Science.gov

Sample records for absolute path inclination

  1. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  2. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  3. Critical inclination for absolute/convective instability transition in inverted falling films

    NASA Astrophysics Data System (ADS)

    Scheid, Benoit; Kofman, Nicolas; Rohlfs, Wilko

    2016-04-01

    Liquid films flowing down the underside of inclined plates are subject to the interaction between the hydrodynamic and the Rayleigh-Taylor (R-T) instabilities causing a patterned and wavy topology at the free surface. The R-T instability results from the denser liquid film being located above a less dense ambient gas, and deforming into an array of droplets, which eventually drip if no saturation mechanism arises. Such saturation mechanism can actually be provided by a fluid motion along the inclined plate. Using a weighted integral boundary layer model, this study examines the critical inclination angle, measured from the vertical, that separates regimes of absolute and convective instability. If the instability is of absolute type, growing perturbations stay localized in space potentially leading to dripping. If the instability is of convective type, growing perturbations move downwards the inclined plate, forming waves and eventually, but not necessarily, droplets. Remarkably, there is a minimum value of the critical angle below which a regime of absolute instability cannot exist. This minimum angle decreases with viscosity: it is about 85° for water, about 70° for silicon oil 20 times more viscous than water, and reaches a limiting value for liquid with a viscosity larger than about 1000 times the one of water. It results that for any fluid, absolute dripping can only exist for inclination angle (taken from the vertical) larger than 57.4°.

  4. Runoff generation and flow paths on an inclined cultivated soil

    NASA Astrophysics Data System (ADS)

    Zumr, David; Strouhal, Luděk; Kavka, Petr

    2015-04-01

    The hydrology of cultivated catchments has its specific features due to the temporary variable topsoil properties and a sharp divide between topsoil and compacted subsoil. Under various conditions (actual topsoil physical properties, initial soil saturation, rainfall characteristics, surface roughness or vegetation stage) the prevailing runoff mechanisms may vary from surface runoff to subsurface runoff or deep percolation. To investigate the runoff generation and flow pathways and to quantify the runoff components on an inclined cultivated field under various rainfall and field conditions we conducted plot scale rainfall simulations. The experiments were done on the experimental plots Bykovice in Central Bohemia (Czech Republic), where the soil is classified as Cambisol with a clear divide between the topsoil and compacted subsoil at a depth of approximately 14 cm. We used a mobile rainfall simulator (designed at the CTU in Prague) equipped with four solenoid-controlled nozzles positioned 2.65 m above the soil. An inclined experimental plot (8 x 2 m, 9% slope) was successively exposed to uniform simulated rainfall with intensity ranging from 23 to 64 mm h-1 and duration ranging from 1 h to 2.5 h. These simulated rainfall parameters were selected to represent intensive rainfall events observed in the study locality, to generate surface runoff and to initiate soil erosion. The dynamics of surface and shallow subsurface runoff and the soil water regime at three soil depths were monitored. Various initial soil moisture conditions, and vegetation stages; from cultivated fallow to stubble, delimited the simulations. Variable proportions of both monitored runoff components were observed in relation to rainfall intensity and duration, ranging from zero surface runoff to a distinct dominance of surface runoff. Both components reacted very dynamically to the precipitation: shallow subsurface runoff was formed first under all tested conditions on the given soil profile. Even

  5. Alternative Paths for Insertion of Probes in High Inclination Lunar Orbits

    NASA Astrophysics Data System (ADS)

    de Melo, C. F.; Winter, O. C.

    The dynamics of the circular planar restricted three-body Earth-Moon-particle problem predicts the existence of direct periodic orbits around the Lagrangian equilibrium point L1 From these orbits derive a group of paths that form links between the Earth and the Moon Moreover they are capable of carrying out transfers between terrestrial and lunar orbits of low altitudes When we considered more complex dynamical systems such as the three-dimensional full four-body Sun-Earth-Moon-probe problem which takes into account besides other factors the inclination of the orbit of the Moon these paths leaving terrestrial orbits of low altitudes LEO gain inclination when they penetrate in the sphere of lunar influence allowing the insertion of probes in lunar orbits of high inclinations and low altitudes We studied this property giving emphasis to two types of transfer maneuvers Firstly we investigated direct transfers by inserting probes in lunar orbits with inclinations varying between 29 o and 42 o Next we investigated directed transfers with the application of a Delta V along of the trajectory in order to lead the probe into lunar orbits with inclinations between 0 o and 180 o The results allowed the definition of a group of paths capable of carrying out Earth-moon transfers with flight time between 13 and 16 days with relatively low costs

  6. Absolute determination of inelastic mean-free paths and surface excitation parameters by absolute reflection electron energy loss spectrum analysis

    NASA Astrophysics Data System (ADS)

    Nagatomi, T.; Goto, K.

    2005-11-01

    An analytical approach was proposed for simultaneously determining an inelastic mean-free path (IMFP) and a surface excitation parameter (SEP) with absolute units by the analysis of an absolute experimental reflection electron energy loss spectrum. The IMFPs and SEPs in Ni were deduced for electrons of 300 to 3000 eV. The obtained IMFPs were in good agreement with those calculated using the TPP-2M equation. The Chen-type empirical formula was proposed for determining the SEP. The results confirmed the applicability of the present approach for determining the IMFP and SEP for medium-energy electrons.

  7. A whole-path importance-sampling scheme for Feynman path integral calculations of absolute partition functions and free energies.

    PubMed

    Mielke, Steven L; Truhlar, Donald G

    2016-01-21

    Using Feynman path integrals, a molecular partition function can be written as a double integral with the inner integral involving all closed paths centered at a given molecular configuration, and the outer integral involving all possible molecular configurations. In previous work employing Monte Carlo methods to evaluate such partition functions, we presented schemes for importance sampling and stratification in the molecular configurations that constitute the path centroids, but we relied on free-particle paths for sampling the path integrals. At low temperatures, the path sampling is expensive because the paths can travel far from the centroid configuration. We now present a scheme for importance sampling of whole Feynman paths based on harmonic information from an instantaneous normal mode calculation at the centroid configuration, which we refer to as harmonically guided whole-path importance sampling (WPIS). We obtain paths conforming to our chosen importance function by rejection sampling from a distribution of free-particle paths. Sample calculations on CH4 demonstrate that at a temperature of 200 K, about 99.9% of the free-particle paths can be rejected without integration, and at 300 K, about 98% can be rejected. We also show that it is typically possible to reduce the overhead associated with the WPIS scheme by sampling the paths using a significantly lower-order path discretization than that which is needed to converge the partition function. PMID:26801023

  8. A whole-path importance-sampling scheme for Feynman path integral calculations of absolute partition functions and free energies

    NASA Astrophysics Data System (ADS)

    Mielke, Steven L.; Truhlar, Donald G.

    2016-01-01

    Using Feynman path integrals, a molecular partition function can be written as a double integral with the inner integral involving all closed paths centered at a given molecular configuration, and the outer integral involving all possible molecular configurations. In previous work employing Monte Carlo methods to evaluate such partition functions, we presented schemes for importance sampling and stratification in the molecular configurations that constitute the path centroids, but we relied on free-particle paths for sampling the path integrals. At low temperatures, the path sampling is expensive because the paths can travel far from the centroid configuration. We now present a scheme for importance sampling of whole Feynman paths based on harmonic information from an instantaneous normal mode calculation at the centroid configuration, which we refer to as harmonically guided whole-path importance sampling (WPIS). We obtain paths conforming to our chosen importance function by rejection sampling from a distribution of free-particle paths. Sample calculations on CH4 demonstrate that at a temperature of 200 K, about 99.9% of the free-particle paths can be rejected without integration, and at 300 K, about 98% can be rejected. We also show that it is typically possible to reduce the overhead associated with the WPIS scheme by sampling the paths using a significantly lower-order path discretization than that which is needed to converge the partition function.

  9. MODELING MULTI-WAVELENGTH STELLAR ASTROMETRY. II. DETERMINING ABSOLUTE INCLINATIONS, GRAVITY-DARKENING COEFFICIENTS, AND SPOT PARAMETERS OF SINGLE STARS WITH SIM LITE

    SciTech Connect

    Coughlin, Jeffrey L.; Harrison, Thomas E.; Gelino, Dawn M.

    2010-11-10

    We present a novel technique to determine the absolute inclination of single stars using multi-wavelength submilliarcsecond astrometry. The technique exploits the effect of gravity darkening, which causes a wavelength-dependent astrometric displacement parallel to a star's projected rotation axis. We find that this effect is clearly detectable using SIM Lite for various giant stars and rapid rotators, and present detailed models for multiple systems using the REFLUX code. We also explore the multi-wavelength astrometric reflex motion induced by spots on single stars. We find that it should be possible to determine spot size, relative temperature, and some positional information for both giant and nearby main-sequence stars utilizing multi-wavelength SIM Lite data. These data will be extremely useful in stellar and exoplanet astrophysics, as well as supporting the primary SIM Lite mission through proper multi-wavelength calibration of the giant star astrometric reference frame, and reduction of noise introduced by starspots when searching for extrasolar planets.

  10. Inelastic mean-free paths and surface excitation parameters by absolute reflection electron-energy loss measurements

    NASA Astrophysics Data System (ADS)

    Nagatomi, T.; Goto, K.

    2007-06-01

    An analytical approach is proposed for simultaneously determining the inelastic mean-free path (IMFP), the surface excitation parameter (SEP), and the differential SEP (DSEP) in absolute units from an absolute reflection electron energy loss spectroscopy (REELS) spectrum under the assumption that the normalized differential inelastic mean-free path for bulk excitations and the elastic scattering cross section are known. This approach was applied to an analysis of REELS spectra for Ni, and the IMFP, SEP, and DSEP in Ni for 300-3000eV electrons were determined. The resulting IMFPs showed good agreement with those calculated using the TPP-2M predictive equations and with those calculated from optical data. The deduced DSEPs show a reasonable agreement with those theoretically predicted. The obtained SEPs were compared with those calculated using several predictive equations. The present SEP results agreed well with the Chen formula with a material parameter proposed for Ni. The present approach has high potential for the experimental determination of IMFPs, SEPs, and DSEPs in absolute units.

  11. The Path to an Up-to-date Absolute Gravity Reference System

    NASA Astrophysics Data System (ADS)

    Wilmes, H.; Falk, R.; Wziontek, H.

    2014-12-01

    The determination of precise gravity field parameters is of great importance in a period in which earth sciences are achieving the necessary accuracy to monitor and document global change processes. This is the reason why experts from geodesy and metrology joined in a successful cooperation to make absolute gravity observations traceable to SI quantities, to improve the metrological kilogram definition and to monitor mass movements and smallest height changes for geodetic and geophysical applications. How can we determine such a gravity reference system and secure it over multiple decades? Precise knowledge of the gravity acceleration and definition of standards, models and corrections are an important prerequisite to the definition of the gravity system. Over more than three decades, the absolute gravity community cooperated successfully to obtain the gravity reference in comparisons at intervals of 4 years and to certify metrological equivalence between National Metrology Institutes. With increasing resolution of the absolute gravimeter sensors and new measurement principles it becomes obvious that such comparisons are not sufficient for all applications. Mainly for geodetic purposes it is necessary to sub-divide comparison intervals and maintain a connected network of gravity reference sites where compared absolute gravimeters operate together with superconducting gravimeters to derive a continuous gravity reference function. By means of this distributed monitoring of the gravity reference it will also be possible to relate observations of earlier absolute gravimeters to the present-day and to future instruments. It will be possible to include new sensors like atom interferometers and in future to relate the results of precise optical clocks. With co-located space geodetic sensors like GNSS, SLR and VLBI, these reference sites fulfill the conditions of a geodetic fundamental station as a component of IAG's Global Geodetic Observing System.

  12. Motion of an inclined cylinder on an inclined plane

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2015-09-01

    We consider in this paper the motion of an inclined cylinder on an inclined plane. At low inclined plane angles, the cylinder rolls without slipping across the incline, in a direction perpendicular to its long axis. At steeper angles, long cylinders follow a straight line path in a direction that veers away from the low angle path. Short cylinders follow a curved path. These effects are described in terms of a transition from rolling to sliding as the incline angle is increased. The results help to explain why a vehicle normally turns in the direction that the wheels are pointing and why a vehicle can veer away from that direction on a slippery surface.

  13. A new inclination shallowing correction of the Mauch Chunk Formation of Pennsylvania, based on high-field AIR results: Implications for the Carboniferous North American APW path and Pangea reconstructions

    NASA Astrophysics Data System (ADS)

    Bilardello, Dario; Kodama, Kenneth P.

    2010-10-01

    A new magnetic anisotropy study was performed on samples of the Lower Carboniferous Mauch Chunk Formation of Pennsylvania. These red beds had been sampled for an inclination shallowing study by Tan and Kodama (2002), however, application of a high-field anisotropy of isothermal remanence magnetization (hf-AIR) technique specifically designed to measure the anisotropy of hematite provides considerably different results from those previously reported. The newly measured fabric has smaller anisotropy (~ 9-17% as opposed to ~ 25-40%) and shows a pronounced ENE-WSW magnetic lineation that is sub-parallel to the trend of the Appalachians and interpretable as a hematite intersection lineation that occurred during local NNW-directed shortening. The measured magnetic fabric yields a new inclination correction with a corrected paleopole that is in better agreement with recently corrected Carboniferous paleopoles than the previously corrected Mauch Chunk paleopole, defining a more consistent APW path. The corrected paleopoles allow calculation of new mean Early (~ 325 Ma) and Late (~ 312 Ma) Carboniferous inclination-corrected paleopoles for North America, which can be compared to coeval, but uncorrected, paleopoles from Gondwana. Results suggest a Pangea B assemblage unless inclination shallowing is considered for Gondwana. Estimating an inclination correction for Gondwana sedimentary rock-derived paleopoles permits a Pangea A-type assemblage at higher southern latitudes than previous reconstructions, which we term Pangea A3.

  14. Paleomagnetism of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks from the western Tarim Basin and implications for inclination shallowing and absolute dating of the M-0 (ISEA?) chron

    NASA Astrophysics Data System (ADS)

    Gilder, Stuart; Chen, Yan; Cogné, Jean-Pascal; Tan, Xiaodong; Courtillot, Vincent; Sun, Dongjiang; Li, Yongan

    2003-02-01

    Stepwise demagnetization isolates a stable magnetic component in 13 sites of basalt flows and baked sediments dated at 113.3±1.6 Ma from the Tuoyun section, western Xinjiang Province, China. Except for one flow from the base of the ˜300 m thick section, the rest have exclusively reversed polarity. The sequence correlates with chron M-0 in some geomagnetic polarity time scales, which potentially places the section just before the start of the Cretaceous Long Normal polarity superchron. Five of 11 sites of Early Cretaceous red beds that underlie the basalts possess coherent directions that pass both fold and reversals tests. Six sites of Upper Jurassic red beds have a magnetic component that was likely acquired after folding in the Tertiary. The mean paleolatitude of the Lower Cretaceous red beds is 11° lower than that of the Lower Cretaceous basalts suggesting the red beds underestimate the true field inclination. We further test this result by calculating the paleolatitudes to a common point of the available Early Cretaceous to Present paleomagnetic poles from red beds and volcanic rocks from central Asian localities north of the Tibetan Plateau. We find that paleolatitudes of volcanic rocks roughly equal the paleolatitudes calculated from the reference Eurasian apparent polar wander path (APWP) and that paleolatitudes of red beds are generally 10-20° lower than the paleolatitudes of volcanic rocks and those predicted from the reference curve. Our study suggests that central Asian red beds poorly record the Earth's field inclination, which leads to lower than expected paleolatitudes. Good agreement in paleolatitudes from volcanic rocks and the Eurasian APWP argues against proposed canted and non-dipole field models.

  15. A new inclination shallowing correction of the Mauch Chunk Formation of Pennsylvania, based on high field-AIR results: Implications for the Carboniferous North American APW path and Pangea reconstructions

    NASA Astrophysics Data System (ADS)

    Bilardello, D.; Kodama, K. P.

    2010-12-01

    A new rock-magnetic study was performed on samples of the Lower Carboniferous Mauch Chunk Formation of Pennsylvania. These red beds had been sampled for an inclination shallowing study by Tan and Kodama (2002). High anisotropy values lead Kodama (2009) to suspect that the Formation had been affected by strain. However, more detailed rock-magnetic measurements also show that both magnetite and hematite contribute to the remanence, leading to the application of a high field anisotropy of isothermal remanence magnetization (hf-AIR) technique specifically designed to isolate the anisotropy of the hematite, the characteristic remanence carrier. The newly measured fabric has a smaller anisotropy than Kodama (2009) observed (~9-17% as opposed to ~25-40%) and shows a pronounced ENE-WSW magnetic lineation that is sub-parallel to the trend of the Appalachians and interpretable as a hematite intersection lineation that occurred during local NNW-directed shortening. Results also yield a much different AIR/ anisotropy of magnetic susceptibility (AMS) relationship than previously reported. We attribute the differences in the AIR/AMS relationship to varying concentrations of magnetite. Because the AIR/AMS relationship has been used to constrain the individual particle anisotropy we suggest this approach to determine grain anisotropy is invalid, at least until the AIR/AMS relationship for single domain hematite only is measured. The measured magnetic fabric yields a new inclination correction with a corrected paleopole that is in better agreement with recently corrected Carboniferous paleopoles than the previously corrected Mauch Chunk paleopole, defining a more consistent APW path. The corrected paleopoles allow calculation of new mean Early (~325 Ma) and Late (~312 Ma) Carboniferous inclination-corrected paleopoles for North America, which can be compared to coeval, but uncorrected, paleopoles from Gondwana. Results suggest a Pangea B assemblage unless Gondwanan sedimentary

  16. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  17. Radar prediction of absolute rain fade distributions for earth-satellite paths and general methods for extrapolation of fade statistics to other locations

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1982-01-01

    The first absolute rain fade distribution method described establishes absolute fade statistics at a given site by means of a sampled radar data base. The second method extrapolates absolute fade statistics from one location to another, given simultaneously measured fade and rain rate statistics at the former. Both methods employ similar conditional fade statistic concepts and long term rain rate distributions. Probability deviations in the 2-19% range, with an 11% average, were obtained upon comparison of measured and predicted levels at given attenuations. The extrapolation of fade distributions to other locations at 28 GHz showed very good agreement with measured data at three sites located in the continental temperate region.

  18. 2. VIEW SOUTH, INCLINE PLANE CAR, INCLINE PLANE TRACK, UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTH, INCLINE PLANE CAR, INCLINE PLANE TRACK, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  19. Weatherford Inclined Wellbore Construction

    SciTech Connect

    Schulte, R.

    2002-08-19

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed construction of an inclined wellbore with seven (7) inch, twenty-three (23) pound casing at a total depth of 1296 feet. The inclined wellbore is near vertical to 180 feet with a build angle of approximately 4.5 degrees per hundred feet thereafter. The inclined wellbore was utilized for further proprietary testing after construction and validation. The wellbore is available to other companies requiring a cased hole environment with known deviation out to fifty degrees (50) from vertical. The wellbore may also be used by RMOTC for further deepening into the fractured shales of the Steele and Niobrara formation.

  20. Moments of inclination error distribution computer program

    NASA Technical Reports Server (NTRS)

    Myler, T. R.

    1981-01-01

    A FORTRAN coded computer program is described which calculates orbital inclination error statistics using a closed-form solution. This solution uses a data base of trajectory errors from actual flights to predict the orbital inclination error statistics. The Scott flight history data base consists of orbit insertion errors in the trajectory parameters - altitude, velocity, flight path angle, flight azimuth, latitude and longitude. The methods used to generate the error statistics are of general interest since they have other applications. Program theory, user instructions, output definitions, subroutine descriptions and detailed FORTRAN coding information are included.

  1. Graphs and matroids weighted in a bounded incline algebra.

    PubMed

    Lu, Ling-Xia; Zhang, Bei

    2014-01-01

    Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented, which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and the most reliable path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the maximum independent set problem is studied. PMID:25126607

  2. Control system for inclined impact-type surface seismic source

    SciTech Connect

    Karner, G.M.

    1987-07-28

    A system is described for controlling the azimuths and inclinations of the respective shooting paths of separate vehicle-transported surface seismic sources. Each source has an impact mass, means for propelling the mass along the shooting path to strike an earth contacting base plate, and means for adjusting each shooting path by rotation thereof about two mutually perpendicular gimbal axes oriented in predetermined relation to the heading of the associated vehicle. The system consists of: (a) means for determining each such vehicle heading; (b) means dependent upon each vehicle heading for calculating the angular positions of each shooting path with respect to the gimbal axes which align the shooting path with desired values of azimuth and inclination; and (c) means responsive to the calculation means for actuating each shooting path adjustment means to effect such alignment.

  3. Drop impact on inclined superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Choi, Wonjae; Leclear, Sani; Leclear, Johnathon; Abhijeet, .; Park, Kyoo-Chul

    We report an empirical study and dimensional analysis on the impact patterns of water drops on inclined superhydrophobic surfaces. While the classic Weber number determines the spreading and recoiling dynamics of a water drop on a horizontal / smooth surface, for a superhydrophobic surface, the dynamics depends on two distinct Weber numbers, each calculated using the length scale of the drop or of the pores on the surface. Impact on an inclined superhydrophobic surface is even more complicated, as the velocity that determines the Weber number is not necessarily the absolute speed of the drop but the velocity components normal and tangential to the surface. We define six different Weber numbers, using three different velocities (absolute, normal and tangential velocities) and two different length scales (size of the drop and of the texture). We investigate the impact patterns on inclined superhydrophobic surfaces with three different types of surface texture: (i) posts, (ii) ridges aligned with and (iii) ridges perpendicular to the impact direction. Results suggest that all six Weber numbers matter, but affect different parts of the impact dynamics, ranging from the Cassie-Wenzel transition, maximum spreading, to anisotropic deformation. We acknowledge financial support from the Office of Naval Research (ONR) through Contract 3002453812.

  4. 3. INCLINE PLANE CAR INTERIOR, UPPER COMPARTMENT. Monongahela Incline ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INCLINE PLANE CAR INTERIOR, UPPER COMPARTMENT. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  5. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  6. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  7. Photoelectric inclination sensor

    NASA Astrophysics Data System (ADS)

    Kato, Hisao; Kojima, Masahiko; Hayashi, Morihiko; Sasaki, Shunji

    1986-06-01

    A new photoelectric inclination sensor consisting of a light emitting diode (LED) spirit level mounted on a photodiode array is introduced. Light from the LED projects a bubble in the level and throws a shadow onto the surface of the array composed of four equivalent square-shaped diodes, isolated from each other by a cross on a wafer. When the transducer is kept horizontal, the area of the shadow in each diode is exactly equivalent. By taking the difference output positioned obliquely in the array, the water level in the two-dimensional plane is detected. This transducer detects the two-dimensional water level accurately, can be compact, and the response is fast.

  8. Resonance capture at arbitrary inclination

    NASA Astrophysics Data System (ADS)

    Namouni, F.; Morais, M. H. M.

    2015-01-01

    Resonance capture is studied numerically in the three-body problem for arbitrary inclinations. Massless particles are set to drift from outside the 1:5 resonance with a Jupiter-mass planet thereby encountering the web of the planet's diverse mean motion resonances. Randomly constructed samples explore parameter space for inclinations from 0 to 180° with 5° increments totalling nearly 6 × 105 numerical simulations. 30 resonances internal and external to the planet's location are monitored. We find that retrograde resonances are unexpectedly more efficient at capture than prograde resonances and that resonance order is not necessarily a good indicator of capture efficiency at arbitrary inclination. Capture probability drops significantly at moderate sample eccentricity for initial inclinations in the range [10°,110°]. Orbit inversion is possible for initially circular orbits with inclinations in the range [60°,130°]. Capture in the 1:1 co-orbital resonance occurs with great likelihood at large retrograde inclinations. The planet's orbital eccentricity, if larger than 0.1, reduces the capture probabilities through the action of the eccentric Kozai-Lidov mechanism. A capture asymmetry appears between inner and outer resonances as prograde orbits are preferentially trapped in inner resonances. The relative capture efficiency of retrograde resonance suggests that the dynamical lifetimes of Damocloids and Centaurs on retrograde orbits must be significantly larger than those on prograde orbits implying that the recently identified asteroids in retrograde resonance, 2006 BZ8, 2008 SO218, 2009 QY6 and 1999 LE31 may be among the oldest small bodies that wander between the outer giant planets.

  9. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  10. INCLINATION MIXING IN THE CLASSICAL KUIPER BELT

    SciTech Connect

    Volk, Kathryn; Malhotra, Renu

    2011-07-20

    We investigate the long-term evolution of the inclinations of the known classical and resonant Kuiper Belt objects (KBOs). This is partially motivated by the observed bimodal inclination distribution and by the putative physical differences between the low- and high-inclination populations. We find that some classical KBOs undergo large changes in inclination over gigayear timescales, which means that a current member of the low-inclination population may have been in the high-inclination population in the past, and vice versa. The dynamical mechanisms responsible for the time variability of inclinations are predominantly distant encounters with Neptune and chaotic diffusion near the boundaries of mean motion resonances. We reassess the correlations between inclination and physical properties including inclination time variability. We find that the size-inclination and color-inclination correlations are less statistically significant than previously reported (mostly due to the increased size of the data set since previous works with some contribution from inclination variability). The time variability of inclinations does not change the previous finding that binary classical KBOs have lower inclinations than non-binary objects. Our study of resonant objects in the classical Kuiper Belt region includes objects in the 3:2, 7:4, 2:1, and eight higher-order mean motion resonances. We find that these objects (some of which were previously classified as non-resonant) undergo larger changes in inclination compared to the non-resonant population, indicating that their current inclinations are not generally representative of their original inclinations. They are also less stable on gigayear timescales.

  11. Absolute distance measurements by variable wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Bien, F.; Camac, M.; Caulfield, H. J.; Ezekiel, S.

    1981-02-01

    This paper describes a laser interferometer which provides absolute distance measurements using tunable lasers. An active feedback loop system, in which the laser frequency is locked to the optical path length difference of the interferometer, is used to tune the laser wavelengths. If the two wavelengths are very close, electronic frequency counters can be used to measure the beat frequency between the two laser frequencies and thus to determine the optical path difference between the two legs of the interferometer.

  12. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  13. 46 CFR 28.535 - Inclining test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Inclining test. 28.535 Section 28.535 Shipping COAST... VESSELS Stability § 28.535 Inclining test. (a) Except as provided in paragraphs (b) and (c) of this... order to do the calculations required in this subpart must have an inclining test performed. (b)...

  14. Bioinspired dynamic inclination measurement using inertial sensors.

    PubMed

    Vikas, Vishesh; Crane, Carl

    2015-06-01

    Biologically, the vestibular feedback is critical to the ability of human body to balance in different conditions. This balancing ability inspires analysis of the reference equilibrium position in dynamic environments. The research proposes and experimentally validates the concept of equilibrium for the human body modeled as an inverted pendulum, which is instrumental in explaining why we align the body along the surface normal when standing on a surface but not on an incline, and tend to lean backward or forward on non-static surfaces e.g. accelerating or decelerating bus. This equilibrium position--the dynamic equilibrium axis--is dependent only on the acceleration of surface of contact (e.g. gravity) and acts as the reference to the orientation measurements. The research also draws design inspiration from the two human ears--symmetry and plurality of inertial sensors. The vestibular dynamic inclinometer and planar vestibular dynamic inclinometer consist of multiple (two or four) symmetrically placed accelerometers and a gyroscope. The sensors measure the angular acceleration and absolute orientation, not the change in orientation, from the reference equilibrium position and are successful in separating gravity from motion for objects moving on ground. The measurement algorithm is an analytical solution that is not time-recursive, independent of body dynamics and devoid of integration errors. The experimental results for the two sensor combinations validate the theoretically (kinematics) derived analytical solution of the measurement algorithm. PMID:25879912

  15. Walking on inclines: how do desert ants monitor slope and step length

    PubMed Central

    Seidl, Tobias; Wehner, Rüdiger

    2008-01-01

    Background During long-distance foraging in almost featureless habitats desert ants of the genus Cataglyphis employ path-integrating mechanisms (vector navigation). This navigational strategy requires an egocentric monitoring of the foraging path by incrementally integrating direction, distance, and inclination of the path. Monitoring the latter two parameters involves idiothetic cues and hence is tightly coupled to the ant's locomotor behavior. Results In a kinematic study of desert ant locomotion performed on differently inclined surfaces we aimed at pinpointing the relevant mechanisms of estimating step length and inclination. In a behavioral experiment with ants foraging on slippery surfaces we broke the otherwise tightly coupled relationship between stepping frequency and step length and examined the animals' ability to monitor distances covered even under those adverse conditions. We show that the ants' locomotor system is not influenced by inclined paths. After removing the effect of speed, slope had only marginal influence on kinematic parameters. Conclusion From the obtained data we infer that the previously proposed monitoring of angles of the thorax-coxa joint is not involved in inclinometry. Due to the tiny variations in cycle period, we also argue that an efference copy of the central pattern generator coding the step length in its output frequency will most likely not suffice for estimating step length and complementing the pedometer. Finally we propose that sensing forces acting on the ant's legs could provide the desired neuronal correlate employed in monitoring inclination and step length. PMID:18518946

  16. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  17. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  18. Sex Differences in Incline-Walking among Humans.

    PubMed

    Wall-Scheffler, Cara M

    2015-12-01

    Previous research has shown that people tend to walk around the speed that minimizes energy consumption when traveling a given distance. It has further been shown that men and women have different speeds that minimize energy and that women will choose slower speeds when the activity itself is a high-rate activity (e.g. carrying a load). Here we investigate what men and women will do when given a high rate walking activity, namely walking on an inclined surface. Fourteen people (nine men and five women) walked at four speeds on a level treadmill and four speeds on an inclined treadmill while their metabolic rate, kinematics and core temperature were monitored. Following the data collection, participants were asked to identify their ‘preferred’ walking speed at each of the conditions. Cost of transport (CoT) curves were calculated for each individual, and the delta between the preferred and the ‘optimal’ speeds were calculated. People chose to walk at slightly slower speeds on the level; there was minimal change in the cost to walk at these slower speeds. Women walked at absolutely slower speeds on the incline than men (P=0.06) and had significantly larger speed deltas (P=0.02), thus choosing to walk at slower rate speeds. Women also showed a significant relationship between the rate of activity and core temperature, whereas men did not. This is consistent with other research showing that women choose behavioral strategies to minimize body temperature changes. PMID:26901887

  19. Path Finder

    2014-01-07

    PathFinder is a graph search program, traversing a directed cyclic graph to find pathways between labeled nodes. Searches for paths through ordered sequences of labels are termed signatures. Determining the presence of signatures within one or more graphs is the primary function of Path Finder. Path Finder can work in either batch mode or interactively with an analyst. Results are limited to Path Finder whether or not a given signature is present in the graph(s).

  20. Vortex dynamics in jets from inclined nozzles

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; Longmire, E. K.

    1997-03-01

    Experimental tests were performed on round jets exiting inclined nozzles at a Reynolds number of 9000. Both natural jets and jets forced with single frequencies corresponding to StD=0.25, 0.5, 0.75, and 1.0 were examined. In the natural case, the nozzle incline caused a mild increase in the radial spreading in the plane of azimuthal symmetry. The forcing amplified the asymmetric radial spreading by altering the vortex structure. In general, the inclined vortex rings rolled up at an angle slightly smaller than the nozzle incline angle. As the rings moved downstream, they migrated away from the jet centerline and their incline angle increased. Vortex rings generated at StD=0.5 did not pair because that Strouhal number was near the "preferred" mode. For nozzles with slight inclines, forcing at larger Strouhal numbers led to pairing near x/D=2 in order to achieve the "preferred" mode. For nozzles with larger inclines, the vortex cores broke down before pairing could occur. Forcing at a lower Strouhal number (StD=0.25) yielded ring formation at StD=0.5 and subsequent pairing. Increasing the incline angle moved the pairing location closer to the nozzle lip. Also, the pairing process was found to depend on the nozzle incline angle.

  1. On inclination resonances in Artificial Satellite Theory

    NASA Astrophysics Data System (ADS)

    Lara, Martin

    2015-05-01

    The frozen-perigee behavior of elliptic orbits at the critical inclination is usually displayed after an averaging procedure. However, this singularity in Artificial Satellite Theory manifests also in the presence of short-period effects. Indeed, a closed form expression relating orbital inclination and the ratio anomalistic draconitic frequencies is derived for the main problem, which demonstrates that the critical inclination results from commensurability between the periods with which the radial and polar variables evolve in the instantaneous plane of motion. This relation also shows that the critical inclination value is slightly modified by the degree of oblateness of the attracting body, as well as by the orbit's size and shape.

  2. Slipping and Rolling on an Inclined Plane

    ERIC Educational Resources Information Center

    Aghamohammadi, Cina; Aghamohammadi, Amir

    2011-01-01

    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ([mu]). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is…

  3. Shortest Paths.

    ERIC Educational Resources Information Center

    Shore, M. L.

    1980-01-01

    There are many uses for the shortest path algorithm presented which are limited only by our ability to recognize when a problem may be converted into the shortest path in a graph representation. (Author/TG)

  4. Reidar Løvlie and Plate Tectonic consequences of sedimentary inclination shallowing

    NASA Astrophysics Data System (ADS)

    Torsvik, Trond H.

    2014-05-01

    Reidar Løvlie was my mentor and supervisor in the early 1980s and he thought me all about laboratory experiments and palaeomagnetic methods, but also various aspects of science philosophy. My first fieldworks were together with him and I enjoyed memorable trips to the Bear Island, Spitsbergen and Scotland. Acquisition of magnetism in sediments was always a favourite topic of Reidar and in the early 1980s he was particularly interested in sedimentary inclination shallowing. From one of our fieldtrips to Spitsbergen we sampled unconsolidated flood-plain deposits of hematite-bearing Devonian red sand/siltstone from Dicksonfjorden. These were used for redeposition experiments in a coil system that could simulate different latitudes (field inclinations) and in 1994 we published a paper entitled"Magnetic remanence and fabric properties of laboratory-deposited hematite-bearing red sandstone" that demonstrated the tangent relationship between inclinations of detrital remanent magnetization and the ambient magnetic field. Inclination (I) error in sediments is latitude dependent, antisymmetric and the bias closely mimics errors produced by octupole fields of the same sign as the dipole field. Inclination shallowing is commonly predicted from tan (Observed Inclination) = f * tan (Field Inclination) where f is the degree of inclination error. In our study we calculated a f value of 0.4 and this laboratory value (and many others) is significant lower than those estimated from the E/I or the magnetic fabric methods developed in the past decade (f typically around 0.6). There is now little doubt that inclination shallowing in detrital sediments is a serious problem that affects plate reconstructions and apparent polar wander paths. As an example, a f value of 0.6 amounts to a latitude error of 1600 km at around 50 degrees N or S (comparable to the effects of octupole contributions as high as 22%) and this have led to erroneous Pangea reconstructions.

  5. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  6. 23. INCLINED END POST / VERTICAL / DIAGONAL / PORTAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. INCLINED END POST / VERTICAL / DIAGONAL / PORTAL BRACING DETAIL. VIEW TO SOUTHEAST. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  7. Measurements of turbulent inclined plane dual jets

    NASA Astrophysics Data System (ADS)

    Wang, C. S.; Lin, Y. F.; Sheu, M. J.

    1993-11-01

    Measurements of mean velocities, flow direction, velocity fluctuations and Reynolds shear stress were made with a split film probe of hot wire anemometer to investigate the interactions created by two air jets issuing from two identical plane inclined nozzles. The reverse flow was detected by using the split film probe and observed by flow visualization. Experimental results with an inclined angle of 9° are presented in the paper. Some experimental results with an inclined angle of 27° are presented to investigate the effect of inclination on the flow field. Mean velocities approach self-preservation in both the converging region and the combining region. Velocity fluctuations and Reynolds shear stress approach self-preservation in the combining region only. The spreads of jet and the square of the decay of maximum mean velocity increase linearly as the distance from the nozzle exit increases.

  8. The solid angle through the inclined rectangle

    NASA Astrophysics Data System (ADS)

    Schröer, H.

    We want to determine the solid angle through the inclined rectangle. We use the cosine law for sides and the spherical law of sines. The relation to luminous flux(radiant flux or radiant power) is shown.

  9. Dewetting films with inclined contact lines

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Li, Lei; Lu, Xi-Yun

    2015-02-01

    A partially wetting plate withdrawn from a liquid reservoir causes the deposition of a liquid film that is characterized by inclined contact lines. It has been experimentally indicated that the normal component of the contact-line velocity relative to the plate remains constant and is independent of the inclination angles, a fact that has never theoretically been justified. We demonstrate, in the framework of lubrication theory, that the speed-angle independence is only approximate and the normal velocity actually exhibits a weak decrease with the inclination angle of the contact line. This correlation is attributed to the variation of the effective separation of microscopic and macroscopic length scales. In addition, the inclination of the contact line results in a tangential flux of the liquid, which is confined in the vicinity of the contact line. Simple scaling relations are provided for both the normal velocity and the tangential flux.

  10. Stair ascent and descent at different inclinations.

    PubMed

    Riener, Robert; Rabuffetti, Marco; Frigo, Carlo

    2002-02-01

    The aim of this study was to investigate the biomechanics and motor co-ordination in humans during stair climbing at different inclinations. Ten normal subjects ascended and descended a five-step staircase at three different inclinations (24 degrees, 30 degrees, 42 degrees ). Three steps were instrumented with force sensors and provided 6 dof ground reactions. Kinematics was analysed by a camera-based optoelectronic system. An inverse dynamics approach was applied to compute joint moments and powers. The different kinematic and kinetic patterns of stair ascent and descent were analysed and compared to level walking patterns. Temporal gait cycle parameters and ground reactions were not significantly affected by staircase inclination. Joint angles and moments showed a relatively low but significant dependency on the inclination. A large influence was observed in joint powers. This can be related to the varying amount of potential energy that has to be produced (during ascent) or absorbed (during descent) by the muscles. The kinematics and kinetics of staircase walking differ considerably from level walking. Interestingly, no definite signs could be found indicating that there is an adaptation or shift in the motor patterns when moving from level to stair walking. This can be clearly seen in the foot placement: compared to level walking, the forefoot strikes the ground first--independent from climbing direction and inclination. This and further findings suggest that there is a certain inclination angle or angular range where subjects do switch between a level walking and a stair walking gait pattern. PMID:11809579

  11. Path ANalysis

    SciTech Connect

    Snell, Mark K.

    2007-07-14

    The PANL software determines path through an Adversary Sequence Diagram (ASD) with minimum Probability of Interruption, P(I), given the ASD information and data about site detection, delay, and response force times. To accomplish this, the software generates each path through the ASD, then applies the Estimate of Adversary Sequence Interruption (EASI) methodology for calculating P(I) to each path, and keeps track of the path with the lowest P(I). Primary use is for training purposes during courses on physical security design. During such courses PANL will be used to demonstrate to students how more complex software codes are used by the US Department of Energy to determine the most-vulnerable paths and, where security needs improvement, how such codes can help determine physical security upgrades.

  12. Path ANalysis

    2007-07-14

    The PANL software determines path through an Adversary Sequence Diagram (ASD) with minimum Probability of Interruption, P(I), given the ASD information and data about site detection, delay, and response force times. To accomplish this, the software generates each path through the ASD, then applies the Estimate of Adversary Sequence Interruption (EASI) methodology for calculating P(I) to each path, and keeps track of the path with the lowest P(I). Primary use is for training purposes duringmore » courses on physical security design. During such courses PANL will be used to demonstrate to students how more complex software codes are used by the US Department of Energy to determine the most-vulnerable paths and, where security needs improvement, how such codes can help determine physical security upgrades.« less

  13. S-DARS broadcast from inclined, elliptical orbits

    NASA Astrophysics Data System (ADS)

    Briskman, Robert D.; Prevaux, Robert J.

    2004-04-01

    The first Sirius spacecraft was launched on July 1, 2000. Exactly 5 months later, on December 1, the third spacecraft was launched, completing the three satellite S-DARS (Satellite Digital Audio Radio Service) constellation. The three satellites are deployed in inclined, elliptical, geosynchronous orbits, which allow seamless broadcast coverage to mobile users in the contiguous US. Terrestrial broadcast repeaters provide service in urban cores. The system is in operation, providing the first ever S-DARS service. The constellation design results in satellite ground tracks over North America with two satellites always above the equator. High elevation look angles from the mobile ground terminals to the satellites minimize performance degradation due to blockage, foliage attenuation and multi-path. The spacecraft were built by Space Systems/Loral using the 1300 bus modified for operation in high inclination orbits. Each spacecraft was launched using a dedicated Russian Proton booster. The satellite payload is a bent pipe repeater using 7.1 GHz for the uplink and 2.3 GHz for the broadcast transmission. The repeater high-power amplification stage consists of 32 Traveling Wave Tube Amplifiers phase combined to yield a total radio frequency output power of nearly 4 kW at saturated operation. The satellite antennas are mechanically steered to maintain the transmit beam centered on the Contiguous United States and the receive beam centered on the uplink earth station located in Vernon Valley, New Jersey. The satellite payload design and performance are described. The principal spacecraft bus systems are described with emphasis on improvements made for operation in the inclined, elliptical geosynchronous orbits.

  14. EXTINCTION IN STAR-FORMING DISK GALAXIES FROM INCLINATION-DEPENDENT COMPOSITE SPECTRA

    SciTech Connect

    Yip, Ching-Wa; Szalay, Alex S.; Wyse, Rosemary F. G.; Budavari, Tamas; Dobos, Laszlo; Csabai, Istvan E-mail: szalay@pha.jhu.ed

    2010-02-01

    Extinction in galaxies affects their observed properties. In scenarios describing the distribution of dust and stars in individual disk galaxies, the amplitude of the extinction can be modulated by the inclination of the galaxies. In this work, we investigate the inclination dependency in composite spectra of star-forming disk galaxies from the Sloan Digital Sky Survey Data Release 5. In a volume-limited sample within a redshift range 0.065-0.075 and a r-band Petrosian absolute magnitude range -19.5 to -22 mag which exhibits a flat distribution of inclination, the inclined relative to face-on extinction in the stellar continuum is found empirically to increase with inclination in the g, r, and i bands. Within the central 0.5 intrinsic half-light radius of the galaxies, the g-band relative extinction in the stellar continuum for the highly inclined objects (axis ratio b/a = 0.1) is 1.2 mag, agreeing with previous studies. The extinction curve of the disk galaxies is given in the rest-frame wavelengths 3700-8000 A, identified with major optical emission and absorption lines in diagnostics. The Balmer decrement, Halpha/Hbeta, remains constant with inclination, suggesting a different kind of dust configuration and/or reddening mechanism in the H II region from that in the stellar continuum. One factor is shown to be the presence of spatially non-uniform interstellar extinction, presumably caused by clumped dust in the vicinity of the H II region.

  15. Experimental Investigations of an Inclined Lap-Type Bolted Joint

    SciTech Connect

    GREGORY, DANNY LYNN; RESOR, BRIAN R.; COLEMAN, RONALD G.; SMALLWOOD, DAVID ORA

    2003-04-01

    The dynamic response of critical aerospace components is often strongly dependent upon the dynamic behavior of bolted connections that attach the component to the surrounding structure. These bolted connections often provide the only structural load paths to the component. The bolted joint investigated in this report is an inclined lap-type joint with the interface inclined with respect to the line of action of the force acting on the joint. The accurate analytical modeling of these bolted connections is critical to the prediction of the response of the component to normal and high-level shock environmental loadings. In particular, it is necessary to understand and correctly model the energy dissipation (damping) of the bolted joint that is a nonlinear function of the forces acting on the joint. Experiments were designed and performed to isolate the dynamics of a single bolted connection of the component. Steady state sinusoidal and transient experiments were used to derive energy dissipation curves as a function of input force. Multiple assemblies of the bolted connection were also observed to evaluate the variability of the energy dissipation of the connection. These experiments provide insight into the complex behavior of this bolted joint to assist in the postulation and development of reduced order joint models to capture the important physics of the joint including stiffness and damping. The experiments are described and results presented that provide a basis for candidate joint model calibration and comparison.

  16. Neural Extrapolation of Motion for a Ball Rolling Down an Inclined Plane

    PubMed Central

    La Scaleia, Barbara; Lacquaniti, Francesco; Zago, Myrka

    2014-01-01

    It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position (4 different positions) and slope (30°, 45° or 60°). In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available (Experiment 1). However, even when participants punched an imaginary moving ball (Experiment 2) or drew in air the imaginary trajectory (Experiment 3), they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion. PMID:24940874

  17. Path Pascal

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.; Kolstad, R. B.; Holle, D. F.; Miller, T. J.; Krause, P.; Horton, K.; Macke, T.

    1983-01-01

    Path Pascal is high-level experimental programming language based on PASCAL, which incorporates extensions for systems and real-time programming. Pascal is extended to treat real-time concurrent systems.

  18. Nonequilibrium equalities in absolutely irreversible processes

    NASA Astrophysics Data System (ADS)

    Murashita, Yuto; Funo, Ken; Ueda, Masahito

    2015-03-01

    Nonequilibrium equalities have attracted considerable attention in the context of statistical mechanics and information thermodynamics. Integral nonequilibrium equalities reveal an ensemble property of the entropy production σ as = 1 . Although nonequilibrium equalities apply to rather general nonequilibrium situations, they break down in absolutely irreversible processes, where the forward-path probability vanishes and the entropy production diverges. We identify the mathematical origins of this inapplicability as the singularity of probability measure. As a result, we generalize conventional integral nonequilibrium equalities to absolutely irreversible processes as = 1 -λS , where λS is the probability of the singular part defined based on Lebesgue's decomposition theorem. The acquired equality contains two physical quantities related to irreversibility: σ characterizing ordinary irreversibility and λS describing absolute irreversibility. An inequality derived from the obtained equality demonstrates the absolute irreversibility leads to the fundamental lower bound on the entropy production. We demonstrate the validity of the obtained equality for a simple model.

  19. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  20. Staff detection with stable paths.

    PubMed

    Dos Santos Cardoso, Jaime; Capela, Artur; Rebelo, Ana; Guedes, Carlos; Pinto da Costa, Joaquim

    2009-06-01

    The preservation of musical works produced in the past requires their digitalization and transformation into a machine-readable format. The processing of handwritten musical scores by computers remains far from ideal. One of the fundamental stages to carry out this task is the staff line detection. We investigate a general-purpose, knowledge-free method for the automatic detection of music staff lines based on a stable path approach. Lines affected by curvature, discontinuities, and inclination are robustly detected. Experimental results show that the proposed technique consistently outperforms well-established algorithms. PMID:19372615

  1. Absolute Priority for a Vehicle in VANET

    NASA Astrophysics Data System (ADS)

    Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad

    In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.

  2. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  3. 46 CFR 28.535 - Inclining test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... section, each vessel for which the lightweight displacement and centers of gravity must be determined in... of the vessel which was inclined and the location of the longitudinal center of gravity differs less... characteristics can be made and the precise location of the position of the vessel's vertical center of gravity...

  4. 46 CFR 28.535 - Inclining test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... section, each vessel for which the lightweight displacement and centers of gravity must be determined in... undocumented weight difference between the two vessels is less than 3 percent of the lightweight displacement... test, or the inclining test may be dispensed with, if an accurate estimate of the vessel's...

  5. The Ballistic Cart on an Incline Revisited.

    ERIC Educational Resources Information Center

    Serway, Raymond A.; And Others

    1995-01-01

    Presents the theory behind the mechanics demonstration that involves projecting a ball vertically upward from a ballistic cart moving along an inclined plane. The measured overshoot is believed to be due, in part, to the presence of rolling friction and the inertial properties of the cart wheels. (JRH)

  6. Particle Sliding on a Rough Incline

    ERIC Educational Resources Information Center

    Zurcher, Ulrich

    2007-01-01

    We study a particle sliding on a rough inclined plane as an example of a mechanical problem with nonholonomic constraint. The particle is launched in an arbitrary direction so that its motion has both a horizontal and a "vertical" (i.e., up- and downhill) direction. The friction force acts along the instantaneous velocity, so that the horizontal…

  7. Penning trap with an inclined magnetic field.

    PubMed

    Yaremko, Yurij; Przybylska, Maria; Maciejewski, Andrzej J

    2016-08-01

    A modified Penning trap with a spatially uniform magnetic field B inclined with respect to the axis of rotational symmetry of the electrodes is considered. The inclination angle can be arbitrary. Canonical transformation of phase variables transforming the Hamiltonian of the considered system into a sum of three uncoupled harmonic oscillators is found. We determine the region of stability in space of two parameters controlling the dynamics: the trapping parameter κ and the squared sine of the inclination angle ϑ0. If the angle ϑ0 is smaller than 54°, a charge occupies a finite spatial volume within the processing chamber. A rigid hierarchy of trapping frequencies is broken if B is inclined at the critical angle: the magnetron frequency reaches the modified cyclotron frequency while the axial frequency exceeds them. Apart from this resonance, we reveal the family of resonant curves in the region of stability. In the relativistic regime, the system is not linear. We show that it is not integrable in the Liouville sense. The averaging over the fast variable allows to reduce the system to two degrees of freedom. An analysis of the Poincaré cross-sections of the averaged systems shows the regions of effective stability of the trap. PMID:27586614

  8. Analysis of inclined growth of silicon sheet

    NASA Technical Reports Server (NTRS)

    Brown, R. A.

    1984-01-01

    A general-purpose finite element program was developed for analysis of silicon sheet growth in inclined configurations. This program will be used to study parametric sensitivity of various growth geometries with respect to thermal control and growth rate, dopant segregation, thermal stress and interface morphology and instability.

  9. Implants as absolute anchorage.

    PubMed

    Rungcharassaeng, Kitichai; Kan, Joseph Y K; Caruso, Joseph M

    2005-11-01

    Anchorage control is essential for successful orthodontic treatment. Each tooth has its own anchorage potential as well as propensity to move when force is applied. When teeth are used as anchorage, the untoward movements of the anchoring units may result in the prolonged treatment time, and unpredictable or less-than-ideal outcome. To maximize tooth-related anchorage, techniques such as differential torque, placing roots into the cortex of the bone, the use of various intraoral devices and/or extraoral appliances have been implemented. Implants, as they are in direct contact with bone, do not possess a periodontal ligament. As a result, they do not move when orthodontic/orthopedic force is applied, and therefore can be used as "absolute anchorage." This article describes different types of implants that have been used as orthodontic anchorage. Their clinical applications and limitations are also discussed. PMID:16463910

  10. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  11. Effects of inclination and vorticity on interfacial flow dynamics in horizontal and inclined pipes

    NASA Astrophysics Data System (ADS)

    Kiara, Areti; Hendrickson, Kelli; Liu, Yuming

    2015-11-01

    The transport of oil and gas in long horizontal pipelines can be significantly affected by the development of violent roll waves and slugs, but the mechanics causing such transitions have not been well understood. To enable the improvement of the prediction of flow transition criteria in long pipelines we perform theoretical analysis and direct numerical simulations of multiphase pipe flows to quantify the roles of inclination and vorticity in the flow dynamics. We find that backflow or flooding may occur even in the absence of disturbances due to inclination effects and obtain criteria on the maximum pipe length for steady flows. We identify and compare the effects of inclination and vorticity on the stability of interfacial wave disturbances. We discuss the mechanisms of non-linear energy transfer between stable and unstable wave disturbances and present results from direct numerical simulations for the predictions of spectrum evolutions for broad-banded interfacial disturbances in inclined pipes.

  12. 10. LOWER STATION, FIRST FLOOR, INCLINE PLANE TRCK LOOKING SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. LOWER STATION, FIRST FLOOR, INCLINE PLANE TRCK LOOKING SOUTH SOUTHEAST, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  13. 1. VIEW WEST SOUTHWEST, UPPER STATION. INCLINE PLANE TRACK AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW WEST SOUTHWEST, UPPER STATION. INCLINE PLANE TRACK AND LOWER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  14. 8. LOWER STATION, FIRST FLOOR, EAST SIDE ACCESS TO INCLINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. LOWER STATION, FIRST FLOOR, EAST SIDE ACCESS TO INCLINE PLANE CARS, LOOKING NORTH NORTHEAST. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  15. 4. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  16. 19. UPPER STATION, FIRST FLOOR, OPERATOR'S CABIN, DOORS TO INCLINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. UPPER STATION, FIRST FLOOR, OPERATOR'S CABIN, DOORS TO INCLINE PLANE CARS, LOOKING WEST. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  17. 5. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  18. 5. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM TOP OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM TOP OF ABUTMENT, FILL CONFIGURATION - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  19. 6. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM MIDSLOPE VICINITY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM MID-SLOPE VICINITY, CUT CONFIGURATION - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  20. 2. VIEW SOUTH, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTH, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON WEST SIDE OF PA ROUTE 56 - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  1. 3. VIEW NORTHWEST, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTHWEST, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON WEST SIDE OF PA ROUTE 56 - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  2. Diffuse ultraviolet erythemal irradiance on inclined planes: a comparison of experimental and modeled data.

    PubMed

    Utrillas, María P; Marín, María J; Esteve, Anna R; Estellés, Victor; Tena, Fernando; Cañada, Javier; Martínez-Lozano, José A

    2009-01-01

    Values of measured and modeled diffuse UV erythemal irradiance (UVER) for all sky conditions are compared on planes inclined at 40 degrees and oriented north, south, east and west. The models used for simulating diffuse UVER are of the geometric-type, mainly the Isotropic, Klucher, Hay, Muneer, Reindl and Schauberger models. To analyze the precision of the models, some statistical estimators were used such as root mean square deviation, mean absolute deviation and mean bias deviation. It was seen that all the analyzed models reproduce adequately the diffuse UVER on the south-facing plane, with greater discrepancies for the other inclined planes. When the models are applied to cloud-free conditions, the errors obtained are higher because the anisotropy of the sky dome acquires more importance and the models do not provide the estimation of diffuse UVER accurately. PMID:19496991

  3. A new inclination instability in planetary systems

    NASA Astrophysics Data System (ADS)

    Madigan, Ann-Marie

    2015-08-01

    I describe a new instability in Keplerian disks of massive particles on eccentric orbits. Gravitational torques between the orbits align their angles of pericenter and drive exponential growth in orbital inclination. This instability implies specific ratios for Kepler elements of the orbits, similar to what is seen in the inner Oort Cloud of our solar system. I also discuss implications for extra-solar planetary systems and for nuclear star clusters in the centers of galaxies.

  4. Absolute neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Wolf, Joachim

    2011-10-01

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

  5. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  6. A jumping cylinder on an inclined plane

    NASA Astrophysics Data System (ADS)

    Gómez, R. W.; Hernández-Gómez, J. J.; Marquina, V.

    2012-09-01

    The problem of a cylinder of mass m and radius r, with its centre of mass out of the cylinder’s axis, rolling on an inclined plane that makes an angle α with respect to the horizontal, is analysed. The equation of motion is partially solved to obtain the site where the cylinder loses contact with the inclined plane (jumps). Several simplifications are made: the analysed system consists of an homogeneous disc with a one-dimensional straight line mass parallel to the disc axis at a distance y < r of the centre of the cylinder. To compare our results with experimental data, we use a styrofoam cylinder to which a long brass rod is embedded parallel to the disc axis at a distance y < r from it, so the centre of mass lies at a distance d from the centre of the cylinder. Then the disc rolls without slipping on a long wooden ramp inclined at 15°, 30° and 45° with respect to the horizontal. To determine the jumping site, the movements are recorded with a high-speed video camera (Casio EX ZR100) at 240 and 480 frames per second. The experimental results agree well with the theoretical predictions.

  7. A jumping cylinder in an incline

    NASA Astrophysics Data System (ADS)

    Gomez, Raul W.; Hernandez, Jorge; Marquina, Vivianne

    2012-02-01

    The problem of a cylinder of mass m and radius r, with its center of mass out of the cylinder axis, rolling in an incline that makes an angle α respect to the horizontal is analyzed. The equation of motion is solved to obtain the site where the cylinder loses contact with the incline (jumps). Several simplifications are made: the analyzed system consists of an homogeneous disc with a one dimensional straight line of mass parallel to the disc axis at a distance d < r of the center of the cylinder. To compare our results with experimental data, we use a Styrofoam cylinder of radius r = 10.0 ± 0.05 cm, high h = 5.55 ± 0.05 cm and a mass m1 = 24.45 ± 0.05 g, to which a 9.50 ± 0.01 mm diameter and 5.10 ± 0.001 cm long brass road of mass m2 = 30.75 ± 0.05 g was imbibed parallel to the disc axis at a distance of 5.40 ± 0.05 cm from it. Then the disc rolls on a 3.20 m long wooden ramp inclined at 30 and 45 respect to the horizontal. To determine the jumping site, the movements were recorded with a high-speed video camera (Casio EX ZR100) at 400 frames per second. The experimental results agree well with the theoretical predictions.

  8. HIGH-INCLINATION ATENS ARE INDEED RARE

    SciTech Connect

    Greenstreet, S.; Gladman, B.

    2013-04-10

    A recent publication by the Near-Earth Object (NEOWISE) team (Mainzer et al.) using data from the Wide-field Infrared Survey Explorer compared the spacecraft's detected near-Earth asteroid subpopulation orbital element distributions to those expected from the Bottke et al. NEO orbital model. They found a discrepency between the detected and expected Aten inclination distribution. We show that the more recent NEO orbital distribution model by Greenstreet et al., when biased using the NEOWISE detection biases, gives a better match to the NEOWISE detections for the Aten (a < 1.0 AU, Q > 0.983 AU) population in semimajor axis (a), eccentricity (e), and inclination (i) than the Bottke et al. model. A Kolmogorov-Smirnov test gives the probability of drawing the NEOWISE detections from the biased Bottke et al. model as not rejectable (at >99% confidence) for the Aten semimajor axis distribution, but is rejectable at such a high level of confidence for the Aten eccentricity and inclination distributions. For all three orbital element distributions, the biased Greenstreet et al. model provides an acceptable match to the NEOWISE Aten detections. The deficiency in the previous model is likely due to the numerical integration's accuracy having broken down in the high-speed regime for planetary encounters near the Sun, an effect which the newer model does not suffer, and thus likely is the model of preference for perihelia q < 1.0 AU.

  9. Earth Collision with High Inclination Asteroids

    NASA Astrophysics Data System (ADS)

    Solovaya, N. A.; Pittich, E. M.

    2000-01-01

    The orbital evolution of fictitious high inclination main belt asteroids with movement corresponding to the conditions of the Tisserand invariant for C = C(Ll) in the restricted three body problem has been investigated. The obtained results showed that the bodies with inclinations within 40-80 deg and 100-140 deg and eccentricities within 0-0.4 are dynamically stable at least during the 200,000 years investigated period, and periodically change their inclinations, eccentricities and perihelion distances. In some time, they can reach the vicinity of the Sun and during their orbital evolution they cross the Earth orbits many times. The bodies belong to the potential candidates dangerous for the Earth in that they may bring about catastrophic events on its surface. The discoveries of some tents retrograde sungrazers with LASCO coronographs of the SOHO spacecraft and MMC and SOLWIN space equipments lead to the idea that bodies with the studied orbital parameters exist, whereby majority of their revolution around the Sun occur in the space outside the Mars orbit.

  10. Analysis of inclined showers measured with LOPES

    NASA Astrophysics Data System (ADS)

    Lopes Collaboration; Saftoiu, A.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Auffenberg, J.; Badea, F.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Kolotaev, Y.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschläger, J.; Over, S.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Schieler, H.; Schmidt, A.; Schröder, F.; Sima, O.; Singh, K.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.; LOPES Collaboration

    2009-06-01

    In the present study, we analyze the radio signal from inclined air showers recorded by LOPES-30 in coincidence with KASCADE-Grande. LOPES-30 consists of 30 East-West oriented digital antennas, which are amplitude calibrated by an external source. Radio emission from air showers is considered a geomagnetic effect. Inclined events provide a larger range of values for geomagnetic angle (angle between shower axis and geomagnetic field direction) than vertical showers and thus more information on the emission processes can be gathered. In order to have the geometry of the air shower we use the reconstruction provided by the KASCADE-Grande particle detectors array. Analyzing events observed by both LOPES and the extended part of the KASCADE array, Grande, gives the possibility to test in particular the capability and efficiency of radio detection of more distant events. The results are compared with a previous analysis of inclined events recorded by the initial 10 antenna set-up, LOPES-10, in coincidence with the Grande array.

  11. 47 CFR 25.280 - Inclined orbit operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Inclined orbit operations. 25.280 Section 25... COMMUNICATIONS Technical Operations § 25.280 Inclined orbit operations. (a) Satellite operators may commence operation in inclined orbit mode without obtaining prior Commission authorization provided that...

  12. 47 CFR 25.280 - Inclined orbit operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Inclined orbit operations. 25.280 Section 25... COMMUNICATIONS Technical Operations § 25.280 Inclined orbit operations. (a) Satellite operators may commence operation in inclined orbit mode without obtaining prior Commission authorization provided that...

  13. 47 CFR 25.280 - Inclined orbit operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Inclined orbit operations. 25.280 Section 25... COMMUNICATIONS Technical Operations § 25.280 Inclined orbit operations. (a) Satellite operators may commence operation in inclined orbit mode without obtaining prior Commission authorization provided that...

  14. 47 CFR 25.280 - Inclined orbit operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Inclined orbit operations. 25.280 Section 25... COMMUNICATIONS Technical Operations § 25.280 Inclined orbit operations. (a) Satellite operators may commence operation in inclined orbit mode without obtaining prior Commission authorization provided that...

  15. 47 CFR 25.280 - Inclined orbit operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Inclined orbit operations. 25.280 Section 25... COMMUNICATIONS Technical Operations § 25.280 Inclined orbit operations. (a) Satellite operators may commence operation in inclined orbit mode without obtaining prior Commission authorization provided that...

  16. 4. VIEW EAST, PERSPECTIVE DOWN INCLINED PLANE FROM TOP OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW EAST, PERSPECTIVE DOWN INCLINED PLANE FROM TOP OF ABUTMENT TO CONEMAUGH RIVER AND AREA OF LOWER INCLINE - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  17. Precession of a Spinning Ball Rolling down an Inclined Plane

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…

  18. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  19. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  20. PRECISE TULLY-FISHER RELATIONS WITHOUT GALAXY INCLINATIONS

    SciTech Connect

    Obreschkow, D.; Meyer, M.

    2013-11-10

    Power-law relations between tracers of baryonic mass and rotational velocities of disk galaxies, so-called Tully-Fisher relations (TFRs), offer a wealth of applications in galaxy evolution and cosmology. However, measurements of rotational velocities require galaxy inclinations, which are difficult to measure, thus limiting the range of TFR studies. This work introduces a maximum likelihood estimation (MLE) method for recovering the TFR in galaxy samples with limited or no information on inclinations. The robustness and accuracy of this method is demonstrated using virtual and real galaxy samples. Intriguingly, the MLE reliably recovers the TFR of all test samples, even without using any inclination measurements—that is, assuming a random sin i-distribution for galaxy inclinations. Explicitly, this 'inclination-free MLE' recovers the three TFR parameters (zero-point, slope, scatter) with statistical errors only about 1.5 times larger than the best estimates based on perfectly known galaxy inclinations with zero uncertainty. Thus, given realistic uncertainties, the inclination-free MLE is highly competitive. If inclination measurements have mean errors larger than 10°, it is better not to use any inclinations than to consider the inclination measurements to be exact. The inclination-free MLE opens interesting perspectives for future H I surveys by the Square Kilometer Array and its pathfinders.

  1. Electrically assisted drop sliding on inclined planes

    NASA Astrophysics Data System (ADS)

    't Mannetje, D. J. C. M.; Murade, C. U.; van den Ende, D.; Mugele, F.

    2011-01-01

    We demonstrate that electrowetting using alternating current (ac) voltage can be used to overcome pinning of small drops due to omnipresent heterogeneities on solid surfaces. By balancing contact angle hysteresis with gravity on inclined planes, we find that the critical electrowetting number for mobilizing drops is consistent with the voltage-dependent reduction in contact angle hysteresis in ac electrowetting. Moreover, the terminal velocity of sliding drops under ac electrowetting is found to increase linearly with the electrowetting number. Based on this effect, we present a prototype of a wiper-free windscreen.

  2. Eccentricity and inclination of Miranda's orbit

    NASA Technical Reports Server (NTRS)

    Whitaker, E.; Greenberg, R.

    1973-01-01

    Careful re-measurement of all available plates showing Uranus V (Miranda), supplemented by some recently obtained images, shows that this satellite has both a pronounced orbital eccentricity and inclination (to the plane of the other satellites). Observations are sufficient in number and distribution to allow determinations of the precession rates of both pericenter and node, with implications for the dynamical oblateness of Uranus and the gravitational interaction of the satellites. An improved value for the revolution period is a byproduct of the investigation. The success of the study is due to the improved precision of the measures resulting from the adoption of a very simple, direct method of measurement.

  3. Eccentricity and inclination of Miranda's orbit

    NASA Technical Reports Server (NTRS)

    Whitaker, E.; Greenberg, R.

    1973-01-01

    Careful re-measurement of all available plates showing Uranus V (Miranda), supplemented by some recently obtained images, shows that this satellite has both a pronounced orbital eccentricity and inclination (to the plane of the other satellites). Observations are sufficient in number and distribution to allow determinations of the precession rates of both pericenter and node, with implications for the dynamical oblateness of Uranus and the gravitational interaction of the satellites. An improved value for the revolution period is a by-product of the investigation. The success of this study is due to the improved precision of the measures resulting from the adoption of a very simple, direct method of measurement.

  4. Internal Extinction in Spiral Galaxies. Inclination Dependence

    NASA Astrophysics Data System (ADS)

    Magris, G. C.; Bruzual, G. A.

    1987-05-01

    . Kent (1986) finds that the surface brightness profiles (r) of spiral galaxies have a weak dependence, if any, on the inclination e with respect to the line of sight. This author also finds a correlation between the MIL ratio and the inclination of a galaxy. The lack of dependence of (r) in , = cos 8 indicates that the disk of these galaxies is optically thick ( .>l), due to the presence of dust grains. For an optically thick system o(r) a + 2.5 log . The cosecant law : 1.086 (Holmberg, 1975) does not explain the observed behaviour of a(r) with . 8ru'ual, Magris and Calvet (1986) solved the radiative transfer equation for a mixture of stars and dispersive dust grains distributed homogeneously in a plane parallel configuration, taking into account the wavelenght dependence of the albedo and , as well as the redistribution in angle of photons scattered by dust grains. The transfer equation is solved for the dimensionless intensity ?( , ) I( , )/I*, where 1* is the intensity emerging from the dust free configuration. The solution, CA -2.5 log (r..=0, ) , includes the correction to the galaxy magnitude due to the excess number 0+ stellar sources along the line o+ sigth (cc -i) with respect to the =I case (face on galaxy). For optically thick systems, does not depend on . The luminosity of a disk galaxy observed with inclination ,q 1 given in our model by L cc , from which log(M/L) = const + (.4 8.N( )'. with G.N . ) = -2.5 log( ). The constant is determined from the mass- luminosity. ratio of a dust free system. In terms of the correction (3(N) we can explain Kent's observations with values of between .3 and 4. These values are consistent with the observation of . -independent surface brightness profiles mentioned above. From this analysis we conclude that the correction terms of Bruzual, Magris and Calvet (1986), which take into account the dispersive properties of interstellar dust, can explain the behaviour of ar) and MIL with galaxy inclination. These correction

  5. The speed of an inclined ruck

    PubMed Central

    Balmforth, N. J.; Craster, R. V.; Hewitt, I. J.

    2015-01-01

    Steady rucks in an elastic beam can roll at constant speed down an inclined plane. We examine the dynamics of these travelling-wave structures and argue that their speed can be dictated by a combination of the physical conditions arising in the vicinity of the ‘contact points’ where the beam is peeled off the underlying plane and stuck back down. We provide three detailed models for the contact dynamics: viscoelastic fracture, a thermodynamic model for bond formation and detachment and adhesion mediated by a thin liquid film. The results are compared with experiments. PMID:25568622

  6. Acoustic signals generated in inclined granular flows

    NASA Astrophysics Data System (ADS)

    Tan, Danielle S.; Jenkins, James T.; Keast, Stephen C.; Sachse, Wolfgang H.

    2015-10-01

    Spontaneous avalanching in specific deserts produces a low-frequency sound known as "booming." This creates a puzzle, because avalanches down the face of a dune result in collisions between sand grains that occur at much higher frequencies. Reproducing this phenomenon in the laboratory permits a better understanding of the underlying mechanisms for the generation of such lower frequency acoustic emissions, which may also be relevant to other dry granular flows. Here we report measurements of low-frequency acoustical signals, produced by dried "sounding" sand (sand capable of booming in the desert) flowing down an inclined chute. The amplitude of the signal diminishes over time but reappears upon drying of the sand. We show that the presence of this sound in the experiments may provide supporting evidence for a previously published "waveguide" explanation for booming. Also, we propose a model based on kinetic theory for a sheared inclined flow in which the flowing layer exhibits "breathing" modes superimposed on steady shearing. The predicted oscillation frequency is of a similar order of magnitude as the measurements, indicating that small perturbations can sustain oscillations of a low frequency. However, the frequency is underestimated, which indicates that the stiffness has been underestimated. Also, the model predicts a discrete spectrum of frequencies, instead of the broadband spectrum measured experimentally.

  7. Nonlocal modeling of granular flows down inclines.

    PubMed

    Kamrin, Ken; Henann, David L

    2015-01-01

    Flows of granular media down a rough inclined plane demonstrate a number of nonlocal phenomena. We apply the recently proposed nonlocal granular fluidity model to this geometry and find that the model captures many of these effects. Utilizing the model's dynamical form, we obtain a formula for the critical stopping height of a layer of grains on an inclined surface. Using an existing parameter calibration for glass beads, the theoretical result compares quantitatively to existing experimental data for glass beads. This provides a stringent test of the model, whose previous validations focused on driven steady-flow problems. For layers thicker than the stopping height, the theoretical flow profiles display a thickness-dependent shape whose features are in agreement with previous discrete particle simulations. We also address the issue of the Froude number of the flows, which has been shown experimentally to collapse as a function of the ratio of layer thickness to stopping height. While the collapse is not obvious, two explanations emerge leading to a revisiting of the history of inertial rheology, which the nonlocal model references for its homogeneous flow response. PMID:25376561

  8. Legged-locomotion on inclined granular media

    NASA Astrophysics Data System (ADS)

    Rieser, Jennifer; Qian, Feifei; Goldman, Daniel

    Animals traverse a wide variety of complex environments, including situations in which the ground beneath them can yield (e.g. dry granular media in desert dunes). Locomotion strategies that are effective on level granular media can fail when traversing a granular slope. Taking inspiration from successful legged-locomotors in sandy, uneven settings, we explore the ability of a small (15 cm long, 100 g), six-c-shaped legged robot to run uphill in a bed of 1-mm-diameter poppy seeds, using an alternating tripod gait. Our fully automated experiments reveal that locomotor performance can depend sensitively on both environmental parameters such as the inclination angle and volume fraction of the substrate, and robot morphology and control parameters like leg shape, step frequency, and the friction between the feet of the robot and the substrate. We assess performance by measuring the average speed of the robot, and we find that the robot tends to perform better at higher step frequency and lower inclination angles, and that average speed decreases more rapidly with increasing angle for higher step frequency.

  9. Tenebrio beetles use magnetic inclination compass

    NASA Astrophysics Data System (ADS)

    Vácha, Martin; Drštková, Dana; Půžová, Tereza

    2008-08-01

    Animals that guide directions of their locomotion or their migration routes by the lines of the geomagnetic field use either polarity or inclination compasses to determine the field polarity (the north or south direction). Distinguishing the two compass types is a guideline for estimation of the molecular principle of reception and has been achieved for a number of animal groups, with the exception of insects. A standard diagnostic method to distinguish a compass type is based on reversing the vertical component of the geomagnetic field, which leads to the opposite reactions of animals with two different compass types. In the present study, adults of the mealworm beetle Tenebrio molitor were tested by means of a two-step laboratory test of magnetoreception. Beetles that were initially trained to memorize the magnetic position of the light source preferred, during the subsequent test, this same direction, pursuant geomagnetic cues only. In the following step, the vertical component was reversed between the training and the test. The beetles significantly turned their preferred direction by 180°. Our results brought until then unknown original findings that insects, represented here by the T. molitor species, use—in contrast to another previously researched Arthropod, spiny lobster—the inclination compass.

  10. An experimental study on jets issuing from elliptic inclined nozzles

    NASA Astrophysics Data System (ADS)

    New, T. H.

    2009-06-01

    This paper reports on an experimental flow visualisation and digital particle image velocimetry investigation on forced jets exhausting from aspect ratio equal to three elliptic nozzles with exits inclined at 30° and 60°. Flow images show that shear layer instabilities and subsequent vortex roll-ups are formed parallel to the inclined nozzle exits at 30° incline and that rapid re-orientation of the vortex roll-ups occurs at 60° incline. Flow observations also show that strong axis-switching occurs in a non-inclined elliptic nozzle. However, 30° and 60° elliptic inclined nozzles produce significant distortions to and suppression of the axis-switching behaviour, respectively. As a result, flow stresses and turbulent kinetic energy distributions become increasingly asymmetric. Their coherency and magnitudes along the shorter nozzle lengths also vary significantly. This can be attributed to the dissimilar formations of vortex roll-ups and rib structures, as well as unequal mutual interactions between them as the incline-angle increases. Lastly, results also show that unlike circular inclined nozzles, elliptic inclined nozzles do not produce serpentine-shaped jet columns nor lead to significant lateral jet-spread at large incline-angles.

  11. The vibration of inclined backrests: perception and discomfort of vibration applied parallel to the back in the z-axis of the body.

    PubMed

    Basri, Bazil; Griffin, Michael J

    2011-12-01

    This study determined how backrest inclination and the frequency of vibration influence the perception and discomfort of vibration applied parallel to the back (vertical vibration when sitting upright, horizontal vibration when recumbent). Subjects experienced backrest vibration at frequencies in the range 2.5 to 25 Hz at vibration magnitudes up to 24 dB above threshold. Absolute thresholds, equivalent comfort contours, and the principal locations for feeling vibration were determined with four backrest inclinations: 0° (upright), 30°, 60° and 90° (recumbent). With all backrest inclinations, acceleration thresholds and equivalent comfort contours were similar and increased with increasing frequency at 6 dB per octave (i.e. velocity constant). It is concluded that backrest inclination has little effect on the frequency dependence of thresholds and equivalent comfort contours for vibration applied along the back, and that the W (d) frequency weighting in current standards is appropriate for evaluating z-axis vibration of the back at all backrest inclinations. STATEMENT OF RELEVANCE: To minimise the vibration discomfort of seated people, it is necessary to understand how discomfort varies with backrest inclination. It is concluded that the vibration on backrests can be measured using a pad between the backrest and the back, so that it reclines with the backrest, and the measured vibration evaluated without correcting for the backrest inclination. PMID:22103729

  12. Compact planetary systems perturbed by an inclined companion. I. Vectorial representation of the secular model

    SciTech Connect

    Boué, Gwenaël; Fabrycky, Daniel C.

    2014-07-10

    The non-resonant secular dynamics of compact planetary systems are modeled by a perturbing function that is usually expanded in eccentricity and absolute inclination with respect to the invariant plane. Here, the expressions are given in a vectorial form which naturally leads to an expansion in eccentricity and mutual inclination. The two approaches are equivalent in most cases, but the vectorial one is specially designed for those cases where an entire quasi-coplanar system tilts to a large degree. Moreover, the vectorial expressions of the Hamiltonian and of the equations of motion are slightly simpler than those given in terms of the usual elliptical elements. We also provide the secular perturbing function in vectorial form expanded in semi-major axis ratio allowing for arbitrary eccentricities and inclinations. The interaction between the equatorial bulge of a central star and its planets is also provided, as is the relativistic periapse precession of any planet induced by the central star. We illustrate the use of this representation to follow the secular oscillations of the terrestrial planets of the solar system and for Kozai cycles which may take place in exoplanetary systems.

  13. Unsteady granular flows down an inclined plane.

    PubMed

    Parez, Stanislav; Aharonov, Einat; Toussaint, Renaud

    2016-04-01

    The continuum description of granular flows is still a challenge despite their importance in many geophysical and industrial applications. We extend previous works, which have explored steady flow properties, by focusing on unsteady flows accelerating or decelerating down an inclined plane in the simple shear configuration. We solve the flow kinematics analytically, including predictions of evolving velocity and stress profiles and the duration of the transient stage. The solution shows why and how granular materials reach steady flow on slopes steeper than the angle of repose and how they decelerate on shallower slopes. The model might facilitate development of natural hazard assessment and may be modified in the future to explore unsteady granular flows in different configurations. PMID:27176375

  14. Unsteady granular flows down an inclined plane

    NASA Astrophysics Data System (ADS)

    Parez, Stanislav; Aharonov, Einat; Toussaint, Renaud

    2016-04-01

    The continuum description of granular flows is still a challenge despite their importance in many geophysical and industrial applications. We extend previous works, which have explored steady flow properties, by focusing on unsteady flows accelerating or decelerating down an inclined plane in the simple shear configuration. We solve the flow kinematics analytically, including predictions of evolving velocity and stress profiles and the duration of the transient stage. The solution shows why and how granular materials reach steady flow on slopes steeper than the angle of repose and how they decelerate on shallower slopes. The model might facilitate development of natural hazard assessment and may be modified in the future to explore unsteady granular flows in different configurations.

  15. Transient natural convection in heated inclined tubes

    NASA Astrophysics Data System (ADS)

    McEligot, Donald M.; Denbow, David A.; Murphy, Hugh D.

    1990-05-01

    To simulate natural convection flow patterns in directionally drilled wellbores, experiments and analyses were conducted for a circular tube with length-to-diameter (L/D) ratio of 36 at angles of 0, 20, and 35 degrees from the vertical. The tube was heated at the bottom and cooled at the top, and the insulation was adjusted so that approximately one- to two-thirds of the power dissipated was transferred through the tube wall to the surroundings. An aqueous solution of polyvinyl alcohol was employed as the working fluid in order to obtain low Rayleigh numbers corresponding to conditions in geothermal wellbores. Results were primarily qualitative but were useful in providing insight into the phenomena occurring. Steady-state temperature distributions were measured for the three orientations and for several heating rates to demonstrate the effects of tube angle and Rayleigh number. Transient measurements of the temperature distribution were obtained during cooling from a higher temperature without a heat source to calibrate the heat losses. With the electrical heat source, temporal data were taken during heating to examine the approach to steady state. Quasi-steady flow conditions were approached rapidly, but the overall time constant of the apparatus was of the order of one-third of a day. Predictions with the three-dimensional TEMPEST code were first tested by comparison with simple conduction analyses. Comparison with actual data showed good agreement of the predicted temperature levels for the maximum inclination, 35 degrees, and slightly poorer agreement for the other limit, a vertical tube. Trends of temperature level and Nusselt number with heating rate or Rayleigh number were reasonable, but the predicted variation of the end Nusselt number versus inclination was in the opposite direction from the experiment.

  16. Transient natural convection in heated inclined tubes

    SciTech Connect

    McEligot, D.M. . Oceanic Div.); Denbow, D.A. ); Murphy, H.D. )

    1990-05-01

    To simulate natural convection flow patterns in directionally drilled wellbores, experiments and analyses were conducted for a circular tube with length-to-diameter (L/D) ratio of 36 at angles of 0{degree}, 20{degree}, and 35{degree} from the vertical. The tube was heated at the bottom and cooled at the top, and the insulation was adjusted so that approximately one- to two-thirds of the power dissipated was transferred through the tube wall to the surroundings. An aqueous solution of polyvinyl alcohol was employed as the working fluid in order to obtain low Rayleigh numbers corresponding to conditions in geothermal wellbores. Results were primarily qualitative but were useful in providing insight into the phenomena occurring. Steady-state temperature distributions were measured for the three orientations and for several heating rates to demonstrate the effects of tube angle and Rayleigh number. transient measurements of the temperature distribution were obtained during cooling from a higher temperature without a heat source to calibrate the heat losses. With the electrical heat source, temporal data were taken during heating to examine the approach to steady state. Quasi-steady flow conditions were approached rapidly, but the overall time constant of the apparatus was of the order of one-third of a day. Predictions with the three-dimensional TEMPEST code were first tested by comparison with simple conduction analyses. Comparison with actual data showed good agreement of the predicted temperature levels for the maximum inclination, 35{degree}, and slightly poorer agreement for the other limit, a vertical tube. Trends of temperature level and Nusselt number with heating rate or Rayleigh number were reasonable, but the predicted variation of the end Nusselt number versus inclination was in the opposite direction from the experiment. 75 refs., 20 figs., 8 tabs.

  17. Enhanced photovoltaic performance of an inclined nanowire array solar cell.

    PubMed

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2015-11-30

    An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays. PMID:26698807

  18. Detection of very inclined showers with the Auger Observatory

    SciTech Connect

    Nellen, Lukas; /Mexico U., ICN

    2005-07-01

    The Pierre Auger Observatory can detect air showers with high efficiency at large zenith angles with both the fluorescence and surface detectors. Since half the available solid angle corresponds to zeniths between 60 and 90 degrees, a large number of inclined events can be expected and are indeed observed. In this paper, we characterize the inclined air showers detected by the Observatory and we present the aperture for inclined showers and an outlook of the results that can be obtained in future studies of the inclined data set.

  19. A new paleomagnetic study of the Itararé Group of Brazil: evidence for shallow paleomagnetic inclinations and implications for Pangea reconstructions

    NASA Astrophysics Data System (ADS)

    Bilardello, D.; Raposo, M. B.

    2012-12-01

    When reconstructing the paleogeography of Pangea, paleomagnetic data for the Permo-Carboniferous imposes an overlap between the two major continental blocks, Laurasia and Gondwana, in the traditional A-type assemblage. Sedimentary rocks dominate the Carboniferous apparent polar wander path (APWP) of South America, and the few igneous rocks are probably either remagnetized or have been subjected to tectonic rotations. Recent work by Bilardello and Kodama (2010) has shown how inclination shallowing corrections of Gondwana sedimentary rocks may completely eliminate the continental overlap. Estimated inclination corrections, however, lack a solid base: they are unreliable and should only be performed to verify if a full inclination correction is required. To this extent, we are performing an inclination shallowing study of the Itararé Group of Brazil. The stratigraphy of the Group has been re-interpreted in recent years, and such study will provide new key paleomagnetic poles in Gondwana's Permo-Carboniferous APWP. Anisotropy of anhysteretic remanence (AAR) and of high field isothermal remanence (hf-AIR) are used to perform inclination corrections of magnetite and hematite bearing rocks, respectively. Corrections have already been successfully applied to Carboniferous rocks from North America. Comparing inclination-corrected paleopoles from Laurasia and Gondwana will give a persuasive, quantitative and robust test of the role of inclination shallowing in the Pangea controversy. Preliminary results will be presented.

  20. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  1. Relationships between Migration to Urban Settings and Children's Creative Inclinations

    ERIC Educational Resources Information Center

    Shi, Baoguo; Lu, Yongli; Dai, David Yun; Lin, Chongde

    2013-01-01

    In this study, 909 5th- and 6th-grade children were recruited as participants, and questionnaires were used to investigate the relationships between migration to urban settings and children's creative inclinations. The study was broken down to 2 parts. Study 1 compared scores on measures of creative inclinations among migrant, rural, and urban…

  2. 46 CFR 111.01-19 - Inclination of the vessel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Inclination of the vessel. 111.01-19 Section 111.01-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must...

  3. 46 CFR 111.01-19 - Inclination of the vessel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inclination of the vessel. 111.01-19 Section 111.01-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must...

  4. 46 CFR 111.01-19 - Inclination of the vessel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Inclination of the vessel. 111.01-19 Section 111.01-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must...

  5. 46 CFR 111.01-19 - Inclination of the vessel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Inclination of the vessel. 111.01-19 Section 111.01-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must...

  6. 46 CFR 111.01-19 - Inclination of the vessel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Inclination of the vessel. 111.01-19 Section 111.01-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must...

  7. 30 CFR 57.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inclined conveyors: backstops or brakes. 57.14113 Section 57.14113 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...: backstops or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to...

  8. 30 CFR 56.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inclined conveyors: backstops or brakes. 56.14113 Section 56.14113 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to prevent...

  9. Generation of highly inclined protoplanetary discs through single stellar flybys

    NASA Astrophysics Data System (ADS)

    Xiang-Gruess, M.

    2016-01-01

    We study the three-dimensional evolution of a viscous protoplanetary disc which is perturbed by a passing star on a parabolic orbit. The aim is to test whether a single stellar flyby is capable to excite significant disc inclinations which would favour the formation of so-called misaligned planets. We use smoothed particle hydrodynamics to study inclination, disc mass and angular momentum changes of the disc for passing stars with different masses. We explore different orbital configurations for the perturber's orbit to find the parameter spaces which allow significant disc inclination generation. Prograde inclined parabolic orbits are most destructive leading to significant disc mass and angular momentum loss. In the remaining disc, the final disc inclination is only below 20°. This is due to the removal of disc particles which have experienced the strongest perturbing effects. Retrograde inclined parabolic orbits are less destructive and can generate disc inclinations up to 60°. The final disc orientation is determined by the precession of the disc angular momentum vector about the perturber's orbital angular momentum vector and by disc orbital inclination changes. We propose a sequence of stellar flybys for the generation of misalignment angles above 60°. The results taken together show that stellar flybys are promising and realistic for the explanation of misaligned Hot Jupiters with misalignment angles up to 60°.

  10. Three-Dimensional Vortex Structure in Jets from Inclined Nozzles

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; Longmire, E. K.

    1996-11-01

    Flow visualization and particle image velocimetry measurements were performed on round jets exiting nozzles with inclines from 0 to 45 deg at a Reynolds number of 9000. Results from natural jets and jets forced with single frequencies corresponding to StD = 0.25 and 0.5 will be presented. In the natural case, the nozzle incline caused a mild increase in the radial spreading in the plane of azimuthal symmetry. The forcing amplified the asymmetric radial spreading by altering the vortex structure. In general, inclined vortex rings rolled up at an angle slightly smaller than the nozzle incline angle. As the rings moved downstream, they migrated away from the jet centerline, and their incline angle increased until breakdown occurred. For StD = 0.5, the rings did not pair, and the maximum incline angle observed was 49 deg. Forcing at StD = 0.25 yielded a pairing where the pairing location moved upstream with increasing nozzle incline angle. The nature of the pairing, which was also dependent on the nozzle incline angle, will be described.

  11. 40. CONSTRUCTION OF GALLERY NO. 3, SHOWING INCLINED PLANE USED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. CONSTRUCTION OF GALLERY NO. 3, SHOWING INCLINED PLANE USED TO TRANSPORT MATERIALS, ALSO SPOIL FROM TUNNEL INTERIOR. POWDER HOUSE AND TOOL SHED VISIBLE TO RIGHT OF BASE INCLINE - Zion-Mount Carmel Highway, Tunnel, Two miles east of Zion Canyon Scenic Drive, Springdale, Washington County, UT

  12. 3. Inclined Plane 10, 1970. Track bed at left. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Inclined Plane 10, 1970. Track bed at left. View some what similar to that of NJ-30-2. Stone track bed is visible under cable system of NJ-30-2. - Morris Canal, Inclined Plane 10 West, Phillipsburg, Warren County, NJ

  13. 7. VIEW WEST, PERSPECTIVE VIEW OF TOP OF INCLINED PLANE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW WEST, PERSPECTIVE VIEW OF TOP OF INCLINED PLANE AND EAST FACE OF CUT STONE TOWER - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  14. Gaining Momentum: Re-Creating Galileo's Inclined Plane.

    ERIC Educational Resources Information Center

    Albrecht, Bob; Firedrake, George

    1998-01-01

    Provides an excerpt of Galileo's description of his inclined plane experiment. Describes the replication of Galileo's inclined plane experiment by students at Rice University (Texas) using an Internet site called the Galileo Project; then describes the authors' replication of the Project. (AEF)

  15. A New Dynamics Cart on an Inclined Plane.

    ERIC Educational Resources Information Center

    Theodorsson, Pall

    1995-01-01

    Presents an experiment to study the acceleration of a cart moving up and down an inclined plane. Demonstrates how multitiming and the study of the movement in both directions allows the determination of the component of gravitational force along an inclined plane without any assumptions about friction. (JRH)

  16. Operational Experiences in Planning and Reconstructing Aqua Inclination Maneuvers

    NASA Technical Reports Server (NTRS)

    Rand, David; Reilly, Jacqueline; Schiff, Conrad

    2004-01-01

    As the lead satellite in NASA's growing Earth Observing System (EOS) PM constellation, it is increasingly critical that Aqua maintain its various orbit requirements. The two of interest for this paper are maintaining an orbit inclination that provides for a consistent mean local time and a semi-major Axis (SMA) that allows for ground track repeatability. Maneuvers to adjust the orbit inclination involve several flight dynamics constraints and complexities which make planning such maneuvers challenging. In particular, coupling between the orbital and attitude degrees of freedom lead to changes in SMA when changes in inclination are effected. A long term mission mean local time trend analysis was performed in order to determine the size and placement of the required inclination maneuvers. Following this analysis, detailed modeling of each burn and its Various segments was performed to determine its effects on the immediate orbit state. Data gathered from an inclination slew test of the spacecraft and first inclination maneuver uncovered discrepancies in the modeling method that were investigated and resolved. The new modeling techniques were applied and validated during the second spacecraft inclination maneuver. These improvements should position Aqua to successfully complete a series of inclination maneuvers in the fall of 2004. The following paper presents the events and results related

  17. 46 CFR 58.01-40 - Machinery, angles of inclination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery, angles of inclination. 58.01-40 Section 58.01... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-40 Machinery, angles of inclination. (a) Propulsion machinery and all auxiliary machinery essential to the propulsion and safety of the vessel must...

  18. 30 CFR 56.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Inclined conveyors: backstops or brakes. 56.14113 Section 56.14113 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to prevent...

  19. 30 CFR 56.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inclined conveyors: backstops or brakes. 56.14113 Section 56.14113 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to prevent...

  20. 30 CFR 56.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inclined conveyors: backstops or brakes. 56.14113 Section 56.14113 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to prevent...

  1. 30 CFR 57.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inclined conveyors: backstops or brakes. 57.14113 Section 57.14113 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...: backstops or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to...

  2. 30 CFR 57.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inclined conveyors: backstops or brakes. 57.14113 Section 57.14113 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...: backstops or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to...

  3. 30 CFR 57.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inclined conveyors: backstops or brakes. 57.14113 Section 57.14113 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...: backstops or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to...

  4. 30 CFR 56.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inclined conveyors: backstops or brakes. 56.14113 Section 56.14113 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to prevent...

  5. 30 CFR 57.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Inclined conveyors: backstops or brakes. 57.14113 Section 57.14113 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...: backstops or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to...

  6. Capillary Penetration into Inclined Circular Glass Tubes.

    PubMed

    Trabi, Christophe L; Ouali, F Fouzia; McHale, Glen; Javed, Haadi; Morris, Robert H; Newton, Michael I

    2016-02-01

    The spontaneous penetration of a wetting liquid into a vertical tube against the force of gravity and the imbibition of the same liquid into a horizontal tube (or channel) are both driven by capillary forces and described by the same fundamental equations. However, there have been few experimental studies of the transition from one orientation to the other. We report systematic measurements of capillary penetration of polydimethylsiloxane oils of viscosities 9.6, 19.2, and 48.0 mPa·s into glass capillary tubes. We first report the effect of tube radii R between 140 and 675 μm on the dynamics of spontaneous imbibition. We show that the data can be fitted using the exact numerical solution to the governing equations and that these are similar to fits using the analytical viscogravitational approximation. However, larger diameter tubes show a rate of penetration slower than expected using an equilibrium contact angle and the known value of liquid viscosity. To account for the slowness, an increase in viscosity by a factor (η/ρ)(scaling) is needed. We show full agreement with theory requires the ratio R/κ(-1) ∼ 0.1 or less, where κ(-1) is the capillary length. In addition, we propose an experimental method that enables the determination of the dynamic contact angle during imbibition, which gives values that agree with the literature values. We then report measurements of dynamic penetration into the tubes of R = 190 and 650 μm for a range of inclination angles to the horizontal, φ, from 5 to 90°. We show that capillary penetration can still be fitted using the viscogravitational solution, rather than the Bosanquet solution which describes imbibition without gravity, even for inclination angles as low as 10°. Moreover, at these low angles, the effect of the tube radius is found to diminish and this appears to relate to an effective capillary length, κ(-1)(φ) = (γ(LV)/ρg sin φ)(1/2). PMID:26738739

  7. Use of IQRF technology for detection of construction inclination

    NASA Astrophysics Data System (ADS)

    Martin, Pies; Radovan, Hajovsky

    2016-06-01

    This paper deals with the application of wireless measurement of inclination of objects located at mining dumps. Measurement of inclination uses a set of sensors including a gyroscope, an accelerometer and a magnetometer. Measured data is processed by AHRS algorithm that, once applied, allows getting more precise information on rotation of the object in the area compared to unprocessed data from accelerometer or gyroscope. Measurement chain consists of two parts. The first one is a wireless module reading the data from particular sensors via I2C bus and sends it consequently to a computer that performs evaluation and visualization of inclination. Communication among particular devices is ensured by IQRF technology working within ISM band of 868MHz. Application of this approach for measurement of inclination is a reasonable choice in case of measurement of inclination by inclinometers.

  8. UNBIASED INCLINATION DISTRIBUTIONS FOR OBJECTS IN THE KUIPER BELT

    SciTech Connect

    Gulbis, A. A. S.; Elliot, J. L.; Adams, E. R.; Benecchi, S. D.; Buie, M. W.; Trilling, D. E.; Wasserman, L. H. E-mail: jle@mit.ed E-mail: lhw@lowell.ed E-mail: buie@boulder.swri.ed

    2010-08-15

    Using data from the Deep Ecliptic Survey (DES), we investigate the inclination distributions of objects in the Kuiper Belt. We present a derivation for observational bias removal and use this procedure to generate unbiased inclination distributions for Kuiper Belt objects (KBOs) of different DES dynamical classes, with respect to the Kuiper Belt plane. Consistent with previous results, we find that the inclination distribution for all DES KBOs is well fit by the sum of two Gaussians, or a Gaussian plus a generalized Lorentzian, multiplied by sin i. Approximately 80% of KBOs are in the high-inclination grouping. We find that Classical object inclinations are well fit by sin i multiplied by the sum of two Gaussians, with roughly even distribution between Gaussians of widths 2.0{sup +0.6}{sub -0.5}{sup 0} and 8.1{sup +2.6}{sub -2.1}{sup 0}. Objects in different resonances exhibit different inclination distributions. The inclinations of Scattered objects are best matched by sin i multiplied by a single Gaussian that is centered at 19.1{sup +3.9}{sub -3.6}{sup 0} with a width of 6.9{sup +4.1}{sub -2.7}{sup 0}. Centaur inclinations peak just below 20{sup 0}, with one exceptionally high-inclination object near 80{sup 0}. The currently observed inclination distribution of the Centaurs is not dissimilar to that of the Scattered Extended KBOs and Jupiter-family comets, but is significantly different from the Classical and Resonant KBOs. While the sample sizes of some dynamical classes are still small, these results should begin to serve as a critical diagnostic for models of solar system evolution.

  9. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  10. Velocity gained and altitude lost in recoveries from inclined flight paths

    NASA Technical Reports Server (NTRS)

    Pearson, H A; Garvin, J B

    1941-01-01

    A series of charts is given showing the variation of the velocity gained and the altitude lost in dive pullouts with the initial indicated air speed and the dive angle. The effects of the maximum load factor, the drag parameter K, the initial altitude, and the type of recovery on the velocity gained and the altitude lost are also considered. The results were obtained from a step-by-step solution of the equations of motion in which mean values of the air density and the airplane drag coefficient were used. The load-factor variation with time is arbitrarily specified in various ways to simulate pull-out procedures, some of which might be encountered in flight.

  11. Absolute and geometric parameters of contact binary GW Cnc

    NASA Astrophysics Data System (ADS)

    Gürol, B.; Gökay, G.; Saral, G.; Gürsoytrak, S. H.; Cerit, S.; Terzioğlu, Z.

    2016-07-01

    We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system GW Cnc. We analyzed the photometric data obtained in 2010 and 2011 at Ankara University Observatory (AUO) and the spectroscopic data obtained in 2010 at TUBITAK National Observatory (TUG) by using the Wilson-Devinney (2013 revision) code to obtain the absolute and geometrical parameters. We derived masses and radii of the eclipsing system to be M1 = 0.257M⊙ , M2 = 0.971M⊙ , R1 = 0.526R⊙ and R2 = 0.961R⊙ with an orbital inclination i(∘) = 83.38 ± 0.25 and we determined the GW Cnc system to be a W-type W UMa over-contact binary with a mass ratio of q = 3.773 ± 0.007 .

  12. Oscillations of relative inclination angles in compact extrasolar planetary systems

    NASA Astrophysics Data System (ADS)

    Becker, Juliette C.; Adams, Fred C.

    2016-01-01

    The Kepler mission has detected dozens of compact planetary systems with more than four transiting planets. This sample provides a collection of close-packed planetary systems with relatively little spread in the inclination angles of the inferred orbits. A large fraction of the observational sample contains limited multiplicity, begging the question whether there is a true diversity of multitransiting systems, or if some systems merely possess high mutual inclinations, allowing them to appear as single-transiting systems in a transit-based survey. This paper begins an exploration of the effectiveness of dynamical mechanisms in exciting orbital inclination within exoplanetary systems of this class. For these tightly packed systems, we determine that the orbital inclination angles are not spread out appreciably through self-excitation. In contrast, the two Kepler multiplanet systems with additional non-transiting planets are susceptible to oscillations of their inclination angles, which means their currently observed configurations could be due to planet-planet interactions alone. We also provide constraints and predictions for the expected transit duration variations for each planet. In these multiplanet compact Kepler systems, oscillations of their inclination angles are remarkably hard to excite; as a result, they tend to remain continually mutually transiting (CMT-stable). We study this issue further by augmenting the planet masses and determining the enhancement factor required for oscillations to move the systems out of transit. The oscillations of inclination found here inform the recently suggested dichotomy in the sample of Solar systems observed by Kepler.

  13. Size Distribution of Main-Belt Asteroids with High Inclination

    NASA Astrophysics Data System (ADS)

    Terai, Tsuyoshi; Itoh, Yoichi

    2011-04-01

    We investigated the size distribution of high-inclination main-belt asteroids (MBAs) so as to explore asteroid collisional evolution under hypervelocity collisions of around 10 km s-1. We performed a wide-field survey for high-inclination sub-km MBAs using the 8.2-m Subaru Telescope with the Subaru Prime Focus Camera (Suprime-Cam). Suprime-Cam archival data were also used. A total of 616 MBA candidates were detected in an area of 9.0 deg² with a limiting magnitude of 24.0 mag in the SDSS r filter. Most of the candidate diameters were estimated to be smaller than 1 km. We found a scarcity of sub-km MBAs with high inclination. Cumulative size distributions (CSDs) were constructed using Subaru data and published asteroid catalogs. The power-law indexes of the CSDs were 2.17±0.02 for low-inclination (<15°) MBAs and 2.02±0.03 for high-inclination (>15°) MBAs in the 0.7-50 km diameter range. The high-inclination MBAs had a shallower CSD. We also found that the CSD of S-like MBAs had a small slope with high inclination, whereas the slope did not vary with the inclination in the C-like group. The most probable cause of the shallow CSD of the high-inclination S-like MBAs is the large power-law index in the diameter-impact strength curve in hypervelocity collisions. The collisional evolution of MBAs may have advanced with oligopolistic survival during the dynamical excitation phase in the final stage of planet formation.

  14. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  15. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  16. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  17. Path Separability of Graphs

    NASA Astrophysics Data System (ADS)

    Diot, Emilie; Gavoille, Cyril

    In this paper we investigate the structural properties of k-path separable graphs, that are the graphs that can be separated by a set of k shortest paths. We identify several graph families having such path separability, and we show that this property is closed under minor taking. In particular we establish a list of forbidden minors for 1-path separable graphs.

  18. MSTAR: an absolute metrology system with submicrometer accuracy

    NASA Astrophysics Data System (ADS)

    Lay, Oliver P.; Dubovitsky, Serge; Peters, Robert D.; Burger, Johan; Steier, Willian H.; Ahn, Seh-Won; Fetterman, Harrold R.

    2004-10-01

    Laser metrology systems are a key component of stellar interferometers, used to monitor path lengths and dimensions internal to the instrument. Most interferometers use 'relative' metrology, in which the integer number of wavelengths along the path is unknown, and the measurement of length is ambiguous. Changes in the path length can be measured relative to an initial calibration point, but interruption of the metrology beam at any time requires a re-calibration of the system. The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. We describe the design of the system, show results for target distances up to 1 meter, and demonstrate how the system can be scaled to kilometer-scale distances. In recent experiments, we have used white light interferometry to augment the 'truth' measurements and validate the zero-point of the system. MSTAR is a general-purpose tool for conveniently measuring length with much greater accuracy than was previously possible, and has a wide range of possible applications.

  19. 8. DETAIL VIEW OF INCLINED OUTLET GATE WHEEL, LOOKING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL VIEW OF INCLINED OUTLET GATE WHEEL, LOOKING EAST - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  20. 7. VIEW OF INCLINED OUTLET GATE WHEEL AND STEM, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF INCLINED OUTLET GATE WHEEL AND STEM, LOOKING NORTH - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  1. 12. DETAIL VIEW OF NORTHEAST CORNER, SHOWING HIP VERTICAL, INCLINED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAIL VIEW OF NORTHEAST CORNER, SHOWING HIP VERTICAL, INCLINED END POST, AND UPPER CHORD - Kennan-Jump River Bridge, Spanning South fork of Jump River on County Highway "N", Kennan, Price County, WI

  2. 22. INCLINED END POST / DECK / GUARDRAIL DETAIL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. INCLINED END POST / DECK / GUARDRAIL DETAIL OF THROUGH TRUSSES. VIEW TO SOUTHEAST. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  3. 5. DETAIL OF NORTHWEST END OF TRUSS, SHOWING INCLINED POST, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL OF NORTHWEST END OF TRUSS, SHOWING INCLINED POST, TOP CHORD AND DIAGONAL BRACING. - North Branch Quantico Creek Bridge, Prince William Forest Park, on NPS Route 406 spanning north branch of Quantico Creek, Dumfries, Prince William County, VA

  4. The orbital inclination of Cygnus XR-1 measured polarimetrically

    SciTech Connect

    Dolan, J.F.; Tapia, S.; Steward Observatory, Tucson, AZ )

    1989-09-01

    The X-ray binary Cyg XR-1/HDE 226868 was observed polarimetrically over one orbit at three different optical wavelengths. The standard theory of Brown, et al. (1978) is used to derive an orbital inclination i = 62 deg (+5 deg, -37 deg), where the error is the 90-percent-confidence interval derived by the method of Simmons, et al. (1980). The value of the orbital inclination is significantly lower than values based on polarimetric observations. The difference is a result of the observational protocols used. A bias toward larger values of the inclination caused by the tidal distortion of the primary is still found in the present result. The inclination derived corresponds to a mass of the compact component of 6.3 solar masses, above the maximum mass of any degenerate configuration consistent with general relativity except a black hole. 37 refs.

  5. 20. VIEW LOOKING SOUTHWEST OF NORTH PONY TRUSS; SHOWING INCLINED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW LOOKING SOUTHWEST OF NORTH PONY TRUSS; SHOWING INCLINED END POST, HIP VERTICAL, VERTICAL POSTS, DIAGONALS, AND COUNTER BRACING - Boyleston Bridge, Spanning Skunk River, Lowell, Henry County, IA

  6. 26. UPPER STATION, LOWER FLOOR, BULL WHEEL. Monongahela Incline ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. UPPER STATION, LOWER FLOOR, BULL WHEEL. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  7. 6. VIEW NORTH, LOWER STATION EAST SIDE. Monongahela Incline ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW NORTH, LOWER STATION EAST SIDE. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  8. Students as Researchers: An Inclined-Plane Activity.

    ERIC Educational Resources Information Center

    Edwards, Thomas G.

    1995-01-01

    Describes an inquiry activity in which students explore the variables that influence the amount of time it takes a ball to roll down an inclined plane. Relates features of the activity to recommendations in the NCTM Standards. (MKR)

  9. Mission analysis data for inclined geosynchronous orbits, part 1

    NASA Technical Reports Server (NTRS)

    Graf, O. F., Jr.; Wang, K. C.

    1980-01-01

    Data needed for preliminary design of inclined geosynchronous missions are provided. The inertial and Earth fixed coordinate systems are described, as well as orbit parameters and elements. The complete family of geosynchronous orbits is discussed. It is shown that circular inclined geosynchronous orbits comprise only one set in this family. The major orbit perturbation and their separate effects on the geosynchronous orbit are discussed. Detailed information on the orbit perturbation of inclined circular geosynchronous orbits is given, with emphasis on time history data of certain orbital elements. Orbit maintenance delta velocity (V) requirements to counteract the major orbit perturbations are determined in order to provide order of magnitude estimates and to show the effects of orbit inclination on delta V. Some of the considerations in mission design for a multisatellite system, such as a halo orbit constellation, are discussed.

  10. 5. VIEW OF INCLINED OUTLET GATE WHEEL, STEM AND STEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF INCLINED OUTLET GATE WHEEL, STEM AND STEM GUIDE, (12' DIAMETER HARDESTY MODEL 112 CIRCULAR GATE), LOOKING NORTHEAST - High Mountain Dams in Bonneville Unit, Island Lake Dam, Wasatch National Forest, Kamas, Summit County, UT

  11. 4. VIEW OF INCLINED OUTLET GATE WHEEL AND STEM, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF INCLINED OUTLET GATE WHEEL AND STEM, LOOKING NORTHWEST - High Mountain Dams in Upalco Unit, Brown Duck Lake Dam, Ashley National Forest, 4.4 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  12. 7. VIEW OF INCLINED OUTLET GATE WHEEL, STEM AND STEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF INCLINED OUTLET GATE WHEEL, STEM AND STEM GUIDE (15' HARDESTY MODEL 115 GATE), LOOKING NORTHWEST - High Mountain Dams in Bonneville Unit, Marjorie Lake Dam, Wasatch National Forest, Kamas, Summit County, UT

  13. 5. VIEW SHOWING INCLINED OUTLET GATE WHEEL, STEM AND STEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW SHOWING INCLINED OUTLET GATE WHEEL, STEM AND STEM GUIDE (28' WIDE HARDESTY CAST IRON SLIDE HEADGATE), LOOKING NORTHEAST - High Mountain Dams in Bonneville Unit, Duck Lake Dam, Wasatch National Forest, Kamas, Summit County, UT

  14. 4. VIEW OF INCLINED OUTLET GATE, STEM, STEM GUIDE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF INCLINED OUTLET GATE, STEM, STEM GUIDE AND WHEEL (10' HARDESTY VERTICAL LIFT GATE), LOOKING NORTHWEST - High Mountain Dams in Bonneville Unit, Pot Lake Dam, Wasatch National Forest, Kamas, Summit County, UT

  15. 6. VIEW SHOWING INCLINED OUTLET GATE WHEEL, STEM AND STEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW SHOWING INCLINED OUTLET GATE WHEEL, STEM AND STEM GUIDE (18' HARDESTY GATE), LOOKING SOUTHEAST - High Mountain Dams in Bonneville Unit, Long Lake Dam, Wasatch National Forest, Kamas, Summit County, UT

  16. 58. VIEW OF CABLE INCLINE, LOCATED ON THE HILLSIDE BELOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. VIEW OF CABLE INCLINE, LOCATED ON THE HILLSIDE BELOW THE FOREBAY (NORTHWEST OF FOREBAY), Print No. 156, August 1903 - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  17. 1. EXTERIORANGLED AND INCLINED TO AUTOMATIC PLOTTING AND ORTHOPRINTING LIMITS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR--ANGLED AND INCLINED TO AUTOMATIC PLOTTING AND ORTHOPRINTING LIMITS Copy photograph of photogrammetric plate LC-HABS-GS05-T-4950-101L. - Lemon Building, 1729 New York Avenue, Northwest, Washington, District of Columbia, DC

  18. The Asymmetrical "Sticking" Behavior of Two Balls on an Incline.

    ERIC Educational Resources Information Center

    Mallinckrodt, A. John

    1999-01-01

    Offers a relatively simple analysis of the asymmetrical "sticking" and rolling behavior of two balls, one steel and one rubber, on an incline. Describes an Interactive Physics (TM) simulation designed to study the problem and gives rough experimental results. (WRM)

  19. 7. DETAIL VIEW OF ROCKER ARM, SHOWING POCKETS, LUGS, INCLINED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL VIEW OF ROCKER ARM, SHOWING POCKETS, LUGS, INCLINED STOPPING BLOCK AT SHOREWARD END OF TRACK GIRDER - Seddon Island Scherzer Rolling Lift Bridge, Spanning Garrison Channel from Tampa to Seddon Island, Tampa, Hillsborough County, FL

  20. Detail of inside of inclined end post, with portal cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of inside of inclined end post, with portal cross bar member. - Phoenix Iron Company, French Creek Bridge, Spanning French Creek between Gay Street & Main Street, Phoenixville, Chester County, PA

  1. Safety Case Notations: Alternatives for the Non-Graphically Inclined?

    NASA Technical Reports Server (NTRS)

    Holloway, C. M.

    2008-01-01

    This working paper presents preliminary ideas of five possible text-based notations for representing safety cases, which may be easier for non-graphically inclined people to use and understand than the currently popular graphics-based representations.

  2. On the Emmenthal distribution of highly inclined asteroids

    NASA Astrophysics Data System (ADS)

    Carruba, V.; Machuca, J. F.

    2011-12-01

    Highly inclined asteroids are objects with sin (i) > 0.3. Among highly inclined asteroids, we can distinguish between objects with inclinations smaller than that of the centre of the ν6= g - g6 secular resonance and objects at higher inclinations. Using the current mechanisms of dynamical mobility, it is not easy to increase the values of an asteroid with an initial small inclination to values higher than that of the centre of the ν6 resonance. The presence of highly inclined objects might therefore be related to the early phases of the Solar system. It has been observed that several dynamically stable regions are characterized by a very low number density of objects, unlike low-inclined bodies that tend to occupy all the dynamically viable regions. The distribution of asteroids at a high inclination in the domain of proper elements in dynamically stable regions resembles an Emmenthal cheese, with regions of low number density close to highly populated areas. While this phenomenon has been observed qualitatively in the past, no quantitative study has yet been carried out on the extent and long-term stability of these regions. In this paper, we identify two dynamically stable regions characterized by very low values of number density and permanence times of 100 Myr or more when the Yarkovsky force is considered. We show that the low number density of objects in these areas cannot be produced as a statistical fluctuation of any simple one-dimensional statistical distribution, such as the Poissonian, uniform and Gaussian distributions, or of a tri-dimensional distribution, such as the tri-variate normal distribution. The presence of unoccupied dynamically stable regions could indicate that the primordial asteroidal population might not have reached all available zones at high-i. This sets constraints on the scenarios for the early phases of the history of our Solar system.

  3. Nonlinear in-plane vibrations of inclined cables carrying moving oscillators

    NASA Astrophysics Data System (ADS)

    Sofi, Alba

    2013-04-01

    In-plane dynamics of small-sag inclined cables carrying a stream of oscillators moving with arbitrarily varying velocity is addressed. A condensed model of the coupled cable-moving oscillators system is derived by referring cable vibrations to a local Cartesian coordinate system. Specifically, relying on the negligible influence of the inertia forces along the cable chord and assuming a quasi-static stretching during the motion, an appropriate static condensation procedure is applied which enables to account for the chordwise components of the interaction forces between the cable and the moving sub-systems . Thus, the governing equations are reduced to a unique nonlinear integro-differential equation in the transverse displacement of the cable coupled to the ordinary differential equations ruling the response of the moving oscillators in terms of absolute displacements. The condensed model is discretized by the Galerkin method assuming an improved series expansion of cable response able to accurately reproduce the abrupt changes of cable profile at the contact points with the moving oscillators. A numerical application is presented to validate the proposed condensed model of the inclined cable under moving oscillators as well as the improved series representation of cable response.

  4. Absolute thickness metrology with submicrometer accuracy using a low-coherence distance measuring interferometer.

    PubMed

    Zhao, Yang; Schmidt, Greg; Moore, Duncan T; Ellis, Jonathan D

    2015-09-01

    Absolute physical thickness across the sample aperture is critical in determining the index of a refraction profile from the optical path length profile for gradient index (GRIN) materials, which have a designed inhomogeneous refractive index. Motivated by this application, instrumentation was established to measure the absolute thickness of samples with nominally plane-parallel surfaces up to 50 mm thick. The current system is capable of measuring absolute thickness with 120 nm (1σ) repeatability and submicrometer expanded measurement uncertainty. Beside GRIN materials, this method is also capable of measuring other inhomogeneous and opaque materials. PMID:26368894

  5. An Explanation for the High Inclinations of Amalthea and Thebe

    NASA Astrophysics Data System (ADS)

    Proctor, Amanda; Hamilton, Douglas; Rauch, Kevin

    2002-04-01

    We propose that the anomalously large inclinations of the inner moons Amalthea (I=0.33^circ) and Thebe (I=1.09^circ) result from kicks imparted by Io's strong resonances as those resonances scan across the location of the moons. Both the eccentricities and inclinations of the moons are excited during resonant passages. But while the eccentricities decay rapidly due to the large satellite tides raised by the planet, the inclinations are basically preserved since they decay slowly due to the tiny planetary tides raised by the satellite. Through analysis of our numerical simulations we were able to limit Io's formation distance from Jupiter to between 4.02 and 4.92 Jovian Radii. Io's 3:1 resonances can impart an inclination of ~ 0.3^circ to Amalthea, while the 4:2 resonance gives too large a kick. We find that either the 4:2 resonance acting alone, or in combination with the 5:3 and the 6:4, causes Thebe's inclination to rise to about 1 degree. Our theory naturally explains the high inclinations of these two small satellites.

  6. Heliospheric current sheet inclinations predicted from source surface maps

    NASA Technical Reports Server (NTRS)

    Shodhan, S.; Crooker, N. U.; Hughes, W. J.; Siscoe, G. L.

    1994-01-01

    The inclinations of the neutral line at the ecliptic plane derived from source surface model maps of coronal fields are measured for the interval from June 1976 to March 1992. The mean and median values of 53 deg and 57 deg are close to the average inclinations determined earlier from minimum variance analyses of solar wind measurements at sector boundaries, but the mode falls in the 80 deg - 90 deg bin. This result, which is based on the model assumptions implicit in deriving the source surface maps, predicts that the heliospheric current sheet typically intersects the ecliptic plane nearly at right angles, even without steepening by stream interaction regions. High inclinations dominate the solar cycle for about 7 years around solar maximum. Dips to lower inclination occur near solar minimum, but high variance admits a wide range of inclinations throughout the cycle. Compared to the smooth solar cycle variation of the maximum latitudinal excursion of the neutral line, often treated as the tilt angle of a flat heliospheric current sheet, the noisy variation of the inclinations reflects the degree to which the neutral line deviates from a sine wave, implying warps and corrugations in the current sheet. About a third of the time the neutral line so deviates that it doubles back in longitude.

  7. Deriving Stellar Inclination of Slow Rotators Using Stellar Activity

    NASA Astrophysics Data System (ADS)

    Dumusque, X.

    2014-12-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ~2-2.5 km s-1. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84+6-20 deg, which implies a star-planet obliquity of \\psi =4+18-4 considering previous measurements of the spin-orbit angle. For α Cen B, we derive an inclination of i=45+9-19, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s-1. Based on observations made with the MOST satellite, the HARPS instrument on the ESO 3.6 m telescope at La Silla Observatory (Chile), and the SOPHIE instrument at the Observatoire de Haute Provence (France).

  8. Deriving stellar inclination of slow rotators using stellar activity

    SciTech Connect

    Dumusque, X.

    2014-12-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ∼2-2.5 km s{sup –1}. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84{sub −20}{sup +6} deg, which implies a star-planet obliquity of ψ=4{sub −4}{sup +18} considering previous measurements of the spin-orbit angle. For α Cen B, we derive an inclination of i=45{sub −19}{sup +9}, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s{sup –1}.

  9. Spreading dynamics of droplet on an inclined surface

    NASA Astrophysics Data System (ADS)

    Shen, Chaoqun; Yu, Cheng; Chen, Yongping

    2016-06-01

    A three-dimensional unsteady theoretical model of droplet spreading process on an inclined surface is developed and numerically analyzed to investigate the droplet spreading dynamics via the lattice Boltzmann simulation. The contact line motion and morphology evolution for the droplet spreading on an inclined surface, which are, respectively, represented by the advancing/receding spreading factor and droplet wetted length, are evaluated and analyzed. The effects of surface wettability and inclination on the droplet spreading behaviors are examined. The results indicate that, dominated by gravity and capillarity, the droplet experiences a complex asymmetric deformation and sliding motion after the droplet comes into contact with the inclined surfaces. The droplet firstly deforms near the solid surface and mainly exhibits a radial expansion flow in the start-up stage. An evident sliding-down motion along the inclination is observed in the middle stage. And the surface-tension-driven retraction occurs during the retract stage. Increases in inclination angle and equilibrium contact angle lead to a faster droplet motion and a smaller wetted area. In addition, increases in equilibrium contact angle lead to a shorter duration time of the middle stage and an earlier entry into the retract stage.

  10. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  11. Some observations on vortex-ring collisions upon inclined surfaces

    NASA Astrophysics Data System (ADS)

    New, T. H.; Shi, Shengxian; Zang, B.

    2016-06-01

    This paper reports upon a laser-induced fluorescence visualization and time-resolved particle image velocimetry study to resolve the detailed dynamics associated with Re = 2000 and 4000 circular vortex rings colliding with 30°-75° inclined surfaces. Two-dimensional visualization results show that larger inclination angles lead to increasingly rapid size reduction in the primary vortex-ring core closer to the surface, faster formation of the secondary vortex-ring core, and subsequent ingestion by the former. In contrast, primary vortex-ring core further away from the surface becomes physically larger and incoherent more rapidly, with slower formation and entrainment of the secondary vortex-ring core. Interestingly, a vortex dipole and small vortex-ring-like structure are produced for the largest inclination angle of 75°, possibly due to vortex disconnection and reconnection processes. Results taken along the non-inclined plane show significant bulging of the primary vortex-ring cores when the inclination angle increases from 30° onwards. More importantly, additional vortex cores are observed to entwine with the primary vortex-ring core and provide strong direct evidence for the bi-helical vortex line flow mechanism put forward by Lim (Exp Fluids 7:453-463, 1989). Lastly, the behaviour of the primary and secondary vortex-ring cores further away from the surface is highly sensitive towards the state of the bi-helical lines compressed at that region. Strong compression driven by circumferential flows due to large inclination angles may explain the unique flow structures and behaviour observed for 75° inclination angle here.

  12. Suzaku Observation of the High-inclination Binary EXO 0748–676 in the Hard State

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongli; Sakurai, Soki; Makishima, Kazuo; Nakazawa, Kazuhiro; Ono, Ko; Yamada, Shin’ya; Xu, Haiguang

    2016-06-01

    Utilizing archived Suzaku data acquired on 2007 December 25 for 46 ks, the X-ray spectroscopic properties of the dipping and eclipsing low-mass X-ray binary EXO 0748‑676 were studied. At an assumed distance of 7.1 kpc, the data provided a persistent unabsorbed luminosity of 3.4× {10}36 erg cm‑2 s‑1 in 0.6‑55 keV. The source was in a relatively bright low/hard state, wherein the 0.6‑55 keV spectrum can be successfully explained by a “double-seed” Comptonization model incorporating a common corona with an electron temperature of ∼13 keV. The seed photons are thought to be supplied from both the neutron star surface and a cooler truncated disk. Compared to a sample of non-dipping, low-mass X-ray binaries in the low/hard state, the spectrum is subject to stronger Comptonization with a relatively larger Comptonizing y-parameter of ∼1.4 and a larger coronal optical depth of ∼5. This result, when attributed to the high inclination of EXO 0748‑676, suggests that the Comptonizing corona may elongate along the disk plane and provide a longer path for the seed photons when viewed from edge-on inclinations.

  13. Suzaku Observation of the High-inclination Binary EXO 0748–676 in the Hard State

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongli; Sakurai, Soki; Makishima, Kazuo; Nakazawa, Kazuhiro; Ono, Ko; Yamada, Shin’ya; Xu, Haiguang

    2016-06-01

    Utilizing archived Suzaku data acquired on 2007 December 25 for 46 ks, the X-ray spectroscopic properties of the dipping and eclipsing low-mass X-ray binary EXO 0748‑676 were studied. At an assumed distance of 7.1 kpc, the data provided a persistent unabsorbed luminosity of 3.4× {10}36 erg cm‑2 s‑1 in 0.6‑55 keV. The source was in a relatively bright low/hard state, wherein the 0.6‑55 keV spectrum can be successfully explained by a “double-seed” Comptonization model incorporating a common corona with an electron temperature of ˜13 keV. The seed photons are thought to be supplied from both the neutron star surface and a cooler truncated disk. Compared to a sample of non-dipping, low-mass X-ray binaries in the low/hard state, the spectrum is subject to stronger Comptonization with a relatively larger Comptonizing y-parameter of ˜1.4 and a larger coronal optical depth of ˜5. This result, when attributed to the high inclination of EXO 0748‑676, suggests that the Comptonizing corona may elongate along the disk plane and provide a longer path for the seed photons when viewed from edge-on inclinations.

  14. Inclination flattening and the geocentric axial dipole hypothesis [rapid communication

    NASA Astrophysics Data System (ADS)

    Tauxe, Lisa

    2005-05-01

    William Gilbert first articulated what has come to be known as the geocentric axial dipole hypothesis. The GAD hypothesis is the principle on which paleogeographic reconstructions rely to constrain paleolatitude. For decades, there have been calls for permanent non-dipole contributions to the time-averaged field. Recently, these have demanded large contributions of the axial octupole, which, if valid, would call into question the general utility of the GAD hypothesis. In the process of geological recording of the geomagnetic field, "Earth filters" distort the directions. Many processes, for example, sedimentary inclination flattening and random tilting, can lead to a net shallowing of the observed direction. Therefore, inclinations that are shallower than expected from GAD can be explained by recording biases, northward transport, or non-dipole geomagnetic fields. Using paleomagnetic data from the last 5 million years from well-constrained lava flow data allows the construction of a statistical geomagnetic field model. Such a model can predict not only the average expected direction for a given latitude, but also the shape of the distribution of directions produced by secular variation. The elongation of predicted directions varies as a function of latitude (from significantly elongate in the up/down direction at the equator to circularly symmetric at the poles). Sedimentary inclination flattening also works in a predictable manner producing elongations that are stretched side to side and the degree of flattening depending on the inclination of the applied field and a "flattening factor" f. The twin tools of the predicted elongation/inclination relationship characteristic of the geomagnetic field for the past 5 million years and the distortion of the directions predicted from sedimentary inclination flattening allows us to find the flattening factor that yields corrected directions with an elongation and average inclination consistent with the statistical field

  15. TRANSIT PROBABILITIES FOR STARS WITH STELLAR INCLINATION CONSTRAINTS

    SciTech Connect

    Beatty, Thomas G.; Seager, Sara

    2010-04-01

    The probability that an exoplanet transits its host star is high for planets in close orbits, but drops off rapidly for increasing semimajor axes. This makes transit surveys for planets with large semimajor axes orbiting bright stars impractical, since one would need to continuously observe hundreds of stars that are spread out over the entire sky. One way to make such a survey tractable is to constrain the inclination of the stellar rotation axes in advance, and thereby enhance the transit probabilities. We derive transit probabilities for stars with stellar inclination constraints, considering a reasonable range of planetary system inclinations. We find that stellar inclination constraints can improve the transit probability by almost an order of magnitude for habitable-zone planets. When applied to an ensemble of stars, such constraints dramatically lower the number of stars that need to be observed in a targeted transit survey. We also consider multiplanet systems where only one planet has an identified transit and derive the transit probabilities for the second planet assuming a range of mutual planetary inclinations.

  16. Evolution of magnetic field inclination in a forming penumbra

    NASA Astrophysics Data System (ADS)

    Jurčák, Jan; Bello González, Nazaret; Schlichenmaier, Rolf; Rezaei, Reza

    2014-12-01

    As a sunspot penumbra forms, the magnetic field vector at the outer boundary of the protospot undergoes a transformation. We study the changes of the magnetic field vector at this boundary as a penumbral segment forms. We analyze a set of spectropolarimetric maps covering 2 hr during the formation of a sunspot in NOAA 11024. The data were recorded with the GFPI instrument attached to the German VTT. We observe a stationary umbra/quiet Sun boundary, where the magnetic field becomes more horizontal with time. The magnetic field inclination increases by 5°, reaching a maximum value of about 59°. The maximum inclination coincides with the onset of filament formation. In time, the penumbra filaments become longer and the penumbral bright grains protrude into the umbra, where the magnetic field is stronger and more vertical. Consequently, we observe a decrease in the magnetic field inclination at the boundary as the penumbra grows. In summary, in order to initiate the formation of the penumbra, the magnetic field at the umbral (protospot) boundary becomes more inclined. As the penumbra grows, the umbra/penumbra boundary migrates inwards, and at this boundary the magnetic field turns more vertical again, while it remains inclined in the outer penumbra.

  17. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  18. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements

    NASA Astrophysics Data System (ADS)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-10-01

    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  19. Synchrotron radiation computed laminography using an inclined detector.

    PubMed

    Zhang, Jie; Li, Gang; Yi, Qiru; Chen, Yu; Gao, Zhenhua; Jiang, Xiaoming

    2015-01-01

    Synchrotron radiation computed laminography (SR-CL) has been in use in three-dimensional non-destructive imaging of flat objects for several years. A new set-up is proposed based on the traditional SR-CL method but with the detector inclined at the same angle as the sample inclination to collect projections. The results of computer simulations and real-sample experiments demonstrate that reconstructions acquired using an inclined detector are of better quality compared with those acquired using ordinary detecting methods, especially for the situation of few projections and small difference of attenuation ratio of the sample. This method could be applied to obtain high-quality images of weak-contrast samples with short measurement time and mild radiation damage. PMID:25537599

  20. On the inclination and habitability of the HD 10180 system

    SciTech Connect

    Kane, Stephen R.; Gelino, Dawn M.

    2014-09-10

    There are numerous multi-planet systems that have now been detected via a variety of techniques. These systems exhibit a range of both planetary properties and orbital configurations. For those systems without detected planetary transits, a significant unknown factor is the orbital inclination. This produces an uncertainty in the mass of the planets and their related properties, such as atmospheric scale height. Here we investigate the HD 10180 system, which was discovered using the radial velocity technique. We provide a new orbital solution for the system which allows for eccentric orbits for all planets. We show how the inclination of the system affects the mass/radius properties of the planets and how the detection of phase signatures may resolve the inclination ambiguity. We finally evaluate the Habitable Zone properties of the system and show that the g planet spends 100% of an eccentric orbit within the Habitable Zone.

  1. Interplay between geometry and temperature for inclined Casimir plates

    SciTech Connect

    Weber, Alexej; Gies, Holger

    2009-09-15

    We provide further evidence for the nontrivial interplay between geometry and temperature in the Casimir effect. We investigate the temperature dependence of the Casimir force between an inclined semi-infinite plate above an infinite plate in D dimensions using the worldline formalism. Whereas the high-temperature behavior is always found to be linear in T in accordance with dimensional-reduction arguments, different power-law behaviors at small temperatures emerge. Unlike the case of infinite parallel plates, which shows the well-known T{sup D} behavior of the force, we find a T{sup D-1} behavior for inclined plates, and a {approx}T{sup D-0.3} behavior for the edge effect in the limit where the plates become parallel. The strongest temperature dependence {approx}T{sup D-2} occurs for the Casimir torque of inclined plates. Numerical as well as analytical worldline results are presented.

  2. Low velocity impact of inclined CSM composite laminates

    SciTech Connect

    Arnold, W.S.; Madjidi, S.; Marshall, I.H.; Robb, M.D.

    1993-12-31

    The damage tolerance of composite laminates subject to low velocity impact is an important aspect of current design philosophies required to ensure the integrity of primary load bearing structures. To the authors knowledge, no work published in the open literature has addressed the damage tolerance of composites subject to impacts at non-perpendicular inclinations, which in practical situations is the most common form of impact. This paper describes an experimental study, devised to assess the influence of inclined impact on the residual strength characteristics of CSM laminates. Preliminary experimental results and comparisons with previous work on flat plate impact tests are presented. The influence of the degree of inclination and impact energy are correlated with the laminates damage area and residual tensile properties.

  3. Transit Timing Variations for Inclined and Retrograde Exoplanetary Systems

    NASA Astrophysics Data System (ADS)

    Payne, Matthew J.; Ford, Eric B.; Veras, Dimitri

    2010-03-01

    We perform numerical calculations of the expected transit timing variations (TTVs) induced on a hot-Jupiter by an Earth-mass perturber. Motivated by the recent discoveries of retrograde transiting planets, we concentrate on an investigation of the effect of varying relative planetary inclinations, up to and including completely retrograde systems. We find that planets in low-order (e.g., 2:1) mean-motion resonances (MMRs) retain approximately constant TTV amplitudes for 0° < i < 170°, only reducing in amplitude for i>170°. Systems in higher order MMRs (e.g., 5:1) increase in TTV amplitude as inclinations increase toward 45°, becoming approximately constant for 45° < i < 135°, and then declining for i>135°. Planets away from resonance slowly decrease in TTV amplitude as inclinations increase from 0° to 180°, whereas planets adjacent to resonances can exhibit a huge range of variability in TTV amplitude as a function of both eccentricity and inclination. For highly retrograde systems (135° < i <= 180°), TTV signals will be undetectable across almost the entirety of parameter space, with the exceptions occurring when the perturber has high eccentricity or is very close to an MMR. This high inclination decrease in TTV amplitude (on and away from resonance) is important for the analysis of the known retrograde and multi-planet transiting systems, as inclination effects need to be considered if TTVs are to be used to exclude the presence of any putative planetary companions: absence of evidence is not evidence of absence.

  4. Excitation of the orbital inclination of Iapetus during planetary encounters

    SciTech Connect

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio; Walsh, Kevin J.

    2014-09-01

    Saturn's moon, Iapetus, has an orbit in a transition region where the Laplace surface is bending from the equator to the orbital plane of Saturn. The orbital inclination of Iapetus to the local Laplace plane is ≅ 8°, which is unexpected because the inclination should be ≅ 0 if Iapetus formed from a circumplanetary disk on the Laplace surface. It thus appears that some process has pumped up Iapetus's inclination while leaving its eccentricity near zero (e ≅ 0.03 at present). Here, we examined the possibility that Iapetus's inclination was excited during the early solar system instability when encounters between Saturn and ice giants occurred. We found that the dynamical effects of planetary encounters on Iapetus's orbit sensitively depend on the distance of the few closest encounters. In 4 out of 10 instability cases studied here, the orbital perturbations were too large to be plausible. In one case, Iapetus's orbit was practically unaffected. In the remaining five cases, the perturbations of Iapetus's inclination were adequate to explain its present value. In three of these cases, however, Iapetus's eccentricity was excited to >0.1-0.25, and it is not clear whether it could have been damped to its present value (≅ 0.03) by a subsequent process (e.g., tides and dynamical friction from captured irregular satellites do not seem to be strong enough). Our results therefore imply that only 2 out of 10 instability cases (∼20%) can excite Iapetus's inclination to its current value (∼30% of trials lead to >5°) while leaving its orbital eccentricity low.

  5. Improving HST Pointing & Absolute Astrometry

    NASA Astrophysics Data System (ADS)

    Lallo, Matthew; Nelan, E.; Kimmer, E.; Cox, C.; Casertano, S.

    2007-05-01

    Accurate absolute astrometry is becoming increasingly important in an era of multi-mission archives and virtual observatories. Hubble Space Telescope's (HST's) Guidestar Catalog II (GSC2) has reduced coordinate error to around 0.25 arcsecond, a factor 2 or more compared with GSC1. With this reduced catalog error, special attention must be given to calibrate and maintain the Fine Guidance Sensors (FGSs) and Science Instruments (SIs) alignments in HST to a level well below this in order to ensure that the accuracy of science product's astrometry keywords and target positioning are limited only by the catalog errors. After HST Servicing Mission 4, such calibrations' improvement in "blind" pointing accuracy will allow for more efficient COS acquisitions. Multiple SIs and FGSs each have their own footprints in the spatially shared HST focal plane. It is the small changes over time in primarily the whole-body positions & orientations of these instruments & guiders relative to one another that is addressed by this work. We describe the HST Cycle 15 program CAL/OTA 11021 which, along with future variants of it, determines and maintains positions and orientations of the SIs and FGSs to better than 50 milli- arcseconds and 0.04 to 0.004 degrees of roll, putting errors associated with the alignment sufficiently below GSC2 errors. We present recent alignment results and assess their errors, illustrate trends, and describe where and how the observer sees benefit from these calibrations when using HST.

  6. Absolute oral bioavailability of ciprofloxacin.

    PubMed

    Drusano, G L; Standiford, H C; Plaisance, K; Forrest, A; Leslie, J; Caldwell, J

    1986-09-01

    We evaluated the absolute bioavailability of ciprofloxacin, a new quinoline carboxylic acid, in 12 healthy male volunteers. Doses of 200 mg were given to each of the volunteers in a randomized, crossover manner 1 week apart orally and as a 10-min intravenous infusion. Half-lives (mean +/- standard deviation) for the intravenous and oral administration arms were 4.2 +/- 0.77 and 4.11 +/- 0.74 h, respectively. The serum clearance rate averaged 28.5 +/- 4.7 liters/h per 1.73 m2 for the intravenous administration arm. The renal clearance rate accounted for approximately 60% of the corresponding serum clearance rate and was 16.9 +/- 3.0 liters/h per 1.73 m2 for the intravenous arm and 17.0 +/- 2.86 liters/h per 1.73 m2 for the oral administration arm. Absorption was rapid, with peak concentrations in serum occurring at 0.71 +/- 0.15 h. Bioavailability, defined as the ratio of the area under the curve from 0 h to infinity for the oral to the intravenous dose, was 69 +/- 7%. We conclude that ciprofloxacin is rapidly absorbed and reliably bioavailable in these healthy volunteers. Further studies with ciprofloxacin should be undertaken in target patient populations under actual clinical circumstances. PMID:3777908

  7. Absolute Instability in Coupled-Cavity TWTs

    NASA Astrophysics Data System (ADS)

    Hung, D. M. H.; Rittersdorf, I. M.; Zhang, Peng; Lau, Y. Y.; Simon, D. H.; Gilgenbach, R. M.; Chernin, D.; Antonsen, T. M., Jr.

    2014-10-01

    This paper will present results of our analysis of absolute instability in a coupled-cavity traveling wave tube (TWT). The structure mode at the lower and upper band edges are respectively approximated by a hyperbola in the (omega, k) plane. When the Briggs-Bers criterion is applied, a threshold current for onset of absolute instability is observed at the upper band edge, but not the lower band edge. The nonexistence of absolute instability at the lower band edge is mathematically similar to the nonexistence of absolute instability that we recently demonstrated for a dielectric TWT. The existence of absolute instability at the upper band edge is mathematically similar to the existence of absolute instability in a gyroton traveling wave amplifier. These interesting observations will be discussed, and the practical implications will be explored. This work was supported by AFOSR, ONR, and L-3 Communications Electron Devices.

  8. Effect of an inclined magnetic field on peristaltic flow of Williamson fluid in an inclined channel with convective conditions

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Bibi, Shahida; Rafiq, M.; Alsaedi, A.; Abbasi, F. M.

    2016-03-01

    This paper deals with the influence of inclined magnetic field on peristaltic flow of an incompressible Williamson fluid in an inclined channel with heat and mass transfer. Convective conditions of heat and mass transfer are employed. Viscous dissipation and Joule heating are taken into consideration. Mathematical modeling also includes Soret and Dufour effects. Channel walls have compliant properties. Analysis has been carried out through long wavelength and low Reynolds number approach. Resulting problems are solved for small Weissenberg number. Impacts of variables reflecting the salient features of wall properties, Biot numbers and Soret and Dufour on the velocity, temperature, concentration and heat transfer coefficient are pointed out. Trapping phenomenon is also analyzed.

  9. The universal path integral

    NASA Astrophysics Data System (ADS)

    Lloyd, Seth; Dreyer, Olaf

    2016-02-01

    Path integrals calculate probabilities by summing over classical configurations of variables such as fields, assigning each configuration a phase equal to the action of that configuration. This paper defines a universal path integral, which sums over all computable structures. This path integral contains as sub-integrals all possible computable path integrals, including those of field theory, the standard model of elementary particles, discrete models of quantum gravity, string theory, etc. The universal path integral possesses a well-defined measure that guarantees its finiteness. The probabilities for events corresponding to sub-integrals can be calculated using the method of decoherent histories. The universal path integral supports a quantum theory of the universe in which the world that we see around us arises out of the interference between all computable structures.

  10. 11. VIEW SOUTHEAST, DETAIL OF INCLINED END POST, SHOWING CASTIRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW SOUTHEAST, DETAIL OF INCLINED END POST, SHOWING CAST-IRON WEDGE SET INTO LOWER CHORD; FLOOR-BEAM HANGER BLOCKS TO LEFT - Meeting House Bridge, Spanning Boston & Maine Railroad 0.1 mile east of Biddleford Road, Arundel, York County, ME

  11. 1. SAND DRAINING & DRYING BUILDING (RIGHT), COVERED INCLINE CONVEYOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SAND DRAINING & DRYING BUILDING (RIGHT), COVERED INCLINE CONVEYOR (LOWER RIGHT) THAT EXTENDS TO THE SAND-SORTING BUILDING, AND REMAINS OF ORIGINAL (1917) WASHING, DRAINING & DRYING BUILDING (LEFT), VIEW LOOKING WEST FROM TOP OF SAND-SORTING BUILDING - Mill "C" Complex, Sand Draining & Drying Building, South of Dee Bennet Road, near Illinois River, Ottawa, La Salle County, IL

  12. Students' Entrepreneurial Inclination at a Malaysian Polytechnic: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Yasin, Ahmad Yasruddin Md; Mahmood, Nik Abdul Aziz Nik; Jaafar, Nik Azyyati Nik

    2011-01-01

    This paper reports preliminary results of an ongoing project to examine students' inclination towards entrepreneurship at a Malaysian polytechnic. The study used a self-administered questionnaire to explore the influence of entrepreneurial intent, perceived behavioral control, self-efficacy, perceived barriers, perceived support factors and…

  13. 'Inclined abstainers': a problem for predicting health-related behaviour.

    PubMed

    Orbell, S; Sheeran, P

    1998-06-01

    A longitudinal test of the association between motivation to undertake a precautionary health action and subsequent behaviour was conducted on women's uptake of the cervical screening test. A sample of never-screened women (N = 166) completed measures derived from protection-motivation theory (PMT; Rogers, 1983). One year later, screening uptake was reliably determined from medical records. While regression analyses demonstrated that PMT variables predicted both motivation to undergo cervical screening and screening uptake, there was, nonetheless, a good deal of inconsistency between protection motivation and screening behaviour. Fifty-seven per cent of those who indicated they were willing to undergo the test did not do so within a one-year period. Discriminant analysis was therefore used to test the ability of cognitions specified by PMT to distinguish four patterns of association between motivation and behaviour: inclined actors, inclined abstainers, disinclined actors and disinclined abstainers. While PMT variables could successfully classify the four groups, it was not possible to derive a reliable discriminant function which distinguished between inclined actors and inclined abstainers. The results suggest that PMT provides a useful account of choice motivation but does not address the psychological processes by which intention is translated into action. Recent calls for the development of a social psychology of volition are discussed in the light of these findings. PMID:9639861

  14. Volumetric velocity measurements of vortex rings from inclined exits

    NASA Astrophysics Data System (ADS)

    Troolin, Daniel R.; Longmire, Ellen K.

    2010-03-01

    Vortex rings were generated by driving pistons within circular cylinders of inner diameter D = 72.8 mm at a constant velocity U 0 over a distance L = D. The Reynolds number, U 0 L/(2ν), was 2500. The flow downstream of circular and inclined exits was examined using volumetric 3-component velocimetry (V3V). The circular exit yields a standard primary vortex ring that propagates downstream at a constant velocity and a lingering trailing ring of opposite sign associated with the stopping of the piston. By contrast, the inclined nozzle yields a much more complicated structure. The data suggest that a tilted primary vortex ring interacts with two trailing rings; one associated with the stopping of the piston, and the other associated with the asymmetry of the cylinder exit. The two trailing ring structures, which initially have circulation of opposite sign, intertwine and are distorted and drawn through the center of the primary ring. This behavior was observed for two inclination angles. Increased inclination was associated with stronger interactions between the primary and trailing vortices as well as earlier breakdown.

  15. North portal and deck view, from north, showing inclined endposts, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North portal and deck view, from north, showing inclined endposts, Pratt through trusses, north portal strut, overhead bracing, pipe rails and posts, and concrete deck with bituminous wearing surface - Castle Garden Bridge, Township Route 343 over Bennetts Branch of Sinnemahoning Creek, Driftwood, Cameron County, PA

  16. South portal and deck view from south, showing inclined endposts, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South portal and deck view from south, showing inclined endposts, Pratt through trusses, south portal strut, overhead bracing, pipe rails and posts, and concrete deck with bituminous wearing surface - Castle Garden Bridge, Township Route 343 over Bennetts Branch of Sinnemahoning Creek, Driftwood, Cameron County, PA

  17. Inclined Planes and Motion Detectors: A Study of Acceleration.

    ERIC Educational Resources Information Center

    Tracy, Dyanne M.

    2001-01-01

    Presents an activity in which students work in cooperative groups and roll balls down inclined planes, collect data with the help of an electronic motion detector, and represent data with a graphing calculator to explore concepts such as mass, gravity, velocity, and acceleration. (Contains 12 references.) (Author/ASK)

  18. Reconstruction of Galileo Galilei's Experiment: The Inclined Plane

    ERIC Educational Resources Information Center

    Straulino, S.

    2008-01-01

    In the "Third Day" of the "Discourses and Mathematical Demonstrations Concerning Two New Sciences" Galileo Galilei describes the famous experiment of the inclined plane and uses it to bring an experimental confirmation to the laws of uniformly accelerated motion. We describe a reconstruction of the experiment and how the results can be used for…

  19. 85. INCLINED PLANE 7 EAST. FLUME AND STONE POWER HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    85. INCLINED PLANE 7 EAST. FLUME AND STONE POWER HOUSE ARE ON RIGHT SIDE OF PHOTOGRAPH. NOTE THE CABLE LEAVING THE POWER HOUSE. THIS CABLE IS ATTATCHED TO A DRUM ON THE INSIDE THE POWER HOUSE WHICH IS TURNED BY MEANS OF A WATER POWERED TURBINE. - Morris Canal, Phillipsburg, Warren County, NJ

  20. Motion on an Inclined Plane and the Nature of Science

    ERIC Educational Resources Information Center

    Pendrill, Ann-Marie; Ekström, Peter; Hansson, Lena; Mars, Patrik; Ouattara, Lassana; Ryan, Ulrika

    2014-01-01

    Friction is an important phenomenon in everyday life. All children are familiar with playground slides, which may thus be a good starting point for investigating friction. Motion on an inclined plane is a standard physics example. This paper presents an investigation of friction by a group of 11-year olds. How did they plan their investigations?…

  1. Spatio-temporal patterns in inclined layer convection

    NASA Astrophysics Data System (ADS)

    Subramanian, Priya; Brausch, Oliver; Daniels, Karen E.; Bodenschatz, Eberhard; Schneider, Tobias M.; Pesch, Werner

    2016-05-01

    This paper reports on a theoretical analysis of the rich variety of spatio-temporal patterns observed recently in inclined layer convection at medium Prandtl number when varying the inclination angle $\\gamma$ and the Rayleigh number $R$. The present numerical investigation of the inclined layer convection system is based on the standard Oberbeck-Boussinesq equations. The patterns are shown to originate from a complicated competition of buoyancy-driven and shear-flow driven pattern forming mechanisms. The former are expressed as \\rm{longitudinal} convection rolls with their axes oriented parallel to the incline, the latter as perpendicular \\rm{transverse} rolls. Along with conventional methods to study roll patterns and their stability, we employ direct numerical simulations in large spatial domains, comparable with the experimental ones. As a result, we determine the phase diagram of the characteristic complex 3D convection patterns above onset of convection in the $\\gamma-R$ plane, and find that it compares very well with the experiments. In particular we demonstrate that interactions of specific Fourier modes, characterized by a resonant interaction of their wavevectors in the layer plane, are key to understanding the pattern morphologies.

  2. Absolute negative mobility of interacting Brownian particles

    NASA Astrophysics Data System (ADS)

    Ou, Ya-li; Hu, Cai-tian; Wu, Jian-chun; Ai, Bao-quan

    2015-12-01

    Transport of interacting Brownian particles in a periodic potential is investigated in the presence of an ac force and a dc force. From Brownian dynamic simulations, we find that both the interaction between particles and the thermal fluctuations play key roles in the absolute negative mobility (the particle noisily moves backwards against a small constant bias). When no the interaction acts, there is only one region where the absolute negative mobility occurs. In the presence of the interaction, the absolute negative mobility may appear in multiple regions. The weak interaction can be helpful for the absolute negative mobility, while the strong interaction has a destructive impact on it.

  3. Slip Potential for Commonly Used Inclined Grated Metal Walkways

    PubMed Central

    Pollard, Jonisha P.; Heberger, John R.; Dempsey, Patrick G.

    2016-01-01

    Background No specific guidelines or regulations are provided by the Mine Safety and Health Administration for the use of inclined grated metal walkways in mining plants. Mining and other companies may be using walkway materials that do not provide sufficient friction, contributing to slip and fall injuries. Purpose The purpose of this study was to determine if there are significant differences in the required friction for different grated metal walkways during walking in diverse conditions. Methods The normalized coefficients of friction were measured for 12 participants while walking up and down an instrumented walkway with different inclinations (0°, 5°, 10°, 15°, and 20°) and with and without the presence of a contaminant (glycerol). Self-reported slip events were recorded and the required coefficients of friction were calculated considering only the anterior/posterior components of the shear forces. Additionally, the available coefficients of friction for these walkway materials were measured at the 0° orientation using a tribometer, with and without the presence of the contaminant, using a boot heel as well as Neolite as the test feet. Results The number of slips increased when the inclination angle reached 10° and above. Of all materials tested, the diamond weave grating was found to have the best performance at all inclines and when contaminated or dry. A high number of slips occurred for the perforated grating and serrated bar grating at 20° when contaminated. Conclusions Results of this study suggest that the diamond weave grating provides significantly better friction compared to serrated bar and perforated gratings, especially at inclines greater than 10°. PMID:26779388

  4. Stability of stratified two-phase flows in inclined channels

    NASA Astrophysics Data System (ADS)

    Barmak, I.; Gelfgat, A. Yu.; Ullmann, A.; Brauner, N.

    2016-08-01

    Linear stability of the stratified gas-liquid and liquid-liquid plane-parallel flows in the inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict the parameter regions in which the stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in the inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of the non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of the steady state solutions are presented on the flow pattern map and are accompanied by the critical wavenumbers and the spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by the streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of two stable stratified flow configurations in a region of low flow rates in the countercurrent liquid-liquid flows. These configurations become unstable with respect to the shear mode of instability. It was revealed that in slightly upward inclined flows the lower and middle solutions for the holdup are stable in the part of the triple solution region, while the upper solution is always unstable. In the case of downward flows, in the triple solution region, none of the solutions are stable with respect to the short-wave perturbations. These flows are stable only in the single solution region at low flow rates of the heavy phase, and the long-wave perturbations are the most unstable ones.

  5. Flow pattern and heat transfer behavior of boiling two-phase flow in inclined pipes

    NASA Astrophysics Data System (ADS)

    Liu, Dezhang; Ning, Ouyang

    1992-09-01

    Movable Electrical Conducting Probe (MECP), a kind of simple and reliable measuring transducer, used for predicting full-flow-path flow pattern in a boiling vapor/liquid two-phase flow is introduced in this paper. When the test pipe is set at different inclination angles, several kinds of flow patterns, such as bubble, slug, churn, intermittent, and annular flows, may be observed in accordance with the locations of MECP. By means of flow pattern analysis, flow field numerical calculations have been carried out, and heat transfer coefficient correlations along full-flow-path derived. The results show that heat transfer performance of boiling two-phase flow could be significantly augmented as expected in some flow pattern zones. The results of the investigation, measuring techniques and conclusions contained in this paper would be a useful reference in foundational research for prediction of flow pattern and heat transfer behavior in boiling two-phase flow, as well as for turbine vane liquid-cooling design.

  6. An episode of steep geomagnetic inclination 120,000 years ago.

    PubMed

    Verosub, K L

    1983-07-22

    The mean inclinations of three sections of 120,000-year-old fine-grained sediments from northern California range from 62 degrees to 66 degrees . These inclinations are significantly steeper than the inclination of the geocentric axial dipole at this site. Because these sediments have probably recorded an actual episode of steep inclination lasting several thousand years, they provide new insights into the significance of mean inclinations shallower than the geocentric axial dipole. Such inclinations are characteristic of fine-grained sediments younger than 35,000 years. The results raise questions about the time-averaged geomagnetic field and about the determination of plate motions from paleomagnetic data. PMID:17798888

  7. Inequalities, Absolute Value, and Logical Connectives.

    ERIC Educational Resources Information Center

    Parish, Charles R.

    1992-01-01

    Presents an approach to the concept of absolute value that alleviates students' problems with the traditional definition and the use of logical connectives in solving related problems. Uses a model that maps numbers from a horizontal number line to a vertical ray originating from the origin. Provides examples solving absolute value equations and…

  8. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  9. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  10. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  11. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  12. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  13. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  14. Deontological and utilitarian inclinations in moral decision making: a process dissociation approach.

    PubMed

    Conway, Paul; Gawronski, Bertram

    2013-02-01

    Dual-process theories of moral judgment suggest that responses to moral dilemmas are guided by two moral principles: the principle of deontology states that the morality of an action depends on the intrinsic nature of the action (e.g., harming others is wrong regardless of its consequences); the principle of utilitarianism implies that the morality of an action is determined by its consequences (e.g., harming others is acceptable if it increases the well-being of a greater number of people). Despite the proposed independence of the moral inclinations reflecting these principles, previous work has relied on operationalizations in which stronger inclinations of one kind imply weaker inclinations of the other kind. The current research applied Jacoby's (1991) process dissociation procedure to independently quantify the strength of deontological and utilitarian inclinations within individuals. Study 1 confirmed the usefulness of process dissociation for capturing individual differences in deontological and utilitarian inclinations, revealing positive correlations of both inclinations to moral identity. Moreover, deontological inclinations were uniquely related to empathic concern, perspective-taking, and religiosity, whereas utilitarian inclinations were uniquely related to need for cognition. Study 2 demonstrated that cognitive load selectively reduced utilitarian inclinations, with deontological inclinations being unaffected. In Study 3, a manipulation designed to enhance empathy increased deontological inclinations, with utilitarian inclinations being unaffected. These findings provide evidence for the independent contributions of deontological and utilitarian inclinations to moral judgments, resolving many theoretical ambiguities implied by previous research. PMID:23276267

  15. Palaeomagnetism and magnetic anisotropy of Carboniferous red beds from the Maritime Provinces of Canada: evidence for shallow palaeomagnetic inclinations and implications for North American apparent polar wander

    NASA Astrophysics Data System (ADS)

    Bilardello, Dario; Kodama, Kenneth P.

    2010-03-01

    A palaeomagnetic and magnetic anisotropy study was conducted on the lower-middle Carboniferous Maringouin and Shepody red bed formations of the Maritime Provinces of Canada to detect and correct inclination shallowing. Because of the shallow inclinations commonly observed in red beds and the strong dependence of North America's Palaeo-Mesozoic apparent polar wander (APW) on red beds, inclination shallowing may substantially affect large portions of North America's APW path. Hematite is the primary magnetic mineral carrier in these red beds, accompanied by secondary magnetite, maghemite, goethite and pigmentary hematite. Thermal and chemical demagnetization of the Shepody Fm. successfully isolated characteristic remanence directions of D = 177°, I = 20.4°, α95 = 6.5°, N = 19 and D = 177.8° I = 17.7°, α95 = 6.9°, N = 16, respectively. Thermal demagnetization of the Maringouin Fm. isolated a characteristic remanence direction of D = 178.7°, I = 24.9°, α95 = 14.5°, N = 9. High field anisotropy of isothermal remanence followed by alternating field and thermal cleaning on leached samples was used to isolate the fabric of hematite. Individual particle anisotropy was measured directly from magnetic separates using a new technique. Hematite's magnetic fabric and particle anisotropy were used to apply an inclination correction. Our inclination corrections indicate up to 10° of inclination shallowing, corresponding to corrected palaeopole positions of 27.2°N, 118.3°E, A95 = 6.2° and 27.4°N, 117.2°E, A95 = 13.1° for the Shepody and Maringouin formations, respectively. This correction corresponds to a ~ 6° increase in colatitude for Carboniferous North America, which translates into approximately a 650 km change in North America's palaeogeographic position. The proposed position of North America supports a Pangea B-type reconstruction.

  16. Kepler-108: A Mutually Inclined Giant Planet System

    NASA Astrophysics Data System (ADS)

    Mills, Sean M.; Fabrycky, Daniel

    2016-06-01

    The vast majority of well studied giant-planet systems, including the Solar System, are nearly coplanar which implies dissipation within a primordial gas disk. However, intrinsic instability may lead to planet-planet scattering, which often produces non-coplanar, eccentric orbits. Planet scattering theories have been developed to explain observed high eccentricity systems and possibly hot Jupiters; thus far their predictions for mutual inclination (I) have barely been tested. Here we characterize a highly mutually-inclined (I ~ 15-60 degrees), moderately eccentric (e > 0.1) giant planet system: Kepler-108. This system consists of two Saturn mass planets with periods of ~49 and ~190 days around a star with a wide (~300 AU) binary companion in an orbital configuration inconsistent with a purely disk migration origin.

  17. Drop impact and rebound dynamics on an inclined superhydrophobic surface.

    PubMed

    Yeong, Yong Han; Burton, James; Loth, Eric; Bayer, Ilker S

    2014-10-14

    Due to its potential in water-repelling applications, the impact and rebound dynamics of a water drop impinging perpendicular to a horizontal superhydrophobic surface have undergone extensive study. However, drops tend to strike a surface at an angle in applications. In such cases, the physics governing the effects of oblique impact are not well studied or understood. Therefore, the objective of this study was to conduct an experiment to investigate the impact and rebound dynamics of a drop at various liquid viscosities, in an isothermal environment, and on a nanocomposite superhydrophobic surface at normal and oblique impact conditions (tilted at 15°, 30°, 45°, and 60°). This study considered drops falling from various heights to create normal impact Weber numbers ranging from 6 to 110. In addition, drop viscosity was varied by decreasing the temperature for water drops and by utilizing water-glycerol mixtures, which have similar surface tension to water but higher viscosities. Results revealed that oblique and normal drop impact behaved similarly (in terms of maximum drop spread as well as rebound dynamics) at low normal Weber numbers. However, at higher Weber numbers, normal and oblique impact results diverged in terms of maximum spread, which could be related to asymmetry and more complex outcomes. These asymmetry effects became more pronounced as the inclination angle increased, to the point where they dominated the drop impact and rebound characteristics when the surface was inclined at 60°. The drop rebound characteristics on inclined surfaces could be classified into eight different outcomes driven primarily by normal Weber number and drop Ohnesorge numbers. However, it was found that these outcomes were also a function of the receding contact angle, whereby reduced receding angles yielded tail-like structures. Nevertheless, the contact times of the drops with the coating were found to be generally independent of surface inclination. PMID:25216298

  18. Inclined fluidized bed system for drying fine coal

    DOEpatents

    Cha, Chang Y.; Merriam, Norman W.; Boysen, John E.

    1992-02-11

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  19. Shock waves in Stokes flows down an inclined plate.

    PubMed

    Benilov, E S; Lapin, V N

    2011-06-01

    We consider a viscous flow on an inclined plate, such that the liquid's depth far upstream is larger than that far downstream, resulting in a "smoothed-shock wave" steadily propagating downstream. Our numerical simulations show that in a large section of the problem's parameter space all initial conditions overturn (i.e., the liquid's surface becomes vertical at some point) and thus no steady solution exists. The overturning can only be stopped by a sufficiently strong surface tension. PMID:21797491

  20. Trigonometric series representations of the orbital inclination function

    NASA Astrophysics Data System (ADS)

    El-Sayed Awad, M.

    1986-08-01

    New trigonometric representations of the orbital inclination function in multiples of cosines or sines are developed for all possible values of l, m, and p. The literal analytical expressions and the recurrence formulas which are satisfied by their coefficients are derived, and an efficient algorithm for the table formulation of the trigonometric series representations is presented. Numerical examples for the representations are demonstrated for the cases l = 2(1)4, m = 0(1)l, and p = 0(1)l.

  1. Paleomagnetism of the Oligocene Kangtuo Formation red beds (Central Tibet): Inclination shallowing and tectonic implications

    NASA Astrophysics Data System (ADS)

    Ding, Jikai; Zhang, Shihong; Chen, Weiwei; Zhang, Junhong; Yang, Tianshui; Jiang, Gaolei; Zhang, Kexin; Li, Haiyan; Wu, Huaichun

    2015-05-01

    A paleomagnetic study on the red beds of the Oligocene Kangtuo Formation (Fm) was carried out in the Gerze Basin of the Lhasa terrane. A total of 700 samples were collected from 37 sites. Stepwise thermal demagnetization revealed that the main magnetic carrier is hematite. The natural remnant magnetization (NRM) consists of two components. A low-temperature component (LTC) is identified below 300 °C and is interpreted to be a recent viscous overprint, whereas a high temperature component (HTC) unblocks at ∼665-690 °C and is interpreted to be the primary magnetization. The HTC distributions show a clear east-west elongated distribution, which is considered as reflecting inclination flattening of deposited magnetic remanence carriers. After inclination calibration using the E/I method, the HTC could pass both a reversal test and a fold test at 95% confidence level, showing the mean direction at Ds = 340.3°, Is = 44.2°, with k = 63.0, and α95 = 3.1°, corresponding to a paleopole at 71.7°N, 339.3°E (A95 = 3.1°), and the paleolatitude of the sampling site at 25.9 ± 3.1°N. The paleolatitude is consistent with that expected from the coeval pole of the Qiangtang terrane obtained from volcanic rocks, suggesting that there has been no paleomagnetically-discernable latitudinal motion between the Qiantang and Lhasa terranes since ∼30 Ma. Comparing our new data with the apparent polar wander paths (APWPs) of East Asian blocks (Cogné et al., 2013), Europe, and India (Besse and Courtillot, 2002), we have reached the following conclusions. (1) There is no significant paleolatitudinal difference observed between the Lhasa terrane and other central and northern Asian terranes at ∼30 Ma. (2) The observed paleolatitude of the Kangtuo Fm is 8.0 ± 4.9° lower than the expected paleolatitude deduced from the data of stable Europe, highlighting the 'Asian inclination anomaly' phenomenon, but is 4.6 ± 5.1° higher than that deduced from the data of the India Plate

  2. ARTICULATOR-RELATED REGISTRATION AND ANALYSIS OF SAGITTAL CONDYLAR INCLINATION.

    PubMed

    Cimić, Samir; Simunković, Sonja Kraljević; Suncana Simonić Kocijan; Matijević, Jurica; Dulcić, Niksa; Catić, Amir

    2015-12-01

    The purpose of this investigation was to study sagittal condylar inclination values within a uniform sample (Angle class I occlusion) using 'articulator-related registration' and Camper's plane as a reference plane. The study was performed on a sample of 58 Angle class I subjects (mean age 25.1, SD 3.1). Measurements were performed with an ultrasonic jaw tracking device with six degrees of freedom. After a paraocclusal tray was fixed in the mouth, each subject had to make three protrusive movements and three right and left laterotrusive movements. From protrusive movements the software of the device automatically calculated the left and the right sagittal condylar inclination values used for setting of the articulator. The mean sagittal condylar inclinationvalue was 41.0° (SD 10.5) for the right joint and 40.7° (SD 9.8) for the left joint. The maximum value was 65.0° for the right and 68.6° for the left joint, and the minimum value was 13.7° for the right and 21.7° for the left joint. The results of this study suggested the average articulator setting for sagittal condylar inclination for fully dentate adult subjects to be 40° in relation to Camper's plane. This is especially important for the articulators that are set up in relation to Camper's plane. PMID:27017716

  3. ASSEMBLY OF PROTOPLANETARY DISKS AND INCLINATIONS OF CIRCUMBINARY PLANETS

    SciTech Connect

    Foucart, Francois; Lai, Dong

    2013-02-10

    The Kepler satellite has discovered a number of transiting planets around close binary stars. These circumbinary systems have highly aligned planetary and binary orbits. In this paper, we explore how the mutual inclination between the planetary and binary orbits may reflect the physical conditions of the assembly of protoplanetary disks and the interaction between protostellar binaries and circumbinary disks. Given the turbulent nature of star-forming molecular clouds, it is possible that the gas falling onto the outer region of a circumbinary disk and the central protostellar binary have different axes of rotation. Thus, the newly assembled circumbinary disk can be misaligned with respect to the binary. However, the gravitational torque from the binary produces a warp and twist in the disk, and the back-reaction torque tends to align the disk and the binary orbital plane. We present a new, analytic calculation of this alignment torque and show that the binary-disk inclination angle can be reduced appreciably after the binary accretes a few percent of its mass from the disk. Our calculation suggests that in the absence of other disturbances, circumbinary disks and planets around close (sub-AU) stellar binaries, for which mass accretion onto the proto-binary is very likely to have occurred, are expected to be highly aligned with the binary orbits, while disks and planets around wide binaries can be misaligned. Measurements of the mutual inclinations of circumbinary planetary systems can provide a clue to the birth environments of such systems.

  4. a Study of Ricochet Phenomenon for Inclined Impact of Projectile

    NASA Astrophysics Data System (ADS)

    Jo, Jong-Hyun; Lee, Young-Shin

    In this study, the numerical simulation using AUTODYN-3D program was investigated for trajectory prediction for inclined impacts of projectiles. The penetration and perforation of polycarbonate(PC) plate by 7.62 mm projectile was investigated numerically. The characteristic structure of the projectile's trajectory in the PC plates was studied. Two combined failure criteria were used in the target plate, and the target plate was modeled with the properties of polycarbonate for simulating the ricochet phenomenon. The numerical analyses were used to study the effect of the angle of inclination on the trajectory and kinetic energy of the projectile. The dynamic deformation behaviors tests of PC were compared with numerical simulation results which can be used for predictive purpose. Ricochet phenomenon for angles of inclination of 0° ≤ θ ≤ 20° in the analysis. The projectile perforated the plate for θ > 30°, thus defined a failure envelope for numerical configuration. The numerical analyses was used to study the effect under the projectile impact velocity on the depth of penetration(DOP).

  5. High-accuracy interferometer with a prism pair for measurement of the absolute refractive index of glass

    SciTech Connect

    Hori, Yasuaki; Hirai, Akiko; Minoshima, Kaoru; Matsumoto, Hirokazu

    2009-04-10

    We propose a variable-path interferometric technique for the measurement of the absolute refractive index of optical glasses. We use two interferometers to decide the ratio between changes in the optical path in a prism-shaped sample glass and in air resulting from displacement of the sample. The method allows precise measurements to be made without prior knowledge of the properties of the sample. The combined standard uncertainty of the proposed method is 1.6x10{sup -6}.

  6. Absolute optical instruments without spherical symmetry

    NASA Astrophysics Data System (ADS)

    Tyc, Tomáš; Dao, H. L.; Danner, Aaron J.

    2015-11-01

    Until now, the known set of absolute optical instruments has been limited to those containing high levels of symmetry. Here, we demonstrate a method of mathematically constructing refractive index profiles that result in asymmetric absolute optical instruments. The method is based on the analogy between geometrical optics and classical mechanics and employs Lagrangians that separate in Cartesian coordinates. In addition, our method can be used to construct the index profiles of most previously known absolute optical instruments, as well as infinitely many different ones.

  7. Solute transport along preferential flow paths in unsaturated fractures

    USGS Publications Warehouse

    Su, G.W.; Geller, J.T.; Pruess, K.; Hunt, J.R.

    2001-01-01

    Laboratory experiments were conducted to study solute transport along preferential flow paths in unsaturated, inclined fractures. Qualitative aspects of solute transport were identified in a miscible dye tracer experiment conducted in a transparent replica of a natural granite fracture. Additional experiments were conducted to measure the breakthrough curves of a conservative tracer introduced into an established preferential flow path in two different fracture replicas and a rock-replica combination. The influence of gravity was investigated by varying fracture inclination. The relationship between the travel times of the solute and the relative influence of gravity was substantially affected by two modes of intermittent flow that occurred: the snapping rivulet and the pulsating blob modes. The measured travel times of the solute were evaluated with three transfer function models: the axial dispersion, the reactors-in-series, and the lognormal models. The three models described the solute travel times nearly equally well. A mechanistic model was also formulated to describe transport when the pulsating blob mode occurred which assumed blobs of water containing solute mixed with residual pools of water along the flow path.

  8. Sub-nanometer periodic nonlinearity error in absolute distance interferometers.

    PubMed

    Yang, Hongxing; Huang, Kaiqi; Hu, Pengcheng; Zhu, Pengfei; Tan, Jiubin; Fan, Zhigang

    2015-05-01

    Periodic nonlinearity which can result in error in nanometer scale has become a main problem limiting the absolute distance measurement accuracy. In order to eliminate this error, a new integrated interferometer with non-polarizing beam splitter is developed. This leads to disappearing of the frequency and/or polarization mixing. Furthermore, a strict requirement on the laser source polarization is highly reduced. By combining retro-reflector and angel prism, reference and measuring beams can be spatially separated, and therefore, their optical paths are not overlapped. So, the main cause of the periodic nonlinearity error, i.e., the frequency and/or polarization mixing and leakage of beam, is eliminated. Experimental results indicate that the periodic phase error is kept within 0.0018°. PMID:26026510

  9. Simple Model of a Rolling Water-Filled Bottle on an Inclined Ramp

    ERIC Educational Resources Information Center

    Lin, Shihao; Hu, Naiwen; Yao, Tianchen; Chu, Charles; Babb, Simona; Cohen, Jenna; Sangiovanni, Giana; Watt, Summer; Weisman, Danielle; Klep, James; Walecki, Wojciech J.; Walecki, Eve S.; Walecki, Peter S.

    2015-01-01

    We investigate a water-filled bottle rolling down an incline and ask the following question: is a rolling bottle better described by a model ignoring all internal motion where the bottle is approximated by a material point sliding down an incline, or is it better described by a rigid solid cylinder rolling down the incline without skidding? The…

  10. Deriving stellar inclination of slow rotators using stellar activity signal

    NASA Astrophysics Data System (ADS)

    Dumusque, Xavier

    2015-01-01

    Stellar inclination is an important parameter for many astrophysical studies. In the context of exoplanets, this allows us to derive the true obliquity of a system if the projected stellar spin-planetary orbit angle can measured via the Rossiter-Mclaughlin effect. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than 2-2.5 km.s-1. By using the new activity simulation SOAP 2.0 that can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit the activity variation of solar-type stars and derive their inclination. The case of the equator-on star HD189733 will be presented, as well as the case of Alpha Centauri B, which present an inclination of 45+9-19 degrees, implying that the earth-mass orbiting planet is not transiting if aligned with its host star. Other exemples will also demonstrate the power of the technique, that can infer a stellar inclination, even for slow rotators like Alpha Centauri B, that present a projected rotational velocity smaller than 1.15 km.s-1. In addition, the SOAP 2.0 simulation can be used to correct for the effect of activity when one major active region is dominating the RV signal. This could enhance the detection of small mass exoplanets orbiting slightly active stars.This project is funded by ETAEARTH (European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 313014), a transnational collaboration between European countries and the US (the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh) setup to optimize the synergy between space-and ground-based data whose scientific potential for the characterization of

  11. A Path to Discovery

    ERIC Educational Resources Information Center

    Stegemoller, William; Stegemoller, Rebecca

    2004-01-01

    The path taken and the turns made as a turtle traces a polygon are examined to discover an important theorem in geometry. A unique tool, the Angle Adder, is implemented in the investigation. (Contains 9 figures.)

  12. Tortuous path chemical preconcentrator

    DOEpatents

    Manginell, Ronald P.; Lewis, Patrick R.; Adkins, Douglas R.; Wheeler, David R.; Simonson, Robert J.

    2010-09-21

    A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.

  13. Absolute magnitudes of trans-neptunian objects

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.

    2015-10-01

    Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.

  14. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  15. Evaluating Status Change of Soil Potassium from Path Model

    PubMed Central

    He, Wenming; Chen, Fang

    2013-01-01

    The purpose of this study is to determine critical environmental parameters of soil K availability and to quantify those contributors by using a proposed path model. In this study, plot experiments were designed into different treatments, and soil samples were collected and further analyzed in laboratory to investigate soil properties influence on soil potassium forms (water soluble K, exchangeable K, non-exchangeable K). Furthermore, path analysis based on proposed path model was carried out to evaluate the relationship between potassium forms and soil properties. Research findings were achieved as followings. Firstly, key direct factors were soil S, ratio of sodium-potassium (Na/K), the chemical index of alteration (CIA), Soil Organic Matter in soil solution (SOM), Na and total nitrogen in soil solution (TN), and key indirect factors were Carbonate (CO3), Mg, pH, Na, S, and SOM. Secondly, path model can effectively determine direction and quantities of potassium status changes between Exchangeable potassium (eK), Non-exchangeable potassium (neK) and water-soluble potassium (wsK) under influences of specific environmental parameters. In reversible equilibrium state of , K balance state was inclined to be moved into β and χ directions in treatments of potassium shortage. However in reversible equilibrium of , K balance state was inclined to be moved into θ and λ directions in treatments of water shortage. Results showed that the proposed path model was able to quantitatively disclose moving direction of K status and quantify its equilibrium threshold. It provided a theoretical and practical basis for scientific and effective fertilization in agricultural plants growth. PMID:24204659

  16. Evaluation of absolute form measurements using a tilted-wave interferometer.

    PubMed

    Fortmeier, Ines; Stavridis, Manuel; Wiegmann, Axel; Schulz, Michael; Osten, Wolfgang; Elster, Clemens

    2016-02-22

    Tilted-wave interferometry is a promising measurement technique for the highly accurate measurement of aspheres and freeform surfaces. However, the interferometric fringe evaluation of the sub-apertures causes unknown patch offsets, which currently prevent this measurement technique from providing absolute measurements. Simple strategies, such as constructing differences of optical path length differences (OPDs) or ignoring the piston parameter, can diminish the accuracy resulting from the absolute form measurement. Additional information is needed instead; in this paper, the required accuracy of such information is explored in virtual experiments. Our simulation study reveals that, when one absolute OPD is known within a range of 500 nm, the accuracy of the final measurement result is significantly enhanced. PMID:26906998

  17. Advanced Communications Technology Satellite (ACTS) Used for Inclined Orbit Operations

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) is operated by the NASA Glenn Research Center at Lewis Field 24 hours a day, 7 days a week. ACTS, which was launched in September 1993, is in its 7th year of operations, far exceeding the system s planned 2 years of operations and 4 years of designed mission life. After 5 successful years of operating as a geostationary satellite, the spacecraft s North-South stationkeeping was discontinued in August 1998. The system is now operating in an inclined orbit that increases at a rate of 0.8 /yr. With only scarce fuel remaining, operating in this mode extends the usage of the still totally functional payload. Although tracking systems are now needed on the experimenter Earth stations, experiment operations have continued with very little disruption. This is the only known geosynchronous Ka-band (30/20 GHz) spot-beam satellite operating in an inclined orbit. The project began its transition from geostationary operations to inclined operations in August 1998. This did not interrupt operations and was transparent to the experimenters on the system. For the space segment, new daily procedures were implemented to maintain the pointing of the system s narrow 0.3 spot beams while the spacecraft drifts in the North-South direction. For the ground segment, modifications were designed, developed, and fielded for the three classes of experimenter Earth stations. With the next generation of commercial satellite systems still being developed, ACTS remains the only operational testbed for Ka-band geosynchronous satellite communications over the Western hemisphere. Since inclined orbit operations began, the ACTS experiments program has supported 43 investigations by industry, Government, and academic organizations, as well as four demonstrations. The project s goals for inclined-orbit operations now reflect a narrower focus in the types of experiments that will be done. In these days of "faster, better, cheaper," NASA is seeking

  18. Intermediate inclinations of type 2 Coronal-Line Forest AGN

    NASA Astrophysics Data System (ADS)

    Rose, Marvin; Elvis, Martin; Crenshaw, Michael; Glidden, Ana

    2015-07-01

    Coronal-Line Forest Active Galactic Nuclei (CLiF AGN) are remarkable in the sense that they have a rich spectrum of dozens of coronal emission lines (e.g. [Fe VII], [Fe X] and [Ne V]) in their spectra. Rose, Elvis & Tadhunter suggest that the inner obscuring torus wall is the most likely location of the coronal line region in CLiF AGN, and the unusual strength of the forbidden high-ionization lines is due to a specific AGN-torus inclination angle. Here, we test this suggestion using mid-IR colours (4.6-22 μm) from the Wide-Field Infrared Survey Explorer for the CLiF AGN. We use the Fischer et al. result that showed that as the AGN-torus inclination becomes more face on, the Spitzer 5.5-30 μm colours become bluer. We show that the [W2-W4] colours for the CLiF AGN (<[W2-W4]> = 5.92 ± 0.12) are intermediate between Sloan Digital Sky Survey (SDSS) type 1 (<[W2-W4]> = 5.22 ± 0.01) and type 2 AGN (<[W2-W4]> = 6.35 ± 0.03). This implies that the AGN-torus inclinations for the CLiF AGN are indeed intermediate, supporting the work of Rose, Elvis & Tadhunter. The confirmed relation between CLiF AGN and their viewing angle shows that CLiF AGN may be useful for our understanding of AGN unification.

  19. Collisionless encounters and the origin of the lunar inclination

    NASA Astrophysics Data System (ADS)

    Pahlevan, Kaveh; Morbidelli, Alessandro

    2015-11-01

    The Moon is generally thought to have formed from the debris ejected by the impact of a planet-sized object with the proto-Earth towards the end of planetary accretion. Models of the impact process predict that the lunar material was disaggregated into a circumplanetary disk and that lunar accretion subsequently placed the Moon in a near-equatorial orbit. Forward integration of the lunar orbit from this initial state predicts a modern inclination at least an order of magnitude smaller than the lunar value -- a long-standing discrepancy known as the lunar inclination problem. Here we show that the modern lunar orbit provides a sensitive record of gravitational interactions with Earth-crossing planetesimals that were not yet accreted at the time of the Moon-forming event. The currently observed lunar orbit can naturally be reproduced via interaction with a small quantity of mass (corresponding to 0.0075-0.015 Earth masses eventually accreted to the Earth) carried by a few bodies, consistent with the constraints and models of late accretion. Although the encounter process has a stochastic element, the observed value of the lunar inclination is among the most likely outcomes for a wide range of parameters. The excitation of the lunar orbit is most readily reproduced via collisionless encounters of planetesimals with the Earth-Moon system with strong dissipation of tidal energy on the early Earth. This mechanism obviates the need for previously proposed (but idealized) excitation mechanisms, places the Moon-forming event in the context of the formation of Earth, and constrains the pristineness of the dynamical state of the Earth-Moon system.

  20. Critical Heat Flux in Inclined Rectangular Narrow Gaps

    SciTech Connect

    Jeong J. Kim; Yong H. Kim; Seong J. Kim; Sang W. Noh; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

    2004-06-01

    In light of the TMI-2 accident, in which the reactor vessel lower head survived the attack by molten core material, the in-vessel retention strategy was suggested to benefit from cooling the debris through a gap between the lower head and the core material. The GAMMA 1D (Gap Apparatus Mitigating Melt Attack One Dimensional) tests were conducted to investigate the critical heat flux (CHF) in narrow gaps with varying surface orientations. The CHF in an inclined gap, especially in case of the downward-facing narrow gap, is dictated by bubble behavior because the departing bubbles are squeezed. The orientation angle affects the bubble layer and escape of the bubbles from the narrow gap. The test parameters include gap sizes of 1, 2, 5 and 10 mm and the open periphery, and the orientation angles range from the fully downward-facing (180o) to the vertical (90o) position. The 15 ×35 mm copper test section was electrically heated by the thin film resistor on the back. The heater assembly was installed to the tip of the rotating arm in the heated water pool at the atmospheric pressure. The bubble behavior was photographed utilizing a high-speed camera through the Pyrex glass spacer. It was observed that the CHF decreased as the surface inclination angle increased and as the gap size decreased in most of the cases. However, the opposing results were obtained at certain surface orientations and gap sizes. Transition angles, at which the CHF changed in a rapid slope, were also detected, which is consistent with the existing literature. A semi-empirical CHF correlation was developed for the inclined narrow rectangular channels through dimensional analysis. The correlation provides with best-estimate CHF values for realistically assessing the thermal margin to failure of the lower head during a severe accident involving relocation of the core material.

  1. MEASUREMENTS OF STELLAR INCLINATIONS FOR KEPLER PLANET CANDIDATES

    SciTech Connect

    Hirano, Teruyuki; Taruya, Atsushi; Suto, Yasushi; Sanchis-Ojeda, Roberto; Winn, Joshua N.; Takeda, Yoichi; Narita, Norio

    2012-09-01

    We present an investigation of spin-orbit angles for planetary system candidates reported by Kepler. By combining the rotational period P{sub s} inferred from the flux variation due to starspots and the projected rotational velocity Vsin I{sub s} and stellar radius obtained by a high-resolution spectroscopy, we attempt to estimate the inclination I{sub s} of the stellar spin axis with respect to the line of sight. For transiting planetary systems, in which planetary orbits are edge-on seen from us, the stellar inclination I{sub s} can be a useful indicator of a spin-orbit alignment/misalignment. We newly conducted spectroscopic observations with Subaru/HDS for 15 Kepler Object of Interest (KOI) systems, whose light curves show periodic flux variations. Detailed analyses of their light curves and spectra revealed that some of them are binaries, or the flux variations are too coherent to be caused by starspots, and consequently we could constrain stellar inclinations I{sub s} for eight systems. Among them, KOI-262 and 280 are in good agreement with I{sub s} 90 Degree-Sign suggesting a spin-orbit alignment, while at least one system, KOI-261, shows a possible spin-orbit misalignment. We also obtain a small I{sub s} for KOI-1463, but the transiting companion seems to be a star rather than a planet. The results for KOI-257, 269, 367, and 974 are ambiguous and can be explained with either misalignments or moderate differential rotation. Since our method can be applied to any system having starspots regardless of the planet size, future observations will allow for the expansion of the parameter space in which the spin-orbit relations are investigated.

  2. Collisionless encounters and the origin of the lunar inclination.

    PubMed

    Pahlevan, Kaveh; Morbidelli, Alessandro

    2015-11-26

    The Moon is generally thought to have formed from the debris ejected by the impact of a planet-sized object with the proto-Earth towards the end of planetary accretion. Models of the impact process predict that the lunar material was disaggregated into a circumplanetary disk and that lunar accretion subsequently placed the Moon in a near-equatorial orbit. Forward integration of the lunar orbit from this initial state predicts a modern inclination at least an order of magnitude smaller than the lunar value--a long-standing discrepancy known as the lunar inclination problem. Here we show that the modern lunar orbit provides a sensitive record of gravitational interactions with Earth-crossing planetesimals that were not yet accreted at the time of the Moon-forming event. The currently observed lunar orbit can naturally be reproduced via interaction with a small quantity of mass (corresponding to 0.0075-0.015 Earth masses eventually accreted to the Earth) carried by a few bodies, consistent with the constraints and models of late accretion. Although the encounter process has a stochastic element, the observed value of the lunar inclination is among the most likely outcomes for a wide range of parameters. The excitation of the lunar orbit is most readily reproduced via collisionless encounters of planetesimals with the Earth-Moon system with strong dissipation of tidal energy on the early Earth. This mechanism obviates the need for previously proposed (but idealized) excitation mechanisms, places the Moon-forming event in the context of the formation of Earth, and constrains the pristineness of the dynamical state of the Earth-Moon system. PMID:26607544

  3. Measurements of Stellar Inclinations for Kepler Planet Candidates

    NASA Astrophysics Data System (ADS)

    Hirano, Teruyuki; Sanchis-Ojeda, Roberto; Takeda, Yoichi; Narita, Norio; Winn, Joshua N.; Taruya, Atsushi; Suto, Yasushi

    2012-09-01

    We present an investigation of spin-orbit angles for planetary system candidates reported by Kepler. By combining the rotational period Ps inferred from the flux variation due to starspots and the projected rotational velocity Vsin Is and stellar radius obtained by a high-resolution spectroscopy, we attempt to estimate the inclination Is of the stellar spin axis with respect to the line of sight. For transiting planetary systems, in which planetary orbits are edge-on seen from us, the stellar inclination Is can be a useful indicator of a spin-orbit alignment/misalignment. We newly conducted spectroscopic observations with Subaru/HDS for 15 Kepler Object of Interest (KOI) systems, whose light curves show periodic flux variations. Detailed analyses of their light curves and spectra revealed that some of them are binaries, or the flux variations are too coherent to be caused by starspots, and consequently we could constrain stellar inclinations Is for eight systems. Among them, KOI-262 and 280 are in good agreement with Is = 90° suggesting a spin-orbit alignment, while at least one system, KOI-261, shows a possible spin-orbit misalignment. We also obtain a small Is for KOI-1463, but the transiting companion seems to be a star rather than a planet. The results for KOI-257, 269, 367, and 974 are ambiguous and can be explained with either misalignments or moderate differential rotation. Since our method can be applied to any system having starspots regardless of the planet size, future observations will allow for the expansion of the parameter space in which the spin-orbit relations are investigated.

  4. On the highly inclined vW leptokurtic asteroid families

    NASA Astrophysics Data System (ADS)

    Carruba, V.; Domingos, R. C.; Aljbaae, S.; Huaman, M.

    2016-08-01

    vW leptokurtic asteroid families are families for which the distribution of the normal component of the terminal ejection velocity field vW is characterized by a positive value of the γ2 Pearson kurtosis, i.e., they have a distribution with a more concentrated peak and larger tails than the Gaussian one. Currently, eight families are known to have γ2(vW) > 0.25. Among these, three are highly inclined asteroid families, the Hansa, Barcelona, and Gallia families. As observed for the case of the Astrid family, the leptokurtic inclination distribution seems to be caused by the interaction of these families with node secular resonances. In particular, the Hansa and Gallia family are crossed by the s - sV resonance with Vesta, that significantly alters the inclination of some of their members. In this work we use the time evolution of γ2(vW) for simulated families under the gravitational influence of all planets and the three most massive bodies in the main belt to assess the dynamical importance (or lack of) node secular resonances with Ceres, Vesta, and Pallas for the considered families, and to obtain independent constraints on the family ages. While secular resonances with massive bodies in the main belt do not significantly affect the dynamical evolution of the Barcelona family, they significantly increase the γ2(vW) values of the simulated Hansa and Gallia families. Current values of the γ2(vW) for the Gallia family are reached over the estimated family age only if secular resonances with Vesta are accounted for.

  5. Mechanics and energetics of incline walking with robotic ankle exoskeletons.

    PubMed

    Sawicki, Gregory S; Ferris, Daniel P

    2009-01-01

    We examined healthy human subjects wearing robotic ankle exoskeletons to study the metabolic cost of ankle muscle-tendon work during uphill walking. The exoskeletons were powered by artificial pneumatic muscles and controlled by the user's soleus electromyography. We hypothesized that as the demand for net positive external mechanical work increased with surface gradient, the positive work delivered by ankle exoskeletons would produce greater reductions in users' metabolic cost. Nine human subjects walked at 1.25 m s(-1) on gradients of 0%, 5%, 10% and 15%. We compared rates of O(2) consumption and CO(2) production, exoskeleton mechanics, joint kinematics, and surface electromyography between unpowered and powered exoskeleton conditions. On steeper inclines, ankle exoskeletons delivered more average positive mechanical power (P<0.0001; +0.37+/-0.03 W kg(-1) at 15% grade and +0.23+/-0.02 W kg(-1) at 0% grade) and reduced subjects' net metabolic power by more (P<0.0001; -0.98+/-0.12 W kg(-1) at 15% grade and -0.45+/-0.07 W kg(-1) at 0% grade). Soleus muscle activity was reduced by 16-25% when wearing powered exoskeletons on all surface gradients (P<0.0008). The ;apparent efficiency' of ankle muscle-tendon mechanical work decreased from 0.53 on level ground to 0.38 on 15% grade. This suggests a decreased contribution from previously stored Achilles' tendon elastic energy and an increased contribution from actively shortening ankle plantar flexor muscle fibers to ankle muscle-tendon positive work during walking on steep uphill inclines. Although exoskeletons delivered 61% more mechanical work at the ankle up a 15% grade compared with level walking, relative reductions in net metabolic power were similar across surface gradients (10-13%). These results suggest a shift in the relative distribution of mechanical power output to more proximal (knee and hip) joints during inclined walking. PMID:19088208

  6. Sampling diffusive transition paths

    SciTech Connect

    F. Miller III, Thomas; Predescu, Cristian

    2006-10-12

    We address the problem of sampling double-ended diffusive paths. The ensemble of paths is expressed using a symmetric version of the Onsager-Machlup formula, which only requires evaluation of the force field and which, upon direct time discretization, gives rise to a symmetric integrator that is accurate to second order. Efficiently sampling this ensemble requires avoiding the well-known stiffness problem associated with sampling infinitesimal Brownian increments of the path, as well as a different type of stiffness associated with sampling the coarse features of long paths. The fine-features sampling stiffness is eliminated with the use of the fast sampling algorithm (FSA), and the coarse-feature sampling stiffness is avoided by introducing the sliding and sampling (S&S) algorithm. A key feature of the S&S algorithm is that it enables massively parallel computers to sample diffusive trajectories that are long in time. We use the algorithm to sample the transition path ensemble for the structural interconversion of the 38-atom Lennard-Jones cluster at low temperature.

  7. Sampling diffusive transition paths.

    PubMed

    Miller, Thomas F; Predescu, Cristian

    2007-04-14

    The authors address the problem of sampling double-ended diffusive paths. The ensemble of paths is expressed using a symmetric version of the Onsager-Machlup formula, which only requires evaluation of the force field and which, upon direct time discretization, gives rise to a symmetric integrator that is accurate to second order. Efficiently sampling this ensemble requires avoiding the well-known stiffness problem associated with the sampling of infinitesimal Brownian increments of the path, as well as a different type of stiffness associated with the sampling of the coarse features of long paths. The fine-feature sampling stiffness is eliminated with the use of the fast sampling algorithm, and the coarse-feature sampling stiffness is avoided by introducing the sliding and sampling (S&S) algorithm. A key feature of the S&S algorithm is that it enables massively parallel computers to sample diffusive trajectories that are long in time. The authors use the algorithm to sample the transition path ensemble for the structural interconversion of the 38-atom Lennard-Jones cluster at low temperature. PMID:17444696

  8. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed. PMID:19831037

  9. Flow of Slurry in the Inclined Closed Channel

    NASA Astrophysics Data System (ADS)

    Ashrafi Khorasani, Nariman; Piroozram, Parastoo

    2015-11-01

    The flow of slurry in a closed inclined circular channel is examined. The viscoelastic fluid is modeled as a derivative of typical Oldroyd-B relation of stress and velocity gradient. First, gravity is considered as the driving force for the fluid flow to simulate the existing sewage system. The complete flow field is evaluated for this case. Next, a pressure gradient is introduced to observe its effects on the flow. Velocity profile as well as stress distributions are given for different scenarios of the nonlinear fluid flowing in a closed channel with and without pressure gradient.

  10. Nonlocal effects in sand flows on an inclined plane.

    PubMed

    Malloggi, F; Andreotti, B; Clément, E

    2015-05-01

    The flow of sand on a rough inclined plane is investigated experimentally. We directly show that a jammed layer of grains spontaneously forms below the avalanche. Its properties and its relation with the rheology of the flowing layer of grains are presented and discussed. In a second part, we study the dynamics of erosion and deposition solitary waves in the domain where they are transversally stable. We characterize their shapes and velocity profiles. We relate their translational velocity to the stopping height and to the mass trapped in the avalanche. Finally, we use the velocity profile to get insight into the rheology very close to the jamming limit. PMID:26066168

  11. Trigonometric series representations of the orbital inclination function.

    NASA Astrophysics Data System (ADS)

    Awad, Mervat El-Sayed

    1986-08-01

    In this paper, new trigonometric series representations of the orbital inclination function Flmp(i) in multiples of cosines or sines are established for all possible values of l, m, and p. For such representations, the literal analytical expressions and the recurrence formulae satisfied by their coefficients are established. Moreover, an economic algorithm for the table formulation of these coefficients for the possible values of l, m, and p is given. Finally, numerical examples of the representations for l = 2(1)4; m = 0(1)l; p = 0(1)l are also included.

  12. The flow around an inclined flat plate of finite width

    NASA Astrophysics Data System (ADS)

    Narumi, A.; Kato, S.; Terada, K.; Izumi, R.; Yanase, T.

    1985-07-01

    The flow around an inclined finite width plate was experimentally studied using oil film and oil point techniques. At the front surface, leading edge separation does not occur and the flow becomes more laminar than in the case with angle of incidence zero, though the flow yaws towards the side edge and separates from it. The flow at the back surface is characterized by a side edge vortex, a flow separated near the side edge of the leading edge, and a flow separated at the middle of the leading edge. The characteristics of these flows are discussed.

  13. On the Error Sources in Absolute Individual Antenna Calibrations

    NASA Astrophysics Data System (ADS)

    Aerts, Wim; Baire, Quentin; Bilich, Andria; Bruyninx, Carine; Legrand, Juliette

    2013-04-01

    field) multi path errors, both during calibration and later on at the station, absolute sub-millimeter positioning with GPS is not (yet) possible. References [1] G. Wübbena, M. Schmitz, G. Boettcher, C. Schumann, "Absolute GNSS Antenna Calibration with a Robot: Repeatability of Phase Variations, Calibration of GLONASS and Determination of Carrier-to-Noise Pattern", International GNSS Service: Analysis Center workshop, 8-12 May 2006, Darmstadt, Germany. [2] P. Zeimetz, H. Kuhlmann, "On the Accuracy of Absolute GNSS Antenna Calibration and the Conception of a New Anechoic Chamber", FIG Working Week 2008, 14-19 June 2008, Stockholm, Sweden. [3] P. Zeimetz, H. Kuhlmann, L. Wanninger, V. Frevert, S. Schön and K. Strauch, "Ringversuch 2009", 7th GNSS-Antennen-Workshop, 19-20 March 2009, Dresden, Germany.

  14. Paths correlation matrix.

    PubMed

    Qian, Weixian; Zhou, Xiaojun; Lu, Yingcheng; Xu, Jiang

    2015-09-15

    Both the Jones and Mueller matrices encounter difficulties when physically modeling mixed materials or rough surfaces due to the complexity of light-matter interactions. To address these issues, we derived a matrix called the paths correlation matrix (PCM), which is a probabilistic mixture of Jones matrices of every light propagation path. Because PCM is related to actual light propagation paths, it is well suited for physical modeling. Experiments were performed, and the reflection PCM of a mixture of polypropylene and graphite was measured. The PCM of the mixed sample was accurately decomposed into pure polypropylene's single reflection, pure graphite's single reflection, and depolarization caused by multiple reflections, which is consistent with the theoretical derivation. Reflection parameters of rough surface can be calculated from PCM decomposition, and the results fit well with the theoretical calculations provided by the Fresnel equations. These theoretical and experimental analyses verify that PCM is an efficient way to physically model light-matter interactions. PMID:26371930

  15. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  16. Climate Catastrophe, True Polar Wander, and Inclination Shallowing in the Ediacaran Period

    NASA Astrophysics Data System (ADS)

    Raub, T. D.; Evans, D. A.

    2004-12-01

    Syntheses of global paleomagnetic data for the Ediacaran Period are difficult to reconcile with standard, uniformitarian plate-tectonic interpretations. Instead, they appear to support a substantial component of true polar wandering (TPW) contributing to each continent's apparent polar wander (APW) path. Construction of magnetostratigraphy-based APWP's has been undertaken in order to quantify the timing and magnitude of putative true polar wander events. If verified, large-scale, multi-episode TPW would establish a second axisymmetric reference frame, about Earth's equatorial minimum inertial axis, suitable for APWP superposition and longitude-controlled paleogeographic reconstruction. In addition to TPW, the terminal Proterozoic interval witnessed repeated episodes of low paleolatitude glaciation. High-resolution magnetostratigraphy of South Australia's Nuccaleena cap dolostone documents three correlatable geomagnetic reversals intimately associated with the solid cap facies. This implies a conservative estimate of 100's kyr duration for postglacial return to "normal" sedimentologic and ocean geochemical regimes. While confirming a low paleolatitude for Marinoan glacial deposits, paleomagnetic inclinations in the Nuccaleena cap dolostone are steeper than those from the underlying, glaciogenic Elatina Formation. Whether due to paleomagnetic compaction shallowing; to geomagnetic low-intensity or non-dipole field contributions; or to rapid APW, demonstration of similar behavior in correlative units across Australia could offer hope of resolving several paleogeographic and geodynamic enigmas that characterize the Ediacaran Period.

  17. Mobile transporter path planning

    NASA Technical Reports Server (NTRS)

    Baffes, Paul; Wang, Lui

    1990-01-01

    The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research.

  18. Embedded north-seeker for automatic absolute magnetic DI measurements

    NASA Astrophysics Data System (ADS)

    Gonsette, Alexandre; Rasson, Jean

    2014-05-01

    In magnetic observatory Earth magnetic field is recorded with a resolution of 0.1nT for 1min sampling (new standards impose 1pT for 1s sampling). The method universally adopted for measuring it is a combination of three instruments. Vectorial magnetometer (variometer) records variations of the three components around a reference value or a baseline. A proton or an overhauser magnetometer is an absolute instrument able to measure the modulus of the field and used to determine the F component baseline of the variometer. The declination and inclination baselines require a manual procedure to be computed. An operator manipulates a non-magnetic theodolite (also called a DIFlux) to measure the D and I angles in different configurations with a resolution of a few arcsec. The AutoDIF is a non-magnetic automatic DIFlux using the same protocol as the manual procedure. The declination defined according to the true north is determined by means of a target pointing system. Even if the technique is fast and accurate, it becomes problematic in case of unmanned deployment. In particular the area between the target and the DIFlux is out of control. Snow storm, fog, vegetation or condensation on windows are examples of perturbation preventing for finding the target. It is obvious in case of (future) seafloor observatories. A FOG based north-seeker has been implemented and mounted on the AutoDIF. The first results using a low cost gyro don't meet the Intermagnet specifications yet but are however hopeful. A 0.1° standard deviation has been reached and statistically reduced to 0.01° after less than two days in laboratory. The magnetic disturbance of the sensor is taken into account and compensated by the measurement protocol.

  19. Electromagnetic torques, precession and evolution of magnetic inclination of pulsars

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2015-07-01

    We present analytic calculations of the electromagnetic torques acting on a magnetic neutron star rotating in vacuum, including near-zone torques associated with the inertia of dipole and quadrupole magnetic fields. We incorporate these torques into the rotational dynamics of a rigid-body neutron star, and show that the effects of the inertial torque can be understood as a modification of the moment of inertia tensor of the star. We apply our rotational dynamics equation to the Crab pulsar, including intrinsic distortions of the star and various electromagnetic torques, to investigate the possibility that the counter-alignment of the magnetic inclination angle, as suggested by recent observations, could be explained by pulsar precession. We find that if the effective principal axis of the pulsar is nearly aligned with either the magnetic dipole axis or the rotation axis, then precession may account for the observed counter-alignment over decade time-scales. Over the spindown time-scale of the pulsar, the magnetic inclination angle always decreases.

  20. A comparison of coronal and interplanetary current sheet inclinations

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.; Burlaga, L. F.; Hundhausen, A. J.

    1983-01-01

    The HAO white light K-coronameter observations show that the inclination of the heliospheric current sheet at the base of the corona can be both large (nearly vertical with respect to the solar equator) or small during Cararington rotations 1660 - 1666 and even on a single solar rotation. Voyager 1 and 2 magnetic field observations of crossing of the heliospheric current sheet at distances from the Sun of 1.4 and 2.8 AU. Two cases are considered, one in which the corresponding coronameter data indicate a nearly vertical (north-south) current sheet and another in which a nearly horizontal, near equatorial current sheet is indicated. For the crossings of the vertical current sheet, a variance analysis based on hour averages of the magnetic field data gave a minimum variance direction consistent with a steep inclination. The horizontal current sheet was observed by Voyager as a region of mixed polarity and low speeds lasting several days, consistent with multiple crossings of a horizontal but irregular and fluctuating current sheet at 1.4 AU. However, variance analysis of individual current sheet crossings in this interval using 1.92 see averages did not give minimum variance directions consistent with a horizontal current sheet.

  1. a Modified Method for Image Triangulation Using Inclined Angles

    NASA Astrophysics Data System (ADS)

    Alsadik, Bashar

    2016-06-01

    The ongoing technical improvements in photogrammetry, Geomatics, computer vision (CV), and robotics offer new possibilities for many applications requiring efficient acquisition of three-dimensional data. Image orientation is one of these important techniques in many applications like mapping, precise measurements, 3D modeling and navigation. Image orientation comprises three main techniques of resection, intersection (triangulation) and relative orientation, which are conventionally solved by collinearity equations or by using projection and fundamental matrices. However, different problems still exist in the state - of -the -art of image orientation because of the nonlinearity and the sensitivity to proper initialization and spatial distribution of the points. In this research, a modified method is presented to solve the triangulation problem using inclined angles derived from the measured image coordinates and based on spherical trigonometry rules and vector geometry. The developed procedure shows promising results compared to collinearity approach and to converge to the global minimum even when starting from far approximations. This is based on the strong geometric constraint offered by the inclined angles that are enclosed between the object points and the camera stations. Numerical evaluations with perspective and panoramic images are presented and compared with the conventional solution of collinearity equations. The results show the efficiency of the developed model and the convergence of the solution to global minimum even with improper starting values.

  2. Exhumation by gravitational sliding up an inclined plane

    NASA Astrophysics Data System (ADS)

    Podladchikov, Yury; Schmalholz, Stefan; Burg, Jean-Pierre

    2015-04-01

    Gravity causes sliding down an inclined plane if pressure is near lithostatic. If metamorphic pressures are lithostatic pressures, the approximation is inconsistent with pressure-temperature exhumation histories of thrust nappes stacked during compression to form the thickened crust of mountain belts. Overthickened mountain roots and foreland basin-type sedimentation accompanying the downward movement component of the Moho require significant non-lithostatic pressure perturbations within the mountain belts. Relaxation of the subsequent pressure gradients can be achieved by nappe-like thrusting up an inclined plane recording near isothermal decompression and carrying young sediments to high altitudes. We present results of fully dynamic numerical modelling documenting feasibility of this process. Neither thrusting, nor large weakness zones nor S-point-type boundary conditions are kinematically prescribed in our models. Thrusting emerges spontaneously as an instability, strain localization process that may follow preexisting lithological layering or thermal gradients and able to form new zones of weakness by shear heating mechanism. The non-prescribed nature of our modeled deformation modes makes them feasible, even probable as a leading response to continental shortening. In that case, non lithostatic pressure 'cycle' is an alternative or a complement to the classical Wilson cycle invoked alone to explain elevated occurrences of deep-water sediments.

  3. Dissipative descent: rocking and rolling down an incline

    NASA Astrophysics Data System (ADS)

    Balmforth, N. J.; Bush, J. W. M.; Vener, D.; Young, W. R.

    We consider the dynamics of a hollow cylindrical shell that is filled with viscous fluid and another, nested solid cylinder, and allowed to roll down an inclined plane. A mathematical model is compared to simple experiments. Two types of behaviour are observed experimentally: on steeper slopes, the device accelerates; on shallower inclines, the cylinders rock and roll unsteadily downhill, with a speed that is constant on average. The theory also predicts runaway and unsteady rolling motions. For the rolling solutions, however, the inner cylinder cannot be suspended in the fluid by the motion of the outer cylinder, and instead falls inexorably toward the outer cylinder. Whilst only occurs after an infinite time, the system slows progressively as the gap between the cylinders narrows, owing to heightened viscous dissipation. Such a deceleration is not observed in the experiments, suggesting that some mechanism limits the approach to contact. Coating the surface of the inner cylinder with sandpaper of different grades changes the rolling speed, consistent with the notion that surface roughness is responsible for limiting the acceleration.

  4. Visualization of Boiling Phenomena in Inclined Rectangular Gap

    SciTech Connect

    J. L. Rempe

    2005-05-01

    An experimental study was performed to investigate the pool boiling critical heat flux (CHF) in one-dimensional inclined rectangular channels by changing the orientation of a copper test heater assembly. In a pool of saturated water under the atmospheric pressure, the test parameters include the gap sizes of 1, 2, 5, and 10 mm, and the surface orientation angles from the downward-facing position (1800) to the vertical position (90º), respectively. Tests were conducted on the basis of the visualization of boiling phenomena in the narrowly confined channel and open periphery utilizing a high-speed digital camera. To prevent the heat loss from the water pool and copper test heater, a state-of-the-art vacuum pumping technique was introduced. It was observed that the CHF generally decreases as the surface inclination angle increases and as the gap size decreases. In the downward-facing position (180o), however, the vapor movement was enhanced by the gap structure, which produced the opposing result, say, the CHF increases as the gap size decreases. Phenomenological characteristics regarding the interfacial instability of vapor layer were addressed in terms of visualization approaching the CHF. It was found that there exists a transition angle, around which the CHF changes with a rapid slope.

  5. Resolving Vega and the Inclination Controversy with CHARA/MIRC

    NASA Astrophysics Data System (ADS)

    Monnier, J. D.; Che, Xiao; Zhao, Ming; Ekström, S.; Maestro, V.; Aufdenberg, Jason; Baron, F.; Georgy, C.; Kraus, S.; McAlister, H.; Pedretti, E.; Ridgway, S.; Sturmann, J.; Sturmann, L.; ten Brummelaar, T.; Thureau, N.; Turner, N.; Tuthill, P. G.

    2012-12-01

    Optical and infrared interferometers definitively established that the photometric standard Vega (=α Lyrae) is a rapidly rotating star viewed nearly pole-on. Recent independent spectroscopic analyses could not reconcile the inferred inclination angle with the observed line profiles, preferring a larger inclination. In order to resolve this controversy, we observed Vega using the six-beam Michigan Infrared Combiner on the Center for High Angular Resolution Astronomy Array. With our greater angular resolution and dense (u, v)-coverage, we find that Vega is rotating less rapidly and with a smaller gravity darkening coefficient than previous interferometric results. Our models are compatible with low photospheric macroturbulence and are also consistent with the possible rotational period of ~0.71 days recently reported based on magnetic field observations. Our updated evolutionary analysis explicitly incorporates rapid rotation, finding Vega to have a mass of 2.15+0.10 - 0.15 M ⊙ and an age 700-75 + 150 Myr, substantially older than previous estimates with errors dominated by lingering metallicity uncertainties (Z = 0.006+0.003 - 0.002).

  6. Do liquid drops roll or slide on inclined surfaces?

    PubMed

    Thampi, Sumesh P; Adhikari, Ronojoy; Govindarajan, Rama

    2013-03-12

    We study the motion of a two-dimensional droplet on an inclined surface, under the action of gravity, using a diffuse interface model which allows for arbitrary equilibrium contact angles. The kinematics of motion is analyzed by decomposing the gradient of the velocity inside the droplet into a shear and a residual flow. This decomposition helps in distinguishing sliding versus rolling motion of the drop. Our detailed study confirms intuition, in that rolling motion dominates as the droplet shape approaches a circle, and the viscosity contrast between the droplet and the ambient fluid becomes large. As a consequence of kinematics, the amount of rotation in a general droplet shape follows a universal curve characterized by geometry, and independent of Bond number, surface inclination and equilibrium contact angle, but determined by the slip length and viscosity contrast. Our results open the way toward a rational design of droplet-surface properties, both when rolling motion is desirable (as in self-cleaning hydrophobic droplets) and when it must be prevented (as in insecticide sprays on leaves). PMID:23414059

  7. On the high inclination KBOs common dynamical formation

    NASA Astrophysics Data System (ADS)

    De Oliveira Brasil, Pedro Ivo I.; Gomes, Rodney S.; Nesvorny, David

    2014-11-01

    The Kuiper belt is a dynamically intriguing region. Different "classes" of objects can be defined, according to their orbital properties. These are: the classic belt (with the subclasses of cold & hot objects), resonant objects, scattered disk and extended scattered disk. In this work, we seek to investigate possible common origins, during the orbital conformation of the giant planets, for the formation of classes of objects with moderate or high inclination. Interesting results were obtained for the hot objects of the Kuiper belt and the objects belonging to the extended scattered disk. The general mechanism found for the formation of these objects can be summarized as: (i) scattering phase due to the interaction with the giant planets, during the LHB; (ii) capture into mean motion resonances (MMR) with Neptune; (iii) capture into Kozai resonance/mode; (iv) escape FROM both resonances into a mode known as "hibernation mode", in which the object has low eccentricity and high inclination; (v) fossilization in an orbit outside the resonant semi-major axis due to residual migration of Neptune. The results show good consistency between known objects with the model of dynamical formation.

  8. Online measurement system for the surface inclination of metal workpieces

    NASA Astrophysics Data System (ADS)

    Yin, Peng; Sun, Changku; Wang, Peng; Yang, Qian

    2013-12-01

    The online measurement of the metal surfaces' parameters plays an important role in many industrial fields. Because the surfaces of the machined metal pieces have the characteristics of strong reflection and high possibilities of scattered disturbing irradiation points, this paper designs an online measurement system based on the measurement principles of linear structured light to detect whether the parameters of the machined metal surfaces' height difference and inclination fulfill the compliance requirements, in which the grayscale gravity algorithm is applied to extract the sub-pixel coordinates of the center of laser, the least squares method is employed to fit the data and the Pauta criterion is utilized to remove the spurious points. The repeat accuracy of this system has been tested. The experimental results prove that the precision of inclination is 0.046° RMS under the speed of 40mm/sec, and the precision of height difference is 0.072mm RMS, which meets the design expectations. Hence, this system can be applied to online industrial detection of high speed and high precision.

  9. Three-dimensional, transient natural convection in inclined wellbores

    SciTech Connect

    McEligot, D.M. . Oceanic Div.); Denbow, D.A. ); Murphy, H.D. )

    1990-01-01

    The occurrence of natural conduction in a wellbore can affect geothermal gradient measurements and heat flow estimates. In the Hot Dry Rock geothermal concept, the wellbores are purposely inclined in the deep regions to enhance heat production. To simulate natural convection flow patterns in directionally drilled wellbores, experiments and analyses were conducted for a circular tube with length to diameter (L/D) ratio of 36 at angles of 0{degrees}, 20{degrees}, and 35{degrees} from the vertical. The tube was heated at the bottom and cooled at the top, and the insulation was adjusted so that approximately one- to two-thirds of the power dissipated was transferred through the tube wall to the surroundings. An aqueous solution of polyvinyl alcohol was employed as the working fluid in order to obtain low Rayleigh numbers corresponding to conditions in geothermal wellbores. Temperature distributions were measured for the three orientations and for several heating rates to demonstrate the effects of tube angle and Rayleigh number. Comparison with measurements showed good agreement of the predicted temperature levels for the maximum inclination and slightly poorer agreement for the other limit, a vertical tube. 50 refs., 9 figs.

  10. Advanced Communications Technology Satellite Now Operating in an Inclined Orbit

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.

    1999-01-01

    The Advanced Communications Technology Satellite (ACTS) system has been modified to support operation in an inclined orbit that is virtually transparent to users, and plans are to continue this final phase of its operation through September 2000. The next 2 years of ACTS will provide a new opportunity for using the technologies that this system brought online over 5 years ago and that are still being used to resolve the technical issues that face NASA and the satellite industry in the area of seamless networking and interoperability with terrestrial systems. New goals for ACTS have been defined that align the program with recent changes in NASA and industry. ACTS will be used as a testbed to: Show how NASA and other Government agencies can use commercial systems for 1. future support of their operations Test, characterize, and resolve technical issues in using advanced communications 2. protocols such as asynchronous transfer mode (ATM) and transmission control protocol/Internet protocol (TCP/IP) over long latency links as found when interoperating satellites with terrestrial systems Evaluate narrow-spot-beam Ka-band satellite operation in an inclined orbit 3. Verify Ka-band satellite technologies since no other Ka-band system is yet 4. available in the United States

  11. Recovering Grain-Boundary Inclination Parameters through Oblique Double Sectioning

    NASA Astrophysics Data System (ADS)

    Homer, E. R.; Adams, B. L.; Wagoner, R. H.

    2007-07-01

    A method for the retrieval of grain-boundary inclination parameters of the grain-boundary character distribution (GBCD) by oblique double sectioning (ODS) is proposed. In this hybrid approach, grain-boundary inclination parameters are directly measured by double sectioning, while a statistically reliable sampling of the microstructure is achieved by oblique sectioning. The solution to the fundamental equations is posed in a manner similar to the recovery of the orientation distributions from sets of incomplete pole figures, using classical Fourier representations of the distribution functions. The ODS is validated by and compared to the L A /S V stereology through simulations and experimental implementation in a sample of 439 stainless steel. Simulations show that the grain-boundary normal distributions recovered by ODS and stereology are comparable, giving errors on the order of 10-2. Experimental implementation of ODS and the L A /S V stereology in alloy 439 stainless steel demonstrate additional practical limitations of the ODS methodology when applied to materials of large or uneven grain size.

  12. Predictive Simulation Generates Human Adaptations during Loaded and Inclined Walking

    PubMed Central

    Hicks, Jennifer L.; Delp, Scott L.

    2015-01-01

    Predictive simulation is a powerful approach for analyzing human locomotion. Unlike techniques that track experimental data, predictive simulations synthesize gaits by minimizing a high-level objective such as metabolic energy expenditure while satisfying task requirements like achieving a target velocity. The fidelity of predictive gait simulations has only been systematically evaluated for locomotion data on flat ground. In this study, we construct a predictive simulation framework based on energy minimization and use it to generate normal walking, along with walking with a range of carried loads and up a range of inclines. The simulation is muscle-driven and includes controllers based on muscle force and stretch reflexes and contact state of the legs. We demonstrate how human-like locomotor strategies emerge from adapting the model to a range of environmental changes. Our simulation dynamics not only show good agreement with experimental data for normal walking on flat ground (92% of joint angle trajectories and 78% of joint torque trajectories lie within 1 standard deviation of experimental data), but also reproduce many of the salient changes in joint angles, joint moments, muscle coordination, and metabolic energy expenditure observed in experimental studies of loaded and inclined walking. PMID:25830913

  13. Absolute isotopic abundances of TI in meteorites

    NASA Astrophysics Data System (ADS)

    Niederer, F. R.; Papanastassiou, D. A.; Wasserburg, G. J.

    1985-03-01

    The absolute isotope abundance of Ti has been determined in Ca-Al-rich inclusions from the Allende and Leoville meteorites and in samples of whole meteorites. The absolute Ti isotope abundances differ by a significant mass dependent isotope fractionation transformation from the previously reported abundances, which were normalized for fractionation using 46Ti/48Ti. Therefore, the absolute compositions define distinct nucleosynthetic components from those previously identified or reflect the existence of significant mass dependent isotope fractionation in nature. The authors provide a general formalism for determining the possible isotope compositions of the exotic Ti from the measured composition, for different values of isotope fractionation in nature and for different mixing ratios of the exotic and normal components.

  14. Molecular iodine absolute frequencies. Final report

    SciTech Connect

    Sansonetti, C.J.

    1990-06-25

    Fifty specified lines of {sup 127}I{sub 2} were studied by Doppler-free frequency modulation spectroscopy. For each line the classification of the molecular transition was determined, hyperfine components were identified, and one well-resolved component was selected for precise determination of its absolute frequency. In 3 cases, a nearby alternate line was selected for measurement because no well-resolved component was found for the specified line. Absolute frequency determinations were made with an estimated uncertainty of 1.1 MHz by locking a dye laser to the selected hyperfine component and measuring its wave number with a high-precision Fabry-Perot wavemeter. For each line results of the absolute measurement, the line classification, and a Doppler-free spectrum are given.

  15. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record PMID:26478959

  16. Absolute calibration in vivo measurement systems

    SciTech Connect

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

  17. Four vortices on doubly periodic paths

    NASA Astrophysics Data System (ADS)

    Rott, Nicholas

    1994-02-01

    Plane vortex configurations in ideal flow are considered for which the total ``mass'' of the vortex strengths, their ``moments,'' and their ``polar moments of inertia'' all vanish. These properties are conserved for all times. The simplest nontrivial realization of such a configuration requires four vortices. For this case, which belongs to the more extended family of four-vortex problems that are known to be integrable [Phys. Fluids 31, 2796 (1989); Phys. Fluids A 2, 1477 (1990)], some simple closed-form results are given. The analysis shows that the paths are periodic in a ``configuration plane'' moving with the vortices as well as in the absolute fluid plane. A ``winding number'' is determined from the analysis, which gives the ratio of the two periods. Patterns of the vortex paths are determined by a program based on the step-by-step integration of the equations of motion, which is—beyond a certain level of the analysis—still the more practical method of solution. Results showing the typical behavior of the motion paths for different winding numbers are presented.

  18. Shear-Sensitive Liquid Crystal Coating Method: Surface-Inclination Effects on Shear Vector Measurements

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.; Wilder, Michael C.; Nixon, David (Technical Monitor)

    1998-01-01

    The shear-sensitive liquid crystal coating (SSLCC) method is an image-based technique for both visualizing dynamic surface-flow phenomena, such as transition and separation, and for measuring the continuous shear-stress vector distribution acting on an aerodynamic surface. Under proper lighting and viewing conditions (discussed below), the coating changes color in response to an applied aerodynamic shear. This color-change response is continuous and reversible, with a response time of milliseconds, and is a function of both the shear magnitude and the shear vector orientation relative to the observer. The liquid crystal phase of matter is a weakly-ordered, viscous, non-Newtonian fluid state that exists between the nonuniform liquid phase and the ordered solid phase of certain organic compounds. Cholesteric liquid crystal compounds possess a helical molecular arrangement that selectively scatters white light, incident along the helical axis, as a three-dimensional spectrum. This property is linked to the helical pitch length, which is within the range of wavelengths in the visible spectrum. The pitch length, and hence the wavelength of the scattered light, is influenced by shear stress normal to the helical axis. This unique optical property produces a measurable color change in response to an applied shearing force. The full-surface shear stress vector measurement method, developed at NASA-Ames, is schematically illustrated. As with the visualization method, the coated test surface is illuminated from the normal direction with white light and the camera is positioned at an above-plane view angle of approximately 30 deg. Experiments have been initiated at NASA Ames to begin the process of quantifying surface-inclination (surface-curvature) effects on shear vector measurement accuracy. In preliminary experiments, surface-inclination angles theta(sub x), theta(sub y) of 0, +/-5, +/-10, and +/-15 deg were employed. In this arrangement, white-light illumination was

  19. Coherence-path duality relations for N paths

    NASA Astrophysics Data System (ADS)

    Hillery, Mark; Bagan, Emilio; Bergou, Janos; Cottrell, Seth

    2016-05-01

    For an interferometer with two paths, there is a relation between the information about which path the particle took and the visibility of the interference pattern at the output. The more path information we have, the smaller the visibility, and vice versa. We generalize this relation to a multi-path interferometer, and we substitute two recently defined measures of quantum coherence for the visibility, which results in two duality relations. The path information is provided by attaching a detector to each path. In the first relation, which uses an l1 measure of coherence, the path information is obtained by applying the minimum-error state discrimination procedure to the detector states. In the second, which employs an entropic measure of coherence, the path information is the mutual information between the detector states and the result of measuring them. Both approaches are quantitative versions of complementarity for N-path interferometers. Support provided by the John Templeton Foundation.

  20. Precise Measurement of the Absolute Fluorescence Yield

    NASA Astrophysics Data System (ADS)

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2011-09-01

    We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.

  1. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed. PMID:26022836

  2. Path Following in the Exact Penalty Method of Convex Programming

    PubMed Central

    Zhou, Hua; Lange, Kenneth

    2015-01-01

    Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value. PMID:26366044

  3. Following the Path

    ERIC Educational Resources Information Center

    Rodia, Becky

    2004-01-01

    This article profiles Diane Stanley, an author and illustrator of children's books. Although she was studying to be a medical illustrator in graduate school, Stanley's path changed when she got married and had children. As she was raising her children, she became increasingly enamored of the colorful children's books she would check out of the…

  4. An Unplanned Path

    ERIC Educational Resources Information Center

    McGarvey, Lynn M.; Sterenberg, Gladys Y.; Long, Julie S.

    2013-01-01

    The authors elucidate what they saw as three important challenges to overcome along the path to becoming elementary school mathematics teacher leaders: marginal interest in math, low self-confidence, and teaching in isolation. To illustrate how these challenges were mitigated, they focus on the stories of two elementary school teachers--Laura and…

  5. Two-Wavelength Optical-Path-Difference Mapping

    NASA Technical Reports Server (NTRS)

    Manhart, Paul K.

    1990-01-01

    Proposed technique for measuring shapes and alignments of reflectors based on use of two-wavelength absolute-distance interferometer to generate optical-path-difference maps of reflecting or refracting surfaces. Facilitates such tasks as determining manufacturing and alignment errors of off-axis segment of large-aperture paraboloidal telescope mirror, or aligning all segments of such mirror. Suitable for use where reflecting surfaces highly aspherical, initial misalignments large, and/or surface errors exceed optical wavelengths.

  6. The evolution of the magnetic inclination angle as an explanation of the long term red timing-noise of pulsars

    NASA Astrophysics Data System (ADS)

    Yi, Shu-Xu; Zhang, Shuang-Nan

    2015-12-01

    We study the possibility that the long term red timing-noise in pulsars originates from the evolution of the magnetic inclination angle χ. The braking torque under consideration is a combination of the dipole radiation and the current loss. We find that the evolution of χ can give rise to extra cubic and fourth-order polynomial terms in the timing residuals. These two terms are determined by the efficiency of the dipole radiation, the relative electric-current density in the pulsar tube and χ. The following observation facts can be explained with this model: (a) young pulsars have positive ddot{ν }; (b) old pulsars can have both positive and negative ddot{ν }; (c) the absolute values of ddot{ν } are proportional to -dot{ν }; (d) the absolute values of the braking indices are proportional to the characteristic ages of pulsars. If the evolution of χ is purely due to rotation kinematics, then it cannot explain the pulsars with braking index less than 3, and thus the intrinsic change of the magnetic field is needed in this case. Comparing the model with observations, we conclude that the drift direction of χ might oscillate many times during the lifetime of a pulsar. The evolution of χ is not sufficient to explain the rotation behaviour of the Crab pulsar, because the observed χ and dot{χ } are inconsistent with the values indicated from the timing residuals using this model.

  7. The Inclination Angle and Evolution of the Braking Index of Pulsars with Plasma-filled Magnetosphere: Application to the High Braking Index of PSR J1640-4631

    NASA Astrophysics Data System (ADS)

    Ekşi, K. Y.; Andaç, I. C.; Çıkıntoğlu, S.; Gügercinoğlu, E.; Vahdat Motlagh, A.; Kızıltan, B.

    2016-05-01

    The recently discovered rotationally powered pulsar PSR J1640–4631 is the first to have a braking index measured, with high enough precision, that is greater than 3. An inclined magnetic rotator in vacuum or plasma would be subject not only to spin-down but also to an alignment torque. The vacuum model can address the braking index only for an almost orthogonal rotator, which is incompatible with the single-peaked pulse profile. The magnetic dipole model with the corotating plasma predicts braking indices between 3 and 3.25. We find that the braking index of 3.15 is consistent with two different inclination angles, 18.°5 ± 3° and 56° ± 4°. The smaller angle is preferred given that the pulse profile has a single peak and the radio output of the source is weak. We infer the change in the inclination angle to be at the rate ‑0.°23 per century, three times smaller in absolute value than the rate recently observed for the Crab pulsar.

  8. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  9. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  10. Teaching Absolute Value Inequalities to Mature Students

    ERIC Educational Resources Information Center

    Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea

    2011-01-01

    This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…

  11. Increasing Capacity: Practice Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Dodds, Pennie; Donkin, Christopher; Brown, Scott D.; Heathcote, Andrew

    2011-01-01

    In most of the long history of the study of absolute identification--since Miller's (1956) seminal article--a severe limit on performance has been observed, and this limit has resisted improvement even by extensive practice. In a startling result, Rouder, Morey, Cowan, and Pfaltz (2004) found substantially improved performance with practice in the…

  12. On Relative and Absolute Conviction in Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2015-01-01

    Conviction is a central construct in mathematics education research on justification and proof. In this paper, we claim that it is important to distinguish between absolute conviction and relative conviction. We argue that researchers in mathematics education frequently have not done so and this has lead to researchers making unwarranted claims…

  13. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  14. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  15. Precision absolute positional measurement of laser beams.

    PubMed

    Fitzsimons, Ewan D; Bogenstahl, Johanna; Hough, James; Killow, Christian J; Perreur-Lloyd, Michael; Robertson, David I; Ward, Henry

    2013-04-20

    We describe an instrument which, coupled with a suitable coordinate measuring machine, facilitates the absolute measurement within the machine frame of the propagation direction of a millimeter-scale laser beam to an accuracy of around ±4 μm in position and ±20 μrad in angle. PMID:23669658

  16. A statistical study of nearby galaxies. I. NIR growth curves and optical-to-NIR colors as a function of type, luminosity and inclination

    NASA Astrophysics Data System (ADS)

    Fioc, Michel; Rocca-Volmerange, Brigitte

    1999-11-01

    Growth curves of the near-infrared (NIR) magnitude as a function of the aperture have been built and used to derive NIR total magnitudes from aperture data taken from the literature. By cross-correlating with optical and redshift data, absolute magnitudes and optical-to-NIR colors have been computed for some 1000 galaxies of different types. Significant color gradients are observed, underlining that small aperture colors may lead to a biased picture of the stellar populations of galaxies. A statistical analysis, using various estimators taking into account the intrinsic scatter, has been performed to establish relations between the colors, the morphological type, the inclination or the shape, and the intrinsic luminosity. The combination of the optical and the NIR should obviously improve our understanding of the evolution of galaxies. Despite the intrinsic scatter, especially among star-forming galaxies, optical-to-NIR colors show a very well defined sequence with type, blueing by 1.35 mag from ellipticals to irregulars. The colors of spiral galaxies strongly redden with increasing inclination and put new constraints on the modeling of the extinction. No such effect is observed for lenticular galaxies. We also find that rounder ellipticals tend to be redder. A color-absolute magnitude relation is observed inside each type, with a slope significantly steeper for early and intermediate spirals than for ellipticals or late spirals. This stresses the importance of considering both the mass and the type to study the star formation history of galaxies.

  17. Why Is It Harder to Run on an Inclined Exercise Treadmill?

    ERIC Educational Resources Information Center

    Nave, Carla M. A. P. F.; Amoreira, Luis J. M.

    2014-01-01

    It is a known fact that it takes a greater effort to run on an exercise treadmill when it is inclined with positive slope than when it is in a horizontal position. The reason seems simple: walking on an inclined treadmill is somehow equivalent to walking up a hill with the same inclination; when we walk up a hill, our own weight does negative work…

  18. Evolution of the magnetic field inclination in a forming penumbra

    SciTech Connect

    Romano, P.; Guglielmino, S. L.; Cristaldi, A.; Falco, M.; Zuccarello, F.; Ermolli, I.

    2014-03-20

    We describe the evolution of the magnetic and velocity fields in the annular zone around a pore a few hours before the formation of its penumbra. We detected the presence of several patches at the edge of the annular zone, with a typical size of about 1''. These patches are characterized by a rather vertical magnetic field with polarity opposite to that of the pore. They correspond to regions of plasma upflow up to 2.5 km s{sup –1} and are characterized by radially outward displacements with horizontal velocities up to 2 km s{sup –1}. We interpret these features as portions of the pore magnetic field lines returning beneath the photosphere being progressively stretched and pushed down by the overlying magnetic fields. Our results confirm that the penumbra formation results from changes in the inclination of the field lines in the magnetic canopy overlying the pore, until they reach the photosphere.

  19. Inclined nanoimprinting lithography-based 3D nanofabrication

    NASA Astrophysics Data System (ADS)

    Liu, Zhan; Bucknall, David G.; Allen, Mark G.

    2011-06-01

    We report a 'top-down' 3D nanofabrication approach combining non-conventional inclined nanoimprint lithography (INIL) with reactive ion etching (RIE), contact molding and 3D metal nanotransfer printing (nTP). This integration of processes enables the production and conformal transfer of 3D polymer nanostructures of varying heights to a variety of other materials including a silicon-based substrate, a silicone stamp and a metal gold (Au) thin film. The process demonstrates the potential of reduced fabrication cost and complexity compared to existing methods. Various 3D nanostructures in technologically useful materials have been fabricated, including symmetric and asymmetric nanolines, nanocircles and nanosquares. Such 3D nanostructures have potential applications such as angle-resolved photonic crystals, plasmonic crystals and biomimicking anisotropic surfaces. This integrated INIL-based strategy shows great promise for 3D nanofabrication in the fields of photonics, plasmonics and surface tribology.

  20. Dense inclined flows: Theory and experiments. Final report

    SciTech Connect

    Jenkins, J.T.; Louge, M.Y.

    1995-12-01

    Rapid, gravity-driven flows of granular materials down inclines pose a challenge to our understanding. Even in situations in which the flow is steady and two-dimensional, the details of how momentum ad energy are balanced within the flow and at the bottom boundary are not well understood. Thus we have undertaken a research program integrating theory, computer simulation, and experiment that focuses on such flows. the effort involves the development of theory informed by the results of simultaneous computer simulations and the construction, instrumentation, and use of an experimental facility in which the variables necessary to assess the success or failure of the theory can be measured. A goal of the project is to provide a sound theoretical and experimental base for a better understanding of the behavior and properties of multiphase flow and solid transport.

  1. Rolling to a stop down an inclined plane

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2015-11-01

    Experimental and theoretical results are presented showing that a ball with a high coefficient of rolling friction can roll to a stop when it rolls without slipping down an inclined plane. The rate at which energy is dissipated is directly proportional to the rolling friction force on the ball, despite the fact that the net work done by the friction force is zero. The energy loss arises from internal friction within the ball due to compression and expansion of the ball in the contact region. Since the compression force is larger than the expansion force, an opposing torque arises that reduces the angular velocity of the ball. The work done by the opposing torque is equal to the energy that is dissipated.

  2. Inclination Dependence of Estimated Galaxy Masses and Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Hernandez, Betsy; Maller, Ariyeh; McKernan, Barry; Ford, Saavik

    2016-01-01

    We examine the inclination dependence of inferred star formation rates and galaxy mass estimates in the Sloan Digital Sky Survey by combining the disk/bulge de-convolved catalog of Simard et al 2011 with stellar mass estimates catalog of Mendel et al 2014 and star formation rates measured from spectra by Brinchmann et al 2004. We know that optical star formation indicators are reddened by dust, but calculated star formation rates and stellar mass estimates should account for this. However, we find that face-on galaxies have a higher calculated average star formation rates than edge-on galaxies. We also find edge-on galaxies have ,on average, slightly smaller but similar estimated masses to face-on galaxies, suggesting that there are issues with the applied dust corrections for both models.

  3. Thermocapillary motion of a droplet on an inclined plate

    NASA Astrophysics Data System (ADS)

    Karapetsas, George; Sahu, Kirti; Matar, Omar

    2012-11-01

    We examine the dynamics of a droplet spreading on an inclined solid surface in the presence of constant wall thermal gradients. We use lubrication theory in combination with the Karman-Polhausen integral method to simplify the governing equations for the droplet motion and energy conservation leading to coupled evolution equations for the drop thickness and average temperature. An important feature of the spreading model developed here is the behaviour of the drop at the contact line; this is modeled using a constitutive relation, which is dependent on the local temperature of the wall. We use a finite-element formulation to obtain numerical solutions of the evolution equations and carry out a full parametric study. We investigate the various types of behaviour encountered due to the interplay of Marangoni stresses, gravity and the dynamics of the contact line. EPSRC Grant number EP/E046029/1.

  4. Horizontal penetration of inclined thermal buoyant water jets

    SciTech Connect

    Pantokratoras, A.

    1998-05-01

    Submerged buoyant jets occur in the discharge from thermal power plants and in the operation of pumped storage hydroelectric plants. Accurate prediction of the jet trajectory and temperature dilution are necessary if discharge structures are to be designed to meet the appropriate standards. A modified version of the integral Fan-Brooks model has been used to calculate the horizontal penetration of inclined thermal buoyant water jets. The classical densimetric Froude number F{sub 0} is substituted by a Froude number F{sub a} based on the thermal expansion coefficient of water. Using the above model, a new equation is derived which can predict the horizontal penetration of the thermal jet at a given Froude number F{sub a} and discharge angle.

  5. Flow of granular materials down an inclined plane

    SciTech Connect

    Gudhe, R.; Rajagopal, K.R.; Massoudi, M.; Chi, R.

    1993-05-01

    The mechanics of flowing granular materials such as coal, sand, fossil-fuel energy recovery, metal ores, etc., and their flow characteristics have received considerable attention in recent years because it has relevance to several technological problems. In a number of instances these materials are also heated prior to processing, or cooled after processing. The governing equations for the flow of granular materials taking into account the heat transfer mechanism are derived using the continuum model proposed by Rajagopal and Massoudi (1990). For a fully developed flow of granular materials down an inclined plane, these equations reduce to a system of coupled ordinary differential equations. The resulting boundary value problem is solved numerically and the results are presented. For a special case, it is possible to obtain an analytic solution; this is given in the Appendix A of this report.

  6. Reliability of magnetic inclination angle determinations for pulsars

    NASA Technical Reports Server (NTRS)

    Miller, M. C.; Hamilton, Russell J.

    1993-01-01

    We compare the recent estimates of the inclination angle alpha between the rotation and magnetic axes of 56 pulsars made by both Lyne and Manchester (1988) and Rankin (1990). Their results agree reasonably well when alpha is less than about 40 deg; however, there is no correlation between the two estimates of alpha if either estimate exceeds 40 deg. The correlation is better for pulsars with beams having more complicated core structure. Nevertheless, the differences between the two sets of estimates are large enough that use of these estimates to investigate pulsar physics is questionable. We discuss the method for determining alpha based on the Radhakrishnan and Cooke (1969) single-vector model, emphasizing its sensitivity to measurement errors. This method complements the approaches of Rankin and Lyne and Manchester and is preferable when accurate polarization data are available.

  7. Programmable axicon for variable inclination of the focal segment

    NASA Astrophysics Data System (ADS)

    Jaroszewicz, Z.; Climent, V.; Duran, V.; Lancis, J.; Kolodziejczyk, A.; Burvall, A.; Friberg, A. T.

    An axicon creates a long and narrow focal segment along its optical axis and therefore it is widely recognized as a cornerstone element in metrology and alignment techniques. In oblique incidence the shape of the axicon can be designed such that its sharp focal line is retained. However, when an elliptical or circular axicon is illuminated at an angle different from the nominal angle, the focal segment suffers from astigmatism and broadens significantly. The use of a spatial light modulator is proposed for real-time compensation of the ensuing aberration. The result is a diffractive axicon with its degree of ellipticity adjusted to the inclination angle of the incident light, thus producing a diffraction-limited Bessel beam for a wide range of illumination angles.

  8. An evaluation of the accuracy of geomagnetic data obtained from an unattended, automated, quasi-absolute station

    USGS Publications Warehouse

    Herzog, D.C.

    1990-01-01

    A comparison is made of geomagnetic calibration data obtained from a high-sensitivity proton magnetometer enclosed within an orthogonal bias coil system, with data obtained from standard procedures at a mid-latitude U.S. Geological Survey magnetic observatory using a quartz horizontal magnetometer, a Ruska magnetometer, and a total field magnetometer. The orthogonal coil arrangement is used with the proton magnetometer to provide Deflected-Inclination-Deflected-Declination (DIDD) data from which quasi-absolute values of declination, horizontal intensity, and vertical intensity can be derived. Vector magnetometers provide the ordinate values to yield baseline calibrations for both the DIDD and standard observatory processes. Results obtained from a prototype system over a period of several months indicate that the DIDD unit can furnish adequate absolute field values for maintaining observatory calibration data, thus providing baseline control for unattended, remote stations. ?? 1990.

  9. An ultrasonically enhanced inclined settler for microalgae harvesting.

    PubMed

    Hincapié Gómez, Esteban; Marchese, Anthony J

    2015-01-01

    Microalgae have vast potential as a sustainable and scalable source of biofuels and bioproducts. However, algae dewatering is a critical challenge that must be addressed. Ultrasonic settling has already been exploited for concentrating various biological cells at relatively small batch volumes and/or low throughput. Typically, these designs are operated in batch or semicontinuous mode, wherein the flow is interrupted and the cells are subsequently harvested. These batch techniques are not well suited for scaleup to the throughput levels required for harvesting microalgae from the large-scale cultivation operations necessary for a viable algal biofuel industry. This article introduces a novel device for the acoustic harvesting of microalgae. The design is based on the coupling of the acoustophoretic force, acoustic transparent materials, and inclined settling. A filtration efficiency of 70 ± 5% and a concentration factor of 11.6 ± 2.2 were achieved at a flow rate of 25 mL·min(-1) and an energy consumption of 3.6 ± 0.9 kWh·m(-3) . The effects of the applied power, flow rate, inlet cell concentration, and inclination were explored. It was found that the filtration efficiency of the device is proportional to the power applied. However, the filtration efficiency experienced a plateau at 100 W L(-1) of power density applied. The filtration efficiency also increased with increasing inlet cell concentration and was inversely proportional to the flow rate. It was also found that the optimum settling angle for maximum concentration factor occurred at an angle of 50 ± 5°. At these optimum conditions, the device had higher filtration efficiency in comparison to other similar devices reported in the previous literature. PMID:25504779

  10. Nonadiabatic transition path sampling

    NASA Astrophysics Data System (ADS)

    Sherman, M. C.; Corcelli, S. A.

    2016-07-01

    Fewest-switches surface hopping (FSSH) is combined with transition path sampling (TPS) to produce a new method called nonadiabatic path sampling (NAPS). The NAPS method is validated on a model electron transfer system coupled to a Langevin bath. Numerically exact rate constants are computed using the reactive flux (RF) method over a broad range of solvent frictions that span from the energy diffusion (low friction) regime to the spatial diffusion (high friction) regime. The NAPS method is shown to quantitatively reproduce the RF benchmark rate constants over the full range of solvent friction. Integrating FSSH within the TPS framework expands the applicability of both approaches and creates a new method that will be helpful in determining detailed mechanisms for nonadiabatic reactions in the condensed-phase.

  11. Nonadiabatic transition path sampling.

    PubMed

    Sherman, M C; Corcelli, S A

    2016-07-21

    Fewest-switches surface hopping (FSSH) is combined with transition path sampling (TPS) to produce a new method called nonadiabatic path sampling (NAPS). The NAPS method is validated on a model electron transfer system coupled to a Langevin bath. Numerically exact rate constants are computed using the reactive flux (RF) method over a broad range of solvent frictions that span from the energy diffusion (low friction) regime to the spatial diffusion (high friction) regime. The NAPS method is shown to quantitatively reproduce the RF benchmark rate constants over the full range of solvent friction. Integrating FSSH within the TPS framework expands the applicability of both approaches and creates a new method that will be helpful in determining detailed mechanisms for nonadiabatic reactions in the condensed-phase. PMID:27448877

  12. Combined Use of Absolute and Differential Seismic Arrival Time Data to Improve Absolute Event Location

    NASA Astrophysics Data System (ADS)

    Myers, S.; Johannesson, G.

    2012-12-01

    Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement

  13. Four paths of competition

    SciTech Connect

    Studness, C.M.

    1995-05-01

    The financial community`s focus on utility competition has been riveted on the proceedings now in progress at state regulatory commissions. The fear that something immediately damaging will come out of these proceedings seems to have diminished in recent months, and the stock market has reacted favorably. However, regulatory developments are only one of four paths leading to competition; the others are the marketplace, the legislatures, and the courts. Each could play a critical role in the emergence of competition.

  14. PATHS groundwater hydrologic model

    SciTech Connect

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  15. Spirit's Path to Bonneville

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Scientists created this overlay map by laying navigation and panoramic camera images taken from the surface of Mars on top of one of Spirit's descent images taken as the spacecraft descended to the martian surface. The map was created to help track the path that Spirit has traveled through sol 44 and to put into perspective the distance left to travel before reaching the edge of the large crater nicknamed 'Bonneville.'

    The area boxed in yellow contains the ground images that have been matched to and layered on top of the descent image. The yellow line shows the path that Spirit has traveled and the red dashed line shows the intended path for future sols. The blue circles highlight hollowed areas on the surface, such as Sleepy Hollow, near the lander, and Laguna Hollow, the sol 45 drive destination. Scientists use these hollowed areas - which can be seen in both the ground images and the descent image - to correctly match up the overlay.

    Field geologists on Earth create maps like this to assist them in tracking their observations.

  16. Variations in the kinematics of deformation along the Zagros inclined transpression zone, Iran: Implications for defining a curved inclined transpression zone

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Partabian, Abdolreza; Faghih, Ali

    2013-03-01

    The combination of inclined collision and plate boundary shape can control the nature of deformation and the sense of shear along a transpression zone. The present study investigated the effects of a boundary zone with curvilinear shape along a transpression zone on the kinematics of deformation. The kinematics of the Zagros transpression zone varies with the orientation of the zone boundary. Detailed structural and microstructural studies showed sinistral sense of shear on the southeastern part of the Zagros inclined transpression zone (Fars Arc), but dextral sense of shear on the northwestern part of the zone. It is inferred that the both senses of shear were developed coevally under a bulk general shear, regional-scale deformation along a curved inclined transpression miming the shape of the Fras Arc of the Zagros and the reentrant of the Bandar Abbas Syntaxis. The Zagros transpression zone formed by inclined continental collision between the Afro-Arabian continent and Iranian microcontinent.

  17. Absolute and relative dosimetry for ELIMED

    SciTech Connect

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  18. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum. PMID:25423049

  19. Absolute-magnitude distributions of supernovae

    SciTech Connect

    Richardson, Dean; Wright, John; Jenkins III, Robert L.; Maddox, Larry

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  20. Absolute radiometry and the solar constant

    NASA Technical Reports Server (NTRS)

    Willson, R. C.

    1974-01-01

    A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).

  1. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  2. Absolute calibration of TFTR helium proportional counters

    SciTech Connect

    Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L.; Barnes, C.W. |; Loughlin, M. |

    1995-06-01

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments.

  3. Absolute enantioselective separation: optical activity ex machina.

    PubMed

    Bielski, Roman; Tencer, Michal

    2005-11-01

    The paper describes methodology of using three independent macroscopic factors affecting molecular orientation to accomplish separation of a racemic mixture without the presence of any other chiral compounds, i. e., absolute enantioselective separation (AES) which is an extension of a concept of applying these factors to absolute asymmetric synthesis. The three factors may be applied simultaneously or, if their effects can be retained, consecutively. The resulting three mutually orthogonal or near orthogonal directors constitute a true chiral influence and their scalar triple product is the measure of the chirality of the system. AES can be executed in a chromatography-like microfluidic process in the presence of an electric field. It may be carried out on a chemically modified flat surface, a monolithic polymer column made of a mesoporous material, each having imparted directional properties. Separation parameters were estimated for these media and possible implications for the natural homochirality are discussed. PMID:16342798

  4. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  5. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  6. Metallic Magnetic Calorimeters for Absolute Activity Measurement

    NASA Astrophysics Data System (ADS)

    Loidl, M.; Leblanc, E.; Rodrigues, M.; Bouchard, J.; Censier, B.; Branger, T.; Lacour, D.

    2008-05-01

    We present a prototype of metallic magnetic calorimeters that we are developing for absolute activity measurements of low energy emitting radionuclides. We give a detailed description of the realization of the prototype, containing an 55Fe source inside the detector absorber. We present the analysis of first data taken with this detector and compare the result of activity measurement with liquid scintillation counting. We also propose some ways for reducing the uncertainty on the activity determination with this new technique.

  7. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  8. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  9. Silicon Absolute X-Ray Detectors

    SciTech Connect

    Seely, John F.; Korde, Raj; Sprunck, Jacob; Medjoubi, Kadda; Hustache, Stephanie

    2010-06-23

    The responsivity of silicon photodiodes having no loss in the entrance window, measured using synchrotron radiation in the 1.75 to 60 keV range, was compared to the responsivity calculated using the silicon thickness measured using near-infrared light. The measured and calculated responsivities agree with an average difference of 1.3%. This enables their use as absolute x-ray detectors.

  10. Blood pressure targets and absolute cardiovascular risk.

    PubMed

    Odutayo, Ayodele; Rahimi, Kazem; Hsiao, Allan J; Emdin, Connor A

    2015-08-01

    In the Eighth Joint National Committee guideline on hypertension, the threshold for the initiation of blood pressure-lowering treatment for elderly adults (≥60 years) without chronic kidney disease or diabetes mellitus was raised from 140/90 mm Hg to 150/90 mm Hg. However, the committee was not unanimous in this decision, particularly because a large proportion of adults ≥60 years may be at high cardiovascular risk. On the basis of Eighth Joint National Committee guideline, we sought to determine the absolute 10-year risk of cardiovascular disease among these adults through analyzing the National Health and Nutrition Examination Survey (2005-2012). The primary outcome measure was the proportion of adults who were at ≥20% predicted absolute cardiovascular risk and above goals for the Seventh Joint National Committee guideline but reclassified as at target under the Eighth Joint National Committee guideline (reclassified). The Framingham General Cardiovascular Disease Risk Score was used. From 2005 to 2012, the surveys included 12 963 adults aged 30 to 74 years with blood pressure measurements, of which 914 were reclassified based on the guideline. Among individuals reclassified as not in need of additional treatment, the proportion of adults 60 to 74 years without chronic kidney disease or diabetes mellitus at ≥20% absolute risk was 44.8%. This corresponds to 0.8 million adults. The proportion at high cardiovascular risk remained sizable among adults who were not receiving blood pressure-lowering treatment. Taken together, a sizable proportion of reclassified adults 60 to 74 years without chronic kidney disease or diabetes mellitus was at ≥20% absolute cardiovascular risk. PMID:26056340

  11. Relative errors can cue absolute visuomotor mappings.

    PubMed

    van Dam, Loes C J; Ernst, Marc O

    2015-12-01

    When repeatedly switching between two visuomotor mappings, e.g. in a reaching or pointing task, adaptation tends to speed up over time. That is, when the error in the feedback corresponds to a mapping switch, fast adaptation occurs. Yet, what is learned, the relative error or the absolute mappings? When switching between mappings, errors with a size corresponding to the relative difference between the mappings will occur more often than other large errors. Thus, we could learn to correct more for errors with this familiar size (Error Learning). On the other hand, it has been shown that the human visuomotor system can store several absolute visuomotor mappings (Mapping Learning) and can use associated contextual cues to retrieve them. Thus, when contextual information is present, no error feedback is needed to switch between mappings. Using a rapid pointing task, we investigated how these two types of learning may each contribute when repeatedly switching between mappings in the absence of task-irrelevant contextual cues. After training, we examined how participants changed their behaviour when a single error probe indicated either the often-experienced error (Error Learning) or one of the previously experienced absolute mappings (Mapping Learning). Results were consistent with Mapping Learning despite the relative nature of the error information in the feedback. This shows that errors in the feedback can have a double role in visuomotor behaviour: they drive the general adaptation process by making corrections possible on subsequent movements, as well as serve as contextual cues that can signal a learned absolute mapping. PMID:26280315

  12. Absolute dosimetry for extreme-ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Berger, Kurt W.; Campiotti, Richard H.

    2000-06-01

    The accurate measurement of an exposure dose reaching the wafer on an extreme ultraviolet (EUV) lithographic system has been a technical challenge directly applicable to the evaluation of candidate EUV resist materials and calculating lithography system throughputs. We have developed a dose monitoring sensor system that can directly measure EUV intensities at the wafer plane of a prototype EUV lithographic system. This sensor system, located on the wafer stage adjacent to the electrostatic chuck used to grip wafers, operates by translating the sensor into the aerial image, typically illuminating an 'open' (unpatterned) area on the reticle. The absolute signal strength can be related to energy density at the wafer, and thus used to determine resist sensitivity, and the signal as a function of position can be used to determine illumination uniformity at the wafer plane. Spectral filtering to enhance the detection of 13.4 nm radiation was incorporated into the sensor. Other critical design parameters include the packaging and amplification technologies required to place this device into the space and vacuum constraints of a EUV lithography environment. We describe two approaches used to determine the absolute calibration of this sensor. The first conventional approach requires separate characterization of each element of the sensor. A second novel approach uses x-ray emission from a mildly radioactive iron source to calibrate the absolute response of the entire sensor system (detector and electronics) in a single measurement.

  13. Critical Path Web Site

    NASA Technical Reports Server (NTRS)

    Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)

    2000-01-01

    Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decisionmaker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its content

  14. Critical Path Web Site

    NASA Technical Reports Server (NTRS)

    Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)

    2000-01-01

    Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decision maker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its

  15. Thermoalgebras and path integral

    NASA Astrophysics Data System (ADS)

    Khanna, F. C.; Malbouisson, A. P. C.; Malbouisson, J. M. C.; Santana, A. E.

    2009-09-01

    Using a representation for Lie groups closely associated with thermal problems, we derive the algebraic rules of the real-time formalism for thermal quantum field theories, the so-called thermo-field dynamics (TFD), including the tilde conjugation rules for interacting fields. These thermo-group representations provide a unified view of different approaches for finite-temperature quantum fields in terms of a symmetry group. On these grounds, a path integral formalism is constructed, using Bogoliubov transformations, for bosons, fermions and non-abelian gauge fields. The generalization of the results for quantum fields in (S1)d×R topology is addressed.

  16. Path Integrals and Supersolids

    NASA Astrophysics Data System (ADS)

    Ceperley, D. M.

    2008-11-01

    Recent experiments by Kim and Chan on solid 4He have been interpreted as discovery of a supersolid phase of matter. Arguments based on wavefunctions have shown that such a phase exists, but do not necessarily apply to solid 4He. Imaginary time path integrals, implemented using Monte Carlo methods, provide a definitive answer; a clean system of solid 4He should be a normal quantum solid, not one with superfluid properties. The Kim-Chan phenomena must be due to defects introduced when the solid is formed.

  17. JAVA PathFinder

    NASA Technical Reports Server (NTRS)

    Mehhtz, Peter

    2005-01-01

    JPF is an explicit state software model checker for Java bytecode. Today, JPF is a swiss army knife for all sort of runtime based verification purposes. This basically means JPF is a Java virtual machine that executes your program not just once (like a normal VM), but theoretically in all possible ways, checking for property violations like deadlocks or unhandled exceptions along all potential execution paths. If it finds an error, JPF reports the whole execution that leads to it. Unlike a normal debugger, JPF keeps track of every step how it got to the defect.

  18. Portage and Path Dependence*

    PubMed Central

    Bleakley, Hoyt; Lin, Jeffrey

    2012-01-01

    We examine portage sites in the U.S. South, Mid-Atlantic, and Midwest, including those on the fall line, a geomorphological feature in the southeastern U.S. marking the final rapids on rivers before the ocean. Historically, waterborne transport of goods required portage around the falls at these points, while some falls provided water power during early industrialization. These factors attracted commerce and manufacturing. Although these original advantages have long since been made obsolete, we document the continuing importance of these portage sites over time. We interpret these results as path dependence and contrast explanations based on sunk costs interacting with decreasing versus increasing returns to scale. PMID:23935217

  19. Portage and Path Dependence.

    PubMed

    Bleakley, Hoyt; Lin, Jeffrey

    2012-05-01

    We examine portage sites in the U.S. South, Mid-Atlantic, and Midwest, including those on the fall line, a geomorphological feature in the southeastern U.S. marking the final rapids on rivers before the ocean. Historically, waterborne transport of goods required portage around the falls at these points, while some falls provided water power during early industrialization. These factors attracted commerce and manufacturing. Although these original advantages have long since been made obsolete, we document the continuing importance of these portage sites over time. We interpret these results as path dependence and contrast explanations based on sunk costs interacting with decreasing versus increasing returns to scale. PMID:23935217

  20. DETERMINING INCLINATIONS OF ACTIVE GALACTIC NUCLEI VIA THEIR NARROW-LINE REGION KINEMATICS. I. OBSERVATIONAL RESULTS

    SciTech Connect

    Fischer, T. C.; Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.

    2013-11-01

    Active galactic nuclei (AGNs) are axisymmetric systems to first order; their observed properties are likely strong functions of inclination with respect to our line of sight (LOS). However, except for a few special cases, the specific inclinations of individual AGNs are unknown. We have developed a promising technique for determining the inclinations of nearby AGNs by mapping the kinematics of their narrow-line regions (NLRs), which are often easily resolved with Hubble Space Telescope [O III] imaging and long-slit spectra from the Space Telescope Imaging Spectrograph. Our studies indicate that NLR kinematics dominated by radial outflow can be fit with simple biconical outflow models that can be used to determine the inclination of the bicone axis, and hence the obscuring torus, with respect to our LOS. We present NLR analysis of 53 Seyfert galaxies and the resulting inclinations from models of 17 individual AGNs with clear signatures of biconical outflows. Our model results agree with the unified model in that Seyfert 1 AGNs have NLRs inclined further toward our LOS than Seyfert 2 AGNs. Knowing the inclinations of these AGN NLRs, and thus their accretion disk and/or torus axes, will allow us to determine how their observed properties vary as a function of polar angle. We find no correlation between the inclinations of the AGN NLRs and the disks of their host galaxies, indicating that the orientation of the gas in the torus is independent of that of the host disk.

  1. The effects of orbital inclination on the scale size and evolution of tidally filling star clusters

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Sills, Alison; Harris, William E.; Hurley, Jarrod R.

    2014-11-01

    We have performed N-body simulations of tidally filling star clusters with a range of orbits in a Milky Way-like potential to study the effects of orbital inclination and eccentricity on their structure and evolution. At small galactocentric distances Rgc, a non-zero inclination results in increased mass-loss rates. Tidal heating and disc shocking, the latter sometimes consisting of two shocking events as the cluster moves towards and away from the disc, help remove stars from the cluster. Clusters with inclined orbits at large Rgc have decreased mass-loss rates than the non-inclined case, since the strength of the disc potential decreases with Rgc. Clusters with inclined and eccentric orbits experience increased tidal heating due to a constantly changing potential, weaker disc shocks since passages occur at higher Rgc, and an additional tidal shock at perigalacticon. The effects of orbital inclination decrease with orbital eccentricity, as a highly eccentric cluster spends the majority of its lifetime at a large Rgc. The limiting radii of clusters with inclined orbits are best represented by the rt of the cluster when at its maximum height above the disc, where the cluster spends the majority of its lifetime and the rate of change in rt is a minimum. Conversely, the effective radius is independent of inclination in all cases.

  2. How do the substrate reaction forces acting on a gecko's limbs respond to inclines?

    NASA Astrophysics Data System (ADS)

    Wang, Zhouyi; Dai, Zhendong; Li, Wei; Ji, Aihong; Wang, Wenbao

    2015-02-01

    Locomotion is an essential character of animals, and excellent moving ability results from the delicate sensing of the substrate reaction forces (SRF) acting on body and modulating the behavior to adapt the motion requirement. The inclined substrates present in habitats pose a number of functional challenges to locomotion. In order to effectively overcome these challenges, climbing geckos execute complex and accurate movements that involve both the front and hind limbs. Few studies have examined gecko's SRF on steeper inclines of greater than 90°. To reveal how the SRFs acting on the front and hind limbs respond to angle incline changes, we obtained detailed measurements of the three-dimensional SRFs acting on the individual limbs of the tokay gecko while it climbed on an inclined angle of 0-180°. The fore-aft forces acting on the front and hind limbs show opposite trends on inverted inclines of greater than 120°, indicating propulsion mechanism changes in response to inclines. When the incline angles change, the forces exerted in the normal and fore-aft directions by gecko's front and hind limbs are reassigned to take full advantage of limbs' different roles in overcoming resistance and in propelling locomotion. This also ensures that weight acts in the angle range between the forces generated by the front and hind limbs. The change in the distribution of SRF with a change in the incline angle is directly linked to the favorable trade-off between locomotive maneuverability and stability.

  3. Dynamic Crush Behaviors Of Aluminum Honeycomb Specimens Under Compression Dominant Inclined Loads

    SciTech Connect

    Hong, Sung-tae; Pan, Jwo; Tyan, Tau; Prasad, Priya

    2008-01-01

    The quasi-static and dynamic crush behaviors of aluminum 5052-H38 honeycomb specimens under out-of-plane inclined loads are investigated by experiments. Different types of honeycomb specimens were designed for crush tests under pure compressive and inclined loads with respect to the out-of-plane direction. A test fixture was designed for both quasi-static and dynamic crush tests under inclined loads. The results of the quasi-static crush tests indicate that the normal crush and shear strengths under inclined loads are consistent with the corresponding results under combined loads. The results of the dynamic crush tests indicate that as the impact velocity increases, the normal crush strength increases and the shear strength remains nearly the same. The trends of the normalized normal crush strengths under inclined loads for specimens with different in-plane orientation angles as functions of the impact velocity are very similar to each other. Based on the experimental results, a macroscopic yield criterion as a function of the impact velocity is proposed. The experimental results suggest that as the impact velocity increases, the shape of the macroscopic yield surface changes, or more specifically, the curvature of the yield surface increases near the pure compression state. The experimental results also show similar microscopic progressive folding mechanisms in honeycomb specimens under pure compressive and inclined loads. However, honeycomb specimens under inclined loads show inclined stacking patterns of folds due to the asymmetric location of horizontal plastic hinge lines.

  4. Analysis of high-speed growth of silicon sheet in inclined-meniscus configuration

    NASA Technical Reports Server (NTRS)

    Thomas, P. D.; Brown, R. A.

    1985-01-01

    The study of high speed growth of silicon sheet in inclined-meniscus configurations is discussed. It was concluded that the maximum growth rates in vertical and inclined growth are set by thermal-capillary limits. Also, the melt/crystal interface was determined to be flat. And, vertical growth is qualitatively modelled by one dimensional heat transfer.

  5. How do the substrate reaction forces acting on a gecko's limbs respond to inclines?

    PubMed

    Wang, Zhouyi; Dai, Zhendong; Li, Wei; Ji, Aihong; Wang, Wenbao

    2015-02-01

    Locomotion is an essential character of animals, and excellent moving ability results from the delicate sensing of the substrate reaction forces (SRF) acting on body and modulating the behavior to adapt the motion requirement. The inclined substrates present in habitats pose a number of functional challenges to locomotion. In order to effectively overcome these challenges, climbing geckos execute complex and accurate movements that involve both the front and hind limbs. Few studies have examined gecko's SRF on steeper inclines of greater than 90°. To reveal how the SRFs acting on the front and hind limbs respond to angle incline changes, we obtained detailed measurements of the three-dimensional SRFs acting on the individual limbs of the tokay gecko while it climbed on an inclined angle of 0-180°. The fore-aft forces acting on the front and hind limbs show opposite trends on inverted inclines of greater than 120°, indicating propulsion mechanism changes in response to inclines. When the incline angles change, the forces exerted in the normal and fore-aft directions by gecko's front and hind limbs are reassigned to take full advantage of limbs' different roles in overcoming resistance and in propelling locomotion. This also ensures that weight acts in the angle range between the forces generated by the front and hind limbs. The change in the distribution of SRF with a change in the incline angle is directly linked to the favorable trade-off between locomotive maneuverability and stability. PMID:25645733

  6. Flow characteristics of an inclined air-curtain range hood in a draft

    PubMed Central

    CHEN, Jia-Kun

    2015-01-01

    The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m3/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s. PMID:25810445

  7. 77 FR 28770 - Safety Zone; Red, White, and Tahoe Blue Fireworks, Incline Village, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... SECURITY Coast Guard 33 CFR Part 165 Safety Zone; Red, White, and Tahoe Blue Fireworks, Incline Village, NV... enforce the safety zone for the Incline Village, NV Red, White, and Tahoe Blue Fireworks display in the..., White, and Tahoe Blue Fireworks display in 33 CFR 165.1191. This safety zone will be in effect from 7...

  8. Gray- and white-matter anatomy of absolute pitch possessors.

    PubMed

    Dohn, Anders; Garza-Villarreal, Eduardo A; Chakravarty, M Mallar; Hansen, Mads; Lerch, Jason P; Vuust, Peter

    2015-05-01

    Absolute pitch (AP), the ability to identify a musical pitch without a reference, has been examined behaviorally in numerous studies for more than a century, yet only a few studies have examined the neuroanatomical correlates of AP. Here, we used MRI and diffusion tensor imaging to investigate structural differences in brains of musicians with and without AP, by means of whole-brain vertex-wise cortical thickness (CT) analysis and tract-based spatial statistics (TBSS) analysis. APs displayed increased CT in a number of areas including the bilateral superior temporal gyrus (STG), the left inferior frontal gyrus, and the right supramarginal gyrus. Furthermore, we found higher fractional anisotropy in APs within the path of the inferior fronto-occipital fasciculus, the uncinate fasciculus, and the inferior longitudinal fasciculus. The findings in gray matter support previous studies indicating an increased left lateralized posterior STG in APs, yet they differ from previous findings of thinner cortex for a number of areas in APs. Finally, we found a relation between the white-matter results and the CT in the right parahippocampal gyrus. In this study, we present novel findings in AP research that may have implications for the understanding of the neuroanatomical underpinnings of AP ability. PMID:24304583

  9. Space Station Freedom assembly and operation at a 51.6 degree inclination orbit

    NASA Technical Reports Server (NTRS)

    Troutman, Patrick A.; Brewer, Laura M.; Heck, Michael L.; Kumar, Renjith R.

    1993-01-01

    This study examines the implications of assembling and operating Space Station Freedom at a 51.6 degree inclination orbit utilizing an enhanced lift Space Shuttle. Freedom assembly is currently baselined at a 220 nautical mile high, 28.5 degree inclination orbit. Some of the reasons for increasing the orbital inclination are (1) increased ground coverage for Earth observations, (2) greater accessibility from Russian and other international launch sites, and (3) increased number of Assured Crew Return Vehicle (ACRV) landing sites. Previous studies have looked at assembling Freedom at a higher inclination using both medium and heavy lift expendable launch vehicles (such as Shuttle-C and Energia). The study assumes that the shuttle is used exclusively for delivering the station to orbit and that it can gain additional payload capability from design changes such as a lighter external tank that somewhat offsets the performance decrease that occurs when the shuttle is launched to a 51.6 degree inclination orbit.

  10. Internet's critical path horizon

    NASA Astrophysics Data System (ADS)

    Valverde, S.; Solé, R. V.

    2004-03-01

    Internet is known to display a highly heterogeneous structure and complex fluctuations in its traffic dynamics. Congestion seems to be an inevitable result of user's behavior coupled to the network dynamics and it effects should be minimized by choosing appropriate routing strategies. But what are the requirements of routing depth in order to optimize the traffic flow? In this paper we analyse the behavior of Internet traffic with a topologically realistic spatial structure as described in a previous study [S.-H. Yook et al., Proc. Natl Acad. Sci. USA 99, 13382 (2002)]. The model involves self-regulation of packet generation and different levels of routing depth. It is shown that it reproduces the relevant key, statistical features of Internet's traffic. Moreover, we also report the existence of a critical path horizon defining a transition from low-efficient traffic to highly efficient flow. This transition is actually a direct consequence of the web's small world architecture exploited by the routing algorithm. Once routing tables reach the network diameter, the traffic experiences a sudden transition from a low-efficient to a highly-efficient behavior. It is conjectured that routing policies might have spontaneously reached such a compromise in a distributed manner. Internet would thus be operating close to such critical path horizon.

  11. Numerical modeling of incline plate LiBr absorber

    NASA Astrophysics Data System (ADS)

    Karami, Shahram; Farhanieh, Bijan

    2011-03-01

    Among major components of LiBr-H2O absorption chillers is the absorber, which has a direct effect on the chillier size and whose characteristics have significant effects on the overall efficiency of absorption machines. In this article, heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water-cooled incline plate absorber in the Reynolds number range of 5 < Re < 150 is performed numerically. The boundary layer assumptions are used for the mass, momentum and energy transport equations and the fully implicit finite difference method is employed to solve the governing equations. Dependence of lithium bromide aqueous properties to the temperature and concentration is employed as well as dependence of film thickness to vapor absorption. An analysis for linear distribution of wall temperature condition carries out to investigate the reliability of the present numerical method through comparing with previous investigation. The effect of plate angle on heat and mass transfer parameters is investigated and the results show that absorption mass flux and heat and mass transfer coefficient increase as the angle of the plate increase. The main parameters of absorber design, namely Nusselt and Sherwood numbers, are correlated as a function of Reynolds Number and the plate angle.

  12. Studies of granular flow down an inclined chute

    SciTech Connect

    Hanes, D.M.

    1992-01-01

    A preliminary series of experiments were run in order to examine the effects sidewalls have on the steady-state mass flow rate of granular material in a rectangular, inclined chute. These experiments also serve to assess the problems associated with the initial operation of the granular flow apparatus. Presumably, the friction between the sidewalls and the flowing material will slow the flow rate of that material. The relative effect of the sidewalls should decrease with increasing width for a given flow entrance condition. For instance, when the width of the chute is at a minimum (one grain diameter), the sidewalls will have a maximum frictional effect. And as the width approaches infinity, the sidewalls will have a minimum frictional effect. It is desired to know at what chute widths the sidewall effects will reasonably approach this minimum, if this condition can even be approached with the existing apparatus. The relationship between chute width and flow rate will be important to know during more involved experiments which will follow this initial investigation. These experiments will include the measurement of localized grain density, local velocity and individual grain dynamics (rotation and translation) and collisions. The secondary objective, to observe and correct problems with the system, is a more general and qualitative goal.

  13. Droplet impact patterns on inclined surfaces with variable properties

    NASA Astrophysics Data System (ADS)

    Lockard, Michael; Neitzel, G. Paul; Smith, Marc K.

    2014-11-01

    Bloodstain pattern analysis is used in the investigation of a crime scene to infer the impact velocity and size of an impacting droplet and, from these, the droplet's point and cause of origin. The final pattern is the result of complex fluid mechanical processes involved in the impact and spreading of a blood drop on a surface coupled with the wetting properties of the surface itself. Experiments have been designed to study these processes and the resulting patterns for the case of a single Newtonian water droplet impacting a planar, inclined surface with variable roughness and wetting properties. Results for Reynolds numbers in the range of (9,000 - 27,000) and Weber numbers in the range of (300 - 2,600) will be presented. Transient video images and final impact patterns will be analyzed and compared with results from traditional bloodstain pattern-analysis techniques used by the forensics community. In addition, preliminary work with a new Newtonian blood simulant designed to match the viscosity and surface tension of blood will be presented. Supported by the National Institute of Justice.

  14. A conservation law model for bidensity suspensions on an incline

    NASA Astrophysics Data System (ADS)

    Wong, Jeffrey T.; Bertozzi, Andrea L.

    2016-09-01

    We study bidensity suspensions of a viscous fluid on an incline. The particles migrate within the fluid due to a combination of gravity-induced settling and shear induced migration. We propose an extension of a recent model (Murisic et al., 2013) for monodisperse suspensions to two species of particles, resulting in a hyperbolic system of three conservation laws for the height and particle concentrations. We analyze the Riemann problem and show that the system exhibits three-shock solutions representing distinct fronts of particles and liquid traveling at different speeds as well as singular shock solutions for sufficiently large concentrations, for which the mechanism is essentially the same as the single-species case. We also consider initial conditions describing a fixed volume of fluid, where solutions are rarefaction-shock pairs, and present a comparison to recent experimental results. The long-time behavior of solutions is identified for settled mono- and bidisperse suspensions and some leading-order asymptotics are derived in the single-species case for moderate concentrations.

  15. Impact of droplets on inclined flowing liquid films.

    PubMed

    Che, Zhizhao; Deygas, Amandine; Matar, Omar K

    2015-08-01

    The impact of droplets on an inclined falling liquid film is studied experimentally using high-speed imaging. The falling film is created on a flat substrate with controllable thicknesses and flow rates. Droplets with different sizes and speeds are used to study the impact process under various Ohnesorge and Weber numbers, and film Reynolds numbers. A number of phenomena associated with droplet impact are identified and analyzed, such as bouncing, partial coalescence, total coalescence, and splashing. The effects of droplet size, speed, as well the film flow rate are studied culminating in the generation of an impact regime map. The analysis of the lubrication force acted on the droplet via the gas layer shows that a higher flow rate in the liquid film produces a larger lubrication force, slows down the drainage process, and increases the probability of droplet bouncing. Our results demonstrate that the flowing film has a profound effect on the droplet impact process and associated phenomena, which are markedly more complex than those accompanying impact on initially quiescent films. PMID:26382528

  16. Development of coated conductors by inclined substrate deposition

    NASA Astrophysics Data System (ADS)

    Balachandran, U.; Ma, B.; Li, M.; Fisher, B. L.; Koritala, R. E.; Miller, D. J.; Dorris, S. E.

    2003-10-01

    Inclined substrate deposition (ISD) offers the potential for rapid production of high-quality biaxially textured buffer layers suitable for YBa 2Cu 3O 7- δ (YBCO)-coated conductors. We have grown biaxially textured magnesium oxide (MgO) films on Hastelloy C276 (HC) substrates by ISD at deposition rates of 20-100 Å/s. Scanning electron microscopy of the ISD MgO films showed columnar grain structures with a roof-tile-shaped surface. X-ray pole figure analysis revealed that the c-axis of the ISD MgO films is titled at an angle ≈32° from the substrate normal. A small full-width at half maximum of ≈9° was observed for the φ-scan of MgO films. YBCO films were grown on ISD MgO buffered HC substrates by pulsed laser deposition and were determined to be biaxially aligned with the c-axis parallel to the substrate normal. The orientation relationship between the ISD template and the top YBCO film was investigated by X-ray pole figure analysis and transmission electron microscopy. A transport critical current density of Jc=5.5×10 5 A/cm 2 at 77 K in self-field was measured on a YBCO film that was 0.46-μm thick, 4-mm wide, 10-mm long.

  17. Droplet Impact on Inclined Surfaces for Forensic Bloodstain Analysis

    NASA Astrophysics Data System (ADS)

    Smith, Marc; Lockard, Michael; Neitzel, G. Paul

    2015-11-01

    During a crime scene investigation, bloodstains are used to infer the size, impact angle, and velocity of the blood droplet that produced the stain. This droplet impact process was explored using experiments and numerical simulations of droplets impacting planar, inclined surfaces with different roughness and wetting properties over a range of Reynolds numbers (1,000 - 5,500) and Weber numbers (200 - 2,000) typical of some forensics applications. Results will be presented showing how the size and shape of the final elliptical bloodstain varies with impact angle and surface roughness. The common forensics practice to predict the impact angle is fairly accurate for near-normal impacts, but it under-predicts the angle for oblique impacts less than about 40° and this effect worsens for rougher surfaces. The spreading of the droplet normal to the impact plane is shown to follow that of a droplet under normal impact as the impact velocity increases. This effect is also lessened by increased surface roughness. The reasons for these effects will be explored using a new GPU-based wavelet-adaptive flow simulation, which can resolve the flows near the solid surface and near the moving contact line of these droplets for the large Reynolds and Weber numbers of these experiments. Supported by the National Institute of Justice.

  18. On oblique and parallel shedding behind an inclined plate

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Pettersen, Bjørnar; Andersson, Helge I.; Narasimhamurthy, Vagesh D.

    2013-05-01

    Three-dimensional wake instabilities in the form of oblique shedding and vortex dislocations in the flow past an inclined flat plate of angle of attack 20° and Reynolds number 1000 have been reported earlier [D. Yang, B. Pettersen, H. I. Andersson, and V. D. Narasimhamurthy, Phys. Fluids 24, 084103 (2012)], 10.1063/1.4744982. In the current study, direct numerical simulations were performed to further explore this bifurcation. At lower Reynolds numbers, i.e., well below 525, the three-dimensional wake was found to be stable and in a parallel shedding mode. However, as the Reynolds number increases, it was observed that both parallel and oblique vortex sheddings arose naturally. Vortex dislocations appeared at the juxtaposition of oblique and parallel shedding modes. The velocity signals were analyzed by a wavelet transformation, from which the instantaneous characteristics of three-dimensional vortex shedding were obtained and examined. Results show that the phase difference of shed vortex rollers in the spanwise direction gave a symmetric probability density function. This indicates that both positive and negative shedding angles (relative to the axis of the plate) occur with equal likelihood.

  19. Development and evaluation of the modular inclined screen (MIS)

    SciTech Connect

    Taft, E.P.; Winchell, F.C.; Plizga, A.W.

    1995-12-31

    The Electric Power Research Institute (EPRI) has developed and biologically evaluated a new type of fish diversion screen known as the Modular Inclined Screen (MIS). The MIS is designed to operate at any type of water intake with water velocities approaching the screen of up to 3.1 ms{sup -1}. The biological evaluation of the MIS was conducted in the laboratory with juveniles of eleven species. Fish passage was evaluated at five module velocities ranging from 0.6 to 3.1 ms{sup -1}. Net passage survival with a clean screen typically exceeded 99% at velocities up to 1.8 ms{sup -1} for most species, and exceeded 99% overall (all velocities combined) for channel catfish, coho salmon, brown trout, and Atlantic salmon. Fish passage tests with debris accumulation demonstrated that increases in screen head loss up to 12 cm did not reduce the ability of the MIS to safely and effectively divert fish, depending on species and module velocity. On the basis of these results, EPRI, Niagara Mohawk Power Corporation (NMPC) and other contributors have constructed a prototype MIS at NMPC`s Green Island Hydroelectric Project on the Hudson River. Field evaluations of this first MIS will be conducted in the fall of 1995. In addition to the MIS, the effectiveness of a strobe light system will be studied to determine its ability to divert blueback herring from the river to the MIS.

  20. Evolution of Electrified Films on a Porous Inclined Plane

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Uma; Ranganathan, Usha

    2009-03-01

    The nonlinear stability of a thin conducting film flow down a porous inclined plane, when an electric field acts normal to the plane is considered. It is assumed that the flow through the porous medium is governed by Darcy's law and the characteristic length of the pore space is much smaller than the depth of the fluid layer above. Integral Boundary Layer method is employed in obtaining a set of exact averaged equations for the film flow system. Linear stability results through normal mode analysis reveal that the destabilizing influence of the electric field is further enhanced by the porosity of the medium. Critical Reynolds number for the onset of instability decreases with the increase in the permeability of the porous plane. Weakly nonlinear stability analysis using method of multiple scales divulges the existence of zones due to supercritical stability and subcritical instability. Permanent finite-amplitude waves in the supercritical stable region are portrayed by solving the nonlinear evolution equation numerically in a periodic domain. The parameter ranges that support complex nonlinear dynamics is obtained through a combination of theoretical analysis and numerical experiments.

  1. Numerical Analysis of Orbital Perturbation Effects on Inclined Geosynchronous SAR.

    PubMed

    Dong, Xichao; Hu, Cheng; Long, Teng; Li, Yuanhao

    2016-01-01

    The geosynchronous synthetic aperture radar (GEO SAR) is susceptible to orbit perturbations, leading to orbit drifts and variations. The influences behave very differently from those in low Earth orbit (LEO) SAR. In this paper, the impacts of perturbations on GEO SAR orbital elements are modelled based on the perturbed dynamic equations, and then, the focusing is analyzed theoretically and numerically by using the Systems Tool Kit (STK) software. The accurate GEO SAR slant range histories can be calculated according to the perturbed orbit positions in STK. The perturbed slant range errors are mainly the first and second derivatives, leading to image drifts and defocusing. Simulations of the point target imaging are performed to validate the aforementioned analysis. In the GEO SAR with an inclination of 53° and an argument of perigee of 90°, the Doppler parameters and the integration time are different and dependent on the geometry configurations. Thus, the influences are varying at different orbit positions: at the equator, the first-order phase errors should be mainly considered; at the perigee and apogee, the second-order phase errors should be mainly considered; at other positions, first-order and second-order exist simultaneously. PMID:27598168

  2. Film flow of a suspension down an inclined plane.

    PubMed

    Li, Xiaofan; Pozrikidis, C

    2003-05-15

    A method is developed for simulating the film flow of a suspension of rigid particles with arbitrary shapes down an inclined plane in the limit of vanishing Reynolds number. The problem is formulated in terms of a system of integral equations of the first and second kind for the free-surface velocity and the traction distribution along the particle surfaces involving the a priori unknown particle linear velocity of translation and angular velocity of rotation about designated centres. The problem statement is completed by introducing scalar constraints that specify the force and torque exerted on the individual particles. A boundary-element method is implemented for solving the governing equations for the case of a two-dimensional periodic suspension. The system of linear equations arising from numerical discretization is solved using a preconditioner based on a particle-cluster iterative method recently developed by Pozrikidis (2000 Engng Analysis Bound. Elem. 25, 19-30). Numerical investigations show that the generalized minimal residual (GMRES) method with this preconditioner is significantly more efficient than the plain GMRES method used routinely in boundary-element implementations. Extensive numerical simulations for solitary particles and random suspensions illustrate the effect of the particle shape, size and aspect ratio in semi-finite shear flow, and the effect of free-surface deformability in film flow. PMID:12804218

  3. Absolute intensity measurement of the 4-0 vibration-rotation band of carbon monoxide

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.; Valero, F. P. J.

    1976-01-01

    The absolute intensity of the 4-0 vibration band of CO is measured in spectra obtained using a 25-m base-path multiple-traversal absorption cell and a 5-m scanning spectrometer. The intensities of individual vibration-rotation lines in this band are determined from measurements of their equivalent widths, and absolute values for the rotationless transition moment and the vibration-rotation interaction factor are derived from the measured line strengths. The experimentally obtained vibration-rotation function is compared with a theoretical curve; agreement between theory and experiment is found to be good for the P-branch but poor for the R-branch. It is noted that numerical solutions to the radial Schroedinger equation lead to vibration-rotation function values that are in good agreement with the experiment.

  4. Absolute dose measurements by means of a small cylindrical ionization chamber for very high dose per pulse high energy electron beams

    SciTech Connect

    Karaj, E.; Righi, S.; Di Martino, F.

    2007-03-15

    Very high dose per pulse (3-13 cGy/pulse) high energy electron beams are currently produced by special linear accelerators (linac) dedicated to Intra Operative Radiation Therapy (IORT). The electron beams produced by such linacs are collimated by special Perspex applicators of various size and cylindrically shaped. The biggest problems from the dosimetric point of view are caused by the high dose-per-pulse values and the use of inclined applicators. In this work measurements of absolute dose for the inclined applicators were done by using a small cylindrical ionization chamber, type CC01 (Wellhofer), a parallel plane ionization chamber type Markus (PTW 23343) and radiochromic films type EBT. We show a method which allows calculating the quality correction factors for CC01 chamber with an uncertainty of 1% and the absolute dose value for the inclined applicators using CC01 with an uncertainty of 3.1% for electron beams of energy of 6 and 7 MeV produced by the linac dedicated to IORT Novac7.

  5. An anisotropy- based inclination shallowing correction of the Shepody Fm. of New Brunswick and Nova Scotia and the Deer Lake Group of Newfoundland, Canada.

    NASA Astrophysics Data System (ADS)

    Bilardello, D.; Kodama, K. P.

    2006-12-01

    The North American apparent polar wander path (APWP) for the upper Paleozoic is dominated by red beds, which have been reported to suffer from deposition-/ compaction- induced magnetic inclination shallowing. To apply a correction for inclination shallowing, experiments to measure the magnetic fabric of hematite have been designed and performed together with paleo-magnetic investigations on Lower Carboniferous red beds from the Shepody Fm of New Brunswick and Nova Scotia and from the Deer Lake Group of Newfoundland. The corrected poles have been plotted on the existing APWPs for comparison. In a previous anisotropy of magnetic susceptibility (AMS)-based, inclination correction of the Shepody Fm, IRM acquisition, Lowrie and fold tests revealed secondary maghemite, goethite and primary hematite as magnetic carriers, thus indicating that AMS would measure a composite fabric rather than that of hematite only. These results were confirmed by further anisotropy measurements. Anisotropy of Anhysteretic Remanence (AAR) measurements revealed an absence of fabric for maghemite, while high field (5 T) isothermal remanent magnetization (hf-IRM) anisotropy, cleaned of the low coercivity components, revealed a very distinct depositional fabric for primary hematite. An inclination correction performed using the hf-IRM anisotropy gave a similar result to the AMS-based correction (mean corrected inclinations: 29.1° for AMS and 28.8° for hf-IRM indicating respectively 11.1° and 8° of inclination shallowing). These values are consistent with results obtained from three other hematite and magnetite- bearing Lower Carboniferous rocks from North America: the A95 for the four North American paleopoles decreases from an uncorrected value of 12° to a corrected value of 4.6°. These corrections imply a ~ 6° increase in co-latitude for the average Lower Carboniferous paleopole. To determine the corrected inclinations, individual magnetic particle anisotropy of hematite must be measured

  6. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  7. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  8. The National Geodetic Survey absolute gravity program

    NASA Astrophysics Data System (ADS)

    Peter, George; Moose, Robert E.; Wessells, Claude W.

    1989-03-01

    The National Geodetic Survey absolute gravity program will utilize the high precision afforded by the JILAG-4 instrument to support geodetic and geophysical research, which involves studies of vertical motions, identification and modeling of other temporal variations, and establishment of reference values. The scientific rationale of these objectives is given, the procedures used to collect gravity and environmental data in the field are defined, and the steps necessary to correct and remove unwanted environmental effects are stated. In addition, site selection criteria, methods of concomitant environmental data collection and relative gravity observations, and schedule and logistics are discussed.

  9. An absolute radius scale for Saturn's rings

    NASA Technical Reports Server (NTRS)

    Nicholson, Philip D.; Cooke, Maren L.; Pelton, Emily

    1990-01-01

    Radio and stellar occultation observations of Saturn's rings made by the Voyager spacecraft are discussed. The data reveal systematic discrepancies of almost 10 km in some parts of the rings, limiting some of the investigations. A revised solution for Saturn's rotation pole has been proposed which removes the discrepancies between the stellar and radio occultation profiles. Corrections to previously published radii vary from -2 to -10 km for the radio occultation, and +5 to -6 km for the stellar occultation. An examination of spiral density waves in the outer A Ring supports that the revised absolute radii are in error by no more than 2 km.

  10. Characterization of the DARA solar absolute radiometer

    NASA Astrophysics Data System (ADS)

    Finsterle, W.; Suter, M.; Fehlmann, A.; Kopp, G.

    2011-12-01

    The Davos Absolute Radiometer (DARA) prototype is an Electrical Substitution Radiometer (ESR) which has been developed as a successor of the PMO6 type on future space missions and ground based TSI measurements. The DARA implements an improved thermal design of the cavity detector and heat sink assembly to minimize air-vacuum differences and to maximize thermal symmetry of measuring and compensating cavity. The DARA also employs an inverted viewing geometry to reduce internal stray light. We will report on the characterization and calibration experiments which were carried out at PMOD/WRC and LASP (TRF).

  11. Absolute calibration of the Auger fluorescence detectors

    SciTech Connect

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  12. Absolute angular positioning in ultrahigh vacuum

    SciTech Connect

    Schief, H.; Marsico, V.; Kern, K.

    1996-05-01

    Commercially available angular resolvers, which are routinely used in machine tools and robotics, are modified and adapted to be used under ultrahigh-vacuum (UHV) conditions. They provide straightforward and reliable measurements of angular positions for any kind of UHV sample manipulators. The corresponding absolute reproducibility is on the order of 0.005{degree}, whereas the relative resolution is better than 0.001{degree}, as demonstrated by high-resolution helium-reflectivity measurements. The mechanical setup and possible applications are discussed. {copyright} {ital 1996 American Institute of Physics.}

  13. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  14. Determination of the absolute contours of optical flats

    NASA Technical Reports Server (NTRS)

    Primak, W.

    1969-01-01

    Emersons procedure is used to determine true absolute contours of optical flats. Absolute contours of standard flats are determined and a comparison is then made between standard and unknown flats. Contour differences are determined by deviation of Fizeau fringe.

  15. 757 Path Loss Measurements

    NASA Technical Reports Server (NTRS)

    Horton, Kent; Huffman, Mitch; Eppic, Brian; White, Harrison

    2005-01-01

    Path Loss Measurements were obtained on three (3) GPS equipped 757 aircraft. Systems measured were Marker Beacon, LOC, VOR, VHF (3), Glide Slope, ATC (2), DME (2), TCAS, and GPS. This data will provide the basis for assessing the EMI (Electromagnetic Interference) safety margins of comm/nav (communication and navigation) systems to portable electronic device emissions. These Portable Electronic Devices (PEDs) include all devices operated in or around the aircraft by crews, passengers, servicing personnel, as well as the general public in the airport terminals. EMI assessment capability is an important step in determining if one system-wide PED EMI policy is appropriate. This data may also be used comparatively with theoretical analysis and computer modeling data sponsored by NASA Langley Research Center and others.

  16. Standardization of the cumulative absolute velocity

    SciTech Connect

    O'Hara, T.F.; Jacobson, J.P. )

    1991-12-01

    EPRI NP-5930, A Criterion for Determining Exceedance of the Operating Basis Earthquake,'' was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.

  17. Absolute rates of hole transfer in DNA.

    PubMed

    Senthilkumar, Kittusamy; Grozema, Ferdinand C; Guerra, Célia Fonseca; Bickelhaupt, F Matthias; Lewis, Frederick D; Berlin, Yuri A; Ratner, Mark A; Siebbeles, Laurens D A

    2005-10-26

    Absolute rates of hole transfer between guanine nucleobases separated by one or two A:T base pairs in stilbenedicarboxamide-linked DNA hairpins were obtained by improved kinetic analysis of experimental data. The charge-transfer rates in four different DNA sequences were calculated using a density-functional-based tight-binding model and a semiclassical superexchange model. Site energies and charge-transfer integrals were calculated directly as the diagonal and off-diagonal matrix elements of the Kohn-Sham Hamiltonian, respectively, for all possible combinations of nucleobases. Taking into account the Coulomb interaction between the negative charge on the stilbenedicarboxamide linker and the hole on the DNA strand as well as effects of base pair twisting, the relative order of the experimental rates for hole transfer in different hairpins could be reproduced by tight-binding calculations. To reproduce quantitatively the absolute values of the measured rate constants, the effect of the reorganization energy was taken into account within the semiclassical superexchange model for charge transfer. The experimental rates could be reproduced with reorganization energies near 1 eV. The quantum chemical data obtained were used to discuss charge carrier mobility and hole-transport equilibria in DNA. PMID:16231945

  18. Transient absolute robustness in stochastic biochemical networks.

    PubMed

    Enciso, German A

    2016-08-01

    Absolute robustness allows biochemical networks to sustain a consistent steady-state output in the face of protein concentration variability from cell to cell. This property is structural and can be determined from the topology of the network alone regardless of rate parameters. An important question regarding these systems is the effect of discrete biochemical noise in the dynamical behaviour. In this paper, a variable freezing technique is developed to show that under mild hypotheses the corresponding stochastic system has a transiently robust behaviour. Specifically, after finite time the distribution of the output approximates a Poisson distribution, centred around the deterministic mean. The approximation becomes increasingly accurate, and it holds for increasingly long finite times, as the total protein concentrations grow to infinity. In particular, the stochastic system retains a transient, absolutely robust behaviour corresponding to the deterministic case. This result contrasts with the long-term dynamics of the stochastic system, which eventually must undergo an extinction event that eliminates robustness and is completely different from the deterministic dynamics. The transiently robust behaviour may be sufficient to carry out many forms of robust signal transduction and cellular decision-making in cellular organisms. PMID:27581485

  19. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  20. Sentinel-2/MSI absolute calibration: first results

    NASA Astrophysics Data System (ADS)

    Lonjou, V.; Lachérade, S.; Fougnie, B.; Gamet, P.; Marcq, S.; Raynaud, J.-L.; Tremas, T.

    2015-10-01

    Sentinel-2 is an optical imaging mission devoted to the operational monitoring of land and coastal areas. It is developed in partnership between the European Commission and the European Space Agency. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. It will offer a unique combination of global coverage with a wide field of view (290km), a high revisit (5 days with two satellites), a high resolution (10m, 20m and 60m) and multi-spectral imagery (13 spectral bands in visible and shortwave infra-red domains). CNES is involved in the instrument commissioning in collaboration with ESA. This paper reviews all the techniques that will be used to insure an absolute calibration of the 13 spectral bands better than 5% (target 3%), and will present the first results if available. First, the nominal calibration technique, based on an on-board sun diffuser, is detailed. Then, we show how vicarious calibration methods based on acquisitions over natural targets (oceans, deserts, and Antarctica during winter) will be used to check and improve the accuracy of the absolute calibration coefficients. Finally, the verification scheme, exploiting photometer in-situ measurements over Lacrau plain, is described. A synthesis, including spectral coherence, inter-methods agreement and temporal evolution, will conclude the paper.

  1. Absolute Spectrophotometry of 237 Open Cluster Stars

    NASA Astrophysics Data System (ADS)

    Clampitt, L.; Burstein, D.

    1994-12-01

    We present absolute spectrophotometry of 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M 39. The observations were taken using the Wampler single-channel scanner (Wampler 1966) on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. 21 bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwiths ranging from 32Angstroms to 64 Angstroms. Data are standardized to the Hayes--Latham (1975) system. Our measurements are compared to filter colors on the Johnson BV, Stromgren ubvy, and Geneva U V B_1 B_2 V_1 G systems, as well as to spectrophotometry of a few stars published by Gunn, Stryker & Tinsley and in the Spectrophotometric Standards Catalog (Adelman; as distributed by the NSSDC). Both internal and external comparisons to the filter systems indicate a formal statistical accuracy per bandpass of 0.01 to 0.02 mag, with apparent larger ( ~ 0.03 mag) differences in absolute calibration between this data set and existing spectrophotometry. These data will comprise part of the spectrophotometry that will be used to calibrate the Beijing-Arizona-Taipei-Connecticut Color Survey of the Sky (see separate paper by Burstein et al. at this meeting).

  2. The effect of an inclined landing surface on biomechanical variables during a jumping task

    PubMed Central

    Hagins, Marshall; Pappas, Evangelos; Kremenic, Ian; Orishimo, Karl F.; Rundle, Andrew

    2009-01-01

    Background Professional dancers sustain a high number of injuries. Epidemiological studies have suggested that performing on inclined “raked” stages increases the likelihood of injury. However, no studies have examined if biomechanical differences exist between inclined and flat surfaces during functional tasks, such as landing from a jump. Such differences may provide a biomechanical rationale for differences in injury risk for raked stages. Methods Eight professional dancers performed drop jumps from a 40 cm platform on flat and inclined surfaces while forces, lower extremity kinematics, and electromyographic activity were collected in a controlled laboratory environment. Findings Dancers landed on the laterally inclined surface with significantly higher knee valgus, peak knee flexion, and medial-lateral ground reaction force (GRF) compared to the flat condition. The posterior GRF was higher in the anterior inclined condition compared to the flat condition. In the anterior inclined condition, subjects landed with 1.4° higher knee valgus, 4° more plantarflexion at initial contact, and 3° less dorsiflexion at the end of landing. Interpretation Biomechanical variables that have been suggested to contribute to injury in previous studies are increased in the inclined floor conditions. These findings provide a preliminary biomechanical rationale for differences in injury rates found in observational studies of raked stages. PMID:17826875

  3. Walking on inclines: energetics of locomotion in the ant Camponotus.

    PubMed

    Lipp, Alexandra; Wolf, Harald; Lehmann, Fritz-Olaf

    2005-02-01

    To assess energetic costs during rest and locomotion in a small insect, we measured metabolic rate in freely moving ants Camponotus sp. (average body mass 11.9 mg). The animals ran in a straight respirometric chamber in which locomotor speed and CO2 release were monitored simultaneously using flow-through respirometry and conventional video analysis. In resting intact ants, standard metabolic rate was on average 0.32 ml CO2 g(-1) body mass h(-1). During walking, the ants breathed continuously and metabolic rate increased between 4.3 times (level walking at 0-5 mm s(-1)) and 6.9 times (30 degrees ascent at 85-95 mm s(-1)) over resting rates. Metabolic rate increased linearly with increasing walking speed but superficially leveled off beyond speeds of about 70 mm s(-1). Walking on incline (uphill) or decline slopes (downhill) of up to 60 degrees had only a small effect on energy consumption compared to level walking. During slope walking, total metabolic rate averaged over all running speeds ranged from a minimum of 1.55+/-0.4 (horizontal running) to a maximum of 1.89+/-0.7 ml CO2 h(-1) g(-1) body mass (30 degrees downhill). The mean cost of transport in Camponotus was approximately 130 J g(-1) km(-1). The metabolic requirements in the comparatively small insect Camponotus for walking were mostly in the range expected from data obtained from other insects and small poikilotherms, and from allometric scaling laws. PMID:15695763

  4. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  5. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  6. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a...

  7. Interactive cutting path analysis programs

    NASA Technical Reports Server (NTRS)

    Weiner, J. M.; Williams, D. S.; Colley, S. R.

    1975-01-01

    The operation of numerically controlled machine tools is interactively simulated. Four programs were developed to graphically display the cutting paths for a Monarch lathe, Cintimatic mill, Strippit sheet metal punch, and the wiring path for a Standard wire wrap machine. These programs are run on a IMLAC PDS-ID graphic display system under the DOS-3 disk operating system. The cutting path analysis programs accept input via both paper tape and disk file.

  8. Ted Irving and the Arc of APW Paths

    NASA Astrophysics Data System (ADS)

    Kent, D. V.

    2014-12-01

    Ted Irving's last two published papers neatly encapsulate his seminal contributions to the delineation of ever-important apparent polar wander (APW) paths. His final (210th) paper [Creer & Irving, 2012 Earth Sciences History] describes in detail how Ken Creer and he when still graduate students at Cambridge started to generate and assemble paleomagnetic data for the first APW path, for then only the UK; the paper was published 60 years ago and happened to be Ted's first [Creer, Irving & Runcorn, 1954 JGE]. Only 10 years later, there was already a lengthy reference list of paleomagnetic results available from most continents that had been compiled in pole lists he published in GJRAS from 1960 to 1965 and included in an appendix in his landmark book "Paleomagnetism" [Irving, 1964 Wiley] in support of wide ranging discussions of continental drift and related topics in chapters like 'Paleolatitudes and paleomeridians.' A subsequent innovation was calculating running means of poles indexed to a numerical geologic time scale [Irving, 1977 Nature], which with independent tectonic reconstructions as already for Gondwana allowed constructions of more detailed composite APW paths. His 1977 paper also coined Pangea B for an earlier albeit contentious configuration for the supercontinent that refuses to go away. Gliding over much work on APW tracks and hairpins in the Precambrian, we come to Ted's penultimate (209th) paper [Kent & Irving, 2010 JGR] in which individual poles from short-lived large igneous provinces were grouped and most sedimentary poles, many rather venerable, excluded as likely to be biased by variable degrees of inclination error. The leaner composite APW path helped to resurrect the Baja BC scenario of Cordilleran terrane motions virtually stopped in the 1980s by APW path techniques that relied on a few key but alas often badly skewed poles. The new composite APW path also revealed several major features, such as a huge polar shift of 30° in 15 Myr in the

  9. Multi-Criteria Path Finding

    NASA Astrophysics Data System (ADS)

    Mohammadi, E.; Hunter, A.

    2012-07-01

    Path finding solutions are becoming a major part of many GIS applications including location based services and web-based GIS services. Most traditional path finding solutions are based on shortest path algorithms that tend to minimize the cost of travel from one point to another. These algorithms make use of some cost criteria that is usually an attribute of the edges in the graph network. Providing one shortest path limits user's flexibility when choosing a possible route, especially when more than one parameter is utilized to calculate cost (e.g., when length, number of traffic lights, and number of turns are used to calculate network cost.) K shortest path solutions tend to overcome this problem by providing second, third, and Kth shortest paths. These algorithms are efficient as long as the graphs edge weight does not change dynamically and no other parameters affect edge weights. In this paper we try to go beyond finding shortest paths based on some cost value, and provide all possible paths disregarding any parameter that may affect total cost. After finding all possible paths, we can rank the results by any parameter or combination of parameters, without a substantial increase in time complexity.

  10. Numerical simulation of a sphere moving down an incline with identical spheres placed equally apart

    USGS Publications Warehouse

    Ling, Chi-Hai; Jan, Chyan-Deng; Chen, Cheng-lung; Shen, Hsieh Wen

    1992-01-01

    This paper describes a numerical study of an elastic sphere moving down an incline with a string of identical spheres placed equally apart. Two momentum equations and a moment equation formulated for the moving sphere are solved numerically for the instantaneous velocity of the moving sphere on an incline with different angles of inclination. Input parameters for numerical simulation include the properties of the sphere (the radius, density, Poison's ratio, and Young's Modulus of elasticity), the coefficient of friction between the spheres, and a damping coefficient of the spheres during collision.

  11. Head-up display using an inclined Al2O3 column array.

    PubMed

    Cho, Wen-Hao; Lee, Chao-Te; Kei, Chi-Chung; Liao, Bo-Huei; Chiang, Donyau; Lee, Cheng-Chung

    2014-02-01

    An orderly inclined Al2O3 column array was fabricated by atomic layer deposition and sequential electron beam evaporation using a hollow nanosphere template. The transmittance spectra at various angles of incidence were obtained through the use of a Perkin-Elmer Lambda 900 UV/VIS/NIR spectrometer. The inclined column array could display the image information through a scattering mechanism and was transparent at high viewing angles along the deposition plane. This characteristic of the inclined column array gives it potential for applications in head-up displays in the automotive industry. PMID:24514203

  12. Height compensation using ground inclination estimation in inertial sensor-based pedestrian navigation.

    PubMed

    Park, Sang Kyeong; Suh, Young Soo

    2011-01-01

    In an inertial sensor-based pedestrian navigation system, the position is estimated by double integrating external acceleration. A new algorithm is proposed to reduce z axis position (height) error. When a foot is on the ground, a foot angle is estimated using accelerometer output. Using a foot angle, the inclination angle of a road is estimated. Using this road inclination angle, height difference of one walking step is estimated and this estimation is used to reduce height error. Through walking experiments on roads with different inclination angles, the usefulness of the proposed algorithm is verified. PMID:22164061

  13. Absolute Geodetic Rotation Measurement Using Atom Interferometry

    SciTech Connect

    Stockton, J. K.; Takase, K.; Kasevich, M. A.

    2011-09-23

    We demonstrate a cold-atom interferometer gyroscope which overcomes accuracy and dynamic range limitations of previous atom interferometer gyroscopes. We show how the instrument can be used for precise determination of latitude, azimuth (true north), and Earth's rotation rate. Spurious noise terms related to multiple-path interferences are suppressed by employing a novel time-skewed pulse sequence. Extended versions of this instrument appear capable of meeting the stringent requirements for inertial navigation, geodetic applications of Earth's rotation rate determination, and tests of general relativity.

  14. Absolute geodetic rotation measurement using atom interferometry.

    PubMed

    Stockton, J K; Takase, K; Kasevich, M A

    2011-09-23

    We demonstrate a cold-atom interferometer gyroscope which overcomes accuracy and dynamic range limitations of previous atom interferometer gyroscopes. We show how the instrument can be used for precise determination of latitude, azimuth (true north), and Earth's rotation rate. Spurious noise terms related to multiple-path interferences are suppressed by employing a novel time-skewed pulse sequence. Extended versions of this instrument appear capable of meeting the stringent requirements for inertial navigation, geodetic applications of Earth's rotation rate determination, and tests of general relativity. PMID:22026848

  15. Religious beliefs along the suicidal path in northern Taiwan.

    PubMed

    Fang, Chun-Kai; Lu, Hsin-Chin; Liu, Shen-ing; Sun, Yi-Wen

    2011-01-01

    This study aimed to understand the current inclinations toward depression and compulsion for members of four different religious groups, and to predict religious beliefs along the suicide path through analyzing the lifetime prevalence of suicidal ideation and suicide attempts for members of these religious groups. Participants in this cross-sectional study, which adopted purposive sampling, were members of Christianity, Catholicism, Buddhism, and Taoism in northern Taiwan. In the case of suicide experiences, suicides among people one knows, and tendency toward compulsion and depression, there are statistical differences between the four religions. According to the results, some people with suicidal tendency will attend religious activities; therefore, we predict that religious beliefs play an important role in suicide prevention. PMID:21928599

  16. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  17. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  18. Absolute calibration of ultraviolet filter photometry

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Fairchild, T.; Code, A. D.

    1972-01-01

    The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.

  19. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  20. Absolute geostrophic currents in global tropical oceans

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Yuan, Dongliang

    2016-03-01

    A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.

  1. Absolute Measurement of Electron Cloud Density

    SciTech Connect

    Covo, M K; Molvik, A W; Cohen, R H; Friedman, A; Seidl, P A; Logan, G; Bieniosek, F; Baca, D; Vay, J; Orlando, E; Vujic, J L

    2007-06-21

    Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 {micro}s duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.

  2. Absolute instability of a viscous hollow jet

    NASA Astrophysics Data System (ADS)

    Gañán-Calvo, Alfonso M.

    2007-02-01

    An investigation of the spatiotemporal stability of hollow jets in unbounded coflowing liquids, using a general dispersion relation previously derived, shows them to be absolutely unstable for all physical values of the Reynolds and Weber numbers. The roots of the symmetry breakdown with respect to the liquid jet case, and the validity of asymptotic models are here studied in detail. Asymptotic analyses for low and high Reynolds numbers are provided, showing that old and well-established limiting dispersion relations [J. W. S. Rayleigh, The Theory of Sound (Dover, New York, 1945); S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1961)] should be used with caution. In the creeping flow limit, the analysis shows that, if the hollow jet is filled with any finite density and viscosity fluid, a steady jet could be made arbitrarily small (compatible with the continuum hypothesis) if the coflowing liquid moves faster than a critical velocity.

  3. Stitching interferometry: recent results and absolute calibration

    NASA Astrophysics Data System (ADS)

    Bray, Michael

    2004-02-01

    Stitching Interferometry is a method of analysing large optical components using a standard "small" interferometer. This result is obtained by taking multiple overlapping images of the large component, and numerically "stitching" these sub-apertures together. We have already reported the industrial use our Stitching Interferometry systems (Previous SPIE symposia), but experimental results had been lacking because this technique is still new, and users needed to get accustomed to it before producing reliable measurements. We now have more results. We will report user comments and show new, unpublished results. We will discuss sources of error, and show how some of these can be reduced to arbitrarily small values. These will be discussed in some detail. We conclude with a few graphical examples of absolute measurements performed by us.

  4. Swarm's Absolute Scalar Magnetometer metrological performances

    NASA Astrophysics Data System (ADS)

    Leger, J.; Fratter, I.; Bertrand, F.; Jager, T.; Morales, S.

    2012-12-01

    The Absolute Scalar Magnetometer (ASM) has been developed for the ESA Earth Observation Swarm mission, planned for launch in November 2012. As its Overhauser magnetometers forerunners flown on Oersted and Champ satellites, it will deliver high resolution scalar measurements for the in-flight calibration of the Vector Field Magnetometer manufactured by the Danish Technical University. Latest results of the ground tests carried out to fully characterize all parameters that may affect its accuracy, both at instrument and satellite level, will be presented. In addition to its baseline function, the ASM can be operated either at a much higher sampling rate (burst mode at 250 Hz) or in a dual mode where it also delivers vector field measurements as a by-product. The calibration procedure and the relevant vector performances will be discussed.

  5. Absolute nonlocality via distributed computing without communication

    NASA Astrophysics Data System (ADS)

    Czekaj, Ł.; Pawłowski, M.; Vértesi, T.; Grudka, A.; Horodecki, M.; Horodecki, R.

    2015-09-01

    Understanding the role that quantum entanglement plays as a resource in various information processing tasks is one of the crucial goals of quantum information theory. Here we propose an alternative perspective for studying quantum entanglement: distributed computation of functions without communication between nodes. To formalize this approach, we propose identity games. Surprisingly, despite no signaling, we obtain that nonlocal quantum strategies beat classical ones in terms of winning probability for identity games originating from certain bipartite and multipartite functions. Moreover we show that, for a majority of functions, access to general nonsignaling resources boosts success probability two times in comparison to classical ones for a number of large enough outputs. Because there are no constraints on the inputs and no processing of the outputs in the identity games, they detect very strong types of correlations: absolute nonlocality.

  6. Reconfigurable data path processor

    NASA Technical Reports Server (NTRS)

    Donohoe, Gregory (Inventor)

    2005-01-01

    A reconfigurable data path processor comprises a plurality of independent processing elements. Each of the processing elements advantageously comprising an identical architecture. Each processing element comprises a plurality of data processing means for generating a potential output. Each processor is also capable of through-putting an input as a potential output with little or no processing. Each processing element comprises a conditional multiplexer having a first conditional multiplexer input, a second conditional multiplexer input and a conditional multiplexer output. A first potential output value is transmitted to the first conditional multiplexer input, and a second potential output value is transmitted to the second conditional multiplexer output. The conditional multiplexer couples either the first conditional multiplexer input or the second conditional multiplexer input to the conditional multiplexer output, according to an output control command. The output control command is generated by processing a set of arithmetic status-bits through a logical mask. The conditional multiplexer output is coupled to a first processing element output. A first set of arithmetic bits are generated according to the processing of the first processable value. A second set of arithmetic bits may be generated from a second processing operation. The selection of the arithmetic status-bits is performed by an arithmetic-status bit multiplexer selects the desired set of arithmetic status bits from among the first and second set of arithmetic status bits. The conditional multiplexer evaluates the select arithmetic status bits according to logical mask defining an algorithm for evaluating the arithmetic status bits.

  7. Film cooling from inclined cylindrical holes using large eddy simulations

    NASA Astrophysics Data System (ADS)

    Peet, Yulia V.

    2006-12-01

    The goal of the present study is to investigate numerically the physics of the flow, which occurs during the film cooling from inclined cylindrical holes, Film cooling is a technique used in gas turbine industry to reduce heat fluxes to the turbine blade surface. Large Eddy Simulation (LES) is performed modeling a realistic film cooling configuration, which consists of a large stagnation-type reservoir, feeding an array of discrete cooling holes (film holes) flowing into a flat plate turbulent boundary layer. Special computational methodology is developed for this problem, involving coupled simulations using multiple computational codes. A fully compressible LES code is used in the area above the flat plate, while a low Mach number LES code is employed in the plenum and film holes. The motivation for using different codes comes from the essential difference in the nature of the flow in these different regions. Flowfield is analyzed inside the plenum, film hole and a crossflow region. Flow inside the plenum is stagnating, except for the region close to the exit, where it accelerates rapidly to turn into the hole. The sharp radius of turning at the trailing edge of the plenum pipe connection causes the flow to separate from the downstream wall of the film hole. After coolant injection occurs, a complex flowfield is formed consisting of coherent vortical structures responsible for bringing hot crossflow fluid in contact with the walls of either the film hole or the blade, thus reducing cooling protection. Mean velocity and turbulent statistics are compared to experimental measurements, yielding good agreement for the mean flowfield and satisfactory agreement for the turbulence quantities. LES results are used to assess the applicability of basic assumptions of conventional eddy viscosity turbulence models used with Reynolds-averaged (RANS) approach, namely the isotropy of an eddy viscosity and thermal diffusivity. It is shown here that these assumptions do not hold

  8. Electrified film on a porous inclined plane: Dynamics and stability

    NASA Astrophysics Data System (ADS)

    Uma, B.; Usha, R.

    2010-07-01

    The time evolution of a thin conducting liquid film flowing down a porous inclined substrate is investigated when an electric field acts normal to the substrate. It is assumed that the flow through the porous medium is governed by Darcy’s law together with Beavers-Joseph condition. Under the assumption of small permeability relative to the thickness of the overlying fluid layer, the flow is decoupled from the filtration flow through the porous medium. A slip condition at the bottom is used to incorporate the effects of the permeability of the substrate. From the set of exact averaged equations derived using integral boundary method for the film thickness and for the flow rate, a nonlinear evolution equation for the film thickness is derived through a long-wave approximation. A linear stability analysis of the base flow is performed and the critical Reynolds number is obtained. The results reveal that the substrate porosity in general destabilizes the liquid film flow and the presence of the electric field enhances this destabilizing effect. A weakly nonlinear stability analysis divulges the existence of supercritical stable and subcritical unstable zones in the wave number/Reynolds number parameter space and the results demonstrate how the neutral curves change as the intensity of the electric filed or the permeability of the porous medium is varied. The numerical solution of the nonlinear evolution equation in a periodic domain reveals that the base flow yields to surface structures that are either time independent waves of permanent form that propagate or time-dependent modes that oscillate slightly in the amplitude. Further, it is observed that the shape and amplitude of long-time waveforms are influenced by the permeability of the porous medium as well as by the applied electric field. The results reveal that the destabilization induced by the electric field in an otherwise stable film over a porous medium is exhibited in the form of traveling waves of finite

  9. Electrified film on a porous inclined plane: dynamics and stability.

    PubMed

    Uma, B; Usha, R

    2010-07-01

    The time evolution of a thin conducting liquid film flowing down a porous inclined substrate is investigated when an electric field acts normal to the substrate. It is assumed that the flow through the porous medium is governed by Darcy's law together with Beavers-Joseph condition. Under the assumption of small permeability relative to the thickness of the overlying fluid layer, the flow is decoupled from the filtration flow through the porous medium. A slip condition at the bottom is used to incorporate the effects of the permeability of the substrate. From the set of exact averaged equations derived using integral boundary method for the film thickness and for the flow rate, a nonlinear evolution equation for the film thickness is derived through a long-wave approximation. A linear stability analysis of the base flow is performed and the critical Reynolds number is obtained. The results reveal that the substrate porosity in general destabilizes the liquid film flow and the presence of the electric field enhances this destabilizing effect. A weakly nonlinear stability analysis divulges the existence of supercritical stable and subcritical unstable zones in the wave number/Reynolds number parameter space and the results demonstrate how the neutral curves change as the intensity of the electric filed or the permeability of the porous medium is varied. The numerical solution of the nonlinear evolution equation in a periodic domain reveals that the base flow yields to surface structures that are either time independent waves of permanent form that propagate or time-dependent modes that oscillate slightly in the amplitude. Further, it is observed that the shape and amplitude of long-time waveforms are influenced by the permeability of the porous medium as well as by the applied electric field. The results reveal that the destabilization induced by the electric field in an otherwise stable film over a porous medium is exhibited in the form of traveling waves of finite

  10. Path Integral Simulations of Graphene

    NASA Astrophysics Data System (ADS)

    Yousif, Hosam

    2007-10-01

    Some properties of graphene are explored using a path integral approach. The path integral method allows us to simulate relatively large systems using monte carlo techniques and extract thermodynamic quantities. We simulate the effects of screening a large external charge potential, as well as conductivity and charge distributions in graphene sheets.

  11. Formation of Close-in Super-Earths by Giant Impacts: Effects of Initial Eccentricities and Inclinations of Protoplanets

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yuji; Kokubo, Eiichiro

    2015-12-01

    Recent exoplanet observations are revealing the eccentricity and inclination distributions of exoplanets. Most of observed super-Earths have small eccentricities ~ 0.01 - 0.1 and small inclinations ~ 0.03 rad (e.g., Fabrycky et al., 2014). These distributions are results of their formation processes. N-body simulations have been used to investigate accretion of close-in super-Earths (e.g., Hansen & Murray 2012, Ogihara et al. 2015). Hansen & Murray (2013) showed that the averaged eccentricity of close-in super-Earths formed through giant impacts in gas-free and no planetesimal environment is around 0.1. In the giant impact stage, the eccentricities and inclinations are pumped up by gravitational scattering and damped by collisions. Matsumoto et al. (2015) found that the eccentricity damping rate by a collision depends on the eccentricity and inclination and thus affects the eccentricity and inclination of planets. We investigate the effect of initial eccentricities and inclinations of protoplanets on eccentricities and inclinations of planets. We perform N-body simulations with systematically changing initial eccentricities and inclinations of protoplanets independently. We find that the eccentricities and inclinations of planets barely depend on the initial eccentricities of protoplanets although the collision timescale is changed. This means that initial eccentricities of protoplanets are well relaxed through scattering and collisions. On the other hand, the initial inclinations of protoplanets affect the inclination of planets since they are not relaxed during the giant impact stage. Since the collisional timescale increases with inclinations, protoplanets with high inclinations tend to interact longer until they collide with each other. As a result, planets get large eccentricities, and the number of planets becomes small. The observed eccentricities and inclinations of super-Earths can be reproduced by giant impacts of protoplanets with inclinations ~ 10-3 -10

  12. Comparison of femoral inclination angle measurements in dysplastic and nondysplastic dogs of different breeds.

    PubMed

    Sarierler, M

    2004-01-01

    In this study, inclination angle of the femoral head and neck was measured on 484 limbs of 242 dogs belonging to 7 breeds, examined for hip dysplasia. These inclination angles were compared according to age, sex and joint laxity, evaluated with Subluxation Index (SI) and Norberg angle (NA) results. The findings indicate that (a) there was a minimal (nonsignificant) difference in femoral inclination angle between the dysplastic and nondysplastic dogs belonging to 7 breeds; (b) although there was no significant difference in femoral inclination angle between the nondysplastic dogs belonging to 4 breeds (Pointer, Irish Setter, Golden Retriever and German Shepherd), a significant difference was observed between Doberman and Labrador, and between Anatolian Karabash and the other six breeds (p < 0.001). Age and sex did not affect the femoral neck angle. PMID:15168756

  13. Muscular activity of lower limb muscles associated with working on inclined surfaces

    PubMed Central

    Lu, Ming-Lun; Kincl, Laurel; Lowe, Brian; Succop, Paul; Bhattacharya, Amit

    2015-01-01

    This study investigated effects of visual cues, muscular fatigue, task performance and experience of working on inclined surfaces on activity of postural muscles in the lower limbs associated with maintaining balance on three inclined surfaces—0°, 14° and 26°. Normalized electromyographic (NEMG) data were collected on 44 professional roofers bilaterally from the rectus femoris, biceps femoris, tibialii anterior, and gastrocnemii medial muscle groups. The 50th and 95th percentile normalized EMG amplitudes were used as EMG variables. Results showed that inclination angle and task performance caused a significant increase in the NEMG amplitudes of all postural muscles. Visual cues were significantly associated with a decrease in the 95th percentile EMG amplitude for the right gastrocnemius medial and tibialis anterior. Fatigue was related to a significant decrease in the NEMG amplitude for the rectus femoris. Experience of working on inclined surfaces did not have a significant effect on the NEMG amplitude. PMID:25331562

  14. 30 CFR 250.461 - What are the requirements for directional and inclination surveys?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling... of the directionally computed inclinations and azimuths. (e) If you drill within 500 feet of...

  15. Declination and inclination errors in experimentally deposited specularite-bearing sand

    USGS Publications Warehouse

    Bressler, S.L.; Elston, D.P.

    1980-01-01

    Naturally disaggregated specularite-bearing sandstone from the Triassic Moenkopi Formation, artificially deposited in controlled magnetic fields of ???5 ?? 10-2 mT, acquires a stable remanent magnetization that has systematic errors in inclination and declination. Inclinations about 12?? shallower than the applied fields are produced by deposition on a horizontal surface in still water. Deposition from flowing water on a surface inclined 6-10?? results in inclination errors of as much as 20??. Water flowing obliquely to the applied field results in declination errors of about 10??, with declinations systematically rotated toward the upstream direction of current flow. These experimental results indicate that specularite-bearing sediment responds to the earth's field in a manner similar to magnetite-bearing sediment, and support observational evidence for a primary magnetization of depositional origin in specularite in red beds of the Moenkopi Formation. ?? 1980.

  16. Numerical investigation of mixed convective hydromagnetic nonlinear nanofluid flow past an inclined plate

    NASA Astrophysics Data System (ADS)

    Anjali Devi, S. P.; Suriyakumar, P.

    2013-09-01

    The nonlinear, steady, mixed convective, two-dimensional laminar hydromagnetic boundary layer flow of copper-water and alumina-water nanofluids over an inclined flat plate with an angle of inclination α in the presence of uniform transverse magnetic field is investigated in this work. The governing nonlinear partial differential equations of the problem are transformed into nonlinear ordinary differential equations by utilizing suitable similarity transformations and the resulting nonlinear ordinary differential equations are solved numerically using MATLAB. Numerical results for dimensionless velocity and temperature of the nanofluid flows are obtained and computations for the various values of Magnetic interaction parameter, angle of inclination, volume fraction, Prandtl number and mixed convection parameter. The range of volume fraction of nanofluids and the angle of inclination under study are as follows: 0.00 ≤ φ ≤ 0.10 and 0° ≤ α ≤ 60°. The results are displayed graphically to show the interesting aspects of the nanofluids.

  17. Collabortive Authoring of Walden's Paths

    SciTech Connect

    Li, Yuanling; Bogen II, Paul Logasa; Pogue, Daniel; Furuta, Richard Keith; Shipman, Frank Major

    2012-01-01

    This paper presents a prototype of an authoring tool to allow users to collaboratively build, annotate, manage, share and reuse collections of distributed resources from the World Wide Web. This extends on the Walden’s Path project’s work to help educators bring resources found on the World Wide Web into a linear contextualized structure. The introduction of collaborative authoring feature fosters collaborative learning activities through social interaction among participants, where participants can coauthor paths in groups. Besides, the prototype supports path sharing, branching and reusing; specifically, individual participant can contribute to the group with private collections of knowledge resources; paths completed by group can be shared among group members, such that participants can tailor, extend, reorder and/or replace nodes to have sub versions of shared paths for different information needs.

  18. Vortex-induced vibrations of a flexibly-mounted inclined cylinder

    NASA Astrophysics Data System (ADS)

    Jain, Anil; Modarres-Sadeghi, Yahya

    2013-11-01

    The majority of studies on vortex-induced vibrations of a flexibly-mounted rigid cylinder are for the cases where the flow direction is perpendicular to the long axis of the structure. However, in many engineering applications, such as cable stays in bridges and mooring lines of floating offshore wind turbines, the flow direction may not be perpendicular to the structure. To understand the vortex shedding behind a fixed inclined cylinder, the Independence Principle (IP) has been used. The IP assumes that an inclined cylinder behaves similarly to a normal-incidence case, if only the component of the free stream velocity normal to the cylinder axis is considered. The IP neglects the effect of the axial component of the flow, which seems reasonable for small angles of inclination, but not for large angles. In the present study, a series of experiments have been conducted on a flexibly-mounted rigid cylinder placed inclined to the oncoming flow with various angles of inclination (0°<θ<75°) in a range of Reynolds numbers from 500 to 4000 to investigate how the angle of inclination affects VIV. A rigid cylinder was mounted on springs, and air bearings were used to reduce the structural damping of the system. The system was placed in the test-section of a recirculating water tunnel and the crossflow displacements were measured at each flow velocity. Even at high angles of inclination, large-amplitude oscillations were observed. As the angle of inclination was increased, the lock-in range (the range of reduced flow velocities for which the cylinder oscillates with a large amplitude) started at a higher reduced velocity. When only the normal component of the oncoming flow was considered, the onset of lock-in was observed to be at the same normalized flow velocity for all angles of inclination except for 75°. However, the width of the lock-in region, its pattern, the maximum amplitude of oscillations and its corresponding normalized reduced velocity were not following

  19. Phase states of a 2D easy-plane ferromagnet with strong inclined anisotropy

    SciTech Connect

    Fridman, Yu. A. Klevets, F. N.; Gorelikov, G. A.; Meleshko, A. G.

    2012-12-15

    We investigate the spin states of a 2D film exhibiting easy-axis anisotropy and a strong single-ion inclined anisotropy whose axis forms a certain angle with the normal to the film surface. Such a system may have an angular ferromagnetic phase, a spatially inhomogeneous state, and a quadrupole phase, whose realization depends substantially on the inclined anisotropy and the orientation of the wavevector in the film plane.

  20. Inclined edge crack in two bonded elastic quarter planes under out-of-plane loading

    NASA Astrophysics Data System (ADS)

    Hwang, E. H.; Choi, S. R.; Earmme, Y. Y.

    1992-08-01

    The problem of the interfacial edge crack in which the crack-inclination angle = zero is solved analytically by means of the Wiener-Hopf technique with the Mellin transform. The results are found to confirm the result by Bassani and Erdogan (1979) showing that there is no stress singularity for the interface perpendicular to the free boundary at the junction with a straight inclined interface with no crack.

  1. INTERACTION OF A GIANT PLANET IN AN INCLINED ORBIT WITH A CIRCUMSTELLAR DISK

    SciTech Connect

    Marzari, F.; Nelson, Andrew F. E-mail: andy.nelson@lanl.go

    2009-11-10

    We investigate the dynamical evolution of a Jovian-mass planet injected into an orbit highly inclined with respect to its nesting gaseous disk. Planet-planet scattering induced by convergent planetary migration and mean motion resonances may push a planet into such an out-of-plane configuration with inclinations as large as 20{sup 0}-30{sup 0}. In this scenario, the tidal interaction of the planet with the disk is more complex and, in addition to the usual Lindblad and corotation resonances, it also involves inclination resonances responsible for bending waves. We have performed three-dimensional hydrodynamic simulations of the disk and of its interactions with the planet with a smoothed particle hydrodynamics code. A main result is that the initial large eccentricity and inclination of the planetary orbit are rapidly damped on a timescale of the order of 10{sup 3} yr, almost independently of the initial semimajor axis and eccentricity of the planet. The disk is warped in response to the planet perturbations and it precesses. Inward migration also occurs when the planet is inclined, and it has a drift rate that is intermediate between type I and type II migration. The planet is not able to open a gap until its inclination becomes lower than approx10{sup 0}, when it also begins to accrete a significant amount of mass from the disk.

  2. Simulations of Seasonal and Latitudinal Variations in Leaf Inclination Angle Distribution: Implications for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Huemmrich, Karl F.

    2013-01-01

    The leaf inclination angle distribution (LAD) is an important characteristic of vegetation canopy structure affecting light interception within the canopy. However, LADs are difficult and time consuming to measure. To examine possible global patterns of LAD and their implications in remote sensing, a model was developed to predict leaf angles within canopies. Canopies were simulated using the SAIL radiative transfer model combined with a simple photosynthesis model. This model calculated leaf inclination angles for horizontal layers of leaves within the canopy by choosing the leaf inclination angle that maximized production over a day in each layer. LADs were calculated for five latitude bands for spring and summer solar declinations. Three distinct LAD types emerged: tropical, boreal, and an intermediate temperate distribution. In tropical LAD, the upper layers have a leaf angle around 35 with the lower layers having horizontal inclination angles. While the boreal LAD has vertical leaf inclination angles throughout the canopy. The latitude bands where each LAD type occurred changed with the seasons. The different LADs affected the fraction of absorbed photosynthetically active radiation (fAPAR) and Normalized Difference Vegetation Index (NDVI) with similar relationships between fAPAR and leaf area index (LAI), but different relationships between NDVI and LAI for the different LAD types. These differences resulted in significantly different relationships between NDVI and fAPAR for each LAD type. Since leaf inclination angles affect light interception, variations in LAD also affect the estimation of leaf area based on transmittance of light or lidar returns.

  3. A secular model for efficient exploration of mutually-inclined planetary systems

    NASA Astrophysics Data System (ADS)

    Deitrick, Russell; Barnes, Rory

    2015-01-01

    Dynamical studies of exoplanets largely assume coplanarity because of the lack of inclination information in many cases. However, the multiplanet system Upsilon Andromedae has orbital planes inclined by 30 degrees, models of planet-planet scattering predict large mutual inclinations, and astrometry missions such as Gaia have the power to reveal the 3 dimensional architecture of planetary systems. As the dynamics of systems with non-planar orbits will be key to understanding origins, and ultimately habitability where applicable, we present a computationally efficient model for the orbital evolution of planetary systems with modest inclinations and eccentricities which are not in a mean motion resonance. Specifically, our model is based on the disturbing function and extends to 4th order in eccentricity and inclination. We present comparisons to N-body models for known systems, such as the Solar System and Upsilon Andromedae, and hypothetical systems with a range of orbital configurations. We describe the eccentricity and inclination conditions under which the model is valid. We further calculate the rotational evolution of planets based on the orbital evolution and the stellar torque and find a wide range of obliquity evolution is possible. As obliquity is a key driver of planetary climate, Earth-like planets in non-planar systems may have climates dominated by their orbital evolution.

  4. Proposal of a novel compact P-band magnetically insulated transmission line oscillator with inclined vanes

    SciTech Connect

    Zhang, Xiaoping Dang, Fangchao; Li, Yangmei; Jin, Zhenxing

    2015-06-15

    In this paper, we present a novel compact P-band magnetically insulated transmission line oscillator (MILO) with specially inclined slow-wave-structure (SWS) vanes to decrease its total dimension and weight. The dispersion characteristics of the inclined SWS are investigated in detail and made comparisons with that of the traditional straight SWS. The results show that the inclined SWS is more advantageous in operating on a steady frequency in a wide voltage range and has a better asymmetric mode segregation and a relatively large band-gap between the TM{sub 00} and TM{sub 01} modes which are in favor of avoiding the asymmetric and transverse mode competition. Besides, the transverse dimension of the proposed novel inclined SWS with the same operation frequency is decreased by about 50%, and correspondingly the device volume shrinks remarkably to its 0.35 times. In particle-in-cell simulation, the electron bunching spokes are obviously formed in the inclined SWS, and a P-band high-power microwave with a power of 5.8 GW, frequency of 645 MHz, and efficiency of 17.2% is generated by the proposed device, which indicates the feasibility of the compact design with the inclined vanes at the P-band.

  5. Collisional Evolution of High-Inclination Asteroids: Implications for Asteroid Strength

    NASA Astrophysics Data System (ADS)

    O'Brien, David P.; Michel, P.; Jutzi, M.

    2009-09-01

    Asteroids with inclinations larger than 20 degrees collide with one another, and with lower-inclination asteroids, with a velocity roughly twice as large as the average collisional velocity in the asteroid belt ( 10 km/sec for high-inclination bodies vs. 5 km/sec main belt average). Thus, their size distribution can potentially evolve differently than the main belt as a whole, for two reasons: 1) the larger collision velocity means that a smaller impactor can lead to their catastrophic disruption; and 2) the energy needed for catastrophic disruption is likely a function of collision velocity [1]. Using a collisional evolution model [2,3] modified to treat two interacting populations, as well as new velocity-dependent scaling laws for asteroid collisional disruption, we study the possible differences in the size distribution of high-inclination asteroids that may result from their increased collision velocity. Recent observations suggest that the size distribution of asteroids around a kilometer in diameter may be shallower for high-inclination asteroids than for low-inclination asteroids [4]. We will discuss the implications that such observational constraints have for the collisional properties of asteroids, namely their strength against catastrophic disruption and how it varies with impact velocity. References: [1] Benz and Asphaug (1999), Icarus 142, 5-20. [2] Bottke et al. (2005), Icarus 175, 111-140. [3] O'Brien (2009), Icarus, in press. [4] Terai and Itoh (2008), ACM 2008, abstract #8215.

  6. The effects of forward and backward walking according to treadmill inclination in children with cerebral palsy

    PubMed Central

    Kim, Won-hyo; Kim, Won-bok; Yun, Chang-kyo

    2016-01-01

    [Purpose] This study investigated the effects of forward and backward walking using different treadmill incline positions on lower muscle activity in children with cerebral palsy, to provide baseline data for gait training intensity. [Subjects and Methods] Nineteen subjects with cerebral palsy walked forward and backward at a self-selected pace on a treadmill with inclines of 0%, 5%, 10%, and 15%. Activation of the rectus femoris, biceps femoris, tibialisanterior, and lateral gastrocnemius was measured using surface electromyography during the stance phase. [Results] As treadmill incline increased during forward walking, muscle activation of the paralyzed lower limbs did not significantly change. However, as treadmill incline increased during backward walking, rectus femoris activation significantly increased and a significant difference was found between treadmill inclines of 0% and 10%. A comparison of backward and forward walking showed a significant difference in rectus femoris activation at treadmill inclines of 0%, 5%, and 10%. Activation of the tibialis anterior was only significantly higher for backward walking at the 10% gradient. [Conclusion] Backward walking may strengthen the rectus femoris and tibialis anterior in walking training for cerebral palsy. Gradient adjustment of the treadmill can be used to select the intensity of walking training. PMID:27313373

  7. The metabolic cost of walking on an incline in the Peacock (Pavo cristatus)

    PubMed Central

    Wilkinson, Holly; Thavarajah, Nathan

    2015-01-01

    Altering speed and moving on a gradient can affect an animal’s posture and gait, which in turn can change the energetic requirements of terrestrial locomotion. Here, the energetic and kinematic effects of locomoting on an incline were investigated in the Indian peacock, Pavo cristatus. The mass-specific metabolic rate of the Indian peacock was elevated on an incline, but this change was not dependent on the angle ascended and the cost of lifting remained similar between the two inclines (+5 and +7°). Interestingly, the Indian peacock had the highest efficiency when compared to any other previously studied avian biped, despite the presence of a large train. Duty factors were higher for birds moving on an incline, but there was no difference between +5 and +7°. Our results highlight the importance of investigating kinematic responses during energetic studies, as these may enable explanation of what is driving the underlying metabolic differences when moving on inclines. Further investigations are required to elucidate the underlying mechanical processes occurring during incline movement. PMID:26056619

  8. Pathways with PathWhiz.

    PubMed

    Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S

    2015-07-01

    PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. PMID:25934797

  9. Pathways with PathWhiz

    PubMed Central

    Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S.

    2015-01-01

    PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. PMID:25934797

  10. 14 CFR 23.57 - Takeoff path.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff path. 23.57 Section 23.57... path. For each commuter category airplane, the takeoff path is as follows: (a) The takeoff path extends... completed; and (1) The takeoff path must be based on the procedures prescribed in § 23.45; (2) The...

  11. 14 CFR 23.57 - Takeoff path.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Takeoff path. 23.57 Section 23.57... path. For each commuter category airplane, the takeoff path is as follows: (a) The takeoff path extends... completed; and (1) The takeoff path must be based on the procedures prescribed in § 23.45; (2) The...

  12. Modeling drop impacts on inclined flowing soap films

    NASA Astrophysics Data System (ADS)

    Basu, Saikat; Yawar, Ali; Concha, Andres; Bandi, Mahesh

    2015-11-01

    Small drops impinging on soap films flowing at an angle primarily exhibit three fundamental regimes of post-impact dynamics: (a) the drop bounces off the film surface, (b) it coalesces with the downstream flow, and (c) it pierces through the film. During impact, the drop deforms along with a simultaneous, almost elastic deformation of the film transverse to the stream direction. Hence, the governing dynamics for this interaction present the rare opportunity to explore the in-tandem effects of elasticity and hydrodynamics alike. In this talk, we outline the analytical framework to study the drop impact dynamics. The model assumes a deformable drop and a deformable three-dimensional soap film and invokes a parametric study to qualify the three mentioned impact types. The physical parameters include the impact angle, drop impact speed, and the diameters of the drop prior to and during impact when it deforms and spreads out. Our model system offers a path towards optimization of interactions between a spray and a flowing liquid.

  13. Tapped-Hole Vent Path

    NASA Technical Reports Server (NTRS)

    Chandler, J. A.

    1983-01-01

    Long helical vent path cools and releases hot pyrotechnical gas that exits along its spiraling threads. Current design uses 1/4-28 threads with outer diameter of stud reduced by 0.025 in. (0.62 mm). To open or close gassampler bottle, pyrotechnic charges on either one side or other of valve cylinder are actuated. Gases vented slowly over long path are cool enough to present no ignition hazard. Vent used to meter flow in refrigeration, pneumaticcontrol, and fluid-control systems by appropriately adjusting size and length of vent path.

  14. Path Integrals on Ultrametric Spaces.

    NASA Astrophysics Data System (ADS)

    Blair, Alan

    A framework for the study of path integrals on adelic spaces is developed, and it is shown that a family of path space measures on the localizations of an algebraic number field may, under certain conditions, be combined to form a global path space measure on its adele ring. An operator on the field of p-adic numbers analogous to the harmonic oscillator operator is then analyzed, and used to construct an Ornstein-Uhlenbeck type process on the adele ring of the rationals. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).

  15. Models of the geodynamo over geologic time and the inclination test of the GAD hypothesis

    NASA Astrophysics Data System (ADS)

    Heimpel, M. H.

    2012-12-01

    The assumption that Earth's mean magnetic field has been a geocentric axial dipole (GAD) over geologic time is fundamental to paleomagnetism and plate-tectonics. Previous models have linked inclination distributions to latitudinal heat flow variations (Bloxham, 2000). While verifying and extending those previous results, I show here that radial heat flow structure controls geomagnetic field morphology as well. The inclination test of the GAD hypothesis (Evans,1976) is used to interpret numerical dynamo models, some with latitudinally variable buoyancy flux boundary conditions and others with uniform flux boundary conditions. All of the models are chosen to be Earth-like, and at or near the polarity reversing dynamical regime. As was found in previous work, the global inclination distribution is a function of the buoyancy flux at the core-mantle boundary (CMB). However, I find here that the sign of a latitudinally quadrupolar variable flux condition is critical for dynamo stability. Enhanced polar cooling causes inclination shallowing and tends to stabilize the dynamos to reversals, while enhanced equatorial cooling destabilizes the dynamo, resulting in complex field morphology and high reversal frequency. The uniform flux models represent three convective states of the mantle and core. 1. Present era Earth - likely a typical state of the geodynamo. 2. Global convective overturn, associated with flood basalt volcanism, anomalous magnetic reversal frequency, climate change and mass extinctions. 3. Ancient Earth prior to solid inner core formation. For these uniform flux models the inclination distribution anomaly scales with the relative buoyancy flux at the CMB versus the inner core boundary. Consistent with the CALS10k model of Earth's magnetic field over the past ten millennia (Korte et al., 2011), the present era Earth-like dynamos are GAD-like, with very small time-averaged inclination anomalies. In contrast, the global overturn and ancient Earth dynamos show

  16. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    SciTech Connect

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  17. Absolute surface energy for zincblende semiconductors

    NASA Astrophysics Data System (ADS)

    Zhang, S. B.; Wei, Su-Huai

    2003-03-01

    Recent advance in nanosciences requires the determination of surface (or facet) energy of semiconductors, which is often difficult due to the polar nature of some of the most important surfaces such as the (111)A/(111)B surfaces. Several approaches have been developed in the past [1-3] to deal with the problem but an unambiguous division of the polar surface energies is yet to come [2]. Here we show that an accurate division is indeed possible for the zincblende semiconductors and will present the results for GaAs, ZnSe, and CuInSe2 [4], respectively. A general trend emerges, relating the absolute surface energy to the ionicity of the bulk materials. [1] N. Chetty and R. M. Martin, Phys. Rev. B 45, 6074 (1992). [2] N. Moll, et al., Phys. Rev. B 54, 8844 (1996). [3] S. Mankefors, Phys. Rev. B 59, 13151 (1999). [4] S. B. Zhang and S.-H. Wei, Phys. Rev. B 65, 081402 (2002).

  18. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  19. Absolute decay width measurements in 16O

    NASA Astrophysics Data System (ADS)

    Wheldon, C.; Ashwood, N. I.; Barr, M.; Curtis, N.; Freer, M.; Kokalova, Tz; Malcolm, J. D.; Spencer, S. J.; Ziman, V. A.; Faestermann, Th; Krücken, R.; Wirth, H.-F.; Hertenberger, R.; Lutter, R.; Bergmaier, A.

    2012-09-01

    The reaction 126C(63Li, d)168O* at a 6Li bombarding energy of 42 MeV has been used to populate excited states in 16O. The deuteron ejectiles were measured using the high-resolution Munich Q3D spectrograph. A large-acceptance silicon-strip detector array was used to register the recoil and break-up products. This complete kinematic set-up has enabled absolute α-decay widths to be measured with high-resolution in the 13.9 to 15.9 MeV excitation energy regime in 16O; many for the first time. This energy region spans the 14.4 MeV four-α breakup threshold. Monte-Carlo simulations of the detector geometry and break-up processes yield detection efficiencies for the two dominant decay modes of 40% and 37% for the α+12C(g.s.) and a+12C(2+1) break-up channels respectively.

  20. Absolute calibration of forces in optical tweezers

    NASA Astrophysics Data System (ADS)

    Dutra, R. S.; Viana, N. B.; Maia Neto, P. A.; Nussenzveig, H. M.

    2014-07-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past 15 years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spot, adapting frequently employed video microscopy techniques. Combined with interface spherical aberration, it reveals a previously unknown window of instability for trapping. Comparison with experimental data leads to an overall agreement within error bars, with no fitting, for a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Besides signaling full first-principles theoretical understanding of optical tweezers operation, the results may lead to improved instrument design and control over experiments, as well as to an extended domain of applicability, allowing reliable force measurements, in principle, from femtonewtons to nanonewtons.

  1. Absolute spectrophotometry of northern compact planetary nebulae

    NASA Astrophysics Data System (ADS)

    Wright, S. A.; Corradi, R. L. M.; Perinotto, M.

    2005-06-01

    We present medium-dispersion spectra and narrowband images of six northern compact planetary nebulae (PNe): BoBn 1, DdDm 1, IC 5117, M 1-5, M 1-71, and NGC 6833. From broad-slit spectra, total absolute fluxes and equivalent widths were measured for all observable emission lines. High signal-to-noise emission line fluxes of Hα, Hβ, [Oiii], [Nii], and HeI may serve as emission line flux standards for northern hemisphere observers. From narrow-slit spectra, we derive systemic radial velocities. For four PNe, available emission line fluxes were measured with sufficient signal-to-noise to probe the physical properties of their electron densities, temperatures, and chemical abundances. BoBn 1 and DdDm 1, both type IV PNe, have an Hβ flux over three sigma away from previous measurements. We report the first abundance measurements of M 1-71. NGC 6833 measured radial velocity and galactic coordinates suggest that it is associated with the outer arm or possibly the galactic halo, and its low abundance ([O/H]=1.3× 10-4) may be indicative of low metallicity within that region.

  2. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  3. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  4. Scattering theory with path integrals

    SciTech Connect

    Rosenfelder, R.

    2014-03-15

    Starting from well-known expressions for the T-matrix and its derivative in standard nonrelativistic potential scattering, I rederive recent path-integral formulations due to Efimov and Barbashov et al. Some new relations follow immediately.

  5. The absolute disparity anomaly and the mechanism of relative disparities.

    PubMed

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  6. The absolute disparity anomaly and the mechanism of relative disparities

    PubMed Central

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-01-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  7. Paleomagnetism of Upper Jurassic to Lower Cretaceous Volcanic and Sedimentary Rocks From the Western Tarim Basin: Implications for Inclination Shallowing and the ISEA? chron

    NASA Astrophysics Data System (ADS)

    Cogne, J.; Gilder, S.; Chen, Y.; Tan, X.; Courtillot, V.; Sun, D.; Li, Y.

    2002-12-01

    Stepwise demagnetization isolates a stable magnetic component in 13 sites of basalt flows and baked sediments dated at 113+-1.6 Ma from the Tuoyun section, western Xinjiang Province, China. Except for one flow from the base of the 300 m-thick section, the rest have exclusively reversed polarity. Five of 11 sites of Early Cretaceous red beds that underlie the basalts possess coherent directions that pass both fold and reversals tests. Six sites of Upper Jurassic red beds have a magnetic component that was likely acquired after folding in the Tertiary. The mean paleolatitude of the Lower Cretaceous red beds is 11° lower than that of the Lower Cretaceous basalts suggesting the red beds underestimate the true field inclination. We further test this result by calculating the paleolatitudes to a common point of the available Early Cretaceous to Present paleomagnetic poles from red beds and volcanic rocks from central Asian localities north of the Tibetan plateau. We find that paleolatitudes of volcanic rocks roughly equal the paleolatitudes calculated from the reference Eurasian apparent polar wander path (APWP) and that paleolatitudes of red beds are generally 10° to 20° lower than the paleolatitudes of volcanic rocks and those predicted from the reference curve. Our study suggests that central Asian red beds poorly record the Earth's field inclination, which leads to lower than expected paleolatitudes. Good agreement in paleolatitudes from volcanic rocks and the Eurasian APWP argues against proposed canted and non-dipole field models.

  8. Orion Absolute Navigation System Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2012-01-01

    The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.

  9. Evaluation of the Absolute Regional Temperature Potential

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.

    2012-01-01

    The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  10. Absolute optical surface measurement with deflectometry

    NASA Astrophysics Data System (ADS)

    Li, Wansong; Sandner, Marc; Gesierich, Achim; Burke, Jan

    Deflectometry utilises the deformation and displacement of a sample pattern after reflection from a test surface to infer the surface slopes. Differentiation of the measurement data leads to a curvature map, which is very useful for surface quality checks with sensitivity down to the nanometre range. Integration of the data allows reconstruction of the absolute surface shape, but the procedure is very error-prone because systematic errors may add up to large shape deviations. In addition, there are infinitely many combinations for slope and object distance that satisfy a given observation. One solution for this ambiguity is to include information on the object's distance. It must be known very accurately. Two laser pointers can be used for positioning the object, and we also show how a confocal chromatic distance sensor can be used to define a reference point on a smooth surface from which the integration can be started. The used integration algorithm works without symmetry constraints and is therefore suitable for free-form surfaces as well. Unlike null testing, deflectometry also determines radius of curvature (ROC) or focal lengths as a direct result of the 3D surface reconstruction. This is shown by the example of a 200 mm diameter telescope mirror, whose ROC measurements by coordinate measurement machine and deflectometry coincide to within 0.27 mm (or a sag error of 1.3μm). By the example of a diamond-turned off-axis parabolic mirror, we demonstrate that the figure measurement uncertainty comes close to a well-calibrated Fizeau interferometer.

  11. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  12. THE PHOTOMETRIC AND KINEMATIC STRUCTURE OF FACE-ON DISK GALAXIES. III. KINEMATIC INCLINATIONS FROM H{alpha} VELOCITY FIELDS

    SciTech Connect

    Andersen, David R.; Bershady, Matthew A. E-mail: mab@astro.wisc.edu

    2013-05-01

    Using the integral field unit DensePak on the WIYN 3.5 m telescope we have obtained H{alpha} velocity fields of 39 nearly face-on disks at echelle resolutions. High-quality, uniform kinematic data and a new modeling technique enabled us to derive accurate and precise kinematic inclinations with mean i{sub kin} = 23 Degree-Sign for 90% of these galaxies. Modeling the kinematic data as single, inclined disks in circular rotation improves upon the traditional tilted-ring method. We measure kinematic inclinations with a precision in sin i of 25% at 20 Degree-Sign and 6% at 30 Degree-Sign . Kinematic inclinations are consistent with photometric and inverse Tully-Fisher inclinations when the sample is culled of galaxies with kinematic asymmetries, for which we give two specific prescriptions. Kinematic inclinations can therefore be used in statistical ''face-on'' Tully-Fisher studies. A weighted combination of multiple, independent inclination measurements yield the most precise and accurate inclination. Combining inverse Tully-Fisher inclinations with kinematic inclinations yields joint probability inclinations with a precision in sin i of 10% at 15 Degree-Sign and 5% at 30 Degree-Sign . This level of precision makes accurate mass decompositions of galaxies possible even at low inclination. We find scaling relations between rotation speed and disk-scale length identical to results from more inclined samples. We also observe the trend of more steeply rising rotation curves with increased rotation speed and light concentration. This trend appears to be uncorrelated with disk surface brightness.

  13. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%–0.68% (k  =  2).

  14. A Study of the Inclination of Satellites of a Planet After Spin Axis Forced Tumbling

    NASA Astrophysics Data System (ADS)

    Boldrin, Luiz Augusto; Winter, O.; Vieira Neto, E.

    2013-05-01

    Abstract (2,250 Maximum Characters): In order to analyze the theory of satellite loss resulting from a giant impact on Uranus, we decided to do few a study about this problem using forced tumbling of the spin axis of planet. We used two different kinds of forced tumbling to simulate the obliquity variation: linear variation and damped variation. To do this, we made numerical simulations of N-body problem with J2 oblateness coefficient of the central body. First, we studied the relation of the time tumbling of Uranus' spin axis and the semi-major axis of the hypothetical satellite with a specific final inclination. In both cases the results are a power law. Later we study the final inclination of the satellite in relation to the number of collisions (pseudo collision). And finally we studied the final inclination of several different initial conditions (orbital elements) of the satellites. We concluded that the initial inclination and initial longitude of ascending node are important to the final satellite inclination. For future studies we want implement a more realistic model using the attitude equations of the central body and study the origin of the obliquity of the others planets of the solar system. Aknowledments: FAPESP, CAPES and CNPq.

  15. ORIGIN AND DYNAMICS OF THE MUTUALLY INCLINED ORBITS OF {upsilon} ANDROMEDAE c AND d

    SciTech Connect

    Barnes, Rory; Quinn, Thomas R.; Greenberg, Richard; McArthur, Barbara E.; Benedict, G. Fritz

    2011-01-10

    We evaluate the orbital evolution and several plausible origin scenarios for the mutually inclined orbits of {upsilon} And c and d. These two planets have orbital elements that oscillate with large amplitudes and lie close to the stability boundary. This configuration, and in particular the observed mutual inclination, demands an explanation. The planetary system may be influenced by a nearby low-mass star, {upsilon} And B, which could perturb the planetary orbits, but we find it cannot modify two coplanar orbits into the observed mutual inclination of 30 deg. However, it could incite ejections or collisions between planetary companions that subsequently raise the mutual inclination to >30 deg. Our simulated systems with large mutual inclinations tend to be further from the stability boundary than {upsilon} And, but we are able to produce similar systems. We conclude that scattering is a plausible mechanism to explain the observed orbits of {upsilon} And c and d, but we cannot determine whether the scattering was caused by instabilities among the planets themselves or by perturbations from {upsilon} And B. We also develop a procedure to quantitatively compare numerous properties of the observed system to our numerical models. Although we only implement this procedure to {upsilon} And, it may be applied to any exoplanetary system.

  16. Emittance, brilliance, and bandpass issues related to an inclined crystal monochromator

    SciTech Connect

    Macrander, A.T.; Haeffner, D.R.; Cowan, P.L.

    1992-07-01

    The inclined double crystal monochromator arrangement is very effective in handling high heat loads and holds considerable promise as a monochromator for undulator beams at third generation synchrotrons. Results for the ideal inclined crystal case have been obtained by dynamical diffraction calculations, and diffraction results for the (111) reflection of silicon are presented for an inclination angle of 85{degree}0 and energies of 5 key and 13.84 key. The diffraction characteristics resemble closely diffraction from-asymmetric (111) plane of silicon. However, the inclined and noninclined cases are not identical. Diffraction in the inclined case is slightly different due to refraction. The full width at half maximum of the Darwin-Prins reflectivity curve is slightly increased ({approximately}l%), and the angles of the outgoing beam after one reflection are slightly altered. That is, except for a wave incident at the Laue point in reciprocal space, the diffraction is always slightly asymmetric. The effect can be exactly reversed by an identical second crystal in the (+,{minus}) arrangement.

  17. Emittance, brilliance, and bandpass issues related to an inclined crystal monochromator

    SciTech Connect

    Macrander, A.T.; Haeffner, D.R.; Cowan, P.L.

    1992-07-31

    The inclined double crystal monochromator arrangement is very effective in handling high heat loads and holds considerable promise as a monochromator for undulator beams at third generation synchrotrons. Results for the ideal inclined crystal case have been obtained by dynamical diffraction calculations, and diffraction results for the (111) reflection of silicon are presented for an inclination angle of 85{degrees} and energies of 5 keV and 13.84 keV. The diffraction characteristics resemble closely diffraction from a symmetric (111) plane of silicon. However, the inclined and noninclined cases are not identical. Diffraction in the inclined case is slightly different due to refraction. The full width at half maximum of the Darwin-Prins reflectivity curve is slightly increased ({approximately} 1%), and the angles of the outgoing beam after one reflection are slightly altered. That is, except for a wave incident at the Laue point in reciprocal space, the diffraction is always slightly asymmetric. The effect can be exactly reversed by an identical second crystal in the (+,-) arrangement.

  18. A Stochastic Analysis of Glenoid Inclination Angle and Superior Migration of the Humeral Head

    PubMed Central

    Flieg, Nicholas G.; Gatti, Christopher J.; Doro, Lisa Case; Langenderfer, Joseph E.; Carpenter, James E.; Hughes, Richard E.

    2008-01-01

    Background Superior glenoid inclination, which is a relatively upward facing of the glenoid in the plane of the scapula, has been associated with rotator cuff pathology. Increased glenoid inclination may cause superior humeral head migration, which can cause impingement of the supraspinatus tendon. The purpose of this study was to test the hypothesis that inclination angle affects the probability of superior humeral head migration. Methods A three-dimensional model of the glenohumeral joint was developed in which muscle forces were modeled as random variables. Monte Carlo simulation was used to compute the probability that the glenohumeral reaction force was directed such that superior humeral head migration should occur. An electromyogram-driven model was used to estimate shoulder muscle forces in healthy volunteers performing arm elevation. Findings The model predicted that the probability of superior humeral head migration increased as glenoid inclination angle was increased. This finding was independent of the assumed shape of the muscle force probability distributions. Interpretation The results support the theory that glenoid inclination may be a risk factor for rotator cuff pathology. PMID:18280016

  19. Role of inclined threading dislocations in stress relaxation in mismatched layers

    NASA Astrophysics Data System (ADS)

    Cantu, P.; Wu, F.; Waltereit, P.; Keller, S.; Romanov, A. E.; DenBaars, S. P.; Speck, J. S.

    2005-05-01

    (0001)-oriented epitaxial wurtzite III-nitride layers grown on mismatched substrates have no resolved shear stress on the natural basal and prismatic slip planes; however, strained III-nitride layers may gradually relax. We report on the stress relaxation of Al0.49Ga0.51N layers grown on nominally relaxed Al0.62Ga0.38N buffer layers on sapphire. The reduction in elastic strain of the Al0.49Ga0.51N was enhanced by Si doping which caused an increased surface roughness. Despite the Si doping, the films always sustained step-flow growth. The extent of relaxation of the Al0.49Ga0.51N layer was determined by on-axis ω-2θ scans of (000l ) peaks and reciprocal space maps of inclined (off-axis) peaks. Cross-section and plan-view transmission electron microscopy studies showed that the threading dislocations in the Al0.49Ga0.51N layer inclined from the [0001] direction towards ⟨11¯00⟩ directions by ˜15-25°, perpendicular to their Burgers vector (1/3⟨112¯0⟩). These inclined threading dislocations have a misfit dislocation component and thus provide stress relief. The contribution of the dislocation inclination to the degree of relaxation has been formulated and the energy release has been determined for dislocation inclination in mismatched stressed layers.

  20. Supplementary and Enrichment Series: Absolute Value. Teachers' Commentary. SP-25.

    ERIC Educational Resources Information Center

    Bridgess, M. Philbrick, Ed.

    This is one in a series of manuals for teachers using SMSG high school supplementary materials. The pamphlet includes commentaries on the sections of the student's booklet, answers to the exercises, and sample test questions. Topics covered include addition and multiplication in terms of absolute value, graphs of absolute value in the Cartesian…

  1. Supplementary and Enrichment Series: Absolute Value. SP-24.

    ERIC Educational Resources Information Center

    Bridgess, M. Philbrick, Ed.

    This is one in a series of SMSG supplementary and enrichment pamphlets for high school students. This series is designed to make material for the study of topics of special interest to students readily accessible in classroom quantity. Topics covered include absolute value, addition and multiplication in terms of absolute value, graphs of absolute…

  2. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  3. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  4. Karst Water System Investigated by Absolute Gravimetry

    NASA Astrophysics Data System (ADS)

    Quinif, Y.; Meus, P.; van Camp, M.; Kaufmann, O.; van Ruymbeke, M.; Vandiepenbeeck, M.; Camelbeeck, T.

    2006-12-01

    The highly anisotropic and heterogeneous hydrogeological characteristics of karst aquifers are difficult to characterize and present challenges for modeling of storage capacities. Little is known about the surface and groundwater interconnection, about the connection between the porous formations and the draining cave and conduits, and about the variability of groundwater volume within the system. Usually, an aquifer is considered as a black box, where water fluxes are monitored as input and output. However, water inflow and outflow are highly variable and cannot be measured directly. A recent project, begun in 2006 sought to constrain the water budget in a Belgian karst aquifer and to assess the porosity and water dynamics, combining absolute gravity (AG) measurements and piezometric levels around the Rochefort cave. The advantage of gravity measurements is that they integrate all the subsystems in the karst system. This is not the case with traditional geophysical tools like boring or monitoring wells, which are soundings affected by their near environment and its heterogeneity. The investigated cave results from the meander cutoff system of the Lomme River. The main inputs are swallow holes of the river crossing the limestone massif. The river is canalized and the karst system is partly disconnected from the hydraulic system. In February and March 2006, when the river spilled over its dyke and sank into the most important swallow hole, this resulted in dramatic and nearly instantaneous increases in the piezometric levels in the cave, reaching up to 13 meters. Meanwhile, gravity increased by 50 and 90 nms-2 in February and March, respectively. A first conclusion is that during these sudden floods, the pores and fine fissures were poorly connected with the enlarged fractures, cave, and conduits. With a rise of 13 meters in the water level and a 5% porosity, a gravity change of 250 nms-2 should have been expected. This moderate gravity variation suggests either a

  5. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  6. Testing the quasi-absolute method in photon activation analysis

    SciTech Connect

    Sun, Z. J.; Wells, D.; Starovoitova, V.; Segebade, C.

    2013-04-19

    In photon activation analysis (PAA), relative methods are widely used because of their accuracy and precision. Absolute methods, which are conducted without any assistance from calibration materials, are seldom applied for the difficulty in obtaining photon flux in measurements. This research is an attempt to perform a new absolute approach in PAA - quasi-absolute method - by retrieving photon flux in the sample through Monte Carlo simulation. With simulated photon flux and database of experimental cross sections, it is possible to calculate the concentration of target elements in the sample directly. The QA/QC procedures to solidify the research are discussed in detail. Our results show that the accuracy of the method for certain elements is close to a useful level in practice. Furthermore, the future results from the quasi-absolute method can also serve as a validation technique for experimental data on cross sections. The quasi-absolute method looks promising.

  7. Learning in the temporal bisection task: Relative or absolute?

    PubMed

    de Carvalho, Marilia Pinheiro; Machado, Armando; Tonneau, François

    2016-01-01

    We examined whether temporal learning in a bisection task is absolute or relational. Eight pigeons learned to choose a red key after a t-seconds sample and a green key after a 3t-seconds sample. To determine whether they had learned a relative mapping (short→Red, long→Green) or an absolute mapping (t-seconds→Red, 3t-seconds→Green), the pigeons then learned a series of new discriminations in which either the relative or the absolute mapping was maintained. Results showed that the generalization gradient obtained at the end of a discrimination predicted the pattern of choices made during the first session of a new discrimination. Moreover, most acquisition curves and generalization gradients were consistent with the predictions of the learning-to-time model, a Spencean model that instantiates absolute learning with temporal generalization. In the bisection task, the basis of temporal discrimination seems to be absolute, not relational. PMID:26752233

  8. Experimental investigation of turbulent flow in a channel with the backward-facing inclined step

    NASA Astrophysics Data System (ADS)

    Příhoda, Jaromír; Kotek, Michal; Uruba, Václav; Kopecký, Václav; Hladík, Ondřej

    2012-04-01

    The work deals with the experimental investigation of turbulent flow in a closed channel with the backward-facing inclined step. Experiments were carried by means of the PIV optical measuring method in the channel of the rectangular cross-section in the inlet part and with inclined steps of the constant height H mm and various inclination angles for a wide range of the Reynolds number. The attention was paid especially to the separation region behind the step and to the relaxation of the shear layer after the reattachment in the outlet part of the channel. The dependence of the length of the separation region on the Reynolds number was obtained for various step angles. Optical measurements were completed by the measurement of static pressure distribution in the inlet and outlet part of the channel to estimate energy losses.

  9. Aerodynamics of flapping insect wing in inclined stroke plane hovering with ground effect

    NASA Astrophysics Data System (ADS)

    Gowda v, Krishne; Vengadesan, S.

    2014-11-01

    This work presents the time-varying aerodynamic forces and the unsteady flow structures of flapping insect wing in inclined stroke plane hovering with ground effect. Two-dimensional dragonfly model wing is chosen and the incompressible Navier-Stokes equations are solved numerically by using immersed boundary method. The main objective of the present work is to analyze the ground effect on the unsteady forces and vortical structures for the inclined stroke plane motions. We also investigate the influences of kinematics parameters such as Reynolds number (Re), stroke amplitude, wing rotational timing, for various distances between the airfoil and the ground. The effects of aforementioned parameters together with ground effect, on the stroke averaged force coefficients and regimes of force behavior are similar in both normal (horizontal) and inclined stroke plane motions. However, the evolution of the vortex structures which produces the effects are entirely different.

  10. Application of the theory of coupled waves for analysis of inclined reflectors in optical waveguides

    SciTech Connect

    Kolosovskii, E A; Tsarev, A V

    2008-09-30

    A new method for analysing the transmission and scattering of the guided TE mode in an inclined reflector located in an optical waveguide is proposed and studied. The reflection of an inhomogeneous optical beam from the inclined reflector is described semi-analytically for the first time by using the theory of coupled waves and taking into account the interrelation and transformation of energy between all the waves of the discrete and continuous spectra of the optical 2D-waveguide (even and odd guided, radiation, and evanescent waves). The results of calculations of the propagation of light through the inclined reflector in the form of a thin (10-500 nm) homogeneous strip obtained by our method and by the finite difference time domain (FDTD) method are in excellent quantitative agreement. The calculation rate of our method considerably (by one-two orders of magnitude) exceeds that of the FDTD method and our method has a better accuracy. (optical waveguides)

  11. Plastic Limit Load Analysis of Cylindrical Pressure Vessels with Different Nozzle Inclination

    NASA Astrophysics Data System (ADS)

    Prakash, Anupam; Raval, Harit Kishorchandra; Gandhi, Anish; Pawar, Dipak Bapu

    2016-04-01

    Sudden change in geometry of pressure vessel due to nozzle cutout, leads to local stress concentration and deformation, decreasing its strength. Elastic plastic analysis of cylindrical pressure vessels with different inclination angles of nozzle is important to estimate plastic limit load. In the present study, cylindrical pressure vessels with combined inclination of nozzles (i.e. in longitudinal and radial plane) are considered for elastic plastic limit load analysis. Three dimensional static nonlinear finite element analyses of cylindrical pressure vessels with nozzle are performed for incremental pressure loading. The von Mises stress distribution on pressure vessel shows higher stress zones at shell-nozzle junction. Approximate plastic limit load is obtained by twice elastic slope method. Variation in limit pressure with different combined inclination angle of nozzle is analyzed and found to be distinct in nature. Reported results can be helpful in optimizing pressure vessel design.

  12. Distribution of solar irradiance on inclined surfaces caused by moving clouds

    NASA Astrophysics Data System (ADS)

    Tomson, Teolan

    2016-05-01

    The distribution of solar irradiance in shadows of discrete (broken) clouds differs from the distribution calculated for inclined surfaces on the basis of traditional transposition models and changes fast. This phenomenon is studied in this paper. For calculations of dynamic distributions of irradiance on inclined surfaces, a formal point source of direct radiation near the real position of the sun is defined as the source of the "imaginable radiation." This notion is used to create a one-dimensional (1D) simulation model, which allows the fast-changing distribution of irradiance to be calculated. In general, the coincidence of calculated and measured irradiance on inclined surfaces is good. The paper also shows how the current value of the diffuse component of solar radiation can be derived from measurements of total radiation in four differently tilted planes.

  13. Transformation of short-periodic high-inclination orbits of circumsolar submillimeter dust

    SciTech Connect

    Bazei, A.A.; Kramer, E.N.

    1995-11-01

    Disintegration of short-periodic comets is one of the sources of cosmic dust in the Solar System. Initially dust particles move approximately in the orbits of parent comets, in particular, in high-inclination orbits. In a few million years, some of these particles (the smallest ones) go over to the short-periodic, high-inclination orbits due to the Poynting-Robertson effect. The numerical integration of the equations of motion at this stage of evolution gives rise to somewhat surprising results. For example, when integrating the equations of motion as far back as 6000 years from the time of meteor observation, the real meteor particle gains the perihelion distance smaller than the solar radius (!). Our calculations show that the time of falling onto the Sun is shorter for a article moving in a high-inclination orbit. This is due to the superposition of gravitational perturbation and radiation effects.

  14. Numerical investigation of transient flow-mode transition of laminar natural convection in an inclined enclosure

    SciTech Connect

    Tzeng, P.Y.; Soong, C.Y.; Sheu, T.S.

    1997-02-07

    The present work is concerned with a numerical investigation of transient laminar natural convection and the associated flow-mode transition in a two-dimensional rectangular enclosure. Navier-Stokes/Boussinesq equations for fluid flow and energy balance are solved by using the SIMPLE-C algorithm. Air of Pr = 0.71 in a differentially heated enclose of length-to-height aspect ratio As = 4 and at Ra = 5,000 is chosen as the flow model to examine the influences of the inclination. Calculations of time accuracy are performed to investigate the transient procedure of the flow-mode transition with increasing or decreasing inclination. The present results reveal that, at some critical situations, natural convection in inclined enclosures is very sensitive to the change in tilt angle, and the associated heat transfer rates are closely related to the correspondent cellular flow patterns.

  15. Orbital influence on Earth's magnetic field: 100,000-year periodicity in inclination.

    PubMed

    Yamazaki, Toshitsugu; Oda, Hirokuni

    2002-03-29

    A continuous record of the inclination and intensity of Earth's magnetic field, during the past 2.25 million years, was obtained from a marine sediment core of 42 meters in length. This record reveals the presence of 100,000-year periodicity in inclination and intensity, which suggests that the magnetic field is modulated by orbital eccentricity. The correlation between inclination and intensity shifted from antiphase to in-phase, corresponding to a magnetic polarity change from reversed to normal. To explain the observation, we propose a model in which the strength of the geocentric axial dipole field varies with 100,000-year periodicity, whereas persistent nondipole components do not. PMID:11923535

  16. Heat transfer enhancement induced by wall inclination in turbulent thermal convection.

    PubMed

    Kenjereš, Saša

    2015-11-01

    We present a series of numerical simulations of turbulent thermal convection of air in an intermediate range or Rayleigh numbers (10(6)≤Ra≤10(9)) with different configurations of a thermally active lower surface. The geometry of the lower surface is designed in such a way that it represents a simplified version of a mountain slope with different inclinations (i.e., "Λ"- and "V"-shaped geometry). We find that different wall inclinations significantly affect the local heat transfer by imposing local clustering of instantaneous thermal plumes along the inclination peaks. The present results reveal that significant enhancement of the integral heat transfer can be obtained (up to 32%) when compared to a standard Rayleigh-Bénard configuration with flat horizontal walls. This is achieved through combined effects of the enlargement of the heated surface and reorganization of the large-scale flow structures. PMID:26651778

  17. Comparative analysis of trunk muscle activities in climbing of during upright climbing at different inclination angles

    PubMed Central

    Park, Byung-Joon; Kim, Joong-Hwi; Kim, Jang-Hwan; Choi, Byeong-Ho

    2015-01-01

    [Purpose] This study was performed to provide evidence for the therapeutic exercise approach through a compative analysis of muscle activities according to climbing wall inclination. [Subjects and Methods] Twentyfour healthy adult subjects without climbing experience performed static exercises at a therapeutic climbing at with various inclination angles (0°, 10°, 20°), and the activities of the trunk muscles (rectus abdominis, obliquus externus abdominis, obliquus internus abdominis, erector spinae) were measured using surface electromyography (EMG) for 7 seconds. [Results] Significant differences were found between the inclination angles of 10° and 0°, as well as 20° in the rectus abdominis, obliquus internus abdominis, right obliquus externus abdominis, and right erector spinae. [Conclusion] Based on measurements of trunk muscle activity in a static climbing standing position at different angles, significant changes in muscle activity appear to be induced at 10 degrees. Therefore, the results appear to provide clinically relevant evidence. PMID:26644661

  18. Measuring relative-story displacement and local inclination angle using multiple position-sensitive detectors.

    PubMed

    Matsuya, Iwao; Katamura, Ryuta; Sato, Maya; Iba, Miroku; Kondo, Hideaki; Kanekawa, Kiyoshi; Takahashi, Motoichi; Hatada, Tomohiko; Nitta, Yoshihiro; Tanii, Takashi; Shoji, Shuichi; Nishitani, Akira; Ohdomari, Iwao

    2010-01-01

    We propose a novel sensor system for monitoring the structural health of a building. The system optically measures the relative-story displacement during earthquakes for detecting any deformations of building elements. The sensor unit is composed of three position sensitive detectors (PSDs) and lenses capable of measuring the relative-story displacement precisely, even if the PSD unit was inclined in response to the seismic vibration. For verification, laboratory tests were carried out using an Xθ-stage and a shaking table. The static experiment verified that the sensor could measure the local inclination angle as well as the lateral displacement. The dynamic experiment revealed that the accuracy of the sensor was 150 μm in the relative-displacement measurement and 100 μrad in the inclination angle measurement. These results indicate that the proposed sensor system has sufficient accuracy for the measurement of relative-story displacement in response to the seismic vibration. PMID:22163434

  19. Is the earth's dipole actually inclined with respect to the rotation axis?

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.; Saito, T.

    1990-01-01

    Planetary exploration by deep space probes in recent years has shown that the dipole moment of some magnetized planets has a surprisingly large inclination angle with respect to the rotation axis. Applying the method developed for the source surface magnetic field of the sun (a spherical surface of 2.5 solar radii), it is suggested that the main dipole of the earth and the magnetized planets may actually be axial (the magnetic moment being parallel or antiparallel to the rotation axis), and that two or three smaller dipoles near the core surface could be responsible for the apparent inclination of the main dipole. In formulating a dynamo theory of the planetary magnetic field, such a possibility should be considered, as well as the inclined dipole case.

  20. Shortest Paths between Shortest Paths and Independent Sets

    NASA Astrophysics Data System (ADS)

    Kamiński, Marcin; Medvedev, Paul; Milanič, Martin

    We study problems of reconfiguration of shortest paths in graphs. We prove that the shortest reconfiguration sequence can be exponential in the size of the graph and that it is NP-hard to compute the shortest reconfiguration sequence even when we know that the sequence has polynomial length. Moreover, we also study reconfiguration of independent sets in three different models and analyze relationships between these models, observing that shortest path reconfiguration is a special case of independent set reconfiguration in perfect graphs, under any of the three models. Finally, we give polynomial results for restricted classes of graphs (even-hole-free and P 4-free graphs).