 0.2 to 1.2 micron spectral region, have been measured. The measurements were made in emission behind incident shock waves in C2H2-argon mixtures. Narrow band-pass radiometers were used to obtain absolute measurements of shock-excited C2 radiation from which absolute electronic transition moments are derived by a synthetic spectrum analysis. New results are reported for the Ballik-Ramsay, Phillips, Swan, Deslandres-d'Azambuja, Fox-Herzberg, Mulliken, and Freymark systems.
The AFGL absolute gravity program
NASA Technical Reports Server (NTRS)
Hammond, J. A.; Iliff, R. L.
1978-01-01
A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.
Point estimates for probability moments
Rosenblueth, Emilio
1975-01-01
Given a well-behaved real function Y of a real random variable X and the first two or three moments of X, expressions are derived for the moments of Y as linear combinations of powers of the point estimates y(x+) and y(x-), where x+ and x- are specific values of X. Higher-order approximations and approximations for discontinuous Y using more point estimates are also given. Second-moment approximations are generalized to the case when Y is a function of several variables. PMID:16578731
Spectral moments of fullerene cages
NASA Astrophysics Data System (ADS)
Zhang, Hongxing; Balasubramanian, K.
Based on the symmetric method, analytical expression or recursive relations for the spectral moments of the C20, C24, C26, C28, C30, C32, C36, C38, C40, C42, C44, C50 and C60 fullerene cage clusters are obtained by factoring the original graphs and the corresponding characteristic polynomials into their smaller subgraphs and subpolynomials. We also give numerical results for the spectral moments. It is demonstrated that the symmetric method is feasible in enumerating the moments as well as factoring the characteristic polynomials for fullerene cages.
Cosmology with negative absolute temperatures
NASA Astrophysics Data System (ADS)
Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony
2016-08-01
Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.
Radiation reaction of multipole moments
NASA Astrophysics Data System (ADS)
Kazinski, P. O.
2007-08-01
A Poincaré-invariant description is proposed for the effective dynamics of a localized system of charged particles in classical electrodynamics in terms of the intrinsic multipole moments of the system. A relativistic-invariant definition for the intrinsic multipole moments of a system of charged particles is given. A new generally covariant action functional for a relativistic perfect fluid is proposed. In the case of relativistic charged dust, it is proven that the description of the problem of radiation reaction of multipole moments by the model of particles is equivalent to the description of this problem by a hydrodynamic model. An effective model is obtained for a pointlike neutral system of charged particles that possesses an intrinsic dipole moment, and the free dynamics of this system is described. The bound momentum of a point dipole is found.
Second moments and rotational spectroscopy
NASA Astrophysics Data System (ADS)
Bohn, Robert K.; Montgomery, John A.; Michels, H. Harvey; Fournier, Joseph A.
2016-07-01
Although determining molecular structure using microwave spectroscopy is a mature technique, there are still simple but powerful insights to analysis of the data which are not generally appreciated. This paper summarizes three applications of second (or planar) moments which quickly and easily provide insights and conclusions about a molecule's structure not easily obtained from the molecule's rotational constants. If the molecule has a plane of symmetry, group second moments can verify that property and determine which groups are located on that plane. Common groups contribute predictable values to second moments. This study examines the contribution and transferability of CH2/CH3, CF2/CF3, isopropyl, and phenyl groups to molecular constants. Structures of related molecules can be critically compared using their second moments. A third application to any molecule, even those whose structures have only the identity symmetry element, determines bond lengths and angles which exactly reproduce experimentally determined 2nd moments, rotational constants, and moments of inertia. Approximate least squares methods are not needed.
Elliott, Mark A; Giersch, Anne
2015-01-01
There has been evidence for the very brief, temporal quantization of perceptual experience at regular intervals below 100 ms for several decades. We briefly describe how earlier studies led to the concept of "psychological moment" of between 50 and 60 ms duration. According to historical theories, within the psychological moment all events would be processed as co-temporal. More recently, a link with physiological mechanisms has been proposed, according to which the 50-60 ms psychological moment would be defined by the upper limit required by neural mechanisms to synchronize and thereby represent a snapshot of current perceptual event structure. However, our own experimental developments also identify a more fine-scaled, serialized process structure within the psychological moment. Our data suggests that not all events are processed as co-temporal within the psychological moment and instead, some are processed successively. This evidence questions the analog relationship between synchronized process and simultaneous experience and opens debate on the ontology and function of "moments" in psychological experience. PMID:26779059
Second Moments (planar Moments) and Their Application in Spectroscopy
NASA Astrophysics Data System (ADS)
Bohn, Robert K.; Montgomery, John A., Jr.; Michels, H. Harvey; Byrd, Jason N.
2013-06-01
Second moments, also called planar moments (P_{ii} = Σ m_{i}^{} x_{i}^{2}), are the spectroscopic parameters used to determine substitution structures (r_{s}) ) by Kraitchman''s method from spectra of a molecule and its isotopologs. They are also useful for discussing other molecular structural properties. Just as bond lengths and angles are considered transferable among similar molecules, second moments of many common groups are also transferable. This paper discusses applications of second moments of methylene/methyl groups, singly or multiply, isopropyl/tert-butyl groups, phenyl groups, per{f}{l}uoro methylene/methyl groups, combinations of any of them, and planarity of molecules, the historically most common application of second moments. The inertial defect is Δ = (I_{c} - I_{a} - I_{b}) or -2P_{cc}. Some authors err by assuming each isotopolog provides three independent rotational constants, but in some cases they are not all independent. J. Kraitchman, Am. J. Phys. {21 (17), 1953.}
Inquiry-Based Science: Turning Teachable Moments into Learnable Moments
NASA Astrophysics Data System (ADS)
Haug, Berit S.
2014-02-01
This study examines how an inquiry-based approach to teaching and learning creates teachable moments that can foster conceptual understanding in students, and how teachers capitalize upon these moments. Six elementary school teachers were videotaped as they implemented an integrated inquiry-based science and literacy curriculum in their classrooms. In this curriculum, science inquiry implies that students search for evidence in order to make and revise explanations based on the evidence found and through critical and logical thinking. Furthermore, the curriculum material is designed to address science key concepts multiple times through multiple modalities (do it, say it, read it, write it). Two types of teachable moments were identified: planned and spontaneous. Results suggest that the consolidation phases of inquiry, when students reinforce new knowledge and connect their empirical findings to theory, can be considered as planned teachable moments. These are phases of inquiry during which the teacher should expect, and be prepared for, student utterances that create opportunities to further student learning. Spontaneous teachable moments are instances when the teacher must choose to either follow the pace of the curriculum or adapt to the students' need. One implication of the study is that more teacher support is required in terms of how to plan for and effectively utilize the consolidation phases of inquiry.
Improving HST Pointing & Absolute Astrometry
NASA Astrophysics Data System (ADS)
Lallo, Matthew; Nelan, E.; Kimmer, E.; Cox, C.; Casertano, S.
2007-05-01
Accurate absolute astrometry is becoming increasingly important in an era of multi-mission archives and virtual observatories. Hubble Space Telescope's (HST's) Guidestar Catalog II (GSC2) has reduced coordinate error to around 0.25 arcsecond, a factor 2 or more compared with GSC1. With this reduced catalog error, special attention must be given to calibrate and maintain the Fine Guidance Sensors (FGSs) and Science Instruments (SIs) alignments in HST to a level well below this in order to ensure that the accuracy of science product's astrometry keywords and target positioning are limited only by the catalog errors. After HST Servicing Mission 4, such calibrations' improvement in "blind" pointing accuracy will allow for more efficient COS acquisitions. Multiple SIs and FGSs each have their own footprints in the spatially shared HST focal plane. It is the small changes over time in primarily the whole-body positions & orientations of these instruments & guiders relative to one another that is addressed by this work. We describe the HST Cycle 15 program CAL/OTA 11021 which, along with future variants of it, determines and maintains positions and orientations of the SIs and FGSs to better than 50 milli- arcseconds and 0.04 to 0.004 degrees of roll, putting errors associated with the alignment sufficiently below GSC2 errors. We present recent alignment results and assess their errors, illustrate trends, and describe where and how the observer sees benefit from these calibrations when using HST.
Absolute oral bioavailability of ciprofloxacin.
Drusano, G L; Standiford, H C; Plaisance, K; Forrest, A; Leslie, J; Caldwell, J
1986-09-01
We evaluated the absolute bioavailability of ciprofloxacin, a new quinoline carboxylic acid, in 12 healthy male volunteers. Doses of 200 mg were given to each of the volunteers in a randomized, crossover manner 1 week apart orally and as a 10-min intravenous infusion. Half-lives (mean +/- standard deviation) for the intravenous and oral administration arms were 4.2 +/- 0.77 and 4.11 +/- 0.74 h, respectively. The serum clearance rate averaged 28.5 +/- 4.7 liters/h per 1.73 m2 for the intravenous administration arm. The renal clearance rate accounted for approximately 60% of the corresponding serum clearance rate and was 16.9 +/- 3.0 liters/h per 1.73 m2 for the intravenous arm and 17.0 +/- 2.86 liters/h per 1.73 m2 for the oral administration arm. Absorption was rapid, with peak concentrations in serum occurring at 0.71 +/- 0.15 h. Bioavailability, defined as the ratio of the area under the curve from 0 h to infinity for the oral to the intravenous dose, was 69 +/- 7%. We conclude that ciprofloxacin is rapidly absorbed and reliably bioavailable in these healthy volunteers. Further studies with ciprofloxacin should be undertaken in target patient populations under actual clinical circumstances. PMID:3777908
Absolute Instability in Coupled-Cavity TWTs
NASA Astrophysics Data System (ADS)
Hung, D. M. H.; Rittersdorf, I. M.; Zhang, Peng; Lau, Y. Y.; Simon, D. H.; Gilgenbach, R. M.; Chernin, D.; Antonsen, T. M., Jr.
2014-10-01
This paper will present results of our analysis of absolute instability in a coupled-cavity traveling wave tube (TWT). The structure mode at the lower and upper band edges are respectively approximated by a hyperbola in the (omega, k) plane. When the Briggs-Bers criterion is applied, a threshold current for onset of absolute instability is observed at the upper band edge, but not the lower band edge. The nonexistence of absolute instability at the lower band edge is mathematically similar to the nonexistence of absolute instability that we recently demonstrated for a dielectric TWT. The existence of absolute instability at the upper band edge is mathematically similar to the existence of absolute instability in a gyroton traveling wave amplifier. These interesting observations will be discussed, and the practical implications will be explored. This work was supported by AFOSR, ONR, and L-3 Communications Electron Devices.
Molecular electric moments calculated by using natural orbital functional theory.
Mitxelena, Ion; Piris, Mario
2016-05-28
The molecular electric dipole, quadrupole, and octupole moments of a selected set of 21 spin-compensated molecules are determined employing the extended version of the Piris natural orbital functional 6 (PNOF6), using the triple-ζ Gaussian basis set with polarization functions developed by Sadlej, at the experimental geometries. The performance of the PNOF6 is established by carrying out a statistical analysis of the mean absolute errors with respect to the experiment. The calculated PNOF6 electric moments agree satisfactorily with the corresponding experimental data and are in good agreement with the values obtained by accurate ab initio methods, namely, the coupled-cluster single and doubles and multi-reference single and double excitation configuration interaction methods. PMID:27250280
Molecular electric moments calculated by using natural orbital functional theory
NASA Astrophysics Data System (ADS)
Mitxelena, Ion; Piris, Mario
2016-05-01
The molecular electric dipole, quadrupole, and octupole moments of a selected set of 21 spin-compensated molecules are determined employing the extended version of the Piris natural orbital functional 6 (PNOF6), using the triple-ζ Gaussian basis set with polarization functions developed by Sadlej, at the experimental geometries. The performance of the PNOF6 is established by carrying out a statistical analysis of the mean absolute errors with respect to the experiment. The calculated PNOF6 electric moments agree satisfactorily with the corresponding experimental data and are in good agreement with the values obtained by accurate ab initio methods, namely, the coupled-cluster single and doubles and multi-reference single and double excitation configuration interaction methods.
Nuclear Electric Dipole Moment Calculations
NASA Astrophysics Data System (ADS)
Haxton, Wick
2010-11-01
One of the most important constraints on CP violation in the nucleon and NN interaction is provided by electric dipole moment (EDM) limits for neutral diamagnetic atoms, particularly 199Hg. To extract CP-violating couplings from experiment, one must relate the atomic EDM to the underlying nuclear CP-odd moments, a task complicated by the atomic response, which largely shields the nucleus from the applied external electric field. The residual response -- the Schiff moment -- depends on corrections such as the finite size of the nucleus. Conventional Schiff-moment calculations have largely ignored one consequence of the screening: the cancellation between direct and polarization diagrams, which yields an answer that is suppressed by two powers of RN/RA, where RN and RA are the nuclear and atomic sizes, requires one to identify all other terms that contribute to the same order in the RN/RA power counting. We show that such terms arise from nuclear excitations associated with the dipole charge and transverse electric multipole operators, and discuss the consequences. We also describe higher T-odd moments that contribute up to the same order in the counting, and point out interesting nuclear structure and experimental consequences.
Absolute negative mobility of interacting Brownian particles
NASA Astrophysics Data System (ADS)
Ou, Ya-li; Hu, Cai-tian; Wu, Jian-chun; Ai, Bao-quan
2015-12-01
Transport of interacting Brownian particles in a periodic potential is investigated in the presence of an ac force and a dc force. From Brownian dynamic simulations, we find that both the interaction between particles and the thermal fluctuations play key roles in the absolute negative mobility (the particle noisily moves backwards against a small constant bias). When no the interaction acts, there is only one region where the absolute negative mobility occurs. In the presence of the interaction, the absolute negative mobility may appear in multiple regions. The weak interaction can be helpful for the absolute negative mobility, while the strong interaction has a destructive impact on it.
Neutron star moments of inertia
NASA Technical Reports Server (NTRS)
Ravenhall, D. G.; Pethick, C. J.
1994-01-01
An approximation for the moment of inertia of a neutron star in terms of only its mass and radius is presented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The approximation is accurate to approximately 10% for a variety of nuclear equations of state, for all except very low mass stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in terms only of mass and radius) for the fractional moment of inertia of the crust.
Inequalities, Absolute Value, and Logical Connectives.
ERIC Educational Resources Information Center
Parish, Charles R.
1992-01-01
Presents an approach to the concept of absolute value that alleviates students' problems with the traditional definition and the use of logical connectives in solving related problems. Uses a model that maps numbers from a horizontal number line to a vertical ray originating from the origin. Provides examples solving absolute value equations and…
Absolute optical metrology : nanometers to kilometers
NASA Technical Reports Server (NTRS)
Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.
2005-01-01
We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.
Monolithically integrated absolute frequency comb laser system
Wanke, Michael C.
2016-07-12
Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.
Introducing the Mean Absolute Deviation "Effect" Size
ERIC Educational Resources Information Center
Gorard, Stephen
2015-01-01
This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…
Investigating Absolute Value: A Real World Application
ERIC Educational Resources Information Center
Kidd, Margaret; Pagni, David
2009-01-01
Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…
Absolute Income, Relative Income, and Happiness
ERIC Educational Resources Information Center
Ball, Richard; Chernova, Kateryna
2008-01-01
This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…
Absolute instability of the Gaussian wake profile
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.; Aggarwal, Arun K.
1987-01-01
Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.
Elliott, Mark A.; Giersch, Anne
2016-01-01
There has been evidence for the very brief, temporal quantization of perceptual experience at regular intervals below 100 ms for several decades. We briefly describe how earlier studies led to the concept of “psychological moment” of between 50 and 60 ms duration. According to historical theories, within the psychological moment all events would be processed as co-temporal. More recently, a link with physiological mechanisms has been proposed, according to which the 50–60 ms psychological moment would be defined by the upper limit required by neural mechanisms to synchronize and thereby represent a snapshot of current perceptual event structure. However, our own experimental developments also identify a more fine-scaled, serialized process structure within the psychological moment. Our data suggests that not all events are processed as co-temporal within the psychological moment and instead, some are processed successively. This evidence questions the analog relationship between synchronized process and simultaneous experience and opens debate on the ontology and function of “moments” in psychological experience. PMID:26779059
[Great moments in renal transplantation].
Ghossain, Antoine
2015-01-01
A selective review of some great moments in renal transplantation experienced or witnessed with some of the great architects of this epic. The path was strewn with hazards, sometimes halts or changes of attitude that harmed or helped some patients. PMID:26591188
Measuring the Moment of Inertia
ERIC Educational Resources Information Center
Lehmberg, George L.
1978-01-01
Two physics experiments are described, One, involving a laboratory cart accelerated along a level surface, examines the concept of inertial mass in translation and the other, using a solid cylinder, measures the moment of inertia of a wheel. Equations and illustrations are included. (MA)
Moment of Inertia by Differentiation
ERIC Educational Resources Information Center
Rizcallah, Joseph A.
2015-01-01
The calculation of the moment of inertia of an extended body, as presented in standard introductory-level textbooks, involves the evaluation of a definite integral--an operation often not fully mastered by beginners, let alone the conceptual difficulties it presents, even to the advanced student, in understanding and setting up the integral in the…
Brief, Amazing Moments of Inclusion
ERIC Educational Resources Information Center
Fialka, Janice
2005-01-01
"Real inclusion" of kinds with special needs occurs everywhere, inside the classroom as well as outside. This is a fairly basic principle, however, it is not always easy to achieve. In this article, the author describes how her family have had to "fight" for inclusive education and shares some amazing moments of inclusion with her son Micah.
NASA Astrophysics Data System (ADS)
Magnoni, F.; Scognamiglio, L.; Tinti, E.; Casarotti, E.
2014-12-01
Seismic moment tensor is one of the most important source parameters defining the earthquake dimension and style of the activated fault. Moment tensor catalogues are ordinarily used by geoscientists, however, few attempts have been done to assess possible impacts of moment magnitude uncertainties upon their own analysis. The 2012 May 20 Emilia mainshock is a representative event since it is defined in literature with a moment magnitude value (Mw) spanning between 5.63 and 6.12. An uncertainty of ~0.5 units in magnitude leads to a controversial knowledge of the real size of the event. The possible uncertainty associated to this estimate could be critical for the inference of other seismological parameters, suggesting caution for seismic hazard assessment, coulomb stress transfer determination and other analyses where self-consistency is important. In this work, we focus on the variability of the moment tensor solution, highlighting the effect of four different velocity models, different types and ranges of filtering, and two different methodologies. Using a larger dataset, to better quantify the source parameter uncertainty, we also analyze the variability of the moment tensor solutions depending on the number, the epicentral distance and the azimuth of used stations. We endorse that the estimate of seismic moment from moment tensor solutions, as well as the estimate of the other kinematic source parameters, cannot be considered an absolute value and requires to come out with the related uncertainties and in a reproducible framework characterized by disclosed assumptions and explicit processing workflows.
NASA Astrophysics Data System (ADS)
Mat Jan, Nur Amalina; Shabri, Ani
2015-09-01
TL-moments approach has been used in an analysis to identify the best-fitting distributions to represent the annual series of maximum streamflow data over seven stations in Johor, Malaysia. The TL-moments with different trimming values are used to estimate the parameter of the selected distributions namely: Three-parameter lognormal (LN3) and Pearson Type III (P3) distribution. The main objective of this study is to derive the TL-moments (t 1,0), t 1 = 1,2,3,4 methods for LN3 and P3 distributions. The performance of TL-moments (t 1,0), t 1 = 1,2,3,4 was compared with L-moments through Monte Carlo simulation and streamflow data over a station in Johor, Malaysia. The absolute error is used to test the influence of TL-moments methods on estimated probability distribution functions. From the cases in this study, the results show that TL-moments with four trimmed smallest values from the conceptual sample (TL-moments [4, 0]) of LN3 distribution was the most appropriate in most of the stations of the annual maximum streamflow series in Johor, Malaysia.
Measurement of the Magnet Blocks for SSRF Insertion Devices
He Yongzhou; Zhang Jidong; Zhou Qiaogen; Qian Zhenmei; Li Yang
2010-06-23
Two in-vacuum undulators IVU25s and one elliptically polarized undulator EPU100 have been developed for SSRF. Two IVU25s with the same hybrid design contain about 640 Sm{sub 2}Co{sub 17} magnet blocks and the dimension of blocks is 65 Wx25 Hx9 D. The EPU100 of the APPLE-II type contains about 690 NdFeB magnet blocks with the dimension of 35 Wx35 Hx25 D. This paper describes the magnetic measurements of these magnet blocks with the Helmholtz coil measurement system for IVU25 magnet blocks and the Hall probe measurement system for EPU100 magnet blocks. The measured maximum magnetic moment deviation and the maximum angle deviation are less than {+-}1.0% and 1.1 deg. respectively both for Sm{sub 2}Co{sub 17} blocks and NdFeB blocks and satisfy the specifications of undulators.
... Block Explore Heart Block What Is... Electrical System & EKG Results Types Causes Who Is at Risk Signs & ... the P and the R waves on the EKG (electrocardiogram). First-degree heart block may not cause ...
Absolute optical instruments without spherical symmetry
NASA Astrophysics Data System (ADS)
Tyc, Tomáš; Dao, H. L.; Danner, Aaron J.
2015-11-01
Until now, the known set of absolute optical instruments has been limited to those containing high levels of symmetry. Here, we demonstrate a method of mathematically constructing refractive index profiles that result in asymmetric absolute optical instruments. The method is based on the analogy between geometrical optics and classical mechanics and employs Lagrangians that separate in Cartesian coordinates. In addition, our method can be used to construct the index profiles of most previously known absolute optical instruments, as well as infinitely many different ones.
Enhanced magnetic moment of ultrathin Co films measured by in situ electrodeposition in a SQUID
NASA Astrophysics Data System (ADS)
Topolovec, Stefan; Krenn, Heinz; Würschum, Roland
2016-01-01
A special electrochemical cell enabling in situ electrodeposition in a SQUID magnetometer is applied to study the magnetic moment of ultrathin Co films during growth on an Au(111) substrate. The in situ electrodeposition approach allows a total elimination of the magnetic background signal of the substrate, thus the magnetic moment which arises exclusively from the deposited Co film could be measured with monolayer sensitivity. The average thickness of the deposited Co films dav as determined from the transferred charge can be adjusted easily by varying the parameters of the electrodeposition. Hence, the magnetic moment of Co thin films could be determined in absolute terms as a function of the film thickness dav. For the first few atomic layers an enhancement of the magnetic moment per Co atom compared to the bulk could be observed, which increases steadily with lowering dav, reaching up to 40%.
The dipole moment of the spin density as a local indicator for phase transitions
Schmitz, D.; Schmitz-Antoniak, C.; Warland, A.; Darbandi, M.; Haldar, S.; Bhandary, S.; Eriksson, O.; Sanyal, B.; Wende, H.
2014-01-01
The intra-atomic magnetic dipole moment - frequently called 〈Tz〉 term - plays an important role in the determination of spin magnetic moments by x-ray absorption spectroscopy for systems with nonspherical spin density distributions. In this work, we present the dipole moment as a sensitive monitor to changes in the electronic structure in the vicinity of a phase transiton. In particular, we studied the dipole moment at the Fe2+ and Fe3+ sites of magnetite as an indicator for the Verwey transition by a combination of x-ray magnetic circular dichroism and density functional theory. Our experimental results prove that there exists a local change in the electronic structure at temperatures above the Verwey transition correlated to the known spin reorientation. Furthermore, it is shown that measurement of the dipole moment is a powerful tool to observe this transition in small magnetite nanoparticles for which it is usually screened by blocking effects in classical magnetometry. PMID:25041757
Superconductivity from Emerging Magnetic Moments.
Hoshino, Shintaro; Werner, Philipp
2015-12-11
Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds. PMID:26705649
Superconductivity from Emerging Magnetic Moments
NASA Astrophysics Data System (ADS)
Hoshino, Shintaro; Werner, Philipp
2015-12-01
Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds.
No-Reference Image Blur Assessment Based on Discrete Orthogonal Moments.
Li, Leida; Lin, Weisi; Wang, Xuesong; Yang, Gaobo; Bahrami, Khosro; Kot, Alex C
2016-01-01
Blur is a key determinant in the perception of image quality. Generally, blur causes spread of edges, which leads to shape changes in images. Discrete orthogonal moments have been widely studied as effective shape descriptors. Intuitively, blur can be represented using discrete moments since noticeable blur affects the magnitudes of moments of an image. With this consideration, this paper presents a blind image blur evaluation algorithm based on discrete Tchebichef moments. The gradient of a blurred image is first computed to account for the shape, which is more effective for blur representation. Then the gradient image is divided into equal-size blocks and the Tchebichef moments are calculated to characterize image shape. The energy of a block is computed as the sum of squared non-DC moment values. Finally, the proposed image blur score is defined as the variance-normalized moment energy, which is computed with the guidance of a visual saliency model to adapt to the characteristic of human visual system. The performance of the proposed method is evaluated on four public image quality databases. The experimental results demonstrate that our method can produce blur scores highly consistent with subjective evaluations. It also outperforms the state-of-the-art image blur metrics and several general-purpose no-reference quality metrics. PMID:25647763
Absolute magnitudes of trans-neptunian objects
NASA Astrophysics Data System (ADS)
Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.
2015-10-01
Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.
A New Gimmick for Assigning Absolute Configuration.
ERIC Educational Resources Information Center
Ayorinde, F. O.
1983-01-01
A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)
Porsev, S. G.; Ginges, J. S. M.; Flambaum, V. V.
2011-04-15
We have considered a mechanism for inducing a time-reversal violating electric dipole moment (EDM) in atoms through the interaction of a nuclear EDM d{sub N} with the hyperfine interaction, the ''magnetic moment effect''. We have derived the operator for this interaction and presented analytical formulas for the matrix elements between atomic states. Induced EDMs in the diamagnetic atoms {sup 129}Xe, {sup 171}Yb, {sup 199}Hg, {sup 211}Rn, and {sup 225}Ra have been calculated numerically. From the experimental limits on the atomic EDMs of {sup 129}Xe and {sup 199}Hg we have placed the following constraints on the nuclear EDMs, |d{sub N}({sup 129}Xe)|<1.1x10{sup -21}|e|cm and |d{sub N}({sup 199}Hg)|<2.8x10{sup -24}|e|cm.
Nuclear Quadrupole Moments and Nuclear Shell Structure
DOE R&D Accomplishments Database
Townes, C. H.; Foley, H. M.; Low, W.
1950-06-23
Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.
Optical moments and the art of dispersion hardening
NASA Astrophysics Data System (ADS)
Sievers, A. J.; Noh, T. W.; Page, J. B.
1994-06-01
For many years composite structures have been the building blocks of materials with specialized mechanical properties, but only recently have related ideas been used successfully to develop new optical materials. A particularly simple example, hot pressed zinc sulfide dispersion hardened with diamond particles, has turned out to be extremely useful for identifying the important optical moments underlying the dynamical properties of all transparent composites and complex dielectrics. One result has been the discovery of a generalized Lyddane-Sachs-Teller relation for solids and liquids. When the characteristic frequencies of small disordered dielectric particles are described in terms of optical moments of the appropriate response functions, generalized Szigeti and Clausius-Mossotti expressions follow.
Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr
NASA Astrophysics Data System (ADS)
Knudsen, Mads Faurschou; Riisager, Peter; Donadini, Fabio; Snowball, Ian; Muscheler, Raimund; Korhonen, Kimmo; Pesonen, Lauri J.
2008-07-01
All absolute paleointensity data published in peer-reviewed journals were recently compiled in the GEOMAGIA50 database. Based on the information in GEOMAGIA50, we reconstruct variations in the geomagnetic dipole moment over the past 50 kyr, with a focus on the Holocene period. A running-window approach is used to determine the axial dipole moment that provides the optimal least-squares fit to the paleointensity data, whereas associated error estimates are constrained using a bootstrap procedure. We subsequently compare the reconstruction from this study with previous reconstructions of the geomagnetic dipole moment, including those based on cosmogenic radionuclides ( 10Be and 14C). This comparison generally lends support to the axial dipole moments obtained in this study. Our reconstruction shows that the evolution of the dipole moment was highly dynamic, and the recently observed rates of change (5% per century) do not appear unique. We observe no apparent link between the occurrence of archeomagnetic jerks and changes in the geomagnetic dipole moment, suggesting that archeomagnetic jerks most likely represent drastic changes in the orientation of the geomagnetic dipole axis or periods characterized by large secular variation of the non-dipole field. This study also shows that the Holocene geomagnetic dipole moment was high compared to that of the preceding ˜ 40 kyr, and that ˜ 4 · 10 22 Am 2 appears to represent a critical threshold below which geomagnetic excursions and reversals occur.
Defining moments in leadership character development.
Bleich, Michael R
2015-06-01
Critical moments in life define one's character and clarify true values. Reflective leadership is espoused as an important practice for transformational leaders. Professional development educators can help surface and explore defining moments, strengthen leadership behavior with defining moments as a catalyst for change, and create safe spaces for leaders to expand their leadership capacity. PMID:26057159
Nuclear moments in covariant density functional theory
NASA Astrophysics Data System (ADS)
Meng, J.; Zhao, P. W.; Zhang, S. Q.; Hu, J. N.; Li, J.
2014-05-01
Recent progresses on microscopic and self-consistent description of the nuclear moments in covariant density functional theory based on a point-coupling interaction are briefly reviewed. In particular, the electric quadrupole moments of Cd isotopes and the magnetic moments of Pb isotopes are discussed.
Spore and the sociocultural moment
NASA Astrophysics Data System (ADS)
Meyer, W. Max
2012-12-01
Analyses of the game Spore have centered on the important issues of accuracy of evolution content and engendering interest in science. This paper suggests that examination of the degree of scaffolding necessary to use the game in pedagogy is a missing part of the discussion, and then questions the longevity of the Spore discussion relative to the general dissatisfaction with the science presented in the game. The paper proposes that analysis of Spore and other technological tools in science education may be embedded in an historical moment which directs the discussion towards satisfying sociocultural and organizational needs and away from pedagogical ones.
Fermion dipole moment and holography
NASA Astrophysics Data System (ADS)
Kulaxizi, Manuela; Rahman, Rakibur
2015-12-01
In the background of a charged AdS black hole, we consider a Dirac particle endowed with an arbitrary magnetic dipole moment. For non-zero charge and dipole coupling of the bulk fermion, we find that the dual boundary theory can be plagued with superluminal modes. Requiring consistency of the dual CFT amounts to constraining the strength of the dipole coupling by an upper bound. We briefly discuss the implications of our results for the physics of holographic non-Fermi liquids.
Moments of catchment storm area
NASA Technical Reports Server (NTRS)
Eagleson, P. S.; Wang, Q.
1985-01-01
The portion of a catchment covered by a stationary rainstorm is modeled by the common area of two overlapping circles. Given that rain occurs within the catchment and conditioned by fixed storm and catchment sizes, the first two moments of the distribution of the common area are derived from purely geometrical considerations. The variance of the wetted fraction is shown to peak when the catchment size is equal to the size of the predominant storm. The conditioning on storm size is removed by assuming a probability distribution based upon the observed fractal behavior of cloud and rainstorm areas.
Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef
2009-09-01
Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed. PMID:19831037
Absolute dose calculations for Monte Carlo simulations of radiotherapy beams.
Popescu, I A; Shaw, C P; Zavgorodni, S F; Beckham, W A
2005-07-21
Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 x 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 x 10(13) +/- 1.0% electrons incident on the target and a total dose of 20.87 cGy +/- 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations. PMID:16177516
Absolute dose calculations for Monte Carlo simulations of radiotherapy beams
NASA Astrophysics Data System (ADS)
Popescu, I. A.; Shaw, C. P.; Zavgorodni, S. F.; Beckham, W. A.
2005-07-01
Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 × 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 × 1013 ± 1.0% electrons incident on the target and a total dose of 20.87 cGy ± 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.
Absolute and relative quantification of RNA modifications via biosynthetic isotopomers
Kellner, Stefanie; Ochel, Antonia; Thüring, Kathrin; Spenkuch, Felix; Neumann, Jennifer; Sharma, Sunny; Entian, Karl-Dieter; Schneider, Dirk; Helm, Mark
2014-01-01
In the resurging field of RNA modifications, quantification is a bottleneck blocking many exciting avenues. With currently over 150 known nucleoside alterations, detection and quantification methods must encompass multiple modifications for a comprehensive profile. LC–MS/MS approaches offer a perspective for comprehensive parallel quantification of all the various modifications found in total RNA of a given organism. By feeding 13C-glucose as sole carbon source, we have generated a stable isotope-labeled internal standard (SIL-IS) for bacterial RNA, which facilitates relative comparison of all modifications. While conventional SIL-IS approaches require the chemical synthesis of single modifications in weighable quantities, this SIL-IS consists of a nucleoside mixture covering all detectable RNA modifications of Escherichia coli, yet in small and initially unknown quantities. For absolute in addition to relative quantification, those quantities were determined by a combination of external calibration and sample spiking of the biosynthetic SIL-IS. For each nucleoside, we thus obtained a very robust relative response factor, which permits direct conversion of the MS signal to absolute amounts of substance. The application of the validated SIL-IS allowed highly precise quantification with standard deviations <2% during a 12-week period, and a linear dynamic range that was extended by two orders of magnitude. PMID:25129236
Testing block subdivision algorithms on block designs
NASA Astrophysics Data System (ADS)
Wiseman, Natalie; Patterson, Zachary
2016-01-01
Integrated land use-transportation models predict future transportation demand taking into account how households and firms arrange themselves partly as a function of the transportation system. Recent integrated models require parcels as inputs and produce household and employment predictions at the parcel scale. Block subdivision algorithms automatically generate parcel patterns within blocks. Evaluating block subdivision algorithms is done by way of generating parcels and comparing them to those in a parcel database. Three block subdivision algorithms are evaluated on how closely they reproduce parcels of different block types found in a parcel database from Montreal, Canada. While the authors who developed each of the algorithms have evaluated them, they have used their own metrics and block types to evaluate their own algorithms. This makes it difficult to compare their strengths and weaknesses. The contribution of this paper is in resolving this difficulty with the aim of finding a better algorithm suited to subdividing each block type. The proposed hypothesis is that given the different approaches that block subdivision algorithms take, it's likely that different algorithms are better adapted to subdividing different block types. To test this, a standardized block type classification is used that consists of mutually exclusive and comprehensive categories. A statistical method is used for finding a better algorithm and the probability it will perform well for a given block type. Results suggest the oriented bounding box algorithm performs better for warped non-uniform sites, as well as gridiron and fragmented uniform sites. It also produces more similar parcel areas and widths. The Generalized Parcel Divider 1 algorithm performs better for gridiron non-uniform sites. The Straight Skeleton algorithm performs better for loop and lollipop networks as well as fragmented non-uniform and warped uniform sites. It also produces more similar parcel shapes and patterns.
Forssen, C.; Caurier, E.; Navratil, P.
2009-02-15
Recently, charge radii and ground-state electromagnetic moments of Li and Be isotopes were measured precisely. We have performed large-scale ab initio no-core shell model calculations for these isotopes using high-precision nucleon-nucleon potentials. The isotopic trends of our computed charge radii and quadrupole and magnetic-dipole moments are in good agreement with experimental results with the exception of the {sup 11}Li charge radius. The magnetic moments are in particular well described, whereas the absolute magnitudes of the quadrupole moments are about 10% too small. The small magnitude of the {sup 6}Li quadrupole moment is reproduced, and with the CD-Bonn NN potential, also its correct sign.
Universal Cosmic Absolute and Modern Science
NASA Astrophysics Data System (ADS)
Kostro, Ludwik
The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.
Third Elementary Dipole Moment: Toroidal
NASA Astrophysics Data System (ADS)
Cordrey, Vincent; Eshete, Amanuel; Majewski, Walerian
2015-04-01
In this paper we study the generally unknown characteristics of toroids, magnets without magnetic poles. Toroids have never seemed interesting enough to be studied for their physical features in labs due to the fact that they have no magnetic fields on the outside, but rather a very strong magnetic field trapped inside. Toroidal solenoids or magnets (rings magnetized circumferentially) interact with the external magnetic field only through its curl, which can be created either by an electric current, or by a time-dependent electric flux. We confirmed a theoretical prediction, that a toroid would not interact with the curl-less magnetic field of a current-carrying wire running outside of the torus's hole. We used our toroids as magnetic curlmeters, measuring the torque on the toroid, when the current-carrying wire runs through the toroid. From this torque we found the toroidal dipole moment. We are experimenting on detecting the escape of the inner magnetic field of the toroid outside of it, when magnetic toroid rotates or when electric toroid is driven by AC voltage. We also will discuss toroidal (or anapole) moments of fundamental particles, nuclei and atoms, and toroids' applications in metamaterials.
Top quark electromagnetic dipole moments
NASA Astrophysics Data System (ADS)
Bouzas, Antonio O.; Larios, F.
2015-11-01
The magnetic and electric dipole moments of the top quark are constrained indirectly by the Br(B → Xsγ) and the ACP(B → Xsγ) measurements. They can also be tested by top quark production and decay processes. The recent measurement of production by CDF are used to set direct constraints. The B → Xsγ measurements by themselves define an allowed parameter region that sets up stringent constraints on both dipole moments. The measurement by CDF has a ∼ 37% error that is too large to set any competitive bounds, for which a much lower 5% error would be required. For the LHC it is found that with its higher energy the same measurement could indeed further constrain the allowed parameter region given by the B → Xsγ measurement [1]. In addition, the proposed LHeC experiment (electron- proton) could provide even more stringent constraints than the LHC via the photoproduction channel [2].
A uniform parametrization of moment tensors
NASA Astrophysics Data System (ADS)
Tape, Walter; Tape, Carl
2015-09-01
A moment tensor is a 3 × 3 symmetric matrix that expresses an earthquake source. We construct a parametrization of the 5-D space of all moment tensors of unit norm. The coordinates associated with the parametrization are closely related to moment tensor orientations and source types. The parametrization is uniform, in the sense that equal volumes in the coordinate domain of the parametrization correspond to equal volumes of moment tensors. Uniformly distributed points in the coordinate domain therefore give uniformly distributed moment tensors. A cartesian grid in the coordinate domain can be used to search efficiently over moment tensors. We find that uniformly distributed moment tensors have uniformly distributed orientations (eigenframes), but that their source types (eigenvalue triples) are distributed so as to favour double couples.
Absolute isotopic abundances of TI in meteorites
NASA Astrophysics Data System (ADS)
Niederer, F. R.; Papanastassiou, D. A.; Wasserburg, G. J.
1985-03-01
The absolute isotope abundance of Ti has been determined in Ca-Al-rich inclusions from the Allende and Leoville meteorites and in samples of whole meteorites. The absolute Ti isotope abundances differ by a significant mass dependent isotope fractionation transformation from the previously reported abundances, which were normalized for fractionation using 46Ti/48Ti. Therefore, the absolute compositions define distinct nucleosynthetic components from those previously identified or reflect the existence of significant mass dependent isotope fractionation in nature. The authors provide a general formalism for determining the possible isotope compositions of the exotic Ti from the measured composition, for different values of isotope fractionation in nature and for different mixing ratios of the exotic and normal components.
Molecular iodine absolute frequencies. Final report
Sansonetti, C.J.
1990-06-25
Fifty specified lines of {sup 127}I{sub 2} were studied by Doppler-free frequency modulation spectroscopy. For each line the classification of the molecular transition was determined, hyperfine components were identified, and one well-resolved component was selected for precise determination of its absolute frequency. In 3 cases, a nearby alternate line was selected for measurement because no well-resolved component was found for the specified line. Absolute frequency determinations were made with an estimated uncertainty of 1.1 MHz by locking a dye laser to the selected hyperfine component and measuring its wave number with a high-precision Fabry-Perot wavemeter. For each line results of the absolute measurement, the line classification, and a Doppler-free spectrum are given.
Stimulus probability effects in absolute identification.
Kent, Christopher; Lamberts, Koen
2016-05-01
This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record PMID:26478959
Absolute calibration in vivo measurement systems
Kruchten, D.A.; Hickman, D.P.
1991-02-01
Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.
Precise Measurement of the Absolute Fluorescence Yield
NASA Astrophysics Data System (ADS)
Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.
2011-09-01
We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.
Absolutely relative or relatively absolute: violations of value invariance in human decision making.
Teodorescu, Andrei R; Moran, Rani; Usher, Marius
2016-02-01
Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed. PMID:26022836
Good Moments in Gestalt Therapy: A Descriptive Analysis of Two Perls Sessions.
ERIC Educational Resources Information Center
Boulet, Donald; And Others
1993-01-01
Analyzed two Gestalt therapy sessions conducted by Fritz Perls using category system for identifying in-session client behaviors valued by Gestalt therapists. Four judges independently rated 210 client statements. Found common pattern of therapeutic movement: initial phase dominated by building block good moments and second phase characterized by…
... combination produces a unique effect, blocking pain-sensing neurons without impairing signals from other cells. In contrast, ... surgical procedures block activity in all types of neurons. This can cause numbness, paralysis, and other nervous ...
Absolute partial photoionization cross sections of ozone.
Berkowitz, J.; Chemistry
2008-04-01
Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.
Solving Absolute Value Equations Algebraically and Geometrically
ERIC Educational Resources Information Center
Shiyuan, Wei
2005-01-01
The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.
Teaching Absolute Value Inequalities to Mature Students
ERIC Educational Resources Information Center
Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea
2011-01-01
This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…
Increasing Capacity: Practice Effects in Absolute Identification
ERIC Educational Resources Information Center
Dodds, Pennie; Donkin, Christopher; Brown, Scott D.; Heathcote, Andrew
2011-01-01
In most of the long history of the study of absolute identification--since Miller's (1956) seminal article--a severe limit on performance has been observed, and this limit has resisted improvement even by extensive practice. In a startling result, Rouder, Morey, Cowan, and Pfaltz (2004) found substantially improved performance with practice in the…
On Relative and Absolute Conviction in Mathematics
ERIC Educational Resources Information Center
Weber, Keith; Mejia-Ramos, Juan Pablo
2015-01-01
Conviction is a central construct in mathematics education research on justification and proof. In this paper, we claim that it is important to distinguish between absolute conviction and relative conviction. We argue that researchers in mathematics education frequently have not done so and this has lead to researchers making unwarranted claims…
Absolute Points for Multiple Assignment Problems
ERIC Educational Resources Information Center
Adlakha, V.; Kowalski, K.
2006-01-01
An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…
Nonequilibrium equalities in absolutely irreversible processes
NASA Astrophysics Data System (ADS)
Murashita, Yuto; Funo, Ken; Ueda, Masahito
2015-03-01
Nonequilibrium equalities have attracted considerable attention in the context of statistical mechanics and information thermodynamics. Integral nonequilibrium equalities reveal an ensemble property of the entropy production σ as
Stimulus Probability Effects in Absolute Identification
ERIC Educational Resources Information Center
Kent, Christopher; Lamberts, Koen
2016-01-01
This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…
Precision absolute positional measurement of laser beams.
Fitzsimons, Ewan D; Bogenstahl, Johanna; Hough, James; Killow, Christian J; Perreur-Lloyd, Michael; Robertson, David I; Ward, Henry
2013-04-20
We describe an instrument which, coupled with a suitable coordinate measuring machine, facilitates the absolute measurement within the machine frame of the propagation direction of a millimeter-scale laser beam to an accuracy of around ±4 μm in position and ±20 μrad in angle. PMID:23669658
NASA Astrophysics Data System (ADS)
Balaev, D. A.; Dubrovskii, A. A.; Krasikov, A. A.; Stolyar, S. V.; Iskhakov, R. S.; Ladygina, V. P.; Khilazheva, E. D.
2013-10-01
The magnetic properties of antiferromagnetic nanoparticles of FeOOH · nH2O with sizes of 3-7 nm, which are products of vital functions of Klebsiella oxytoca bacteria, have been studied. Particles exhibit a superparamagnetic behavior. The characteristic blocking temperature is 23 K. Analysis of the magnetization curves shows that the mechanism of the formation of the uncompensated magnetic moment of particles is the random decompensation of magnetic moments of Fe3+ ions both on the surface and in the bulk of the antiferromagnetic particle. In this mechanism, the exchange coupling between the uncompensated magnetic moment of the particle and its antiferromagnetic "core" is implemented. It has been found that the temperature dependence of the uncompensated magnetic moment has the form 1 — const T 2.
The Block Scheduling Handbook.
ERIC Educational Resources Information Center
Queen, J. Allen
Block scheduling encourages increased comprehensive immersion into subject matter, improved teacher-student relationships, and decreased disciplinary problems. While block scheduling may offer many advantages, moving to a block schedule from conventional scheduling can be a major adjustment for both students and teachers. This guide is intended to…
Block Scheduling. Research Brief
ERIC Educational Resources Information Center
Muir, Mike
2003-01-01
What are the effects of block scheduling? Results of transitioning from traditional to block scheduling are mixed. Some studies indicate no change in achievement results, nor change in teachers' opinions about instructional strategies. Other studies show that block scheduling doesn't work well for Advanced Placement or Music courses, that "hard to…
Relativistic corrections to the nuclear Schiff moment
Dmitriev, V.F.; Flambaum, V.V.
2005-06-01
Parity- and time-invariance-violating (P,T-odd) atomic electric dipole moments (EDM) are induced by the interaction between atomic electrons and nuclear P,T-odd moments, which are themselves produced by P,T-odd nuclear forces. The nuclear EDM is screened by atomic electrons. The EDM of a nonrelativistic atom with closed electron subshells is induced by the nuclear Schiff moment. For heavy relativistic atoms EDM is induced by the nuclear local dipole moments, which differ by 10-50% from the Schiff moments calculated previously. We calculate the local dipole moments for {sup 199}Hg and {sup 205}Tl where the most accurate atomic [Romalis et al., Phys. Rev. Lett. 86, 2505 (2001)] and molecular [Cho et al., Phys. Rev. Lett. 63, 2559 (1989); Phys. Rev. A 44, 2783 (1991)] EDM measurements have been performed.
Fox-Wolfram moments in Higgs physics
NASA Astrophysics Data System (ADS)
Bernaciak, Catherine; Buschmann, Malte Seán Andreas; Butter, Anja; Plehn, Tilman
2013-04-01
Geometric correlations between jets as part of hard processes or in addition to hard processes are key ingredients to many LHC analyses. Fox-Wolfram moments systematically describe these correlations in terms of spherical harmonics. These moments, computed either from the tagging jets or from all jets in each event, can significantly improve Higgs searches in weak boson fusion. Applications of Fox-Wolfram moments in LHC analyses obviously surpass jets as analysis objects, as well as Higgs searches in terms of analyses.
Absolute paleointensity from Hawaiian lavas younger than 35 ka
Valet, J.-P.; Tric, E.; Herrero-Bervera, E.; Meynadier, L.; Lockwood, J.P.
1998-01-01
Paleointensity studies have been conducted in air and in argon atmosphere on nine lava flows with radiocarbon ages distributed between 3.3 and 28.2 ka from the Mauna Loa volcano in the big island of Hawaii. Determinations of paleointensity obtained at eight sites depict the same overall pattern as the previous results for the same period in Hawaii, although the overall average field intensity appears to be lower. Since the present results were determined at higher temperatures than in the previous studies, this discrepancy raises questions regarding the selection of low versus high-temperature segments that are usually made for absolute paleointensity. The virtual dipole moments are similar to those displayed by the worldwide data set obtained from dated lava flows. When averaged within finite time intervals, the worldwide values match nicely the variations of the Sint-200 synthetic record of relative paleointensity and confirm the overall decrease of the dipole field intensity during most of this period. The convergence between the existing records at Hawaii and the rest of the world does not favour the presence of persistent strong non-dipole components beneath Hawaii for this period.
A uniform parameterization of moment tensors
NASA Astrophysics Data System (ADS)
Tape, C.; Tape, W.
2015-12-01
A moment tensor is a 3 x 3 symmetric matrix that expresses an earthquake source. We construct a parameterization of the five-dimensional space of all moment tensors of unit norm. The coordinates associated with the parameterization are closely related to moment tensor orientations and source types. The parameterization is uniform, in the sense that equal volumes in the coordinate domain of the parameterization correspond to equal volumes of moment tensors. Uniformly distributed points in the coordinate domain therefore give uniformly distributed moment tensors. A cartesian grid in the coordinate domain can be used to search efficiently over moment tensors. We find that uniformly distributed moment tensors have uniformly distributed orientations (eigenframes), but that their source types (eigenvalue triples) are distributed so as to favor double couples. An appropriate choice of a priori moment tensor probability is a prerequisite for parameter estimation. As a seemingly sensible choice, we consider the homogeneous probability, in which equal volumes of moment tensors are equally likely. We believe that it will lead to improved characterization of source processes.
L-moments under nuisance regression
NASA Astrophysics Data System (ADS)
Picek, Jan; Schindler, Martin
2016-06-01
The L-moments are analogues of the conventional moments and have similar interpretations. They are calculated using linear combinations of the expectation of ordered data. In practice, L-moments must usually be estimated from a random sample drawn from an unknown distribution as a linear combination of ordered statistics. Jureckova and Picek (2014) showed that averaged regression quantile is asymptotically equivalent to the location quantile. We therefore propose a generalization of L-moments in the model with nuisance regression using the averaged regression quantiles.
Gross shell structure of moments of inertia
Deleplanque, M.A.; Frauendorf, S.; Pashkevich, V.V.; Chu, S.Y.; Unzhakova, A.
2002-07-01
Average yrast moments of inertia at high spins, where the pairing correlations are expected to be largely absent, were found to deviate from the rigid-body values. This indicates that shell effects contribute to the moment of inertia. We discuss the gross dependence of moments of inertia and shell energies on the neutron number in terms of the semiclassical periodic orbit theory. We show that the ground-state shell energies, nuclear deformations and deviations from rigid-body moments of inertia are all due to the same periodic orbits.
NASA Astrophysics Data System (ADS)
Myers, S.; Johannesson, G.
2012-12-01
Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement
Blocking Delaunay triangulations
Aichholzer, Oswin; Fabila-Monroy, Ruy; Hackl, Thomas; van Kreveld, Marc; Pilz, Alexander; Ramos, Pedro; Vogtenhuber, Birgit
2013-01-01
Given a set B of n black points in general position, we say that a set of white points W blocks B if in the Delaunay triangulation of B∪W there is no edge connecting two black points. We give the following bounds for the size of the smallest set W blocking B: (i) 3n/2 white points are always sufficient to block a set of n black points, (ii) if B is in convex position, 5n/4 white points are always sufficient to block it, and (iii) at least n−1 white points are always necessary to block a set of n black points. PMID:23483043
Blocking Delaunay triangulations.
Aichholzer, Oswin; Fabila-Monroy, Ruy; Hackl, Thomas; van Kreveld, Marc; Pilz, Alexander; Ramos, Pedro; Vogtenhuber, Birgit
2013-02-01
Given a set B of n black points in general position, we say that a set of white points W blocks B if in the Delaunay triangulation of [Formula: see text] there is no edge connecting two black points. We give the following bounds for the size of the smallest set W blocking B: (i) [Formula: see text] white points are always sufficient to block a set of n black points, (ii) if B is in convex position, [Formula: see text] white points are always sufficient to block it, and (iii) at least [Formula: see text] white points are always necessary to block a set of n black points. PMID:23483043
Absolute intensity measurement of the 4-0 vibration-rotation band of carbon monoxide
NASA Technical Reports Server (NTRS)
Chackerian, C., Jr.; Valero, F. P. J.
1976-01-01
The absolute intensity of the 4-0 vibration band of CO is measured in spectra obtained using a 25-m base-path multiple-traversal absorption cell and a 5-m scanning spectrometer. The intensities of individual vibration-rotation lines in this band are determined from measurements of their equivalent widths, and absolute values for the rotationless transition moment and the vibration-rotation interaction factor are derived from the measured line strengths. The experimentally obtained vibration-rotation function is compared with a theoretical curve; agreement between theory and experiment is found to be good for the P-branch but poor for the R-branch. It is noted that numerical solutions to the radial Schroedinger equation lead to vibration-rotation function values that are in good agreement with the experiment.
CODA-DERIVED SOURCE SPECTRA, MOMENT MAGNITUDES, AND ENERGY-MOMENT SCALING IN THE WESTERN ALPS
Morasca, P; Mayeda, K; Malagnini, L; Walter, W
2004-02-03
A stable estimate of the earthquake source spectra in the western Alps is obtained using an empirical method based on coda envelope amplitude measurements described by Mayeda et al. (2003) for events ranging between M{sub W} {approx} 1.0 to {approx}5.0. We calibrated path corrections for consecutive narrow frequency bands ranging between 0.2 and 25.0-Hz using a simple 1-D model for 5 three-component stations of the Regional Seismic network of Northwestern Italy (RSNI). The 1-D assumption performs well, even though the region is characterized by a complex structural setting involving strong lateral variations in the Moho depth. For frequencies less than 1.0-Hz, we tied our dimensionless, distance-corrected coda amplitudes to an absolute scale in units of dyne-cm by using independent moment magnitudes from long-period waveform modeling for 3 moderate magnitude events in the region. For the higher frequencies, we used small events as empirical Green's functions, with corner frequencies above 25.0-Hz. For each station, the procedure yields frequency-dependent corrections that account for site effects, including those related to f{sub max}, as well as those related to S-to-coda transfer function effects. After the calibration was completed, the corrections were applied to the entire data-set composed of 957 events. Our findings using the coda-derived source spectra are summarized as follows: (1) We derived stable estimates of seismic moment, M{sub 0}, (and hence M{sub W}) as well as radiated S-wave energy, (E{sub S}), from waveforms recorded by as few as one station, for events that were too small to be waveform modeled (i.e., events less than M{sub W} {approx}3.5); (2) The source spectra were used to derive an equivalent local magnitude, M{sub L(coda)}, that is in excellent agreement with the network averaged values using direct S-waves; (3) Scaled energy, {tilde e} = E{sub R}/M{sub 0}, where E{sub R}, the radiated seismic energy, is comparable to results from other
NASA Technical Reports Server (NTRS)
Demmel, James W.; Higham, Nicholas J.; Schreiber, Robert S.
1992-01-01
Many of the currently popular 'block algorithms' are scalar algorithms in which the operations have been grouped and reordered into matrix operations. One genuine block algorithm in practical use is block LU factorization, and this has recently been shown by Demmel and Higham to be unstable in general. It is shown here that block LU factorization is stable if A is block diagonally dominant by columns. Moreover, for a general matrix the level of instability in block LU factorization can be founded in terms of the condition number kappa(A) and the growth factor for Gaussian elimination without pivoting. A consequence is that block LU factorization is stable for a matrix A that is symmetric positive definite or point diagonally dominant by rows or columns as long as A is well-conditioned.
Stereo Correspondence Using Moment Invariants
NASA Astrophysics Data System (ADS)
Premaratne, Prashan; Safaei, Farzad
Autonomous navigation is seen as a vital tool in harnessing the enormous potential of Unmanned Aerial Vehicles (UAV) and small robotic vehicles for both military and civilian use. Even though, laser based scanning solutions for Simultaneous Location And Mapping (SLAM) is considered as the most reliable for depth estimation, they are not feasible for use in UAV and land-based small vehicles due to their physical size and weight. Stereovision is considered as the best approach for any autonomous navigation solution as stereo rigs are considered to be lightweight and inexpensive. However, stereoscopy which estimates the depth information through pairs of stereo images can still be computationally expensive and unreliable. This is mainly due to some of the algorithms used in successful stereovision solutions require high computational requirements that cannot be met by small robotic vehicles. In our research, we implement a feature-based stereovision solution using moment invariants as a metric to find corresponding regions in image pairs that will reduce the computational complexity and improve the accuracy of the disparity measures that will be significant for the use in UAVs and in small robotic vehicles.
A Unified Methodology for Computing Accurate Quaternion Color Moments and Moment Invariants.
Karakasis, Evangelos G; Papakostas, George A; Koulouriotis, Dimitrios E; Tourassis, Vassilios D
2014-02-01
In this paper, a general framework for computing accurate quaternion color moments and their corresponding invariants is proposed. The proposed unified scheme arose by studying the characteristics of different orthogonal polynomials. These polynomials are used as kernels in order to form moments, the invariants of which can easily be derived. The resulted scheme permits the usage of any polynomial-like kernel in a unified and consistent way. The resulted moments and moment invariants demonstrate robustness to noisy conditions and high discriminative power. Additionally, in the case of continuous moments, accurate computations take place to avoid approximation errors. Based on this general methodology, the quaternion Tchebichef, Krawtchouk, Dual Hahn, Legendre, orthogonal Fourier-Mellin, pseudo Zernike and Zernike color moments, and their corresponding invariants are introduced. A selected paradigm presents the reconstruction capability of each moment family, whereas proper classification scenarios evaluate the performance of color moment invariants. PMID:24216719
Absolute and relative dosimetry for ELIMED
Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.
2013-07-26
The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.
Probing absolute spin polarization at the nanoscale.
Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus
2014-12-10
Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum. PMID:25423049
Absolute-magnitude distributions of supernovae
Richardson, Dean; Wright, John; Jenkins III, Robert L.; Maddox, Larry
2014-05-01
The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.
Absolute radiometry and the solar constant
NASA Technical Reports Server (NTRS)
Willson, R. C.
1974-01-01
A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).
Asteroid absolute magnitudes and slope parameters
NASA Technical Reports Server (NTRS)
Tedesco, Edward F.
1991-01-01
A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.
Absolute calibration of TFTR helium proportional counters
Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L.; Barnes, C.W. |; Loughlin, M. |
1995-06-01
The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments.
Absolute enantioselective separation: optical activity ex machina.
Bielski, Roman; Tencer, Michal
2005-11-01
The paper describes methodology of using three independent macroscopic factors affecting molecular orientation to accomplish separation of a racemic mixture without the presence of any other chiral compounds, i. e., absolute enantioselective separation (AES) which is an extension of a concept of applying these factors to absolute asymmetric synthesis. The three factors may be applied simultaneously or, if their effects can be retained, consecutively. The resulting three mutually orthogonal or near orthogonal directors constitute a true chiral influence and their scalar triple product is the measure of the chirality of the system. AES can be executed in a chromatography-like microfluidic process in the presence of an electric field. It may be carried out on a chemically modified flat surface, a monolithic polymer column made of a mesoporous material, each having imparted directional properties. Separation parameters were estimated for these media and possible implications for the natural homochirality are discussed. PMID:16342798
An absolute measure for a key currency
NASA Astrophysics Data System (ADS)
Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito
It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.
From Hubble's NGSL to Absolute Fluxes
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Lindler, Don
2012-01-01
Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.
Blocked randomization with randomly selected block sizes.
Efird, Jimmy
2011-01-01
When planning a randomized clinical trial, careful consideration must be given to how participants are selected for various arms of a study. Selection and accidental bias may occur when participants are not assigned to study groups with equal probability. A simple random allocation scheme is a process by which each participant has equal likelihood of being assigned to treatment versus referent groups. However, by chance an unequal number of individuals may be assigned to each arm of the study and thus decrease the power to detect statistically significant differences between groups. Block randomization is a commonly used technique in clinical trial design to reduce bias and achieve balance in the allocation of participants to treatment arms, especially when the sample size is small. This method increases the probability that each arm will contain an equal number of individuals by sequencing participant assignments by block. Yet still, the allocation process may be predictable, for example, when the investigator is not blind and the block size is fixed. This paper provides an overview of blocked randomization and illustrates how to avoid selection bias by using random block sizes. PMID:21318011
Metallic Magnetic Calorimeters for Absolute Activity Measurement
NASA Astrophysics Data System (ADS)
Loidl, M.; Leblanc, E.; Rodrigues, M.; Bouchard, J.; Censier, B.; Branger, T.; Lacour, D.
2008-05-01
We present a prototype of metallic magnetic calorimeters that we are developing for absolute activity measurements of low energy emitting radionuclides. We give a detailed description of the realization of the prototype, containing an 55Fe source inside the detector absorber. We present the analysis of first data taken with this detector and compare the result of activity measurement with liquid scintillation counting. We also propose some ways for reducing the uncertainty on the activity determination with this new technique.
Absolute photoionization cross sections of atomic oxygen
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Pareek, P. N.
1985-01-01
The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.
Absolute photoionization cross sections of atomic oxygen
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Pareek, P. N.
1982-01-01
The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.
Silicon Absolute X-Ray Detectors
Seely, John F.; Korde, Raj; Sprunck, Jacob; Medjoubi, Kadda; Hustache, Stephanie
2010-06-23
The responsivity of silicon photodiodes having no loss in the entrance window, measured using synchrotron radiation in the 1.75 to 60 keV range, was compared to the responsivity calculated using the silicon thickness measured using near-infrared light. The measured and calculated responsivities agree with an average difference of 1.3%. This enables their use as absolute x-ray detectors.
Blood pressure targets and absolute cardiovascular risk.
Odutayo, Ayodele; Rahimi, Kazem; Hsiao, Allan J; Emdin, Connor A
2015-08-01
In the Eighth Joint National Committee guideline on hypertension, the threshold for the initiation of blood pressure-lowering treatment for elderly adults (≥60 years) without chronic kidney disease or diabetes mellitus was raised from 140/90 mm Hg to 150/90 mm Hg. However, the committee was not unanimous in this decision, particularly because a large proportion of adults ≥60 years may be at high cardiovascular risk. On the basis of Eighth Joint National Committee guideline, we sought to determine the absolute 10-year risk of cardiovascular disease among these adults through analyzing the National Health and Nutrition Examination Survey (2005-2012). The primary outcome measure was the proportion of adults who were at ≥20% predicted absolute cardiovascular risk and above goals for the Seventh Joint National Committee guideline but reclassified as at target under the Eighth Joint National Committee guideline (reclassified). The Framingham General Cardiovascular Disease Risk Score was used. From 2005 to 2012, the surveys included 12 963 adults aged 30 to 74 years with blood pressure measurements, of which 914 were reclassified based on the guideline. Among individuals reclassified as not in need of additional treatment, the proportion of adults 60 to 74 years without chronic kidney disease or diabetes mellitus at ≥20% absolute risk was 44.8%. This corresponds to 0.8 million adults. The proportion at high cardiovascular risk remained sizable among adults who were not receiving blood pressure-lowering treatment. Taken together, a sizable proportion of reclassified adults 60 to 74 years without chronic kidney disease or diabetes mellitus was at ≥20% absolute cardiovascular risk. PMID:26056340
Relative errors can cue absolute visuomotor mappings.
van Dam, Loes C J; Ernst, Marc O
2015-12-01
When repeatedly switching between two visuomotor mappings, e.g. in a reaching or pointing task, adaptation tends to speed up over time. That is, when the error in the feedback corresponds to a mapping switch, fast adaptation occurs. Yet, what is learned, the relative error or the absolute mappings? When switching between mappings, errors with a size corresponding to the relative difference between the mappings will occur more often than other large errors. Thus, we could learn to correct more for errors with this familiar size (Error Learning). On the other hand, it has been shown that the human visuomotor system can store several absolute visuomotor mappings (Mapping Learning) and can use associated contextual cues to retrieve them. Thus, when contextual information is present, no error feedback is needed to switch between mappings. Using a rapid pointing task, we investigated how these two types of learning may each contribute when repeatedly switching between mappings in the absence of task-irrelevant contextual cues. After training, we examined how participants changed their behaviour when a single error probe indicated either the often-experienced error (Error Learning) or one of the previously experienced absolute mappings (Mapping Learning). Results were consistent with Mapping Learning despite the relative nature of the error information in the feedback. This shows that errors in the feedback can have a double role in visuomotor behaviour: they drive the general adaptation process by making corrections possible on subsequent movements, as well as serve as contextual cues that can signal a learned absolute mapping. PMID:26280315
Absolute distance measurements by variable wavelength interferometry
NASA Astrophysics Data System (ADS)
Bien, F.; Camac, M.; Caulfield, H. J.; Ezekiel, S.
1981-02-01
This paper describes a laser interferometer which provides absolute distance measurements using tunable lasers. An active feedback loop system, in which the laser frequency is locked to the optical path length difference of the interferometer, is used to tune the laser wavelengths. If the two wavelengths are very close, electronic frequency counters can be used to measure the beat frequency between the two laser frequencies and thus to determine the optical path difference between the two legs of the interferometer.
Predicting Robust Learning with the Visual Form of the Moment-by-Moment Learning Curve
ERIC Educational Resources Information Center
Baker, Ryan S.; Hershkovitz, Arnon; Rossi, Lisa M.; Goldstein, Adam B.; Gowda, Sujith M.
2013-01-01
We present a new method for analyzing a student's learning over time for a specific skill: analysis of the graph of the student's moment-by-moment learning over time. Moment-by-moment learning is calculated using a data-mined model that assesses the probability that a student learned a skill or concept at a specific time during learning…
Absolute dosimetry for extreme-ultraviolet lithography
NASA Astrophysics Data System (ADS)
Berger, Kurt W.; Campiotti, Richard H.
2000-06-01
The accurate measurement of an exposure dose reaching the wafer on an extreme ultraviolet (EUV) lithographic system has been a technical challenge directly applicable to the evaluation of candidate EUV resist materials and calculating lithography system throughputs. We have developed a dose monitoring sensor system that can directly measure EUV intensities at the wafer plane of a prototype EUV lithographic system. This sensor system, located on the wafer stage adjacent to the electrostatic chuck used to grip wafers, operates by translating the sensor into the aerial image, typically illuminating an 'open' (unpatterned) area on the reticle. The absolute signal strength can be related to energy density at the wafer, and thus used to determine resist sensitivity, and the signal as a function of position can be used to determine illumination uniformity at the wafer plane. Spectral filtering to enhance the detection of 13.4 nm radiation was incorporated into the sensor. Other critical design parameters include the packaging and amplification technologies required to place this device into the space and vacuum constraints of a EUV lithography environment. We describe two approaches used to determine the absolute calibration of this sensor. The first conventional approach requires separate characterization of each element of the sensor. A second novel approach uses x-ray emission from a mildly radioactive iron source to calibrate the absolute response of the entire sensor system (detector and electronics) in a single measurement.
Auditory Model: Effects on Learning under Blocked and Random Practice Schedules
ERIC Educational Resources Information Center
Han, Dong-Wook; Shea, Charles H.
2008-01-01
An experiment was conducted to determine the impact of an auditory model on blocked, random, and mixed practice schedules of three five-segment timing sequences (relative time constant). We were interested in whether or not the auditory model differentially affected the learning of relative and absolute timing under blocked and random practice.…
How to Introduce the Magnetic Dipole Moment
ERIC Educational Resources Information Center
Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.
2012-01-01
We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…
Teachable Moment: Google Earth Takes Us There
ERIC Educational Resources Information Center
Williams, Ann; Davinroy, Thomas C.
2015-01-01
In the current educational climate, where clearly articulated learning objectives are required, it is clear that the spontaneous teachable moment still has its place. Authors Ann Williams and Thomas Davinroy think that instructors from almost any discipline can employ Google Earth as a tool to take advantage of teachable moments through the…
Study of Nuclear Moments on Exotic Nuclei
Ishihara, Masayasu
2010-04-30
Nuclear moments have been measured for a few tens of light unstable nuclei located very far from the line of stability using beta-NMR methods and spin-polarized RI beams. The obtained values of those moments provided indispensable information to reveal/disentangle unique properties of exotic nuclei.
Moments from Cumulants and Vice Versa
ERIC Educational Resources Information Center
Withers, Christopher S.; Nadarajah, Saralees
2009-01-01
Moments and cumulants are expressed in terms of each other using Bell polynomials. Inbuilt routines for the latter make these expressions amenable to use by algebraic manipulation programs. One of the four formulas given is an explicit version of Kendall's use of Faa di Bruno's chain rule to express cumulants in terms of moments.
Balancing Beams--For a Few Moments
ERIC Educational Resources Information Center
Kibble, Bob
2008-01-01
A 2 m long wooden beam provides an ideal demonstration tool for exploring moments. A class set is cheap and can be used at introductory and advanced levels. This article explores how such beams can be used to support learning about moments, equilibrium, vectors, and simultaneous equations. (Contains 7 figures.)
Joint moments of proper delay times
Martínez-Argüello, Angel M.; Martínez-Mares, Moisés; García, Julio C.
2014-08-15
We calculate negative moments of the N-dimensional Laguerre distribution for the orthogonal, unitary, and symplectic symmetries. These moments correspond to those of the proper delay times, which are needed to determine the statistical fluctuations of several transport properties through classically chaotic cavities, like quantum dots and microwave cavities with ideal coupling.
Blurred image recognition by legendre moment invariants
Zhang, Hui; Shu, Huazhong; Han, Guo-Niu; Coatrieux, Gouenou; Luo, Limin; Coatrieux, Jean-Louis
2010-01-01
Processing blurred images is a key problem in many image applications. Existing methods to obtain blur invariants which are invariant with respect to centrally symmetric blur are based on geometric moments or complex moments. In this paper, we propose a new method to construct a set of blur invariants using the orthogonal Legendre moments. Some important properties of Legendre moments for the blurred image are presented and proved. The performance of the proposed descriptors is evaluated with various point-spread functions and different image noises. The comparison of the present approach with previous methods in terms of pattern recognition accuracy is also provided. The experimental results show that the proposed descriptors are more robust to noise and have better discriminative power than the methods based on geometric or complex moments. PMID:19933003
Protein based Block Copolymers
Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.
2011-01-01
Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251
NASA Astrophysics Data System (ADS)
Herrero-Bervera, Emilio; Krasa, David; Van Kranendonk, Martin J.
2016-09-01
We have conducted a whole-rock type magnetic and absolute paleointensity determination of the red dacite of the Duffer Formation from the Pilbara Craton, Australia. The age of the dated rock unit is 3467 ± 5 Ma (95% confidence). Vector analyses results of the step-wise alternating field demagnetization (NRM up to 100 mT) and thermal demagnetization (from NRM up to 650 °C) yield three components of magnetization. Curie point determinations indicate three characteristic temperatures, one at 150-200 °C, a second one at ∼450 °C and a third one at ∼580 °C. Magnetic grain-size experiments were performed on small specimens with a variable field translation balance (VFTB). The coercivity of remanence (Hcr) suggests that the NRM is carried by low-coercivity grains that are associated with a magnetite fraction as is shown by the high-temperature component with blocking temperatures above 450 °C and up to at least 580 °C. The ratios of the hysteresis parameters plotted as a modified Day diagram show that most grain sizes are scattered within the Single Domain (SD) and the Superparamagnetic and Single Domain SP-SD domain ranges. In addition to the rock magnetic experiments we have performed absolute paleointensity experiments on the samples using the modified Thellier-Coe double heating method to determine the paleointensities. Partial-TRM (p-TRM) checks were performed systematically to document magnetomineralogical changes during heating. The temperature was incremented by steps of 50 °C between room temperature and 590 °C. The paleointensity determinations were obtained from the slope of Arai diagrams. Our paleointensity results indicate that the paleofield obtained was ∼6.4 ± 0.68 (N = 11) micro-Teslas with a Virtual Dipole Moment (VDM) of 1.51 ± 0.81 × 1022 Am2, from a medium-to high-temperature component ranging from 300 to 590 °C that has been interpreted to be the oldest magnetization yet recorded in paleomagnetic studies of the Duffer Formation. The
Table of nuclear electric quadrupole moments
NASA Astrophysics Data System (ADS)
Stone, N. J.
2016-09-01
This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended moment value is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary EFG/moment reference is required and their use is specified. The literature search covers the period to mid-2015.
Clock time is absolute and universal
NASA Astrophysics Data System (ADS)
Shen, Xinhang
2015-09-01
A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.
Achieving Climate Change Absolute Accuracy in Orbit
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.
2013-01-01
The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.
The National Geodetic Survey absolute gravity program
NASA Astrophysics Data System (ADS)
Peter, George; Moose, Robert E.; Wessells, Claude W.
1989-03-01
The National Geodetic Survey absolute gravity program will utilize the high precision afforded by the JILAG-4 instrument to support geodetic and geophysical research, which involves studies of vertical motions, identification and modeling of other temporal variations, and establishment of reference values. The scientific rationale of these objectives is given, the procedures used to collect gravity and environmental data in the field are defined, and the steps necessary to correct and remove unwanted environmental effects are stated. In addition, site selection criteria, methods of concomitant environmental data collection and relative gravity observations, and schedule and logistics are discussed.
An absolute radius scale for Saturn's rings
NASA Technical Reports Server (NTRS)
Nicholson, Philip D.; Cooke, Maren L.; Pelton, Emily
1990-01-01
Radio and stellar occultation observations of Saturn's rings made by the Voyager spacecraft are discussed. The data reveal systematic discrepancies of almost 10 km in some parts of the rings, limiting some of the investigations. A revised solution for Saturn's rotation pole has been proposed which removes the discrepancies between the stellar and radio occultation profiles. Corrections to previously published radii vary from -2 to -10 km for the radio occultation, and +5 to -6 km for the stellar occultation. An examination of spiral density waves in the outer A Ring supports that the revised absolute radii are in error by no more than 2 km.
Characterization of the DARA solar absolute radiometer
NASA Astrophysics Data System (ADS)
Finsterle, W.; Suter, M.; Fehlmann, A.; Kopp, G.
2011-12-01
The Davos Absolute Radiometer (DARA) prototype is an Electrical Substitution Radiometer (ESR) which has been developed as a successor of the PMO6 type on future space missions and ground based TSI measurements. The DARA implements an improved thermal design of the cavity detector and heat sink assembly to minimize air-vacuum differences and to maximize thermal symmetry of measuring and compensating cavity. The DARA also employs an inverted viewing geometry to reduce internal stray light. We will report on the characterization and calibration experiments which were carried out at PMOD/WRC and LASP (TRF).
Absolute calibration of the Auger fluorescence detectors
Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; Tamashiro, A.; Warner, D.
2005-07-01
Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.
Absolute angular positioning in ultrahigh vacuum
Schief, H.; Marsico, V.; Kern, K.
1996-05-01
Commercially available angular resolvers, which are routinely used in machine tools and robotics, are modified and adapted to be used under ultrahigh-vacuum (UHV) conditions. They provide straightforward and reliable measurements of angular positions for any kind of UHV sample manipulators. The corresponding absolute reproducibility is on the order of 0.005{degree}, whereas the relative resolution is better than 0.001{degree}, as demonstrated by high-resolution helium-reflectivity measurements. The mechanical setup and possible applications are discussed. {copyright} {ital 1996 American Institute of Physics.}
Absolute method of measuring magnetic susceptibility
Thorpe, A.; Senftle, F.E.
1959-01-01
An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.
Absolute Priority for a Vehicle in VANET
NASA Astrophysics Data System (ADS)
Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad
In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.
Hexasubstituted Benzenes with Ultrastrong Dipole Moments.
Wudarczyk, Jakob; Papamokos, George; Margaritis, Vasilis; Schollmeyer, Dieter; Hinkel, Felix; Baumgarten, Martin; Floudas, George; Müllen, Klaus
2016-02-24
Hexasubstituted benzenes have been synthesized with the highest known dipole moments, as determined by dielectric spectroscopy and DFT methods. Based on the preparation of 4,5-diamino-3,6-dibromophthalonitrile, combined with a novel method to synthesize dihydrobenzimidazoles, these benzene derivatives have dipole moments in excess of 10 debye. Such dipole moments are desirable in ferroelectrics, nonlinear optics, and in organic photovoltaics. Structure determination was achieved through single-crystal X-ray crystallography, and the optical properties were determined by UV/Vis absorption and fluorescence spectroscopy. PMID:26836590
Extended moment arm anti-spin device
NASA Technical Reports Server (NTRS)
Whipple, R. D. (Inventor)
1985-01-01
A device which corrects aerodynamic spin is provided in which a collapsible boom extends an aircraft moment arm and an anti-spin parachute force is exerted upon the end of the moment arm to correct intentional or inadvertent aerodynamic spin. This configuration effects spin recovery by means of a parachute whose required diameter decreases as an inverse function of the increasing length of the moment arm. The collapsible boom enables the parachute to avoid the aircraft wake without mechanical assistance, retracts to permit steep takeoff, and permits a parachute to correct spin while minimizing associated aerodynamic, structural and in-flight complications.
A cohomological framework for homotopy moment maps
NASA Astrophysics Data System (ADS)
Frégier, Yaël; Laurent-Gengoux, Camille; Zambon, Marco
2015-11-01
Given a Lie group acting on a manifold M preserving a closed n + 1-form ω, the notion of homotopy moment map for this action was introduced in Fregier (0000), in terms of L∞-algebra morphisms. In this note we describe homotopy moment maps as coboundaries of a certain complex. This description simplifies greatly computations, and we use it to study various properties of homotopy moment maps: their relation to equivariant cohomology, their obstruction theory, how they induce new ones on mapping spaces, and their equivalences. The results we obtain extend some of the results of Fregier (0000).
Binomial moment equations for stochastic reaction systems.
Barzel, Baruch; Biham, Ofer
2011-04-15
A highly efficient formulation of moment equations for stochastic reaction networks is introduced. It is based on a set of binomial moments that capture the combinatorics of the reaction processes. The resulting set of equations can be easily truncated to include moments up to any desired order. The number of equations is dramatically reduced compared to the master equation. This formulation enables the simulation of complex reaction networks, involving a large number of reactive species much beyond the feasibility limit of any existing method. It provides an equation-based paradigm to the analysis of stochastic networks, complementing the commonly used Monte Carlo simulations. PMID:21568538
ERIC Educational Resources Information Center
Foster, Michael
1989-01-01
Explains a method of block printing using styrofoam shapes to make high relief. Describes the creation of the block design as well as the actual printing process. Uses a range of paper types for printing so children can see the results of using different media. (LS)
ERIC Educational Resources Information Center
Haley, Marjorie
A discussion of block scheduling for second language instruction looks at the advantages and disadvantages and offers some suggestions for classroom management and course organization. It is argued that block scheduling may offer a potential solution to large classes, insufficient time for labs, too little individualized instruction; few…
ERIC Educational Resources Information Center
Queen, J. Allen
2000-01-01
Successful block scheduling depends on provision of initial and ongoing instructional training. Teaching strategies should vary and include cooperative learning, the case method, the socratic seminar, synectics, concept attainment, the inquiry method, and simulations. Recommendations for maximizing block scheduling are outlined. (Contains 52…
Thermally actuated wedge block
Queen, Jr., Charles C.
1980-01-01
This invention relates to an automatically-operating wedge block for maintaining intimate structural contact over wide temperature ranges, including cryogenic use. The wedging action depends on the relative thermal expansion of two materials having very different coefficients of thermal expansion. The wedge block expands in thickness when cooled to cryogenic temperatures and contracts in thickness when returned to room temperature.
Determination of the absolute contours of optical flats
NASA Technical Reports Server (NTRS)
Primak, W.
1969-01-01
Emersons procedure is used to determine true absolute contours of optical flats. Absolute contours of standard flats are determined and a comparison is then made between standard and unknown flats. Contour differences are determined by deviation of Fizeau fringe.
Standardization of the cumulative absolute velocity
O'Hara, T.F.; Jacobson, J.P. )
1991-12-01
EPRI NP-5930, A Criterion for Determining Exceedance of the Operating Basis Earthquake,'' was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.
Absolute rates of hole transfer in DNA.
Senthilkumar, Kittusamy; Grozema, Ferdinand C; Guerra, Célia Fonseca; Bickelhaupt, F Matthias; Lewis, Frederick D; Berlin, Yuri A; Ratner, Mark A; Siebbeles, Laurens D A
2005-10-26
Absolute rates of hole transfer between guanine nucleobases separated by one or two A:T base pairs in stilbenedicarboxamide-linked DNA hairpins were obtained by improved kinetic analysis of experimental data. The charge-transfer rates in four different DNA sequences were calculated using a density-functional-based tight-binding model and a semiclassical superexchange model. Site energies and charge-transfer integrals were calculated directly as the diagonal and off-diagonal matrix elements of the Kohn-Sham Hamiltonian, respectively, for all possible combinations of nucleobases. Taking into account the Coulomb interaction between the negative charge on the stilbenedicarboxamide linker and the hole on the DNA strand as well as effects of base pair twisting, the relative order of the experimental rates for hole transfer in different hairpins could be reproduced by tight-binding calculations. To reproduce quantitatively the absolute values of the measured rate constants, the effect of the reorganization energy was taken into account within the semiclassical superexchange model for charge transfer. The experimental rates could be reproduced with reorganization energies near 1 eV. The quantum chemical data obtained were used to discuss charge carrier mobility and hole-transport equilibria in DNA. PMID:16231945
Transient absolute robustness in stochastic biochemical networks.
Enciso, German A
2016-08-01
Absolute robustness allows biochemical networks to sustain a consistent steady-state output in the face of protein concentration variability from cell to cell. This property is structural and can be determined from the topology of the network alone regardless of rate parameters. An important question regarding these systems is the effect of discrete biochemical noise in the dynamical behaviour. In this paper, a variable freezing technique is developed to show that under mild hypotheses the corresponding stochastic system has a transiently robust behaviour. Specifically, after finite time the distribution of the output approximates a Poisson distribution, centred around the deterministic mean. The approximation becomes increasingly accurate, and it holds for increasingly long finite times, as the total protein concentrations grow to infinity. In particular, the stochastic system retains a transient, absolutely robust behaviour corresponding to the deterministic case. This result contrasts with the long-term dynamics of the stochastic system, which eventually must undergo an extinction event that eliminates robustness and is completely different from the deterministic dynamics. The transiently robust behaviour may be sufficient to carry out many forms of robust signal transduction and cellular decision-making in cellular organisms. PMID:27581485
Absolute Electron Extraction Efficiency of Liquid Xenon
NASA Astrophysics Data System (ADS)
Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter
2016-03-01
Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.
Sentinel-2/MSI absolute calibration: first results
NASA Astrophysics Data System (ADS)
Lonjou, V.; Lachérade, S.; Fougnie, B.; Gamet, P.; Marcq, S.; Raynaud, J.-L.; Tremas, T.
2015-10-01
Sentinel-2 is an optical imaging mission devoted to the operational monitoring of land and coastal areas. It is developed in partnership between the European Commission and the European Space Agency. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. It will offer a unique combination of global coverage with a wide field of view (290km), a high revisit (5 days with two satellites), a high resolution (10m, 20m and 60m) and multi-spectral imagery (13 spectral bands in visible and shortwave infra-red domains). CNES is involved in the instrument commissioning in collaboration with ESA. This paper reviews all the techniques that will be used to insure an absolute calibration of the 13 spectral bands better than 5% (target 3%), and will present the first results if available. First, the nominal calibration technique, based on an on-board sun diffuser, is detailed. Then, we show how vicarious calibration methods based on acquisitions over natural targets (oceans, deserts, and Antarctica during winter) will be used to check and improve the accuracy of the absolute calibration coefficients. Finally, the verification scheme, exploiting photometer in-situ measurements over Lacrau plain, is described. A synthesis, including spectral coherence, inter-methods agreement and temporal evolution, will conclude the paper.
Absolute Spectrophotometry of 237 Open Cluster Stars
NASA Astrophysics Data System (ADS)
Clampitt, L.; Burstein, D.
1994-12-01
We present absolute spectrophotometry of 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M 39. The observations were taken using the Wampler single-channel scanner (Wampler 1966) on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. 21 bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwiths ranging from 32Angstroms to 64 Angstroms. Data are standardized to the Hayes--Latham (1975) system. Our measurements are compared to filter colors on the Johnson BV, Stromgren ubvy, and Geneva U V B_1 B_2 V_1 G systems, as well as to spectrophotometry of a few stars published by Gunn, Stryker & Tinsley and in the Spectrophotometric Standards Catalog (Adelman; as distributed by the NSSDC). Both internal and external comparisons to the filter systems indicate a formal statistical accuracy per bandpass of 0.01 to 0.02 mag, with apparent larger ( ~ 0.03 mag) differences in absolute calibration between this data set and existing spectrophotometry. These data will comprise part of the spectrophotometry that will be used to calibrate the Beijing-Arizona-Taipei-Connecticut Color Survey of the Sky (see separate paper by Burstein et al. at this meeting).
NASA Technical Reports Server (NTRS)
Curtiss, L. A.; Langhoff, S. R.; Carney, G. D.
1979-01-01
The constant and linear terms in a Taylor series expansion of the dipole moment function of the ground state of ozone are calculated with Cartesian Gaussian basis sets ranging in quality from minimal to double zeta plus polarization. Results are presented at both the self-consistent field and configuration-interaction levels. Although the algebraic signs of the linear dipole moment derivatives are all established to be positive, the absolute magnitudes of these quantities, as well as the infrared intensities calculated from them, vary considerably with the level of theory.
Quantum toroidal moments of nanohelix eigenstates
NASA Astrophysics Data System (ADS)
Williamson, Johnny; Encinosa, Mario
2015-09-01
Developments in the area of metamaterial research have generated interest in toroidal moments and their treatment in the quantum regime. A quantum mechanical method of determining toroidal moments due to current circulating on a toroidal helix is presented. The Hamiltonian of a negatively charged spinless particle constrained to motion in the vicinity of a toroidal helix having loops of arbitrary eccentricity is developed. The resulting three dimensional Schr¨odinger equation is reduced to a one dimensional form inclusive of curvature effects. Low-lying eigenfunctions of the toroidal helix system are determined along with corresponding toroidal moments. A disagreement, not predicted by a classical treatment, arises between toroidal moments of elliptic toroidal helix systems when vertical and horizontal eccentricity are transposed.
A Conceptual Approach to Absolute Value Equations and Inequalities
ERIC Educational Resources Information Center
Ellis, Mark W.; Bryson, Janet L.
2011-01-01
The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…
Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding
ERIC Educational Resources Information Center
Ponce, Gregorio A.
2008-01-01
Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…
20 CFR 404.1205 - Absolute coverage groups.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a...
Truncated Moment Analysis of Nucleon Structure Functions
A. Psaker; W. Melnitchouk; M. E. Christy; C. E. Keppel
2007-11-16
We employ a novel new approach using "truncated" moments, or integrals of structure functions over restricted regions of x, to study local quark-hadron duality, and the degree to which individual resonance regions are dominated by leading twists. Because truncated moments obey the same Q^2 evolution equations as the leading twist parton distributions, this approach makes possible for the first time a description of resonance region data and the phenomenon of quark-hadron duality directly from QCD.
Toroidal Dipole Moment of a Massless Neutrino
Cabral-Rosetti, L. G.; Mondragon, M.; Perez, E. Reyes
2009-04-20
We obtain the toroidal dipole moment of a massless neutrino {tau}{sub v{sub I}}{sup M} using the results for the anapole moment of a massless Dirac neutrino a{sub v{sub I}}{sup D}, which was obtained in the context of the Standard Model of the electroweak interactions (SM)SU(2){sub L} x U(1){sub Y}.
An online database of nuclear electromagnetic moments
NASA Astrophysics Data System (ADS)
Mertzimekis, T. J.; Stamou, K.; Psaltis, A.
2016-01-01
Measurements of nuclear magnetic dipole and electric quadrupole moments are considered quite important for the understanding of nuclear structure both near and far from the valley of stability. The recent advent of radioactive beams has resulted in a plethora of new, continuously flowing, experimental data on nuclear structure - including nuclear moments - which hinders the information management. A new, dedicated, public and user friendly online database
Moment closure and the stochastic logistic model.
Nåsell, Ingemar
2003-03-01
The quasi-stationary distribution of the stochastic logistic model is studied in the parameter region where its body is approximately normal. Improved asymptotic approximations of its first three cumulants are derived. It is shown that the same results can be derived with the aid of the moment closure method. This indicates that the moment closure method leads to expressions for the cumulants that are asymptotic approximations of the cumulants of the quasi-stationary distribution. PMID:12615498
Katkovnik, V; Bioucas-Dias, J
2014-08-01
Phase-shifting interferometry is a coherent optical method that combines high accuracy with high measurement speeds. This technique is therefore desirable in many applications such as the efficient industrial quality inspection process. However, despite its advantageous properties, the inference of the object amplitude and the phase, herein termed wavefront reconstruction, is not a trivial task owing to the Poissonian noise associated with the measurement process and to the 2π phase periodicity of the observation mechanism. In this paper, we formulate the wavefront reconstruction as an inverse problem, where the amplitude and the absolute phase are assumed to admit sparse linear representations in suitable sparsifying transforms (dictionaries). Sparse modeling is a form of regularization of inverse problems which, in the case of the absolute phase, is not available to the conventional wavefront reconstruction techniques, as only interferometric phase modulo-2π is considered therein. The developed sparse modeling of the absolute phase solves two different problems: accuracy of the interferometric (wrapped) phase reconstruction and simultaneous phase unwrapping. Based on this rationale, we introduce the sparse phase and amplitude reconstruction (SPAR) algorithm. SPAR takes into full consideration the Poissonian (photon counting) measurements and uses the data-adaptive block-matching 3D (BM3D) frames as a sparse representation for the amplitude and for the absolute phase. SPAR effectiveness is documented by comparing its performance with that of competitors in a series of experiments. PMID:25121537
Tensor charge and anomalous magnetic moment correlation
Mekhfi, Mustapha
2005-12-01
We propose a generalization of the upgraded Karl-Sehgal formula which relates baryon magnetic moments to the spin structure of constituent quarks, by adding anomalous magnetic moments of quarks. We first argue that the relativistic nature of quarks inside baryons requires the introduction of two kinds of magnetisms, one axial and the other tensorial. The first one is associated with integrated quark helicity distributions {delta}{sub i}-{delta}{sub i} (standard) and the second with integrated transversity distributions {delta}{sub i}-{delta}{sub i}. The weight of each contribution is controlled by the combination of two parameters, x{sub i} the ratio of the quark mass to the average kinetic energy and a{sub i} the quark anomalous magnetic moment. The quark anomalous magnetic moment is correlated to transversity, and both are necessary ingredients in describing relativistic quarks. The proposed formula, when confronted with baryon magnetic moments data with reasonable inputs, yields, besides quark magnetic densities, anomalous magnetic moments large enough not to be ignored.
NASA Astrophysics Data System (ADS)
Roostaei, B.; Ermler, W. C.
2012-03-01
A procedure for calculating electric dipole transition moments and permanent dipole moments from spin-orbit configuration interaction (SOCI) wave functions has been developed in the context of the COLUMBUS ab initio electronic structure programs. The SOCI procedure requires relativistic effective core potentials and their corresponding spin-orbit coupling operators to define the molecular Hamiltonian, electric dipole transition moment and permanent dipole moment matrices. The procedure can be used for any molecular system for which the COLUMBUS SOCI circuits are applicable. Example applications are reported for transition moments and dipole moments for a series of electronic states of LiBe and LiSr defined in diatomic relativistic ωω-coupling.
ERIC Educational Resources Information Center
Moore, Don A.; Klein, William M. P.
2008-01-01
Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…
Cell block eleven (left) and cell block fifteen, looking from ...
Cell block eleven (left) and cell block fifteen, looking from cell block two into the "Death Row" exercise yard - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA
View of cell block eight (left), cell block seven, and ...
View of cell block eight (left), cell block seven, and southwest guard tower, looking from cell block eight roof - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA
Absolute calibration of ultraviolet filter photometry
NASA Technical Reports Server (NTRS)
Bless, R. C.; Fairchild, T.; Code, A. D.
1972-01-01
The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.
MAGSAT: Vector magnetometer absolute sensor alignment determination
NASA Technical Reports Server (NTRS)
Acuna, M. H.
1981-01-01
A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.
Absolute geostrophic currents in global tropical oceans
NASA Astrophysics Data System (ADS)
Yang, Lina; Yuan, Dongliang
2016-03-01
A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.
Absolute Measurement of Electron Cloud Density
Covo, M K; Molvik, A W; Cohen, R H; Friedman, A; Seidl, P A; Logan, G; Bieniosek, F; Baca, D; Vay, J; Orlando, E; Vujic, J L
2007-06-21
Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 {micro}s duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.
Absolute instability of a viscous hollow jet
NASA Astrophysics Data System (ADS)
Gañán-Calvo, Alfonso M.
2007-02-01
An investigation of the spatiotemporal stability of hollow jets in unbounded coflowing liquids, using a general dispersion relation previously derived, shows them to be absolutely unstable for all physical values of the Reynolds and Weber numbers. The roots of the symmetry breakdown with respect to the liquid jet case, and the validity of asymptotic models are here studied in detail. Asymptotic analyses for low and high Reynolds numbers are provided, showing that old and well-established limiting dispersion relations [J. W. S. Rayleigh, The Theory of Sound (Dover, New York, 1945); S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1961)] should be used with caution. In the creeping flow limit, the analysis shows that, if the hollow jet is filled with any finite density and viscosity fluid, a steady jet could be made arbitrarily small (compatible with the continuum hypothesis) if the coflowing liquid moves faster than a critical velocity.
Stitching interferometry: recent results and absolute calibration
NASA Astrophysics Data System (ADS)
Bray, Michael
2004-02-01
Stitching Interferometry is a method of analysing large optical components using a standard "small" interferometer. This result is obtained by taking multiple overlapping images of the large component, and numerically "stitching" these sub-apertures together. We have already reported the industrial use our Stitching Interferometry systems (Previous SPIE symposia), but experimental results had been lacking because this technique is still new, and users needed to get accustomed to it before producing reliable measurements. We now have more results. We will report user comments and show new, unpublished results. We will discuss sources of error, and show how some of these can be reduced to arbitrarily small values. These will be discussed in some detail. We conclude with a few graphical examples of absolute measurements performed by us.
Swarm's Absolute Scalar Magnetometer metrological performances
NASA Astrophysics Data System (ADS)
Leger, J.; Fratter, I.; Bertrand, F.; Jager, T.; Morales, S.
2012-12-01
The Absolute Scalar Magnetometer (ASM) has been developed for the ESA Earth Observation Swarm mission, planned for launch in November 2012. As its Overhauser magnetometers forerunners flown on Oersted and Champ satellites, it will deliver high resolution scalar measurements for the in-flight calibration of the Vector Field Magnetometer manufactured by the Danish Technical University. Latest results of the ground tests carried out to fully characterize all parameters that may affect its accuracy, both at instrument and satellite level, will be presented. In addition to its baseline function, the ASM can be operated either at a much higher sampling rate (burst mode at 250 Hz) or in a dual mode where it also delivers vector field measurements as a by-product. The calibration procedure and the relevant vector performances will be discussed.
Absolute nonlocality via distributed computing without communication
NASA Astrophysics Data System (ADS)
Czekaj, Ł.; Pawłowski, M.; Vértesi, T.; Grudka, A.; Horodecki, M.; Horodecki, R.
2015-09-01
Understanding the role that quantum entanglement plays as a resource in various information processing tasks is one of the crucial goals of quantum information theory. Here we propose an alternative perspective for studying quantum entanglement: distributed computation of functions without communication between nodes. To formalize this approach, we propose identity games. Surprisingly, despite no signaling, we obtain that nonlocal quantum strategies beat classical ones in terms of winning probability for identity games originating from certain bipartite and multipartite functions. Moreover we show that, for a majority of functions, access to general nonsignaling resources boosts success probability two times in comparison to classical ones for a number of large enough outputs. Because there are no constraints on the inputs and no processing of the outputs in the identity games, they detect very strong types of correlations: absolute nonlocality.
L-moments and TL-moments of the generalized lambda distribution
Asquith, W.H.
2007-01-01
The 4-parameter generalized lambda distribution (GLD) is a flexible distribution capable of mimicking the shapes of many distributions and data samples including those with heavy tails. The method of L-moments and the recently developed method of trimmed L-moments (TL-moments) are attractive techniques for parameter estimation for heavy-tailed distributions for which the L- and TL-moments have been defined. Analytical solutions for the first five L- and TL-moments in terms of GLD parameters are derived. Unfortunately, numerical methods are needed to compute the parameters from the L- or TL-moments. Algorithms are suggested for parameter estimation. Application of the GLD using both L- and TL-moment parameter estimates from example data is demonstrated, and comparison of the L-moment fit of the 4-parameter kappa distribution is made. A small simulation study of the 98th percentile (far-right tail) is conducted for a heavy-tail GLD with high-outlier contamination. The simulations show, with respect to estimation of the 98th-percent quantile, that TL-moments are less biased (more robost) in the presence of high-outlier contamination. However, the robustness comes at the expense of considerably more sampling variability. ?? 2006 Elsevier B.V. All rights reserved.
... your baby may have an eye infection called conjunctivitis . ... increase the chance of other infections, such as conjunctivitis. ... be prevented. Proper treatment of nasal infections and conjunctivitis may reduce the risk of having a blocked ...
ERIC Educational Resources Information Center
Tompkins, Gail E.; Camp, Donna J.
1988-01-01
Describes four prewriting techniques that elementary and middle grade students can use to gather and organize ideas for writing, and by so doing, cure writer's block. Techniques discussed are: (1) brainstorming; (2) clustering; (3) freewriting; and (4) cubing.
Superalloy Lattice Block Structures
NASA Technical Reports Server (NTRS)
Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.
2004-01-01
Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.
Block copolymer battery separator
Wong, David; Balsara, Nitash Pervez
2016-04-26
The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.
Complete hierarchies of SIR models on arbitrary networks with exact and approximate moment closure.
Sharkey, Kieran J; Wilkinson, Robert R
2015-06-01
We first generalise ideas discussed by Kiss et al. (2015) to prove a theorem for generating exact closures (here expressing joint probabilities in terms of their constituent marginal probabilities) for susceptible-infectious-removed (SIR) dynamics on arbitrary graphs (networks). For Poisson transmission and removal processes, this enables us to obtain a systematic reduction in the number of differential equations needed for an exact 'moment closure' representation of the underlying stochastic model. We define 'transmission blocks' as a possible extension of the block concept in graph theory and show that the order at which the exact moment closure representation is curtailed is the size of the largest transmission block. More generally, approximate closures of the hierarchy of moment equations for these dynamics are typically defined for the first and second order yielding mean-field and pairwise models respectively. It is frequently implied that, in principle, closed models can be written down at arbitrary order if only we had the time and patience to do this. However, for epidemic dynamics on networks, these higher-order models have not been defined explicitly. Here we unambiguously define hierarchies of approximate closed models that can utilise subsystem states of any order, and show how well-known models are special cases of these hierarchies. PMID:25829147
On the Determination of Transition-Moment Directions from Absorption Anisotropy Measurements
NASA Astrophysics Data System (ADS)
Kawski, A.; Gryczyński, Z.
1987-06-01
A formula is derived for the absorption anisotropy K = (A∥ - A⊥) / (A∥ + 2A⊥ ) (where A∥ and A⊥ are the absorbances parallel and perpendicular to the stretching direction of the polymer film, respectively) as a function of the stretch ratio, Rs, of the film and the angle φ between the absorption transition moment direction and the long axis of a prolate molecule. Employing this relation, absolute transition moment directions (the angles φ) were determined experimentally for the following compounds: 1.8-diphenyloctatetraene (DPO), 1,6-diphenylhexatriene (DPH), 1.4-diphenylbutadiene (DPB), 4-dimethylamino-4'-nitrostilbene (DNS), 4-dimethylamino- 4'-chlorostilbene (DCIS) and p-terphenyl (TP). The directions were found to be along the long molecular axis in the long-wave absorption band. Small deviations of the angles obtained from (φ= 0°, which were of the order of several degrees, are due to the incomplete linearity of the molecules under investigation.
A confidence parameter for seismic moment tensors
NASA Astrophysics Data System (ADS)
Tape, Walter; Tape, Carl
2016-02-01
Given a moment tensor m inferred from seismic data for an earthquake, we define P(V) to be the probability that the true moment tensor for the earthquake lies in the neighborhood of m that has fractional volume V. The average value of P(V) is then a measure of our confidence in m. The calculation of P(V) requires knowing both the probability hat{P}(ω ) and the fractional volume hat{V}(ω ) of the set of moment tensors within a given angular radius ω of m. We explain how to construct hat{P}(ω ) from a misfit function derived from seismic data, and we show how to calculate hat{V}(ω ), which depends on the set M of moment tensors under consideration. The two most important instances of M are where M is the set of all moment tensors of fixed norm, and where M is the set of all double couples of fixed norm.
Measurement of magnetic moment via optical transmission
NASA Astrophysics Data System (ADS)
Heidsieck, Alexandra; Schmid, Daniel; Gleich, Bernhard
2016-03-01
The magnetic moment of nanoparticles is an important property for drug targeting and related applications as well as for the simulation thereof. However, the measurement of the magnetic moment of nanoparticles, nanoparticle-virus-complexes or microspheres in solution can be difficult and often yields unsatisfying or incomparable results. To measure the magnetic moment, we designed a custom measurement device including a magnetic set-up to observe nanoparticles indirectly via light transmission in solution. We present a simple, cheap device of manageable size, which can be used in any laboratory as well as a novel evaluation method to determine the magnetic moment of nanoparticles via the change of the optical density of the particle suspension in a well-defined magnetic gradient field. In contrast to many of the established measurement methods, we are able to observe and measure the nanoparticle complexes in their natural state in the respective medium. The nanoparticles move along the magnetic gradient and thereby away from the observation point. Due to this movement, the optical density of the fluid decreases and the transmission increases over time at the measurement location. By comparing the measurement with parametric simulations, we can deduce the magnetic moment from the observed behavior.
A confidence parameter for seismic moment tensors
NASA Astrophysics Data System (ADS)
Tape, Walter; Tape, Carl
2016-05-01
Given a moment tensor m inferred from seismic data for an earthquake, we define P(V) to be the probability that the true moment tensor for the earthquake lies in the neighbourhood of m that has fractional volume V. The average value of P(V) is then a measure of our confidence in m. The calculation of P(V) requires knowing both the probability hat{P}(ω) and the fractional volume hat{V}(ω) of the set of moment tensors within a given angular radius ω of m. We explain how to construct hat{P}(ω) from a misfit function derived from seismic data, and we show how to calculate hat{V}(ω), which depends on the set M of moment tensors under consideration. The two most important instances of M are where M is the set of all moment tensors of fixed norm, and where M is the set of all double couples of fixed norm.
A discrete element modelling approach for block impacts on trees
NASA Astrophysics Data System (ADS)
Toe, David; Bourrier, Franck; Olmedo, Ignatio; Berger, Frederic
2015-04-01
These past few year rockfall models explicitly accounting for block shape, especially those using the Discrete Element Method (DEM), have shown a good ability to predict rockfall trajectories. Integrating forest effects into those models still remain challenging. This study aims at using a DEM approach to model impacts of blocks on trees and identify the key parameters controlling the block kinematics after the impact on a tree. A DEM impact model of a block on a tree was developed and validated using laboratory experiments. Then, key parameters were assessed using a global sensitivity analyse. Modelling the impact of a block on a tree using DEM allows taking into account large displacements, material non-linearities and contacts between the block and the tree. Tree stems are represented by flexible cylinders model as plastic beams sustaining normal, shearing, bending, and twisting loading. Root soil interactions are modelled using a rotation stiffness acting on the bending moment at the bottom of the tree and a limit bending moment to account for tree overturning. The crown is taken into account using an additional mass distribute uniformly on the upper part of the tree. The block is represented by a sphere. The contact model between the block and the stem consists of an elastic frictional model. The DEM model was validated using laboratory impact tests carried out on 41 fresh beech (Fagus Sylvatica) stems. Each stem was 1,3 m long with a diameter between 3 to 7 cm. Wood stems were clamped on a rigid structure and impacted by a 149 kg charpy pendulum. Finally an intensive simulation campaign of blocks impacting trees was done to identify the input parameters controlling the block kinematics after the impact on a tree. 20 input parameters were considered in the DEM simulation model : 12 parameters were related to the tree and 8 parameters to the block. The results highlight that the impact velocity, the stem diameter, and the block volume are the three input
NASA Astrophysics Data System (ADS)
Cotti, Gina; Linnartz, Harold; Meerts, W. Leo; van der Avoird, Ad; Olthof, Edgar H. T.
1996-03-01
In this paper we present Stark measurements on the G:K=-1 vibration-rotation-tunneling (VRT) transition, band origin 747.2 GHz, of the ammonia dimer. The observed splitting pattern and selection rules can be explained by considering the G36 and G144 symmetries of the inversion states involved, and almost complete mixing of these states by the applied electric field. The absolute values of the electric dipole moments of the ground and excited state are determined to be 0.763(15) and 0.365(10) D, respectively. From the theoretical analysis and the observed selection rules it is possible to establish that the dipole moments of the two interchange states must have opposite sign. The theoretical calculations are in good agreement with the experimental results: The calculated dipole moments are -0.74 D for the lower and +0.35 D for the higher state. Our results, in combination with the earlier dipole measurements on the G:K=0 ground state and the G:K=1 transition with band origin 486.8 GHz, confirm that the ammonia dimer is highly nonrigid. Its relatively small and strongly K-dependent dipole moment, which changes sign upon far-infrared excitation, originates from the difference in dynamical behavior of ortho and para NH3.
Kang, Ho Chul; Lee, Ju Hwan; Kim, Sung Min
2015-01-01
This study analyzes the moment of human main joints (knee and hip) for developing a wearable walking assistant robot. Experiments were performed on two steps to analyze motions. Three healthy males with no neural and musculoskeletal disorders volunteered to participate in this study. In the step up test, the maximum moment was 0.98±0.05 Nm/kg for the knee and 0.52±0.04 Nm/kg for the hip. In the sit-to-stand test, the maximum moment was 0.88±0.06 Nm/kg for the knee and 0.44±0.04 Nm/kg for the hip. The moment of the hip was significantly higher than the knee. In addition, the motion analysis results were compared with proven validity and inverse dynamics analysis results. Experimental results showed that there was no significant difference in the absolute value or pattern. For the step up motion, after wearing Powered Gait Orthosis (PGO), the hip joint torque value (1.22 Nm/kg) was about 1.3 times greater than the knee joint torque value (0.96 Nm/kg). It indicates that the step up motion requires more power from the hip joint than the knee joint. Moreover, there was a significant torque value difference for before and after wearing the device. PMID:26406067
The Generation of Forces and Moments during Visual-Evoked Steering Maneuvers in Flying Drosophila
Sugiura, Hiroki; Dickinson, Michael H.
2009-01-01
Sideslip force, longitudinal force, rolling moment, and pitching moment generated by tethered fruit flies, Drosophila melanogaster, were measured during optomotor reactions within an electronic flight simulator. Forces and torques were acquired by optically measuring the angular deflections of the beam to which the flies were tethered using a laser and a photodiode. Our results indicate that fruit flies actively generate both sideslip and roll in response to a lateral focus of expansion (FOE). The polarity of this behavior was such that the animal's aerodynamic response would carry it away from the expanding pattern, suggesting that it constitutes an avoidance reflex or centering response. Sideslip forces and rolling moments were sinusoidal functions of FOE position, whereas longitudinal force was proportional to the absolute value of the sine of FOE position. Pitching moments remained nearly constant irrespective of stimulus position or strength, with a direction indicating a tonic nose-down pitch under tethered conditions. These experiments expand our understanding of the degrees of freedom that a fruit fly can actually control in flight. PMID:19300507
Relationships between dipole moments of diatomic molecules.
Hou, Shilin; Bernath, Peter F
2015-02-14
The dipole moment is one of the most important physical properties of a molecule. We present a combination rule for the dipole moments of related diatomic molecules. For molecules AB, AX, BY, and XY from two different element groups in the periodic table, if their elements make a small parallelogram, reliable predictions can be obtained. Our approach is particularly useful for systems with heavy atoms. For a large set of molecules tested, the average difference of the prediction from experimental data is less than 0.2 debye (D). The dipole moments for heavy molecules such as GaCl, InBr, SrCl, and SrS, for which no experimental data are available at present, are predicted to be 3.17, 3.76, 3.85 and 11.54 D, respectively. PMID:25588998
Texture classification using discrete Tchebichef moments.
Marcos, J Víctor; Cristóbal, Gabriel
2013-08-01
In this paper, a method to characterize texture images based on discrete Tchebichef moments is presented. A global signature vector is derived from the moment matrix by taking into account both the magnitudes of the moments and their order. The performance of our method in several texture classification problems was compared with that achieved through other standard approaches. These include Haralick's gray-level co-occurrence matrices, Gabor filters, and local binary patterns. An extensive texture classification study was carried out by selecting images with different contents from the Brodatz, Outex, and VisTex databases. The results show that the proposed method is able to capture the essential information about texture, showing comparable or even higher performance than conventional procedures. Thus, it can be considered as an effective and competitive technique for texture characterization. PMID:24323217
The moments of inertia of Mars
NASA Technical Reports Server (NTRS)
Bills, Bruce G.
1989-01-01
The mean moment of inertia of Mars is, at present, very poorly constrained. The generally accepted value of 0.365 M(R-squared) is obtained by assuming that the observed second degree gravity field can be decomposed into a hydrostatic oblate spheroid and a nonhydrostatic prolate spheroid with an equatorial axis of symmetry. An alternative decomposition is advocated in the present analysis. If the nonhydrostatic component is a maximally triaxial ellipsoid (intermediate moment exactly midway between greatest and least), the hydrostatic component is consistent with a mean moment of 0.345 M(R-squared). The plausibility of this decomposition is supported by statistical arguments and comparison with the earth, moon and Venus.
Nuclear Schiff moment and soft vibrational modes
Zelevinsky, Vladimir; Volya, Alexander; Auerbach, Naftali
2008-07-15
The atomic electric dipole moment (EDM) currently searched by a number of experimental groups requires that both parity and time-reversal invariance be violated. According to current theoretical understanding, the EDM is induced by the nuclear Schiff moment. The enhancement of the Schiff moment by the combination of static quadrupole and octupole deformation was predicted earlier. Here we study a further idea of the possible enhancement in the absence of static deformation but in a nuclear system with soft collective vibrations of two types. Both analytical approximation and numerical solution of the simplified problem confirm the presence of the enhancement. We discuss related aspects of nuclear structure which should be studied beyond mean-field and random phase approximations.
Magnetic Moment Distribution in Layered Materials
NASA Astrophysics Data System (ADS)
Nicholson, D. M. C.; Zhang, X.-G.; Wang, Y.; Shelton, W. A.; Butler, W. H.; Stocks, G. M.; MacLaren, J. M.
1996-03-01
Thin layers of magnetic material surrounded by non-magnetic layers display a reduced moment per atom relative to the bulk magnetic material. Plots of sturation magnetization versus magnetic layer thickness can be explained in terms of magnetically dead layers at interfaces. First principles calculations indicate a more complex distribution of magnetic moments. Moment distributions calculated in the local density approximation restricted to colinear spins and with unrestricted spin orientations will be presented for Cu/Ni/Cu, Cu/permalloy/Cu, and Mo/Ni/Mo structures. Work supported by Division of Materials Science, the Mathematical Information and Computational Science Division of the Office of Computational Technology Research, and by the Assistant Secretary of Defence Programs, Technology Management Group, Technology Transfer Initiative, US DOE under subcontract DEAC05-84OR21400 with Martin-Marietta Energy Systems, Inc.
Impression block with orientator
NASA Astrophysics Data System (ADS)
Brilin, V. I.; Ulyanova, O. S.
2015-02-01
Tool review, namely the impression block, applied to check the shape and size of the top of fish as well as to determine the appropriate tool for fishing operation was realized. For multiple application and obtaining of the impress depth of 3 cm and more, the standard volumetric impression blocks with fix rods are used. However, the registered impress of fish is not oriented in space and the rods during fishing are in the extended position. This leads to rods deformation and sinking due to accidental impacts of impression block over the borehole irregularity and finally results in faulty detection of the top end of fishing object in hole. The impression blocks with copy rods and fixed magnetic needle allow estimating the object configuration and fix the position of magnetic needle determining the position of the top end of object in hole. However, the magnetic needle fixation is realized in staged and the rods are in extended position during fishing operations as well as it is in standard design. The most efficient tool is the impression block with copy rods which directs the examined object in the borehole during readings of magnetic needles data from azimuth plate and averaging of readings. This significantly increases the accuracy of fishing toll direction. The rods during fishing are located in the body and extended only when they reach the top of fishing object.
NASA Astrophysics Data System (ADS)
Terakawa, T.; Matsu'Ura, M.
2006-12-01
In order to estimate the absolute strength of the big-bend segment (BBS) of the San Andreas Fault (SAF) we combined two different approaches, one of which is the numerical simulation of tectonic stress accumulation at and around plate boundaries and the other is the inversion analysis of seismic events to estimate tectonic stress release. With the 3-D tectonic loading model based on elastic dislocation theory, we numerically computed the absolute tectonic stress fields at and around BBS for six representative cases with different friction coefficients (0.6, 0.3 and 0.1) of SAF and surrounding thrust faults. In order to compare the theoretical results with seismological observations, we extracted only the stress field related to shear faulting (seismogenic stress field) from the computed absolute stress field. The patterns of the stress field for the representative cases are significantly different from each other within the distance range of 50 km from BBS. In this range, the rotation angle of the maximum horizontal compressive principal stress axis measured from the strike of BBS changes from 45o to 90o with distance from BBS. The range of the stress rotation becomes broader as the absolute strength of BBS becomes higher. The expected type of faulting in this range also depends on the absolute strength of BBS. On the other hand, we obtained the pattern of seismogenic stress field around BBS through an inversion analysis with CMT data. The type of faulting expected from the inverted stress field changes with distance from BBS as follows: thrust faulting with a strike oblique to BBS in the vicinity of BBS, thrust faulting with the dip-angle of 45o and a strike parallel to BBS in the range of 50-100 km from BBS, and vertical strike-slip faulting with a strike oblique to BBS in the region farther than 100 km. From the inverted stress field we can find a fault-parallel zone with high moment release rates at about 40 km southwest of BBS, which can be considered to play
First moments of nucleon generalized parton distributions
Wang, P.; Thomas, A. W.
2010-06-01
We extrapolate the first moments of the generalized parton distributions using heavy baryon chiral perturbation theory. The calculation is based on the one loop level with the finite range regularization. The description of the lattice data is satisfactory, and the extrapolated moments at physical pion mass are consistent with the results obtained with dimensional regularization, although the extrapolation in the momentum transfer to t=0 does show sensitivity to form factor effects, which lie outside the realm of chiral perturbation theory. We discuss the significance of the results in the light of modern experiments as well as QCD inspired models.
Nuclear moments of inertia at high spin
Deleplanque, M.A.
1982-10-01
The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in ..gamma..-..gamma.. correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum ..gamma..-ray spectra of rotational nuclei up to high frequencies. The evolution of ..gamma..-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei.
Legendre modified moments for Euler's constant
NASA Astrophysics Data System (ADS)
Prévost, Marc
2008-10-01
Polynomial moments are often used for the computation of Gauss quadrature to stabilize the numerical calculation of the orthogonal polynomials, see [W. Gautschi, Computational aspects of orthogonal polynomials, in: P. Nevai (Ed.), Orthogonal Polynomials-Theory and Practice, NATO ASI Series, Series C: Mathematical and Physical Sciences, vol. 294. Kluwer, Dordrecht, 1990, pp. 181-216 [6]; W. Gautschi, On the sensitivity of orthogonal polynomials to perturbations in the moments, Numer. Math. 48(4) (1986) 369-382 [5]; W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3(3) (1982) 289-317 [4
Gravitational forces and moments on spacecraft
NASA Technical Reports Server (NTRS)
Kane, T. R.; Likins, P. W.
1975-01-01
The solution of problems of attitude dynamics of spacecraft and the influence of gravitational forces and moments is examined. Arguments are presented based on Newton's law of gravitation, and employing the methods of Newtonian (vectorial) mechanics, with minimal recourse to the classical concepts of potential theory. The necessary ideas were developed and relationships were established to permit the representation of gravitational forces and moments exerted on bodies in space by other bodies, both in terms involving the mass distribution properties of the bodies, and in terms of vector operations on those scalar functions classically described as gravitational potential functions.
Neutron electric dipole moment and CP
Chang, Darwin; Chang, We-Fu; Frank, Mariana; Keung, Wai-Yee
2000-11-01
We analyze the neutron electric dipole moment (EDM) in the minimal supersymmetric standard model with explicit R-parity violating terms. The leading contribution to the EDM occurs at the two-loop level and is dominated by the chromoelectric dipole moments of quarks, assuming there is no tree-level mixings between sleptons and Higgs bosons or between leptons and gauginos. Based on the experimental constraint on the neutron EDM, we set limits on the imaginary parts of complex couplings {lambda}{sub ijk}{prime} and {lambda}{sub ijk} due to the virtual b loop or {tau} loop.
Determination of the Neutron Magnetic Moment
DOE R&D Accomplishments Database
Greene, G. L.; Ramsey, N. F.; Mampe, W.; Pendlebury, J. M.; Smith, K.; Dress, W. B.; Miller, P. D.; Perrin, P.
1981-06-01
The neutron magnetic moment has been measured with an improvement of a factor of 100 over the previous best measurement. Using a magnetic resonance spectrometer of the separated oscillatory field type capable of determining a resonance signal for both neutrons and protons (in flowing H{sub 2}O), we find ..mu..{sub n}/..mu..{sub p} = 0.68497935(17) (0.25 ppM). The neutron magnetic moment can also be expressed without loss of accuracy in a variety of other units.
Gyrokinetic Statistical Absolute Equilibrium and Turbulence
Jian-Zhou Zhu and Gregory W. Hammett
2011-01-10
A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.
Absolute surface energy for zincblende semiconductors
NASA Astrophysics Data System (ADS)
Zhang, S. B.; Wei, Su-Huai
2003-03-01
Recent advance in nanosciences requires the determination of surface (or facet) energy of semiconductors, which is often difficult due to the polar nature of some of the most important surfaces such as the (111)A/(111)B surfaces. Several approaches have been developed in the past [1-3] to deal with the problem but an unambiguous division of the polar surface energies is yet to come [2]. Here we show that an accurate division is indeed possible for the zincblende semiconductors and will present the results for GaAs, ZnSe, and CuInSe2 [4], respectively. A general trend emerges, relating the absolute surface energy to the ionicity of the bulk materials. [1] N. Chetty and R. M. Martin, Phys. Rev. B 45, 6074 (1992). [2] N. Moll, et al., Phys. Rev. B 54, 8844 (1996). [3] S. Mankefors, Phys. Rev. B 59, 13151 (1999). [4] S. B. Zhang and S.-H. Wei, Phys. Rev. B 65, 081402 (2002).
Climate Absolute Radiance and Refractivity Observatory (CLARREO)
NASA Technical Reports Server (NTRS)
Leckey, John P.
2015-01-01
The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.
Absolute decay width measurements in 16O
NASA Astrophysics Data System (ADS)
Wheldon, C.; Ashwood, N. I.; Barr, M.; Curtis, N.; Freer, M.; Kokalova, Tz; Malcolm, J. D.; Spencer, S. J.; Ziman, V. A.; Faestermann, Th; Krücken, R.; Wirth, H.-F.; Hertenberger, R.; Lutter, R.; Bergmaier, A.
2012-09-01
The reaction 126C(63Li, d)168O* at a 6Li bombarding energy of 42 MeV has been used to populate excited states in 16O. The deuteron ejectiles were measured using the high-resolution Munich Q3D spectrograph. A large-acceptance silicon-strip detector array was used to register the recoil and break-up products. This complete kinematic set-up has enabled absolute α-decay widths to be measured with high-resolution in the 13.9 to 15.9 MeV excitation energy regime in 16O; many for the first time. This energy region spans the 14.4 MeV four-α breakup threshold. Monte-Carlo simulations of the detector geometry and break-up processes yield detection efficiencies for the two dominant decay modes of 40% and 37% for the α+12C(g.s.) and a+12C(2+1) break-up channels respectively.
Absolute calibration of forces in optical tweezers
NASA Astrophysics Data System (ADS)
Dutra, R. S.; Viana, N. B.; Maia Neto, P. A.; Nussenzveig, H. M.
2014-07-01
Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past 15 years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spot, adapting frequently employed video microscopy techniques. Combined with interface spherical aberration, it reveals a previously unknown window of instability for trapping. Comparison with experimental data leads to an overall agreement within error bars, with no fitting, for a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Besides signaling full first-principles theoretical understanding of optical tweezers operation, the results may lead to improved instrument design and control over experiments, as well as to an extended domain of applicability, allowing reliable force measurements, in principle, from femtonewtons to nanonewtons.
Absolute spectrophotometry of northern compact planetary nebulae
NASA Astrophysics Data System (ADS)
Wright, S. A.; Corradi, R. L. M.; Perinotto, M.
2005-06-01
We present medium-dispersion spectra and narrowband images of six northern compact planetary nebulae (PNe): BoBn 1, DdDm 1, IC 5117, M 1-5, M 1-71, and NGC 6833. From broad-slit spectra, total absolute fluxes and equivalent widths were measured for all observable emission lines. High signal-to-noise emission line fluxes of Hα, Hβ, [Oiii], [Nii], and HeI may serve as emission line flux standards for northern hemisphere observers. From narrow-slit spectra, we derive systemic radial velocities. For four PNe, available emission line fluxes were measured with sufficient signal-to-noise to probe the physical properties of their electron densities, temperatures, and chemical abundances. BoBn 1 and DdDm 1, both type IV PNe, have an Hβ flux over three sigma away from previous measurements. We report the first abundance measurements of M 1-71. NGC 6833 measured radial velocity and galactic coordinates suggest that it is associated with the outer arm or possibly the galactic halo, and its low abundance ([O/H]=1.3× 10-4) may be indicative of low metallicity within that region.
Davarpanah Jazi, Shirin; Heath, Matthew
2016-01-01
An emerging issue in movement neurosciences is whether haptic feedback influences the nature of the information supporting a simulated grasping response (i.e., pantomime-grasping). In particular, recent work by our group contrasted pantomime-grasping responses performed with (i.e., PH+ trials) and without (i.e., PH− trials) terminal haptic feedback in separate blocks of trials. Results showed that PH− trials were mediated via relative visual information. In contrast, PH+ trials showed evidence of an absolute visuo-haptic calibration—a finding attributed to an error signal derived from a comparison between expected and actual haptic feedback (i.e., an internal forward model). The present study examined whether advanced knowledge of haptic feedback availability influences the aforementioned calibration process. To that end, PH− and PH+ trials were completed in separate blocks (i.e., the feedback schedule used in our group’s previous study) and a block wherein PH− and PH+ trials were randomly interleaved on a trial-by-trial basis (i.e., random feedback schedule). In other words, the random feedback schedule precluded participants from predicting whether haptic feedback would be available at the movement goal location. We computed just-noticeable-difference (JND) values to determine whether responses adhered to, or violated, the relative psychophysical principles of Weber’s law. Results for the blocked feedback schedule replicated our group’s previous work, whereas in the random feedback schedule PH− and PH+ trials were supported via relative visual information. Accordingly, we propose that a priori knowledge of haptic feedback is necessary to support an absolute visuo-haptic calibration. Moreover, our results demonstrate that the presence and expectancy of haptic feedback is an important consideration in contrasting the behavioral and neural properties of natural and simulated grasping. PMID:27199718
Absolute nuclear material assay using count distribution (LAMBDA) space
Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.
2015-12-01
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
Absolute nuclear material assay using count distribution (LAMBDA) space
Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.
2012-06-05
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
Bactericidal block copolymer micelles.
Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo
2011-05-12
Block copolymer micelles with bactericidal properties were designed to deactivate pathogens such as E. coli bacteria. The micelles of PS-b-PAA and PS-b-P4VP block copolymers were loaded with biocides TCMTB or TCN up to 20 or 30 wt.-%, depending on the type of antibacterial agent. Bacteria were exposed to loaded micelles and bacterial deactivation was evaluated. The micelles loaded with TCN are bactericidal; bacteria are killed in less than two minutes of exposure. The most likely interpretation of the data is that the biocide is transferred to the bacteria by repeated micelle/bacteria contacts, and not via the solution. PMID:21275041
Biopolymers Containing Unnatural Building Blocks
Schultz, Peter G.
2013-06-30
Although the main chain structure of polymers has a profound effect on their materials properties, the side groups can also have dramatic effects on their properties including conductivity, liquid crystallinity, hydrophobicity, elasticity and biodegradability. Unfortunately control over the side chain structure of polymers remains a challenge – it is difficult to control the sequence of chain elongation when mixtures of monomers are polymerized, and postpolymerization side chain modification is made difficult by polymer effects on side chain reactivity. In contrast, the mRNA templated synthesis of polypeptides on the ribosome affords absolute control over the primary sequence of the twenty amino acid monomers. Moreover, the length of the biopolymer is precisely controlled as are sites of crosslinking. However, whereas synthetic polymers can be synthesized from monomers with a wide range of chemically defined structures, ribosomal biosynthesis is largely limited to the 20 canonical amino acids. For many applications in material sciences, additional building blocks would be desirable, for example, amino acids containing metallocene, photoactive, and halogenated side chains. To overcome this natural constraint we have developed a method that allows unnatural amino acids, beyond the common twenty, to be genetically encoded in response to nonsense or frameshift codons in bacteria, yeast and mammalian cells with high fidelity and good yields. Here we have developed methods that allow identical or distinct noncanonical amino acids to be incorporated at multiple sites in a polypeptide chain, potentially leading to a new class of templated biopolymers. We have also developed improved methods for genetically encoding unnatural amino acids. In addition, we have genetically encoded new amino acids with novel physical and chemical properties that allow selective modification of proteins with synthetic agents. Finally, we have evolved new metal-ion binding sites in proteins
The absolute disparity anomaly and the mechanism of relative disparities.
Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne
2016-06-01
There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566
The absolute disparity anomaly and the mechanism of relative disparities
Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne
2016-01-01
There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566
Exploration of Learning Strategies Associated With Aha Learning Moments.
Pilcher, Jobeth W
2016-01-01
Educators recognize aha moments as powerful aspects of learning. Yet limited research has been performed regarding how to promote these learning moments. This article describes an exploratory study of aha learning moments as experienced and described by participants. Findings showed use of visuals, scenarios, storytelling, Socratic questions, and expert explanation led to aha learning moments. The findings provide guidance regarding the types of learning strategies that can be used to promote aha moments. PMID:26985751
The Magic Moment: Creating Color Harmony
ERIC Educational Resources Information Center
Bartges, Dan
2009-01-01
If there is a truly magic moment in art class, it must be when a student--of any age--attains a working knowledge of color's core principles. At that point, she or he becomes able to consistently create color harmony in any painting, regardless of the subject matter. From then on, that student gains greater confidence, can paint better pictures…
The Teachable Moment and the Handicapped Infant.
ERIC Educational Resources Information Center
Langley, M. Beth
The report examines, from a cognitive developmental view, research on the teachable moment or critical learning period in handicapped infants. The author explains that developmental gaps are produced by a mismatch between the infant's readiness and opportunity to learn. Characteristics and educational implications of specific handicapping…
Avalanche!--Teachable Moments in Outdoor Education
ERIC Educational Resources Information Center
Galloway, Shayne
2005-01-01
Rarely do outdoor educators get the opportunity to safely incorporate an avalanche while the topic of the day is actually avalanche awareness and forecasting. Many similar possibilities exist in the expeditionary context, but even brief excursions may result in incredible learning experiences. These "teachable moments" occur regularly in the…
Using Aha! Moments to Understand Leadership Theory
ERIC Educational Resources Information Center
Moore, Lori L.; Lewis, Lauren J.
2012-01-01
As Huber (2002) noted, striving to understand how leadership is taught and learned is both a challenge and an opportunity facing leadership educators. This article describes the "Leadership Aha! Moment" assignment used in a leadership theory course to help students recognize the intersection of leadership theories and their daily lives while…
Right-handed neutrino magnetic moments
Aparici, Alberto; Santamaria, Arcadi; Kim, Kyungwook; Wudka, Jose
2009-07-01
We discuss the phenomenology of the most general effective Lagrangian, up to operators of dimension five, built with standard model fields and interactions including right-handed neutrinos. In particular, we find there is a dimension five electroweak moment operator of right-handed neutrinos, not discussed previously in the literature, which could have interesting phenomenological consequences.
"To Value Every Child in the Moment"
ERIC Educational Resources Information Center
Armstrong, Michael
2014-01-01
This article takes as its starting point the assertion that the purpose of primary education is to value every child in the moment. The author examines one particular story by a six-year-old girl as an example of what this assertion implies, and of its significance for teaching and learning within the primary school.
The Aha! Moment: Making Math Concepts Stick
ERIC Educational Resources Information Center
Evans, Laurynn
2008-01-01
This author states that she has lost count of the number of times that she has watched a student have the thrill of an "aha!" moment in a math classroom only to later discover that he or she forgot the skill, lost track of the process, or could not demonstrate their learning when assessment time rolled around. It is frustrating for teachers and…
Moment equations for a piecewise deterministic PDE
NASA Astrophysics Data System (ADS)
Bressloff, Paul C.; Lawley, Sean D.
2015-03-01
We analyze a piecewise deterministic PDE consisting of the diffusion equation on a finite interval Ω with randomly switching boundary conditions and diffusion coefficient. We proceed by spatially discretizing the diffusion equation using finite differences and constructing the Chapman-Kolmogorov (CK) equation for the resulting finite-dimensional stochastic hybrid system. We show how the CK equation can be used to generate a hierarchy of equations for the r-th moments of the stochastic field, which take the form of r-dimensional parabolic PDEs on {{Ω }r} that couple to lower order moments at the boundaries. We explicitly solve the first and second order moment equations (r = 2). We then describe how the r-th moment of the stochastic PDE can be interpreted in terms of the splitting probability that r non-interacting Brownian particles all exit at the same boundary; although the particles are non-interacting, statistical correlations arise due to the fact that they all move in the same randomly switching environment. Hence the stochastic diffusion equation describes two levels of randomness: Brownian motion at the individual particle level and a randomly switching environment. Finally, in the limit of fast switching, we use a quasi-steady state approximation to reduce the piecewise deterministic PDE to an SPDE with multiplicative Gaussian noise in the bulk and a stochastically-driven boundary.
Joe McCarthy's Fantastic Moment.
ERIC Educational Resources Information Center
Darsey, James
1995-01-01
Explains Joe McCarthy's rhetoric and its apparent resistance to exorcism by historical fact through the literary genre of fantasy. Argues that McCarthy could not be discredited or argued against because he took no positions but presented his audience with a sustained moment of hesitation in which every claim on credulity was offset by a denial of…
The Doubling Moment: Resurrecting Edgar Allan Poe
ERIC Educational Resources Information Center
Minnick, J. Bradley; Mergil, Fernando
2008-01-01
This article expands upon Jeffrey Wilhelm's and Brian Edmiston's (1998) concept of a doubling of viewpoints by encouraging middle level students to use dramatization to take on multiple perspectives, to pose interpretive questions, and to enhance critical inquiry from inside and outside of texts. The doubling moment is both the activation of…
Moment-angle relations after specific exercise.
Ullrich, B; Kleinöder, H; Brüggemann, G P
2009-04-01
This study examined the amount and time-course of shifts in the moment-knee angle relation of the quadriceps (QF) and hamstring (HAM) muscles in response to different length-restricted strength training regimens. Thirty-two athletes were divided into three different training groups (G1-3): G1 performed isometric training at knee joint angles corresponding to long muscle-tendon unit (MTU) length for QF and HAM; G2 conducted concentric-eccentric contraction cycles that were restricted to a knee joint range of motion corresponding to predominantly long MTU length for QF and HAM; G3 combined the protocols of G1 and G2. Moment-knee angle and EMG-knee angle relations of QF and HAM were measured on five different occasions: two times before, after five and eight weeks of training and four weeks post training. Moments and EMG-data of each subject were normalized to the largest value produced at any knee joint position [% Max.]. Obtained by curve fitting, the optimal knee joint angle for QF moment production was significantly (P<0.05) shifted to longer MTU length in G1 and G3 after 5 weeks of training and in G2 after 8 weeks of training. Contrary, no significant shifts were detected for HAM. Our data suggest that the predominant MTU length during loading is a major trigger for human force-length adaptations. PMID:19199195
Expanding Assessment Methods and Moments in History
ERIC Educational Resources Information Center
Frost, Jennifer; de Pont, Genevieve; Brailsford, Ian
2012-01-01
History courses at The University of Auckland are typically assessed at two or three moments during a semester. The methods used normally employ two essays and a written examination answering questions set by the lecturer. This study describes an assessment innovation in 2008 that expanded both the frequency and variety of activities completed by…
Pedagogical Moments: Affective Sexual Literacies in Film
ERIC Educational Resources Information Center
Clarke, Kyra
2013-01-01
This paper considers three pedagogical moments in the film "Tomorrow, When the War Began" (2010), contemplating the way in which they open a space for conversations about feelings, sexuality and gender. "Tomorrow, When the War Began" follows the plight of 17-year-old Ellie who returns to her rural town from a camping trip with…
Crossover scaling for moments in multifractal systems
NASA Astrophysics Data System (ADS)
Alstrom, Preben; Hansen, Lars K.; Rasmussen, Dan R.
1987-07-01
Invoking the formalism known from second-order phase transitions and thermodynamics, we analyze the step structure obtained at transitions to chaos in dynamical systems or where Cantor sets evolve in general. As examples, we treat the skew tent map analytically and Arnold's sine map numerically, but the presented formalism employed for embedding dimension d=1 is readily extended to higher dimensions. We outline the scaling behavior for the counting, the measure, and higher moments. In particular, we consider the crossover exponent ν which enters the scaling functions and for the measure is related to the critical exponent β and fractal dimension D. We emphasize that the general presence of a multifractal structure results in a value of ν which depends on from which moment it is defined, and deduce the saturation value of ν in the high-moment limit. Also, we derive the connection to thermodynamical functions as pressure, entropy, and escape rate. Finally, we examine the scaling behavior of the moments and scaling relations for exponents when either a ``ghost'' field or noise is introduced as a conjugated field involving the critical exponents α, γ, and δ as well as the crossover exponent μ.
Moments, Mixed Methods, and Paradigm Dialogs
ERIC Educational Resources Information Center
Denzin, Norman K.
2010-01-01
I reread the 50-year-old history of the qualitative inquiry that calls for triangulation and mixed methods. I briefly visit the disputes within the mixed methods community asking how did we get to where we are today, the period of mixed-multiple-methods advocacy, and Teddlie and Tashakkori's third methodological moment. (Contains 10 notes.)
Nuclear spins and moments: Fundamental structural information
Semmes, P.B.
1991-12-31
Predictions for the low energy structure of well deformed odd-A Pm and Sm nuclei in the A {approx} 130 region are given, based on the particle-rotor model. Distinctive magnetic dipole properties (static moments and transition rates) are expected for certain Nilsson configurations, and comparisons to recent data are made for {sup 133}Pm, {sup 135}Sm and {sup 133}Sm.
Nuclear spins and moments: Fundamental structural information
Semmes, P.B.
1991-01-01
Predictions for the low energy structure of well deformed odd-A Pm and Sm nuclei in the A {approx} 130 region are given, based on the particle-rotor model. Distinctive magnetic dipole properties (static moments and transition rates) are expected for certain Nilsson configurations, and comparisons to recent data are made for {sup 133}Pm, {sup 135}Sm and {sup 133}Sm.
Multipole moments of bumpy black holes
Vigeland, Sarah J.
2010-11-15
General relativity predicts the existence of black holes, compact objects whose spacetimes depend only on their mass, spin, and charge in vacuum (the 'no-hair' theorem). As various observations probe deeper into the strong fields of black hole candidates, it is becoming possible to test this prediction. Previous work suggested that such tests can be performed by measuring whether the multipolar structure of black hole candidates has the form that general relativity demands, and introduced a family of 'bumpy black hole' spacetimes to be used for making these measurements. These spacetimes have generalized multipoles, where the deviation from the Kerr metric depends on the spacetime's 'bumpiness'. In this paper, we show how to compute the Geroch-Hansen moments of a bumpy black hole, demonstrating that there is a clean mapping between the deviations used in the bumpy black hole formalism and the Geroch-Hansen moments. We also extend our previous results to define bumpy black holes whose current moments, analogous to magnetic moments of electrodynamics, deviate from the canonical Kerr value.
Status and perspectives of neutrino magnetic moments
NASA Astrophysics Data System (ADS)
Alexander, Studenikin
2016-05-01
Basic theoretical and experimental aspects of neutrino magnetic moments are reviewed, including the present best upper bounds from reactor experiments and astrophysics. An interesting effect of neutrino spin precession induced by the background matter transversal current or polarization is also discussed.
ERIC Educational Resources Information Center
Moore, Gary T.
1997-01-01
Discusses the importance of block play--including its contributions to perceptual, fine motor, and cognitive development--and components of a good preschool block play area. Recommends unit blocks complemented by stacking blocks, toys, beads, cubes, and Brio wooden toys. Makes recommendations for space, size, locations and connections to other…
Microbial hotspots and hot moments in soil
NASA Astrophysics Data System (ADS)
Kuzyakov, Yakov; Blagodatskaya, Evgenia
2015-04-01
Soils are the most heterogeneous parts of the biosphere, with an extremely high differentiation of properties and processes within nano- to macroscales. The spatial and temporal heterogeneity of input of labile organics by plants creates microbial hotspots over short periods of time - the hot moments. We define microbial hotspots as small soil volumes with much faster process rates and much more intensive interactions compared to the average soil conditions. Such hotspots are found in the rhizosphere, detritusphere, biopores (including drilosphere) and on aggregate surfaces, but hotspots are frequently of mixed origin. Hot moments are short-term events or sequences of events inducing accelerated process rates as compared to the averaged rates. Thus, hotspots and hot moments are defined by dynamic characteristics, i.e. by process rates. For this hotspot concept we extensively reviewed and examined the localization and size of hotspots, spatial distribution and visualization approaches, transport of labile C to and from hotspots, lifetime and process intensities, with a special focus on process rates and microbial activities. The fraction of active microorganisms in hotspots is 2-20 times higher than in the bulk soil, and their specific activities (i.e. respiration, microbial growth, mineralization potential, enzyme activities, RNA/DNA ratio) may also be much higher. The duration of hot moments in the rhizosphere is limited and is controlled by the length of the input of labile organics. It can last a few hours up to a few days. In the detritusphere, however, the duration of hot moments is regulated by the output - by decomposition rates of litter - and lasts for weeks and months. Hot moments induce succession in microbial communities and intense intra- and interspecific competition affecting C use efficiency, microbial growth and turnover. The faster turnover and lower C use efficiency in hotspots counterbalances the high C inputs, leading to the absence of strong
Orion Absolute Navigation System Progress and Challenge
NASA Technical Reports Server (NTRS)
Holt, Greg N.; D'Souza, Christopher
2012-01-01
The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.
Evaluation of the Absolute Regional Temperature Potential
NASA Technical Reports Server (NTRS)
Shindell, D. T.
2012-01-01
The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.
Absolute optical surface measurement with deflectometry
NASA Astrophysics Data System (ADS)
Li, Wansong; Sandner, Marc; Gesierich, Achim; Burke, Jan
Deflectometry utilises the deformation and displacement of a sample pattern after reflection from a test surface to infer the surface slopes. Differentiation of the measurement data leads to a curvature map, which is very useful for surface quality checks with sensitivity down to the nanometre range. Integration of the data allows reconstruction of the absolute surface shape, but the procedure is very error-prone because systematic errors may add up to large shape deviations. In addition, there are infinitely many combinations for slope and object distance that satisfy a given observation. One solution for this ambiguity is to include information on the object's distance. It must be known very accurately. Two laser pointers can be used for positioning the object, and we also show how a confocal chromatic distance sensor can be used to define a reference point on a smooth surface from which the integration can be started. The used integration algorithm works without symmetry constraints and is therefore suitable for free-form surfaces as well. Unlike null testing, deflectometry also determines radius of curvature (ROC) or focal lengths as a direct result of the 3D surface reconstruction. This is shown by the example of a 200 mm diameter telescope mirror, whose ROC measurements by coordinate measurement machine and deflectometry coincide to within 0.27 mm (or a sag error of 1.3μm). By the example of a diamond-turned off-axis parabolic mirror, we demonstrate that the figure measurement uncertainty comes close to a well-calibrated Fizeau interferometer.
Absolute determination of local tropospheric OH concentrations
NASA Technical Reports Server (NTRS)
Armerding, Wolfgang; Comes, Franz-Josef
1994-01-01
Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.
Absolute Radiometric Calibration of KOMPSAT-3A
NASA Astrophysics Data System (ADS)
Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.
2016-06-01
This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.
Moment tensors of a dislocation in a porous medium
NASA Astrophysics Data System (ADS)
Wang, Zhi; Hu, Hengshan
2016-06-01
A dislocation can be represented by a moment tensor for calculating seismic waves. However, the moment tensor expression was derived in an elastic medium and cannot completely describe a dislocation in a porous medium. In this paper, effective moment tensors of a dislocation in a porous medium are derived. It is found that the dislocation is equivalent to two independent moment tensors, i.e., the bulk moment tensor acting on the bulk of the porous medium and the isotropic fluid moment tensor acting on the pore fluid. Both of them are caused by the solid dislocation as well as the fluid-solid relative motion corresponding to fluid injection towards the surrounding rocks (or fluid outflow) through the fault plane. For a shear dislocation, the fluid moment tensor is zero, and the dislocation is equivalent to a double couple acting on the bulk; for an opening dislocation or fluid injection, the two moment tensors are needed to describe the source. The fluid moment tensor only affects the radiated compressional waves. By calculating the ratio of the radiation fields generated by unit fluid moment tensor and bulk moment tensor, it is found that the fast compressional wave radiated by the bulk moment tensor is much stronger than that radiated by the fluid moment tensor, while the slow compressional wave radiated by the fluid moment tensor is several times stronger than that radiated by the bulk moment tensor.
This data set is a polygon shapefile of the boundaries of Census Blocks in New England derived from U.S. Census Bureau 2000 TIGER/Line data. Numerous attributes pertaining to population are included. TIGER, TIGER/Line, and Census TIGER are registered trademarks of the Bureau o...
Confinement of block copolymers
1995-12-31
The following were studied: confinement of block copolymers, free surface confinement, effects of substrate interactions, random copolymers at homopolymer interfaces, phase separation in thin film polymer mixtures, buffing of polymer surfaces, and near edge x-ray absorption fine structure spectroscopy.
ERIC Educational Resources Information Center
Ubben, Gerald C.
1976-01-01
Achieving flexibility without losing student accountability is a challenge that faces every school. With a fluid block schedule, as described here, accountability is maintained without inhibiting flexibility. An additional advantage is that three levels of schedule decision making take some of the pressure off the principal. (Editor)
ERIC Educational Resources Information Center
Williams, Ian D.
This experiment investigated the capability for movement and muscle spindle function at successive stages during the development of ischemic nerve block (INB) by pressure cuff. Two male subjects were observed under six randomly ordered conditions. The duration of index finger oscillation to exhaustion, paced at 1.2Hz., was observed on separate…
ERIC Educational Resources Information Center
Science Teacher, 2005
2005-01-01
Curcumin, the pungent yellow spice found in both turmeric and curry powders, blocks a key biological pathway needed for development of melanoma and other cancers, according to a study that appears in the journal Cancer. Researchers from The University of Texas M. D. Anderson Cancer Center demonstrate how curcumin stops laboratory strains of…
[Masquerading bundle branch block].
Kukla, Piotr; Baranchuk, Adrian; Jastrzębski, Marek; Bryniarski, Leszek
2014-01-01
We here describe a surface 12-lead electrocardiogram (ECG) of a 72-year-old female with a prior history of breast cancer and chemotherapy-induced cardiomyopathy. An echocardiogram revealed left ventricular dysfunction, ejection fraction of 23%, with mild enlarged left ventricle. The 12-lead ECG showed atrial fibrillation with a mean heart rate of about 100 bpm, QRS duration 160 ms, QT interval 400 ms, right bundle branch block (RBBB) and left anterior fascicular block (LAFB). The combination of RBBB features in the precordial leads and LAFB features in the limb leads is known as ''masquerading bundle branch block''. In most cases of RBBB and LAFB, the QRS axis deviation is located between - 80 to -120 degrees. Rarely, when predominant left ventricular forces are present, the QRS axis deviation is near about -90 degrees, turning the pattern into an atypical form. In a situation of RBBB associated with LAFB, the S wave can be absent or very small in lead I. Such a situation is the result of not only purely LAFB but also with left ventricular hypertrophy and/or focal block due to scar (extensive anterior myocardial infarction) or fibrosis (cardiomyopathy). Sometimes, this specific ECG pattern is mistaken for LBBB. RBBB with LAFB may imitate LBBB either in the limb leads (known as 'standard masquerading' - absence of S wave in lead I), or in the precordial leads (called 'precordial masquerading' - absence of S wave in leads V₅ and V₆). Our ECG showed both these types of masquerading bundle branch block - absence of S wave in lead I and in leads V₅ and V₆. PMID:24469750
NASA Astrophysics Data System (ADS)
Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong
2016-06-01
We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%–0.68% (k = 2).
Supplementary and Enrichment Series: Absolute Value. Teachers' Commentary. SP-25.
ERIC Educational Resources Information Center
Bridgess, M. Philbrick, Ed.
This is one in a series of manuals for teachers using SMSG high school supplementary materials. The pamphlet includes commentaries on the sections of the student's booklet, answers to the exercises, and sample test questions. Topics covered include addition and multiplication in terms of absolute value, graphs of absolute value in the Cartesian…
Supplementary and Enrichment Series: Absolute Value. SP-24.
ERIC Educational Resources Information Center
Bridgess, M. Philbrick, Ed.
This is one in a series of SMSG supplementary and enrichment pamphlets for high school students. This series is designed to make material for the study of topics of special interest to students readily accessible in classroom quantity. Topics covered include absolute value, addition and multiplication in terms of absolute value, graphs of absolute…
Novalis' Poetic Uncertainty: A "Bildung" with the Absolute
ERIC Educational Resources Information Center
Mika, Carl
2016-01-01
Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…
Absolute Humidity and the Seasonality of Influenza (Invited)
NASA Astrophysics Data System (ADS)
Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.
2010-12-01
Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.
Karst Water System Investigated by Absolute Gravimetry
NASA Astrophysics Data System (ADS)
Quinif, Y.; Meus, P.; van Camp, M.; Kaufmann, O.; van Ruymbeke, M.; Vandiepenbeeck, M.; Camelbeeck, T.
2006-12-01
The highly anisotropic and heterogeneous hydrogeological characteristics of karst aquifers are difficult to characterize and present challenges for modeling of storage capacities. Little is known about the surface and groundwater interconnection, about the connection between the porous formations and the draining cave and conduits, and about the variability of groundwater volume within the system. Usually, an aquifer is considered as a black box, where water fluxes are monitored as input and output. However, water inflow and outflow are highly variable and cannot be measured directly. A recent project, begun in 2006 sought to constrain the water budget in a Belgian karst aquifer and to assess the porosity and water dynamics, combining absolute gravity (AG) measurements and piezometric levels around the Rochefort cave. The advantage of gravity measurements is that they integrate all the subsystems in the karst system. This is not the case with traditional geophysical tools like boring or monitoring wells, which are soundings affected by their near environment and its heterogeneity. The investigated cave results from the meander cutoff system of the Lomme River. The main inputs are swallow holes of the river crossing the limestone massif. The river is canalized and the karst system is partly disconnected from the hydraulic system. In February and March 2006, when the river spilled over its dyke and sank into the most important swallow hole, this resulted in dramatic and nearly instantaneous increases in the piezometric levels in the cave, reaching up to 13 meters. Meanwhile, gravity increased by 50 and 90 nms-2 in February and March, respectively. A first conclusion is that during these sudden floods, the pores and fine fissures were poorly connected with the enlarged fractures, cave, and conduits. With a rise of 13 meters in the water level and a 5% porosity, a gravity change of 250 nms-2 should have been expected. This moderate gravity variation suggests either a
Vacillation, indecision and hesitation in moment-by-moment decoding of monkey motor cortex.
Kaufman, Matthew T; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V
2015-01-01
When choosing actions, we can act decisively, vacillate, or suffer momentary indecision. Studying how individual decisions unfold requires moment-by-moment readouts of brain state. Here we provide such a view from dorsal premotor and primary motor cortex. Two monkeys performed a novel decision task while we recorded from many neurons simultaneously. We found that a decoder trained using 'forced choices' (one target viable) was highly reliable when applied to 'free choices'. However, during free choices internal events formed three categories. Typically, neural activity was consistent with rapid, unwavering choices. Sometimes, though, we observed presumed 'changes of mind': the neural state initially reflected one choice before changing to reflect the final choice. Finally, we observed momentary 'indecision': delay forming any clear motor plan. Further, moments of neural indecision accompanied moments of behavioral indecision. Together, these results reveal the rich and diverse set of internal events long suspected to occur during free choice. PMID:25942352
Global moment tensor computation at GFZ Potsdam
NASA Astrophysics Data System (ADS)
Saul, J.; Becker, J.; Hanka, W.
2011-12-01
As part of its earthquake information service, GFZ Potsdam has started to provide seismic moment tensor solutions for significant earthquakes world-wide. The software used to compute the moment tensors is a GFZ-Potsdam in-house development, which uses the framework of the software SeisComP 3 (Hanka et al., 2010). SeisComP 3 (SC3) is a software package for seismological data acquisition, archival, quality control and analysis. SC3 is developed by GFZ Potsdam with significant contributions from its user community. The moment tensor inversion technique uses a combination of several wave types, time windows and frequency bands depending on magnitude and station distance. Wave types include body, surface and mantle waves as well as the so-called 'W-Phase' (Kanamori and Rivera, 2008). The inversion is currently performed in the time domain only. An iterative centroid search can be performed independently both horizontally and in depth. Moment tensors are currently computed in a semi-automatic fashion. This involves inversions that are performed automatically in near-real time, followed by analyst review prior to publication. The automatic results are quite often good enough to be published without further improvements, sometimes in less than 30 minutes from origin time. In those cases where a manual interaction is still required, the automatic inversion usually does a good job at pre-selecting those traces that are the most relevant for the inversion, keeping the work required for the analyst at a minimum. Our published moment tensors are generally in good agreement with those published by the Global Centroid-Moment-Tensor (GCMT) project for earthquakes above a magnitude of about Mw 5. Additionally we provide solutions for smaller earthquakes above about Mw 4 in Europe, which are normally not analyzed by the GCMT project. We find that for earthquakes above Mw 6, the most robust automatic inversions can usually be obtained using the W-Phase time window. The GFZ earthquake
Absolute radiometric calibration of advanced remote sensing systems
NASA Technical Reports Server (NTRS)
Slater, P. N.
1982-01-01
The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.
Testing the quasi-absolute method in photon activation analysis
Sun, Z. J.; Wells, D.; Starovoitova, V.; Segebade, C.
2013-04-19
In photon activation analysis (PAA), relative methods are widely used because of their accuracy and precision. Absolute methods, which are conducted without any assistance from calibration materials, are seldom applied for the difficulty in obtaining photon flux in measurements. This research is an attempt to perform a new absolute approach in PAA - quasi-absolute method - by retrieving photon flux in the sample through Monte Carlo simulation. With simulated photon flux and database of experimental cross sections, it is possible to calculate the concentration of target elements in the sample directly. The QA/QC procedures to solidify the research are discussed in detail. Our results show that the accuracy of the method for certain elements is close to a useful level in practice. Furthermore, the future results from the quasi-absolute method can also serve as a validation technique for experimental data on cross sections. The quasi-absolute method looks promising.
Learning in the temporal bisection task: Relative or absolute?
de Carvalho, Marilia Pinheiro; Machado, Armando; Tonneau, François
2016-01-01
We examined whether temporal learning in a bisection task is absolute or relational. Eight pigeons learned to choose a red key after a t-seconds sample and a green key after a 3t-seconds sample. To determine whether they had learned a relative mapping (short→Red, long→Green) or an absolute mapping (t-seconds→Red, 3t-seconds→Green), the pigeons then learned a series of new discriminations in which either the relative or the absolute mapping was maintained. Results showed that the generalization gradient obtained at the end of a discrimination predicted the pattern of choices made during the first session of a new discrimination. Moreover, most acquisition curves and generalization gradients were consistent with the predictions of the learning-to-time model, a Spencean model that instantiates absolute learning with temporal generalization. In the bisection task, the basis of temporal discrimination seems to be absolute, not relational. PMID:26752233
Block-classified motion compensation scheme for digital video
Zafar, S.; Zhang, Ya-Qin; Jabbari, B.
1996-03-01
A novel scheme for block-based motion compensation is introduced in which a block is classified according to the energy that is directly related to the motion activity it represents. This classification allows more flexibility in controlling the bit rate arid the signal-to-noise ratio and results in a reduction in motion search complexity. The method introduced is not dependent on the particular type of motion search algorithm implemented and can thus be used with any method assuming that the underlying matching criteria used is minimum absolute difference. It has been shown that the method is superior to a simple motion compensation algorithm where all blocks are motion compensated regardless of the energy resulting after the displaced difference.
Narang, Yashraj S; Arelekatti, V N Murthy; Winter, Amos G
2016-07-01
There is a major need in the developing world for a low-cost prosthetic knee that enables users to walk with able-bodied kinematics and low energy expenditure. To efficiently design such a knee, the relationship between the inertial properties of a prosthetic leg and joint kinetics and energetics must be determined. In this paper, using inverse dynamics, the theoretical effects of varying the inertial properties of an above-knee prosthesis on the prosthetic knee moment, hip power, and absolute hip work required for walking with able-bodied kinematics were quantified. The effects of independently varying mass and moment of inertia of the prosthesis, as well as independently varying the masses of each prosthesis segment, were also compared. Decreasing prosthesis mass to 25% of physiological leg mass increased peak late-stance knee moment by 43% and decreased peak swing knee moment by 76%. In addition, it reduced peak stance hip power by 26%, average swing hip power by 76%, and absolute hip work by 22%. Decreasing upper leg mass to 25% of its physiological value reduced absolute hip work by just 2%, whereas decreasing lower leg and foot mass reduced work by up to 22%, with foot mass having the greater effect. Results are reported in the form of parametric illustrations that can be utilized by researchers, designers, and prosthetists. The methods and outcomes presented have the potential to improve prosthetic knee component selection, facilitate able-bodied kinematics, and reduce energy expenditure for users of low-cost, passive knees in developing countries, as well as for users of advanced active knees in developed countries. PMID:26186794
Carlson, Robert W; Jonasch, Eric
2016-05-01
NCCN has developed a series of Evidence Blocks: graphics that provide ratings for each recommended treatment regimen in terms of efficacy, toxicity, quality and consistency of the supporting data, and affordability. The NCCN Evidence Blocks are currently available in 10 tumor types within the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines). At a glance, patients and providers can understand how a given treatment was assessed by the NCCN Guidelines Panel and get a sense of how a given treatment may match individual needs and preferences. Robert W. Carlson, MD, CEO of NCCN, described the reasoning behind this new feature and how the tool is used, and Eric Jonasch, MD, Professor of Genitourinary Medical Oncology at The University of Texas MD Anderson Cancer Center, and Vice Chair of the NCCN Kidney Cancer Panel, described its applicability in the management of metastatic renal cell carcinoma. PMID:27226499
Einstein A coefficients and absolute line intensities for the E2Π-X2Σ+ transition of CaH
NASA Astrophysics Data System (ADS)
Li, Gang; Harrison, Jeremy J.; Ram, Ram S.; Western, Colin M.; Bernath, Peter F.
2012-01-01
Einstein A coefficients and absolute line intensities have been calculated for the E2Π-X2Σ+ transition of CaH. Using wavefunctions derived from the Rydberg-Klein-Rees (RKR) method and electronic transition dipole moment functions obtained from high-level ab initio calculations, rotationless transition dipole moment matrix elements have been calculated for all 10 bands involving v‧=0,1 of the E2Π state and v″=0,1,2,3,4 of the X2Σ state. The rotational line strength factors (Hönl-London factors) are derived for the intermediate coupling case between Hund's case (a) and (b) for the E2Π-X2Σ+ transition. The computed transition dipole moments and the spectroscopic constants from a recent study [Ram et al., Journal of Molecular Spectroscopy 2011;266:86-91] have been combined to generate line lists containing Einstein A coefficients and absolute line intensities for 10 bands of the E2Π-X2Σ+ transition of CaH for J-values up to 50.5. The absolute line intensities have been used to determine a rotational temperature of 778±3 °C for the CaH sample in the recent study.
Glueball masses from an infrared moment problem.
Dudal, D; Guimaraes, M S; Sorella, S P
2011-02-11
We set up an infrared-based moment problem to obtain estimates of the masses of the scalar, pseudoscalar, and tensor glueballs in Euclidean Yang-Mills theories using the refined Gribov-Zwanziger (RGZ) version of the Landau gauge, which takes into account nonperturbative physics related to gauge copies. Employing lattice input for the mass scales of the RGZ gluon propagator, the lowest order moment problem approximation gives the values m(0++) ≈ 1.96 GeV, m(2++) ≈ 2.04 GeV, and m(0-+) ≈ 2.19 GeV in the SU(3) case, all within a 20% range of the corresponding lattice values. We also recover the mass hierarchy m(0++) < m(2++) < m(0-+). PMID:21405461
The photon magnetic moment problem revisited
NASA Astrophysics Data System (ADS)
Pérez Rojas, H.; Rodríguez Querts, E.
2014-06-01
The photon magnetic moment for radiation propagating in magnetized vacuum is defined as a pseudotensor quantity, proportional to the external electromagnetic field tensor. After expanding the eigenvalues of the polarization operator in powers of , we obtain approximate dispersion equations (cubic in ), and analytic solutions for the photon magnetic moment, valid for low momentum and/or large magnetic field. The paramagnetic photon experiences a redshift, with opposite sign to the gravitational one, which differs for parallel and perpendicular polarizations. It is due to the drain of photon transverse momentum and energy by the external field. By defining an effective transverse momentum, the constancy of the speed of light orthogonal to the field is guaranteed. We conclude that the propagation of the photon non-parallel to the magnetic direction behaves as if there is a quantum compression of the vacuum or a warp of space-time in an amount depending on its angle with regard to the field.
Magnetic Moments of States in 110Sn.
NASA Astrophysics Data System (ADS)
Kumbartzki, G. J.
2016-06-01
The semi-magic Sn isotopes with Z = 50 are the subject of extensive experimental and theoretical studies. The measured B(E2) values to the 21 + states for the neutron-deficient side of the isotope chain suggest enhanced collectivity when fewer particles are available if the proton shell is not broken. Magnetic moments which are sensitive to proton and neutron contributions to the wave functions of the states could provide critical and relevant information. Magnetic moments were previously measured only for the even stable and a few neutron-rich unstable Sn isotopes. A measurement of the g factors of excited states in 110Sn using the transient field technique was performed at the 88-Inch Cyclotron at the LBNL in Berkeley. The 110Sn nuclei were produced via an α-particle transfer to 106Cd.
Estimation from moments measurements for amyloid depolymerisation.
Armiento, Aurora; Doumic, Marie; Moireau, Philippe; Rezaei, H
2016-05-21
Estimating reaction rates and size distributions of protein polymers is an important step for understanding the mechanisms of protein misfolding and aggregation, a key feature for amyloid diseases. This study aims at setting this framework problem when the experimental measurements consist in the time-dynamics of a moment of the population (i.e. for instance the total polymerised mass, as in Thioflavin T measurements, or the second moment measured by Static Light Scattering). We propose a general methodology, and we solve the problem theoretically and numerically in the case of a depolymerising system. We then apply our method to experimental data of depolymerising oligomers, and conclude that smaller aggregates of ovPrP protein should be more stable than larger ones. This has an important biological implication, since it is commonly admitted that small oligomers constitute the most cytotoxic species during prion misfolding process. PMID:26953651
Interpreting magnetic data by integral moments
NASA Astrophysics Data System (ADS)
Tontini, F. Caratori; Pedersen, L. B.
2008-09-01
The use of the integral moments for interpreting magnetic data is based on a very elegant property of potential fields, but in the past it has not been completely exploited due to problems concerning real data. We describe a new 3-D development of previous 2-D results aimed at determining the magnetization direction, extending the calculation to second-order moments to recover the centre of mass of the magnetization distribution. The method is enhanced to reduce the effects of the regional field that often alters the first-order solutions. Moreover, we introduce an iterative correction to properly assess the errors coming from finite-size surveys or interaction with neighbouring anomalies, which are the most important causes of the failing of the method for real data. We test the method on some synthetic examples, and finally, we show the results obtained by analysing the aeromagnetic anomaly of the Monte Vulture volcano in Southern Italy.
Impurity-induced moments in underdoped cuprates
Khaliullin, G. |; Kilian, R.; Krivenko, S.; Fulde, P.
1997-11-01
We examine the effect of a nonmagnetic impurity in a two-dimensional spin liquid in the spin-gap phase, employing a drone-fermion representation of spin-1/2 operators. The properties of the local moment induced in the vicinity of the impurity are investigated and an expression for the nuclear-magnetic-resonance Knight shift is derived, which we compare with experimental results. Introducing a second impurity into the spin liquid an antiferromagnetic interaction between the moments is found when the two impurities are located on different sublattices. The presence of many impurities leads to a screening of this interaction as is shown by means of a coherent-potential approximation. Further, the Kondo screening of an impurity-induced local spin by charge carriers is discussed. {copyright} {ital 1997} {ital The American Physical Society}
Search for a Neutron Electric Dipole Moment
Golub, R.; Huffman, P. R.
2005-01-01
The possible existence of a nonzero electric dipole moment (EDM) of the neutron is of great fundamental interest in itself and directly impacts our understanding of the nature of electro-weak and strong interactions. The experimental search for this moment has the potential to reveal new sources of T and CP violation and to challenge calculations that propose extensions to the Standard Model. The goal of the current experiment is to significantly improve the measurement sensitivity to the neutron EDM over what is reported in the literature. The experiment has the potential to either measure the magnitude of the neutron EDM or to lower the current experimental limit by two orders of magnitude. Achieving these objectives will have a major impact on our understanding of the physics of both weak and strong interactions. PMID:27308116
Collapse of composite tubes under end moments
NASA Technical Reports Server (NTRS)
Stockwell, Alan E.; Cooper, Paul A.
1992-01-01
Cylindrical tubes of moderate wall thickness such as those proposed for the original space station truss, may fail due to the gradual collapse of the tube cross section as it distorts under load. Sometimes referred to as the Brazier instability, it is a nonlinear phenomenon. This paper presents an extension of an approximate closed form solution of the collapse of isotropic tubes subject to end moments developed by Reissner in 1959 to include specially orthotropic material. The closed form solution was verified by an extensive nonlinear finite element analysis of the collapse of long tubes under applied end moments for radius to thickness ratios and composite layups in the range proposed for recent space station truss framework designs. The finite element analysis validated the assumption of inextensional deformation of the cylindrical cross section and the approximation of the material as specially orthotropic.
Intraocular radiation blocking
Finger, P.T.; Ho, T.K.; Fastenberg, D.M.; Hyman, R.A.; Stroh, E.M.; Packer, S.; Perry, H.D. )
1990-09-01
Iodine-based liquid radiographic contrast agents were placed in normal and tumor-bearing (Greene strain) rabbit eyes to evaluate their ability to block iodine-125 radiation. This experiment required the procedures of tumor implantation, vitrectomy, air-fluid exchange, and 125I plaque and thermoluminescent dosimetry (TLD) chip implantation. The authors quantified the amount of radiation attenuation provided by intraocularly placed contrast agents with in vivo dosimetry. After intraocular insertion of a blocking agent or sham blocker (saline) insertion, episcleral 125I plaques were placed across the eye from episcleral TLD dosimeters. This showed that radiation attenuation occurred after blocker insertion compared with the saline controls. Then computed tomographic imaging techniques were used to describe the relatively rapid transit time of the aqueous-based iohexol compared with the slow transit time of the oil-like iophendylate. Lastly, seven nontumor-bearing eyes were primarily examined for blocking agent-related ocular toxicity. Although it was noted that iophendylate induced intraocular inflammation and retinal degeneration, all iohexol-treated eyes were similar to the control eyes at 7 and 31 days of follow-up. Although our study suggests that intraocular radiopaque materials can be used to shield normal ocular structures during 125I plaque irradiation, a mechanism to keep these materials from exiting the eye must be devised before clinical application.
Block 3. This photograph depicts the northern view of Block ...
Block 3. This photograph depicts the northern view of Block 2 towards the May D & F Tower from the main path along the western facades - Skyline Park, 1500-1800 Arapaho Street, Denver, Denver County, CO
Search for the electron electric dipole moment
De Mille, D.; Bickman, S.; Hamilton, P.; Jiang, Y.; Prasad, V.; Kawall, D.; Paolino, R.
2006-07-11
Extensions to the Standard Model (SM) typically include new heavy particles and new mechanisms for CP violation. These underlying phenomena can give rise to electric dipole moments of the electron and other particles. Tabletop-scale experiments used to search for these effects are described. Present experiments are already sensitive to new physics at the TeV scale, and new methods could extend this range dramatically. Such experiments could be among the first to show evidence for physics beyond the SM.
Nuclear moments of inertia at high spins
Deleplanque, M.A.
1983-12-01
Nuclei with highest angular momentum are discussed. The production of high spin states, and the basic ideas associated with high spin physics are reviewed. Recent developments from continuum ..gamma..-ray studies are presented: the measurement of different average moments of inertia gives new information on the interplay between collective and single particle aspects at high spins. Finally, the exciting possibility of resolving the continuum spectra with new detector systems is examined. 8 references.
Electric dipole moment of light nuclei
Gibson, Benjamin; Afnan, I R
2010-01-01
We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.
Electric dipole moment of light nuclei
Afnan, Iraj R.; Gibson, Benjamin F.
2010-07-27
We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.
Measurement of the Ω- magnetic moment
NASA Astrophysics Data System (ADS)
Diehl, H. T.; Teige, S.; Thomson, G. B.; Zou, Y.; James, C.; Luk, K. B.; Rameika, R.; Ho, P. M.; Longo, M. J.; Nguyen, A.; Duryea, J.; Guglielmo, G.; Johns, K.; Heller, K.; Thorne, K.
1991-08-01
A sample of 24 700 Ω- hyperons was produced by a prolarized neutral beam in a spin-transfer reaction. The Ω- polarizations are found to be -0.054+/-0.019 and -0.149+/-0.055 at mean Ω- momenta of 322 and 398 GeV/c, respectively. The directions of these polarizations give an Ω- magnetic moment of -(1.94+/-0.17+/-0.14)μN
Monte Carlo Volcano Seismic Moment Tensors
NASA Astrophysics Data System (ADS)
Waite, G. P.; Brill, K. A.; Lanza, F.
2015-12-01
Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.
Moment theory of electron thermalization in gases
Knierim, K.D.; Waldman, M.; Mason, E.A.
1982-07-15
A time-dependent moment method for solving the Boltzmann equation, not restricted to elastic collisions, is applied to the description of the thermalization of a beam of electrons in a gas. An exact solution is also obtained for diffusion and velocity relaxation by elastic collisions at very short times, before appreciable energy is lost. These results are compared with a recent approximate theory of Mozumder for electron thermalization, using two model systems: the Maxwell model (constant collisions frequency), and the rigid-sphere interaction (constant collision cross section). All results are exact for the Maxwell model, but for rigid-sphere interactions the errors in the velocity and energy relaxation times from Mozumder's method are approximately 25%. Many real systems are therefore probably described satisfactorily by the approximate theory, unless perhaps the cross sections have a peculiar energy dependence or inelastic collisions are important. If more accurate results are needed, the present moment method gives a systematic procedure for the calculation of higher-order approximations. Although the specific examples treated here consider only elastic collisions, the moment method applies to the case of inelastic collisions as well.
On moments-based Heisenberg inequalities
NASA Astrophysics Data System (ADS)
Zozor, Steeve; Portesi, Mariela; Sanchez-Moreno, Pablo; Dehesa, Jesus S.
2011-03-01
In this paper we revisit the quantitative formulation of the Heisenberg uncertainty principle. The primary version of this principle establishes the impossibility of refined simultaneous measurement of position x and momentum u for a (1-dimensional) quantum particle in terms of variances: <‖x‖2><‖u‖2>⩾1/4. Since this inequality applies provided each variance exists, some authors proposed entropic versions of this principle as an alternative (employing Shannon's or Rényi's entropies). As another alternative, we consider moments-based formulations and show that inequalities involving moments of orders other than 2 can be found. Our procedure is based on the Rényi entropic versions of the Heisenberg relation together with the search for the maximal entropy under statistical moments' constraints (<‖x‖a> and <‖u‖b>). Our result improves a relation proposed very recently by Dehesa et al.. [1] where the same approach was used but starting with the Shannon version of the entropic uncertainty relation. Furthermore, we show that when a =b, the best bound we can find with our approach coincides with that of Ref. [1] and, in addition, for a = b = 2 the variance-based Heisenberg relation is recovered. Finally, we illustrate our results in the cases of d-dimensional hydrogenic systems.
The MOMENT to search for CP violation
Blennow, Mattias; Coloma, Pilar; Fernández-Martinez, Enrique
2016-03-30
In this letter, we analyze for the first time the physics reach in terms of sensitivity to leptonic CP violation of the proposed MuOn-decay MEdium baseline NeuTrino beam (MOMENT) experiment, a novel neutrino oscillation facility that would operate with neutrinos from muon decay. Apart from obtaining a sufficiently intense flux, the bottlenecks to the physics reach of this experiment will be achieving a high enough suppression of the atmospheric background and, particularly, attaining a sufficient level of charge identification. We thus present our results as a function of these two factors. We consider a very massive Gd-doped Water Cherenkov detector.more » We also find that MOMENT will be competitive with other currently planned future oscillation experiments if a charge identification of at least 80 % can be achieved at the same time that the atmospheric background can be suppressed by at least a factor of ten. We also find a large synergy of MOMENT with the current generation of neutrino oscillation experiments, T2K and NOvA, which significantly enhances its final sensitivity.« less
Image contrast enhancement using Chebyshev wavelet moments
NASA Astrophysics Data System (ADS)
Uchaev, Dm. V.; Uchaev, D. V.; Malinnikov, V. A.
2015-12-01
A new algorithm for image contrast enhancement in the Chebyshev moment transform (CMT) domain is introduced. This algorithm is based on a contrast measure that is defined as the ratio of high-frequency to zero-frequency content in the bands of CMT matrix. Our algorithm enables to enhance a large number of high-spatial-frequency coefficients, that are responsible for image details, without severely degrading low-frequency contributions. To enhance high-frequency Chebyshev coefficients we use a multifractal spectrum of scaling exponents (SEs) for Chebyshev wavelet moment (CWM) magnitudes, where CWMs are multiscale realization of Chebyshev moments (CMs). This multifractal spectrum is very well suited to extract meaningful structures on images of natural scenes, because these images have a multifractal character. Experiments with test images show some advantages of the proposed algorithm as compared to other widely used image enhancement algorithms. The main advantage of our algorithm is the following: the algorithm very well highlights image details during image contrast enhancement.
The MOMENT to search for CP violation
NASA Astrophysics Data System (ADS)
Blennow, Mattias; Coloma, Pilar; Fernández-Martínez, Enrique
2016-03-01
In this letter, we analyze for the first time the physics reach in terms of sensitivity to leptonic CP violation of the proposed MuOn-decay MEdium baseline NeuTrino beam (MOMENT) experiment, a novel neutrino oscillation facility that would operate with neutrinos from muon decay. Apart from obtaining a sufficiently intense flux, the bottlenecks to the physics reach of this experiment will be achieving a high enough suppression of the atmospheric background and, particularly, attaining a sufficient level of charge identification. We thus present our results as a function of these two factors. As for the detector, we consider a very massive Gd-doped Water Cherenkov detector. We find that MOMENT will be competitive with other currently planned future oscillation experiments if a charge identification of at least 80 % can be achieved at the same time that the atmospheric background can be suppressed by at least a factor of ten. We also find a large synergy of MOMENT with the current generation of neutrino oscillation experiments, T2K and NOvA, which significantly enhances its final sensitivity.
Local electric dipole moments: A generalized approach.
Groß, Lynn; Herrmann, Carmen
2016-09-30
We present an approach for calculating local electric dipole moments for fragments of molecular or supramolecular systems. This is important for understanding chemical gating and solvent effects in nanoelectronics, atomic force microscopy, and intensities in infrared spectroscopy. Owing to the nonzero partial charge of most fragments, "naively" defined local dipole moments are origin-dependent. Inspired by previous work based on Bader's atoms-in-molecules (AIM) partitioning, we derive a definition of fragment dipole moments which achieves origin-independence by relying on internal reference points. Instead of bond critical points (BCPs) as in existing approaches, we use as few reference points as possible, which are located between the fragment and the remainder(s) of the system and may be chosen based on chemical intuition. This allows our approach to be used with AIM implementations that circumvent the calculation of critical points for reasons of computational efficiency, for cases where no BCPs are found due to large interfragment distances, and with local partitioning schemes other than AIM which do not provide BCPs. It is applicable to both covalently and noncovalently bound systems. © 2016 Wiley Periodicals, Inc. PMID:27520590
The MOMENT to search for CP violation
Blennow, Mattias; Coloma, Pilar; Fernández-Martinez, Enrique
2015-11-09
In this letter, we analyze for the first time the physics reach in terms of sensitivity to leptonic CP violation of the proposed MuOn-decay MEdium baseline NeuTrino beam (MOMENT) experiment, a novel neutrino oscillation facility that would operate with neutrinos from muon decay. Apart from obtaining a sufficiently intense flux, the bottlenecks to the physics reach of this experiment will be achieving a high enough suppression of the atmospheric background and, particularly, attaining a sufficient level of charge identification. We thus present our results as a function of these two factors. We consider a very massive Gd-doped Water Cherenkov detector. We also find that MOMENT will be competitive with other currently planned future oscillation experiments if a charge identification of at least 80 % can be achieved at the same time that the atmospheric background can be suppressed by at least a factor of ten. We also find a large synergy of MOMENT with the current generation of neutrino oscillation experiments, T2K and NOvA, which significantly enhances its final sensitivity.
Breakthrough curve moments scaling in hyporheic exchange
NASA Astrophysics Data System (ADS)
Bellin, A.; Tonina, D.; Marzadri, A.
2015-02-01
The interaction between stream flow and bed forms creates an uneven distribution of near-bed energy heads, which is the driving force of hyporheic exchange. Owing to the large disparity of advection characteristic times in the stream and within the hyporheic zone, solute mass exchange is often modeled by considering the latter as an immobile region. In a recent contribution Gónzalez-Pinzón et al. (2013) showed that existing models employing this hypothesis are structurally inconsistent with the scaling revealed by the analysis of 384 breakthrough curves collected in 44 streams across five continents. Motivated by this result, we analyze the scaling characteristics of a model that we recently developed by combining the analytical solution of the advective flow within the hyporheic zone with a Lagrangian solute transport model. Results show that similarly to the experimental data our model predicts breakthrough curves with a constant skewness, irrespective of the stream size, and that the scaling of the first three moments observed by Gónzalez-Pinzón et al. (2013) is also respected. Moreover, we propose regression curves that relate the first three moments of the residence time distribution with the alternate bar dimensionless depth (YBM*), a quantity that is easily measurable in the field. The connection between BTC moments and YBM* opens new possibilities for modeling transport processes at the catchment scale.
NASA Astrophysics Data System (ADS)
Schödel, R.
2015-08-01
Traceability of length measurements to the international system of units (SI) can be realized by using optical interferometry making use of well-known frequencies of monochromatic light sources mentioned in the Mise en Pratique for the realization of the metre. At some national metrology institutes, such as Physikalisch-Technische Bundesanstalt (PTB) in Germany, the absolute length of prismatic bodies (e.g. gauge blocks) is realized by so-called gauge-block interference comparators. At PTB, a number of such imaging phase-stepping interference comparators exist, including specialized vacuum interference comparators, each equipped with three highly stabilized laser light sources. The length of a material measure is expressed as a multiple of each wavelength. The large number of integer interference orders can be extracted by the method of exact fractions in which the coincidence of the lengths resulting from the different wavelengths is utilized as a criterion. The unambiguous extraction of the integer interference orders is an essential prerequisite for correct length measurements. This paper critically discusses coincidence criteria and their validity for three modes of absolute length measurements: 1) measurements under vacuum in which the wavelengths can be identified with the vacuum wavelengths, 2) measurements under air in which the air refractive index is obtained from environmental parameters using an empirical equation, and 3) measurements under air in which the air refractive index is obtained interferometrically by utilizing a vacuum cell placed along the measurement pathway. For case 3), which corresponds to PTB’s Kösters-Comparator for long gauge blocks, the unambiguous determination of integer interference orders related to the air refractive index could be improved by about a factor of ten when an ‘overall dispersion value,’ suggested in this paper, is used as coincidence criterion.
31 CFR 510.301 - Blocked account; blocked property.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Blocked account; blocked property. 510.301 Section 510.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NORTH KOREA SANCTIONS REGULATIONS General Definitions § 510.301 Blocked...
View southeast of caps for blocks for JFK; blocks are ...
View southeast of caps for blocks for JFK; blocks are used to support ship when it is repositioned to paint inaccessible areas masked by original support blocks. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Carpentry Shop, League Island, Philadelphia, Philadelphia County, PA
Self-organization of magnetic moments in dipolar chains with restricted degrees of freedom
NASA Astrophysics Data System (ADS)
Pshenichnikov, Alexander F.; Kuznetsov, Andrey A.
2015-10-01
Equilibrium behavior of a single chain of dipolar spheres is investigated by the method of molecular dynamics in a wide range of the dipolar coupling constant λ . Two cases are considered: rodlike and flexible chains. In the first case, particle centers are immovably fixed on one axis, but their magnetic moments retain absolute orientational freedom. It has been found that at λ ≳1.5 particle moments are chiefly aligned parallel to the chain axis, but the total moment of the chain continuously changes its sign with some mean frequency, which exponentially decreases with the growth of λ . Such behavior of the rodlike chain is analogous to the Néel relaxation of a superparamagnetic particle with a finite energy of magnetic anisotropy. In the flexible chain particles are able to move in the three-dimensional space, but the distance between centers of the first-nearest neighbors never exceeds a given limiting value rmax. If rmax≃d (d is the particle diameter) then the most probable shape of the chain of five or more particles at λ ≳6 is that of a ring. The behavior of chains with rmax≥2 d is qualitatively different: At λ ≃4 long chains collapse into dense quasispherical globules and at λ ≳8 these globules take toroidal configuration with a spontaneous azimuthal ordering of magnetic dipoles. With the increase of rmax to larger values (rmax>10 d ) globules expand and break down to form separate rings.
Ear - blocked at high altitudes
High altitudes and blocked ears; Flying and blocked ears; Eustachian tube dysfunction - high altitude ... you are going up or coming down from high altitudes. Chewing gum the entire time you are changing ...
Mini-implants and miniplates generate sub-absolute and absolute anchorage
Consolaro, Alberto
2014-01-01
The functional demand imposed on bone promotes changes in the spatial properties of osteocytes as well as in their extensions uniformly distributed throughout the mineralized surface. Once spatial deformation is established, osteocytes create the need for structural adaptations that result in bone formation and resorption that happen to meet the functional demands. The endosteum and the periosteum are the effectors responsible for stimulating adaptive osteocytes in the inner and outer surfaces.Changes in shape, volume and position of the jaws as a result of skeletal correction of the maxilla and mandible require anchorage to allow bone remodeling to redefine morphology, esthetics and function as a result of spatial deformation conducted by orthodontic appliances. Examining the degree of changes in shape, volume and structural relationship of areas where mini-implants and miniplates are placed allows us to classify mini-implants as devices of subabsolute anchorage and miniplates as devices of absolute anchorage. PMID:25162561
Revising the Multipole Moments of Numerical Spacetimes and its Consequences
NASA Astrophysics Data System (ADS)
Pappas, George; Apostolatos, Theocharis A.
2012-06-01
Identifying the relativistic multipole moments of a spacetime of an astrophysical object that has been constructed numerically is of major interest, both because the multipole moments are intimately related to the internal structure of the object, and because the construction of a suitable analytic metric that mimics a numerical metric should be based on the multipole moments of the latter one in order to yield a reliable representation. In this Letter, we show that there has been a widespread delusion in the way the multipole moments of a numerical metric are read from the asymptotic expansion of the metric functions. We show how one should read correctly the first few multipole moments (starting from the quadrupole mass moment) and how these corrected moments improve the efficiency of describing the metric functions with analytic metrics that have already been used in the literature, as well as other consequences of using the correct moments.
Absolute brightness temperature measurements at 2.1-mm wavelength
NASA Technical Reports Server (NTRS)
Ulich, B. L.
1974-01-01
Absolute measurements of the brightness temperatures of the Sun, new Moon, Venus, Mars, Jupiter, Saturn, and Uranus, and of the flux density of DR21 at 2.1-mm wavelength are reported. Relative measurements at 3.5-mm wavelength are also preented which resolve the absolute calibration discrepancy between The University of Texas 16-ft radio telescope and the Aerospace Corporation 15-ft antenna. The use of the bright planets and DR21 as absolute calibration sources at millimeter wavelengths is discussed in the light of recent observations.
Absolute Antenna Calibration at the US National Geodetic Survey
NASA Astrophysics Data System (ADS)
Mader, G. L.; Bilich, A. L.
2012-12-01
Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO
Non-equilibrium current cumulants and moments with a point-like defect
NASA Astrophysics Data System (ADS)
Mintchev, Mihail; Santoni, Luca; Sorba, Paul
2016-07-01
We derive the exact n-point current expectation values in the Landauer–Büttiker non-equilibrium steady state of a multi terminal system with star graph geometry and a point-like defect localised in the vertex. The current cumulants are extracted from the connected correlation functions and the cumulant generating function is established. We determine the moments, show that the associated moment problem has a unique solution and reconstruct explicitly the corresponding probability distribution. The basic building blocks of this distribution are the probabilities of particle emission and absorption from the heat reservoirs, driving the system away from equilibrium. We derive and analyse in detail these probabilities, showing that they fully describe the quantum transport problem in the system.
Porous block nanofiber composite filters
Ginley, David S.; Curtis, Calvin J.; Miedaner, Alexander; Weiss, Alan J.; Paddock, Arnold
2016-08-09
Porous block nano-fiber composite (110), a filtration system (10) and methods of using the same are disclosed. An exemplary porous block nano-fiber composite (110) includes a porous block (100) having one or more pores (200). The porous block nano-fiber composite (110) also includes a plurality of inorganic nano-fibers (211) formed within at least one of the pores (200).
Using Attribute Blocks with Children
ERIC Educational Resources Information Center
Huntsberger, John P.
1978-01-01
The classroom use of attribute blocks to develop thinking skills is defended in this article. Divergent-productive thinking is identified as an important skill that can be developed by using these blocks. However, teacher commitment and involvement in the program is considered necessary. Suggestions for using these blocks are included. (MA)
Building Curriculum during Block Play
ERIC Educational Resources Information Center
Andrews, Nicole
2015-01-01
Blocks are not just for play! In this article, Nicole Andrews describes observing the interactions of three young boys enthusiastically engaged in the kindergarten block center of their classroom, using blocks in a building project that displayed their ability to use critical thinking skills, physics exploration, and the development of language…
Property Blocks: Games and Activities.
ERIC Educational Resources Information Center
Humphreys, Alan, Ed.; Dailey, Jean, Ed.
This pamphlet describes the property blocks produced by MINNEMAST, and discusses their use in the development of thinking processes. Classification systems, including block diagrams and tree diagrams, are discussed. Sixteen classroom activities and eleven games which use the blocks are described. Suggestions to the teacher for further reading are…
CORE SATURATION BLOCKING OSCILLATOR
Spinrad, R.J.
1961-10-17
A blocking oscillator which relies on core saturation regulation to control the output pulse width is described. In this arrangement an external magnetic loop is provided in which a saturable portion forms the core of a feedback transformer used with the thermionic or semi-conductor active element. A first stationary magnetic loop establishes a level of flux through the saturation portion of the loop. A second adjustable magnet moves the flux level to select a saturation point giving the desired output pulse width. (AEC)
Faber, G S; Chang, C C; Kingma, I; Dennerlein, J T; van Dieën, J H
2016-04-11
Inertial motion capture (IMC) systems have become increasingly popular for ambulatory movement analysis. However, few studies have attempted to use these measurement techniques to estimate kinetic variables, such as joint moments and ground reaction forces (GRFs). Therefore, we investigated the performance of a full-body ambulatory IMC system in estimating 3D L5/S1 moments and GRFs during symmetric, asymmetric and fast trunk bending, performed by nine male participants. Using an ambulatory IMC system (Xsens/MVN), L5/S1 moments were estimated based on the upper-body segment kinematics using a top-down inverse dynamics analysis, and GRFs were estimated based on full-body segment accelerations. As a reference, a laboratory measurement system was utilized: GRFs were measured with Kistler force plates (FPs), and L5/S1 moments were calculated using a bottom-up inverse dynamics model based on FP data and lower-body kinematics measured with an optical motion capture system (OMC). Correspondence between the OMC+FP and IMC systems was quantified by calculating root-mean-square errors (RMSerrors) of moment/force time series and the interclass correlation (ICC) of the absolute peak moments/forces. Averaged over subjects, L5/S1 moment RMSerrors remained below 10Nm (about 5% of the peak extension moment) and 3D GRF RMSerrors remained below 20N (about 2% of the peak vertical force). ICCs were high for the peak L5/S1 extension moment (0.971) and vertical GRF (0.998). Due to lower amplitudes, smaller ICCs were found for the peak asymmetric L5/S1 moments (0.690-0.781) and horizontal GRFs (0.559-0.948). In conclusion, close correspondence was found between the ambulatory IMC-based and laboratory-based estimates of back load. PMID:26795123
Normalization of ground reaction forces, joint moments, and free moments in human locomotion.
Wannop, John W; Worobets, Jay T; Stefanyshyn, Darren J
2012-12-01
Authors who report ground reaction force (GRF), free moment (FM), and resultant joint moments usually normalize these variables by division normalization. Normalization parameters include body weight (BW), body weight x height (BWH), and body weight x leg length (BWL). The purpose of this study was to explore the appropriateness of division normalization, power curve normalization, and offset normalization on peak GRF, FM, and resultant joint moments. Kinematic and kinetic data were collected on 98 subjects who walked at 1.2 and 1.8 m/s and ran at 3.4 and 4.0 m/s. Linear curves were best fit to the data, and regression analyses performed to test the significance of the correlations. It was found that the relationship between peak force and BW, as well as joint moments and BW, BWH, and BWL, were not always linear. After division normalization, significant correlations were still found. Power curve and offset normalization, however, were effective at normalizing all variables; therefore, when attempting to normalize GRF and joint moments, perhaps nonlinear or offset methods should be implemented. PMID:23348130
NASA Astrophysics Data System (ADS)
Gerstmayr, Johannes; Irschik, Hans
2008-12-01
In finite element methods that are based on position and slope coordinates, a representation of axial and bending deformation by means of an elastic line approach has become popular. Such beam and plate formulations based on the so-called absolute nodal coordinate formulation have not yet been verified sufficiently enough with respect to analytical results or classical nonlinear rod theories. Examining the existing planar absolute nodal coordinate element, which uses a curvature proportional bending strain expression, it turns out that the deformation does not fully agree with the solution of the geometrically exact theory and, even more serious, the normal force is incorrect. A correction based on the classical ideas of the extensible elastica and geometrically exact theories is applied and a consistent strain energy and bending moment relations are derived. The strain energy of the solid finite element formulation of the absolute nodal coordinate beam is based on the St. Venant-Kirchhoff material: therefore, the strain energy is derived for the latter case and compared to classical nonlinear rod theories. The error in the original absolute nodal coordinate formulation is documented by numerical examples. The numerical example of a large deformation cantilever beam shows that the normal force is incorrect when using the previous approach, while a perfect agreement between the absolute nodal coordinate formulation and the extensible elastica can be gained when applying the proposed modifications. The numerical examples show a very good agreement of reference analytical and numerical solutions with the solutions of the proposed beam formulation for the case of large deformation pre-curved static and dynamic problems, including buckling and eigenvalue analysis. The resulting beam formulation does not employ rotational degrees of freedom and therefore has advantages compared to classical beam elements regarding energy-momentum conservation.
Evaluating small-body landing hazards due to blocks
NASA Astrophysics Data System (ADS)
Ernst, C.; Rodgers, D.; Barnouin, O.; Murchie, S.; Chabot, N.
2014-07-01
of several to ten), the size-frequency distribution of blocks can be modeled, allowing extrapolation from large block distributions to estimate small block densities. From that estimate, the probability of a lander encountering hazardous blocks can be calculated for a given lander design. Such calculations are used routinely to vet candidate sites for Mars landers [5--8]. Application to Small Bodies: To determine whether a similar approach will work for small bodies, we must determine if the large and small block populations can be linked. To do so, we analyze the comprehensive block datasets for the intermediate-sized Eros [9,10] and the small Itokawa [11,12]. Global and local block size-frequency distributions for Eros and Itokawa have power-law slopes on the order of -3 and match reasonably well between larger block sizes (from lower-resolution images) and smaller block sizes (from higher-resolution images). Although absolute block densities differ regionally on each asteroid, the slopes match reasonably well between Itokawa and Eros, with the geologic implications of this result discussed in [10]. For Eros and Itokawa, the approach of extending the size-frequency distribution from large, tens-of-meter-sized blocks down to small, tens-of-centimeter-sized blocks using a power-law fit to the large population yields reasonable estimates of small block populations. It is important to note that geologic context matters for the absolute block density --- if the global counts include multiple geologic settings, they will not directly extend to local areas containing only one setting [10]. A small number of high-resolution images of Phobos are sufficient for measuring blocks. These images are concentrated in the area outside of Stickney crater, which is thought to be the source of most of the observed blocks [13]. Block counts by Thomas et al. [13] suggest a power-law slope similar to those of Eros [9] and Itokawa global counts, with the absolute density of blocks similar
Absolute calibration of sniffer probes on Wendelstein 7-X.
Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W
2016-08-01
Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured. PMID:27587121
Absolute Value Boundedness, Operator Decomposition, and Stochastic Media and Equations
NASA Technical Reports Server (NTRS)
Adomian, G.; Miao, C. C.
1973-01-01
The research accomplished during this period is reported. Published abstracts and technical reports are listed. Articles presented include: boundedness of absolute values of generalized Fourier coefficients, propagation in stochastic media, and stationary conditions for stochastic differential equations.
The conditions of absolute summability of multiple trigonometric series
NASA Astrophysics Data System (ADS)
Bitimkhan, Samat; Akishev, Gabdolla
2015-09-01
In this work necessary and sufficient conditions of absolute summability of multiple trigonometric Fourier series of functions from anisotropic spaces of Lebesque are found in terms of its best approximation, the module of smoothness and the mixed smoothness module.
Absolute calibration of sniffer probes on Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.
2016-08-01
Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.
Eikonalization of conformal blocks
Fitzpatrick, A. Liam; Kaplan, Jared; Walters, Matthew T.; Wang, Junpu
2015-09-03
Classical field configurations such as the Coulomb potential and Schwarzschild solution are built from the t-channel exchange of many light degrees of freedom. We study the CFT analog of this phenomenon, which we term the 'eikonalization' of conformal blocks. We show that when an operator T appears in the OPE Ο(x)Ο(0), then the large spin Fock space states [TT···T]_{ℓ} also appear in this OPE with a computable coefficient. The sum over the exchange of these Fock space states in an
Eikonalization of conformal blocks
Fitzpatrick, A. Liam; Kaplan, Jared; Walters, Matthew T.; Wang, Junpu
2015-09-03
Classical field configurations such as the Coulomb potential and Schwarzschild solution are built from the t-channel exchange of many light degrees of freedom. We study the CFT analog of this phenomenon, which we term the 'eikonalization' of conformal blocks. We show that when an operator T appears in the OPE Ο(x)Ο(0), then the large spin Fock space states [TT···T]ℓ also appear in this OPE with a computable coefficient. The sum over the exchange of these Fock space states in an correlator build the classical 'T field' in the dual AdS description. In some limits the sum of all Fock spacemore » exchanges can be represented as the exponential of a single T exchange in the 4-pt correlator of O. Our results should be useful for systematizing 1/ℓ perturbation theory in general CFTs and simplifying the computation of large spin OPE coefficients. As examples we obtain the leading log ℓ dependence of Fock space conformal block coefficients, and we directly compute the OPE coefficients of the simplest ‘triple-trace’ operators.« less
Nerve blocks for chronic pain.
Hayek, Salim M; Shah, Atit
2014-10-01
Nerve blocks are often performed as therapeutic or palliative interventions for pain relief. However, they are often performed for diagnostic or prognostic purposes. When considering nerve blocks for chronic pain, clinicians must always consider the indications, risks, benefits, and proper technique. Nerve blocks encompass a wide variety of interventional procedures. The most common nerve blocks for chronic pain and that may be applicable to the neurosurgical patient population are reviewed in this article. This article is an introduction and brief synopsis of the different available blocks that can be offered to a patient. PMID:25240668
Absolute and Convective Instability of a Liquid Jet in Microgravity
NASA Technical Reports Server (NTRS)
Lin, Sung P.; Vihinen, I.; Honohan, A.; Hudman, Michael D.
1996-01-01
The transition from convective to absolute instability is observed in the 2.2 second drop tower of the NASA Lewis Research Center. In convective instability the disturbance grows spatially as it is convected downstream. In absolute instability the disturbance propagates both downstream and upstream, and manifests itself as an expanding sphere. The transition Reynolds numbers are determined for two different Weber numbers by use of Glycerin and a Silicone oil. Preliminary comparisons with theory are made.
Absolute biphoton meter of the quantum efficiency of photomultipliers
NASA Astrophysics Data System (ADS)
Ginzburg, V. M.; Keratishvili, N. G.; Korzhenevich, E. L.; Lunev, G. V.; Sapritskii, V. I.
1992-07-01
An biphoton absolute meter of photomultiplier quantum efficiency is presented which is based on spontaneous parametric down-conversion. Calculation and experiment results were obtained which made it possible to choose the parameters of the setup that guarantee a linear dependence of wavelength on the Z coordinate (along the axicon axis). Results of a series of absolute measurements of the quantum efficiency of a specific photomultiplier (FEU-136) are presented.
Absolute/convective instability of planar viscoelastic jets
NASA Astrophysics Data System (ADS)
Ray, Prasun K.; Zaki, Tamer A.
2015-01-01
Spatiotemporal linear stability analysis is used to investigate the onset of local absolute instability in planar viscoelastic jets. The influence of viscoelasticity in dilute polymer solutions is modeled with the FENE-P constitutive equation which requires the specification of a non-dimensional polymer relaxation time (the Weissenberg number, We), the maximum polymer extensibility, L, and the ratio of solvent and solution viscosities, β. A two-parameter family of velocity profiles is used as the base state with the parameter, S, controlling the amount of co- or counter-flow while N-1 sets the thickness of the jet shear layer. We examine how the variation of these fluid and flow parameters affects the minimum value of S at which the flow becomes locally absolutely unstable. Initially setting the Reynolds number to Re = 500, we find that the first varicose jet-column mode dictates the presence of absolute instability, and increasing the Weissenberg number produces important changes in the nature of the instability. The region of absolute instability shifts towards thin shear layers, and the amount of back-flow needed for absolute instability decreases (i.e., the influence of viscoelasticity is destabilizing). Additionally, when We is sufficiently large and N-1 is sufficiently small, single-stream jets become absolutely unstable. Numerical experiments with approximate equations show that both the polymer and solvent contributions to the stress become destabilizing when the scaled shear rate, η = /W e dU¯1/dx 2L ( /d U ¯ 1 d x 2 is the base-state velocity gradient), is sufficiently large. These qualitative trends are largely unchanged when the Reynolds number is reduced; however, the relative importance of the destabilizing stresses increases tangibly. Consequently, absolute instability is substantially enhanced, and single-stream jets become absolutely unstable over a sizable portion of the parameter space.
Heat capacity and absolute entropy of iron phosphides
Dobrokhotova, Z.V.; Zaitsev, A.I.; Litvina, A.D.
1994-09-01
There is little or no data on the thermodynamic properties of iron phosphides despite their importance for several areas of science and technology. The information available is of a qualitative character and is based on assessments of the heat capacity and absolute entropy. In the present work, we measured the heat capacity over the temperature range of 113-873 K using a differential scanning calorimeter (DSC) and calculated the absolute entropy.
Electric dipole moments (EDM) of ionic atoms
NASA Astrophysics Data System (ADS)
Oshima, Sachiko
2010-03-01
Recent investigations show that the second-order perturbation calculations of electric dipole moments (EDM) from the finite nuclear size as well as the relativistic effects are all canceled out by the third-order perturbation effects and that this is due to electron screening. To derive the nucleon EDM from the nucleus, we propose to measure the EDM of an ionic system. In this case, it is shown that the nucleon EDM can survive by the reduction factor of 1/Z for the ionic system with one electron stripped off.
Further analysis of the connected moments expansion
NASA Astrophysics Data System (ADS)
Amore, Paolo; Fernández, Francisco M.; Rodriguez, Martin
2011-12-01
By means of simple quantum-mechanical models we show that under certain conditions the main assumptions of the connected moments expansion (CMX) are no longer valid. In particular, we consider two-level systems: the harmonic oscillator and the pure quartic oscillator. Although derived from such simple models, we think that the results of this investigation may be of utility in future applications of the approach to realistic problems. We show that a straightforward analysis of the CMX exponential parameters may provide a clear indication of the success of the approach.
The nuclear electric quadrupole moment of copper.
Santiago, Régis Tadeu; Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade
2014-06-21
The nuclear electric quadrupole moment (NQM) of the (63)Cu nucleus was determined from an indirect approach by combining accurate experimental nuclear quadrupole coupling constants (NQCCs) with relativistic Dirac-Coulomb coupled cluster calculations of the electric field gradient (EFG). The data obtained at the highest level of calculation, DC-CCSD-T, from 14 linear molecules containing the copper atom give rise to an indicated NQM of -198(10) mbarn. Such result slightly deviates from the previously accepted standard value given by the muonic method, -220(15) mbarn, although the error bars are superimposed. PMID:24806277
Electric dipole moments (EDM) of ionic atoms
Oshima, Sachiko
2010-03-15
Recent investigations show that the second-order perturbation calculations of electric dipole moments (EDM) from the finite nuclear size as well as the relativistic effects are all canceled out by the third-order perturbation effects and that this is due to electron screening. To derive the nucleon EDM from the nucleus, we propose to measure the EDM of an ionic system. In this case, it is shown that the nucleon EDM can survive by the reduction factor of 1/Z for the ionic system with one electron stripped off.
Large muon electric dipole moment from flavor?
Hiller, Gudrun; Huitu, Katri; Rueppell, Timo; Laamanen, Jari
2010-11-01
We study the prospects and opportunities of a large muon electric dipole moment (EDM) of the order (10{sup -24}-10{sup -22}) ecm. We investigate how natural such a value is within the general minimal supersymmetric extension of the standard model with CP violation from lepton flavor violation in view of the experimental constraints. In models with hybrid gauge-gravity-mediated supersymmetry breaking, a large muon EDM is indicative for the structure of flavor breaking at the Planck scale, and points towards a high messenger scale.
A general moment expansion method for stochastic kinetic models
NASA Astrophysics Data System (ADS)
Ale, Angelique; Kirk, Paul; Stumpf, Michael P. H.
2013-05-01
Moment approximation methods are gaining increasing attention for their use in the approximation of the stochastic kinetics of chemical reaction systems. In this paper we derive a general moment expansion method for any type of propensities and which allows expansion up to any number of moments. For some chemical reaction systems, more than two moments are necessary to describe the dynamic properties of the system, which the linear noise approximation is unable to provide. Moreover, also for systems for which the mean does not have a strong dependence on higher order moments, moment approximation methods give information about higher order moments of the underlying probability distribution. We demonstrate the method using a dimerisation reaction, Michaelis-Menten kinetics and a model of an oscillating p53 system. We show that for the dimerisation reaction and Michaelis-Menten enzyme kinetics system higher order moments have limited influence on the estimation of the mean, while for the p53 system, the solution for the mean can require several moments to converge to the average obtained from many stochastic simulations. We also find that agreement between lower order moments does not guarantee that higher moments will agree. Compared to stochastic simulations, our approach is numerically highly efficient at capturing the behaviour of stochastic systems in terms of the average and higher moments, and we provide expressions for the computational cost for different system sizes and orders of approximation. We show how the moment expansion method can be employed to efficiently quantify parameter sensitivity. Finally we investigate the effects of using too few moments on parameter estimation, and provide guidance on how to estimate if the distribution can be accurately approximated using only a few moments.
Global absolut gravity reference system as replacement of IGSN 71
NASA Astrophysics Data System (ADS)
Wilmes, Herbert; Wziontek, Hartmut; Falk, Reinhard
2015-04-01
The determination of precise gravity field parameters is of great importance in a period in which earth sciences are achieving the necessary accuracy to monitor and document global change processes. This is the reason why experts from geodesy and metrology joined in a successful cooperation to make absolute gravity observations traceable to SI quantities, to improve the metrological kilogram definition and to monitor mass movements and smallest height changes for geodetic and geophysical applications. The international gravity datum is still defined by the International Gravity Standardization Net adopted in 1971 (IGSN 71). The network is based upon pendulum and spring gravimeter observations taken in the 1950s and 60s supported by the early free fall absolute gravimeters. Its gravity values agreed in every case to better than 0.1 mGal. Today, more than 100 absolute gravimeters are in use worldwide. The series of repeated international comparisons confirms the traceability of absolute gravity measurements to SI quantities and confirm the degree of equivalence of the gravimeters in the order of a few µGal. For applications in geosciences where e.g. gravity changes over time need to be analyzed, the temporal stability of an absolute gravimeter is most important. Therefore, the proposition is made to replace the IGSN 71 by an up-to-date gravity reference system which is based upon repeated absolute gravimeter comparisons and a global network of well controlled gravity reference stations.
Revisiting absolute and relative judgments in the WITNESS model.
Fife, Dustin; Perry, Colton; Gronlund, Scott D
2014-04-01
The WITNESS model (Clark in Applied Cognitive Psychology 17:629-654, 2003) provides a theoretical framework with which to investigate the factors that contribute to eyewitness identification decisions. One key factor involves the contributions of absolute versus relative judgments. An absolute contribution is determined by the degree of match between an individual lineup member and memory for the perpetrator; a relative contribution involves the degree to which the best-matching lineup member is a better match to memory than the remaining lineup members. In WITNESS, the proportional contributions of relative versus absolute judgments are governed by the values of the decision weight parameters. We conducted an exploration of the WITNESS model's parameter space to determine the identifiability of these relative/absolute decision weight parameters, and compared the results to a restricted version of the model that does not vary the decision weight parameters. This exploration revealed that the decision weights in WITNESS are difficult to identify: Data often can be fit equally well by setting the decision weights to nearly any value and compensating with a criterion adjustment. Clark, Erickson, and Breneman (Law and Human Behavior 35:364-380, 2011) claimed to demonstrate a theoretical basis for the superiority of lineup decisions that are based on absolute contributions, but the relationship between the decision weights and the criterion weakens this claim. These findings necessitate reconsidering the role of the relative/absolute judgment distinction in eyewitness decision making. PMID:23943556
Blocks database and its applications.
Henikoff, J G; Henikoff, S
1996-01-01
Protein blocks consist of multiply aligned sequence segments without gaps that represent the most highly conserved regions of protein families. A database of blocks has been constructed by successive application of the fully automated PROTOMAT system to lists of protein family members obtained from Prosite documentation. Currently, Blocks 8.0 based on protein families documented in Prosite 12 consists of 2884 blocks representing 770 families. Searches of the Blocks Database are carried out using protein or DNA sequence queries, and results are returned with measures of significance for both single and multiple block hits. The databse has also proved useful for derivation of amino acid substitution matrices (the Blosum series) and other sets of parameters. WWW and E-mail servers provide access to the database and associated functions, including a block maker for sequences provided by the user. PMID:8743679
Moment-to-moment brain signal variability: A next frontier in human brain mapping?
Garrett, Douglas D.; Samanez-Larkin, Gregory R.; MacDonald, Stuart W.S.; Lindenberger, Ulman; McIntosh, Anthony R.; Grady, Cheryl L.
2013-01-01
Neuroscientists have long observed that brain activity is naturally variable from moment-to-moment, but neuroimaging research has largely ignored the potential importance of this phenomenon. An emerging research focus on within-person brain signal variability is providing novel insights, and offering highly predictive, complementary, and even orthogonal views of brain function in relation to human life-span development, cognitive performance, and various clinical conditions. As a result, brain signal variability is evolving as a bona fide signal of interest, and should no longer be dismissed as meaningless noise when mapping the human brain. PMID:23458776
Berkolaiko, G.; Kuipers, J.
2013-12-15
Electronic transport through chaotic quantum dots exhibits universal behaviour which can be understood through the semiclassical approximation. Within the approximation, calculation of transport moments reduces to codifying classical correlations between scattering trajectories. These can be represented as ribbon graphs and we develop an algorithmic combinatorial method to generate all such graphs with a given genus. This provides an expansion of the linear transport moments for systems both with and without time reversal symmetry. The computational implementation is then able to progress several orders further than previous semiclassical formulae as well as those derived from an asymptotic expansion of random matrix results. The patterns observed also suggest a general form for the higher orders.
Salonen, Laura M; Medina, Dana D; Carbó-Argibay, Enrique; Goesten, Maarten G; Mafra, Luís; Guldris, Noelia; Rotter, Julian M; Stroppa, Daniel G; Rodríguez-Abreu, Carlos
2016-06-28
A supramolecular strategy based on strong molecular dipole moments is presented to gain access to covalent organic framework structures with high crystallinity and porosity. Antiparallel alignment of the molecules within the pore walls is proposed to lead to reinforced columnar stacking, thus affording a high-quality material. As a proof of principle, a novel pyrene dione building block was prepared and reacted with hexahydroxytriphenylene to form a boronic ester-linked covalent organic framework. We anticipate the strategy presented herein to be valuable for producing highly defined COF structures. PMID:27257634
Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël
2014-01-01
This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players. PMID:25117871
Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël
2014-01-01
This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players. PMID:25117871
NASA Astrophysics Data System (ADS)
Yurchenko, Sergei N.; Carvajal, Miguel; Thiel, Walter; Jensen, Per
2006-09-01
We report a six-dimensional CCSD(T)/aug-cc-pVTZ dipole moment surface for the electronic ground state of PH 3 computed ab initio on a large grid of 10 080 molecular geometries. Parameterized, analytical functions are fitted through the ab initio data, and the resulting dipole moment functions are used, together with a potential energy function determined by refining an existing ab initio surface in fittings to experimental wavenumber data, for simulating absorption spectra of the first three polyads of PH 3, i.e., ( ν2, ν4), ( ν1, ν3, 2 ν2, 2 ν4, ν2 + ν4), and ( ν1 + ν2, ν3 + ν2, ν1 + ν4, ν3 + ν4, 2 ν2 + ν4, ν2 + 2 ν4, 3 ν2, 3 ν4). The resulting theoretical transition moments show excellent agreement with experiment. A line-by-line comparison of the simulated intensities of the ν2/ ν4 band system with 955 experimental intensity values reported by Brown et al. [L.R. Brown, R.L. Sams, I. Kleiner, C. Cottaz, L. Sagui, J. Mol. Spectrosc. 215 (2002) 178-203] gives an average absolute percentage deviation of 8.7% (and a root-mean-square deviation of 0.94 cm -1 for the transition wavenumbers). This is very remarkable since the calculations rely entirely on ab initio dipole moment surfaces and do not involve any adjustment of these surfaces to reproduce the experimental intensities. Finally, we predict the line strengths for transitions between so-called cluster levels (near-degenerate levels formed at high rotational excitation) for J up to 60.
Block copolymer investigations
NASA Astrophysics Data System (ADS)
Yufa, Nataliya A.
The research presented in this thesis deals with various aspects of block copolymers on the nanoscale: their behavior at a range of temperatures, their use as scaffolds, or for creation of chemically striped surfaces, as well as the behavior of metals on block copolymers under the influence of UV light, and the healing behavior of copolymers. Invented around the time of World War II, copolymers have been used for decades due to their macroscopic properties, such as their ability to be molded without vulcanization, and the fact that, unlike rubber, they can be recycled. In recent years, block copolymers (BCPs) have been used for lithography, as scaffolds for nano-objects, to create a magnetic hard drive, as well as in photonic and other applications. In this work we used primarily atomic force microscopy (AFM) and transmission electron microscopy (TEM), described in Chapter II, to conduct our studies. In Chapter III we demonstrate a new and general method for positioning nanoparticles within nanoscale grooves. This technique is suitable for nanodots, nanocrystals, as well as DNA. We use AFM and TEM to demonstrate selective decoration. In Chapters IV and V we use AFM and TEM to study the structure of polymer surfaces coated with metals and self-assembled monolayers. We describe how the surfaces were created, exhibit their structure on the nanoscale, and prove that their macroscopic wetting properties have been altered compared to the original polymer structures. Finally, Chapters VI and VII report out in-situ AFM studies of BCP at high temperatures, made possible only recently with the invention of air-tight high-temperature AFM imaging cells. We locate the transition between disordered films and cylinders during initial ordering. Fluctuations of existing domains leading to domain coarsening are also described, and are shown to be consistent with reptation and curvature minimization. Chapter VII deals with the healing of PS-b-PMMA following AFM-tip lithography or
Moment equations in spatial evolutionary ecology.
Lion, Sébastien
2016-09-21
How should we model evolution in spatially structured populations? Here, I review an evolutionary ecology approach based on the technique of spatial moment equations. I first provide a mathematical underpinning to the derivation of equations for the densities of various spatial configurations in network-based models. I then show how this spatial ecological framework can be coupled with an adaptive dynamics approach to compute the invasion fitness of a rare mutant in a resident population at equilibrium. Under the additional assumption that mutations have small phenotypic effects, I show that the selection gradient can be expressed as a function of neutral measures of genetic and demographic structure. I discuss the connections between this approach and inclusive fitness theory, as well as the applicability and limits of this technique. My main message is that spatial moment equations can be used as a means to obtain compact qualitative arguments about the evolution of life-history traits for a variety of life cycles. PMID:26555844
Space Station Control Moment Gyroscope Lessons Learned
NASA Technical Reports Server (NTRS)
Gurrisi, Charles; Seidel, Raymond; Dickerson, Scott; Didziulis, Stephen; Frantz, Peter; Ferguson, Kevin
2010-01-01
Four 4760 Nms (3510 ft-lbf-s) Double Gimbal Control Moment Gyroscopes (DGCMG) with unlimited gimbal freedom about each axis were adopted by the International Space Station (ISS) Program as the non-propulsive solution for continuous attitude control. These CMGs with a life expectancy of approximately 10 years contain a flywheel spinning at 691 rad/s (6600 rpm) and can produce an output torque of 258 Nm (190 ft-lbf)1. One CMG unexpectedly failed after approximately 1.3 years and one developed anomalous behavior after approximately six years. Both units were returned to earth for failure investigation. This paper describes the Space Station Double Gimbal Control Moment Gyroscope design, on-orbit telemetry signatures and a summary of the results of both failure investigations. The lessons learned from these combined sources have lead to improvements in the design that will provide CMGs with greater reliability to assure the success of the Space Station. These lessons learned and design improvements are not only applicable to CMGs but can be applied to spacecraft mechanisms in general.
A Moment-Based Condensed History Algorithm
Tolar, D.R.; Larsen, E.W.
2000-06-15
''Condensed History'' algorithms are Monte Carlo models for electron transport problems, They describe the aggregate effect of multiple collisions that occur when an electron travels a path length s{sub 0}. This path length is the distance each Monte Carlo electron travels between Condensed History steps. Conventional Condensed History schemes employ a splitting routine over the range 0 {le} s {le} s{sub 0}. For example, the Random Hinge method splits each path length step into two substeps; one with length {xi}s{sub 0} and one with length (1-{xi})s{sub 0}, where {xi} is a random number from 0 < {xi} < 1. Here we develop a new Condensed History algorithm to improve the accuracy of electron transport simulations by preserving the mean position and the variance in the mean of electrons that have traveled a path length s and are traveling with the direction cosine {mu}. These means and variances are obtained from the zeroth-, first-, and second-order spatial moments of the Boltzmann transport equation. Hence, our method is a Monte Carlo application of the ''Method of Moments''.
Moment tensors of ten witwatersrand mine tremors
McGarr, A.
1992-01-01
Ground motions, recorded both underground and on the surface in two of the South African Gold mining districts, were inverted to determine complete moment tensors for 10 mining-induced tremors in the magnitude range 1.9 to 3.3. The resulting moment tensors fall into two separate categories. Seven of the events involve substantial coseismic volumetric reduction-??V together with normal faulting entailing shear deformation ??AD, where the summation is over fault planes of area A and average slip D. For these events the ratio-??V/??AD ranges from 0.58 to 0.92, with an average value of 0.71. For the remaining three events ??V is not significantly different from zero; these events are largely double-couple sources involving normal faulting. Surprisingly, the two types of source mechanism appear to be very distinct in that there is not a continuous distribution of the source mix from ??V=0 to-??V?????AD. Presumably, the coseismic closure indicates substantial interaction between a mine stope and adjacent shear failure in the surrounding rock, under the influence of an ambient stress for which the maximum principal stress is oriented vertically. ?? 1992 Birkha??user Verlag.
Ferroelectricity with Ferromagnetic Moment in Orthoferrites
NASA Astrophysics Data System (ADS)
Tokunaga, Yusuke
2010-03-01
Exotic multiferroics with gigantic magnetoelectric (ME) coupling have recently been attracting broad interests from the viewpoints of both fundamental physics and possible technological application to next-generation spintronic devices. To attain a strong ME coupling, it would be preferable that the ferroelectric order is induced by the magnetic order. Nevertheless, the magnetically induced ferroelectric state with the spontaneous ferromagnetic moment is still quite rare apart from a few conical-spin multiferroics. To further explore multiferroic materials with both the strong ME coupling and spontaneous magnetization, we focused on materials with magnetic structures other than conical structure. In this talk we present that the most orthodox perovskite ferrite systems DyFeO3 and GdFeO3 have ``ferromagnetic-ferroelectric,'' i.e., genuinely multiferroic states in which weak ferromagnetic moment is induced by Dzyaloshinskii-Moriya interaction working on Fe spins and electric polarization originates from the striction due to symmetric exchange interaction between Fe and Dy (Gd) spins [1] [2]. Both materials showed large electric polarization (>0.1 μC/cm^2) and strong ME coupling. In addition, we succeeded in mutual control of magnetization and polarization with electric- and magnetic-fields in GdFeO3, and attributed the controllability to novel, composite domain wall structure. [4pt] [1] Y. Tokunaga et al., Phys. Rev. Lett. 101, 097205 (2008). [0pt] [2] Y. Tokunaga et al., Nature Mater. 8, 558 (2009).
Experimental moments of the nucleon structure function F2
Mikhail Osipenko; W. Melnitchouk; Silvano Simula; Sergey Kulagin; Giovanni Ricco
2007-12-01
Experimental data on the F2 structure functions of the proton and deuteron, including recent results from CLAS at Jefferson Lab, have been used to construct their n<=12 moments. A comprehensive analysis of the moments in terms of the operator product expansion has been performed to separate the moments into leading and higher twist contributions. Particular attention was paid to the issue of nuclear corrections in the deuteron, when extracting the neutron moments from data. The difference between the proton and neutron moments was compared directly with lattice QCD simulations. Combining leading twist moments of the neutron and proton we found the d/u ratio at x->1 approaching 0, although the precision of the data did not allow to exclude the 1/5 value. The higher twist components of the proton and neutron moments suggest that multi-parton correlations are isospin independent.
NASA Astrophysics Data System (ADS)
Dorbolo, Stephane; Adami, Nicolas; Grasp Team
2014-11-01
The motion of ice discs released at the surface of a thermalized bath was investigated. As observed in some rare events in the Nature, the discs start spinning spontaneously. The motor of this motion is the cooling of the water close to the ice disc. As the density of water is maximum at 4°C, a downwards flow is generated from the surface of the ice block to the bottom. This flow generates the rotation of the disc. The speed of rotation depends on the mass of the ice disc and on the temperature of the bath. A model has been constructed to study the influence of the temperature of the bath. Finally, ice discs were put on a metallic plate. Again, a spontaneous rotation was observed. FNRS is thanked for financial support.
Dravid, R M; Paul, R E
2007-10-01
Interpleural blockade is effective in treating unilateral surgical and nonsurgical pain from the chest and upper abdomen in both the acute and chronic settings. It has been shown to provide safe, high-quality analgesia after cholecystectomy, thoracotomy, renal and breast surgery, and for certain invasive radiological procedures of the renal and hepatobiliary systems. It has also been used successfully in the treatment of pain from multiple rib fractures, herpes zoster, complex regional pain syndromes, thoracic and abdominal cancer, and pancreatitis. The technique is simple to learn and has both few contra-indications and a low incidence of complications. In the first of two reviews, the authors cover the history, taxonomy and anatomical considerations, the spread of local anaesthetic, and the mechanism of action, physiological, pharmacological and technical considerations in the performance of the block. PMID:17845657
NASA Technical Reports Server (NTRS)
1993-01-01
The Biomedical Optical Company of America's Eagle 475 lens absorbs 100 percent of all photowavelengths considered hazardous to eye tissue, including ultraviolet and blue light, which are considered contributors to cataract and age-related macular degeneration. The lens absorbs hazardous wavelengths, but allows a higher percentage of visually useful areas of the spectrum to pass through. Polarization blocks out irritating glint and glare and heightens visual acuity. The Eagle 475 sunglasses are the latest in a series of spinoffs that originated at the Jet Propulsion Laboratory where two scientists developed a protective, welding curtain that filtered out harmful irradiance. The result was a commercial curtain that absorbs filters and scatters light, providing protection for personnel in welding areas. Further research focused on protective industrial glasses and later on consumer products.
Blanket integrated blocking diodes
NASA Astrophysics Data System (ADS)
Uebele, P.; Kasper, C.; Rasch, K.-D.
1986-11-01
Two types of large area protection diodes for integration in solar arrays were developed in planar technology. For application in a bus voltage concept of V sub bus = 80 V a p-doped blanket integrated blocking diode (p-IBD) was developed with V sub rev = 120 V, whereas for the high voltage concept of V sub bus = 160 V a n-IBD with V sub rev = 250 V was developed. Application as blanket integrated shunt diodes is recommended. The optimized rearside diffusion provides a low forward voltage drop in the temperature range of minus 100 to plus 150 C. As a consequence of planar technology metallized coverglasses have to be used to minimize the photocurrent.
Spintronics: Conceptual Building Blocks
NASA Astrophysics Data System (ADS)
Ansermet, J.-Ph.
The purpose of this introduction to spintronics is to provide some elementary description of its conceptual building blocks. Thus, it is intended for a newcomer to the field. After recalling rudimentary descriptions of spin precession and spin relaxation, spin-dependent transport is treated within the Boltzmann formalism. This suffices to introduce key notions such as the spin asymmetry of the conductivities in the two-current model, the spin diffusion length, and spin accumulation. Two basic mechanisms of spin relaxation are then presented, one arising from spin-orbit scattering and the other from electron-magnon collisions. Finally, the action of a spin-polarized current on magnetization is presented in a thermodynamics framework. This introduces the notion of spin torque and the characteristic length scale over which the transverse spin polarization of conduction electron decays as it is injected into a magnet.
A comparison of moment magnitude estimates for the European-Mediterranean and Italian regions
NASA Astrophysics Data System (ADS)
Gasperini, Paolo; Lolli, Barbara; Vannucci, Gianfranco; Boschi, Enzo
2012-09-01
With the goal of constructing a homogeneous data set of moment magnitudes (Mw) to be used for seismic hazard assessment, we compared Mw estimates from moment tensor catalogues available online. We found an apparent scaling disagreement between Mw estimates from the National Earthquake Information Center (NEIC) of the US Geological Survey and from the Global Centroid Moment Tensor (GCMT) project. We suspect that this is the effect of an underestimation of Mw > 7.0 (M0 > 4.0 × 1019 Nm) computed by NEIC owing to the limitations of their computational approach. We also found an apparent scaling disagreement between GCMT and two regional moment tensor catalogues provided by the 'Eidgenössische Technische Hochschule Zürich' (ETHZ) and by the European-Mediterranean Regional Centroid Moment Tensor (RCMT) project of the Italian 'Istituto Nazionale di Geofisica e Vulcanologia' (INGV). This is probably the effect of the overestimation of Mw < 5.5 (M0 < 2.2 × 1017 Nm), up to year 2002, and of Mw < 5.0 (M0 < 4.0 × 1016 Nm), since year 2003, owing to the physical limitations of the standard CMT inversion method used by GCMT for the earthquakes of relatively low magnitude. If the discrepant data are excluded from the comparisons, the scaling disagreements become insignificant in all cases. We observed instead small absolute offsets (≤0.1 units) for NEIC and ETHZ catalogues with respect to GCMT whereas there is an almost perfect correspondence between RCMT and GCMT. Finally, we found a clear underestimation of about 0.2 units of Mw magnitudes computed at the INGV using the time-domain moment tensor (TDMT) method with respect to those reported by GCMT and RCMT. According to our results, we suggest appropriate offset corrections to be applied to Mw estimates from NEIC, ETHZ and TDMT catalogues before merging their data with GCMT and RCMT catalogues. We suggest as well to discard the probably discrepant data from NEIC and GCMT if other Mw estimates from different sources are
ERIC Educational Resources Information Center
Levitt, Heidi; Butler, Mike; Hill, Travis
2006-01-01
Clients who had completed psychotherapy were interviewed about the significant experiences and moments they recalled within their sessions. These interviews were analyzed using grounded theory, creating a hierarchy of categories that represent what clients find important in therapy. From the hermeneutic analysis of the content of these categories,…
Atomic electric dipole moments of He and Yb induced by nuclear Schiff moments
Dzuba, V. A.; Flambaum, V. V.; Ginges, J. S. M.
2007-09-15
We have calculated the atomic electric dipole moments (EDMs) d of {sup 3}He and {sup 171}Yb induced by their respective nuclear Schiff moments S. Our results are d({sup 3}He)=8.3x10{sup -5} and d({sup 171}Yb)=-1.9 in units of 10{sup -17}(S/e fm{sup 3}) e cm. By considering the nuclear Schiff moments induced by the parity- and time-reversal violating nucleon-nucleon interaction, we find d({sup 171}Yb){approx}0.6d({sup 199}Hg). For {sup 3}He the nuclear EDM coupled with the hyperfine interaction gives a larger atomic EDM than the Schiff moment. The result for {sup 3}He is required for a neutron EDM experiment that is under development, where {sup 3}He is used as a comagnetometer. We find that the EDM for {sup 3}He is orders of magnitude smaller than the neutron EDM. The result for {sup 171}Yb is needed for the planning and interpretation of experiments that have been proposed to measure the EDM of this atom.
Vacillation, indecision and hesitation in moment-by-moment decoding of monkey motor cortex
Kaufman, Matthew T; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V
2015-01-01
When choosing actions, we can act decisively, vacillate, or suffer momentary indecision. Studying how individual decisions unfold requires moment-by-moment readouts of brain state. Here we provide such a view from dorsal premotor and primary motor cortex. Two monkeys performed a novel decision task while we recorded from many neurons simultaneously. We found that a decoder trained using ‘forced choices’ (one target viable) was highly reliable when applied to ‘free choices’. However, during free choices internal events formed three categories. Typically, neural activity was consistent with rapid, unwavering choices. Sometimes, though, we observed presumed ‘changes of mind’: the neural state initially reflected one choice before changing to reflect the final choice. Finally, we observed momentary ‘indecision’: delay forming any clear motor plan. Further, moments of neural indecision accompanied moments of behavioral indecision. Together, these results reveal the rich and diverse set of internal events long suspected to occur during free choice. DOI: http://dx.doi.org/10.7554/eLife.04677.001 PMID:25942352
NASA Astrophysics Data System (ADS)
Hsu, Y. J.; Yu, S. B.; Loveless, J. P.; Bacolcol, T.; Woessner, J.; Solidum, R., Jr.
2015-12-01
The Sunda plate converges obliquely with the Philippine Sea plate with a rate of ~100 mm/yr and results in the sinistral slip along the 1300 km-long Philippine fault. Using GPS data from 1998 to 2013 as well as a block modeling approach, we decompose the crustal motion into multiple rotating blocks and elastic deformation associated with fault slip at block boundaries. Our preferred model composed of 8 blocks, produces a mean residual velocity of 3.4 mm/yr at 93 GPS stations. Estimated long-term slip rates along the Manila subduction zone show a gradual southward decrease from 66 mm/yr at the northwest tip of Luzon to 60 mm/yr at the southern portion of the Manila Trench. We infer a low coupling fraction of 11% offshore northwest Luzon and a coupling fraction of 27% near the subduction of Scarborough Seamount. The accumulated strain along the Manila subduction zone at latitudes 15.5°~18.5°N could be balanced by earthquakes with composite magnitudes of Mw 8.7 and Mw 8.9 based on a recurrence interval of 500 years and 1000 years, respectively. Estimates of sinistral slip rates on the major splay faults of the Philippine fault system in central Luzon increase from east to west: sinistral slip rates are 2 mm/yr on the Dalton fault, 8 mm/yr on the Abra River fault, and 12 mm/yr on the Tubao fault. On the southern segment of the Philippine fault (Digdig fault), we infer left-lateral slip of ~20 mm/yr. The Vigan-Aggao fault in northwest Luzon exhibits significant reverse slip of up to 31 mm/yr, although deformation may be distributed across multiple offshore thrust faults. On the Northern Cordillera fault, we calculate left-lateral slip of ~7 mm/yr. Results of block modeling suggest that the majority of active faults in Luzon are fully locked to a depth of 15-20 km. Inferred moment magnitudes of inland large earthquakes in Luzon fall in the range of Mw 7.0-7.5 based on a recurrence interval of 100 years. Using the long-term plate convergence rate between the Sunda plate
Lin, W
2001-12-01
This report documents the Large-Block Test (LBT) conducted at Fran Ridge near Yucca Mountain, Nevada. The LBT was a thermal test conducted on an exposed block of middle non-lithophysal Topopah Spring tuff (Tptpmn) and was designed to assist in understanding the thermal-hydrological-mechanical-chemical (THMC) processes associated with heating and then cooling a partially saturated fractured rock mass. The LBT was unique in that it was a large (3 x 3 x 4.5 m) block with top and sides exposed. Because the block was exposed at the surface, boundary conditions on five of the six sides of the block were relatively well known and controlled, making this test both easier to model and easier to monitor. This report presents a detailed description of the test as well as analyses of the data and conclusions drawn from the test. The rock block that was tested during the LBT was exposed by excavation and removal of the surrounding rock. The block was characterized and instrumented, and the sides were sealed and insulated to inhibit moisture and heat loss. Temperature on the top of the block was also controlled. The block was heated for 13 months, during which time temperature, moisture distribution, and deformation were monitored. After the test was completed and the block cooled down, a series of boreholes were drilled, and one of the heater holes was over-cored to collect samples for post-test characterization of mineralogy and mechanical properties. Section 2 provides background on the test. Section 3 lists the test objectives and describes the block site, the site configuration, and measurements made during the test. Section 3 also presents a chronology of events associated with the LBT, characterization of the block, and the pre-heat analyses of the test. Section 4 describes the fracture network contained in the block. Section 5 describes the heating/cooling system used to control the temperature in the block and presents the thermal history of the block during the test
Improved ultrasonic standard reference blocks
NASA Technical Reports Server (NTRS)
Eitzen, D. G.; Sushinsky, G. F.; Chwirut, D. J.; Bechtoldt, C. J.; Ruff, A. W.
1976-01-01
A program to improve the quality, reproducibility and reliability of nondestructive testing through the development of improved ASTM-type ultrasonic reference standards is described. Reference blocks of aluminum, steel, and titanium alloys are to be considered. Equipment representing the state-of-the-art in laboratory and field ultrasonic equipment was obtained and evaluated. RF and spectral data on ten sets of ultrasonic reference blocks have been taken as part of a task to quantify the variability in response from nominally identical blocks. Techniques for residual stress, preferred orientation, and micro-structural measurements were refined and are applied to a reference block rejected by the manufacturer during fabrication in order to evaluate the effect of metallurgical condition on block response. New fabrication techniques for reference blocks are discussed and ASTM activities are summarized.
What Are Nerve Blocks for Headache?
... nerve blocks for headache? Print Email What are nerve blocks for headache? ACHE Newsletter Sign up for ... entering your e-mail address below. What are nerve blocks for headache? A nerve block is the ...
Covariant approaches to superconformal blocks
NASA Astrophysics Data System (ADS)
Fitzpatrick, A. Liam; Kaplan, Jared; Khandker, Zuhair U.; Li, Daliang; Poland, David; Simmons-Duffin, David
2014-08-01
We develop techniques for computing superconformal blocks in 4d superconformal field theories. First we study the super-Casimir differential equation, deriving simple new expressions for superconformal blocks for 4-point functions containing chiral operators in theories with -extended supersymmetry. We also reproduce these results by extending the "shadow formalism" of Ferrara, Gatto, Grillo, and Parisi to supersymmetric theories, where superconformal blocks can be represented as superspace integrals of three-point functions multiplied by shadow three-point functions.
Absolute irradiance of the Moon for on-orbit calibration
Stone, T.C.; Kieffer, H.H.
2002-01-01
The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.
Absolute luminosity measurements with the LHCb detector at the LHC
NASA Astrophysics Data System (ADS)
LHCb Collaboration
2012-01-01
Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overal precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.
Quantum hydrodynamic model by moment closure of Wigner equation
NASA Astrophysics Data System (ADS)
Cai, Zhenning; Fan, Yuwei; Li, Ruo; Lu, Tiao; Wang, Yanli
2012-10-01
In this paper, we derive the quantum hydrodynamics models based on the moment closure of the Wigner equation. The moment expansion adopted is of the Grad type first proposed by Grad ["On the kinetic theory of rarefied gases," Commun. Pure Appl. Math. 2(4), 331-407 (1949), 10.1002/cpa.3160020403]. The Grad's moment method was originally developed for the Boltzmann equation. Recently, a regularization method for the Grad's moment system of the Boltzmann equation was proposed by Cai et al. [Commun. Pure Appl. Math. "Globally hyperbolic regularization of Grad's moment system" (in press)] to achieve the global hyperbolicity so that the local well-posedness of the moment system is attained. With the moment expansion of the Wigner function, the drift term in the Wigner equation has exactly the same moment representation as in the Boltzmann equation, thus the regularization applies. The moment expansion of the nonlocal Wigner potential term in the Wigner equation turns out to be a linear source term, which can only induce very mild growth of the solution. As a result, the local well-posedness of the regularized moment system for the Wigner equation remains as for the Boltzmann equation.
Finger coordination during moment production on a mechanically fixed object
Shim, Jae Kun; Latash, Mark L.
2010-01-01
The moment production by several fingers on a mechanically fixed vertically oriented handle was studied under the systematic variations of task parameters such as (a) moment magnitude (1.0 Nm and 2.0 Nm) and (b) direction of moment production (into pronation and supination), as well as (c) vertical position of the handle from the moment axis, P (0, 2.0, 4.0, and 6.0 cm in both directions). The purpose of this study was twofold: to investigate the dependences between the task parameters and the performance variables and to test the mechanical advantage hypothesis. The performance variables changed symmetrically with P. In particular, magnitudes of the net horizontal and vertical forces both showed an S-shape change. The position of the point of zero free moment (PZFM) was determined. In the intermediate grasp locations (when 0
moment produced mainly by pronational or supinational effort) and the moment of the resultant force (moment generated mainly by pushing) into the total moment production scaled linearly with the P. The magnitudes of both agonist and antagonist moments (those acting in and against the direction of the required moment, respectively) of normal forces increased with P magnitudes while the magnitude of agonist moments of tangential forces decreased. For individual fingers, the ratio of finger force to its moment arm was not constant. The mechanical advantage hypothesis was successful in explaining some of the data but could not cope with other findings. We assume, therefore, that this hypothesis is limited in its applicability and may be task and effector specific. PMID:15024540
Atomic Quadrupole Moment Measurement Using Dynamic Decoupling.
Shaniv, R; Akerman, N; Ozeri, R
2016-04-01
We present a method that uses dynamic decoupling of a multilevel quantum probe to distinguish small frequency shifts that depend on m_{j}^{2}, where m_{j}^{2} is the angular momentum of level |j⟩ along the quantization axis, from large noisy shifts that are linear in m_{j}, such as those due to magnetic field noise. Using this method we measured the electric-quadrupole moment of the 4D_{5/2} level in ^{88}Sr^{+} to be 2.973_{-0.033}^{+0.026}ea_{0}^{2}. Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in ^{88}Sr^{+} based optical atomic clocks and verifies complicated many-body quantum calculations. PMID:27104691
Near-Field Magnetic Dipole Moment Analysis
NASA Technical Reports Server (NTRS)
Harris, Patrick K.
2003-01-01
This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.
Controlling statistical moments of stochastic dynamical networks
NASA Astrophysics Data System (ADS)
Bielievtsov, Dmytro; Ladenbauer, Josef; Obermayer, Klaus
2016-07-01
We consider a general class of stochastic networks and ask which network nodes need to be controlled, and how, to stabilize and switch between desired metastable (target) states in terms of the first and second statistical moments of the system. We first show that it is sufficient to directly interfere with a subset of nodes which can be identified using information about the graph of the network only. Then we develop a suitable method for feedback control which acts on that subset of nodes and preserves the covariance structure of the desired target state. Finally, we demonstrate our theoretical results using a stochastic Hopfield network and a global brain model. Our results are applicable to a variety of (model) networks and further our understanding of the relationship between network structure and collective dynamics for the benefit of effective control.
Controlling statistical moments of stochastic dynamical networks.
Bielievtsov, Dmytro; Ladenbauer, Josef; Obermayer, Klaus
2016-07-01
We consider a general class of stochastic networks and ask which network nodes need to be controlled, and how, to stabilize and switch between desired metastable (target) states in terms of the first and second statistical moments of the system. We first show that it is sufficient to directly interfere with a subset of nodes which can be identified using information about the graph of the network only. Then we develop a suitable method for feedback control which acts on that subset of nodes and preserves the covariance structure of the desired target state. Finally, we demonstrate our theoretical results using a stochastic Hopfield network and a global brain model. Our results are applicable to a variety of (model) networks and further our understanding of the relationship between network structure and collective dynamics for the benefit of effective control. PMID:27575147
Bacterial phenotype identification using Zernike moment invariants
NASA Astrophysics Data System (ADS)
Bayraktar, Bulent; Banada, Padmapriya P.; Hirleman, E. Daniel; Bhunia, Arun K.; Robinson, J. Paul; Rajwa, Bartek
2006-02-01
Pathogenic bacterial contamination in food products is costly to the public and to industry. Traditional methods for detection and identification of major food-borne pathogens such as Listeria monocytogenes typically take 3-7 days. Herein, the use of optical scattering for rapid detection, characterization, and identification of bacteria is proposed. Scatter patterns produced by the colonies are recognized without the need to use any specific model of light scattering on biological material. A classification system was developed to characterize and identify the scatter patterns obtained from colonies of various species of Listeria. The proposed classification algorithm is based on Zernike moment invariants (features) calculated from the scatter images. It has also been demonstrated that even a simplest approach to multivariate analysis utilizing principal component analysis paired with clustering or linear discriminant analysis can be successfully used to discriminate and classify feature vectors computed from the bacterial scatter patterns.
Atomic Quadrupole Moment Measurement Using Dynamic Decoupling
NASA Astrophysics Data System (ADS)
Shaniv, R.; Akerman, N.; Ozeri, R.
2016-04-01
We present a method that uses dynamic decoupling of a multilevel quantum probe to distinguish small frequency shifts that depend on mj2, where mj2 is the angular momentum of level |j ⟩ along the quantization axis, from large noisy shifts that are linear in mj, such as those due to magnetic field noise. Using this method we measured the electric-quadrupole moment of the 4 D5 /2 level in 88Sr+ to be 2.97 3-0.033+0.026e a02 . Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in 88Sr+ based optical atomic clocks and verifies complicated many-body quantum calculations.
Nuclear electric dipole moment of 3He
Stetcu, Ionel; Friar, J L; Hayes, A C; Liu, C P; Navratil, P
2008-01-01
In the no-core shell model (NCSM) framework, we calculate the {sup 3}He electric dipole moment (EDM) generated by parity- and time-reversal violation in the nucleon-nucleon interaction. While the results are somehow sensitive to the interaction model chosen for the strong two- and three-body interactions, we demonstrate the pion-exchange dominance to the EDM of {sup 3}He, if the coupling constants for {pi}, {rho} and {omega}-exchanges are of comparable magnitude, as expected. Finally, our results suggest that a measurement of {sup 3}He EDM would be complementary to the currently planned neutron and deuteron experiments, and would constitute a powerful constraint to the models of the pion P- and T-violating interactions.
Search for the Neutron Electric Dipole Moment
Plaster, Brad
2010-08-04
Searches for the neutron electric dipole moment (EDM) are motivated by their highly suppressed Standard Model value. The observation of a non-zero signal in the next generation of experiments would point unambiguously to the existence of new physics beyond the Standard Model. Several ongoing efforts worldwide hold the potential for an up to two-orders-of-magnitude improvement beyond the current upper limit on the neutron EDM of 2.9x10{sup -6} e-cm. In this talk, I review the basic measurement principles of neutron EDM searches, then discuss a new experiment to be carried out in the United States at the Spallation Neutron Source with ultracold neutrons and an in-situ '3He''co-magnetometer'.
Search for the Neutron Electric Dipole Moment
NASA Astrophysics Data System (ADS)
Plaster, Brad
2010-08-01
Searches for the neutron electric dipole moment (EDM) are motivated by their highly suppressed Standard Model value. The observation of a non-zero signal in the next generation of experiments would point unambiguously to the existence of new physics beyond the Standard Model. Several ongoing efforts worldwide hold the potential for an up to two-orders-of-magnitude improvement beyond the current upper limit on the neutron EDM of 2.9×10-6 e-cm. In this talk, I review the basic measurement principles of neutron EDM searches, then discuss a new experiment to be carried out in the United States at the Spallation Neutron Source with ultracold neutrons and an in-situ 3He "co-magnetometer".
Construction of momentum theorem using cross moments
NASA Astrophysics Data System (ADS)
Hahm, T. S.; Wang, Lu; Diamond, P. H.
2009-11-01
Charney-Drazin theorem has been extended to Hasegawa Wakatani system for zonal flow problem in magnetic fusion [P.H. Diamond, et al., Plasma Phys. Control. Fusion 50, 124018 (2008)]. For this model, the guiding center density is the potential vorticity and zonal flow is influenced by the particle flux. In this work we construct momentum theorems in terms of a hierarchy of cross moments
The perfect message at the perfect moment.
Kalyanam, Kirthi; Zweben, Monte
2005-11-01
Marketers planning promotional campaigns ask questions to boost the odds that the messages will be accepted: Who should receive each message? What should be its content? How should we deliver it? The one question they rarely ask is, when should we deliver it? That's too bad, because in marketing, timing is arguably the most important variable of all. Indeed, there are moments in a customer's relationship with a business when she wants to communicate with that business because something has changed. If the company contacts her with the right message in the right format at the right time, there's a good chance of a warm reception. The question of "when" can be answered by a new computer-based model called "dialogue marketing," which is, to date, the highest rung on an evolutionary ladder that ascends from database marketing to relationship marketing to one-to-one marketing. Its principle advantages over older approaches are that it is completely interactive, exploits many communication channels, and is "relationship aware": that is, it continuously tracks every nuance of the customer's interaction with the business. Thus, dialogue marketing responds to each transition in that relationship at the moment the customer requires attention. Turning a traditional marketing strategy into a dialogue-marketing program is a straightforward matter. Begin by identifying the batch communications you make with customers, then ask yourself what events could trigger those communications to make them more timely. Add a question or call to action to each message and prepare a different treatment or response for each possible answer. Finally, create a series of increasingly urgent calls to action that kick in if the question or call to action goes unanswered by the customer. As dialogue marketing proliferates, it may provide the solid new footing that Madison Avenue seeks. PMID:16299965
31 CFR 589.301 - Blocked account; blocked property.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Blocked account; blocked property. 589.301 Section 589.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY UKRAINE RELATED SANCTIONS...
31 CFR 544.301 - Blocked account; blocked property.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Blocked account; blocked property. 544.301 Section 544.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY WEAPONS OF MASS DESTRUCTION...
31 CFR 544.301 - Blocked account; blocked property.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Blocked account; blocked property. 544.301 Section 544.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY WEAPONS OF MASS DESTRUCTION...
31 CFR 544.301 - Blocked account; blocked property.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Blocked account; blocked property. 544.301 Section 544.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY WEAPONS OF MASS DESTRUCTION...
31 CFR 544.301 - Blocked account; blocked property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Blocked account; blocked property. 544.301 Section 544.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY WEAPONS OF MASS DESTRUCTION...
31 CFR 544.301 - Blocked account; blocked property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Blocked account; blocked property. 544.301 Section 544.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY WEAPONS OF MASS...
31 CFR 576.301 - Blocked account; blocked property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Blocked account; blocked property. 576.301 Section 576.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY IRAQ STABILIZATION AND INSURGENCY...
31 CFR 576.301 - Blocked account; blocked property.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Blocked account; blocked property. 576.301 Section 576.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY IRAQ STABILIZATION AND INSURGENCY...
31 CFR 576.301 - Blocked account; blocked property.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Blocked account; blocked property. 576.301 Section 576.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY IRAQ STABILIZATION AND INSURGENCY...
31 CFR 576.301 - Blocked account; blocked property.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Blocked account; blocked property. 576.301 Section 576.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY IRAQ STABILIZATION AND INSURGENCY...
31 CFR 558.301 - Blocked account; blocked property.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Blocked account; blocked property. 558.301 Section 558.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY SOUTH SUDAN SANCTIONS REGULATIONS...
31 CFR 545.301 - Blocked account; blocked property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Blocked account; blocked property. 545.301 Section 545.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY TALIBAN (AFGHANISTAN)...
31 CFR 510.301 - Blocked account; blocked property.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Blocked account; blocked property. 510.301 Section 510.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NORTH KOREA SANCTIONS REGULATIONS...
31 CFR 510.301 - Blocked account; blocked property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Blocked account; blocked property. 510.301 Section 510.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NORTH KOREA SANCTIONS REGULATIONS...
31 CFR 552.301 - Blocked account; blocked property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Blocked account; blocked property. 552.301 Section 552.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY YEMEN SANCTIONS REGULATIONS...
31 CFR 552.301 - Blocked account; blocked property.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Blocked account; blocked property. 552.301 Section 552.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY YEMEN SANCTIONS REGULATIONS...
31 CFR 594.301 - Blocked account; blocked property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Blocked account; blocked property. 594.301 Section 594.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY GLOBAL TERRORISM...
31 CFR 541.301 - Blocked account; blocked property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Blocked account; blocked property. 541.301 Section 541.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY ZIMBABWE SANCTIONS...
31 CFR 562.301 - Blocked account; blocked property.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Blocked account; blocked property. 562.301 Section 562.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY IRANIAN HUMAN RIGHTS ABUSES...
31 CFR 562.301 - Blocked account; blocked property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Blocked account; blocked property. 562.301 Section 562.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY IRANIAN HUMAN RIGHTS ABUSES SANCTIONS REGULATIONS General Definitions §...
31 CFR 562.301 - Blocked account; blocked property.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Blocked account; blocked property. 562.301 Section 562.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY IRANIAN HUMAN RIGHTS ABUSES...
31 CFR 562.301 - Blocked account; blocked property.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Blocked account; blocked property. 562.301 Section 562.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY IRANIAN HUMAN RIGHTS ABUSES SANCTIONS REGULATIONS General Definitions §...
31 CFR 548.301 - Blocked account; blocked property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Blocked account; blocked property. 548.301 Section 548.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY BELARUS SANCTIONS...
Block 3. Central view of Block 3 observed from the ...
Block 3. Central view of Block 3 observed from the west to the east. This photograph reveals the alignment of trees within the central path of the park. In addition, this photograph exposes broken bricks aligning tree beds - Skyline Park, 1500-1800 Arapaho Street, Denver, Denver County, CO
31 CFR 593.301 - Blocked account; blocked property.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Blocked account; blocked property. 593.301 Section 593.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY FORMER LIBERIAN REGIME OF CHARLES...
31 CFR 549.301 - Blocked account; blocked property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Blocked account; blocked property. 549.301 Section 549.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY LEBANON SANCTIONS REGULATIONS...
31 CFR 549.301 - Blocked account; blocked property.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Blocked account; blocked property. 549.301 Section 549.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY LEBANON SANCTIONS REGULATIONS...
31 CFR 549.301 - Blocked account; blocked property.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Blocked account; blocked property. 549.301 Section 549.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY LEBANON SANCTIONS REGULATIONS...
31 CFR 549.301 - Blocked account; blocked property.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Blocked account; blocked property. 549.301 Section 549.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY LEBANON SANCTIONS REGULATIONS...
31 CFR 510.301 - Blocked account; blocked property.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Blocked account; blocked property. 510.301 Section 510.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NORTH KOREA SANCTIONS REGULATIONS...
31 CFR 541.301 - Blocked account; blocked property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Blocked account; blocked property. 541.301 Section 541.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY ZIMBABWE SANCTIONS REGULATIONS...
31 CFR 541.301 - Blocked account; blocked property.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Blocked account; blocked property. 541.301 Section 541.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY ZIMBABWE SANCTIONS REGULATIONS...
31 CFR 541.301 - Blocked account; blocked property.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Blocked account; blocked property. 541.301 Section 541.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY ZIMBABWE SANCTIONS REGULATIONS...
31 CFR 541.301 - Blocked account; blocked property.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Blocked account; blocked property. 541.301 Section 541.301 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY ZIMBABWE SANCTIONS REGULATIONS...
Nuclear Alignment in Projectile Fragmentation as a Tool for Moment Measurements
Georgiev, G.; Matea, I.; Oliveira Santos, F. de; Lewitowicz, M.; Daugas, J.M.; Belier, G.; Goutte, H.; Meot, V.; Roig, O.; Astabatyan, R.; Lukyanov, S.; Penionzhkevich, Yu.E.; Balabanski, D.L.; Borremans, D.; Himpe, P.; Neyens, G.; Sawicka, M.
2004-02-27
The application of the Time Dependent Perturbed Angular Distribution (TDPAD) method to study isomeric states produced and oriented in projectile-fragmentation reactions provides the opportunity to perform nuclear-moment measurements in a wide range of neutron-rich nuclei, unaccessible by other means. An absolute necessity for the application of the TDPAD technique is a spin-aligned ensemble of nuclei. The preliminary results from a recent application of this method on 61mFe and 54mFe at GANIL, Caen, France showed that a significant increase of the amount of the observed alignment, compared to our previous measurement on 67mNi and 69mCu, can be obtained. Some experimental details, concerning the conservation of the reaction obtained alignment, are discussed.
Characterizing the inverses of block tridiagonal, block Toeplitz matrices
NASA Astrophysics Data System (ADS)
Boffi, Nicholas M.; Hill, Judith C.; Reuter, Matthew G.
2015-01-01
We consider the inversion of block tridiagonal, block Toeplitz matrices and comment on the behaviour of these inverses as one moves away from the diagonal. Using matrix Möbius transformations, we first present an O(1) representation (with respect to the number of block rows and block columns) for the inverse matrix and subsequently use this representation to characterize the inverse matrix. There are four symmetry-distinct cases where the blocks of the inverse matrix (i) decay to zero on both sides of the diagonal, (ii) oscillate on both sides, (iii) decay on one side and oscillate on the other and (iv) decay on one side and grow on the other. This characterization exposes the necessary conditions for the inverse matrix to be numerically banded and may also aid in the design of preconditioners and fast algorithms. Finally, we present numerical examples of these matrix types.
A Shifted Block Lanczos Algorithm 1: The Block Recurrence
NASA Technical Reports Server (NTRS)
Grimes, Roger G.; Lewis, John G.; Simon, Horst D.
1990-01-01
In this paper we describe a block Lanczos algorithm that is used as the key building block of a software package for the extraction of eigenvalues and eigenvectors of large sparse symmetric generalized eigenproblems. The software package comprises: a version of the block Lanczos algorithm specialized for spectrally transformed eigenproblems; an adaptive strategy for choosing shifts, and efficient codes for factoring large sparse symmetric indefinite matrices. This paper describes the algorithmic details of our block Lanczos recurrence. This uses a novel combination of block generalizations of several features that have only been investigated independently in the past. In particular new forms of partial reorthogonalization, selective reorthogonalization and local reorthogonalization are used, as is a new algorithm for obtaining the M-orthogonal factorization of a matrix. The heuristic shifting strategy, the integration with sparse linear equation solvers and numerical experience with the code are described in a companion paper.
System and method for calibrating a rotary absolute position sensor
NASA Technical Reports Server (NTRS)
Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)
2012-01-01
A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.
Method and apparatus for two-dimensional absolute optical encoding
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
2004-01-01
This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.
Absolute and Convective Instability in Fluid-Conveying Flexible Pipes
NASA Astrophysics Data System (ADS)
de Langre, E.; Ouvrard, A. E.
1998-11-01
The effect of internal plug flow on the lateral stability of fluid conveying flexible pipes is investigated by determining the absolute/convective nature of the instability from the analytically derived linear dispersion relation. The fluid-structure interaction is modeled following the work of Gregory and Paidoussis (1966). The different domains of stability, convective instability, and absolute instability are explicitly derived in parameter space. The effect of flow velocity, mass ratio between the fluid and the structure, stiffness of the elastic foundation and axial tension is considered. Absolute instability prevails over a wide range of parameters. Convective instability only takes place at very high mass ratio, small stiffness and small axial tension. Relation is made with previous work of Brazier-Smith & Scott (1984) and Crighton (1991), considered here as a short wave approximation.
Absolute surface metrology by rotational averaging in oblique incidence interferometry.
Lin, Weihao; He, Yumei; Song, Li; Luo, Hongxin; Wang, Jie
2014-06-01
A modified method for measuring the absolute figure of a large optical flat surface in synchrotron radiation by a small aperture interferometer is presented. The method consists of two procedures: the first step is oblique incidence measurement; the second is multiple rotating measurements. This simple method is described in terms of functions that are symmetric or antisymmetric with respect to reflections at the vertical axis. Absolute deviations of a large flat surface could be obtained when mirror antisymmetric errors are removed by N-position rotational averaging. Formulas are derived for measuring the absolute surface errors of a rectangle flat, and experiments on high-accuracy rectangle flats are performed to verify the method. Finally, uncertainty analysis is carried out in detail. PMID:24922410
Pinned orbital moments – A new contribution to magnetic anisotropy
NASA Astrophysics Data System (ADS)
Audehm, P.; Schmidt, M.; Brück, S.; Tietze, T.; Gräfe, J.; Macke, S.; Schütz, G.; Goering, E.
2016-05-01
Reduced dimensionality and symmetry breaking at interfaces lead to unusual local magnetic configurations, such as glassy behavior, frustration or increased anisotropy. The interface between a ferromagnet and an antiferromagnet is such an example for enhanced symmetry breaking. Here we present detailed X-ray magnetic circular dichroism and X-ray resonant magnetic reflectometry investigations on the spectroscopic nature of uncompensated pinned magnetic moments in the antiferromagnetic layer of a typical exchange bias system. Unexpectedly, the pinned moments exhibit nearly pure orbital moment character. This strong orbital pinning mechanism has not been observed so far and is not discussed in literature regarding any theory for local magnetocrystalline anisotropy energies in magnetic systems. To verify this new phenomenon we investigated the effect at different temperatures. We provide a simple model discussing the observed pure orbital moments, based on rotatable spin magnetic moments and pinned orbital moments on the same atom. This unexpected observation leads to a concept for a new type of anisotropy energy.
NASA Astrophysics Data System (ADS)
Ortiz-Ramírez, Pablo C.
2015-09-01
In this work an absolute method for the determination of the full energy peak efficiency of a gamma spectroscopy system for voluminous sources is presented. The method was tested for a high-resolution coaxial HPGe detector and cylindrical homogeneous volume source. The volume source is represented by a set of point sources filling its volume. We found that the absolute efficiency of a volume source can be determined as the average over its volume of the absolute efficiency of each point source. Experimentally, we measure the intrinsic efficiency as a function upon source-detector position. Then, considering the solid angle and the attenuations of the gamma rays emitted to the detector by each point source, considered as embedded in the source matrix, the absolute efficiency for each point source inside of the volume was determined. The factor associate with the solid angle and the self-attenuation of photons in the sample was deduced from first principles without any mathematical approximation. The method was tested by determining the specific activity of 137Cs in cylindrical homogeneous sources, using IAEA reference materials with specific activities between 14.2 Bq/kg and 9640 Bq/kg at the moment of the experimentation. The results obtained shown a good agreement with the expected values. The relative difference was less than 7% in most of the cases. The main advantage of this method is that it does not require of the use of expensive and hard to produce standard materials. In addition it does not require of matrix effect corrections, which are the main cause of error in this type of measurements, and it is easy to implement in any nuclear physics laboratory.
Non-Invasive Method of Determining Absolute Intracranial Pressure
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor); Hargens, Alan E. (Inventor)
2004-01-01
A method is presented for determining absolute intracranial pressure (ICP) in a patient. Skull expansion is monitored while changes in ICP are induced. The patient's blood pressure is measured when skull expansion is approximately zero. The measured blood pressure is indicative of a reference ICP value. Subsequently, the method causes a known change in ICP and measured the change in skull expansion associated therewith. The absolute ICP is a function of the reference ICP value, the known change in ICP and its associated change in skull expansion; and a measured change in skull expansion.
Measurements of the reactor neutron power in absolute units
NASA Astrophysics Data System (ADS)
Lebedev, G. V.
2015-12-01
The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.
In-flight absolute radiometric calibration of the thematic mapper
NASA Technical Reports Server (NTRS)
Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.
1983-01-01
The TM multispectral scanner system was calibrated in an absolute manner before launch. To determine the temporal changes of the absolute radiometric calibration of the entire system, spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM collections over White Sands, New Mexico. By entering the measured values in an atmospheric radiative transfer program, the radiance levels of the in four of the spectral bands of the TM were determined. Tables show values for the reflectance of snow at White Sands measured by a modular 8 channel radiometer, and values for exoatmospheric irradiance within the TM passbands, calculated for the Earth-Sun distance using a solar radiometer.
Absolute photon-flux measurements in the vacuum ultraviolet
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Haddad, G. N.
1974-01-01
Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.
Notes on Van der Meer scan for absolute luminosity measurement
NASA Astrophysics Data System (ADS)
Balagura, Vladislav
2011-10-01
The absolute luminosity can be measured in an accelerator by sweeping beams transversely across each other in the so-called van der Meer scan. We prove that the method can be applied in the general case of arbitrary beam directions and a separation scan plane. A simple method to develop an image of the beam in its transverse plane from spatial distributions of interaction vertexes is also proposed. From the beam images one can determine their overlap and the absolute luminosity. This provides an alternative way of the luminosity measurement during van der Meer scan.
Measurements of the reactor neutron power in absolute units
Lebedev, G. V.
2015-12-15
The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.
Absolute Stability Analysis of a Phase Plane Controlled Spacecraft
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol
2010-01-01
Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.
A general relativistic model for free-fall absolute gravimeters
NASA Astrophysics Data System (ADS)
Tan, Yu-Jie; Shao, Cheng-Gang; Li, Jia; Hu, Zhong-Kun
2016-04-01
Although the relativistic manifestations of gravitational fields in gravimetry were first studied 40 years ago, the relativistic effects combined with free-fall absolute gravimeters have rarely been considered. In light of this, we present a general relativistic model for free-fall absolute gravimeters in a local-Fermi coordinates system, where we focus on effects related to the measuring devices: relativistic transverse Doppler effects, gravitational redshift effects and Earth’s rotation effects. Based on this model, a general relativistic expression of the measured gravity acceleration is obtained.
Babenko, V. A. Petrov, N. M.
2011-03-15
The correlation between the deuteron quadrupole moment Q, the deuteron asymptotic D/S ratio {eta}, and the deuteron asymptotic normalization constant AS is studied. For local nucleon-nucleon potentials, it was found that the quantities Q/{eta} and A{sub S}{sup 2} are related by a linear equation. Owing to this, the deuteron quadrupole moment Q can be determined from known values of AS and {eta} with an absolute precision of about 0.0003 fm{sup 2}. The inclusion of the correction for meson-exchange currents and the use of the experimental neutron-proton phase shifts from the GWU partial-wave analysis made it possible to estimate the deuteron quadrupole moment at Q = 0.2852 fm{sup 2}, which is in good agreement with experimental data.
Lunar magnetic field - Permanent and induced dipole moments
NASA Technical Reports Server (NTRS)
Russell, C. T.; Coleman, P. J., Jr.; Schubert, G.
1974-01-01
Apollo 15 subsatellite magnetic field observations have been used to measure both the permanent and the induced lunar dipole moments. Although only an upper limit of 1.3 x 10 to the 18th gauss-cubic centimeters has been determined for the permanent dipole moment in the orbital plane, there is a significant induced dipole moment which opposes the applied field, indicating the existence of a weak lunar ionosphere.
Anomalous magnetic moments in Co/Nb multilayers
NASA Astrophysics Data System (ADS)
Chuang, T. M.; Lee, S. F.; Huang, S. Y.; Yao, Y. D.; Cheng, W. C.; Huang, G. R.
2002-02-01
Response of Co/Nb multilayers to external field near the superconducting transition temperature ( TC) was studied. The average moment of Co was suppressed with decreasing Co thickness. At 10 K, for Co thickness larger than 0.5 nm, the multilayers showed hysteresis and ferromagnetism. Some samples showed anomalous field-cooled paramagnetic moments, similar to Paramagnetic Meissner Effect (PME). This is attributed not to the Co moment but to the suppressed surface TC causing PME.
On the moment of inertia of a quantum harmonic oscillator
Khamzin, A. A. Sitdikov, A. S.; Nikitin, A. S.; Roganov, D. A.
2013-04-15
An original method for calculating the moment of inertia of the collective rotation of a nucleus on the basis of the cranking model with the harmonic-oscillator Hamiltonian at arbitrary frequencies of rotation and finite temperature is proposed. In the adiabatic limit, an oscillating chemical-potential dependence of the moment of inertia is obtained by means of analytic calculations. The oscillations of the moment of inertia become more pronounced as deformations approach the spherical limit and decrease exponentially with increasing temperature.
Development of a Thin Film Magnetic Moment Reference Material
Pappas, D. P.; Halloran, S. T.; Owings, R. R.; da Silva, F. C. S.
2008-01-01
In this paper we present the development of a magnetic moment reference material for low moment magnetic samples. We first conducted an inter-laboratory comparison to determine the most useful sample dimensions and magnetic properties for common instruments such as vibrating sample magnetometers (VSM), SQUIDs, and alternating gradient field magnetometers. The samples were fabricated and then measured using a vibrating sample magnetometer. Their magnetic moments were calibrated by tracing back to the NIST YIG sphere, SRM 2853. PMID:27096108
Development of a Thin Film Magnetic Moment Reference Material.
Pappas, D P; Halloran, S T; Owings, R R; da Silva, F C S
2008-01-01
In this paper we present the development of a magnetic moment reference material for low moment magnetic samples. We first conducted an inter-laboratory comparison to determine the most useful sample dimensions and magnetic properties for common instruments such as vibrating sample magnetometers (VSM), SQUIDs, and alternating gradient field magnetometers. The samples were fabricated and then measured using a vibrating sample magnetometer. Their magnetic moments were calibrated by tracing back to the NIST YIG sphere, SRM 2853. PMID:27096108
Zernike moments features for shape-based gait recognition
NASA Astrophysics Data System (ADS)
Qin, Huanfeng; Qin, Lan; Liu, Jun; Chao, Jiang
2011-12-01
The paper proposes a new spatio-temporal gait representation, called cycles gait Zernike moments (CGZM), to characterize human walking properties for individual recognition. Firstly, Zernike moments as shape descriptors are used to characterize gait silhouette shape. Secondly, we generate CGZM from Zernike moments of silhouette sequences. Finally, the phase and magnitude coefficientsof CGZM are utilized to perform classification by the modified Hausdorff distance (MHD) classifier. Experimental results show that the proposed approach have an encouraging recognition performance.
Analytical Derivation of Moment Equations in Stochastic Chemical Kinetics
Sotiropoulos, Vassilios; Kaznessis, Yiannis N.
2011-01-01
The master probability equation captures the dynamic behavior of a variety of stochastic phenomena that can be modeled as Markov processes. Analytical solutions to the master equation are hard to come by though because they require the enumeration of all possible states and the determination of the transition probabilities between any two states. These two tasks quickly become intractable for all but the simplest of systems. Instead of determining how the probability distribution changes in time, we can express the master probability distribution as a function of its moments, and, we can then write transient equations for the probability distribution moments. In 1949, Moyal defined the derivative, or jump, moments of the master probability distribution. These are measures of the rate of change in the probability distribution moment values, i.e. what the impact is of any given transition between states on the moment values. In this paper we present a general scheme for deriving analytical moment equations for any N-dimensional Markov process as a function of the jump moments. Importantly, we propose a scheme to derive analytical expressions for the jump moments for any N-dimensional Markov process. To better illustrate the concepts, we focus on stochastic chemical kinetics models for which we derive analytical relations for jump moments of arbitrary order. Chemical kinetics models are widely used to capture the dynamic behavior of biological systems. The elements in the jump moment expressions are a function of the stoichiometric matrix and the reaction propensities, i.e the probabilistic reaction rates. We use two toy examples, a linear and a non-linear set of reactions, to demonstrate the applicability and limitations of the scheme. Finally, we provide an estimate on the minimum number of moments necessary to obtain statistical significant data that would uniquely determine the dynamics of the underlying stochastic chemical kinetic system. The first two moments
Neural predictors of moment-to-moment fluctuations in cognitive flexibility
Leber, Andrew B.; Turk-Browne, Nicholas B.; Chun, Marvin M.
2008-01-01
Cognitive flexibility is a crucial human ability allowing efficient adaptation to changing task challenges. Although a person's degree of flexibility can vary from moment to moment, the conditions regulating such fluctuations are not well understood. Using a task-switching procedure with fMRI, we found several brain regions in which neural activity preceding each trial predicted subsequent cognitive flexibility. Specifically, as pretrial activity increased, performance improved on trials when the task switched but did not improve when the task repeated. Regions from which flexibility could be predicted reliably included the basal ganglia, anterior cingulate cortex, prefrontal cortex, and posterior parietal cortex. Although further analysis revealed similarities across the regions in how flexibility was predicted, results supported the existence of multiple independent sources of prediction. These results reveal distinct neural mechanisms underlying fluctuations in cognitive flexibility. PMID:18757744
Classical Virasoro irregular conformal block
NASA Astrophysics Data System (ADS)
Rim, Chaiho; Zhang, Hong
2015-07-01
Virasoro irregular conformal block with arbitrary rank is obtained for the classical limit or equivalently Nekrasov-Shatashvili limit using the beta-deformed irregular matrix model (Penner-type matrix model for the irregular conformal block). The same result is derived using the generalized Mathieu equation which is equivalent to the loop equation of the irregular matrix model.
Atmospheric Science Data Center
2013-04-01
MISR Center Block Time Tool The misr_time tool calculates the block center times for MISR Level 1B2 files. This is ... version of the IDL package or by using the IDL Virtual Machine application. The IDL Virtual Machine is bundled with IDL and is ...
Blocking in multirate interconnection networks
NASA Astrophysics Data System (ADS)
Valdimarsson, Einir
1994-02-01
We present an extension of the classical methods used to evaluate blocking probability. This method is applicable to multirate circuit and fast packet/ATM switching systems. The analytical methods are presented and compared with simulation results using Benes networks as an example. Extensive simulation has been performed focusing on ways to reduce blocking to acceptable levels.
NASA Technical Reports Server (NTRS)
Gallimore, F. H.
1986-01-01
Adjustable angular drill block accurately transfers hole patterns from mating surfaces not normal to each other. Block applicable to transfer of nonperpendicular holes in mating contoured assemblies in aircraft industry. Also useful in general manufacturing to transfer mating installation holes to irregular and angular surfaces.
Block Transfer Agreement Evaluation Project
ERIC Educational Resources Information Center
Bastedo, Helena
2010-01-01
The objective of this project is to evaluate for the British Columbia Council on Admissions and Transfer (BCCAT) the effectiveness of block transfer agreements (BTAs) in the BC Transfer System and recommend steps to be taken to improve their effectiveness. Findings of this study revealed that institutions want to expand block credit transfer;…
Centroid and moments of an area using a digitizer
NASA Technical Reports Server (NTRS)
Patch, R. W.
1976-01-01
The centroid and moments of an area program provides the centroid, moments of inertia, product of inertia, radii of gyration, and area of any closed planar geometric figure. The figure must be available in graphic form and is digitized once with chart digitizer (graphic tablet). The digitizer origin may be set anywhere on the digitizer table. After digitizing, fifteen quantities are calculated and displayed: (1) area (2) moment of inertia of area with respect to digitizer x-axis, (3) moment of inertia of area with respect to digitizer y-axis, (4) product of inertia of area with respect to digitizer axes, (5) first moment of x for digitizer axes, (6) first moment of y for digitizer axes, (7) x coordinate of centroid, (8) y coordinate of centroid, (9) moment of area inertia of with respect to x axis through centroid, (10) moment of inertia of area with respect to y axis through centroid, (11) product inertia of area with respect to x and y axes through centroid, (12) polar moment of inertia of area around centroid, (13) radius of gyration about digitizer x axis, (14) radius of gyration about digitizer y-axis; and (15) variance in the x-direction.
Image description with generalized pseudo-Zernike moments
Xia, Ting; Zhu, Hongqing; Shu, Huazhong; Haigron, Pascal; Luo, Limin
2007-01-01
A new set of orthogonal moment functions for describing images is proposed. It is based on the generalized pseudo-Zernike polynomials that are orthogonal on the unit circle. The generalized pseudo-Zernike polynomials are scaled to ensure the numerical stability, and some properties are discussed. The performance of the proposed moments is analyzed in terms of image reconstruction capability and invariant character recognition accuracy. Experimental results demonstrate the superiority of generalized pseudo-Zernike moments compared with pseudo-Zernike and Chebyshev-Fourier moments in both noise-free and noisy conditions. PMID:17164842
Semiempirical method for predicting vortex-induced rolling moments
NASA Technical Reports Server (NTRS)
Allison, D. O.; Bobbitt, P. J.
1985-01-01
A method is described for the prediction of rolling moments on a wing penetrating a vortex velocity field generated by a large aircraft. Rolling moments are determined from lifting pressure coefficients computed with an inviscid-flow linear panel method. Two empirical corrections are included to account for the lifting efficiency of an airfoil section and the local stall on the wing. Predicted rolling moments are compared with those from two windtunnel experiments. Results indicate that experimental rolling moments, for which the Reynolds number of the following wing is low, should be interpreted with caution.
Nuclear moment of inertia and spin distribution of nuclear levels
Alhassid, Y.; Fang, L.; Liu, S.; Bertsch, G.F.
2005-12-15
We introduce a simple model to calculate the nuclear moment of inertia at finite temperature. This moment of inertia describes the spin distribution of nuclear levels in the framework of the spin-cutoff model. Our model is based on a deformed single-particle Hamiltonian with pairing interaction and takes into account fluctuations in the pairing gap. We derive a formula for the moment of inertia at finite temperature that generalizes the Belyaev formula for zero temperature. We show that a number-parity projection explains the strong odd-even effects observed in shell model Monte Carlo studies of the nuclear moment of inertia in the iron region.
Enhanced moment tensor retrieval: a case study in the Alborz Mountains, Northern Iran
NASA Astrophysics Data System (ADS)
Donner, Stefanie; Rößler, Dirk; Ghods, Abdolreza; Krüger, Frank; Strecker, Manfred; Landgraf, Angela; Ballato, Paolo
2010-05-01
Seismotectonic and seismic hazard analysis are crucial tasks in, often increasingly, densely populated, seismically active regions. The understanding of earthquake source mechanisms is an important key element for such analyses. Seismic moment tensors provide a general description of the physical processes and the magnitude of earthquakes. The feasibility of moment tensor retrieval is controlled by several factors, such as wavefield modelling, source location, and station distribution. Inappropriate velocity models and inhomogeneous station distribution limits the inversion and the availability of seismic moment tensors in many regions worldwide. The Alborz Mountains of northern Iran are a tectonically active, bivergent orogen in the Arabia-Eurasia collision zone. It is located between the aseismic blocks of the South Caspian Basin and Central Iran. A complex and not well understood system of strike-slip and thrust faults accommodates NNE-SSW oriented shortening. There are indicators that deformation in the high sectors of the Alborz Mountains is partitioned into reverse and left-lateral strike-slip faulting. Studies of earthquake source mechanisms will provide further insights in the complex fault geometry, their kinematic behaviour, and the tectonics of this intracontinental orogen. In addition, the internal domain of the central Alborz seems to be affected by very young, active transtension. To date, a heterogeneous seismic network with non-uniform distribution and a lack of appropriate methods have prevented detailed and comprehensive moment tensor studies in this region. So far, only 26 seismic moment tensors are available in the Harvard CMT catalogue since 1976. This restriction is due to the magnitude threshold of M4.5 for data processing and due to low data availability. Uncertainties in earthquake location are significant. Depth determination is sometimes impossible. Therefore, earthquakes cannot be associated with faults and the recent kinematic behaviour
Improved ultrasonic standard reference blocks
NASA Technical Reports Server (NTRS)
Eitzen, D. G.
1975-01-01
A program to improve the quality, reproducibility and reliability of nondestructive testing through the development of improved ASTM-type ultrasonic reference standards is described. Reference blocks of aluminum, steel, and titanium alloys were considered. Equipment representing the state-of-the-art in laboratory and field ultrasonic equipment was obtained and evaluated. Some RF and spectral data on ten sets of ultrasonic reference blocks were taken as part of a task to quantify the variability in response from nominally identical blocks. Techniques for residual stress, preferred orientation, and microstructural measurements were refined and are applied to a reference block rejected by the manufacturer during fabrication in order to evaluate the effect of metallurgical condition on block response.
The effects of acoustic variability on absolute pitch categorization: Evidence of contextual tuning.
Van Hedger, Stephen C; Heald, Shannon L M; Nusbaum, Howard C
2015-07-01
Absolute pitch (AP) is defined as the ability to label a musical note without the aid of a reference note. Despite the large amounts of acoustic variability encountered in music, AP listeners generally experience perceptual constancy for different exemplars within note categories (e.g., recognizing that a C played on a tuba belongs to the same category as a C played on a piccolo). The present studies investigate whether AP possessors are sensitive to context variability along acoustic dimensions that are not inherently linked to the typical definition of a note category. In a speeded target recognition task, AP participants heard a sequence of notes and pressed a button whenever they heard a designated target note. Within a trial the sequence of notes was either blocked according to note-irrelevant variation or contained a mix of different instruments (Experiment 1), amplitude levels (Experiment 2), or octaves (Experiment 3). Compared to the blocked trials, participants were significantly slower to respond in the mixed-instrument and mixed-octave trials, but not the mixed-amplitude trials. Importantly, this performance difference could not be solely attributed to initial performance differences between instruments, amplitudes, or octaves. These results suggest that AP note identification is contextually sensitive. PMID:26233042
Atrioventricular block after ASD closure
Asakai, Hiroko; Weskamp, Sofia; Eastaugh, Lucas; d'Udekem, Yves; Pflaumer, Andreas
2016-01-01
Objective Secundum atrial septal defect (ASD) is a common congenital heart defect. There is limited data on both early and late atrioventricular (AV) block post ASD closure. The aim of this study was to determine the incidence and risk factors of AV block associated with ASD closure. Methods A retrospective analysis of all patients who underwent ASD closure either with a device or surgical method at the Royal Children's Hospital Melbourne between 1996 and 2010 was performed. Baseline demographics, procedural details and follow-up data were collected from medical records. Results A total of 378 patients were identified; 242 in the device group and 136 in the surgical group. Fourteen patients (3.7%) had AV block (1 with second degree and 13 with first degree) at a median follow-up of 28 months; 11/242 (4.5%) in the device group and 3/135 (2.2%) in the surgical group (p=0.39). Six patients had new-onset AV block after ASD closure. In the device subgroup, patients with AV block at follow-up had a larger indexed device size compared with those without (22 (15–31) vs 18(7–38), p=0.02). Multivariate analysis revealed the presence of AV block either pre procedure or post procedure to be the only variables associated with late AV block. Conclusions Late AV block in patients with repaired ASD is rare and most likely independent of the technique used. In the device subgroup, the only risk factor identified to be associated with late AV block was the presence of either preprocedural or postprocedural AV block, so long-term follow-up for these patients should be provided. PMID:27540418
[Two Cases of Caudal Alcohol Block for Perineal Pain that Occurred in Cancer End-of-Life].
Takahashi, Masahiro; Takahara, Hiroshi; Wakabayashi, Takanobu
2016-06-01
We experienced two cases of end-of-life cancer patients with perineal pain, whose pain was relieved by 5 ml absolute ethanol caudal block. Although the first injection was ineffective, the second injection resulted in significant relief of pain in both cases. Although the indication should be carefully considered, alcohol caudal block is an analgesic method worth considering for the end-of-life cancer patients complaining of perineal pain. PMID:27483665
NASA Astrophysics Data System (ADS)
Nagatomi, T.; Goto, K.
2005-11-01
An analytical approach was proposed for simultaneously determining an inelastic mean-free path (IMFP) and a surface excitation parameter (SEP) with absolute units by the analysis of an absolute experimental reflection electron energy loss spectrum. The IMFPs and SEPs in Ni were deduced for electrons of 300 to 3000 eV. The obtained IMFPs were in good agreement with those calculated using the TPP-2M equation. The Chen-type empirical formula was proposed for determining the SEP. The results confirmed the applicability of the present approach for determining the IMFP and SEP for medium-energy electrons.
Absolute site effects in Kachchh, India, determined from aftershocks of the 2002 Bhuj earthquake.
NASA Astrophysics Data System (ADS)
Malagnini, L.; Mayeda, K.; Bodin, P.; Akinci, A.
2004-12-01
What can be learned about absolute site effects on ground motions from recordings of aftershocks at ten temporary seismic stations, none of which could be considered a "reference" (hard rock) site, and for which no geotechnical information is available? This challenge motivated our current study of Bhuj aftershocks; and our answer, briefly put, is: quite a bit. We started by constraining the regional attenuation and geometric spreading: this was the result of an earlier study [Bodin et al., BSSA 2004], the goal of which was to be able to reproduce the general character of the observations with a constrained set of stochastic synthetic ground motions. Our present work is based on the same aftershock data we used in the prior study. We first produced stable and reliable, unbiased source moment-rate spectra using the technique described by Mayeda et al., [BSSA, 2003]. With these known "absolute" source spectra, and the propagation terms we quantified in the previous study we inverted for the site response using only the largest ~200 earthquakes (M>2.8) in each of two depth ranges (0-25 km, and 20-40 km), to yield the "absolute" site terms for horizontal and vertical ground motions. We were able to obtain stable results in the 1-14 hz frequency band. The results reveal that the site terms generally share a common character: small amplifications (near unity) at the longer-period end of the pass-band, and decreases (perhaps due to attenuation or near-site scattering) at the higher frequency end. This character is evident in a similar study of earthquake ground motions in the Alps at sites on hard rock [Malagnini et al., BSSA 2004]. In contrast to Alpine hard rock sites, however, the vertical site terms at our sediment and soft-rock sites are generally rather flat and featureless. We observe differences in site response between stations which appeared to be on similar geologic conditions, and vice versa. For sites that appear to be on deep unconsolidated soils
A global potential energy surface and dipole moment surface for silane.
Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Thiel, Walter
2015-12-28
A new nine-dimensional potential energy surface (PES) and dipole moment surface (DMS) for silane have been generated using high-level ab initio theory. The PES, CBS-F12(HL), reproduces all four fundamental term values for (28)SiH4 with sub-wavenumber accuracy, resulting in an overall root-mean-square error of 0.63 cm(-1). The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit, and incorporates a range of higher-level additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, and scalar relativistic effects. Systematic errors in computed intra-band rotational energy levels are reduced by empirically refining the equilibrium geometry. The resultant Si-H bond length is in excellent agreement with previous experimental and theoretical values. Vibrational transition moments, absolute line intensities of the ν3 band, and the infrared spectrum for (28)SiH4 including states up to J = 20 and vibrational band origins up to 5000 cm(-1) are calculated and compared with available experimental results. The DMS tends to marginally overestimate the strength of line intensities. Despite this, band shape and structure across the spectrum are well reproduced and show good agreement with experiment. We thus recommend the PES and DMS for future use. PMID:26723681
A global potential energy surface and dipole moment surface for silane
Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Thiel, Walter
2015-12-28
A new nine-dimensional potential energy surface (PES) and dipole moment surface (DMS) for silane have been generated using high-level ab initio theory. The PES, CBS-F12{sup HL}, reproduces all four fundamental term values for {sup 28}SiH{sub 4} with sub-wavenumber accuracy, resulting in an overall root-mean-square error of 0.63 cm{sup −1}. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit, and incorporates a range of higher-level additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, and scalar relativistic effects. Systematic errors in computed intra-band rotational energy levels are reduced by empirically refining the equilibrium geometry. The resultant Si–H bond length is in excellent agreement with previous experimental and theoretical values. Vibrational transition moments, absolute line intensities of the ν{sub 3} band, and the infrared spectrum for {sup 28}SiH{sub 4} including states up to J = 20 and vibrational band origins up to 5000 cm{sup −1} are calculated and compared with available experimental results. The DMS tends to marginally overestimate the strength of line intensities. Despite this, band shape and structure across the spectrum are well reproduced and show good agreement with experiment. We thus recommend the PES and DMS for future use.
A global potential energy surface and dipole moment surface for silane
NASA Astrophysics Data System (ADS)
Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Thiel, Walter
2015-12-01
A new nine-dimensional potential energy surface (PES) and dipole moment surface (DMS) for silane have been generated using high-level ab initio theory. The PES, CBS-F12HL, reproduces all four fundamental term values for 28SiH4 with sub-wavenumber accuracy, resulting in an overall root-mean-square error of 0.63 cm-1. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit, and incorporates a range of higher-level additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, and scalar relativistic effects. Systematic errors in computed intra-band rotational energy levels are reduced by empirically refining the equilibrium geometry. The resultant Si-H bond length is in excellent agreement with previous experimental and theoretical values. Vibrational transition moments, absolute line intensities of the ν3 band, and the infrared spectrum for 28SiH4 including states up to J = 20 and vibrational band origins up to 5000 cm-1 are calculated and compared with available experimental results. The DMS tends to marginally overestimate the strength of line intensities. Despite this, band shape and structure across the spectrum are well reproduced and show good agreement with experiment. We thus recommend the PES and DMS for future use.
Series that Converge Absolutely but Don't Converge
ERIC Educational Resources Information Center
Kantrowitz, Robert; Schramm, Michael
2012-01-01
If a series of real numbers converges absolutely, then it converges. The usual proof requires completeness in the form of the Cauchy criterion. Failing completeness, the result is false. We provide examples of rational series that illustrate this point. The Cantor set appears in connection with one of the examples.