Sample records for absolute peak magnitudes

  1. Absolute Magnitude Calibration for Dwarfs Based on the Colour-Magnitude Diagrams of Galactic Clusters

    NASA Astrophysics Data System (ADS)

    Karaali, S.; Gökçe, E. Yaz; Bilir, S.; Güçtekin, S. Tunçel

    2014-07-01

    We present two absolute magnitude calibrations for dwarfs based on colour-magnitude diagrams of Galactic clusters. The combination of the Mg absolute magnitudes of the dwarf fiducial sequences of the clusters M92, M13, M5, NGC 2420, M67, and NGC 6791 with the corresponding metallicities provides absolute magnitude calibration for a given (g - r)0 colour. The calibration is defined in the colour interval 0.25 ≤ (g - r)0 ≤ 1.25 mag and it covers the metallicity interval - 2.15 ≤ [Fe/H] ≤ +0.37 dex. The absolute magnitude residuals obtained by the application of the procedure to another set of Galactic clusters lie in the interval - 0.15 ≤ ΔMg ≤ +0.12 mag. The mean and standard deviation of the residuals are < ΔMg > = - 0.002 and σ = 0.065 mag, respectively. The calibration of the MJ absolute magnitude in terms of metallicity is carried out by using the fiducial sequences of the clusters M92, M13, 47 Tuc, NGC 2158, and NGC 6791. It is defined in the colour interval 0.90 ≤ (V - J)0 ≤ 1.75 mag and it covers the same metallicity interval of the Mg calibration. The absolute magnitude residuals obtained by the application of the procedure to the cluster M5 ([Fe/H] = -1.40 dex) and 46 solar metallicity, - 0.45 ≤ [Fe/H] ≤ +0.35 dex, field stars lie in the interval - 0.29 and + 0.35 mag. However, the range of 87% of them is rather shorter, - 0.20 ≤ ΔMJ ≤ +0.20 mag. The mean and standard deviation of all residuals are < ΔMJ > =0.05 and σ = 0.13 mag, respectively. The derived relations are applicable to stars older than 4 Gyr for the Mg calibration, and older than 2 Gyr for the MJ calibration. The cited limits are the ages of the youngest calibration clusters in the two systems.

  2. The Absolute Magnitude of the Sun in Several Filters

    NASA Astrophysics Data System (ADS)

    Willmer, Christopher N. A.

    2018-06-01

    This paper presents a table with estimates of the absolute magnitude of the Sun and the conversions from vegamag to the AB and ST systems for several wide-band filters used in ground-based and space-based observatories. These estimates use the dustless spectral energy distribution (SED) of Vega, calibrated absolutely using the SED of Sirius, to set the vegamag zero-points and a composite spectrum of the Sun that coadds space-based observations from the ultraviolet to the near-infrared with models of the Solar atmosphere. The uncertainty of the absolute magnitudes is estimated by comparing the synthetic colors with photometric measurements of solar analogs and is found to be ∼0.02 mag. Combined with the uncertainty of ∼2% in the calibration of the Vega SED, the errors of these absolute magnitudes are ∼3%–4%. Using these SEDs, for three of the most utilized filters in extragalactic work the estimated absolute magnitudes of the Sun are M B = 5.44, M V = 4.81, and M K = 3.27 mag in the vegamag system and M B = 5.31, M V = 4.80, and M K = 5.08 mag in AB.

  3. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  4. Independent coding of absolute duration and distance magnitudes in the prefrontal cortex

    PubMed Central

    Marcos, Encarni; Tsujimoto, Satoshi

    2016-01-01

    The estimation of space and time can interfere with each other, and neuroimaging studies have shown overlapping activation in the parietal and prefrontal cortical areas. We used duration and distance discrimination tasks to determine whether space and time share resources in prefrontal cortex (PF) neurons. Monkeys were required to report which of two stimuli, a red circle or blue square, presented sequentially, were longer and farther, respectively, in the duration and distance tasks. In a previous study, we showed that relative duration and distance are coded by different populations of neurons and that the only common representation is related to goal coding. Here, we examined the coding of absolute duration and distance. Our results support a model of independent coding of absolute duration and distance metrics by demonstrating that not only relative magnitude but also absolute magnitude are independently coded in the PF. NEW & NOTEWORTHY Human behavioral studies have shown that spatial and duration judgments can interfere with each other. We investigated the neural representation of such magnitudes in the prefrontal cortex. We found that the two magnitudes are independently coded by prefrontal neurons. We suggest that the interference among magnitude judgments might depend on the goal rather than the perceptual resource sharing. PMID:27760814

  5. Spectrophotometry of Wolf-Rayet stars - Intrinsic colors and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Torres-Dodgen, Ana V.; Massey, Philip

    1988-01-01

    Absolute spectrophotometry of about 10-A resolution in the range 3400-7300 A have been obtained for southern Wolf-Rayet stars, and line-free magnitudes and colors have been constructed. The emission-line contamination in the narrow-band ubvr systems of Westerlund (1966) and Smith (1968) is shown to be small for most WN stars, but to be quite significant for WC stars. It is suggested that the more severe differences in intrinsic color from star to star of the same spectral subtype noted at shorter wavelengths are due to differences in atmospheric extent. True continuum absolute visual magnitudes and intrinsic colors are obtained for the LMC WR stars. The most visually luminous WN6-WN7 stars are found to be located in the core of the 30 Doradus region.

  6. Metrological activity determination of 133Ba by sum-peak absolute method

    NASA Astrophysics Data System (ADS)

    da Silva, R. L.; de Almeida, M. C. M.; Delgado, J. U.; Poledna, R.; Santos, A.; de Veras, E. V.; Rangel, J.; Trindade, O. L.

    2016-07-01

    The National Laboratory for Metrology of Ionizing Radiation provides gamma sources of radionuclide and standardized in activity with reduced uncertainties. Relative methods require standards to determine the sample activity while the absolute methods, as sum-peak, not. The activity is obtained directly with good accuracy and low uncertainties. 133Ba is used in research laboratories and on calibration of detectors for analysis in different work areas. Classical absolute methods don't calibrate 133Ba due to its complex decay scheme. The sum-peak method using gamma spectrometry with germanium detector standardizes 133Ba samples. Uncertainties lower than 1% to activity results were obtained.

  7. THE FAST DECLINING TYPE Ia SUPERNOVA 2003gs, AND EVIDENCE FOR A SIGNIFICANT DISPERSION IN NEAR-INFRARED ABSOLUTE MAGNITUDES OF FAST DECLINERS AT MAXIMUM LIGHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krisciunas, Kevin; Marion, G. H.; Suntzeff, Nicholas B.

    2009-12-15

    We obtained optical photometry of SN 2003gs on 49 nights, from 2 to 494 days after T(B {sub max}). We also obtained near-IR photometry on 21 nights. SN 2003gs was the first fast declining Type Ia SN that has been well observed since SN 1999by. While it was subluminous in optical bands compared to more slowly declining Type Ia SNe, it was not subluminous at maximum light in the near-IR bands. There appears to be a bimodal distribution in the near-IR absolute magnitudes of Type Ia SNe at maximum light. Those that peak in the near-IR after T(B {sub max})more » are subluminous in the all bands. Those that peak in the near-IR prior to T(B {sub max}), such as SN 2003gs, have effectively the same near-IR absolute magnitudes at maximum light regardless of the decline rate {delta}m {sub 15}(B). Near-IR spectral evidence suggests that opacities in the outer layers of SN 2003gs are reduced much earlier than for normal Type Ia SNe. That may allow {gamma} rays that power the luminosity to escape more rapidly and accelerate the decline rate. This conclusion is consistent with the photometric behavior of SN 2003gs in the IR, which indicates a faster than normal decline from approximately normal peak brightness.« less

  8. Debiased estimates for NEO orbits, absolute magnitudes, and source regions

    NASA Astrophysics Data System (ADS)

    Granvik, Mikael; Morbidelli, Alessandro; Jedicke, Robert; Bolin, Bryce T.; Bottke, William; Beshore, Edward C.; Vokrouhlicky, David; Nesvorny, David; Michel, Patrick

    2017-10-01

    The debiased absolute-magnitude and orbit distributions as well as source regions for near-Earth objects (NEOs) provide a fundamental frame of reference for studies on individual NEOs as well as on more complex population-level questions. We present a new four-dimensional model of the NEO population that describes debiased steady-state distributions of semimajor axis (a), eccentricity (e), inclination (i), and absolute magnitude (H). We calibrate the model using NEO detections by the 703 and G96 stations of the Catalina Sky Survey (CSS) during 2005-2012 corresponding to objects with 17absolute sense using the biases computed for CSS (Jedicke et al. 2016, Icarus 266, 173). The model makes use of six source regions or escape routes from the main asteroid belt as identified by Granvik et al. (2017, A&A 598, A52) in addition to Jupiter-family comets: Hungaria and Phocaea asteroids, and main-belt asteroids escaping through the ν6, 3:1J, 5:2J and 2:1J resonance complexes. We account for the destruction of asteroids with small perihelion distances (Granvik et al. 2016, Nature 530, 303) by fitting a penalty function in perihelion distance. Our model accurately reproduces the observed distribution of NEOs and the predicted numbers, particularly for the larger NEOs, are in agreement with other contemporary estimates. Our model also provides updated estimates for the likelihood of the various source regions and escape routes as a function of NEO (a,e,i,H) parameters. We present the model and its predictions, and discuss them in the context of other contemporary estimates.

  9. The orbit of Phi Cygni measured with long-baseline optical interferometry - Component masses and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Armstrong, J. T.; Hummel, C. A.; Quirrenbach, A.; Buscher, D. F.; Mozurkewich, D.; Vivekanand, M.; Simon, R. S.; Denison, C. S.; Johnston, K. J.; Pan, X.-P.

    1992-01-01

    The orbit of the double-lined spectroscopic binary Phi Cygni, the distance to the system, and the masses and absolute magnitudes of its components are presented via measurements with the Mar III Optical Interferometer. On the basis of a reexamination of the spectroscopic data of Rach & Herbig (1961), the values and uncertainties are adopted for the period and the projected semimajor axes from the present fit to the spectroscopic data and the values of the remaining elements from the present fit to the Mark III data. The elements of the true orbit are derived, and the masses and absolute magnitudes of the components, and the distance to the system are calculated.

  10. Debiased orbit and absolute-magnitude distributions for near-Earth objects

    NASA Astrophysics Data System (ADS)

    Granvik, Mikael; Morbidelli, Alessandro; Jedicke, Robert; Bolin, Bryce; Bottke, William F.; Beshore, Edward; Vokrouhlický, David; Nesvorný, David; Michel, Patrick

    2018-09-01

    The debiased absolute-magnitude and orbit distributions as well as source regions for near-Earth objects (NEOs) provide a fundamental frame of reference for studies of individual NEOs and more complex population-level questions. We present a new four-dimensional model of the NEO population that describes debiased steady-state distributions of semimajor axis, eccentricity, inclination, and absolute magnitude H in the range 17 < H < 25. The modeling approach improves upon the methodology originally developed by Bottke et al. (2000, Science 288, 2190-2194) in that it is, for example, based on more realistic orbit distributions and uses source-specific absolute-magnitude distributions that allow for a power-law slope that varies with H. We divide the main asteroid belt into six different entrance routes or regions (ER) to the NEO region: the ν6, 3:1J, 5:2J and 2:1J resonance complexes as well as Hungarias and Phocaeas. In addition we include the Jupiter-family comets as the primary cometary source of NEOs. We calibrate the model against NEO detections by Catalina Sky Surveys' stations 703 and G96 during 2005-2012, and utilize the complementary nature of these two systems to quantify the systematic uncertainties associated to the resulting model. We find that the (fitted) H distributions have significant differences, although most of them show a minimum power-law slope at H ∼ 20. As a consequence of the differences between the ER-specific H distributions we find significant variations in, for example, the NEO orbit distribution, average lifetime, and the relative contribution of different ERs as a function of H. The most important ERs are the ν6 and 3:1J resonance complexes with JFCs contributing a few percent of NEOs on average. A significant contribution from the Hungaria group leads to notable changes compared to the predictions by Bottke et al. in, for example, the orbit distribution and average lifetime of NEOs. We predict that there are 962-56+52 (802-42+48

  11. Empirical photometric calibration of the Gaia red clump: Colours, effective temperature, and absolute magnitude

    NASA Astrophysics Data System (ADS)

    Ruiz-Dern, L.; Babusiaux, C.; Arenou, F.; Turon, C.; Lallement, R.

    2018-01-01

    Context. Gaia Data Release 1 allows the recalibration of standard candles such as the red clump stars. To use those stars, they first need to be accurately characterised. In particular, colours are needed to derive interstellar extinction. As no filter is available for the first Gaia data release and to avoid the atmosphere model mismatch, an empirical calibration is unavoidable. Aims: The purpose of this work is to provide the first complete and robust photometric empirical calibration of the Gaia red clump stars of the solar neighbourhood through colour-colour, effective temperature-colour, and absolute magnitude-colour relations from the Gaia, Johnson, 2MASS, HIPPARCOS, Tycho-2, APASS-SLOAN, and WISE photometric systems, and the APOGEE DR13 spectroscopic temperatures. Methods: We used a 3D extinction map to select low reddening red giants. To calibrate the colour-colour and the effective temperature-colour relations, we developed a MCMC method that accounts for all variable uncertainties and selects the best model for each photometric relation. We estimated the red clump absolute magnitude through the mode of a kernel-based distribution function. Results: We provide 20 colour versus G-Ks relations and the first Teff versus G-Ks calibration. We obtained the red clump absolute magnitudes for 15 photometric bands with, in particular, MKs = (-1.606 ± 0.009) and MG = (0.495 ± 0.009) + (1.121 ± 0.128)(G-Ks-2.1). We present a dereddened Gaia-TGAS HR diagram and use the calibrations to compare its red clump and its red giant branch bump with Padova isochrones. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A116

  12. Methods for estimating magnitude and frequency of peak flows for natural streams in Utah

    USGS Publications Warehouse

    Kenney, Terry A.; Wilkowske, Chris D.; Wright, Shane J.

    2007-01-01

    Estimates of the magnitude and frequency of peak streamflows is critical for the safe and cost-effective design of hydraulic structures and stream crossings, and accurate delineation of flood plains. Engineers, planners, resource managers, and scientists need accurate estimates of peak-flow return frequencies for locations on streams with and without streamflow-gaging stations. The 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows were estimated for 344 unregulated U.S. Geological Survey streamflow-gaging stations in Utah and nearby in bordering states. These data along with 23 basin and climatic characteristics computed for each station were used to develop regional peak-flow frequency and magnitude regression equations for 7 geohydrologic regions of Utah. These regression equations can be used to estimate the magnitude and frequency of peak flows for natural streams in Utah within the presented range of predictor variables. Uncertainty, presented as the average standard error of prediction, was computed for each developed equation. Equations developed using data from more than 35 gaging stations had standard errors of prediction that ranged from 35 to 108 percent, and errors for equations developed using data from less than 35 gaging stations ranged from 50 to 357 percent.

  13. Methods for estimating the magnitude and frequency of peak streamflows for unregulated streams in Oklahoma

    USGS Publications Warehouse

    Lewis, Jason M.

    2010-01-01

    Peak-streamflow regression equations were determined for estimating flows with exceedance probabilities from 50 to 0.2 percent for the state of Oklahoma. These regression equations incorporate basin characteristics to estimate peak-streamflow magnitude and frequency throughout the state by use of a generalized least squares regression analysis. The most statistically significant independent variables required to estimate peak-streamflow magnitude and frequency for unregulated streams in Oklahoma are contributing drainage area, mean-annual precipitation, and main-channel slope. The regression equations are applicable for watershed basins with drainage areas less than 2,510 square miles that are not affected by regulation. The resulting regression equations had a standard model error ranging from 31 to 46 percent. Annual-maximum peak flows observed at 231 streamflow-gaging stations through water year 2008 were used for the regression analysis. Gage peak-streamflow estimates were used from previous work unless 2008 gaging-station data were available, in which new peak-streamflow estimates were calculated. The U.S. Geological Survey StreamStats web application was used to obtain the independent variables required for the peak-streamflow regression equations. Limitations on the use of the regression equations and the reliability of regression estimates for natural unregulated streams are described. Log-Pearson Type III analysis information, basin and climate characteristics, and the peak-streamflow frequency estimates for the 231 gaging stations in and near Oklahoma are listed. Methodologies are presented to estimate peak streamflows at ungaged sites by using estimates from gaging stations on unregulated streams. For ungaged sites on urban streams and streams regulated by small floodwater retarding structures, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow magnitude and frequency.

  14. The absolute magnitudes of RR Lyraes from HIPPARCOS parallaxes and proper motions

    NASA Astrophysics Data System (ADS)

    Fernley, J.; Barnes, T. G.; Skillen, I.; Hawley, S. L.; Hanley, C. J.; Evans, D. W.; Solano, E.; Garrido, R.

    1998-02-01

    We have used HIPPARCOS proper motions and the method of Statistical Parallax to estimate the absolute magnitude of RR Lyrae stars. In addition we used the HIPPARCOS parallax of RR Lyrae itself to determine it's absolute magnitude. These two results are in excellent agreement with each other and give a zero-point for the RR Lyrae M_v,[Fe/H] relation of 0.77+/-0.15 at [Fe/H]=-1.53. This zero-point is in good agreement with that obtained recently by several groups using Baade-Wesselink methods which, averaged over the results from the different groups, gives M_v = 0.73+/-0.14 at [Fe/H]=-1.53. Taking the HIPPARCOS based zero-point and a value of 0.18+/-0.03 for the slope of the M_v,[Fe/H] relation from the literature we find firstly, the distance modulus of the LMC is 18.26+/-0.15 and secondly, the mean age of the Globular Clusters is 17.4+/-3.0 GYrs. These values are compared with recent estimates based on other "standard candles" that have also been calibrated with HIPPARCOS data. It is clear that, in addition to astrophysical problems, there are also problems in the application of HIPPARCOS data that are not yet fully understood. Table 1, which contains the basic data for the RR Lyraes, is available only at CDS. It may be retrieved via anonymous FTP at cdsarc.u-strasbg.fr (130.79.128.5) or via the Web at http://cdsweb.u-strasbg.fr/Abstract.html

  15. Distance and absolute magnitudes of the brightest stars in the dwarf galaxy Sextans A

    NASA Technical Reports Server (NTRS)

    Sandage, A.; Carlson, G.

    1982-01-01

    In an attempt to improve present bright star calibration, data were gathered for the brightest red and blue stars and the Cepheids in the Im V dwarf galaxy, Sextans A. On the basis of a magnitude sequence measured to V and B values of about 22 and 23, respectively, the mean magnitudes of the three brightest blue stars are V=17.98 and B=17.88. The three brightest red supergiants have V=18.09 and B=20.14. The periods and magnitudes measured for five Cepheids yield an apparent blue distance modulus of 25.67 + or - 0.2, via the P-L relation, and the mean absolute magnitudes of V=-7.56 and B=-5.53 for the red supergiants provide additional calibration of the brightest red stars as distance indicators. If Sextans A were placed at the distance of the Virgo cluster, it would appear to have a surface brightness of 23.5 mag/sq arcec. This, together with the large angular diameter, would make such a galaxy easily discoverable in the Virgo cluster by means of ground-based surveys.

  16. Analysis of the Magnitude and Frequency of Peak Discharge and Maximum Observed Peak Discharge in New Mexico and Surrounding Areas

    USGS Publications Warehouse

    Waltemeyer, Scott D.

    2008-01-01

    Estimates of the magnitude and frequency of peak discharges are necessary for the reliable design of bridges, culverts, and open-channel hydraulic analysis, and for flood-hazard mapping in New Mexico and surrounding areas. The U.S. Geological Survey, in cooperation with the New Mexico Department of Transportation, updated estimates of peak-discharge magnitude for gaging stations in the region and updated regional equations for estimation of peak discharge and frequency at ungaged sites. Equations were developed for estimating the magnitude of peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years at ungaged sites by use of data collected through 2004 for 293 gaging stations on unregulated streams that have 10 or more years of record. Peak discharges for selected recurrence intervals were determined at gaging stations by fitting observed data to a log-Pearson Type III distribution with adjustments for a low-discharge threshold and a zero skew coefficient. A low-discharge threshold was applied to frequency analysis of 140 of the 293 gaging stations. This application provides an improved fit of the log-Pearson Type III frequency distribution. Use of the low-discharge threshold generally eliminated the peak discharge by having a recurrence interval of less than 1.4 years in the probability-density function. Within each of the nine regions, logarithms of the maximum peak discharges for selected recurrence intervals were related to logarithms of basin and climatic characteristics by using stepwise ordinary least-squares regression techniques for exploratory data analysis. Generalized least-squares regression techniques, an improved regression procedure that accounts for time and spatial sampling errors, then were applied to the same data used in the ordinary least-squares regression analyses. The average standard error of prediction, which includes average sampling error and average standard error of regression, ranged from 38 to 93 percent

  17. Metallicity and absolute magnitude calibrations for UBV photometry

    NASA Astrophysics Data System (ADS)

    Karataş, Y.; Schuster, W. J.

    2006-10-01

    Calibrations are presented here for metallicity ([Fe/H]) in terms of the ultraviolet excess, [δ(U - B) at B - V = 0.6, hereafter δ0.6], and also for the absolute visual magnitude (MV) and its difference with respect to the Hyades (ΔMHV) in terms of δ0.6 and (B - V), making use of high-resolution spectroscopic abundances from the literature and Hipparcos parallaxes. The relation [Fe/H]-δ0.6 has been derived for dwarf plus turn-off stars, and also for dwarf, turn-off, plus subgiant stars classified using the MV-(B - V)0 plane of Fig. 11, which is calibrated with isochrones from Bergbusch & VandenBerg (and also VandenBerg & Clem). The [Fe/H]-δ0.6 relations in our equations (5) and (6) agree well with those of Carney, as can be seen from Fig. 5(a). Within the uncertainties, the zero-points, +0.13(+/-0.05) of equation (5) and +0.13(+/-0.04) of equation (6), are in good agreement with the photometric ones of Cameron and of Carney, and close to the spectroscopic ones of Cayrel et al. and of Boesgaard & Friel for the Hyades open cluster. Good quantitative agreement between our estimated [Fe/H] abundances with those from uvby-β photometry and spectroscopic [Fe/H]spec values demonstrates that our equation (6) can be used in deriving quality photometric metal abundances for field stars and clusters using UBV data from various photometric surveys. For dwarf and turn-off stars, a new hybrid MV calibration is presented, based on Hipparcos parallaxes with σπ/π <= 0.1 and with a dispersion of +/-0.24 in MV. This hybrid MV calibration contains δ0.6 and (B - V) terms, plus higher order cross-terms of these, and is valid for the ranges of +0.37 <= (B - V)0 <= +0.88,- 0.10 <= δ0.6 <= +0.29 and 3.44 <= MV <= 7.23. For dwarf and turn-off stars, the relation for ΔMHV is revised and updated in terms of (B - V) and δ0.6, for the ranges of -0.10 <= δ0.6 <= +0.29, and +0.49 <= (B - V)0 <= +0.89, again making use of Hipparcos parallaxes with σπ/π <= 0.1. These parallaxes for

  18. Frequency and peak stretch magnitude affect alveolar epithelial permeability.

    PubMed

    Cohen, T S; Cavanaugh, K J; Margulies, S S

    2008-10-01

    The present study measured stretch-induced changes in transepithelial permeability to uncharged tracers (1.5-5.5 A) using cultured monolayers of alveolar epithelial type-I like cells. Cultured alveolar epithelial cells were subjected to uniform cyclic (0, 0.25 and 1.0 Hz) biaxial stretch from 0% to 12, 25 or 37% change in surface area (DeltaSA) for 1 h. Significant changes in permeability of cell monolayers were observed when stretched from 0% to 37% DeltaSA at all frequencies, and from 0% to 25% DeltaSA only at high frequency (1 Hz), but not at all when stretched from 0% to 12% DeltaSA compared with unstretched controls. At stretch oscillation amplitudes of 25 and 37% DeltaSA, imposed at 1 Hz, tracer permeability increased compared with that at 0.25 Hz. Cells subjected to a single stretch cycle at 37% DeltaSA (0.25 Hz), to simulate a deep sigh, were not distinguishable from unstretched controls. Reducing stretch oscillation amplitude while maintaining a peak stretch of 37% DeltaSA (0.25 Hz) via the application of a simulated post-end-expiratory pressure did not protect barrier properties. In conclusion, peak stretch magnitude and stretch frequency were the primary determining factors for epithelial barrier dysfunction, as opposed to oscillation amplitude.

  19. Estuarine abandoned channel sedimentation rates record peak fluvial discharge magnitudes

    NASA Astrophysics Data System (ADS)

    Gray, A. B.; Pasternack, G. B.; Watson, E. B.

    2018-04-01

    Fluvial sediment deposits can provide useful records of integrated watershed expressions including flood event magnitudes. However, floodplain and estuarine sediment deposits evolve through the interaction of watershed/marine sediment supply and transport characteristics with the local depositional environment. Thus extraction of watershed scale signals depends upon accounting for local scale effects on sediment deposition rates and character. This study presents an examination of the balance of fluvial sediment dynamics and local scale hydro-geomorphic controls on alluviation of an abandoned channel in the Salinas River Lagoon, CA. A set of three sediment cores contained discrete flood deposits that corresponded to the largest flood events over the period of accretion from 1969 to 2007. Sedimentation rates scaled with peak flood discharge and event scale sediment flux, but were not influenced by longer scale hydro-meteorological activities such as annual precipitation and water yield. Furthermore, the particle size distributions of flood deposits showed no relationship to event magnitudes. Both the responsiveness of sedimentation and unresponsiveness of particle size distributions to hydro-sedimentological event magnitudes appear to be controlled by aspects of local geomorphology that influence the connectivity of the abandoned channel to the Salinas River mainstem. Well-developed upstream plug bar formation precluded the entrainment of coarser bedload into the abandoned channel, while Salinas River mouth conditions (open/closed) in conjunction with tidal and storm surge conditions may play a role in influencing the delivery of coarser suspended load fractions. Channel adjacent sediment deposition can be valuable records of hydro-meteorological and sedimentological regimes, but local depositional settings may dominate the character of short term (interdecadal) signatures.

  20. On the Magnitude and Orientation of Stress during Shock Metamorphism: Understanding Peak Ring Formation by Combining Observations and Models.

    NASA Astrophysics Data System (ADS)

    Rae, A.; Poelchau, M.; Collins, G. S.; Timms, N.; Cavosie, A. J.; Lofi, J.; Salge, T.; Riller, U. P.; Ferrière, L.; Grieve, R. A. F.; Osinski, G.; Morgan, J. V.; Expedition 364 Science Party, I. I.

    2017-12-01

    Shock metamorphism occurs during the earliest moments after impact. The magnitude and orientation of shock leaves recordable signatures in rocks, which spatially vary across an impact structure. Consequently, observations of shock metamorphism can be used to understand deformation and its history within a shock wave, and to examine subsequent deformation during crater modification. IODP-ICDP Expedition 364 recovered nearly 600 m of shocked target rocks from the peak ring of the Chicxulub Crater. Samples from the expedition were used to measure the magnitude and orientation of shock in peak ring materials, and to determine the mechanism of peak-ring emplacement. Here, we present the results of petrographic analyses of the shocked granitic target rocks of the Chicxulub peak ring; using universal-stage optical microscopy, back-scattered electron images, and electron back-scatter diffraction. Deformation microstructures in quartz include planar deformation features (PDFs), feather features (FFs), which are unique to shock conditions, as well as planar fractures and crystal-plastic deformation bands. The assemblage of PDFs in quartz suggest that the peak-ring rocks experienced shock pressures of 15 GPa throughout the recovered drill core, and that the orientation of FFs are consistent with the present-day orientation of the maximum principal stress direction during shock is close to vertical. Numerical impact simulations of the impact event were run to determine the magnitude and orientation of principal stresses during shock and track those orientations throughout crater formation. Our results are remarkably consistent with the geological data, and accurately predict both the shock-pressure magnitudes, and the final near-vertical orientation of the direction of maximum principal stress in the shock wave. Furthermore, analysis of the state of stress throughout the impact event can be used to constrain the timing of fracture and fault orientations observed in the core

  1. Estimating the magnitude of peak flows at selected recurrence intervals for streams in Idaho

    USGS Publications Warehouse

    Berenbrock, Charles

    2002-01-01

    The region-of-influence method is not recommended for use in determining flood-frequency estimates for ungaged sites in Idaho because the results, overall, are less accurate and the calculations are more complex than those of regional regression equations. The regional regression equations were considered to be the primary method of estimating the magnitude and frequency of peak flows for ungaged sites in Idaho.

  2. A Concurrent Mixed Methods Approach to Examining the Quantitative and Qualitative Meaningfulness of Absolute Magnitude Estimation Scales in Survey Research

    ERIC Educational Resources Information Center

    Koskey, Kristin L. K.; Stewart, Victoria C.

    2014-01-01

    This small "n" observational study used a concurrent mixed methods approach to address a void in the literature with regard to the qualitative meaningfulness of the data yielded by absolute magnitude estimation scaling (MES) used to rate subjective stimuli. We investigated whether respondents' scales progressed from less to more and…

  3. OSSOS. II. A Sharp Transition in the Absolute Magnitude Distribution of the Kuiper Belt’s Scattering Population

    NASA Astrophysics Data System (ADS)

    Shankman, C.; Kavelaars, JJ.; Gladman, B. J.; Alexandersen, M.; Kaib, N.; Petit, J.-M.; Bannister, M. T.; Chen, Y.-T.; Gwyn, S.; Jakubik, M.; Volk, K.

    2016-02-01

    We measure the absolute magnitude, H, distribution, dN(H) ∝ 10 αH , of the scattering Trans-Neptunian Objects (TNOs) as a proxy for their size-frequency distribution. We show that the H-distribution of the scattering TNOs is not consistent with a single-slope distribution, but must transition around H g ˜ 9 to either a knee with a shallow slope or to a divot, which is a differential drop followed by second exponential distribution. Our analysis is based on a sample of 22 scattering TNOs drawn from three different TNO surveys—the Canada-France Ecliptic Plane Survey, Alexandersen et al., and the Outer Solar System Origins Survey, all of which provide well-characterized detection thresholds—combined with a cosmogonic model for the formation of the scattering TNO population. Our measured absolute magnitude distribution result is independent of the choice of cosmogonic model. Based on our analysis, we estimate that the number of scattering TNOs is (2.4-8.3) × 105 for H r < 12. A divot H-distribution is seen in a variety of formation scenarios and may explain several puzzles in Kuiper Belt science. We find that a divot H-distribution simultaneously explains the observed scattering TNO, Neptune Trojan, Plutino, and Centaur H-distributions while simultaneously predicting a large enough scattering TNO population to act as the sole supply of the Jupiter-Family Comets.

  4. Estimating the Magnitude and Frequency of Peak Streamflows for Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada

    USGS Publications Warehouse

    Curran, Janet H.; Meyer, David F.; Tasker, Gary D.

    2003-01-01

    Estimates of the magnitude and frequency of peak streamflow are needed across Alaska for floodplain management, cost-effective design of floodway structures such as bridges and culverts, and other water-resource management issues. Peak-streamflow magnitudes for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows were computed for 301 streamflow-gaging and partial-record stations in Alaska and 60 stations in conterminous basins of Canada. Flows were analyzed from data through the 1999 water year using a log-Pearson Type III analysis. The State was divided into seven hydrologically distinct streamflow analysis regions for this analysis, in conjunction with a concurrent study of low and high flows. New generalized skew coefficients were developed for each region using station skew coefficients for stations with at least 25 years of systematic peak-streamflow data. Equations for estimating peak streamflows at ungaged locations were developed for Alaska and conterminous basins in Canada using a generalized least-squares regression model. A set of predictive equations for estimating the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year peak streamflows was developed for each streamflow analysis region from peak-streamflow magnitudes and physical and climatic basin characteristics. These equations may be used for unregulated streams without flow diversions, dams, periodically releasing glacial impoundments, or other streamflow conditions not correlated to basin characteristics. Basin characteristics should be obtained using methods similar to those used in this report to preserve the statistical integrity of the equations.

  5. VizieR Online Data Catalog: R absolute magnitudes of Kuiper Belt objects (Peixinho+, 2012)

    NASA Astrophysics Data System (ADS)

    Peixinho, N.; Delsanti, A.; Guilbert-Lepoutre, A.; Gafeira, R.; Lacerda, P.

    2012-06-01

    Compilation of absolute magnitude HRα, B-R color spectral features used in this work. For each object, we computed the average color index from the different papers presenting data obtained simultaneously in B and R bands (e.g. contiguous observations within a same night). When individual R apparent magnitude and date were available, we computed the HRα=R-5log(r Delta), where R is the R-band magnitude, r and Delta are the helio- and geocentric distances at the time of observation in AU, respectively. When V and V-R colors were available, we derived an R and then HRα value. We did not correct for the phase-angle α effect. This table includes also spectral information on the presence of water ice, methanol, methane, or confirmed featureless spectra, as available in the literature. We highlight only the cases with clear bands in the spectrum, which were reported/confirmed by some other work. The 1st column indicates the object identification number and name or provisional designation; the 2nd column indicates the dynamical class; the 3rd column indicates the average HRα value and 1-σ error bars; the 4th column indicates the average $B-R$ color and 1-σ error bars; the 5th column indicates the most important spectral features detected; and the 6th column points to the bibliographic references used for each object. (3 data files).

  6. OSSOS. II. A SHARP TRANSITION IN THE ABSOLUTE MAGNITUDE DISTRIBUTION OF THE KUIPER BELT’S SCATTERING POPULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankman, C.; Kavelaars, JJ.; Bannister, M. T.

    We measure the absolute magnitude, H, distribution, dN(H) ∝ 10{sup αH}, of the scattering Trans-Neptunian Objects (TNOs) as a proxy for their size-frequency distribution. We show that the H-distribution of the scattering TNOs is not consistent with a single-slope distribution, but must transition around H{sub g} ∼ 9 to either a knee with a shallow slope or to a divot, which is a differential drop followed by second exponential distribution. Our analysis is based on a sample of 22 scattering TNOs drawn from three different TNO surveys—the Canada–France Ecliptic Plane Survey, Alexandersen et al., and the Outer Solar System Origins Survey, all of whichmore » provide well-characterized detection thresholds—combined with a cosmogonic model for the formation of the scattering TNO population. Our measured absolute magnitude distribution result is independent of the choice of cosmogonic model. Based on our analysis, we estimate that the number of scattering TNOs is (2.4–8.3) × 10{sup 5} for H{sub r} < 12. A divot H-distribution is seen in a variety of formation scenarios and may explain several puzzles in Kuiper Belt science. We find that a divot H-distribution simultaneously explains the observed scattering TNO, Neptune Trojan, Plutino, and Centaur H-distributions while simultaneously predicting a large enough scattering TNO population to act as the sole supply of the Jupiter-Family Comets.« less

  7. Estimating the magnitude of peak flows for streams in Kentucky for selected recurrence intervals

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Martin, Gary R.

    2003-01-01

    This report gives estimates of, and presents techniques for estimating, the magnitude of peak flows for streams in Kentucky for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years. A flowchart in this report guides the user to the appropriate estimates and (or) estimating techniques for a site on a specific stream. Estimates of peak flows are given for 222 U.S. Geological Survey streamflow-gaging stations in Kentucky. In the development of the peak-flow estimates at gaging stations, a new generalized skew coefficient was calculated for the State. This single statewide value of 0.011 (with a standard error of prediction of 0.520) is more appropriate for Kentucky than the national skew isoline map in Bulletin 17B of the Interagency Advisory Committee on Water Data. Regression equations are presented for estimating the peak flows on ungaged, unregulated streams in rural drainage basins. The equations were developed by use of generalized-least-squares regression procedures at 187 U.S. Geological Survey gaging stations in Kentucky and 51 stations in surrounding States. Kentucky was divided into seven flood regions. Total drainage area is used in the final regression equations as the sole explanatory variable, except in Regions 1 and 4 where main-channel slope also was used. The smallest average standard errors of prediction were in Region 3 (from -13.1 to +15.0 percent) and the largest average standard errors of prediction were in Region 5 (from -37.6 to +60.3 percent). One section of this report describes techniques for estimating peak flows for ungaged sites on gaged, unregulated streams in rural drainage basins. Another section references two previous U.S. Geological Survey reports for peak-flow estimates on ungaged, unregulated, urban streams. Estimating peak flows at ungaged sites on regulated streams is beyond the scope of this report, because peak flows on regulated streams are dependent upon variable human activities.

  8. Magnitudes and timing of seasonal peak snowpack water equivalents in Arizona: A preliminary study of the possible effects of recent climatic change

    Treesearch

    Peter F. Ffolliott; Gerald J. Gottfried

    2010-01-01

    Field measurements and computer-based predictions suggest that the magnitudes of seasonal peak snowpack water equivalents are becoming less and the timing of these peaks is occurring earlier in the snowmelt-runoff season of the western United States. These changes in peak snowpack conditions have often been attributed to a warming of the regional climate. To determine...

  9. Techniques for estimating magnitude and frequency of peak flows for Pennsylvania streams

    USGS Publications Warehouse

    Stuckey, Marla H.; Reed, Lloyd A.

    2000-01-01

    Regression equations for estimating the magnitude and frequency of floods on ungaged streams in Pennsylvania with drainage areas less that 2,000 square miles were developed on the basis of peak-flow data collected at 313 streamflow-gaging stations. All streamflow-gaging stations used in the development of the equations had 10 or more years of record and include active and discontinued continuous-record and crest-stage partial-record streamflow-gaging stations. Regional regression equations were developed for flood flows expected every 10, 25, 50, 100, and 500 years by the use of a weighted multiple linear regression model.The State was divided into two regions. The largest region, Region A, encompasses about 78 percent of Pennsylvania. The smaller region, Region B, includes only the northwestern part of the State. Basin characteristics used in the regression equations for Region A are drainage area, percentage of forest cover, percentage of urban development, percentage of basin underlain by carbonate bedrock, and percentage of basin controlled by lakes, swamps, and reservoirs. Basin characteristics used in the regression equations for Region B are drainage area and percentage of basin controlled by lakes, swamps, and reservoirs. The coefficient of determination (R2) values for the five flood-frequency equations for Region A range from 0.93 to 0.82, and for Region B, the range is from 0.96 to 0.89.While the regression equations can be used to predict the magnitude and frequency of peak flows for most streams in the State, they should not be used for streams with drainage areas greater than 2,000 square miles or less than 1.5 square miles, for streams that drain extensively mined areas, or for stream reaches immediately below flood-control reservoirs. In addition, the equations presented for Region B should not be used if the stream drains a basin with more than 5 percent urban development.

  10. Absolute Nuv magnitudes of Gaia DR1 astrometric stars and a search for hot companions in nearby systems

    NASA Astrophysics Data System (ADS)

    Makarov, V. V.

    2017-10-01

    Accurate parallaxes from Gaia DR1 (TGAS) are combined with GALEX visual Nuv magnitudes to produce absolute Mnuv magnitudes and an ultraviolet HR diagram for a large sample of astrometric stars. A functional fit is derived of the lower envelope main sequence of the nearest 1403 stars (distance <40 pc), which should be reddening-free. Using this empirical fit, 50 nearby stars are selected with significant Nuv excess. These are predominantly late K and early M dwarfs, often associated with X-ray sources, and showing other manifestations of magnetic activity. The sample may include systems with hidden white dwarfs, stars younger than the Pleiades, or, most likely, tight interacting binaries of the BY Dra-type. A separate collection of 40 stars with precise trigonometric parallaxes and Nuv-G colors bluer than 2 mag is presented. It includes several known novae, white dwarfs, and binaries with hot subdwarf (sdOB) components, but most remain unexplored.

  11. An Empirical Fitting Method to Type Ia Supernova Light Curves. III. A Three-parameter Relationship: Peak Magnitude, Rise Time, and Photospheric Velocity

    NASA Astrophysics Data System (ADS)

    Zheng, WeiKang; Kelly, Patrick L.; Filippenko, Alexei V.

    2018-05-01

    We examine the relationship between three parameters of Type Ia supernovae (SNe Ia): peak magnitude, rise time, and photospheric velocity at the time of peak brightness. The peak magnitude is corrected for extinction using an estimate determined from MLCS2k2 fitting. The rise time is measured from the well-observed B-band light curve with the first detection at least 1 mag fainter than the peak magnitude, and the photospheric velocity is measured from the strong absorption feature of Si II λ6355 at the time of peak brightness. We model the relationship among these three parameters using an expanding fireball with two assumptions: (a) the optical emission is approximately that of a blackbody, and (b) the photospheric temperatures of all SNe Ia are the same at the time of peak brightness. We compare the precision of the distance residuals inferred using this physically motivated model against those from the empirical Phillips relation and the MLCS2k2 method for 47 low-redshift SNe Ia (0.005 < z < 0.04) and find comparable scatter. However, SNe Ia in our sample with higher velocities are inferred to be intrinsically fainter. Eliminating the high-velocity SNe and applying a more stringent extinction cut to obtain a “low-v golden sample” of 22 SNe, we obtain significantly reduced scatter of 0.108 ± 0.018 mag in the new relation, better than those of the Phillips relation and the MLCS2k2 method. For 250 km s‑1 of residual peculiar motions, we find 68% and 95% upper limits on the intrinsic scatter of 0.07 and 0.10 mag, respectively.

  12. Magnitude and Peak Amplitude Relationship for Microseismicity Induced by a Hydraulic Fracture Experiment

    NASA Astrophysics Data System (ADS)

    Smith, T.; Arce, A. C.; Ji, C.

    2016-12-01

    Waveform cross-correlation technique is widely used to improve the detection of small magnitude events induced by hydraulic fracturing. However, when events are detected, assigning a reliable magnitude is a challenging task, especially considering their small signal amplitude and high background noise during injections. In this study, we adopt the Match & Locate algorithm (M&L, Zhang and Wen, 2015) to analyze seven hours of continuous seismic observations from a hydraulic fracturing experiment in Central California. The site of the stimulated region is only 300-400m away from a 16-receiver vertical-borehole array which spans 230 m. The sampling rate is 4000 Hz. Both the injection sites and borehole array are more than 1.7 km below the surface. This dataset has previously been studied by an industry group, producing a catalog of 1134 events with moment magnitudes (Mw) ranging from -3.1 to -0.9. In this study, we select 202 events from this catalog with high signal to noise ratios to use as templates. Our M&L analysis produces a new catalog that contains 2119 events, which is 10 times more detections than the number of templates and about two times the original catalog. Using these two catalogs, we investigate the relationship of moment magnitude difference (ΔMW) and local magnitude difference (ΔML) between the detected event and corresponding template event. ΔML is computed using the peak amplitude ratio between the detected and template event for each channel. Our analysis yields an empirical relationship of ΔMW=0.64-0.65ΔML with an R2 of 0.99. The coefficient of 2/3 suggests that the information of the event's corner frequency is entirely lost (Hanks and Boore, 1984). The cause might not be unique, which implies that Earth's attenuation at this depth range (>1.7 km) is significant; or the 4000 Hz sampling rate is not sufficient. This relationship is crucial to estimate the b-value of the microseismicity induced by hydraulic fracture experiments. The analysis

  13. The absolute magnitude distribution of cold classical Kuiper belt objects

    NASA Astrophysics Data System (ADS)

    Petit, Jean-Marc; Bannister, Michele T.; Alexandersen, Mike; Chen, Ying-Tung; Gladman, Brett; Gwyn, Stephen; Kavelaars, JJ; Volk, Kathryn

    2016-10-01

    We report measurements of the low inclination component of the main Kuiper Belt showing a size freqency distribution very steep for sizes larger than H_r ~ 6.5-7.0 and then a flattening to shallower slope that is still steeper than the collisional equilibrium slope.The Outer Solar System Origins Survey (OSSOS) is ongoing and is expected to detect over 500 TNOs in a precisely calibrated and characterized survey. Combining our current sample with CFEPS and the Alexandersen et al. (2015) survey, we analyse a sample of ~180 low inclination main classical (cold) TNOs, with absolute magnitude H_r (SDSS r' like flter) in the range 5 to 8.8. We confirm that the H_r distribution can be approximated by an exponential with a very steep slope (>1) at the bright end of the distribution, as has been recognized long ago. A transition to a shallower slope occurs around H_r ~ 6.5 - 7.0, an H_r mag identified by Fraster et al (2014). Faintward of this transition, we find a second exponential to be a good approximation at least until H_r ~ 8.5, but with a slope significantly steeper than the one proposed by Fraser et al. (2014) or even the collisional equilibrium value of 0.5.The transition in the cold TNO H_r distribution thus appears to occur at larger sizes than is observed in the high inclination main classical (hot) belt, an important indicator of a different cosmogony for these two sub-components of the main classical Kuiper belt. Given the largish slope faintward of the transition, the cold population with ~100 km diameter may dominate the mass of the Kuiper belt in the 40 AU < a < 47 au region.

  14. Rapid estimation of earthquake magnitude from the arrival time of the peak high‐frequency amplitude

    USGS Publications Warehouse

    Noda, Shunta; Yamamoto, Shunroku; Ellsworth, William L.

    2016-01-01

    We propose a simple approach to measure earthquake magnitude M using the time difference (Top) between the body‐wave onset and the arrival time of the peak high‐frequency amplitude in an accelerogram. Measured in this manner, we find that Mw is proportional to 2logTop for earthquakes 5≤Mw≤7, which is the theoretical proportionality if Top is proportional to source dimension and stress drop is scale invariant. Using high‐frequency (>2  Hz) data, the root mean square (rms) residual between Mw and MTop(M estimated from Top) is approximately 0.5 magnitude units. The rms residuals of the high‐frequency data in passbands between 2 and 16 Hz are uniformly smaller than those obtained from the lower‐frequency data. Top depends weakly on epicentral distance, and this dependence can be ignored for distances <200  km. Retrospective application of this algorithm to the 2011 Tohoku earthquake produces a final magnitude estimate of M 9.0 at 120 s after the origin time. We conclude that Top of high‐frequency (>2  Hz) accelerograms has value in the context of earthquake early warning for extremely large events.

  15. Longitudinal Changes in AbsoluteVO2peak, Physical Activity Level, Body Mass Index, and Overweightedness among Adolescents in Vocational and Non-Vocational Studies

    PubMed Central

    Lagestad, Pål; Floan, Oddbjørn; Moa, Ivar Fossland

    2017-01-01

    The purpose of the study was to examine differences in physical activity level, physical fitness, body mass index, and overweight among adolescents in vocational and non-vocational studies, at the age of 14, 16, and 19, using a 5-year longitudinal design. Students in sport studies had the highest absoluteVO2peak and higher physical activity levels, than students in vocational subjects and students with a specialization in general studies. However, there were no significant differences between students in vocational subjects and students with a specialization in general studies according to absoluteVO2peak and physical activity levels. Students in vocational subjects were significantly more overweight/obese at 19 years of age, compared with the other students. Our findings support previous research pointing to overweightedness as being more widespread among adolescents in vocational programs than in non-vocational programs. However, differences in the physical activity level and physical fitness do not seem to explain these differences. PMID:28871279

  16. Absolute calibration of optical streak cameras on picosecond time scales using supercontinuum generation

    DOE PAGES

    Patankar, S.; Gumbrell, E. T.; Robinson, T. S.; ...

    2017-08-17

    Here we report a new method using high stability, laser-driven supercontinuum generation in a liquid cell to calibrate the absolute photon response of fast optical streak cameras as a function of wavelength when operating at fastest sweep speeds. A stable, pulsed white light source based around the use of self-phase modulation in a salt solution was developed to provide the required brightness on picosecond timescales, enabling streak camera calibration in fully dynamic operation. The measured spectral brightness allowed for absolute photon response calibration over a broad spectral range (425-650nm). Calibrations performed with two Axis Photonique streak cameras using the Photonismore » P820PSU streak tube demonstrated responses which qualitatively follow the photocathode response. Peak sensitivities were 1 photon/count above background. The absolute dynamic sensitivity is less than the static by up to an order of magnitude. We attribute this to the dynamic response of the phosphor being lower.« less

  17. Analysis of the Magnitude and Frequency of Peak Discharges for the Navajo Nation in Arizona, Utah, Colorado, and New Mexico

    USGS Publications Warehouse

    Waltemeyer, Scott D.

    2006-01-01

    Estimates of the magnitude and frequency of peak discharges are necessary for the reliable flood-hazard mapping in the Navajo Nation in Arizona, Utah, Colorado, and New Mexico. The Bureau of Indian Affairs, U.S. Army Corps of Engineers, and Navajo Nation requested that the U.S. Geological Survey update estimates of peak discharge magnitude for gaging stations in the region and update regional equations for estimation of peak discharge and frequency at ungaged sites. Equations were developed for estimating the magnitude of peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years at ungaged sites using data collected through 1999 at 146 gaging stations, an additional 13 years of peak-discharge data since a 1997 investigation, which used gaging-station data through 1986. The equations for estimation of peak discharges at ungaged sites were developed for flood regions 8, 11, high elevation, and 6 and are delineated on the basis of the hydrologic codes from the 1997 investigation. Peak discharges for selected recurrence intervals were determined at gaging stations by fitting observed data to a log-Pearson Type III distribution with adjustments for a low-discharge threshold and a zero skew coefficient. A low-discharge threshold was applied to frequency analysis of 82 of the 146 gaging stations. This application provides an improved fit of the log-Pearson Type III frequency distribution. Use of the low-discharge threshold generally eliminated the peak discharge having a recurrence interval of less than 1.4 years in the probability-density function. Within each region, logarithms of the peak discharges for selected recurrence intervals were related to logarithms of basin and climatic characteristics using stepwise ordinary least-squares regression techniques for exploratory data analysis. Generalized least-squares regression techniques, an improved regression procedure that accounts for time and spatial sampling errors, then was applied to the same

  18. Estimating magnitude and frequency of floods using the PeakFQ 7.0 program

    USGS Publications Warehouse

    Veilleux, Andrea G.; Cohn, Timothy A.; Flynn, Kathleen M.; Mason, Jr., Robert R.; Hummel, Paul R.

    2014-01-01

    Flood-frequency analysis provides information about the magnitude and frequency of flood discharges based on records of annual maximum instantaneous peak discharges collected at streamgages. The information is essential for defining flood-hazard areas, for managing floodplains, and for designing bridges, culverts, dams, levees, and other flood-control structures. Bulletin 17B (B17B) of the Interagency Advisory Committee on Water Data (IACWD; 1982) codifies the standard methodology for conducting flood-frequency studies in the United States. B17B specifies that annual peak-flow data are to be fit to a log-Pearson Type III distribution. Specific methods are also prescribed for improving skew estimates using regional skew information, tests for high and low outliers, adjustments for low outliers and zero flows, and procedures for incorporating historical flood information. The authors of B17B identified various needs for methodological improvement and recommended additional study. In response to these needs, the Advisory Committee on Water Information (ACWI, successor to IACWD; http://acwi.gov/, Subcommittee on Hydrology (SOH), Hydrologic Frequency Analysis Work Group (HFAWG), has recommended modest changes to B17B. These changes include adoption of a generalized method-of-moments estimator denoted the Expected Moments Algorithm (EMA) (Cohn and others, 1997) and a generalized version of the Grubbs-Beck test for low outliers (Cohn and others, 2013). The SOH requested that the USGS implement these changes in a user-friendly, publicly accessible program.

  19. Estimating the magnitude of peak discharges for selected flood frequencies on small streams in South Carolina (1975)

    USGS Publications Warehouse

    Whetstone, B.H.

    1982-01-01

    A program to collect and analyze flood data from small streams in South Carolina was conducted from 1967-75, as a cooperative research project with the South Carolina Department of Highways and Public Transportation and the Federal Highway Administration. As a result of that program, a technique is presented for estimating the magnitude and frequency of floods on small streams in South Carolina with drainage areas ranging in size from 1 to 500 square miles. Peak-discharge data from 74 stream-gaging stations (25 small streams were synthesized, whereas 49 stations had long-term records) were used in multiple regression procedures to obtain equations for estimating magnitude of floods having recurrence intervals of 10, 25, 50, and 100 years on small natural streams. The significant independent variable was drainage area. Equations were developed for the three physiographic provinces of South Carolina (Coastal Plain, Piedmont, and Blue Ridge) and can be used for estimating floods on small streams. (USGS)

  20. The population, magnitudes, and sizes of Jupiter family comets

    NASA Astrophysics Data System (ADS)

    Fernández, J. A.; Tancredi, G.; Rickman, H.; Licandro, J.

    1999-12-01

    We analyze the sample of measured nuclear magnitudes of the observed Jupiter family (JF) comets (taken as those with orbital periods P < 20 years and Tisserand parameters T > 2). We find a tendency of the measured nuclear magnitudes to be fainter as JF comets are observed with CCD detectors attached to medium- and large-size telescopes (e.g. Spacewatch Telescope). However, a few JF comets observed very far from the Sun (4-7 AU) show a wide dispersion of their derived absolute nuclear magnitudes which suggests that either these JF comets keep active all along the orbit, so the reported unusually bright distant magnitudes were strongly contaminated by a coma, or some of the measured ``nuclear magnitudes'' were grossly overestimated (i.e. their brightness underestimated). The cumulative mass distribution of JF comets is found to follow a power-law of index s = - 0.88 +/- 0.08, suggesting a distribution significantly steeper than that for both small main-belt asteroids and near-Earth asteroids. The cumulative mass distribution of JF comets with q < 2 AU tends to flatten for absolute (visual) nuclear magnitudes H_N > 16, which is probably due to incompleteness of discovery of fainter comets and/or a real scarcity of small comets due, perhaps, to much shorter physical lifetimes. In particular, no JF comets fainter than H_N ~ 19.5 are found in the sample, suggesting that the critical size for a comet to be still active may be of about 0.4 km radius for an assumed geometric albedo of 0.04. Possibly, smaller comet nuclei disintegrate very quickly into meteor streams. Most absolute nuclear magnitudes are found in the range 15-18, corresponding to nuclear radii in the range 0.8-3.3 km (for the same geometric albedo). We find that a large majority of JF comets with perihelion distances q > 2.5 AU are brighter than absolute nuclear magnitude H_N = 16, suggesting that only a very small fraction (a few percent) of the population of the JF comets with large q has so far been

  1. A fundamental reconsideration of the CRASH3 damage analysis algorithm: the case against uniform ubiquitous linearity between BEV, peak collision force magnitude, and residual damage depth.

    PubMed

    Singh, Jai

    2013-01-01

    The objective of this study was a thorough reconsideration, within the framework of Newtonian mechanics and work-energy relationships, of the empirically interpreted relationships employed within the CRASH3 damage analysis algorithm in regards to linearity between barrier equivalent velocity (BEV) or peak collision force magnitude and residual damage depth. The CRASH3 damage analysis algorithm was considered, first in terms of the cases of collisions that produced no residual damage, in order to properly explain the damage onset speed and crush resistance terms. Under the modeling constraints of the collision partners representing a closed system and the a priori assumption of linearity between BEV or peak collision force magnitude and residual damage depth, the equations for the sole realistic model were derived. Evaluation of the work-energy relationships for collisions at or below the elastic limit revealed that the BEV or peak collision force magnitude relationships are bifurcated based upon the residual damage depth. Rather than being additive terms from the linear curve fits employed in the CRASH3 damage analysis algorithm, the Campbell b 0 and CRASH3 AL terms represent the maximum values that can be ascribed to the BEV or peak collision force magnitude, respectively, for collisions that produce zero residual damage. Collisions resulting in the production of non-zero residual damage depth already account for the surpassing of the elastic limit during closure and therefore the secondary addition of the elastic limit terms represents a double accounting of the same. This evaluation shows that the current energy absorbed formulation utilized in the CRASH3 damage analysis algorithm extraneously includes terms associated with the A and G stiffness coefficients. This sole realistic model, however, is limited, secondary to reducing the coefficient of restitution to a constant value for all cases in which the residual damage depth is nonzero. Linearity between BEV or

  2. Color excesses, intrinsic colors, and absolute magnitudes of Galactic and Large Magellanic Cloud Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Vacca, William D.; Torres-Dodgen, Ana V.

    1990-01-01

    A new method of determining the color excesses of WR stars in the Galaxy and the LMC has been developed and is used to determine the excesses for 44 Galactic and 32 LMC WR stars. The excesses are combined with line-free, narrow-band spectrophotometry to derive intrinsic colors of the WR stars of nearly all spectral subtypes. No correlation of UV spectral index or intrinsic colors with spectral subtype is found for the samples of single WN or WC stars. There is evidence that early WN stars in the LMC have flatter UV continua and redder intrinsic colors than early WN stars in the Galaxy. No separation is found between the values derived for Galactic WC stars and those obtained for LMC WC stars. The intrinsic colors are compared with those calculated from model atmospheres of WR stars and generally good agreement is found. Absolute magnitudes are derived for WR stars in the LMC and for those Galactic WR stars located in clusters and associations for which there are reliable distance estimates.

  3. [A peak recognition algorithm designed for chromatographic peaks of transformer oil].

    PubMed

    Ou, Linjun; Cao, Jian

    2014-09-01

    In the field of the chromatographic peak identification of the transformer oil, the traditional first-order derivative requires slope threshold to achieve peak identification. In terms of its shortcomings of low automation and easy distortion, the first-order derivative method was improved by applying the moving average iterative method and the normalized analysis techniques to identify the peaks. Accurate identification of the chromatographic peaks was realized through using multiple iterations of the moving average of signal curves and square wave curves to determine the optimal value of the normalized peak identification parameters, combined with the absolute peak retention times and peak window. The experimental results show that this algorithm can accurately identify the peaks and is not sensitive to the noise, the chromatographic peak width or the peak shape changes. It has strong adaptability to meet the on-site requirements of online monitoring devices of dissolved gases in transformer oil.

  4. The Type Ia Supernova Color-Magnitude Relation and Host Galaxy Dust: A Simple Hierarchical Bayesian Model

    NASA Astrophysics Data System (ADS)

    Mandel, Kaisey; Scolnic, Daniel; Shariff, Hikmatali; Foley, Ryan; Kirshner, Robert

    2017-01-01

    Inferring peak optical absolute magnitudes of Type Ia supernovae (SN Ia) from distance-independent measures such as their light curve shapes and colors underpins the evidence for cosmic acceleration. SN Ia with broader, slower declining optical light curves are more luminous (“broader-brighter”) and those with redder colors are dimmer. But the “redder-dimmer” color-luminosity relation widely used in cosmological SN Ia analyses confounds its two separate physical origins. An intrinsic correlation arises from the physics of exploding white dwarfs, while interstellar dust in the host galaxy also makes SN Ia appear dimmer and redder. Conventional SN Ia cosmology analyses currently use a simplistic linear regression of magnitude versus color and light curve shape, which does not model intrinsic SN Ia variations and host galaxy dust as physically distinct effects, resulting in low color-magnitude slopes. We construct a probabilistic generative model for the dusty distribution of extinguished absolute magnitudes and apparent colors as the convolution of an intrinsic SN Ia color-magnitude distribution and a host galaxy dust reddening-extinction distribution. If the intrinsic color-magnitude (MB vs. B-V) slope βint differs from the host galaxy dust law RB, this convolution results in a specific curve of mean extinguished absolute magnitude vs. apparent color. The derivative of this curve smoothly transitions from βint in the blue tail to RB in the red tail of the apparent color distribution. The conventional linear fit approximates this effective curve near the average apparent color, resulting in an apparent slope βapp between βint and RB. We incorporate these effects into a hierarchical Bayesian statistical model for SN Ia light curve measurements, and analyze a dataset of SALT2 optical light curve fits of 277 nearby SN Ia at z < 0.10. The conventional linear fit obtains βapp ≈ 3. Our model finds a βint = 2.2 ± 0.3 and a distinct dust law of RB = 3.7 ± 0

  5. Establishing Ion Ratio Thresholds Based on Absolute Peak Area for Absolute Protein Quantification using Protein Cleavage Isotope Dilution Mass Spectrometry

    PubMed Central

    Loziuk, Philip L.; Sederoff, Ronald R.; Chiang, Vincent L.; Muddiman, David C.

    2014-01-01

    Quantitative mass spectrometry has become central to the field of proteomics and metabolomics. Selected reaction monitoring is a widely used method for the absolute quantification of proteins and metabolites. This method renders high specificity using several product ions measured simultaneously. With growing interest in quantification of molecular species in complex biological samples, confident identification and quantitation has been of particular concern. A method to confirm purity or contamination of product ion spectra has become necessary for achieving accurate and precise quantification. Ion abundance ratio assessments were introduced to alleviate some of these issues. Ion abundance ratios are based on the consistent relative abundance (RA) of specific product ions with respect to the total abundance of all product ions. To date, no standardized method of implementing ion abundance ratios has been established. Thresholds by which product ion contamination is confirmed vary widely and are often arbitrary. This study sought to establish criteria by which the relative abundance of product ions can be evaluated in an absolute quantification experiment. These findings suggest that evaluation of the absolute ion abundance for any given transition is necessary in order to effectively implement RA thresholds. Overall, the variation of the RA value was observed to be relatively constant beyond an absolute threshold ion abundance. Finally, these RA values were observed to fluctuate significantly over a 3 year period, suggesting that these values should be assessed as close as possible to the time at which data is collected for quantification. PMID:25154770

  6. Neural Sensitivity to Absolute and Relative Anticipated Reward in Adolescents

    PubMed Central

    Vaidya, Jatin G.; Knutson, Brian; O'Leary, Daniel S.; Block, Robert I.; Magnotta, Vincent

    2013-01-01

    Adolescence is associated with a dramatic increase in risky and impulsive behaviors that have been attributed to developmental differences in neural processing of rewards. In the present study, we sought to identify age differences in anticipation of absolute and relative rewards. To do so, we modified a commonly used monetary incentive delay (MID) task in order to examine brain activity to relative anticipated reward value (neural sensitivity to the value of a reward as a function of other available rewards). This design also made it possible to examine developmental differences in brain activation to absolute anticipated reward magnitude (the degree to which neural activity increases with increasing reward magnitude). While undergoing fMRI, 18 adolescents and 18 adult participants were presented with cues associated with different reward magnitudes. After the cue, participants responded to a target to win money on that trial. Presentation of cues was blocked such that two reward cues associated with $.20, $1.00, or $5.00 were in play on a given block. Thus, the relative value of the $1.00 reward varied depending on whether it was paired with a smaller or larger reward. Reflecting age differences in neural responses to relative anticipated reward (i.e., reference dependent processing), adults, but not adolescents, demonstrated greater activity to a $1 reward when it was the larger of the two available rewards. Adults also demonstrated a more linear increase in ventral striatal activity as a function of increasing absolute reward magnitude compared to adolescents. Additionally, reduced ventral striatal sensitivity to absolute anticipated reward (i.e., the difference in activity to medium versus small rewards) correlated with higher levels of trait Impulsivity. Thus, ventral striatal activity in anticipation of absolute and relative rewards develops with age. Absolute reward processing is also linked to individual differences in Impulsivity. PMID:23544046

  7. Averaging peak-to-peak voltage detector for absolute mass determination of single particles with quadrupole ion traps

    NASA Astrophysics Data System (ADS)

    Peng, Wen-Ping; Lee, Yuan T.; Ting, Joseph W.; Chang, Huan-Cheng

    2005-02-01

    A sine wave that controls a quadrupole ion trap is generated from a low voltage source, boosted to high voltage through a transformer. Since not even the best transformers can keep a flat amplitude response with respect to frequency, knowing the accurate peak-to-peak value of the sine wave is paramount when the frequency is varied. We have developed an averaging peak-to-peak voltage detector for such measurements and demonstrated that the device is an essential tool to make possible high-precision mass determination of single charged microparticles with masses greater than 1×1011u. Tests of the detector with sine waves from a FLUKE 5720A standard source in the neighborhood of 1400Vpp and frequencies ranging from 100to700Hz showed a measurement accuracy better than 10ppm. The detector settled within 5s after each reset to 5 digits of DVM rock-steady reading, and the calibration against the same source after 3weeks of continuous use of the circuit produced a mere overall 1ppm difference.

  8. Microfabricated Collector-Generator Electrode Sensor for Measuring Absolute pH and Oxygen Concentrations.

    PubMed

    Dengler, Adam K; Wightman, R Mark; McCarty, Gregory S

    2015-10-20

    Fast-scan cyclic voltammetry (FSCV) has attracted attention for studying in vivo neurotransmission due to its subsecond temporal resolution, selectivity, and sensitivity. Traditional FSCV measurements use background subtraction to isolate changes in the local electrochemical environment, providing detailed information on fluctuations in the concentration of electroactive species. This background subtraction removes information about constant or slowly changing concentrations. However, determination of background concentrations is still important for understanding functioning brain tissue. For example, neural activity is known to consume oxygen and produce carbon dioxide which affects local levels of oxygen and pH. Here, we present a microfabricated microelectrode array which uses FSCV to detect the absolute levels of oxygen and pH in vitro. The sensor is a collector-generator electrode array with carbon microelectrodes spaced 5 μm apart. In this work, a periodic potential step is applied at the generator producing transient local changes in the electrochemical environment. The collector electrode continuously performs FSCV enabling these induced changes in concentration to be recorded with the sensitivity and selectivity of FSCV. A negative potential step applied at the generator produces a transient local pH shift at the collector. The generator-induced pH signal is detected using FSCV at the collector and correlated to absolute solution pH by postcalibration of the anodic peak position. In addition, in oxygenated solutions a negative potential step at the generator produces hydrogen peroxide by reducing oxygen. Hydrogen peroxide is detected with FSCV at the collector electrode, and the magnitude of the oxidative peak is proportional to absolute oxygen concentrations. Oxygen interference on the pH signal is minimal and can be accounted for with a postcalibration.

  9. Reward Value Effects on Timing in the Peak Procedure

    ERIC Educational Resources Information Center

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2009-01-01

    Three experiments examined the effect of motivational variables on timing in the peak procedure. In Experiment 1, rats received a 60-s peak procedure that was coupled with long-term, between-phase changes in reinforcer magnitude. Increases in reinforcer magnitude produced a leftward shift in the peak that persisted for 20 sessions of training. In…

  10. An Integrated Model of Choices and Response Times in Absolute Identification

    ERIC Educational Resources Information Center

    Brown, Scott D.; Marley, A. A. J.; Donkin, Christopher; Heathcote, Andrew

    2008-01-01

    Recent theoretical developments in the field of absolute identification have stressed differences between relative and absolute processes, that is, whether stimulus magnitudes are judged relative to a shorter term context provided by recently presented stimuli or a longer term context provided by the entire set of stimuli. The authors developed a…

  11. The PMA Catalogue: 420 million positions and absolute proper motions

    NASA Astrophysics Data System (ADS)

    Akhmetov, V. S.; Fedorov, P. N.; Velichko, A. B.; Shulga, V. M.

    2017-07-01

    We present a catalogue that contains about 420 million absolute proper motions of stars. It was derived from the combination of positions from Gaia DR1 and 2MASS, with a mean difference of epochs of about 15 yr. Most of the systematic zonal errors inherent in the 2MASS Catalogue were eliminated before deriving the absolute proper motions. The absolute calibration procedure (zero-pointing of the proper motions) was carried out using about 1.6 million positions of extragalactic sources. The mean formal error of the absolute calibration is less than 0.35 mas yr-1. The derived proper motions cover the whole celestial sphere without gaps for a range of stellar magnitudes from 8 to 21 mag. In the sky areas where the extragalactic sources are invisible (the avoidance zone), a dedicated procedure was used that transforms the relative proper motions into absolute ones. The rms error of proper motions depends on stellar magnitude and ranges from 2-5 mas yr-1 for stars with 10 mag < G < 17 mag to 5-10 mas yr-1 for faint ones. The present catalogue contains the Gaia DR1 positions of stars for the J2015 epoch. The system of the PMA proper motions does not depend on the systematic errors of the 2MASS positions, and in the range from 14 to 21 mag represents an independent realization of a quasi-inertial reference frame in the optical and near-infrared wavelength range. The Catalogue also contains stellar magnitudes taken from the Gaia DR1 and 2MASS catalogues. A comparison of the PMA proper motions of stars with similar data from certain recent catalogues has been undertaken.

  12. The absolute magnitudes of RR Lyrae stars. II - DX Delphini

    NASA Astrophysics Data System (ADS)

    Skillen, I.; Fernley, J. A.; Jameson, R. F.; Lynas-Gray, A. E.; Longmore, A. J.

    1989-11-01

    UV, IR and visual photometry of the short-period RR Lyrae star DX Del is presented and treated by means of the Blackwell and Shallis (1977) IR Flux Method-based formulation of the Baade-Wesselink method. Upon correcting to common reddening, extinction, and radial-velocity conversion factors, as well as applying the Baade-Wesselink analysis of Burki and Meylan (1986), it proved impossible to reproduce their results. It is suggested that the present methods are inherently more stable than those of Burki and Meylan, given their reliance on optical colors and magnitudes to derive effective temperatures and radii.

  13. Laser, GPS and absolute gravimetry vertical positioning time series comparison at the OCA observatory, France

    NASA Astrophysics Data System (ADS)

    Nicolas, J.; Nocquet, J.; van Camp, M.; Coulot, D.

    2003-12-01

    Time-dependent displacements of stations usually have magnitude close to the accuracy of each individual technique, and it still remains difficult to separate the true geophysical motion from possible artifacts inherent to each space geodetic technique. The Observatoire de la C“te d'Azur (OCA), located at Grasse, France benefits from the collocation of several geodetic instruments and techniques (3 laser ranging stations, and a permanent GPS) what allows us to do a direct comparison of the time series. Moreover, absolute gravimetry measurement campaigns have also been regularly performed since 1997, first by the "Ecole et Observatoire des Sciences de la Terre (EOST) of Strasbourg, France, and more recently by the Royal Observatory of Belgium. This study presents a comparison between the positioning time series of the vertical component derived from the SLR and GPS analysis with the gravimetric results from 1997 to 2003. The laser station coordinates are based on a LAGEOS -1 and -2 combined solution using reference 10-day arc orbits, the ITRF2000 reference frame, and the IERS96 conventions. Different GPS weekly global solutions provided from several IGS are combined and compared to the SLR results. The absolute gravimetry measurements are converted into vertical displacements with a classical gradient. The laser time series indicate a strong annual signal at the level of about 3-4 cm peak to peak amplitude on the vertical component. Absolute gravimetry data agrees with the SLR results. GPS positioning solutions also indicate a significant annual term, but with a magnitude of only 50% of the one shown by the SLR solution and by the gravimetry measurements. Similar annual terms are also observed on other SLR sites we processed, but usually with! lower and various amplitudes. These annual signals are also compared to vertical positioning variations corresponding to an atmospheric loading model. We present the level of agreement between the different techniques and we

  14. Absolute magnitudes and slope parameters for 250,000 asteroids observed by Pan-STARRS PS1 - Preliminary results

    NASA Astrophysics Data System (ADS)

    Vereš, Peter; Jedicke, Robert; Fitzsimmons, Alan; Denneau, Larry; Granvik, Mikael; Bolin, Bryce; Chastel, Serge; Wainscoat, Richard J.; Burgett, William S.; Chambers, Kenneth C.; Flewelling, Heather; Kaiser, Nick; Magnier, Eugen A.; Morgan, Jeff S.; Price, Paul A.; Tonry, John L.; Waters, Christopher

    2015-11-01

    We present the results of a Monte Carlo technique to calculate the absolute magnitudes (H) and slope parameters (G) of ∼240,000 asteroids observed by the Pan-STARRS1 telescope during the first 15 months of its 3-year all-sky survey mission. The system's exquisite photometry with photometric errors ≲ 0.04mag , and well-defined filter and photometric system, allowed us to derive accurate H and G even with a limited number of observations and restricted range in phase angles. Our Monte Carlo method simulates each asteroid's rotation period, amplitude and color to derive the most-likely H and G, but its major advantage is in estimating realistic statistical + systematic uncertainties and errors on each parameter. The method was tested by comparison with the well-established and accurate results for about 500 asteroids provided by Pravec et al. (Pravec, P. et al. [2012]. Icarus 221, 365-387) and then applied to determining H and G for the Pan-STARRS1 asteroids using both the Muinonen et al. (Muinonen, K. et al. [2010]. Icarus 209, 542-555) and Bowell et al. (Bowell, E. et al. [1989]. Asteroids III, Chapter Application of Photometric Models to Asteroids. University of Arizona Press, pp. 524-555) phase functions. Our results confirm the bias in MPC photometry discovered by Jurić et al. (Jurić, M. et al. [2002]. Astrophys. J. 124, 1776-1787).

  15. Magnitude and kinetics of CD8+ T cell activation during hyperacute HIV infection impacts viral set point

    PubMed Central

    Ndhlovu, Zaza; Kamya, Philomena; Mewalal, Nikoshia; Kløverpris, Henrik N.; Nkosi, Thandeka; Pretorius, Karyn; Laher, Faatima; Ogunshola, Funsho; Chopera, Denis; Shekhar, Karthik; Ghebremichael, Musie; Ismail, Nasreen; Moodley, Amber; Malik, Amna; Leslie, Alasdair; Goulder, Philip J.R; Buus, Søren; Chakraborty, Arup; Dong, Krista; Ndung’u, Thumbi; Walker, Bruce D.

    2015-01-01

    Summary CD8+ T cells contribute to the control of HIV, but it is not clear whether initial immune responses modulate the viral set point. We screened high-risk uninfected women twice a week for plasma HIV RNA and identified twelve hyperacute infections. Onset of viremia elicited a massive HIV-specific CD8+ T cell response, with limited bystander activation of non-HIV memory CD8+ T cells. HIV-specific CD8+ T cells secreted little interferon-γ, underwent rapid apoptosis and failed to upregulate the interleukin 7 receptor, known to be important for T cell survival. The rapidity to peak CD8+ T cell activation and the absolute magnitude of activation induced by the exponential rise in viremia were inversely correlated with set point viremia. These data indicate that rapid, high magnitude HIV-induced CD8+ T cell responses are crucial for subsequent immune control of acute infection, which has important implications for HIV vaccine design. PMID:26362266

  16. Techniques for Estimating the Magnitude and Frequency of Peak Flows on Small Streams in Minnesota Based on Data through Water Year 2005

    USGS Publications Warehouse

    Lorenz, David L.; Sanocki, Chris A.; Kocian, Matthew J.

    2010-01-01

    Knowledge of the peak flow of floods of a given recurrence interval is essential for regulation and planning of water resources and for design of bridges, culverts, and dams along Minnesota's rivers and streams. Statistical techniques are needed to estimate peak flow at ungaged sites because long-term streamflow records are available at relatively few places. Because of the need to have up-to-date peak-flow frequency information in order to estimate peak flows at ungaged sites, the U.S. Geological Survey (USGS) conducted a peak-flow frequency study in cooperation with the Minnesota Department of Transportation and the Minnesota Pollution Control Agency. Estimates of peak-flow magnitudes for 1.5-, 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals are presented for 330 streamflow-gaging stations in Minnesota and adjacent areas in Iowa and South Dakota based on data through water year 2005. The peak-flow frequency information was subsequently used in regression analyses to develop equations relating peak flows for selected recurrence intervals to various basin and climatic characteristics. Two statistically derived techniques-regional regression equation and region of influence regression-can be used to estimate peak flow on ungaged streams smaller than 3,000 square miles in Minnesota. Regional regression equations were developed for selected recurrence intervals in each of six regions in Minnesota: A (northwestern), B (north central and east central), C (northeastern), D (west central and south central), E (southwestern), and F (southeastern). The regression equations can be used to estimate peak flows at ungaged sites. The region of influence regression technique dynamically selects streamflow-gaging stations with characteristics similar to a site of interest. Thus, the region of influence regression technique allows use of a potentially unique set of gaging stations for estimating peak flow at each site of interest. Two methods of selecting streamflow

  17. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  18. Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells

    PubMed Central

    Gerencser, Akos A.; Mookerjee, Shona A.; Jastroch, Martin; Brand, Martin D.

    2016-01-01

    The aim of this study was to simplify, improve and validate quantitative measurement of the mitochondrial membrane potential (ΔψM) in pancreatic β-cells. This built on our previously introduced calculation of the absolute magnitude of ΔψM in intact cells, using time-lapse imaging of the non-quench mode fluorescence of tetramethylrhodamine methyl ester and a bis-oxonol plasma membrane potential (ΔψP) indicator. ΔψM is a central mediator of glucose-stimulated insulin secretion in pancreatic β-cells. ΔψM is at the crossroads of cellular energy production and demand, therefore precise assay of its magnitude is a valuable tool to study how these processes interplay in insulin secretion. Dispersed islet cell cultures allowed cell type-specific, single-cell observations of cell-to-cell heterogeneity of ΔψM and ΔψP. Glucose addition caused hyperpolarization of ΔψM and depolarization of ΔψP. The hyperpolarization was a monophasic step increase, even in cells where the ΔψP depolarization was biphasic. The biphasic response of ΔψP was associated with a larger hyperpolarization of ΔψM than the monophasic response. Analysis of the relationships between ΔψP and ΔψM revealed that primary dispersed β-cells responded to glucose heterogeneously, driven by variable activation of energy metabolism. Sensitivity analysis of the calibration was consistent with β-cells having substantial cell-to-cell variations in amounts of mitochondria, and this was predicted not to impair the accuracy of determinations of relative changes in ΔψM and ΔψP. Finally, we demonstrate a significant problem with using an alternative ΔψM probe, rhodamine 123. In glucose-stimulated and oligomycin-inhibited β-cells the principles of the rhodamine 123 assay were breached, resulting in misleading conclusions. PMID:27404273

  19. Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells.

    PubMed

    Gerencser, Akos A; Mookerjee, Shona A; Jastroch, Martin; Brand, Martin D

    2016-01-01

    The aim of this study was to simplify, improve and validate quantitative measurement of the mitochondrial membrane potential (ΔψM) in pancreatic β-cells. This built on our previously introduced calculation of the absolute magnitude of ΔψM in intact cells, using time-lapse imaging of the non-quench mode fluorescence of tetramethylrhodamine methyl ester and a bis-oxonol plasma membrane potential (ΔψP) indicator. ΔψM is a central mediator of glucose-stimulated insulin secretion in pancreatic β-cells. ΔψM is at the crossroads of cellular energy production and demand, therefore precise assay of its magnitude is a valuable tool to study how these processes interplay in insulin secretion. Dispersed islet cell cultures allowed cell type-specific, single-cell observations of cell-to-cell heterogeneity of ΔψM and ΔψP. Glucose addition caused hyperpolarization of ΔψM and depolarization of ΔψP. The hyperpolarization was a monophasic step increase, even in cells where the ΔψP depolarization was biphasic. The biphasic response of ΔψP was associated with a larger hyperpolarization of ΔψM than the monophasic response. Analysis of the relationships between ΔψP and ΔψM revealed that primary dispersed β-cells responded to glucose heterogeneously, driven by variable activation of energy metabolism. Sensitivity analysis of the calibration was consistent with β-cells having substantial cell-to-cell variations in amounts of mitochondria, and this was predicted not to impair the accuracy of determinations of relative changes in ΔψM and ΔψP. Finally, we demonstrate a significant problem with using an alternative ΔψM probe, rhodamine 123. In glucose-stimulated and oligomycin-inhibited β-cells the principles of the rhodamine 123 assay were breached, resulting in misleading conclusions.

  20. Magnitude processing of symbolic and non-symbolic proportions: an fMRI study.

    PubMed

    Mock, Julia; Huber, Stefan; Bloechle, Johannes; Dietrich, Julia F; Bahnmueller, Julia; Rennig, Johannes; Klein, Elise; Moeller, Korbinian

    2018-05-10

    Recent research indicates that processing proportion magnitude is associated with activation in the intraparietal sulcus. Thus, brain areas associated with the processing of numbers (i.e., absolute magnitude) were activated during processing symbolic fractions as well as non-symbolic proportions. Here, we investigated systematically the cognitive processing of symbolic (e.g., fractions and decimals) and non-symbolic proportions (e.g., dot patterns and pie charts) in a two-stage procedure. First, we investigated relative magnitude-related activations of proportion processing. Second, we evaluated whether symbolic and non-symbolic proportions share common neural substrates. We conducted an fMRI study using magnitude comparison tasks with symbolic and non-symbolic proportions, respectively. As an indicator for magnitude-related processing of proportions, the distance effect was evaluated. A conjunction analysis indicated joint activation of specific occipito-parietal areas including right intraparietal sulcus (IPS) during proportion magnitude processing. More specifically, results indicate that the IPS, which is commonly associated with absolute magnitude processing, is involved in processing relative magnitude information as well, irrespective of symbolic or non-symbolic presentation format. However, we also found distinct activation patterns for the magnitude processing of the different presentation formats. Our findings suggest that processing for the separate presentation formats is not only associated with magnitude manipulations in the IPS, but also increasing demands on executive functions and strategy use associated with frontal brain regions as well as visual attention and encoding in occipital regions. Thus, the magnitude processing of proportions may not exclusively reflect processing of number magnitude information but also rather domain-general processes.

  1. Development of magnitude scaling relationship for earthquake early warning system in South Korea

    NASA Astrophysics Data System (ADS)

    Sheen, D.

    2011-12-01

    Seismicity in South Korea is low and magnitudes of recent earthquakes are mostly less than 4.0. However, historical earthquakes of South Korea reveal that many damaging earthquakes had occurred in the Korean Peninsula. To mitigate potential seismic hazard in the Korean Peninsula, earthquake early warning (EEW) system is being installed and will be operated in South Korea in the near future. In order to deliver early warnings successfully, it is very important to develop stable magnitude scaling relationships. In this study, two empirical magnitude relationships are developed from 350 events ranging in magnitude from 2.0 to 5.0 recorded by the KMA and the KIGAM. 1606 vertical component seismograms whose epicentral distances are within 100 km are chosen. The peak amplitude and the maximum predominant period of the initial P wave are used for finding magnitude relationships. The peak displacement of seismogram recorded at a broadband seismometer shows less scatter than the peak velocity of that. The scatters of the peak displacement and the peak velocity of accelerogram are similar to each other. The peak displacement of seismogram differs from that of accelerogram, which means that two different magnitude relationships for each type of data should be developed. The maximum predominant period of the initial P wave is estimated after using two low-pass filters, 3 Hz and 10 Hz, and 10 Hz low-pass filter yields better estimate than 3 Hz. It is found that most of the peak amplitude and the maximum predominant period are estimated within 1 sec after triggering.

  2. Magnitude Estimation for Large Earthquakes from Borehole Recordings

    NASA Astrophysics Data System (ADS)

    Eshaghi, A.; Tiampo, K. F.; Ghofrani, H.; Atkinson, G.

    2012-12-01

    We present a simple and fast method for magnitude determination technique for earthquake and tsunami early warning systems based on strong ground motion prediction equations (GMPEs) in Japan. This method incorporates borehole strong motion records provided by the Kiban Kyoshin network (KiK-net) stations. We analyzed strong ground motion data from large magnitude earthquakes (5.0 ≤ M ≤ 8.1) with focal depths < 50 km and epicentral distances of up to 400 km from 1996 to 2010. Using both peak ground acceleration (PGA) and peak ground velocity (PGV) we derived GMPEs in Japan. These GMPEs are used as the basis for regional magnitude determination. Predicted magnitudes from PGA values (Mpga) and predicted magnitudes from PGV values (Mpgv) were defined. Mpga and Mpgv strongly correlate with the moment magnitude of the event, provided sufficient records for each event are available. The results show that Mpgv has a smaller standard deviation in comparison to Mpga when compared with the estimated magnitudes and provides a more accurate early assessment of earthquake magnitude. We test this new method to estimate the magnitude of the 2011 Tohoku earthquake and we present the results of this estimation. PGA and PGV from borehole recordings allow us to estimate the magnitude of this event 156 s and 105 s after the earthquake onset, respectively. We demonstrate that the incorporation of borehole strong ground-motion records immediately available after the occurrence of large earthquakes significantly increases the accuracy of earthquake magnitude estimation and the associated improvement in earthquake and tsunami early warning systems performance. Moment magnitude versus predicted magnitude (Mpga and Mpgv).

  3. Using A New Model for Main Sequence Turnoff Absolute Magnitudes to Measure Stellar Streams in the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Weiss, Jake; Newberg, Heidi Jo; Arsenault, Matthew; Bechtel, Torrin; Desell, Travis; Newby, Matthew; Thompson, Jeffery M.

    2016-01-01

    Statistical photometric parallax is a method for using the distribution of absolute magnitudes of stellar tracers to statistically recover the underlying density distribution of these tracers. In previous work, statistical photometric parallax was used to trace the Sagittarius Dwarf tidal stream, the so-called bifurcated piece of the Sagittaritus stream, and the Virgo Overdensity through the Milky Way. We use an improved knowledge of this distribution in a new algorithm that accounts for the changes in the stellar population of color-selected stars near the photometric limit of the Sloan Digital Sky Survey (SDSS). Although we select bluer main sequence turnoff stars (MSTO) as tracers, large color errors near the survey limit cause many stars to be scattered out of our selection box and many fainter, redder stars to be scattered into our selection box. We show that we are able to recover parameters for analogues of these streams in simulated data using a maximum likelihood optimization on MilkyWay@home. We also present the preliminary results of fitting the density distribution of major Milky Way tidal streams in SDSS data. This research is supported by generous gifts from the Marvin Clan, Babette Josephs, Manit Limlamai, and the MilkyWay@home volunteers.

  4. A catalog of observed nuclear magnitudes of Jupiter family comets

    NASA Astrophysics Data System (ADS)

    Tancredi, G.; Fernández, J. A.; Rickman, H.; Licandro, J.

    2000-10-01

    A catalog of a sample of 105 Jupiter family (JF) comets (defined as those with Tisserand constants T > 2 and orbital periods P < 20 yr) is presented with our ``best estimates'' of their absolute nuclear magnitudes H_N = V(1,0,0). The catalog includes all the nuclear magnitudes reported after 1950 until August 1998 that appear in the International Comet Quarterly Archive of Cometary Photometric Data, the Minor Planet Center (MPC) data base, IAU Circulars, International Comet Quarterly, and a few papers devoted to some particular comets, together with our own observations. Photometric data previous to 1990 have mainly been taken from the Comet Light Curve Catalogue (CLICC) compiled by Kamél (\\cite{kamel}). We discuss the reliability of the reported nuclear magnitudes in relation to the inherent sources of errors and uncertainties, in particular the coma contamination often present even at large heliocentric distances. A large fraction of the JF comets of our sample indeed shows various degrees of activity at large heliocentric distances, which is correlated with recent downward jumps in their perihelion distances. The reliability of coma subtraction methods to compute the nuclear magnitude is also discussed. Most absolute nuclear magnitudes are found in the range 15 - 18, with no magnitudes fainter than H_N ~ 19.5. The catalog can be found at: http://www.fisica.edu.uy/ ~ gonzalo/catalog/. Table 2 and Appendix B are only available in electronic form at http://www.edpsciences.org Table 5 is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  5. The Effects of Reinforcer Magnitude on Timing in Rats

    ERIC Educational Resources Information Center

    Ludvig, Elliot A.; Conover, Kent; Shizgal, Peter

    2007-01-01

    The relation between reinforcer magnitude and timing behavior was studied using a peak procedure. Four rats received multiple consecutive sessions with both low and high levels of brain stimulation reward (BSR). Rats paused longer and had later start times during sessions when their responses were reinforced with low-magnitude BSR. When estimated…

  6. Significantly Increased Odds of Reporting Previous Shoulder Injuries in Female Marines Based on Larger Magnitude Shoulder Rotator Bilateral Strength Differences

    PubMed Central

    Eagle, Shawn R.; Connaboy, Chris; Nindl, Bradley C.; Allison, Katelyn F.

    2018-01-01

    Background: Musculoskeletal injuries to the extremities are a primary concern for the United States (US) military. One possible injury risk factor in this population is side-to-side strength imbalance. Purpose: To examine the odds of reporting a previous shoulder injury in US Marine Corps Ground Combat Element Integrated Task Force volunteers based on side-to-side strength differences in isokinetic shoulder strength. Study Design: Cohort study; Level of evidence, 3. Methods: Male (n = 219) and female (n = 91) Marines were included in this analysis. Peak torque values from 5 shoulder internal/external rotation repetitions were averaged and normalized to body weight. The difference in side-to-side strength measurements was calculated as the absolute value of the limb difference divided by the mean peak torque of the dominant limb. Participants were placed into groups based on the magnitude of these differences: <10%, 10% to 20%, and >20%. Odds ratios (ORs) and 95% CIs were calculated. Results: When separated by sex, 13.2% of men reported an injury, while 5.5% of women reported an injury. Female Marines with >20% internal rotation side-to-side strength differences demonstrated increased odds of reporting a previous shoulder injury compared with female Marines with <10% strength differences (OR, 15.4; 95% CI, 1.4-167.2; P = .03 ) and female Marines with 10% to 20% strength differences (OR, 13.9; 95% CI, 1.3-151.2; P = .04). No significant ORs were demonstrated in male Marines. Conclusion: Marines with larger magnitude internal rotation strength differences demonstrated increased odds of reporting a previous shoulder injury compared with those with lesser magnitude differences. Additionally, female sex appears to drastically affect the increased odds of reporting shoulder injuries (OR, 13.9-15.4) with larger magnitude differences (ie, >20%) compared with those with lesser magnitude differences (ie, <10% and 10%-20%). The retrospective cohort design of this study cannot

  7. Significantly Increased Odds of Reporting Previous Shoulder Injuries in Female Marines Based on Larger Magnitude Shoulder Rotator Bilateral Strength Differences.

    PubMed

    Eagle, Shawn R; Connaboy, Chris; Nindl, Bradley C; Allison, Katelyn F

    2018-02-01

    Musculoskeletal injuries to the extremities are a primary concern for the United States (US) military. One possible injury risk factor in this population is side-to-side strength imbalance. To examine the odds of reporting a previous shoulder injury in US Marine Corps Ground Combat Element Integrated Task Force volunteers based on side-to-side strength differences in isokinetic shoulder strength. Cohort study; Level of evidence, 3. Male (n = 219) and female (n = 91) Marines were included in this analysis. Peak torque values from 5 shoulder internal/external rotation repetitions were averaged and normalized to body weight. The difference in side-to-side strength measurements was calculated as the absolute value of the limb difference divided by the mean peak torque of the dominant limb. Participants were placed into groups based on the magnitude of these differences: <10%, 10% to 20%, and >20%. Odds ratios (ORs) and 95% CIs were calculated. When separated by sex, 13.2% of men reported an injury, while 5.5% of women reported an injury. Female Marines with >20% internal rotation side-to-side strength differences demonstrated increased odds of reporting a previous shoulder injury compared with female Marines with <10% strength differences (OR, 15.4; 95% CI, 1.4-167.2; P = .03 ) and female Marines with 10% to 20% strength differences (OR, 13.9; 95% CI, 1.3-151.2; P = .04). No significant ORs were demonstrated in male Marines. Marines with larger magnitude internal rotation strength differences demonstrated increased odds of reporting a previous shoulder injury compared with those with lesser magnitude differences. Additionally, female sex appears to drastically affect the increased odds of reporting shoulder injuries (OR, 13.9-15.4) with larger magnitude differences (ie, >20%) compared with those with lesser magnitude differences (ie, <10% and 10%-20%). The retrospective cohort design of this study cannot delineate cause and effect but establishes a relationship between

  8. Magnitude and frequency of floods in Arkansas

    USGS Publications Warehouse

    Hodge, Scott A.; Tasker, Gary D.

    1995-01-01

    Methods are presented for estimating the magnitude and frequency of peak discharges of streams in Arkansas. Regression analyses were developed in which a stream's physical and flood characteristics were related. Four sets of regional regression equations were derived to predict peak discharges with selected recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years on streams draining less than 7,770 square kilometers. The regression analyses indicate that size of drainage area, main channel slope, mean basin elevation, and the basin shape factor were the most significant basin characteristics that affect magnitude and frequency of floods. The region of influence method is included in this report. This method is still being improved and is to be considered only as a second alternative to the standard method of producing regional regression equations. This method estimates unique regression equations for each recurrence interval for each ungaged site. The regression analyses indicate that size of drainage area, main channel slope, mean annual precipitation, mean basin elevation, and the basin shape factor were the most significant basin and climatic characteristics that affect magnitude and frequency of floods for this method. Certain recommendations on the use of this method are provided. A method is described for estimating the magnitude and frequency of peak discharges of streams for urban areas in Arkansas. The method is from a nationwide U.S. Geeological Survey flood frequency report which uses urban basin characteristics combined with rural discharges to estimate urban discharges. Annual peak discharges from 204 gaging stations, with drainage areas less than 7,770 square kilometers and at least 10 years of unregulated record, were used in the analysis. These data provide the basis for this analysis and are published in the Appendix of this report as supplemental data. Large rivers such as the Red, Arkansas, White, Black, St. Francis, Mississippi, and

  9. Continuous estimates on the earthquake early warning magnitude by use of the near-field acceleration records

    NASA Astrophysics Data System (ADS)

    Li, Jun; Jin, Xing; Wei, Yongxiang; Zhang, Hongcai

    2013-10-01

    In this article, the seismic records of Japan's Kik-net are selected to measure the acceleration, displacement, and effective peak acceleration of each seismic record within a certain time after P wave, then a continuous estimation is given on earthquake early warning magnitude through statistical analysis method, and Wenchuan earthquake record is utilized to check the method. The results show that the reliability of earthquake early warning magnitude continuously increases with the increase of the seismic information, the biggest residual happens if the acceleration is adopted to fit earthquake magnitude, which may be caused by rich high-frequency components and large dispersion of peak value in acceleration record, the influence caused by the high-frequency components can be effectively reduced if the effective peak acceleration and peak displacement is adopted, it is estimated that the dispersion of earthquake magnitude obviously reduces, but it is easy for peak displacement to be affected by long-period drifting. In various components, the residual enlargement phenomenon at vertical direction is almost unobvious, thus it is recommended in this article that the effective peak acceleration at vertical direction is preferred to estimate earthquake early warning magnitude. Through adopting Wenchuan strong earthquake record to check the method mentioned in this article, it is found that this method can be used to quickly, stably, and accurately estimate the early warning magnitude of this earthquake, which shows that this method is completely applicable for earthquake early warning.

  10. 242Pu absolute neutron-capture cross section measurement

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.

    2017-09-01

    The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. During target fabrication, a small amount of 239Pu was added to the active target so that the absolute scale of the 242Pu(n,γ) cross section could be set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. The relative scale of the 242Pu(n,γ) cross section covers four orders of magnitude for incident neutron energies from thermal to ≈ 40 keV. The cross section reported in ENDF/B-VII.1 for the 242Pu(n,γ) En,R = 2.68 eV resonance was found to be 2.4% lower than the new absolute 242Pu(n,γ) cross section.

  11. Magnitude and frequency of floods in Washington

    USGS Publications Warehouse

    Cummans, J.E.; Collings, Michael R.; Nasser, Edmund George

    1975-01-01

    Relations are provided to estimate the magnitude and frequency of floods on Washington streams. Annual-peak-flow data from stream gaging stations on unregulated streams having 1 years or more of record were used to determine a log-Pearson Type III frequency curve for each station. Flood magnitudes having recurrence intervals of 2, 5, i0, 25, 50, and 10years were then related to physical and climatic indices of the drainage basins by multiple-regression analysis using the Biomedical Computer Program BMDO2R. These regression relations are useful for estimating flood magnitudes of the specified recurrence intervals at ungaged or short-record sites. Separate sets of regression equations were defined for western and eastern parts of the State, and the State was further subdivided into 12 regions in which the annual floods exhibit similar flood characteristics. Peak flows are related most significantly in western Washington to drainage-area size and mean annual precipitation. In eastern Washington-they are related most significantly to drainage-area size, mean annual precipitation, and percentage of forest cover. Standard errors of estimate of the estimating relations range from 25 to 129 percent, and the smallest errors are generally associated with the more humid regions.

  12. Methods for estimating the magnitude and frequency of peak discharges of rural, unregulated streams in Virginia

    USGS Publications Warehouse

    Bisese, James A.

    1995-01-01

    Methods are presented for estimating the peak discharges of rural, unregulated streams in Virginia. A Pearson Type III distribution is fitted to the logarithms of the unregulated annual peak-discharge records from 363 stream-gaging stations in Virginia to estimate the peak discharge at these stations for recurrence intervals of 2 to 500 years. Peak-discharge characteristics for 284 unregulated stations are divided into eight regions based on physiographic province, and regressed on basin characteristics, including drainage area, main channel length, main channel slope, mean basin elevation, percentage of forest cover, mean annual precipitation, and maximum rainfall intensity. Regression equations for each region are computed by use of the generalized least-squares method, which accounts for spatial and temporal correlation between nearby gaging stations. This regression technique weights the significance of each station to the regional equation based on the length of records collected at each cation, the correlation between annual peak discharges among the stations, and the standard deviation of the annual peak discharge for each station.Drainage area proved to be the only significant explanatory variable in four regions, while other regions have as many as three significant variables. Standard errors of the regression equations range from 30 to 80 percent. Alternate equations using drainage area only are provided for the five regions with more than one significant explanatory variable.Methods and sample computations are provided to estimate peak discharges at gaged and engaged sites in Virginia for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, and to adjust the regression estimates for sites on gaged streams where nearby gaging-station records are available.

  13. Is an absolute level of cortical beta suppression required for proper movement? Magnetoencephalographic evidence from healthy aging.

    PubMed

    Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2016-07-01

    Previous research has connected a specific pattern of beta oscillatory activity to proper motor execution, but no study to date has directly examined how resting beta levels affect motor-related beta oscillatory activity in the motor cortex. Understanding this relationship is imperative to determining the basic mechanisms of motor control, as well as the impact of pathological beta oscillations on movement execution. In the current study, we used magnetoencephalography (MEG) and a complex movement paradigm to quantify resting beta activity and movement-related beta oscillations in the context of healthy aging. We chose healthy aging as a model because preliminary evidence suggests that beta activity is elevated in older adults, and thus by examining older and younger adults we were able to naturally vary resting beta levels. To this end, healthy younger and older participants were recorded during motor performance and at rest. Using beamforming, we imaged the peri-movement beta event-related desynchronization (ERD) and extracted virtual sensors from the peak voxels, which enabled absolute and relative beta power to be assessed. Interestingly, absolute beta power during the pre-movement baseline was much stronger in older relative to younger adults, and older adults also exhibited proportionally large beta desynchronization (ERD) responses during motor planning and execution compared to younger adults. Crucially, we found a significant relationship between spontaneous (resting) beta power and beta ERD magnitude in both primary motor cortices, above and beyond the effects of age. A similar link was found between beta ERD magnitude and movement duration. These findings suggest a direct linkage between beta reduction during movement and spontaneous activity in the motor cortex, such that as spontaneous beta power increases, a greater reduction in beta activity is required to execute movement. We propose that, on an individual level, the primary motor cortices have an

  14. Relatively high motivation for context-evoked reward produces the magnitude effect in rats.

    PubMed

    Yuki, Shoko; Okanoya, Kazuo

    2014-09-01

    Using a concurrent-chain schedule, we demonstrated the effect of absolute reinforcement (i.e., the magnitude effect) on choice behavior in rats. In general, animals' simultaneous choices conform to a relative reinforcement ratio between alternatives. However, studies in pigeons and rats have found that on a concurrent-chain schedule, the overall reinforcement ratio, or absolute amount, also influences choice. The effect of reinforcement amount has also been studied in inter-temporal choice situations, and this effect has been referred to as the magnitude effect. The magnitude effect has been observed in humans under various conditions, but little research has assessed it in animals (e.g., pigeons and rats). The present study confirmed the effect of reinforcement amount in rats during simultaneous and inter-temporal choice situations. We used a concurrent-chain procedure to examine the cause of the magnitude effect during inter-temporal choice. Our results suggest that rats can use differences in reinforcement amount as a contextual cue during choice, and the direction of the magnitude effect in rats might be similar to humans when using the present procedure. Furthermore, our results indicate that the magnitude effect was caused by the initial-link effect when the reinforcement amount was relatively small, while a loss aversion tendency was observed when the reinforcement amount changed within a session. The emergence of the initial-link effect and loss aversion suggests that rats make choices through cognitive processes predicted by prospect theory. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Absolute calibration of a multichannel plate detector for low energy O, O-, and O+

    NASA Astrophysics Data System (ADS)

    Stephen, T. M.; Peko, B. L.

    2000-03-01

    Absolute detection efficiencies of a commercial multichannel plate detector have been measured for O, O+, and O-, impacting at normal incidence for energies ranging from 30-1000 eV. In addition, the detection efficiencies for O relative to its ions are presented, as they may have a more universal application. The absolute detection efficiencies are strongly energy dependent and significant differences are observed for the various charge states at lower energies. The detection efficiencies for the different charge states appear to converge at higher energies. The strongest energy dependence is for O+; the detection efficiency varies by three orders of magnitude across the energy range studied. The weakest dependence is for O-, which varies less than one order of magnitude.

  16. PEAK READING VOLTMETER

    DOEpatents

    Dyer, A.L.

    1958-07-29

    An improvement in peak reading voltmeters is described, which provides for storing an electrical charge representative of the magnitude of a transient voltage pulse and thereafter measuring the stored charge, drawing oniy negligible energy from the storage element. The incoming voltage is rectified and stored in a condenser. The voltage of the capacitor is applied across a piezoelectric crystal between two parallel plates. Amy change in the voltage of the capacitor is reflected in a change in the dielectric constant of the crystal and the capacitance between a second pair of plates affixed to the crystal is altered. The latter capacitor forms part of the frequency determlning circuit of an oscillator and means is provided for indicating the frequency deviation which is a measure of the peak voltage applied to the voltmeter.

  17. Associations of maternal macronutrient intake during pregnancy with infant BMI peak characteristics and childhood BMI.

    PubMed

    Chen, Ling-Wei; Aris, Izzuddin M; Bernard, Jonathan Y; Tint, Mya-Thway; Colega, Marjorelee; Gluckman, Peter D; Tan, Kok Hian; Shek, Lynette Pei-Chi; Chong, Yap-Seng; Yap, Fabian; Godfrey, Keith M; van Dam, Rob M; Chong, Mary Foong-Fong; Lee, Yung Seng

    2017-03-01

    Background: Infant body mass index (BMI) peak characteristics and early childhood BMI are emerging markers of future obesity and cardiometabolic disease risk, but little is known about their maternal nutritional determinants. Objective: We investigated the associations of maternal macronutrient intake with infant BMI peak characteristics and childhood BMI in the Growing Up in Singapore Towards healthy Outcomes study. Design: With the use of infant BMI data from birth to age 18 mo, infant BMI peak characteristics [age (in months) and magnitude (BMI peak ; in kg/m 2 ) at peak and prepeak velocities] were derived from subject-specific BMI curves that were fitted with the use of mixed-effects model with a natural cubic spline function. Associations of maternal macronutrient intake (assessed by using a 24-h recall during late gestation) with infant BMI peak characteristics ( n = 910) and BMI z scores at ages 2, 3, and 4 y were examined with the use of multivariable linear regression. Results: Mean absolute maternal macronutrient intakes (percentages of energy) were 72 g protein (15.6%), 69 g fat (32.6%), and 238 g carbohydrate (51.8%). A 25-g (∼100-kcal) increase in maternal carbohydrate intake was associated with a 0.01/mo (95% CI: 0.0003, 0.01/mo) higher prepeak velocity and a 0.04 (95% CI: 0.01, 0.08) higher BMI peak These associations were mainly driven by sugar intake, whereby a 25-g increment of maternal sugar intake was associated with a 0.02/mo (95% CI: 0.01, 0.03/mo) higher infant prepeak velocity and a 0.07 (95% CI: 0.01, 0.13) higher BMI peak Higher maternal carbohydrate and sugar intakes were associated with a higher offspring BMI z score at ages 2-4 y. Maternal protein and fat intakes were not consistently associated with the studied outcomes. Conclusion: Higher maternal carbohydrate and sugar intakes are associated with unfavorable infancy BMI peak characteristics and higher early childhood BMI. This trial was registered at clinicaltrials.gov as NCT

  18. Strong nonlinear dependence of the spectral amplification factors of deep Vrancea earthquakes magnitude

    NASA Astrophysics Data System (ADS)

    Marmureanu, Gheorghe; Ortanza Cioflan, Carmen; Marmureanu, Alexandru

    2010-05-01

    Nonlinear effects in ground motion during large earthquakes have long been a controversial issue between seismologists and geotechnical engineers. Aki wrote in 1993:"Nonlinear amplification at sediments sites appears to be more pervasive than seismologists used to think…Any attempt at seismic zonation must take into account the local site condition and this nonlinear amplification( Local site effects on weak and strong ground motion, Tectonophysics,218,93-111). In other words, the seismological detection of the nonlinear site effects requires a simultaneous understanding of the effects of earthquake source, propagation path and local geological site conditions. The difficulty for seismologists in demonstrating the nonlinear site effects has been due to the effect being overshadowed by the overall patterns of shock generation and path propagation. The researchers from National Institute for Earth Physics ,in order to make quantitative evidence of large nonlinear effects, introduced the spectral amplification factor (SAF) as ratio between maximum spectral absolute acceleration (Sa), relative velocity (Sv) , relative displacement (Sd) from response spectra for a fraction of critical damping at fundamental period and peak values of acceleration(a-max),velocity (v-max) and displacement (d-max),respectively, from processed strong motion record and pointed out that there is a strong nonlinear dependence on earthquake magnitude and site conditions.The spectral amplification factors(SAF) are finally computed for absolute accelerations at 5% fraction of critical damping (β=5%) in five seismic stations: Bucharest-INCERC(soft soils, quaternary layers with a total thickness of 800 m);Bucharest-Magurele (dense sand and loess on 350m); Cernavoda Nuclear Power Plant site (marl, loess, limestone on 270 m) Bacau(gravel and loess on 20m) and Iassy (loess, sand, clay, gravel on 60 m) for last strong and deep Vrancea earthquakes: March 4,1977 (MGR =7.2 and h=95 km);August 30

  19. A Precision Determination of the Effect of Metallicity on Cepheid Absolute Magnitudes in VIJHK Bands from Magellanic Cloud Cepheids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wielgórski, Piotr; Pietrzyński, Grzegorz; Zgirski, Bartłomiej

    Using high-quality observed period–luminosity ( P – L ) relations in both Magellanic Clouds in the VIJHK s bands and optical and near-infrared Wesenheit indices, we determine the effect of metallicity on Cepheid P – L relations by comparing the relative distance between the LMC and SMC as determined from the Cepheids to the difference in distance between the Clouds that has been derived with very high accuracy from late-type eclipsing binary systems. Within an uncertainty of 3%, which is dominated by the uncertainty on the mean difference in metallicity between the Cepheid populations in the LMC and SMC, wemore » find metallicity effects smaller than 2% in all bands and in the Wesenheit indices, consistent with a zero metallicity effect. This result is valid for the metallicity range from −0.35 dex to −0.75 dex corresponding to the mean [Fe/H] values for classical Cepheids in the LMC and SMC, respectively. Yet most Cepheids in galaxies beyond the Local Group and located in the less crowded outer regions of these galaxies do fall into this metallicity regime, making our result important for applications to determine the distances to spiral galaxies well beyond the Local Group. Our result supports previous findings that indicated a very small metallicity effect on the near-infrared absolute magnitudes of classical Cepheids, and resolves the dispute about the size and sign of the metallicity effect in the optical spectral range. It also resolves one of the most pressing problems in the quest toward a measurement of the Hubble constant with an accuracy of 1% from the Cepheid–supernova Ia method.« less

  20. Absolute stress measurements at the rangely anticline, Northwestern Colorado

    USGS Publications Warehouse

    de la Cruz, R. V.; Raleigh, C.B.

    1972-01-01

    Five different methods of measuring absolute state of stress in rocks in situ were used at sites near Rangely, Colorado, and the results compared. For near-surface measurements, overcoring of the borehole-deformation gage is the most convenient and rapid means of obtaining reliable values for the magnitude and direction of the state of stress in rocks in situ. The magnitudes and directions of the principal stresses are compared to the geologic features of the different areas of measurement. The in situ stresses are consistent in orientation with the stress direction inferred from the earthquake focal-plane solutions and existing joint patterns but inconsistent with stress directions likely to have produced the Rangely anticline. ?? 1972.

  1. The Effects of Exercise Intensity vs. Metabolic State on the Variability and Magnitude of Left Ventricular Twist Mechanics during Exercise

    PubMed Central

    Armstrong, Craig; Samuel, Jake; Yarlett, Andrew; Cooper, Stephen-Mark; Stembridge, Mike; Stöhr, Eric J.

    2016-01-01

    Increased left ventricular (LV) twist and untwisting rate (LV twist mechanics) are essential responses of the heart to exercise. However, previously a large variability in LV twist mechanics during exercise has been observed, which complicates the interpretation of results. This study aimed to determine some of the physiological sources of variability in LV twist mechanics during exercise. Sixteen healthy males (age: 22 ± 4 years, V˙O2peak: 45.5 ± 6.9 ml∙kg-1∙min-1, range of individual anaerobic threshold (IAT): 32–69% of V˙O2peak) were assessed at rest and during exercise at: i) the same relative exercise intensity, 40%peak, ii) at 2% above IAT, and, iii) at 40%peak with hypoxia (40%peak+HYP). LV volumes were not significantly different between exercise conditions (P > 0.05). However, the mean margin of error of LV twist was significantly lower (F2,47 = 2.08, P < 0.05) during 40%peak compared with IAT (3.0 vs. 4.1 degrees). Despite the same workload and similar LV volumes, hypoxia increased LV twist and untwisting rate (P < 0.05), but the mean margin of error remained similar to that during 40%peak (3.2 degrees, P > 0.05). Overall, LV twist mechanics were linearly related to rate pressure product. During exercise, the intra-individual variability of LV twist mechanics is smaller at the same relative exercise intensity compared with IAT. However, the absolute magnitude (degrees) of LV twist mechanics appears to be associated with the prevailing rate pressure product. Exercise tests that evaluate LV twist mechanics should be standardised by relative exercise intensity and rate pressure product be taken into account when interpreting results. PMID:27100099

  2. The Effects of Exercise Intensity vs. Metabolic State on the Variability and Magnitude of Left Ventricular Twist Mechanics during Exercise.

    PubMed

    Armstrong, Craig; Samuel, Jake; Yarlett, Andrew; Cooper, Stephen-Mark; Stembridge, Mike; Stöhr, Eric J

    2016-01-01

    Increased left ventricular (LV) twist and untwisting rate (LV twist mechanics) are essential responses of the heart to exercise. However, previously a large variability in LV twist mechanics during exercise has been observed, which complicates the interpretation of results. This study aimed to determine some of the physiological sources of variability in LV twist mechanics during exercise. Sixteen healthy males (age: 22 ± 4 years, [Formula: see text]O2peak: 45.5 ± 6.9 ml∙kg-1∙min-1, range of individual anaerobic threshold (IAT): 32-69% of [Formula: see text]O2peak) were assessed at rest and during exercise at: i) the same relative exercise intensity, 40%peak, ii) at 2% above IAT, and, iii) at 40%peak with hypoxia (40%peak+HYP). LV volumes were not significantly different between exercise conditions (P > 0.05). However, the mean margin of error of LV twist was significantly lower (F2,47 = 2.08, P < 0.05) during 40%peak compared with IAT (3.0 vs. 4.1 degrees). Despite the same workload and similar LV volumes, hypoxia increased LV twist and untwisting rate (P < 0.05), but the mean margin of error remained similar to that during 40%peak (3.2 degrees, P > 0.05). Overall, LV twist mechanics were linearly related to rate pressure product. During exercise, the intra-individual variability of LV twist mechanics is smaller at the same relative exercise intensity compared with IAT. However, the absolute magnitude (degrees) of LV twist mechanics appears to be associated with the prevailing rate pressure product. Exercise tests that evaluate LV twist mechanics should be standardised by relative exercise intensity and rate pressure product be taken into account when interpreting results.

  3. New Ultra-High Sensitivity, Absolute, Linear, and Rotary Encoders

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    1998-01-01

    Several new types of absolute optical encoders of both rotary and linear function are discussed. The means for encoding are complete departures from conventional optical encoders and offer advantages of compact form, immunity to damage-induced dropouts of position information, and about an order of magnitude higher sensitivity over what is commercially available. Rotary versions have sensitivity from 0.02 arcseconds down to 0.003 arcsecond while linear models have sensitivity of 10 nm.

  4. Difference in peak weight transfer and timing based on golf handicap.

    PubMed

    Queen, Robin M; Butler, Robert J; Dai, Boyi; Barnes, C Lowry

    2013-09-01

    Weight shift during the golf swing has been a topic of discussion among golf professionals; however, it is still unclear how weight shift varies in golfers of different performance levels. The main purpose of this study was to examine the following: (a) the changes in the peak ground reaction forces (GRF) and the timing of these events between high (HHCP) and low handicap (LHCP) golfers and (b) the differences between the leading and trailing legs. Twenty-eight male golfers were recruited and divided based on having an LHCP < 9 or HHCP > 9. Three-dimensional GRF peaks and the timing of the peaks were recorded bilaterally during a golf swing. The golf swing was divided into different phases: (a) address to the top of the backswing, (b) top of the backswing to ball contact, and (c) ball contact to the end of follow through. Repeated measures analyses of variance (α = 0.05) were completed for each study variable: the magnitude and the timing of peak vertical GRF, peak lateral GRF, and peak medial GRF (α = 0.05). The LHCP group had a greater transfer of vertical force from the trailing foot to the leading foot in phase 2 than the HHCP group. The LHCP group also demonstrated earlier timing of peak vertical force throughout the golf swing than the HHCP group. The LHCP and HHCP groups demonstrated different magnitudes of peak lateral force. The LHCP group had an earlier timing of peak lateral GRF in phase 2 and earlier timing of peak medial GRF in phases 1 and 2 than the HHCP group. In general, LHCP golfers demonstrated greater and earlier force generation than HHCP golfers. It may be relevant to consider both the magnitude of the forces and the timing of these events during golf-specific training to improve performance. These data reveal weight shifting differences that can be addressed by teaching professionals to help their students better understand weight transfer during the golf swing to optimize performance.

  5. The generation of spring peak flows by short-term meteorological events

    Treesearch

    Harold F. Haupt

    1968-01-01

    Spring peak flows recorded over a 25-year period in Benton Creek, a small forested watershed in northern Idaho, were studied in their relation to meteorological events. More peak flows were generated by rain-on-snow than by clear-weather snowmelt; the two types of peaks differ in magnitude and in other characteristics. Two rather simple techniques were used to...

  6. Scaling A Moment-Rate Function For Small To Large Magnitude Events

    NASA Astrophysics Data System (ADS)

    Archuleta, Ralph; Ji, Chen

    2017-04-01

    Since the 1980's seismologists have recognized that peak ground acceleration (PGA) and peak ground velocity (PGV) scale differently with magnitude for large and moderate earthquakes. In a recent paper (Archuleta and Ji, GRL 2016) we introduced an apparent moment-rate function (aMRF) that accurately predicts the scaling with magnitude of PGA, PGV, PWA (Wood-Anderson Displacement) and the ratio PGA/2πPGV (dominant frequency) for earthquakes 3.3 ≤ M ≤ 5.3. This apparent moment-rate function is controlled by two temporal parameters, tp and td, which are related to the time for the moment-rate function to reach its peak amplitude and the total duration of the earthquake, respectively. These two temporal parameters lead to a Fourier amplitude spectrum (FAS) of displacement that has two corners in between which the spectral amplitudes decay as 1/f, f denotes frequency. At higher or lower frequencies, the FAS of the aMRF looks like a single-corner Aki-Brune omega squared spectrum. However, in the presence of attenuation the higher corner is almost certainly masked. Attempting to correct the spectrum to an Aki-Brune omega-squared spectrum will produce an "apparent" corner frequency that falls between the double corner frequency of the aMRF. We reason that the two corners of the aMRF are the reason that seismologists deduce a stress drop (e.g., Allmann and Shearer, JGR 2009) that is generally much smaller than the stress parameter used to produce ground motions from stochastic simulations (e.g., Boore, 2003 Pageoph.). The presence of two corners for the smaller magnitude earthquakes leads to several questions. Can deconvolution be successfully used to determine scaling from small to large earthquakes? Equivalently will large earthquakes have a double corner? If large earthquakes are the sum of many smaller magnitude earthquakes, what should the displacement FAS look like for a large magnitude earthquake? Can a combination of such a double-corner spectrum and random

  7. Peak-flow characteristics of Wyoming streams

    USGS Publications Warehouse

    Miller, Kirk A.

    2003-01-01

    Peak-flow characteristics for unregulated streams in Wyoming are described in this report. Frequency relations for annual peak flows through water year 2000 at 364 streamflow-gaging stations in and near Wyoming were evaluated and revised or updated as needed. Analyses of historical floods, temporal trends, and generalized skew were included in the evaluation. Physical and climatic basin characteristics were determined for each gaging station using a geographic information system. Gaging stations with similar peak-flow and basin characteristics were grouped into six hydrologic regions. Regional statistical relations between peak-flow and basin characteristics were explored using multiple-regression techniques. Generalized least squares regression equations for estimating magnitudes of annual peak flows with selected recurrence intervals from 1.5 to 500 years were developed for each region. Average standard errors of estimate range from 34 to 131 percent. Average standard errors of prediction range from 35 to 135 percent. Several statistics for evaluating and comparing the errors in these estimates are described. Limitations of the equations are described. Methods for applying the regional equations for various circumstances are listed and examples are given.

  8. Magnitude and Frequency of Floods on Nontidal Streams in Delaware

    USGS Publications Warehouse

    Ries, Kernell G.; Dillow, Jonathan J.A.

    2006-01-01

    Reliable estimates of the magnitude and frequency of annual peak flows are required for the economical and safe design of transportation and water-conveyance structures. This report, done in cooperation with the Delaware Department of Transportation (DelDOT) and the Delaware Geological Survey (DGS), presents methods for estimating the magnitude and frequency of floods on nontidal streams in Delaware at locations where streamgaging stations monitor streamflow continuously and at ungaged sites. Methods are presented for estimating the magnitude of floods for return frequencies ranging from 2 through 500 years. These methods are applicable to watersheds exhibiting a full range of urban development conditions. The report also describes StreamStats, a web application that makes it easy to obtain flood-frequency estimates for user-selected locations on Delaware streams. Flood-frequency estimates for ungaged sites are obtained through a process known as regionalization, using statistical regression analysis, where information determined for a group of streamgaging stations within a region forms the basis for estimates for ungaged sites within the region. One hundred and sixteen streamgaging stations in and near Delaware with at least 10 years of non-regulated annual peak-flow data available were used in the regional analysis. Estimates for gaged sites are obtained by combining the station peak-flow statistics (mean, standard deviation, and skew) and peak-flow estimates with regional estimates of skew and flood-frequency magnitudes. Example flood-frequency estimate calculations using the methods presented in the report are given for: (1) ungaged sites, (2) gaged locations, (3) sites upstream or downstream from a gaged location, and (4) sites between gaged locations. Regional regression equations applicable to ungaged sites in the Piedmont and Coastal Plain Physiographic Provinces of Delaware are presented. The equations incorporate drainage area, forest cover, impervious

  9. Moment Magnitudes and Local Magnitudes for Small Earthquakes: Implications for Ground-Motion Prediction and b-values

    NASA Astrophysics Data System (ADS)

    Baltay, A.; Hanks, T. C.; Vernon, F.

    2016-12-01

    We illustrate two essential consequences of the systematic difference between moment magnitude and local magnitude for small earthquakes, illuminating the underlying earthquake physics. Moment magnitude, M 2/3 log M0, is uniformly valid for all earthquake sizes [Hanks and Kanamori, 1979]. However, the relationship between local magnitude ML and moment is itself magnitude dependent. For moderate events, 3< M < 7, M and M­L are coincident; for earthquakes smaller than M3, ML log M0 [Hanks and Boore, 1984]. This is a consequence of the saturation of the apparent corner frequency fc as it becoming greater than the largest observable frequency, fmax; In this regime, stress drop no longer controls ground motion. This implies that ML and M differ by a factor of 1.5 for these small events. While this idea is not new, its implications are important as more small-magnitude data are incorporated into earthquake hazard research. With a large dataset of M<3 earthquakes recorded on the ANZA network, we demonstrate striking consequences of the difference between M and ML. ML scales as the log peak ground motions (e.g., PGA or PGV) for these small earthquakes, which yields log PGA log M0 [Boore, 1986]. We plot nearly 15,000 records of PGA and PGV at close stations, adjusted for site conditions and for geometrical spreading to 10 km. The slope of the log of ground motion is 1.0*ML­, or 1.5*M, confirming the relationship, and that fc >> fmax. Just as importantly, if this relation is overlooked, prediction of large-magnitude ground motion from small earthquakes will be misguided. We also consider the effect of this magnitude scale difference on b-value. The oft-cited b-value of 1 should hold for small magnitudes, given M. Use of ML necessitates b=2/3 for the same data set; use of mixed, or unknown, magnitudes complicates the matter further. This is of particular import when estimating the rate of large earthquakes when one has limited data on their recurrence, as is the case for

  10. The Ml Magnitude Scale In Italy

    NASA Astrophysics Data System (ADS)

    Gasperini, P.; Lolli, B.; Filippucci, M.; de Simoni, B.

    To improve the reliability of Ml magnitude estimates in Italy, we have updated the database of real Wood-Anderson (WA) and of simulated Wood Anderson (SWA) am- plitudes recently revised by Gasperini (2002). This was done by the re-reading of orig- inal WA seismograms, made available by the SISMOS Project of the Istituto Nazionale di Geofisica (INGV), as well as by the analysis of further Very Broad Band (VBB) recordings of the MEDNET network of INGV for the period from 1996 to 1998. The full operability, in the last five years, of a VBB station located exactly at the same site (TRI) of a former WA instrument allowed us to reliably infer a new attenuation function from the joined WA and SWA dataset. We found a significant deviation of the attenuation law from the standard Richter table at distances larger than 400 km where the latter overestimates the magnitude up to about 0.3 units. We also computed regionalized attenuation functions accounting for the differences in the propagation properties of seismic waves between the Adriatic (less attenuating) and Tyrrhenian (more attenuating) sides of the Italian peninsula. Using this improved Ml magnitude database we were also able to further improve the computation of duration (Md) and amplitude (Ma) magnitudes computed from short period vertical seismometers of the INGV as well as to analyze the time variation of the station calibrations. We found that the absolute amplification of INGV stations is underestimated almost exactly by a factor 2 starting from the entering upon in operation of the digital acquisition system at INGV in middle 1984.

  11. Absolute and Relative Socioeconomic Health Inequalities across Age Groups

    PubMed Central

    van Zon, Sander K. R.; Bültmann, Ute; Mendes de Leon, Carlos F.; Reijneveld, Sijmen A.

    2015-01-01

    Background The magnitude of socioeconomic health inequalities differs across age groups. It is less clear whether socioeconomic health inequalities differ across age groups by other factors that are known to affect the relation between socioeconomic position and health, like the indicator of socioeconomic position, the health outcome, gender, and as to whether socioeconomic health inequalities are measured in absolute or in relative terms. The aim is to investigate whether absolute and relative socioeconomic health inequalities differ across age groups by indicator of socioeconomic position, health outcome and gender. Methods The study sample was derived from the baseline measurement of the LifeLines Cohort Study and consisted of 95,432 participants. Socioeconomic position was measured as educational level and household income. Physical and mental health were measured with the RAND-36. Age concerned eleven 5-years age groups. Absolute inequalities were examined by comparing means. Relative inequalities were examined by comparing Gini-coefficients. Analyses were performed for both health outcomes by both educational level and household income. Analyses were performed for all age groups, and stratified by gender. Results Absolute and relative socioeconomic health inequalities differed across age groups by indicator of socioeconomic position, health outcome, and gender. Absolute inequalities were most pronounced for mental health by household income. They were larger in younger than older age groups. Relative inequalities were most pronounced for physical health by educational level. Gini-coefficients were largest in young age groups and smallest in older age groups. Conclusions Absolute and relative socioeconomic health inequalities differed cross-sectionally across age groups by indicator of socioeconomic position, health outcome and gender. Researchers should critically consider the implications of choosing a specific age group, in addition to the indicator of

  12. Characteristics of North Korea nuclear test and KMA magnitude scale

    NASA Astrophysics Data System (ADS)

    Jeon, Y. S.; Lee, D.; Min, K.; Hwang, E. H.; Lee, J.; Park, E.; Jo, E.; Lee, M. S.

    2017-12-01

    Democratic People's Republic of Korea(DPRK) carried out 6th nuclear test on 3 Sep. 2017 at 03:30 UTC. Korea Meteorological Administration(KMA) announced to the public that the event took place in the DPRK's test site, Punggye-ri with the magnitude 5.7. This event is larger than previous one in terms of magnitude and showed that measured magnitude strongly depends on the frequency band of data. After we applied several magnitude scales such as Everdon(1967), Nuttli(1967), and Hong & Lee(2012) to this event, we found that magnitude ranges from 5.3 to 6.7 which depends on frequency band and epicentral distance of signal. 6th DPRK test experiment indicated that spectral amplitude ratio of 6th/5th near 2.37 Hz shows similar amplification compatible to relative spectral magnitude 5.7, while spectral amplitude ratio of 6th/5th near 1.0 Hz marks relative spectral magnitude about 6.1. Relative spectral magnitude varies with frequencies and decreases as frequency increase. We found that systematic non-linearity exists for spectral amplitude ratio of 6th/5th from 1.0 to 10.0 Hz, while it's characteristic is not found at 5th/4th and 4th/3th. A methodology is presented for determining mb(Pn) magnitude of underground nuclear explosions from local Pn phase. 582 waveforms from vertical component of broadband and acceleration seismographs at 120 stations in the epicenter distance from 340 to 800 km are used to calibrate mb(Pn) magnitude scaling for DPRK's nuclear tests. The mb(Pn) estimates of regional events for Korean Peninsula are determined to be mb(Pn) ? = log10(A) + 2.1164×log10(d) - 0.2721, where A is the peak-to-peak Pn amplitude in μm and d is the epicentral distance in km. Systematic non-linearity does not observed at frequency band from 0.1 to 1.0 Hz. The magnitude of 6th event is mb(Pn) 6.08 and mb(Pn) 4.52, 4.92, 4.84 and 5.03 for 2nd, 3rd, 4th and 5th respectively. Further research of applicable mb(Pn) magnitude scaling is required for all frequency band and

  13. Absolute charge calibration of scintillating screens for relativistic electron detection

    NASA Astrophysics Data System (ADS)

    Buck, A.; Zeil, K.; Popp, A.; Schmid, K.; Jochmann, A.; Kraft, S. D.; Hidding, B.; Kudyakov, T.; Sears, C. M. S.; Veisz, L.; Karsch, S.; Pawelke, J.; Sauerbrey, R.; Cowan, T.; Krausz, F.; Schramm, U.

    2010-03-01

    We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm2. The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm2 was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

  14. Association between Infancy BMI Peak and Body Composition and Blood Pressure at Age 5–6 Years

    PubMed Central

    Hof, Michel H. P.; Vrijkotte, Tanja G. M.; de Hoog, Marieke L. A.; van Eijsden, Manon; Zwinderman, Aeilko H.

    2013-01-01

    Introduction The development of overweight is often measured with the body mass index (BMI). During childhood the BMI curve has two characteristic points: the adiposity rebound at 6 years and the BMI peak at 9 months of age. In this study, the associations between the BMI peak and body composition measures and blood pressure at age 5–6 years were investigated. Methods Measurements from the Amsterdam Born Children and their Development (ABCD) study were available for this study. Blood pressure (systolic and diastolic) and body composition measures (BMI, waist-to-height ratio, fat percentage) were gathered during a health check at about 6 years of age (n = 2822). All children had multiple BMI measurements between the 0–4 years of age. For boys and girls separately, child-specific BMI peaks were extracted from mixed effect models. Associations between the estimated BMI peak and the health check measurements were analysed with linear models. In addition, we investigated the potential use of the BMI at 9 months as a surrogate measure for the magnitude of the BMI peak. Results After correction for the confounding effect of fetal growth, both timing and magnitude of the BMI peak were significantly and positively associated (p<0.001) with all body composition measures at the age of 5–6 years. The BMI peak showed no direct association with blood pressure at the age 5–6 year, but was mediated by the current BMI. The correlation between the magnitude of the BMI peak and BMI at 9 months was approximately 0.93 and similar associations with the measures at 5–6 years were found. Conclusion The magnitude of the BMI peak was associated with body composition measures at 5–6 years of age. Moreover, the BMI at 9 months could be used as surrogate measure for the magnitude of the BMI peak. PMID:24324605

  15. Constraints on the frequency-magnitude relation and maximum magnitudes in the UK from observed seismicity and glacio-isostatic recovery rates

    NASA Astrophysics Data System (ADS)

    Main, Ian; Irving, Duncan; Musson, Roger; Reading, Anya

    1999-05-01

    Earthquake populations have recently been shown to have many similarities with critical-point phenomena, with fractal scaling of source sizes (energy or seismic moment) corresponding to the observed Gutenberg-Richter (G-R) frequency-magnitude law holding at low magnitudes. At high magnitudes, the form of the distribution depends on the seismic moment release rate Msolar and the maximum magnitude m_max . The G-R law requires a sharp truncation at an absolute maximum magnitude for finite Msolar. In contrast, the gamma distribution has an exponential tail which allows a soft or `credible' maximum to be determined by negligible contribution to the total seismic moment release. Here we apply both distributions to seismic hazard in the mainland UK and its immediate continental shelf, constrained by a mixture of instrumental, historical and neotectonic data. Tectonic moment release rates for the seismogenic part of the lithosphere are calculated from a flexural-plate model for glacio-isostatic recovery, constrained by vertical deformation rates from tide-gauge and geomorphological data. Earthquake focal mechanisms in the UK show near-vertical strike-slip faulting, with implied directions of maximum compressive stress approximately in the NNW-SSE direction, consistent with the tectonic model. Maximum magnitudes are found to be in the range 6.3-7.5 for the G-R law, or 7.0-8.2 m_L for the gamma distribution, which compare with a maximum observed in the time period of interest of 6.1 m_L . The upper bounds are conservative estimates, based on 100 per cent seismic release of the observed vertical neotectonic deformation. Glacio-isostatic recovery is predominantly an elastic rather than a seismic process, so the true value of m_max is likely to be nearer the lower end of the quoted range.

  16. Improvements in absolute seismometer sensitivity calibration using local earth gravity measurements

    USGS Publications Warehouse

    Anthony, Robert E.; Ringler, Adam; Wilson, David

    2018-01-01

    The ability to determine both absolute and relative seismic amplitudes is fundamentally limited by the accuracy and precision with which scientists are able to calibrate seismometer sensitivities and characterize their response. Currently, across the Global Seismic Network (GSN), errors in midband sensitivity exceed 3% at the 95% confidence interval and are the least‐constrained response parameter in seismic recording systems. We explore a new methodology utilizing precise absolute Earth gravity measurements to determine the midband sensitivity of seismic instruments. We first determine the absolute sensitivity of Kinemetrics EpiSensor accelerometers to 0.06% at the 99% confidence interval by inverting them in a known gravity field at the Albuquerque Seismological Laboratory (ASL). After the accelerometer is calibrated, we install it in its normal configuration next to broadband seismometers and subject the sensors to identical ground motions to perform relative calibrations of the broadband sensors. Using this technique, we are able to determine the absolute midband sensitivity of the vertical components of Nanometrics Trillium Compact seismometers to within 0.11% and Streckeisen STS‐2 seismometers to within 0.14% at the 99% confidence interval. The technique enables absolute calibrations from first principles that are traceable to National Institute of Standards and Technology (NIST) measurements while providing nearly an order of magnitude more precision than step‐table calibrations.

  17. Preejection period can be calculated using R peak instead of Q.

    PubMed

    Seery, Mark D; Kondrak, Cheryl L; Streamer, Lindsey; Saltsman, Thomas; Lamarche, Veronica M

    2016-08-01

    Preejection period (PEP) is a common measure of sympathetic nervous system activation in psychophysiological research, which makes it important to measure reliably for as many participants as possible. PEP is typically calculated as the interval between the onset or peak of the electrocardiogram Q wave and the impedance cardiography B point, but the Q wave can lack clear definition and even its peak is not visible for all participants. We thus investigated the feasibility of using the electrocardiogram R wave peak (Rpeak ) instead of Q because it can be consistently identified with ease and precision. Across four samples (total N = 408), young adult participants completed a variety of minimally metabolically demanding laboratory tasks after a resting baseline. Results consistently supported a close relationship between absolute levels of the Rpeak -B interval and PEP (accounting for approximately 90% of the variance at baseline and 89% during task performance, on average), but for reactivity values, Rpeak -B was practically indistinguishable from PEP (accounting for over 98% of the variance, on average). Given that using Rpeak rather than the onset or peak of Q saves time, eliminates potential subjectivity, and can be applied to more participants (i.e., those without a visible Q wave), findings suggest that Rpeak -B likely provides an adequate estimate of PEP when absolute levels are of interest and clearly does so for within-person changes. © 2016 Society for Psychophysiological Research.

  18. Magnitude of flood flows for selected annual exceedance probabilities in Rhode Island through 2010

    USGS Publications Warehouse

    Zarriello, Phillip J.; Ahearn, Elizabeth A.; Levin, Sara B.

    2012-01-01

    Heavy persistent rains from late February through March 2010 caused severe widespread flooding in Rhode Island that set or nearly set record flows and water levels at many long-term streamgages in the State. In response, the U.S. Geological Survey, in partnership with the Federal Emergency Management Agency, conducted a study to update estimates of flood magnitudes at streamgages and regional equations for estimating flood flows at ungaged locations. This report provides information needed for flood plain management, transportation infrastructure design, flood insurance studies, and other purposes that can help minimize future flood damages and risks. The magnitudes of floods were determined from the annual peak flows at 43 streamgages in Rhode Island (20 sites), Connecticut (14 sites), and Massachusetts (9 sites) using the standard Bulletin 17B log-Pearson type III method and a modification of this method called the expected moments algorithm (EMA) for 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability (AEP) floods. Annual-peak flows were analyzed for the period of record through the 2010 water year; however, records were extended at 23 streamgages using the maintenance of variance extension (MOVE) procedure to best represent the longest period possible for determining the generalized skew and flood magnitudes. Generalized least square regression equations were developed from the flood quantiles computed at 41 streamgages (2 streamgages in Rhode Island with reported flood quantiles were not used in the regional regression because of regulation or redundancy) and their respective basin characteristics to estimate magnitude of floods at ungaged sites. Of 55 basin characteristics evaluated as potential explanatory variables, 3 were statistically significant—drainage area, stream density, and basin storage. The pseudo-coefficient of determination (pseudo-R2) indicates these three explanatory variables explain 95 to 96 percent of the variance

  19. Absolute Rovibrational Intensities for the Chi(sup 1)Sigma(sup +) v=3 <-- 0 Band of (12)C(16)O Obtained with Kitt Peak and BOMEM FTS Instruments

    NASA Technical Reports Server (NTRS)

    Chackerian, Charles, Jr.; Kshirsagar, R. J.; Giver, L. P.; Brown, L. R.; Condon, Estelle P. (Technical Monitor)

    1999-01-01

    This work was initiated to compare absolute line intensities retrieved with the Kitt Peak FTS (Fourier Transform Spectrometer) and Ames BOMEM FTS. Since thermal contaminations can be a problem using the BOMEM instrument if proper precautions are not taken it was thought that measurements done at 6300 per cm would more easily result in satisfactory intercomparisons. Very recent measurements of the CO 3 <-- 0 band fine intensities confirms results reported here that the intensities listed in HITRAN (High Resolution Molecular Absorption Database) for this band are on the order of six to seven percent too low. All of the infrared intensities in the current HITRAN tabulation are based on the electric dipole moment function reported fifteen years ago. The latter in turn was partly based on intensities for the 3 <-- 0 band reported thirty years ago. We have, therefore, redetermined the electric dipole moment function of ground electronic state CO.

  20. Effect of reservoir storage on peak flow

    USGS Publications Warehouse

    Mitchell, William D.

    1962-01-01

    For observation of small-basin flood peaks, numerous crest-stage gages now are operated at culverts in roadway embankments. To the extent that they obstruct the natural flood plains of the streams, these embankments serve to create detention reservoirs, and thus to reduce the magnitude of observed peak flows. Hence, it is desirable to obtain a factor, I/O, by which the observed outflow peaks may be adjusted to corresponding inflow peaks. The problem is made more difficult by the fact that, at most of these observation sites, only peak stages and discharges are observed, and complete hydrographs are not available. It is postulated that the inflow hydrographs may be described in terms of Q, the instantaneous discharge; A, the size of drainage area; Pe, the amount of rainfall excess; H, the time from beginning of rainfall excess; D, the duration of rainfall excess; and T and k, characteristic times for the drainage area, and indicative of the time lag between rainfall and runoff. These factors are combined into the dimensionless ratios (QT/APe), (H/T), (k/T), and (D/T), leading to families of inflow hydrographs in which the first ratio is the ordinate, the second is the abscissa, and the third and fourth are distinguishing parameters. Sixteen dimensionless inflow hydrographs have been routed through reservoir storage to obtain 139 corresponding outflow hydrographs. In most of the routings it has been assumed that the storage-outflow relation is linear; that is, that storage is some constant, K, times the outflow. The existence of nonlinear storage is recognized, and exploratory nonlinear routings are described, but analyses and conclusions are confined to the problems of linear storage. Comparisons between inflow hydrographs and outflow hydrographs indicate that, at least for linear storage, I/O=f(k/T, D/T, K/T) in which I and O are, respectively, the magnitudes of the inflow and the outflow peaks, and T, k, D, and K are as defined above. Diagrams are presented to

  1. Near-fault peak ground velocity from earthquake and laboratory data

    USGS Publications Warehouse

    McGarr, A.; Fletcher, Joe B.

    2007-01-01

    We test the hypothesis that peak ground velocity (PGV) has an upper bound independent of earthquake magnitude and that this bound is controlled primarily by the strength of the seismogenic crust. The highest PGVs, ranging up to several meters per second, have been measured at sites within a few kilometers of the causative faults. Because the database for near-fault PGV is small, we use earthquake slip models, laboratory experiments, and evidence from a mining-induced earthquake to investigate the factors influencing near-fault PGV and the nature of its scaling. For each earthquake slip model we have calculated the peak slip rates for all subfaults and then chosen the maximum of these rates as an estimate of twice the largest near-fault PGV. Nine slip models for eight earthquakes, with magnitudes ranging from 6.5 to 7.6, yielded maximum peak slip rates ranging from 2.3 to 12 m/sec with a median of 5.9 m/sec. By making several adjustments, PGVs for small earthquakes can be simulated from peak slip rates measured during laboratory stick-slip experiments. First, we adjust the PGV for differences in the state of stress (i.e., the difference between the laboratory loading stresses and those appropriate for faults at seismogenic depths). To do this, we multiply both the slip and the peak slip rate by the ratio of the effective normal stresses acting on fault planes measured at 6.8 km depth at the KTB site, Germany (deepest available in situ stress measurements), to those acting on the laboratory faults. We also adjust the seismic moment by replacing the laboratory fault with a buried circular shear crack whose radius is chosen to match the experimental unloading stiffness. An additional, less important adjustment is needed for experiments run in triaxial loading conditions. With these adjustments, peak slip rates for 10 stick-slip events, with scaled moment magnitudes from -2.9 to 1.0, range from 3.3 to 10.3 m/sec, with a median of 5.4 m/sec. Both the earthquake and

  2. New Constraints from the Seychelles on the Timing and Magnitude of Peak Global Mean Sea Level during the Last Interglacial

    NASA Astrophysics Data System (ADS)

    Vyverberg, K.; Dechnik, B.; Dutton, A.; Webster, J.; Zwartz, D.; Edwards, R. L.

    2016-12-01

    Projecting the rate of future sea-level rise remains a primary challenge associated with continued climate change. However, uncertainties remain in our understanding of the rate of polar ice sheet retreat in warmer-than-present climates. To address this issue, we present a new sea level reconstruction from the tectonically stable granitic Seychelles based on Last Interglacial coral ages and elevations within their sedimentary and stratigraphic context, including estimates of paleo-water depth based on newly defined coralgal assemblages. The reef facies analyzed here has a narrow and shallow paleowater depth range (<2 m) providing increased control on the absolute position of sea level during this time period. Corrected for local glacial isostatic adjustment effects including the fingerprint associated with polar ice sheet mass loss, corals found in primary growth position within in situ coralgal reef framework confirm that global mean sea level (GMSL) was nearly 6 m above present early in the interglacial period. Each coral was dated in triplicate and screened for anomalous U-series geochemistry parameters. The combination of age-elevation data with the sedimentary micro and macro facies and stratigraphic analysis reveals a sea-level rise over 5-6 thousand years that is punctuated by repeated episodes of reef disturbance. These episodes are marked stratigraphically by coral rubble layers or extensive lateral encrustations of Millepora sp. that are infested with coral-dwelling barnacles. These disturbance layers may have been generated through internal reef processes and/or external agents, including coral disease, bleaching, predation, hurricanes, or sub-aerial exposure. In total, these new observations provide improved constraints on the timing, magnitude, and rates of sea-level rise during the Last Interglacial.

  3. Understanding the magnitude dependence of PGA and PGV in NGA-West 2 data

    USGS Publications Warehouse

    Baltay, Annemarie S.; Hanks, Thomas C.

    2014-01-01

    The Next Generation Attenuation‐West 2 (NGA‐West 2) 2014 ground‐motion prediction equations (GMPEs) model ground motions as a function of magnitude and distance, using empirically derived coefficients (e.g., Bozorgniaet al., 2014); as such, these GMPEs do not clearly employ earthquake source parameters beyond moment magnitude (M) and focal mechanism. To better understand the magnitude‐dependent trends in the GMPEs, we build a comprehensive earthquake source‐based model to explain the magnitude dependence of peak ground acceleration and peak ground velocity in the NGA‐West 2 ground‐motion databases and GMPEs. Our model employs existing models (Hanks and McGuire, 1981; Boore, 1983, 1986; Anderson and Hough, 1984) that incorporate a point‐source Brune model, including a constant stress drop and the high‐frequency attenuation parameter κ0, random vibration theory, and a finite‐fault assumption at the large magnitudes to describe the data from magnitudes 3 to 8. We partition this range into four different magnitude regions, each of which has different functional dependences on M. Use of the four magnitude partitions separately allows greater understanding of what happens in any one subrange, as well as the limiting conditions between the subranges. This model provides a remarkably good fit to the NGA data for magnitudes from 3magnitude data, for which the corner frequency is masked by the attenuation of high frequencies. That this simple, source‐based model matches the NGA‐West 2 GMPEs and data so well suggests that considerable simplicity underlies the parametrically complex NGA GMPEs.

  4. Annual peak discharges from small drainage areas in Montana through September 1976

    USGS Publications Warehouse

    Johnson, M.V.; Omang, R.J.; Hull, J.A.

    1977-01-01

    Annual peak discharge from small drainage areas is tabulated for 336 sites in Montana. The 1976 additions included data collected at 206 sites. The program which investigates the magnitude and frequency of floods from small drainage areas in Montana, was begun July 1, 1955. Originally 45 crest-stage gaging stations were established. The purpose of the program is to collect sufficient peak-flow data, which through analysis could provide methods for estimating the magnitude and frequency of floods at any point in Montana. The ultimate objective is to provide methods for estimating the 100-year flood with the reliability needed for road design. (Woodard-USGS)

  5. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  6. Predictors of VO2Peak in children age 6- to 7-years-old.

    PubMed

    Dencker, Magnus; Hermansen, Bianca; Bugge, Anna; Froberg, Karsten; Andersen, Lars B

    2011-02-01

    This study investigated the predictors of aerobic fitness (VO2PEAK) in young children on a population-base. Participants were 436 children (229 boys and 207 girls) aged 6.7 ± 0.4 yrs. VO2PEAK was measured during a maximal treadmill exercise test. Physical activity was assessed by accelerometers. Total body fat and total fat free mass were estimated from skinfold measurements. Regression analyses indicated that significant predictors for VO2PEAK per kilogram body mass were total body fat, maximal heart rate, sex, and age. Physical activity explained an additional 4-7%. Further analyses showed the main contributing factors for absolute values of VO2PEAK were fat free mass, maximal heart rate, sex, and age. Physical activity explained an additional 3-6%.

  7. Changing Sagittal-Plane Landing Styles to Modulate Impact and Tibiofemoral Force Magnitude and Directions Relative to the Tibia

    PubMed Central

    Shimokochi, Yohei; Ambegaonkar, Jatin P.; Meyer, Eric G.

    2016-01-01

    Context: Ground reaction force (GRF) and tibiofemoral force magnitudes and directions have been shown to affect anterior cruciate ligament loading during landing. However, the kinematic and kinetic factors modifying these 2 forces during landing are unknown. Objective: To clarify the intersegmental kinematic and kinetic links underlying the alteration of the GRF and tibiofemoral force vectors secondary to changes in the sagittal-plane body position during single-legged landing. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Twenty recreationally active participants (age = 23.4 ± 3.6 years, height = 171.0 ± 9.4 cm, mass = 73.3 ± 12.7 kg). Intervention(s): Participants performed single-legged landings using 3 landing styles: self-selected landing (SSL), body leaning forward and landing on the toes (LFL), and body upright with flat-footed landing (URL). Three-dimensional kinetics and kinematics were recorded. Main Outcome Measure(s): Sagittal-plane tibial inclination and knee-flexion angles, GRF magnitude and inclination angles relative to the tibia, and proximal tibial forces at peak tibial axial forces. Results: The URL resulted in less time to peak tibial axial forces, smaller knee-flexion angles, and greater magnitude and a more anteriorly inclined GRF vector relative to the tibia than did the SSL. These changes led to the greatest peak tibial axial and anterior shear forces in the URL among the 3 landing styles. Conversely, the LFL resulted in longer time to peak tibial axial forces, greater knee-flexion angles, and reduced magnitude and a more posteriorly inclined GRF vector relative to the tibia than the SSL. These changes in LFL resulted in the lowest peak tibial axial and largest posterior shear forces among the 3 landing styles. Conclusions: Sagittal-plane intersegmental kinematic and kinetic links strongly affected the magnitude and direction of GRF and tibiofemoral forces during the impact phase of single-legged landing

  8. The Type Ia Supernova Color-Magnitude Relation and Host Galaxy Dust: A Simple Hierarchical Bayesian Model

    NASA Astrophysics Data System (ADS)

    Mandel, Kaisey S.; Scolnic, Daniel M.; Shariff, Hikmatali; Foley, Ryan J.; Kirshner, Robert P.

    2017-06-01

    Conventional Type Ia supernova (SN Ia) cosmology analyses currently use a simplistic linear regression of magnitude versus color and light curve shape, which does not model intrinsic SN Ia variations and host galaxy dust as physically distinct effects, resulting in low color-magnitude slopes. We construct a probabilistic generative model for the dusty distribution of extinguished absolute magnitudes and apparent colors as the convolution of an intrinsic SN Ia color-magnitude distribution and a host galaxy dust reddening-extinction distribution. If the intrinsic color-magnitude (M B versus B - V) slope {β }{int} differs from the host galaxy dust law R B , this convolution results in a specific curve of mean extinguished absolute magnitude versus apparent color. The derivative of this curve smoothly transitions from {β }{int} in the blue tail to R B in the red tail of the apparent color distribution. The conventional linear fit approximates this effective curve near the average apparent color, resulting in an apparent slope {β }{app} between {β }{int} and R B . We incorporate these effects into a hierarchical Bayesian statistical model for SN Ia light curve measurements, and analyze a data set of SALT2 optical light curve fits of 248 nearby SNe Ia at z< 0.10. The conventional linear fit gives {β }{app}≈ 3. Our model finds {β }{int}=2.3+/- 0.3 and a distinct dust law of {R}B=3.8+/- 0.3, consistent with the average for Milky Way dust, while correcting a systematic distance bias of ˜0.10 mag in the tails of the apparent color distribution. Finally, we extend our model to examine the SN Ia luminosity-host mass dependence in terms of intrinsic and dust components.

  9. Vection: the contributions of absolute and relative visual motion.

    PubMed

    Howard, I P; Howard, A

    1994-01-01

    Inspection of a visual scene rotating about the vertical body axis induces a compelling sense of self rotation, or circular vection. Circular vection is suppressed by stationary objects seen beyond the moving display but not by stationary objects in the foreground. We hypothesised that stationary objects in the foreground facilitate vection because they introduce a relative-motion signal into what would otherwise be an absolute-motion signal. Vection latency and magnitude were measured with a full-field moving display and with stationary objects of various sizes and at various positions in the visual field. The results confirmed the hypothesis. Vection latency was longer when there were no stationary objects in view than when stationary objects were in view. The effect of stationary objects was particularly evident at low stimulus velocities. At low velocities a small stationary point significantly increased vection magnitude in spite of the fact that, at higher stimulus velocities and with other stationary objects in view, fixation on a stationary point, if anything, reduced vection. Changing the position of the stationary objects in the field of view did not affect vection latencies or magnitudes.

  10. Peak-flow frequency relations and evaluation of the peak-flow gaging network in Nebraska

    USGS Publications Warehouse

    Soenksen, Philip J.; Miller, Lisa D.; Sharpe, Jennifer B.; Watton, Jason R.

    1999-01-01

    Estimates of peak-flow magnitude and frequency are required for the efficient design of structures that convey flood flows or occupy floodways, such as bridges, culverts, and roads. The U.S. Geological Survey, in cooperation with the Nebraska Department of Roads, conducted a study to update peak-flow frequency analyses for selected streamflow-gaging stations, develop a new set of peak-flow frequency relations for ungaged streams, and evaluate the peak-flow gaging-station network for Nebraska. Data from stations located in or within about 50 miles of Nebraska were analyzed using guidelines of the Interagency Advisory Committee on Water Data in Bulletin 17B. New generalized skew relations were developed for use in frequency analyses of unregulated streams. Thirty-three drainage-basin characteristics related to morphology, soils, and precipitation were quantified using a geographic information system, related computer programs, and digital spatial data.For unregulated streams, eight sets of regional regression equations relating drainage-basin to peak-flow characteristics were developed for seven regions of the state using a generalized least squares procedure. Two sets of regional peak-flow frequency equations were developed for basins with average soil permeability greater than 4 inches per hour, and six sets of equations were developed for specific geographic areas, usually based on drainage-basin boundaries. Standard errors of estimate for the 100-year frequency equations (1percent probability) ranged from 12.1 to 63.8 percent. For regulated reaches of nine streams, graphs of peak flow for standard frequencies and distance upstream of the mouth were estimated.The regional networks of streamflow-gaging stations on unregulated streams were analyzed to evaluate how additional data might affect the average sampling errors of the newly developed peak-flow equations for the 100-year frequency occurrence. Results indicated that data from new stations, rather than more

  11. Calculating Galactic Distances Through Supernova Light Curve Analysis (Abstract)

    NASA Astrophysics Data System (ADS)

    Glanzer, J.

    2018-06-01

    (Abstract only) The purpose of this project is to experimentally determine the distance to the galaxy M101 by using data that were taken on the type Ia supernova SN 2011fe at the Paul P. Feder Observatory. Type Ia supernovae are useful for determining distances in astronomy because they all have roughly the same luminosity at the peak of their outburst. Comparing the apparent magnitude to the absolute magnitude allows a measurement of the distance. The absolute magnitude is estimated in two ways: using an empirical relationship from the literature between the rate of decline and the absolute magnitude, and using sncosmo, a PYTHON package used for supernova light curve analysis that fits model light curves to the photometric data.

  12. Magnitude Estimation for the 2011 Tohoku-Oki Earthquake Based on Ground Motion Prediction Equations

    NASA Astrophysics Data System (ADS)

    Eshaghi, Attieh; Tiampo, Kristy F.; Ghofrani, Hadi; Atkinson, Gail M.

    2015-08-01

    This study investigates whether real-time strong ground motion data from seismic stations could have been used to provide an accurate estimate of the magnitude of the 2011 Tohoku-Oki earthquake in Japan. Ultimately, such an estimate could be used as input data for a tsunami forecast and would lead to more robust earthquake and tsunami early warning. We collected the strong motion accelerograms recorded by borehole and free-field (surface) Kiban Kyoshin network stations that registered this mega-thrust earthquake in order to perform an off-line test to estimate the magnitude based on ground motion prediction equations (GMPEs). GMPEs for peak ground acceleration and peak ground velocity (PGV) from a previous study by Eshaghi et al. in the Bulletin of the Seismological Society of America 103. (2013) derived using events with moment magnitude ( M) ≥ 5.0, 1998-2010, were used to estimate the magnitude of this event. We developed new GMPEs using a more complete database (1998-2011), which added only 1 year but approximately twice as much data to the initial catalog (including important large events), to improve the determination of attenuation parameters and magnitude scaling. These new GMPEs were used to estimate the magnitude of the Tohoku-Oki event. The estimates obtained were compared with real time magnitude estimates provided by the existing earthquake early warning system in Japan. Unlike the current operational magnitude estimation methods, our method did not saturate and can provide robust estimates of moment magnitude within ~100 s after earthquake onset for both catalogs. It was found that correcting for average shear-wave velocity in the uppermost 30 m () improved the accuracy of magnitude estimates from surface recordings, particularly for magnitude estimates of PGV (Mpgv). The new GMPEs also were used to estimate the magnitude of all earthquakes in the new catalog with at least 20 records. Results show that the magnitude estimate from PGV values using

  13. Hawaii StreamStats; a web application for defining drainage-basin characteristics and estimating peak-streamflow statistics

    USGS Publications Warehouse

    Rosa, Sarah N.; Oki, Delwyn S.

    2010-01-01

    Reliable estimates of the magnitude and frequency of floods are necessary for the safe and efficient design of roads, bridges, water-conveyance structures, and flood-control projects and for the management of flood plains and flood-prone areas. StreamStats provides a simple, fast, and reproducible method to define drainage-basin characteristics and estimate the frequency and magnitude of peak discharges in Hawaii?s streams using recently developed regional regression equations. StreamStats allows the user to estimate the magnitude of floods for streams where data from stream-gaging stations do not exist. Existing estimates of the magnitude and frequency of peak discharges in Hawaii can be improved with continued operation of existing stream-gaging stations and installation of additional gaging stations for areas where limited stream-gaging data are available.

  14. Modeled future peak streamflows in four coastal Maine rivers

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Dudley, Robert W.

    2013-01-01

    To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). These peak flows are also needed for effective floodplain management. Annual precipitation and air temperature in the northeastern United States are in general projected to increase during the 21st century (Hayhoe and other, 2007). It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This Fact Sheet, prepared in cooperation with the Maine Department of Transportation, presents a summary of modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. The full Scientific Investigations Report (Hodgkins and Dudley, 2013) is available at http://pubs.usgs.gov/sir/2013/5080/.

  15. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  16. Echo 2 - Observations at Fort Churchill of a 4-keV peak in low-level electron precipitation

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.; Hendrickson, R. A.; Winckler, J. R.

    1975-01-01

    The Echo 2 rocket flight launched from Fort Churchill, Manitoba, offered the opportunity to observe high-latitude low-level electron precipitation during quiet magnetic conditions. Although no visual aurora was evident at the time of the flight, an auroral spectrum sharply peaked at a few keV was observed to have intensities from 1 to 2 orders of magnitude lower than peaked spectra typically associated with bright auroral forms. There is a growing body of evidence that relates peaked electron spectra to discrete aurora. The Echo 2 observations show that whatever the mechanism for peaking the electron spectrum in and above discrete forms, it operates over a range of precipitation intensities covering nearly 3 orders of magnitude down to subvisual or near subvisual events.

  17. Rapid Earthquake Magnitude Estimation for Early Warning Applications

    NASA Astrophysics Data System (ADS)

    Goldberg, Dara; Bock, Yehuda; Melgar, Diego

    2017-04-01

    Earthquake magnitude is a concise metric that provides invaluable information about the destructive potential of a seismic event. Rapid estimation of magnitude for earthquake and tsunami early warning purposes requires reliance on near-field instrumentation. For large magnitude events, ground motions can exceed the dynamic range of near-field broadband seismic instrumentation (clipping). Strong motion accelerometers are designed with low gains to better capture strong shaking. Estimating earthquake magnitude rapidly from near-source strong-motion data requires integration of acceleration waveforms to displacement. However, integration amplifies small errors, creating unphysical drift that must be eliminated with a high pass filter. The loss of the long period information due to filtering is an impediment to magnitude estimation in real-time; the relation between ground motion measured with strong-motion instrumentation and magnitude saturates, leading to underestimation of earthquake magnitude. Using station displacements from Global Navigation Satellite System (GNSS) observations, we can supplement the high frequency information recorded by traditional seismic systems with long-period observations to better inform rapid response. Unlike seismic-only instrumentation, ground motions measured with GNSS scale with magnitude without saturation [Crowell et al., 2013; Melgar et al., 2015]. We refine the current magnitude scaling relations using peak ground displacement (PGD) by adding a large GNSS dataset of earthquakes in Japan. Because it does not suffer from saturation, GNSS alone has significant advantages over seismic-only instrumentation for rapid magnitude estimation of large events. The earthquake's magnitude can be estimated within 2-3 minutes of earthquake onset time [Melgar et al., 2013]. We demonstrate that seismogeodesy, the optimal combination of GNSS and seismic data at collocated stations, provides the added benefit of improving the sensitivity of

  18. Peak fitting and integration uncertainties for the Aerodyne Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Othman, A.; Haskins, J. D.; Allan, J. D.; Sierau, B.; Worsnop, D. R.; Lohmann, U.; Mensah, A. A.

    2015-04-01

    The errors inherent in the fitting and integration of the pseudo-Gaussian ion peaks in Aerodyne High-Resolution Aerosol Mass Spectrometers (HR-AMS's) have not been previously addressed as a source of imprecision for these instruments. This manuscript evaluates the significance of these uncertainties and proposes a method for their estimation in routine data analysis. Peak-fitting uncertainties, the most complex source of integration uncertainties, are found to be dominated by errors in m/z calibration. These calibration errors comprise significant amounts of both imprecision and bias, and vary in magnitude from ion to ion. The magnitude of these m/z calibration errors is estimated for an exemplary data set, and used to construct a Monte Carlo model which reproduced well the observed trends in fits to the real data. The empirically-constrained model is used to show that the imprecision in the fitted height of isolated peaks scales linearly with the peak height (i.e., as n1), thus contributing a constant-relative-imprecision term to the overall uncertainty. This constant relative imprecision term dominates the Poisson counting imprecision term (which scales as n0.5) at high signals. The previous HR-AMS uncertainty model therefore underestimates the overall fitting imprecision. The constant relative imprecision in fitted peak height for isolated peaks in the exemplary data set was estimated as ~4% and the overall peak-integration imprecision was approximately 5%. We illustrate the importance of this constant relative imprecision term by performing Positive Matrix Factorization (PMF) on a~synthetic HR-AMS data set with and without its inclusion. Finally, the ability of an empirically-constrained Monte Carlo approach to estimate the fitting imprecision for an arbitrary number of known overlapping peaks is demonstrated. Software is available upon request to estimate these error terms in new data sets.

  19. Maximum magnitude earthquakes induced by fluid injection

    USGS Publications Warehouse

    McGarr, Arthur F.

    2014-01-01

    Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.

  20. Evaluating multiepisode events: boundary conditions for the peak-end rule.

    PubMed

    Miron-Shatz, Talya

    2009-04-01

    This study advances our understanding of how people arrive at retrospective evaluations of multiepisode experiences. Large samples from the United States, France, and Denmark (810, 820, and 805 participants, respectively) reported their feelings during each episode of the previous day using the Day Reconstruction Method. The duration-weighted average of these feelings represented the normative approach to evaluation, and, contrary to the predictions of the peak-end rule, the average was the best predictor of retrospective evaluations of the day. To capture participants' heuristic evaluation, they also reported having a wonderful (peak) and/or awful (low) moment during the previous day. The results indicate that retrospective evaluations of multiepisode events rely on the averaged ratings of emotions, ignore ends, and also consider the presence of lows, and occasionally peaks, as subjectively defined by those experiencing them. Peaks and lows contribute more to comparative, rather than absolute evaluations. Future research should examine whether these findings extend to other multiepisode events that, unlike days, form cohesive units in terms of their content, goal, and emotionality. (c) 2009 APA, all rights reserved.

  1. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed.

  2. Magnitude and frequency of summer floods in western New Mexico and eastern Arizona

    USGS Publications Warehouse

    Kennon, F.W.

    1955-01-01

    Numerous small reservoirs and occasional water-spreading structures are being built on the ephemeral streams draining the public and Indian lands of the Southwest as part of the Soil and Moisture Conservation Program of the Bureau of Land Management and Bureau of Indian Affairs.  Economic design of these structures requires some knowledge of the flood rates and volumes.  Information concerning flood frequencies on areas less than 100 square miles is deficient throughout the country, particularly on intermittent streams of the Southwest.  Design engineers require a knowledge of the frequency and magnitude of flood volumes for the planning of adequate reservoir capacities and a knowledge of frequency and magnitude of flood peaks for spillway design.  Hence, this study deals with both flood volumes and peaks, the same statistical methods being used to develop frequency curves for each.

  3. ASPeak: an abundance sensitive peak detection algorithm for RIP-Seq.

    PubMed

    Kucukural, Alper; Özadam, Hakan; Singh, Guramrit; Moore, Melissa J; Cenik, Can

    2013-10-01

    Unlike DNA, RNA abundances can vary over several orders of magnitude. Thus, identification of RNA-protein binding sites from high-throughput sequencing data presents unique challenges. Although peak identification in ChIP-Seq data has been extensively explored, there are few bioinformatics tools tailored for peak calling on analogous datasets for RNA-binding proteins. Here we describe ASPeak (abundance sensitive peak detection algorithm), an implementation of an algorithm that we previously applied to detect peaks in exon junction complex RNA immunoprecipitation in tandem experiments. Our peak detection algorithm yields stringent and robust target sets enabling sensitive motif finding and downstream functional analyses. ASPeak is implemented in Perl as a complete pipeline that takes bedGraph files as input. ASPeak implementation is freely available at https://sourceforge.net/projects/as-peak under the GNU General Public License. ASPeak can be run on a personal computer, yet is designed to be easily parallelizable. ASPeak can also run on high performance computing clusters providing efficient speedup. The documentation and user manual can be obtained from http://master.dl.sourceforge.net/project/as-peak/manual.pdf.

  4. Absolute calibration of Doppler coherence imaging velocity images

    NASA Astrophysics Data System (ADS)

    Samuell, C. M.; Allen, S. L.; Meyer, W. H.; Howard, J.

    2017-08-01

    A new technique has been developed for absolutely calibrating a Doppler Coherence Imaging Spectroscopy interferometer for measuring plasma ion and neutral velocities. An optical model of the interferometer is used to generate zero-velocity reference images for the plasma spectral line of interest from a calibration source some spectral distance away. Validation of this technique using a tunable diode laser demonstrated an accuracy better than 0.2 km/s over an extrapolation range of 3.5 nm; a two order of magnitude improvement over linear approaches. While a well-characterized and very stable interferometer is required, this technique opens up the possibility of calibrated velocity measurements in difficult viewing geometries and for complex spectral line-shapes.

  5. Infant body mass index peak and early childhood cardio-metabolic risk markers in a multi-ethnic Asian birth cohort

    PubMed Central

    Aris, Izzuddin M; Bernard, Jonathan Y; Chen, Ling-Wei; Tint, Mya Thway; Pang, Wei Wei; Lim, Wai Yee; Soh, Shu E; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D; Chong, Yap-Seng; Yap, Fabian; Kramer, Michael S; Lee, Yung Seng

    2017-01-01

    Abstract Background: Infant body mass index (BMI) peak has received much interest recently as a potential predictor of future obesity and metabolic risk. No studies, however, have examined infant BMI peak in Asian populations, in whom the risk of metabolic disease is higher. Methods: We utilized data among 1020 infants from a mother-offspring cohort, who were Singapore citizens or permanent residents of Chinese, Malay or Indian ethnicity with homogeneous parental ethnic backgrounds, and did not receive chemotherapy, psychotropic drugs or have diabetes mellitus. Ethnicity was self-reported at recruitment and later confirmed using genotype analysis. Subject-specific BMI curves were fitted to infant BMI data using natural cubic splines with random coefficients to account for repeated measures in each child. We estimated characteristics of the child’s BMI peak [age and magnitude at peak, average pre-peak velocity (aPPV)]. Systolic (SBP) and diastolic blood pressure (DBP), BMI, sum of skinfolds (SSF) and fat-mass index (FMI) were measured during a follow-up visit at age 48 months. Weighted multivariable linear regression was used to assess the predictors (maternal BMI, gestational weight gain, ethnicity, infant sex, gestational age, birthweight-for-gestational age and breastfeeding duration) of infant BMI peak and its associations with outcomes at 48 months. Comparisons between ethnicities were tested using Bonferroni post-hoc correction. Results: Of 1020 infants, 80.5% were followed up at the 48-month visit. Mean (SD) BMI, SSF and FMI at 48 months were 15.6 (1.8) kg/m2, 16.5 (5.3) mm and 3.8 (1.3) kg/m2, respectively. Mean (SD) age at peak BMI was 6.0 (1.6) months, with a magnitude of 17.2 (1.4) kg/m2 and pre-peak velocity of 0.7 (0.3) kg/m2/month. Compared with Chinese infants, the peak occurred later in Malay {B [95% confidence interval (CI): 0.64 mo (0.36, 0.92)]} and Indian infants [1.11 mo (0.76, 1.46)] and was lower in magnitude in Indian infants [–0.45

  6. Estimation of magnitude and frequency of floods for streams in Puerto Rico : new empirical models

    USGS Publications Warehouse

    Ramos-Gines, Orlando

    1999-01-01

    Flood-peak discharges and frequencies are presented for 57 gaged sites in Puerto Rico for recurrence intervals ranging from 2 to 500 years. The log-Pearson Type III distribution, the methodology recommended by the United States Interagency Committee on Water Data, was used to determine the magnitude and frequency of floods at the gaged sites having 10 to 43 years of record. A technique is presented for estimating flood-peak discharges at recurrence intervals ranging from 2 to 500 years for unregulated streams in Puerto Rico with contributing drainage areas ranging from 0.83 to 208 square miles. Loglinear multiple regression analyses, using climatic and basin characteristics and peak-discharge data from the 57 gaged sites, were used to construct regression equations to transfer the magnitude and frequency information from gaged to ungaged sites. The equations have contributing drainage area, depth-to-rock, and mean annual rainfall as the basin and climatic characteristics in estimating flood peak discharges. Examples are given to show a step-by-step procedure in calculating a 100-year flood at a gaged site, an ungaged site, a site near a gaged location, and a site between two gaged sites.

  7. Absolute determination of copper and silver in ancient coins using 14 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Chalouhi, Ch.; Hourani, E.; Loos, R.; Melki, S.

    1982-09-01

    A method for absolute determination of copper and silver in ancient coins is described. Activation analysis by 14 MeV neutrons is performed. In the experimental procedure emphasis is placed on corrections for neutrons and gamma attenuation. In the analytical procedure, a multi linear-regression calculation is used to separate different contributions to the 511 keV gamma peak. The precision in the absolute determination of Cu and Ag is better than 2% in recent coins of definite shapes, whereas it is a somewhat lower in ancient coins of irregular shapes. The method was applied to ancient coins provided by the Museum of the American University of Beirut. Overall consistency and suitability of the method were obtained.

  8. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. © 2013 John Wiley & Sons Ltd.

  9. Evaluation of the magnitude and frequency of floods in urban watersheds in Phoenix and Tucson, Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Paretti, Nicholas V.

    2014-01-01

    Flooding in urban areas routinely causes severe damage to property and often results in loss of life. To investigate the effect of urbanization on the magnitude and frequency of flood peaks, a flood frequency analysis was carried out using data from urbanized streamgaging stations in Phoenix and Tucson, Arizona. Flood peaks at each station were predicted using the log-Pearson Type III distribution, fitted using the expected moments algorithm and the multiple Grubbs-Beck low outlier test. The station estimates were then compared to flood peaks estimated by rural-regression equations for Arizona, and to flood peaks adjusted for urbanization using a previously developed procedure for adjusting U.S. Geological Survey rural regression peak discharges in an urban setting. Only smaller, more common flood peaks at the 50-, 20-, 10-, and 4-percent annual exceedance probabilities (AEPs) demonstrate any increase in magnitude as a result of urbanization; the 1-, 0.5-, and 0.2-percent AEP flood estimates are predicted without bias by the rural-regression equations. Percent imperviousness was determined not to account for the difference in estimated flood peaks between stations, either when adjusting the rural-regression equations or when deriving urban-regression equations to predict flood peaks directly from basin characteristics. Comparison with urban adjustment equations indicates that flood peaks are systematically overestimated if the rural-regression-estimated flood peaks are adjusted upward to account for urbanization. At nearly every streamgaging station in the analysis, adjusted rural-regression estimates were greater than the estimates derived using station data. One likely reason for the lack of increase in flood peaks with urbanization is the presence of significant stormwater retention and detention structures within the watershed used in the study.

  10. The dependence of PGA and PGV on distance and magnitude inferred from Northern California ShakeMap data

    USGS Publications Warehouse

    Boatwright, J.; Bundock, H.; Luetgert, J.; Seekins, L.; Gee, L.; Lombard, P.

    2003-01-01

    We analyze peak ground velocity (PGV) and peak ground acceleration (PGA) data from 95 moderate (3.5 ??? M 100 km, the peak motions attenuate more rapidly than a simple power law (that is, r-??) can fit. Instead, we use an attenuation function that combines a fixed power law (r-0.7) with a fitted exponential dependence on distance, which is estimated as expt(-0.0063r) and exp(-0.0073r) for PGV and PGA, respectively, for moderate earthquakes. We regress log(PGV) and log(PGA) as functions of distance and magnitude. We assume that the scaling of log(PGV) and log(PGA) with magnitude can differ for moderate and large earthquakes, but must be continuous. Because the frequencies that carry PGV and PGA can vary with earthquake size for large earthquakes, the regression for large earthquakes incorporates a magnitude dependence in the exponential attenuation function. We fix the scaling break between moderate and large earthquakes at M 5.5; log(PGV) and log(PGA) scale as 1.06M and 1.00M, respectively, for moderate earthquakes and 0.58M and 0.31M for large earthquakes.

  11. On the use of Gaia magnitudes and new tables of bolometric corrections

    NASA Astrophysics Data System (ADS)

    Casagrande, L.; VandenBerg, Don A.

    2018-06-01

    The availability of reliable bolometric corrections and reddening estimates, rather than the quality of parallaxes will be one of the main limiting factors in determining the luminosities of a large fraction of Gaia stars. With this goal in mind, we provide Gaia GBP, G, and GRP synthetic photometry for the entire MARCS grid, and test the performance of our synthetic colours and bolometric corrections against space-borne absolute spectrophotometry. We find indication of a magnitude-dependent offset in Gaia DR2 G magnitudes, which must be taken into account in high accuracy investigations. Our interpolation routines are easily used to derive bolometric corrections at desired stellar parameters, and to explore the dependence of Gaia photometry on Teff, log g, {[Fe/H]}, [α /{Fe}] and E(B - V). Gaia colours for the Sun and Vega, and Teff-dependent extinction coefficients, are also provided.

  12. A Preliminary Analysis on Empirical Attenuation of Absolute Velocity Response Spectra (1 to 10s) in Japan

    NASA Astrophysics Data System (ADS)

    Dhakal, Y. P.; Kunugi, T.; Suzuki, W.; Aoi, S.

    2013-12-01

    (T) = c+ aMw - log10R - bR +∑gS +hD where Y (T) is the 5% damped peak vector response in cm/s derived from two horizontal component records for a natural period T in second; in (2) S is a dummy variable which is one if a site is located inside a sedimentary basin, otherwise zero. In (3), D is depth to the top of layer having a particular S-wave velocity. We used the deep underground S-wave velocity model available from Japan Seismic Hazard Information Station (J-SHIS). In (5), sites are classified to various sedimentary basins. Analyses show that the standard deviations decrease in the order of the models listed and the all coefficients are significant. Interestingly, coefficients g are found to be different from basin to basin at most periods, and the depth to the top of layer having S-wave velocity of 1.7km/s gives the smallest standard deviation of 0.31 at T=4.4s in (5). This study shows the possibility of describing the observed peak absolute velocity response values by using simple model parameters like site location and sedimentary depth soon after the location and magnitude of an earthquake are known.

  13. Real-time bilinear rotation decoupling in absorptive mode J-spectroscopy: Detecting low-intensity metabolite peak close to high-intensity metabolite peak with convenience

    NASA Astrophysics Data System (ADS)

    Verma, Ajay; Baishya, Bikash

    2016-05-01

    ;Pure shift; NMR spectra display singlet peak per chemical site. Thus, high resolution is offered at the cost of valuable J-coupling information. In the present work, real-time BIRD (BIlinear Rotation Decoupling) is applied to the absorptive-mode 2D J-spectroscopy to provide pure shift spectrum in the direct dimension and J-coupling information in the indirect dimension. Quite often in metabolomics, proton NMR spectra from complex bio-fluids display tremendous signal overlap. Although conventional J-spectroscopy in principle overcomes this problem by separating the multiplet information from chemical shift information, however, only magnitude mode of the experiment is practical, sacrificing much of the potential high resolution that could be achieved. Few J-spectroscopy methods have been reported so far that produce high-resolution pure shift spectrum along with J-coupling information for crowded spectral regions. In the present work, high-quality J-resolved spectrum from important metabolomic mixture such as tissue extract from rat cortex is demonstrated. Many low-intensity metabolite peaks which are obscured by the broad dispersive tails from high-intensity metabolite peaks in regular magnitude mode J-spectrum can be clearly identified in real-time BIRD J-resolved spectrum. The general practice of removing such spectral overlap is tedious and time-consuming as it involves repeated sample preparation to change the pH of the tissue extract sample and subsequent spectra recording.

  14. Reduction in peak oxygen uptake after prolonged bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Kozlowski, S.

    1982-01-01

    The hypothesis that the magnitude of the reduction in peak oxygen uptake (VO2) after bed rest is directly proportional to the level of pre-bed rest peak VO2 is tested. Complete pre and post-bed rest working capacity and body weight data were obtained from studies involving 24 men (19-24 years old) and 8 women (23-34 years old) who underwent bed rest for 14-20 days with no remedial treatments. Results of regression analyses of the present change in post-bed rest peak VO2 on pre-bed rest peak VO2 with 32 subjects show correlation coefficients of -0.03 (NS) for data expressed in 1/min and -0.17 for data expressed in ml/min-kg. In addition, significant correlations are found that support the hypothesis only when peak VO2 data are analyzed separately from studies that utilized the cycle ergometer, particularly with subjects in the supine position, as opposed to data obtained from treadmill peak VO2 tests. It is concluded that orthostatic factors, associated with the upright body position and relatively high levels of physical fitness from endurance training, appear to increase the variability of pre and particularly post-bed rest peak VO2 data, which would lead to rejection of the hypothesis.

  15. Revision of a local magnitude relation for South Korea

    NASA Astrophysics Data System (ADS)

    Sheen, D. H.; Seo, K. J.; Oh, J.; Kim, S.; Kang, T. S.; Rhie, J.

    2017-12-01

    A local magnitude relation in South Korea is revised using synthetic Wood-Anderson seismograms from local earthquakes in the distance range of 10-600 km recorded by broadband seismic networks, operated by the Korea Institute of Geoscience and Mineral Resources (KIGAM) and the Korea Meteorological Administration (KMA) between 2001 and 2016. The magnitudes of the earthquakes ranged from ML 2.0 to 5.8 based on the catalog of the KMA. Total numbers of events and seismic records are about 500 and 10,000, respectively. In order to minimize the location error, inland earthquakes were relocated based on manual picks of P and S arrivals using 1-D velocity model for South Korea developed by a trans-dimensional hierarchical Bayesian inversion. Wood-Anderson peak amplitudes measured on the records whose signal-to-noise ratios are greater than 3.0 and were inverted for the attenuation curve by parametric and non-parametric least-squares inversion methods. The discussion on the comparison of the resulting local magnitude relationships will also be addressed.

  16. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry.

    PubMed

    Wang, Guochao; Tan, Lilong; Yan, Shuhua

    2018-02-07

    We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He-Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10 -8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions.

  17. Replication of linkage to quantitative trait loci: variation in location and magnitude of the lod score.

    PubMed

    Hsueh, W C; Göring, H H; Blangero, J; Mitchell, B D

    2001-01-01

    Replication of linkage signals from independent samples is considered an important step toward verifying the significance of linkage signals in studies of complex traits. The purpose of this empirical investigation was to examine the variability in the precision of localizing a quantitative trait locus (QTL) by analyzing multiple replicates of a simulated data set with the use of variance components-based methods. Specifically, we evaluated across replicates the variation in both the magnitude and the location of the peak lod scores. We analyzed QTLs whose effects accounted for 10-37% of the phenotypic variance in the quantitative traits. Our analyses revealed that the precision of QTL localization was directly related to the magnitude of the QTL effect. For a QTL with effect accounting for > 20% of total phenotypic variation, > 90% of the linkage peaks fall within 10 cM from the true gene location. We found no evidence that, for a given magnitude of the lod score, the presence of interaction influenced the precision of QTL localization.

  18. Combining Earthquake Focal Mechanism Inversion and Coulomb Friction Law to Yield Tectonic Stress Magnitudes in Strike-slip Faulting Regime

    NASA Astrophysics Data System (ADS)

    Soh, I.; Chang, C.

    2017-12-01

    The techniques for estimating present-day stress states by inverting multiple earthquake focal mechanism solutions (FMS) provide orientations of the three principal stresses and their relative magnitudes. In order to estimate absolute magnitudes of the stresses that are generally required to analyze faulting mechanics, we combine the relative stress magnitude parameter (R-value) derived from the inversion process and the concept of frictional equilibrium of stress state defined by Coulomb friction law. The stress inversion in Korean Peninsula using 152 FMS data (magnitude≥2.5) conducted at regularly spaced grid points yields a consistent strike-slip faulting regime in which the maximum (S1) and the minimum (S3) principal stresses act in horizontal planes (with an S1 azimuth in ENE-WSW) and the intermediate principal stress (S2) close to vertical. However, R-value varies from 0.28 to 0.75 depending on locations, systematically increasing eastward. Based on the assumptions that the vertical stress is lithostatic, pore pressure is hydrostatic, and the maximum differential stress (S1-S3) is limited by Byerlee's friction of optimally oriented faults for slip, we estimate absolute magnitudes of the two horizontal principal stresses using R-value. As R-value increases, so do the magnitudes of the horizontal stresses. Our estimation of the stress magnitudes shows that the maximum horizontal principal stress (S1) normalized by vertical stress tends to increase from 1.3 in the west to 1.8 in the east. The estimated variation of stress magnitudes is compatible with distinct clustering of faulting types in different regions. Normal faulting events are densely populated in the west region where the horizontal stress is relatively low, whereas numerous reverse faulting events prevail in the east offshore where the horizontal stress is relatively high. Such a characteristic distribution of distinct faulting types in different regions can only be explained in terms of stress

  19. Infant body mass index peak and early childhood cardio-metabolic risk markers in a multi-ethnic Asian birth cohort.

    PubMed

    Aris, Izzuddin M; Bernard, Jonathan Y; Chen, Ling-Wei; Tint, Mya Thway; Pang, Wei Wei; Lim, Wai Yee; Soh, Shu E; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D; Chong, Yap-Seng; Yap, Fabian; Kramer, Michael S; Lee, Yung Seng

    2017-04-01

    : Infant body mass index (BMI) peak has received much interest recently as a potential predictor of future obesity and metabolic risk. No studies, however, have examined infant BMI peak in Asian populations, in whom the risk of metabolic disease is higher. : We utilized data among 1020 infants from a mother-offspring cohort, who were Singapore citizens or permanent residents of Chinese, Malay or Indian ethnicity with homogeneous parental ethnic backgrounds, and did not receive chemotherapy, psychotropic drugs or have diabetes mellitus. Ethnicity was self-reported at recruitment and later confirmed using genotype analysis. Subject-specific BMI curves were fitted to infant BMI data using natural cubic splines with random coefficients to account for repeated measures in each child. We estimated characteristics of the child's BMI peak [age and magnitude at peak, average pre-peak velocity (aPPV)]. Systolic (SBP) and diastolic blood pressure (DBP), BMI, sum of skinfolds (SSF) and fat-mass index (FMI) were measured during a follow-up visit at age 48 months. Weighted multivariable linear regression was used to assess the predictors (maternal BMI, gestational weight gain, ethnicity, infant sex, gestational age, birthweight-for-gestational age and breastfeeding duration) of infant BMI peak and its associations with outcomes at 48 months. Comparisons between ethnicities were tested using Bonferroni post-hoc correction. : Of 1020 infants, 80.5% were followed up at the 48-month visit. Mean (SD) BMI, SSF and FMI at 48 months were 15.6 (1.8) kg/m 2 , 16.5 (5.3) mm and 3.8 (1.3) kg/m 2 , respectively. Mean (SD) age at peak BMI was 6.0 (1.6) months, with a magnitude of 17.2 (1.4) kg/m 2 and pre-peak velocity of 0.7 (0.3) kg/m 2 /month. Compared with Chinese infants, the peak occurred later in Malay {B [95% confidence interval (CI): 0.64 mo (0.36, 0.92)]} and Indian infants [1.11 mo (0.76, 1.46)] and was lower in magnitude in Indian infants [-0.45 kg/m 2 (-0.69, -0

  20. Validity of peak expiratory flow measurement in assessing reversibility of airflow obstruction.

    PubMed Central

    Dekker, F W; Schrier, A C; Sterk, P J; Dijkman, J H

    1992-01-01

    BACKGROUND: Assessing the reversibility of airflow obstruction by peak expiratory (PEF) measurements would be practicable in general practice, but its usefulness has not been investigated. METHODS: PEF measurements were performed (miniWright peak flow meter) in 73 general practice patients (aged 40 to 84) with a history of asthma or chronic obstructive lung disease before and after 400 micrograms inhaled sulbutamol. The change in PEF was compared with the change in forced expiratory volume in one second (FEV1). Reversible airflow obstruction was analysed in two ways according to previous criteria. When defined as a 9% or greater increase in FEV1 expressed as a percentage of predicted values reversibility was observed in 42% of patients. Relative operating characteristic analysis showed that an absolute improvement in PEF of 60 l/min or more gave optimal discrimination between patients with reversible and irreversible airflow obstruction (the sensitivity and specificity of an increase of 60 l/min in detecting a 9% or more increase in FEV1 as a percentage of predicted values were 68% and 93% respectively, with a positive predictive value of 87%). When defined as an increase of 190 ml or more in FEV1, reversible airflow obstruction was observed in 53% of patients. Again an absolute improvement in PEF of 60 l/min or more gave optimal discrimination between patients with reversible and irreversible airflow obstruction (sensitivity 56%, specificity 94%, and positive predictive value 92%). CONCLUSION: Absolute changes in PEF can be used as a simple technique to diagnose reversible airflow obstruction in patients from general practice. PMID:1519192

  1. Absolute versus relative ascertainment of pedophilia in men.

    PubMed

    Blanchard, Ray; Kuban, Michael E; Blak, Thomas; Cantor, James M; Klassen, Philip E; Dickey, Robert

    2009-12-01

    There are at least two different criteria for assessing pedophilia in men: absolute ascertainment (their sexual interest in children is intense) and relative ascertainment (their sexual interest in children is greater than their interest in adults). The American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders, 3rd edition (DSM-III) used relative ascertainment in its diagnostic criteria for pedophilia; this was abandoned and replaced by absolute ascertainment in the DSM-III-R and all subsequent editions. The present study was conducted to demonstrate the continuing need for relative ascertainment, particularly in the laboratory assessment of pedophilia. A total of 402 heterosexual men were selected from a database of patients referred to a specialty clinic. These had undergone phallometric testing, a psychophysiological procedure in which their penile blood volume was monitored while they were presented with a standardized set of laboratory stimuli depicting male and female children, pubescents, and adults.The 130 men selected for the Teleiophilic Profile group responded substantially to prepubescent girls but even more to adult women; the 272 men selected for the Pedophilic Profile group responded weakly to prepubescent girls but even less to adult women. In terms of absolute magnitude, every patient in the Pedophilic Profile group had a lesser penile response to prepubescent girls than every patient in the Teleiophilic Profile group. Nevertheless, the Pedophilic Profile group had a significantly greater number of known sexual offenses against prepubescent girls, indicating that they contained a higher proportion of true pedophiles. These results dramatically demonstrate the utility-or perhaps necessity-of relative ascertainment in the laboratory assessment of erotic age-preference.

  2. Techniques for estimating magnitude and frequency of floods on streams in Indiana

    USGS Publications Warehouse

    Glatfelter, D.R.

    1984-01-01

    A rainfall-runoff model was tlsed to synthesize long-term peak data at 11 gaged locations on small streams. Flood-frequency curves developed from the long-term synthetic data were combined with curves based on short-term observed data to provide weighted estimates of flood magnitude and frequency at the rainfall-runoff stations.

  3. An analysis of the magnitude and frequency of floods on Oahu, Hawaii

    USGS Publications Warehouse

    Nakahara, R.H.

    1980-01-01

    An analysis of available peak-flow data for the island of Oahu, Hawaii, was made by using multiple regression techniques which related flood-frequency data to basin and climatic characteristics for 74 gaging stations on Oahu. In the analysis, several different groupings of stations were investigated, including divisions by geographic location and size of drainage area. The grouping consisting of two leeward divisions and one windward division produced the best results. Drainage basins ranged in area from 0.03 to 45.7 square miles. Equations relating flood magnitudes of selected frequencies to basin characteristics were developed for the three divisions of Oahu. These equations can be used to estimate the magnitude and frequency of floods for any site, gaged or ungaged, for any desired recurrence interval from 2 to 100 years. Data on basin characteristics, flood magnitudes for various recurrence intervals from individual station-frequency curves, and computed flood magnitudes by use of the regression equation are tabulated to provide the needed data. (USGS)

  4. Conditional associative memory for musical stimuli in nonmusicians: implications for absolute pitch.

    PubMed

    Bermudez, Patrick; Zatorre, Robert J

    2005-08-24

    A previous positron emission tomography (PET) study of musicians with and without absolute pitch put forth the hypothesis that the posterior dorsolateral prefrontal cortex is involved in the conditional associative aspect of the identification of a pitch. In the work presented here, we tested this hypothesis by training eight nonmusicians to associate each of four different complex musical sounds (triad chords) with an arbitrary number in a task designed to have limited analogy to absolute-pitch identification. Each subject under-went a functional magnetic resonance imaging scanning procedure both before and after training. Active condition (identification of chords)-control condition (amplitude-matched noise bursts) comparisons for the pretraining scan showed no significant activation maxima. The same comparison for the posttraining scan revealed significant peaks of activation in posterior dorsolateral prefrontal, ventrolateral prefrontal, and parietal areas. A conjunction analysis was performed to show that the posterior dorsolateral prefrontal activity in this study is similar to that observed in the aforementioned PET study. We conclude that the posterior dorsolateral prefrontal cortex is selectively involved in the conditional association aspect of our task, as it is in the attribution of a verbal label to a note by absolute-pitch musicians.

  5. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant

  6. Numerical model estimating the capabilities and limitations of the fast Fourier transform technique in absolute interferometry

    NASA Astrophysics Data System (ADS)

    Talamonti, James J.; Kay, Richard B.; Krebs, Danny J.

    1996-05-01

    A numerical model was developed to emulate the capabilities of systems performing noncontact absolute distance measurements. The model incorporates known methods to minimize signal processing and digital sampling errors and evaluates the accuracy limitations imposed by spectral peak isolation by using Hanning, Blackman, and Gaussian windows in the fast Fourier transform technique. We applied this model to the specific case of measuring the relative lengths of a compound Michelson interferometer. By processing computer-simulated data through our model, we project the ultimate precision for ideal data, and data containing AM-FM noise. The precision is shown to be limited by nonlinearities in the laser scan. absolute distance, interferometer.

  7. Effect of limbal marking prior to laser ablation on the magnitude of cyclotorsional error.

    PubMed

    Chen, Xiangjun; Stojanovic, Aleksandar; Stojanovic, Filip; Eidet, Jon Roger; Raeder, Sten; Øritsland, Haakon; Utheim, Tor Paaske

    2012-05-01

    To evaluate the residual registration error after limbal-marking-based manual adjustment in cyclotorsional tracker-controlled laser refractive surgery. Two hundred eyes undergoing custom surface ablation with the iVIS Suite (iVIS Technologies) were divided into limbal marked (marked) and non-limbal marked (unmarked) groups. Iris registration information was acquired preoperatively from all eyes. Preoperatively, the horizontal axis was recorded in the marked group for use in manual cyclotorsional alignment prior to surgical iris registration. During iris registration, the preoperative iris information was compared to the eye-tracker captured image. The magnitudes of the registration error angle and cyclotorsional movement during the subsequent laser ablation were recorded and analyzed. Mean magnitude of registration error angle (absolute value) was 1.82°±1.31° (range: 0.00° to 5.50°) and 2.90°±2.40° (range: 0.00° to 13.50°) for the marked and unmarked groups, respectively (P<.001). Mean magnitude of cyclotorsional movement during the laser ablation (absolute value) was 1.15°±1.34° (range: 0.00° to 7.00°) and 0.68°±0.97° (range: 0.00° to 6.00°) for the marked and unmarked groups, respectively (P=.005). Forty-six percent and 60% of eyes had registration error >2°, whereas 22% and 20% of eyes had cyclotorsional movement during ablation >2° in the marked and unmarked groups, respectively. Limbal-marking-based manual alignment prior to laser ablation significantly reduced cyclotorsional registration error. However, residual registration misalignment and cyclotorsional movements remained during ablation. Copyright 2012, SLACK Incorporated.

  8. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed.

  9. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry

    PubMed Central

    Tan, Lilong; Yan, Shuhua

    2018-01-01

    We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He–Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10−8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions. PMID:29414897

  10. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  11. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  12. Real-time bilinear rotation decoupling in absorptive mode J-spectroscopy: Detecting low-intensity metabolite peak close to high-intensity metabolite peak with convenience.

    PubMed

    Verma, Ajay; Baishya, Bikash

    2016-05-01

    "Pure shift" NMR spectra display singlet peak per chemical site. Thus, high resolution is offered at the cost of valuable J-coupling information. In the present work, real-time BIRD (BIlinear Rotation Decoupling) is applied to the absorptive-mode 2D J-spectroscopy to provide pure shift spectrum in the direct dimension and J-coupling information in the indirect dimension. Quite often in metabolomics, proton NMR spectra from complex bio-fluids display tremendous signal overlap. Although conventional J-spectroscopy in principle overcomes this problem by separating the multiplet information from chemical shift information, however, only magnitude mode of the experiment is practical, sacrificing much of the potential high resolution that could be achieved. Few J-spectroscopy methods have been reported so far that produce high-resolution pure shift spectrum along with J-coupling information for crowded spectral regions. In the present work, high-quality J-resolved spectrum from important metabolomic mixture such as tissue extract from rat cortex is demonstrated. Many low-intensity metabolite peaks which are obscured by the broad dispersive tails from high-intensity metabolite peaks in regular magnitude mode J-spectrum can be clearly identified in real-time BIRD J-resolved spectrum. The general practice of removing such spectral overlap is tedious and time-consuming as it involves repeated sample preparation to change the pH of the tissue extract sample and subsequent spectra recording. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Peak impact accelerations during track and treadmill running.

    PubMed

    Bigelow, Erin M R; Elvin, Niell G; Elvin, Alex A; Arnoczky, Steven P

    2013-10-01

    To determine whether peak vertical and horizontal impact accelerations were different while running on a track or on a treadmill, 12 healthy subjects (average age 32.8 ± 9.8 y), were fitted with a novel, wireless accelerometer capable of recording triaxial acceleration over time. The accelerometer was attached to a custom-made acrylic plate and secured at the level of the L5 vertebra via a tight fitting triathlon belt. Each subject ran 4 miles on a synthetic, indoor track at a self-selected pace and accelerations were recorded on three perpendicular axes. Seven days later, the subjects ran 4 miles on a treadmill set at the individual runner's average pace on the track and the peak vertical and horizontal impact magnitudes between the track and treadmill were compared. There was no difference (P = .52) in the average peak vertical impact accelerations between the track and treadmill over the 4 mile run. However, peak horizontal impact accelerations were greater (P = .0012) on the track when compared with the treadmill. This study demonstrated the feasibility for long-term impact accelerations monitoring using a novel wireless accelerometer.

  14. Early Warning for Large Magnitude Earthquakes: Is it feasible?

    NASA Astrophysics Data System (ADS)

    Zollo, A.; Colombelli, S.; Kanamori, H.

    2011-12-01

    The mega-thrust, Mw 9.0, 2011 Tohoku earthquake has re-opened the discussion among the scientific community about the effectiveness of Earthquake Early Warning (EEW) systems, when applied to such large events. Many EEW systems are now under-testing or -development worldwide and most of them are based on the real-time measurement of ground motion parameters in a few second window after the P-wave arrival. Currently, we are using the initial Peak Displacement (Pd), and the Predominant Period (τc), among other parameters, to rapidly estimate the earthquake magnitude and damage potential. A well known problem about the real-time estimation of the magnitude is the parameter saturation. Several authors have shown that the scaling laws between early warning parameters and magnitude are robust and effective up to magnitude 6.5-7; the correlation, however, has not yet been verified for larger events. The Tohoku earthquake occurred near the East coast of Honshu, Japan, on the subduction boundary between the Pacific and the Okhotsk plates. The high quality Kik- and K- networks provided a large quantity of strong motion records of the mainshock, with a wide azimuthal coverage both along the Japan coast and inland. More than 300 3-component accelerograms have been available, with an epicentral distance ranging from about 100 km up to more than 500 km. This earthquake thus presents an optimal case study for testing the physical bases of early warning and to investigate the feasibility of a real-time estimation of earthquake size and damage potential even for M > 7 earthquakes. In the present work we used the acceleration waveform data of the main shock for stations along the coast, up to 200 km epicentral distance. We measured the early warning parameters, Pd and τc, within different time windows, starting from 3 seconds, and expanding the testing time window up to 30 seconds. The aim is to verify the correlation of these parameters with Peak Ground Velocity and Magnitude

  15. Estimation of Magnitude and Frequency of Floods for Streams on the Island of Oahu, Hawaii

    USGS Publications Warehouse

    Wong, Michael F.

    1994-01-01

    This report describes techniques for estimating the magnitude and frequency of floods for the island of Oahu. The log-Pearson Type III distribution and methodology recommended by the Interagency Committee on Water Data was used to determine the magnitude and frequency of floods at 79 gaging stations that had 11 to 72 years of record. Multiple regression analysis was used to construct regression equations to transfer the magnitude and frequency information from gaged sites to ungaged sites. Oahu was divided into three hydrologic regions to define relations between peak discharge and drainage-basin and climatic characteristics. Regression equations are provided to estimate the 2-, 5-, 10-, 25-, 50-, and 100-year peak discharges at ungaged sites. Significant basin and climatic characteristics included in the regression equations are drainage area, median annual rainfall, and the 2-year, 24-hour rainfall intensity. Drainage areas for sites used in this study ranged from 0.03 to 45.7 square miles. Standard error of prediction for the regression equations ranged from 34 to 62 percent. Peak-discharge data collected through water year 1988, geographic information system (GIS) technology, and generalized least-squares regression were used in the analyses. The use of GIS seems to be a more flexible and consistent means of defining and calculating basin and climatic characteristics than using manual methods. Standard errors of estimate for the regression equations in this report are an average of 8 percent less than those published in previous studies.

  16. The peak electromagnetic power radiated by lightning return strokes

    NASA Technical Reports Server (NTRS)

    Krider, E. P.; Guo, C.

    1983-01-01

    Estimates of the peak electromagnetic (EM) power radiated by return strokes have been made by integrating the Poynting vector of measured fields over an imaginary hemispherical surface that is centered on the lightning source, assuming that ground losses are negligible. Values of the peak EM power from first and subsequent strokes have means and standard deviations of 2 + or - 2 x 10 to the 10th and 3 + or - 4 x 10 to the 9th W, respectively. The average EM power that is radiated by subsequent strokes, at the time of the field peak, is about 2 orders of magnitude larger than the optical power that is radiated by these strokes in the wavelength interval from 0.4 to 1.1 micron; hence an upper limit to the radiative efficiency of a subsequent stroke is of the order of 1 percent or less at this time.

  17. Globular Clusters: Absolute Proper Motions and Galactic Orbits

    NASA Astrophysics Data System (ADS)

    Chemel, A. A.; Glushkova, E. V.; Dambis, A. K.; Rastorguev, A. S.; Yalyalieva, L. N.; Klinichev, A. D.

    2018-04-01

    We cross-match objects from several different astronomical catalogs to determine the absolute proper motions of stars within the 30-arcmin radius fields of 115 Milky-Way globular clusters with the accuracy of 1-2 mas yr-1. The proper motions are based on positional data recovered from the USNO-B1, 2MASS, URAT1, ALLWISE, UCAC5, and Gaia DR1 surveys with up to ten positions spanning an epoch difference of up to about 65 years, and reduced to Gaia DR1 TGAS frame using UCAC5 as the reference catalog. Cluster members are photometrically identified by selecting horizontal- and red-giant branch stars on color-magnitude diagrams, and the mean absolute proper motions of the clusters with a typical formal error of about 0.4 mas yr-1 are computed by averaging the proper motions of selected members. The inferred absolute proper motions of clusters are combined with available radial-velocity data and heliocentric distance estimates to compute the cluster orbits in terms of the Galactic potential models based on Miyamoto and Nagai disk, Hernquist spheroid, and modified isothermal dark-matter halo (axisymmetric model without a bar) and the same model + rotating Ferre's bar (non-axisymmetric). Five distant clusters have higher-than-escape velocities, most likely due to large errors of computed transversal velocities, whereas the computed orbits of all other clusters remain bound to the Galaxy. Unlike previously published results, we find the bar to affect substantially the orbits of most of the clusters, even those at large Galactocentric distances, bringing appreciable chaotization, especially in the portions of the orbits close to the Galactic center, and stretching out the orbits of some of the thick-disk clusters.

  18. Methodology for Estimation of Flood Magnitude and Frequency for New Jersey Streams

    USGS Publications Warehouse

    Watson, Kara M.; Schopp, Robert D.

    2009-01-01

    Methodologies were developed for estimating flood magnitudes at the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for unregulated or slightly regulated streams in New Jersey. Regression equations that incorporate basin characteristics were developed to estimate flood magnitude and frequency for streams throughout the State by use of a generalized least squares regression analysis. Relations between flood-frequency estimates based on streamflow-gaging-station discharge and basin characteristics were determined by multiple regression analysis, and weighted by effective years of record. The State was divided into five hydrologically similar regions to refine the regression equations. The regression analysis indicated that flood discharge, as determined by the streamflow-gaging-station annual peak flows, is related to the drainage area, main channel slope, percentage of lake and wetland areas in the basin, population density, and the flood-frequency region, at the 95-percent confidence level. The standard errors of estimate for the various recurrence-interval floods ranged from 48.1 to 62.7 percent. Annual-maximum peak flows observed at streamflow-gaging stations through water year 2007 and basin characteristics determined using geographic information system techniques for 254 streamflow-gaging stations were used for the regression analysis. Drainage areas of the streamflow-gaging stations range from 0.18 to 779 mi2. Peak-flow data and basin characteristics for 191 streamflow-gaging stations located in New Jersey were used, along with peak-flow data for stations located in adjoining States, including 25 stations in Pennsylvania, 17 stations in New York, 16 stations in Delaware, and 5 stations in Maryland. Streamflow records for selected stations outside of New Jersey were included in the present study because hydrologic, physiographic, and geologic boundaries commonly extend beyond political boundaries. The StreamStats web application was developed

  19. Absolute detection efficiencies of low energy H, H -, H +, H 2+ and H 3+ incident on a multichannel plate detector

    NASA Astrophysics Data System (ADS)

    Peko, B. L.; Stephen, T. M.

    2000-12-01

    Measured absolute detection efficiencies are presented for H, H - and H n+ ( n=1,2,3) impacting a commercially available, dual multichannel plate (MCP) electron multiplier at kinetic energies ranging from 30 to 1000 eV. Measurements involving isotopic substitutions (D, D -, D n+) and Ar + are also presented. In addition, atomic hydrogen detection efficiencies relative to those of H + and H - are given, as they may have a more universal application. For the three charge states, H, H + and H -, the absolute detection efficiencies are markedly different at low energies and converge to a nearly uniform value of ˜70% with increasing projectile energy. The energy dependence is strongest for H +, varying nearly three orders of magnitude over the energy range studied, and weakest for H -, varying by less than one order of magnitude. In general, for the low energy positive ions at a given energy, the lighter the incident particle mass, the greater the probability of its detection.

  20. Determining the Absolute Magnitudes of Galactic-Bulge Red Clump Giants in the Z and Y Filters of the Vista Sky Surveys and the IRAC Filters of the Spitzer Sky Surveys

    NASA Astrophysics Data System (ADS)

    Karasev, D. I.; Lutovinov, A. A.

    2018-04-01

    The properties of red clump giants in the central regions of the Galactic bulge are investigated in the photometric Z and Y bands of the infrared VVV (VISTA/ESO) survey and the [3.6], [4.5], [5.8], and [8.0] μm bands of the GLIMPSE (Spitzer/IRAC) Galactic plane survey. The absolute magnitudes for objects of this class have been determined in these bands for the first time: M Z = -0.20 ± 0.04, M Y = -0.470 ± 0.045, M [3.6] = -1.70 ± 0.03, M [4.5] = -1.60 ± 0.03, M [5.8] = -1.67 ± 0.03, and M [8.0] = -1.70 ± 0.03. A comparison of the measured magnitudes with the predictions of theoretical models for the spectra of the objects under study has demonstrated good mutual agreement and has allowed some important constraints to be obtained for the properties of bulge red clump giants. In particular, a comparison with evolutionary tracks has shown that we are dealing predominantly with the high-metallicity subgroup of bulge red clump giants. Their metallicity is slightly higher than has been thought previously, [ M/H] ≃ 0.40 ( Z ≃ 0.038) with an error of [ M/H] ≃ 0.1 dex, while the effective temperature is 4250± 150 K. Stars with an age of 9-10 Gyr are shown to dominate among the red clump giants, although some number of younger objects with an age of 8 Gyr can also be present. In addition, the distances to several Galactic bulge regions have been measured, as D = 8200-8500 pc, and the extinction law in these directions is shown to differ noticeably from the standard one.

  1. A Method to Convert MRI Images of Temperature Change Into Images of Absolute Temperature in Solid Tumors

    PubMed Central

    Davis, Ryan M.; Viglianti, Benjamin L.; Yarmolenko, Pavel; Park, Ji-Young; Stauffer, Paul; Needham, David; Dewhirst, Mark W.

    2013-01-01

    Purpose During hyperthermia (HT), the therapeutic response of tumors varies substantially within the target temperature range (39–43°C). Current thermometry methods are either invasive or measure only temperature change, which limits the ability to study tissue responses to HT. This study combines manganese-containing low-temperature sensitive liposomes (Mn-LTSL) with proton resonance frequency shift (PRFS) thermometry to measure absolute temperature in tumors with high spatial and temporal resolution using MRI. Methods Liposomes were loaded with 300mM MnSO4. The phase transition temperature (Tm) of Mn-LTSL samples was measured by differential scanning calorimetry (DSC). The release of manganese from Mn-LTSL in saline was characterized with inductively-coupled plasma atomic emission spectroscopy. A 2T GE small animal scanner was used to acquire dynamic T1-weighted images and temperature change images of Mn-LTSL in saline phantoms and fibrosarcoma-bearing Fisher 344 rats receiving hyperthermia after Mn-LTSL injection. Results The Tm of Mn-LTSL in rat blood was 42.9 ± 0.2 °C (DSC). For Mn-LTSL samples (0.06mM – 0.5mM Mn2+ in saline) heated monotonically from 30°C to 50°C, a peak in the rate of MRI signal enhancement occurred at 43.1 ± 0.3 °C. The same peak in signal enhancement rate was observed during heating of fibrosarcoma tumors (N=3) after injection of Mn-LTSL, and the peak was used to convert temperature change images into absolute temperature. Accuracies of calibrated temperature measurements were in the range 0.9 – 1.8°C. Conclusion The release of Mn2+ from Mn-LTSL affects the rate of MR signal enhancement which enables conversion of MRI-based temperature change images to absolute temperature. PMID:23957326

  2. Watershed erosion estimated from a high-resolution sediment core reveals a non-stationary frequency-magnitude relationship and importance of seasonal climate drivers

    NASA Astrophysics Data System (ADS)

    Gavin, D. G.; Colombaroli, D.; Morey, A. E.

    2015-12-01

    The inclusion of paleo-flood events greatly affects estimates of peak magnitudes (e.g., Q100) in flood-frequency analysis. Likewise, peak events also are associated with certain synoptic climatic patterns that vary on all time scales. Geologic records preserved in lake sediments have the potential to capture the non-stationarity in frequency-magnitude relationships, but few such records preserve a continuous history of event magnitudes. We present a 10-meter 2000-yr record from Upper Squaw Lake, Oregon, that contains finely laminated silt layers that reflect landscape erosion events from the 40 km2 watershed. CT-scans of the core (<1 mm resolution) and a 14C-dated chronology yielded a pseudo-annual time series of erosion magnitudes. The most recent 80 years of the record correlates strongly with annual peak stream discharge and road construction. We examined the frequency-magnitude relationship for the entire pre-road period and show that the seven largest events fall above a strongly linear relationship, suggesting a distinct process (e.g., severe fires or earthquakes) operating at low-frequency to generate large-magnitude events. Expressing the record as cumulative sediment accumulation anomalies showed the importance of the large events in "returning the system" to the long-term mean rate. Applying frequency-magnitude analysis in a moving window showed that the Q100 and Q10 of watershed erosion varied by 1.7 and 1.0 orders of magnitude, respectively. The variations in watershed erosion are weakly correlated with temperature and precipitation reconstructions at the decadal to centennial scale. This suggests that dynamics both internal (i.e., sediment production) and external (i.e., earthquakes) to the system, as well as more stochastic events (i.e., single severe wildfires) can at least partially over-ride external climate forcing of watershed erosion at decadal to centennial time scales.

  3. Complete identification of the Parkes half-Jansky sample of GHz peaked spectrum radio galaxies

    NASA Astrophysics Data System (ADS)

    de Vries, N.; Snellen, I. A. G.; Schilizzi, R. T.; Lehnert, M. D.; Bremer, M. N.

    2007-03-01

    Context: Gigahertz Peaked Spectrum (GPS) radio galaxies are generally thought to be the young counterparts of classical extended radio sources. Statistically complete samples of GPS sources are vital for studying the early evolution of radio-loud AGN and the trigger of their nuclear activity. The "Parkes half-Jansky" sample of GPS radio galaxies is such a sample, representing the southern counterpart of the 1998 Stanghellini sample of bright GPS sources. Aims: As a first step of the investigation of the sample, the host galaxies need to be identified and their redshifts determined. Methods: Deep R-band VLT-FORS1 and ESO 3.6 m EFOSC II images and long slit spectra have been taken for the unidentified sources in the sample. Results: We have identified all twelve previously unknown host galaxies of the radio sources in the sample. Eleven have host galaxies in the range 21.0 < RC < 23.0, while one object, PKS J0210+0419, is identified in the near infrared with a galaxy with Ks = 18.3. The redshifts of 21 host galaxies have been determined in the range 0.474 < z < 1.539, bringing the total number of redshifts to 39 (80%). Analysis of the absolute magnitudes of the GPS host galaxies show that at z>1 they are on average a magnitude fainter than classical 3C radio galaxies, as found in earlier studies. However their restframe UV luminosities indicate that there is an extra light contribution from the AGN, or from a population of young stars. Based on observations collected at the European Southern Observatory Very Large Telescope, Paranal, Chile (ESO prog. ID No. 073.B-0289(B)) and the European Southern Observatory 3.6 m Telescope, La Silla, Chile (prog. ID No. 073.B-0289(A)). Appendices are only available in electronic form at http://www.aanda.org

  4. Methods for estimating the magnitude and frequency of peak streamflows at ungaged sites in and near the Oklahoma Panhandle

    USGS Publications Warehouse

    Smith, S. Jerrod; Lewis, Jason M.; Graves, Grant M.

    2015-09-28

    Generalized-least-squares multiple-linear regression analysis was used to formulate regression relations between peak-streamflow frequency statistics and basin characteristics. Contributing drainage area was the only basin characteristic determined to be statistically significant for all percentage of annual exceedance probabilities and was the only basin characteristic used in regional regression equations for estimating peak-streamflow frequency statistics on unregulated streams in and near the Oklahoma Panhandle. The regression model pseudo-coefficient of determination, converted to percent, for the Oklahoma Panhandle regional regression equations ranged from about 38 to 63 percent. The standard errors of prediction and the standard model errors for the Oklahoma Panhandle regional regression equations ranged from about 84 to 148 percent and from about 76 to 138 percent, respectively. These errors were comparable to those reported for regional peak-streamflow frequency regression equations for the High Plains areas of Texas and Colorado. The root mean square errors for the Oklahoma Panhandle regional regression equations (ranging from 3,170 to 92,000 cubic feet per second) were less than the root mean square errors for the Oklahoma statewide regression equations (ranging from 18,900 to 412,000 cubic feet per second); therefore, the Oklahoma Panhandle regional regression equations produce more accurate peak-streamflow statistic estimates for the irrigated period of record in the Oklahoma Panhandle than do the Oklahoma statewide regression equations. The regression equations developed in this report are applicable to streams that are not substantially affected by regulation, impoundment, or surface-water withdrawals. These regression equations are intended for use for stream sites with contributing drainage areas less than or equal to about 2,060 square miles, the maximum value for the independent variable used in the regression analysis.

  5. Post-fire, rainfall intensity-peak discharge relations for three mountainous watersheds in the Western USA

    USGS Publications Warehouse

    Moody, J.A.; Martin, D.A.

    2001-01-01

    Wildfire alters the hydrologic response of watersheds, including the peak discharges resulting from subsequent rainfall. Improving predictions of the magnitude of flooding that follows wildfire is needed because of the increase in human population at risk in the wildland-urban interface. Because this wildland-urban interface is typically in mountainous terrain, we investigated rainfall-runoff relations by measuring the maximum 30 min rainfall intensity and the unit-area peak discharge (peak discharge divided by the area burned) in three mountainous watersheds (17-26.8 km2) after a wildfire. We found rainfall-runoff relations that relate the unit-area peak discharges to the maximum 30 min rainfall intensities by a power law. These rainfall-runoff relations appear to have a threshold value for the maximum 30 min rainfall intensity (around 10 mm h-1) such that, above this threshold, the magnitude of the flood peaks increases more rapidly with increases in intensity. This rainfall intensity could be used to set threshold limits in rain gauges that are part of an early-warning flood system after wildfire. The maximum unit-area peak discharges from these three burned watersheds ranged from 3.2 to 50 m3 s-1 km-2. These values could provide initial estimates of the upper limits of runoff that can be used to predict floods after wildfires in mountainous terrain. Published in 2001 by John Wiley and Sons, Ltd.

  6. Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude.

    PubMed

    Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F

    2017-01-01

    Human ear-canal properties of transient acoustic stimuli are contrasted that utilize measured ear-canal pressures in conjunction with measured acoustic pressure reflectance and admittance. These data are referenced to the tip of a probe snugly inserted into the ear canal. Promising procedures to calibrate across frequency include stimuli with controlled levels of incident pressure magnitude, absorbed sound power, and forward pressure magnitude. An equivalent pressure at the eardrum is calculated from these measured data using a transmission-line model of ear-canal acoustics parameterized by acoustically estimated ear-canal area at the probe tip and length between the probe tip and eardrum. Chirp stimuli with constant incident pressure magnitude and constant absorbed sound power across frequency were generated to elicit transient-evoked otoacoustic emissions (TEOAEs), which were measured in normal-hearing adult ears from 0.7 to 8 kHz. TEOAE stimuli had similar peak-to-peak equivalent sound pressure levels across calibration conditions. Frequency-domain TEOAEs were compared using signal level, signal-to-noise ratio (SNR), coherence synchrony modulus (CSM), group delay, and group spread. Time-domain TEOAEs were compared using SNR, CSM, instantaneous frequency and instantaneous bandwidth. Stimuli with constant incident pressure magnitude or constant absorbed sound power across frequency produce generally similar TEOAEs up to 8 kHz.

  7. The differing magnitude distributions of the two Jupiter Trojan color populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Ian; Brown, Michael E.; Emery, Joshua P., E-mail: iwong@caltech.edu

    The Jupiter Trojans are a significant population of minor bodies in the middle solar system that have garnered substantial interest in recent years. Several spectroscopic studies of these objects have revealed notable bimodalities with respect to near-infrared spectra, infrared albedo, and color, which suggest the existence of two distinct groups among the Trojan population. In this paper, we analyze the magnitude distributions of these two groups, which we refer to as the red and less red color populations. By compiling spectral and photometric data from several previous works, we show that the observed bimodalities are self-consistent and categorize 221 ofmore » the 842 Trojans with absolute magnitudes in the range H<12.3 into the two color populations. We demonstrate that the magnitude distributions of the two color populations are distinct to a high confidence level (>95%) and fit them individually to a broken power law, with special attention given to evaluating and correcting for incompleteness in the Trojan catalog as well as incompleteness in our categorization of objects. A comparison of the best-fit curves shows that the faint-end power-law slopes are markedly different for the two color populations, which indicates that the red and less red Trojans likely formed in different locations. We propose a few hypotheses for the origin and evolution of the Trojan population based on the analyzed data.« less

  8. Peak-Seeking Control Using Gradient and Hessian Estimates

    NASA Technical Reports Server (NTRS)

    Ryan, John J.; Speyer, Jason L.

    2010-01-01

    A peak-seeking control method is presented which utilizes a linear time-varying Kalman filter. Performance function coordinate and magnitude measurements are used by the Kalman filter to estimate the gradient and Hessian of the performance function. The gradient and Hessian are used to command the system toward a local extremum. The method is naturally applied to multiple-input multiple-output systems. Applications of this technique to a single-input single-output example and a two-input one-output example are presented.

  9. Absolute iron deficiency without anaemia in patients with chronic systolic heart failure is associated with poorer functional capacity.

    PubMed

    Pozzo, Joffrey; Fournier, Pauline; Delmas, Clément; Vervueren, Paul-Louis; Roncalli, Jérôme; Elbaz, Meyer; Galinier, Michel; Lairez, Olivier

    2017-02-01

    Functional status is one of the main concerns in the management of heart failure (HF). Recently, the FAIR-HF and CONFIRM-HF trials showed that correcting anaemia using intravenous iron supplementation improved functional variables in patients with absolute or relative iron deficiency. Relative iron deficiency is supposed to be a marker of HF severity, as ferritin concentration increases with advanced stages of HF, but little is known about the impact of absolute iron deficiency (AID). To study the impact of AID on functional variables and survival in patients with chronic systolic HF. One hundred and thirty-eight non-anaemic patients with chronic systolic HF were included retrospectively. Patients were divided into two groups according to iron status: the AID group, defined by a ferritin concentration<100μg/L and the non-AID group, defined by a ferritin concentration≥100μg/L. Functional, morphological and biological variables were collected, and survival was assessed. Patients in the AID group had a poorer 6-minute walking test (342 vs. 387m; P=0.03) and poorer peak exercise oxygen consumption (13.8 vs. 16.0mL/min/kg; P=0.01). By multivariable analysis, ferritin<100μg/L was associated with impaired capacity of effort, assessed by peak exercise oxygen consumption. By multivariable analysis, there was no difference in total mortality between groups, with a mean follow-up of 5.1±1.1 years. The poorer functional evaluations in iron-deficient patients previously reported are not caused by the merging of two different populations (i.e. patients with absolute or relative iron deficiency). Our study has confirmed that non-anaemic HF patients with AID have poorer peak oxygen consumption. However, AID has no impact on the survival of these patients. Copyright © 2017. Published by Elsevier Masson SAS.

  10. Estimating the absolute wealth of households.

    PubMed

    Hruschka, Daniel J; Gerkey, Drew; Hadley, Craig

    2015-07-01

    To estimate the absolute wealth of households using data from demographic and health surveys. We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. The median absolute wealth estimates of 1,403,186 households were 2056 international dollars per capita (interquartile range: 723-6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R(2)  = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality.

  11. Estimating magnitude and frequency of peak discharges for rural, unregulated, streams in West Virginia

    USGS Publications Warehouse

    Wiley, J.B.; Atkins, John T.; Tasker, Gary D.

    2000-01-01

    Multiple and simple least-squares regression models for the log10-transformed 100-year discharge with independent variables describing the basin characteristics (log10-transformed and untransformed) for 267 streamflow-gaging stations were evaluated, and the regression residuals were plotted as areal distributions that defined three regions of the State, designated East, North, and South. Exploratory data analysis procedures identified 31 gaging stations at which discharges are different than would be expected for West Virginia. Regional equations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year peak discharges were determined by generalized least-squares regression using data from 236 gaging stations. Log10-transformed drainage area was the most significant independent variable for all regions.Equations developed in this study are applicable only to rural, unregulated, streams within the boundaries of West Virginia. The accuracy of estimating equations is quantified by measuring the average prediction error (from 27.7 to 44.7 percent) and equivalent years of record (from 1.6 to 20.0 years).

  12. Structure of the Large Magellanic Cloud from near infrared magnitudes of red clump stars

    NASA Astrophysics Data System (ADS)

    Subramanian, S.; Subramaniam, A.

    2013-04-01

    Context. The structural parameters of the disk of the Large Magellanic Cloud (LMC) are estimated. Aims: We used the JH photometric data of red clump (RC) stars from the Magellanic Cloud Point Source Catalog (MCPSC) obtained from the InfraRed Survey Facility (IRSF) to estimate the structural parameters of the LMC disk, such as the inclination, i, and the position angle of the line of nodes (PAlon), φ. Methods: The observed LMC region is divided into several sub-regions, and stars in each region are cross-identified with the optically identified RC stars to obtain the near infrared magnitudes. The peak values of H magnitude and (J - H) colour of the observed RC distribution are obtained by fitting a profile to the distributions and by taking the average value of magnitude and colour of the RC stars in the bin with largest number. Then the dereddened peak H0 magnitude of the RC stars in each sub-region is obtained from the peak values of H magnitude and (J - H) colour of the observed RC distribution. The right ascension (RA), declination (Dec), and relative distance from the centre of each sub-region are converted into x,y, and z Cartesian coordinates. A weighted least square plane fitting method is applied to this x,y,z data to estimate the structural parameters of the LMC disk. Results: An intrinsic (J - H)0 colour of 0.40 ± 0.03 mag in the Simultaneous three-colour InfraRed Imager for Unbiased Survey (SIRIUS) IRSF filter system is estimated for the RC stars in the LMC and a reddening map based on (J - H) colour of the RC stars is presented. When the peaks of the RC distribution were identified by averaging, an inclination of 25°.7 ± 1°.6 and a PAlon = 141°.5 ± 4°.5 were obtained. We estimate a distance modulus, μ = 18.47 ± 0.1 mag to the LMC. Extra-planar features which are both in front and behind the fitted plane are identified. They match with the optically identified extra-planar features. The bar of the LMC is found to be part of the disk within 500

  13. Modeled future peak streamflows in four coastal Maine rivers

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Dudley, Robert W.

    2013-01-01

    To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). Annual precipitation and air temperature in the northeastern United States are, in general, projected to increase during the 21st century. It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This report, prepared in cooperation with the Maine Department of Transportation (MaineDOT), presents modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. To estimate future peak streamflows at the four basins in this study, historical values for climate (temperature and precipitation) in the basins were adjusted by different amounts and input to a hydrologic model of each study basin. To encompass the projected changes in climate in coastal Maine by the end of the 21st century, air temperatures were adjusted by four different amounts, from -3.6 degrees Fahrenheit (ºF) (-2 degrees Celsius (ºC)) to +10.8 ºF (+6 ºC) of observed temperatures. Precipitation was adjusted by three different percentage values from -15 percent to +30 percent of observed precipitation. The resulting 20 combinations of temperature and precipitation changes (includes the no-change scenarios) were input to Precipitation-Runoff Modeling System (PRMS) watershed models, and annual daily maximum peak flows were calculated for each combination. Modeled peak flows from the adjusted changes in temperature and precipitation were compared to unadjusted (historical) modeled peak flows. Annual daily maximum peak flows increase or decrease, depending on whether temperature or precipitation is adjusted; increases in air temperature (with no change in precipitation) lead to decreases in peak flows, whereas increases in precipitation (with no change in temperature) lead to increases in peak flows. As

  14. Absolute measurement of undulator radiation in the extreme ultraviolet

    NASA Astrophysics Data System (ADS)

    Maezawa, H.; Mitani, S.; Suzuki, Y.; Kanamori, H.; Tamamushi, S.; Mikuni, A.; Kitamura, H.; Sasaki, T.

    1983-04-01

    The spectral brightness of undulator radiation emitted by the model PMU-1 incorporated in the SOR-RING, the dedicated synchrotron radiation source in Tokyo, has been studied in the extreme ultraviolet region from 21.6 to 72.9 eV as a function of the electron energy γ, the field parameter K, and the angle of observation ϴ in the absolute scale. A series of measurements covering the first and the second harmonic component of undulator radiation was compared with the fundamental formula λ n= {λ 0}/{2nγ 2}( {1+K 2}/{2}+γϴ 2 and the effects of finite emittance were studied. The brightness at the first peak was smaller than the theoretical value, while an enhanced second harmonic component was observed.

  15. MIMO radar waveform design with peak and sum power constraints

    NASA Astrophysics Data System (ADS)

    Arulraj, Merline; Jeyaraman, Thiruvengadam S.

    2013-12-01

    Optimal power allocation for multiple-input multiple-output radar waveform design subject to combined peak and sum power constraints using two different criteria is addressed in this paper. The first one is by maximizing the mutual information between the random target impulse response and the reflected waveforms, and the second one is by minimizing the mean square error in estimating the target impulse response. It is assumed that the radar transmitter has knowledge of the target's second-order statistics. Conventionally, the power is allocated to transmit antennas based on the sum power constraint at the transmitter. However, the wide power variations across the transmit antenna pose a severe constraint on the dynamic range and peak power of the power amplifier at each antenna. In practice, each antenna has the same absolute peak power limitation. So it is desirable to consider the peak power constraint on the transmit antennas. A generalized constraint that jointly meets both the peak power constraint and the average sum power constraint to bound the dynamic range of the power amplifier at each transmit antenna is proposed recently. The optimal power allocation using the concept of waterfilling, based on the sum power constraint, is the special case of p = 1. The optimal solution for maximizing the mutual information and minimizing the mean square error is obtained through the Karush-Kuhn-Tucker (KKT) approach, and the numerical solutions are found through a nested Newton-type algorithm. The simulation results show that the detection performance of the system with both sum and peak power constraints gives better detection performance than considering only the sum power constraint at low signal-to-noise ratio.

  16. Estimating the absolute wealth of households

    PubMed Central

    Gerkey, Drew; Hadley, Craig

    2015-01-01

    Abstract Objective To estimate the absolute wealth of households using data from demographic and health surveys. Methods We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. Findings The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723–6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R2 = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Conclusion Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality. PMID:26170506

  17. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Absolute coverage groups. 404.1205 Section... Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent... are not under a retirement system. An absolute coverage group may include positions which were...

  18. Absolute neutrino mass measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments inmore » Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.« less

  19. Magnitude of Head Impact Exposures in Individual Collegiate Football Players

    PubMed Central

    Wilcox, Bethany J.; Machan, Jason T.; McAllister, Thomas W.; Duhaime, Ann-Christine; Duma, Stefan M.; Rowson, Steven; Beckwith, Jonathan G.; Chu, Jeffrey J.; Greenwald, Richard M.

    2013-01-01

    The purpose of this study was to quantify the severity of head impacts sustained by individual collegiate football players and to investigate differences between impacts sustained during practice and game sessions, as well as by player position and impact location. Head impacts (N = 184,358) were analyzed for 254 collegiate players at three collegiate institutions. In practice, the 50th and 95th percentile values for individual players were 20.0 g and 49.5 g for peak linear acceleration, 1187 rad/s2 and 3147 rad/s2 for peak rotational acceleration, and 13.4 and 29.9 for HITsp, respectively. Only the 95th percentile HITsp increased significantly in games compared with practices (8.4%, p= .0002). Player position and impact location were the largest factors associated with differences in head impacts. Running backs consistently sustained the greatest impact magnitudes. Peak linear accelerations were greatest for impacts to the top of the helmet, whereas rotational accelerations were greatest for impacts to the front and back. The findings of this study provide essential data for future investigations that aim to establish the correlations between head impact exposure, acute brain injury, and long-term cognitive deficits. PMID:21911854

  20. A Novel Method for Age Estimation in Solar-Type Stars Through GALEX FUV Magnitudes

    NASA Astrophysics Data System (ADS)

    Ho, Kelly; Subramonian, Arjun; Smith, Graeme; Shouru Shieh

    2018-01-01

    Utilizing an inverse association known to exist between Galaxy Evolution Explorer (GALEX) far ultraviolet (FUV) magnitudes and the chromospheric activity of F, G, and K dwarfs, we explored a method of age estimation in solar-type stars through GALEX FUV magnitudes. Sample solar-type star data were collected from refereed publications and filtered by B-V and absolute visual magnitude to ensure similarities in temperature and luminosity to the Sun. We determined FUV-B and calculated a residual index Q for all the stars, using the temperature-induced upper bound on FUV-B as the fiducial. Plotting current age estimates for the stars against Q, we discovered a strong and significant association between the variables. By applying a log-linear transformation to the data to produce a strong correlation between Q and loge Age, we confirmed the association between Q and age to be exponential. Thus, least-squares regression was used to generate an exponential model relating Q to age in solar-type stars, which can be used by astronomers. The Q-method of stellar age estimation is simple and more efficient than existing spectroscopic methods and has applications to galactic archaeology and stellar chemical composition analysis.

  1. Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude

    PubMed Central

    Keefe, Douglas H.; Feeney, M. Patrick; Hunter, Lisa L.; Fitzpatrick, Denis F.

    2017-01-01

    Human ear-canal properties of transient acoustic stimuli are contrasted that utilize measured ear-canal pressures in conjunction with measured acoustic pressure reflectance and admittance. These data are referenced to the tip of a probe snugly inserted into the ear canal. Promising procedures to calibrate across frequency include stimuli with controlled levels of incident pressure magnitude, absorbed sound power, and forward pressure magnitude. An equivalent pressure at the eardrum is calculated from these measured data using a transmission-line model of ear-canal acoustics parameterized by acoustically estimated ear-canal area at the probe tip and length between the probe tip and eardrum. Chirp stimuli with constant incident pressure magnitude and constant absorbed sound power across frequency were generated to elicit transient-evoked otoacoustic emissions (TEOAEs), which were measured in normal-hearing adult ears from 0.7 to 8 kHz. TEOAE stimuli had similar peak-to-peak equivalent sound pressure levels across calibration conditions. Frequency-domain TEOAEs were compared using signal level, signal-to-noise ratio (SNR), coherence synchrony modulus (CSM), group delay, and group spread. Time-domain TEOAEs were compared using SNR, CSM, instantaneous frequency and instantaneous bandwidth. Stimuli with constant incident pressure magnitude or constant absorbed sound power across frequency produce generally similar TEOAEs up to 8 kHz. PMID:28147608

  2. PeakWorks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-11-30

    The PeakWorks software is designed to assist in the quantitative analysis of atom probe tomography (APT) generated mass spectra. Specifically, through an interactive user interface, mass peaks can be identified automatically (defined by a threshold) and/or identified manually. The software then provides a means to assign specific elemental isotopes (including more than one) to each peak. The software also provides a means for the user to choose background subtraction of each peak based on background fitting functions, the choice of which is left to the users discretion. Peak ranging (the mass range over which peaks are integrated) is also automatedmore » allowing the user to chose a quantitative range (e.g. full-widthhalf- maximum). The software then integrates all identified peaks, providing a background-subtracted composition, which also includes the deconvolution of peaks (i.e. those peaks that happen to have overlapping isotopic masses). The software is also able to output a 'range file' that can be used in other software packages, such as within IVAS. A range file lists the peak identities, the mass range of each identified peak, and a color code for the peak. The software is also able to generate 'dummy' peak ranges within an outputted range file that can be used within IVAS to provide a means for background subtracted proximity histogram analysis.« less

  3. Infant BMI peak as a predictor of overweight and obesity at age 2 years in a Chinese community-based cohort

    PubMed Central

    Sun, Jie; Nwaru, Bright I; Hua, Jing; Li, Xiaohong; Wu, Zhuochun

    2017-01-01

    Objectives Infant body mass index (BMI) peak has proven to be a useful indicator for predicting childhood obesity risk in American and European populations. However, it has not been assessed in China. We characterised infant BMI trajectories in a Chinese longitudinal cohort and evaluated whether BMI peak can predict overweight and obesity at age 2 years. Methods Serial measurements (n=6–12) of weight and length were taken from healthy term infants (n=2073) in a birth cohort established in urban Shanghai. Measurements were used to estimate BMI growth curves from birth to 13.5 months using a polynomial regression model. BMI peak characteristics, including age (in months) and magnitude (BMI, in kg/m2) at peak and prepeak velocities (in kg/m2/month), were estimated. The relationship between infant BMI peak and childhood BMI at age 2 years was examined using binary logistic analysis. Results Mean age at peak BMI was 7.61 months, with a magnitude of 18.33 kg/m2. Boys (n=1022) had a higher average peak BMI (18.60 vs 18.07 kg/m2, p<0.001) and earlier average achievement of peak value (7.54 vs 7.67 months, p<0.05) than girls (n=1051). With 1 kg/m2 increase in peak BMI and 1 month increase in peak time, the risk of overweight at age 2 years increased by 2.11 times (OR 3.11; 95% CI 2.64 to 3.66) and 35% (OR 1.35; 95% CI 1.21 to 1.50), respectively. Similarly, higher BMI magnitude (OR 2.69; 95% CI 2.00 to 3.61) and later timing of infant BMI peak (OR 1.35; 95% CI 1.08 to 1.68) were associated with an increased risk of childhood obesity at age 2 years. Conclusions We have shown that infant BMI peak is valuable for predicting early childhood overweight and obesity in urban Shanghai. Because this is the first Chinese community-based cohort study of this nature, future research is required to examine infant populations in other areas of China. PMID:28988164

  4. Earthquakes Magnitude Predication Using Artificial Neural Network in Northern Red Sea Area

    NASA Astrophysics Data System (ADS)

    Alarifi, A. S.; Alarifi, N. S.

    2009-12-01

    Earthquakes are natural hazards that do not happen very often, however they may cause huge losses in life and property. Early preparation for these hazards is a key factor to reduce their damage and consequence. Since early ages, people tried to predicate earthquakes using simple observations such as strange or a typical animal behavior. In this paper, we study data collected from existing earthquake catalogue to give better forecasting for future earthquakes. The 16000 events cover a time span of 1970 to 2009, the magnitude range from greater than 0 to less than 7.2 while the depth range from greater than 0 to less than 100km. We propose a new artificial intelligent predication system based on artificial neural network, which can be used to predicate the magnitude of future earthquakes in northern Red Sea area including the Sinai Peninsula, the Gulf of Aqaba, and the Gulf of Suez. We propose a feed forward new neural network model with multi-hidden layers to predicate earthquakes occurrences and magnitudes in northern Red Sea area. Although there are similar model that have been published before in different areas, to our best knowledge this is the first neural network model to predicate earthquake in northern Red Sea area. Furthermore, we present other forecasting methods such as moving average over different interval, normally distributed random predicator, and uniformly distributed random predicator. In addition, we present different statistical methods and data fitting such as linear, quadratic, and cubic regression. We present a details performance analyses of the proposed methods for different evaluation metrics. The results show that neural network model provides higher forecast accuracy than other proposed methods. The results show that neural network achieves an average absolute error of 2.6% while an average absolute error of 3.8%, 7.3% and 6.17% for moving average, linear regression and cubic regression, respectively. In this work, we show an analysis

  5. Absolute cross-sections for DNA strand breaks and crosslinks induced by low energy electrons

    PubMed Central

    Chen, Wenzhuang; Chen, Shiliang; Dong, Yanfang; Cloutier, Pierre; Sanche, Léon

    2016-01-01

    Absolute cross sections (CSs) for the interaction of low energy electrons with condensed macromolecules are essential parameters to accurately model ionizing radiation induced reactions. To determine CSs for various conformational DNA damage induced by 2–20 eV electrons, we investigated the influence of the attenuation length (AL) and penetration factor (f) using a mathematical model. Solid films of super-coiled plasmid DNA with thicknesses of 10, 15 and 20 nm were irradiated with 4.6, 5.6, 9.6 and 14.6 eV electrons. DNA conformational changes were quantified by gel electrophoresis, and the respective yields were extrapolated from exposure–response curves. The absolute CS, AL and f values were generated by applying the model developed by Rezaee et al. The values of AL were found to lie between 11 and 16 nm with the maximum at 14.6 eV. The absolute CSs for the loss of the supercoiled (LS) configuration and production of crosslinks (CL), single strand breaks (SSB) and double strand breaks (DSB) induced by 4.6, 5.6, 9.6 and 14.6 eV electrons are obtained. The CSs for SSB are smaller, but similar to those for LS, indicating that SSB are the main conformational damage. The CSs for DSB and CL are about one order of magnitude smaller than those of LS and SSB. The value of f is found to be independent of electron energy, which allows extending the absolute CSs for these types of damage within the range 2–20 eV, from previous measurements of effective CSs. When comparison is possible, the absolute CSs are found to be in good agreement with those obtained from previous similar studies with double-stranded DNA. The high values of the absolute CSs of 4.6 and 9.6 eV provide quantitative evidence for the high efficiency of low energy electrons to induce DNA damage via the formation of transient anions. PMID:27878170

  6. Absolute cross-sections for DNA strand breaks and crosslinks induced by low energy electrons.

    PubMed

    Chen, Wenzhuang; Chen, Shiliang; Dong, Yanfang; Cloutier, Pierre; Zheng, Yi; Sanche, Léon

    2016-12-07

    Absolute cross sections (CSs) for the interaction of low energy electrons with condensed macromolecules are essential parameters to accurately model ionizing radiation induced reactions. To determine CSs for various conformational DNA damage induced by 2-20 eV electrons, we investigated the influence of the attenuation length (AL) and penetration factor (f) using a mathematical model. Solid films of supercoiled plasmid DNA with thicknesses of 10, 15 and 20 nm were irradiated with 4.6, 5.6, 9.6 and 14.6 eV electrons. DNA conformational changes were quantified by gel electrophoresis, and the respective yields were extrapolated from exposure-response curves. The absolute CS, AL and f values were generated by applying the model developed by Rezaee et al. The values of AL were found to lie between 11 and 16 nm with the maximum at 14.6 eV. The absolute CSs for the loss of the supercoiled (LS) configuration and production of crosslinks (CL), single strand breaks (SSB) and double strand breaks (DSB) induced by 4.6, 5.6, 9.6 and 14.6 eV electrons are obtained. The CSs for SSB are smaller, but similar to those for LS, indicating that SSB are the main conformational damage. The CSs for DSB and CL are about one order of magnitude smaller than those of LS and SSB. The value of f is found to be independent of electron energy, which allows extending the absolute CSs for these types of damage within the range 2-20 eV, from previous measurements of effective CSs. When comparison is possible, the absolute CSs are found to be in good agreement with those obtained from previous similar studies with double-stranded DNA. The high values of the absolute CSs of 4.6 and 9.6 eV provide quantitative evidence for the high efficiency of low energy electrons to induce DNA damage via the formation of transient anions.

  7. Local magnitude scale for Valle Medio del Magdalena region, Colombia

    NASA Astrophysics Data System (ADS)

    Londoño, John Makario; Romero, Jaime A.

    2017-12-01

    A local Magnitude (ML) scale for Valle Medio del Magdalena (VMM) region was defined by using 514 high quality earthquakes located at VMM area and inversion of 2797 amplitude values of horizontal components of 17 stations seismic broad band stations, simulated in a Wood-Anderson seismograph. The derived local magnitude scale for VMM region was: ML =log(A) + 1.3744 ∗ log(r) + 0.0014776 ∗ r - 2.397 + S Where A is the zero-to-peak amplitude in nm in horizontal components, r is the hypocentral distance in km, and S is the station correction. Higher values of ML were obtained for VMM region compared with those obtained with the current formula used for ML determination, and with California formula. With this new scale ML values are adjusted to local conditions beneath VMM region leading to more realistic ML values. Moreover, with this new ML scale the seismicity caused by tectonic or fracking activity at VMM region can be monitored more accurately.

  8. Rapid magnitude estimation from time-dependent displacement amplitude measured with seismogeodetic instrumentation

    NASA Astrophysics Data System (ADS)

    Goldberg, D.; Bock, Y.; Melgar, D.

    2017-12-01

    Earthquake magnitude is a concise metric that illuminates the destructive potential of a seismic event. Rapid determination of earthquake magnitude is currently the main prerequisite for dissemination of a tsunami early warning, thus timely and automated calculation is of high importance. Seismic instrumentation experiences well-documented complications at long periods, making the accurate measurement of ground displacement in the near field unreliable. As a result, the relation between ground motion measured with seismic instrumentation and magnitude saturates, causing underestimation of the size of very large events. In the case of tsunamigenic earthquakes, magnitude underestimation in turn leads to a flawed tsunami inundation assessment, which limits the effectiveness of an early warning, in particular for local tsunamis. Global Navigation Satellite System (GNSS) instrumentation measures the displacement field directly, leading to more accurate magnitude estimates with near-field data. Unlike seismic-only instrumentation, near-field GNSS has been shown to provide an accurate magnitude estimate using the peak ground displacement (PGD) after just 2 minutes [Melgar et al., 2015]. However, GNSS alone is too noisy to detect the first seismic wave arrivals (P-waves), thus it cannot be as timely as a seismic system on its own. Using collocated seismic and geodetic instrumentation, we refine magnitude scaling relations by incorporating a large dataset of earthquakes in Japan. We demonstrate that consideration of the time-dependence of displacement amplitude with respect to P-wave arrival time reduces the time to convergence of the magnitude estimate. We present findings on the growth of events of large magnitude, and demonstrate time-dependent scaling relations that adapt to the amount of recorded data, starting with the P-wave arrival and continuing through PGD. We illustrate real-time, automated implementation of this method, and consider network improvements to

  9. Fourier Transform Fringe-Pattern Analysis of an Absolute Distance Michelson Interferometer for Space-Based Laser Metrology.

    NASA Astrophysics Data System (ADS)

    Talamonti, James Joseph

    1995-01-01

    Future NASA proposals include the placement of optical interferometer systems in space for a wide variety of astrophysical studies including a vastly improved deflection test of general relativity, a precise and direct calibration of the Cepheid distance scale, and the determination of stellar masses (Reasenberg et al., 1988). There are also plans for placing large array telescopes on the moon with the ultimate objective of being able to measure angular separations of less than 10 mu-arc seconds (Burns, 1990). These and other future projects will require interferometric measurement of the (baseline) distance between the optical elements comprising the systems. Eventually, space qualifiable interferometers capable of picometer (10^{-12}m) relative precision and nanometer (10^{ -9}m) absolute precision will be required. A numerical model was developed to emulate the capabilities of systems performing interferometric noncontact absolute distance measurements. The model incorporates known methods to minimize signal processing and digital sampling errors and evaluates the accuracy limitations imposed by spectral peak isolation using Hanning, Blackman, and Gaussian windows in the Fast Fourier Transform Technique. We applied this model to the specific case of measuring the relative lengths of a compound Michelson interferometer using a frequency scanned laser. By processing computer simulated data through our model, the ultimate precision is projected for ideal data, and data containing AM/FM noise. The precision is shown to be limited by non-linearities in the laser scan. A laboratory system was developed by implementing ultra-stable external cavity diode lasers into existing interferometric measuring techniques. The capabilities of the system were evaluated and increased by using the computer modeling results as guidelines for the data analysis. Experimental results measured 1-3 meter baselines with <20 micron precision. Comparison of the laboratory and modeling results

  10. Simulated East-west differences in F-region peak electron density at Far East mid-latitude region

    NASA Astrophysics Data System (ADS)

    Ren, Zhipeng; Zhao, Biqiang; Wan, Weixing; Liu, Libo

    2017-04-01

    In the present work, using Three-Dimensional Theoretical Ionospheric Model of the Earth in Institute of Geology and Geophysics, Chinese Academy of Sciences (TIME3D-IGGCAS), we simulated the east-west differences in Fregion peak electron density (NmF2) at Far East mid-latitude region.We found that, after removing the longitudinal variations of neutral parameters, TIME3D-IGGCAS can better represent the observed relative east-west difference (Rew) features. Rew is mainly negative (West NmF2 > East NmF2) at noon and positive (East NmF2 >West NmF2) at evening-night. The magnitude of daytime negative Rew is weak at local winter and strong at local summer, and the daytime Rew show two negative peaks around two equinoxes. With the increasing of solar flux level, the magnitude of Rew mainly become larger, and two daytime negative peaks slight shifts to June Solstice. With the decreasing of geographical latitude, Rew mainly become positive, and two daytime negative peaks slight shifts to June Solstice. Our simulation also suggested that the thermospheric zonal wind combined with the geomagnetic field configuration play a pivotal role in the formation of the ionospheric east-west differences at Far East midlatitude region.

  11. Simulated East-west differences in F-region peak electron density at Far East mid-latitude region

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Wan, W.

    2017-12-01

    In the present work, using Three-Dimensional Theoretical Ionospheric Model of the Earth in Institute of Geology and Geophysics, Chinese Academy of Sciences (TIME3D-IGGCAS), we simulated the east-west differences in Fregion peak electron density (NmF2) at Far East mid-latitude region.We found that, after removing the longitudinal variations of neutral parameters, TIME3D-IGGCAS can better represent the observed relative east-west difference (Rew) features. Rew is mainly negative (West NmF2 > East NmF2) at noon and positive (East NmF2 >West NmF2) at evening-night. The magnitude of daytime negative Rew is weak at local winter and strong at local summer, and the daytime Rew show two negative peaks around two equinoxes. With the increasing of solar flux level, the magnitude of Rew mainly become larger, and two daytime negative peaks slight shifts to June Solstice. With the decreasing of geographical latitude, Rew mainly become positive, and two daytime negative peaks slight shifts to June Solstice. Our simulation also suggested that the thermospheric zonal wind combined with the geomagnetic field configuration play a pivotal role in the formation of the ionospheric east-west differences at Far East midlatitude region.

  12. Reliability of Peak Exercise Stroke Volume Assessment by Impedance Cardiography in Patients with Residual Right Outflow Tract Lesions After Congenital Heart Disease Repair.

    PubMed

    Legendre, Antoine; Bonnet, D; Bosquet, L

    2018-01-01

    Global ventricular response to exercise may be useful in follow-up of patients with residual right outflow tract lesions after congenital heart disease repair. In this context, impedance cardiography is considered accurate for stroke volume (SV) measurement during exercise testing, however, to date, only partial assessment of its reliability has been reported. We retrospectively evaluated relative and absolute reliability of peak SV by impedance cardiography during exercise using intraclass correlation (ICC) and standard error of measurement (SEM) in this population. Peak SV was measured in 30 young patients (mean age 14.4 years ± 2.1) with right ventricular outflow tract reconstruction who underwent two cardiopulmonary exercise tests at a mean one-year interval. SV was measured using a signal morphology impedance cardiography analysis device (PhysioFlow ® ) and was indexed to body surface area. ICC of peak indexed SV measurement was 0.80 and SEM was 10.5%. High heterogeneity was seen when comparing patients according to peak indexed SV; in patients with peak SV < 50 ml/m 2 (15 patients), ICC rose to 0.95 and SEM dropped to 2.7%, while in patients with a peak SV > 50 ml/m 2 relative and absolute reliability decreased (ICC = 0.45, SEM = 12.2%). Peak exercise SV assessment by a PhysioFlow ® device represents a highly reliable method in patients with residual right outflow tract lesions after congenital heart disease repair, especially in patients with peak SV < 50 ml/m 2 . In this latter group, a peak SV decrease > 7.3% (corresponding to the minimum "true" difference) should be considered a clinically-relevant decrease in global ventricular performance and taken into account when deciding whether to perform residual lesion removal.

  13. Control over high peak-power laser light and laser-driven X-rays

    NASA Astrophysics Data System (ADS)

    Zhao, Baozhen; Banerjee, Sudeep; Yan, Wenchao; Zhang, Ping; Zhang, Jun; Golovin, Grigory; Liu, Cheng; Fruhling, Colton; Haden, Daniel; Chen, Shouyuan; Umstadter, Donald

    2018-04-01

    An optical system was demonstrated that enables continuous control over the peak power level of ultrashort duration laser light. The optical characteristics of amplified and compressed femtosecond-duration light from a chirped-pulse amplification laser are shown to remain invariant and maintain high-fidelity using this system. When the peak power was varied by an order-of-magnitude, up to its maximum attainable value, the phase, spectral bandwidth, polarization state, and focusability of the light remained constant. This capability led to precise control of the focused laser intensity and enabled a correspondingly high level of control over the power of an all-laser-driven Thomson X-ray light source.

  14. First Absolutely Calibrated Localized Measurements of Ion Velocity in the MST in Locked and Rotating Plasmas

    NASA Astrophysics Data System (ADS)

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; Munaretto, S.

    2015-11-01

    An Ion Doppler Spectrometer (IDS) is used on MST for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometer records data within 0.3 nm of the C+5 line of interest, and commercial calibration lamps do not produce lines in this narrow range . A novel optical system was designed to absolutely calibrate the IDS. The device uses an UV LED to produce a broad emission curve in the desired region. A Fabry-Perot etalon filters this light, cutting transmittance peaks into the pattern of the LED emission. An optical train of fused silica lenses focuses the light into the IDS with f/4. A holographic diffuser blurs the light cone to increase homogeneity. Using this light source, the absolute Doppler shift of ion emissions can be measured in MST plasmas. In combination with charge exchange recombination spectroscopy, localized ion velocities can now be measured. Previously, a time-averaged measurement along the chord bisecting the poloidal plane was used to calibrate the IDS; the quality of these central chord calibrations can be characterized with our absolute calibration. Calibration errors may also be quantified and minimized by optimizing the curve-fitting process. Preliminary measurements of toroidal velocity in locked and rotating plasmas will be shown. This work has been supported by the US DOE.

  15. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  16. Observation of low magnetic field density peaks in helicon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.

    2013-04-15

    Single density peak has been commonly observed in low magnetic field (<100 G) helicon discharges. In this paper, we report the observations of multiple density peaks in low magnetic field (<100 G) helicon discharges produced in the linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. Experiments are carried out using argon gas with m = +1 right helical antenna operating at 13.56 MHz by varying the magnetic field from 0 G to 100 G. The plasma density varies with varying the magnetic field at constant input power and gas pressure and reaches to its peakmore » value at a magnetic field value of {approx}25 G. Another peak of smaller magnitude in density has been observed near 50 G. Measurement of amplitude and phase of the axial component of the wave using magnetic probes for two magnetic field values corresponding to the observed density peaks indicated the existence of radial modes. Measured parallel wave number together with the estimated perpendicular wave number suggests oblique mode propagation of helicon waves along the resonance cone boundary for these magnetic field values. Further, the observations of larger floating potential fluctuations measured with Langmuir probes at those magnetic field values indicate that near resonance cone boundary; these electrostatic fluctuations take energy from helicon wave and dump power to the plasma causing density peaks.« less

  17. The composite structure of peak 5 in the glow curve of LiF:Mg,Ti (TLD-100): confirmation of peak 5a arising from a locally trapped electron-hole configuration.

    PubMed

    Horowitz, Y S; Oster, L; Satinger, D; Biderman, S; Einav, Y

    2002-01-01

    The hypothesis that glow peak 5a arises from localised e-h capture is confirmed by the following experimental observations: (i) The high conversion efficiency (CE) (CE5a-->4 = 3 +/- 0.5) of peak 5a to peak 4 (a hole-only trap) deduced from detailed Im-Tstop optical bleaching studies at 310 nm compared to the much lower CE of peak 5 (an electron-only trap) (CE5-->4 = 0.0026+/-0.012). (ii) The lack of an increase in the sensitivity of glow peak 5a following 2.6 MeV and 6.8 MeV He ion irradiation in 'sensitised' material compared to the factor two increase in the sensitivity of peak 5; (S/S0)5a = 0.86+/-0.12, compared to (S/S0)5 = 2.0+/-0.2. (iii) The late entry into saturation of the 2.6 MeV and 6.8 MeV He ion TL-fluence response curves for peak 5a compared to peak 5 in sensitised and normal material resulting in the following values for the track radial saturation parameter: (r50)5a = 100+/-20) Angstroms compared to (r50)5 = 380+/-30 Angstroms. (iv) The low value of 0.1 for the 'track-escape' parameter of peak 5a deduced from the Extended Track Interaction Model analysis of He ion TL fluence response compared to order of magnitude greater values for peaks 5 and 5b.

  18. Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error

    NASA Astrophysics Data System (ADS)

    Khair, Ummul; Fahmi, Hasanul; Hakim, Sarudin Al; Rahim, Robbi

    2017-12-01

    Prediction using a forecasting method is one of the most important things for an organization, the selection of appropriate forecasting methods is also important but the percentage error of a method is more important in order for decision makers to adopt the right culture, the use of the Mean Absolute Deviation and Mean Absolute Percentage Error to calculate the percentage of mistakes in the least square method resulted in a percentage of 9.77% and it was decided that the least square method be worked for time series and trend data.

  19. Absolute measurement of the 242Pu neutron-capture cross section

    DOE PAGES

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; ...

    2016-04-21

    Here, the absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n,γ) cross section was made over the incident neutron energy range from thermal to ≈ 6 keV, and the absolute scale of the (n,γ) cross section was set according to the known 239Pu(n,f) resonance at E n,R = 7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of themore » cross section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈ 40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n,γ) cross section at the E n,R = 2.68 eV resonance is within 2.4% of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30% lower than the evaluated data at E n ≈ 1 keV and are approximately 2σ away from the previous measurement at E n ≈ 20 keV.« less

  20. Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 imperial valley, California, earthquake

    USGS Publications Warehouse

    Joyner, William B.; Boore, David M.

    1981-01-01

    We have taken advantage of the recent increase in strong-motion data at close distances to derive new attenuation relations for peak horizontal acceleration and velocity. This new analysis uses a magnitude-independent shape, based on geometrical spreading and anelastic attenuation, for the attenuation curve. An innovation in technique is introduced that decouples the determination of the distance dependence of the data from the magnitude dependence.

  1. Evaluation of the magnitude of EBT Gafchromic film polarization effects.

    PubMed

    Butson, M J; Cheung, T; Yu, P K N

    2009-03-01

    Gafchromic EBT film, has become a main dosimetric tools for quantitative evaluation of radiation doses in radiation therapy application. One aspect of variability using EBT Gafchromic film is the magnitude of the orientation effect when analysing the film in landscape or portrait mode. This work has utilized a > 99% plane polarized light source and a non-polarized diffuse light source to investigate the absolute magnitude of EBT Gafchromic films polarization or orientation effects. Results have shown that using a non-polarized light source produces a negligible orientation effect for EBT Gafchromic film and thus the angle of orientation is not important. However, the film exhibits a significant variation in transmitted optical density with angle of orientation to polarized light producing more than 100% increase, or over a doubling of measured OD for films irradiated with x-rays up to dose levels of 5 Gy. The maximum optical density was found to be in a plane at an angle of 14 degrees +/- 7 degrees (2 SD) when the polarizing sheet is turned clockwise with respect to the film. As the magnitude of the orientation effect follows a sinusoidal shape it becomes more critical for alignment accuracy of the film with respect to the polarizing direction in the anticlockwise direction as this will place the alignment of the polarizing axes on the steeper gradient section of the sinusoidal pattern. An average change of 4.5% per 5 degrees is seen for an anticlockwise polarizer rotation where as the effect is 1.2% per 5 degrees for an clockwise polarizer rotation. This may have consequences to the positional accuracy of placement of the EBT Gafchromic film on a scanner as even a 1 degree alignment error can cause an approximate 1% error in analysis. The magnitude of the orientation effect is therefore dependant on the degree of polarization of the scanning light source and can range from negligible (diffuse LED light source) through to more than 100% or doubling of OD variation

  2. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  3. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  4. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  5. Obesity is associated with higher absolute tibiofemoral contact and muscle forces during gait with and without knee osteoarthritis.

    PubMed

    Harding, Graeme T; Dunbar, Michael J; Hubley-Kozey, Cheryl L; Stanish, William D; Astephen Wilson, Janie L

    2016-01-01

    Obesity is an important risk factor for knee osteoarthritis initiation and progression. However, it is unclear how obesity may directly affect the mechanical loading environment of the knee joint, initiating or progressing joint degeneration. The objective of this study was to investigate the interacting role of obesity and moderate knee osteoarthritis presence on tibiofemoral contact forces and muscle forces within the knee joint during walking gait. Three-dimensional gait analysis was performed on 80 asymptomatic participants and 115 individuals diagnosed with moderate knee osteoarthritis. Each group was divided into three body mass index categories: healthy weight (body mass index<25), overweight (25≤body mass index≤30), and obese (body mass index>30). Tibiofemoral anterior-posterior shear and compressive forces, as well as quadriceps, hamstrings and gastrocnemius muscle forces, were estimated based on a sagittal plane contact force model. Peak contact and muscle forces during gait were compared between groups, as well as the interaction between disease presence and body mass index category, using a two-factor analysis of variance. There were significant osteoarthritis effects in peak shear, gastrocnemius and quadriceps forces only when they were normalized to body mass, and there were significant BMI effects in peak shear, compression, gastrocnemius and hamstrings forces only in absolute, non-normalized forces. There was a significant interaction effect in peak quadriceps muscle forces, with higher forces in overweight and obese groups compared to asymptomatic healthy weight participants. Body mass index was associated with higher absolute tibiofemoral compression and shear forces as well as posterior muscle forces during gait, regardless of moderate osteoarthritis presence or absence. The differences found may contribute to accelerated joint damage with obesity, but with the osteoarthritic knees less able to accommodate the high loads. Copyright © 2015

  6. Peak oxygen uptake in Paralympic sitting sports: A systematic literature review, meta- and pooled-data analysis.

    PubMed

    Baumgart, Julia Kathrin; Brurok, Berit; Sandbakk, Øyvind

    2018-01-01

    included studies and corresponding low sample sizes. The meta-regression and pooled-data multiple regression analyses showed that being a man, having an amputation, not being tetraplegic, testing in a wheelchair ergometer and treadmill mode, were found to be favorable for high absolute and body-mass normalized VO2peak values. Furthermore, high body mass was favourable for high absolute VO2peak values and low body mass for high body-mass normalized VO2peak values. The highest VO2peak values were found in Nordic sit skiing, an endurance sport with continuously high physical efforts, and the lowest values in shooting, a sport with low levels of displacement, and in wheelchair rugby where mainly athletes with tetraplegia compete. However, VO2peak values need to be interpreted carefully in sports-disciplines with few included studies and large within-sports variation. Future studies should include detailed information on training status, sex, age, test mode, as well as the type and extent of disability in order to more precisely evaluate the effect of these factors on VO2peak.

  7. Wingate Anaerobic Test peak power and anaerobic capacity classifications for men and women intercollegiate athletes.

    PubMed

    Zupan, Michael F; Arata, Alan W; Dawson, Letitia H; Wile, Alfred L; Payn, Tamara L; Hannon, Megan E

    2009-12-01

    The Wingate Anaerobic Test (WAnT) has been established as an effective tool in measuring both muscular power and anaerobic capacity in a 30-second time period; however, there are no published normative tables by which to compare WAnT performance in men and women intercollegiate athletics. The purpose of this study was to develop a classification system for anaerobic peak power and anaerobic capacity for men and women National Collegiate Athletic Association (NCAA) Division I college athletes using the WAnT. A total of 1,585 (1,374 men and 211 women) tests were conducted on athletes ranging from the ages of 18 to 25 years using the WAnT. Absolute and relative peak power and anaerobic capacity data were recorded. One-half standard deviations were used to set up a 7-tier classification system (poor to elite) for these assessments. These classifications can be used by athletes, coaches, and practitioners to evaluate anaerobic peak power and anaerobic capacity in their athletes.

  8. Problems with indirect determinations of peak streamflows in steep, desert stream channels

    USGS Publications Warehouse

    Glancy, Patrick A.; Williams, Rhea P.

    1994-01-01

    Many peak streamflow values used in flood analyses for desert areas are derived using the Manning equation. Data used in the equation are collected after the flow has subsided, and peak flow is thereby determined indirectly. Most measurement problems and associated errors in peak-flow determinations result from (1) channel erosion or deposition that cannot be discerned or properly evaluated after the fact, (2) unsteady and non-uniform flow that rapidly changes in magnitude, and (3) appreciable sediment transport that has unknown effects on energy dissipation. High calculated velocities and Froude numbers are unacceptable to some investigators. Measurement results could be improved by recording flows with a video camera, installing a recording stream gage and recording rain gages, measuring channel scour with buried chains, analyzing measured data by multiple techniques, and supplementing indirect measurements with direct measurements of stream velocities in similar ephemeral streams.

  9. Annual peak discharges from small drainage areas in Montana through September 1978

    USGS Publications Warehouse

    Omang, R.J.; Parrett, C.; Hull, J.A.

    1979-01-01

    Annual peak stage and discharge data have been collected and tabulated for crest-stage gaging sites in Montana. The crest-stage program was begun in July 1955 to investigate the magnitude and frequency of floods from small drainage areas. The program has expanded from 45 crest-stage gaging stations initially to 173 stations maintained in 1978. Data are tabulated for the period of record. (Woodard-USGS)

  10. Solar Variability Magnitudes and Timescales

    NASA Astrophysics Data System (ADS)

    Kopp, Greg

    2015-08-01

    The Sun’s net radiative output varies on timescales of minutes to many millennia. The former are directly observed as part of the on-going 37-year long total solar irradiance climate data record, while the latter are inferred from solar proxy and stellar evolution models. Since the Sun provides nearly all the energy driving the Earth’s climate system, changes in the sunlight reaching our planet can have - and have had - significant impacts on life and civilizations.Total solar irradiance has been measured from space since 1978 by a series of overlapping instruments. These have shown changes in the spatially- and spectrally-integrated radiant energy at the top of the Earth’s atmosphere from timescales as short as minutes to as long as a solar cycle. The Sun’s ~0.01% variations over a few minutes are caused by the superposition of convection and oscillations, and even occasionally by a large flare. Over days to weeks, changing surface activity affects solar brightness at the ~0.1% level. The 11-year solar cycle has comparable irradiance variations with peaks near solar maxima.Secular variations are harder to discern, being limited by instrument stability and the relatively short duration of the space-borne record. Proxy models of the Sun based on cosmogenic isotope records and inferred from Earth climate signatures indicate solar brightness changes over decades to millennia, although the magnitude of these variations depends on many assumptions. Stellar evolution affects yet longer timescales and is responsible for the greatest solar variabilities.In this talk I will summarize the Sun’s variability magnitudes over different temporal ranges, showing examples relevant for climate studies as well as detections of exo-solar planets transiting Sun-like stars.

  11. Reproducibility of the time to peak torque and the joint angle at peak torque on knee of young sportsmen on the isokinetic dynamometer.

    PubMed

    Bernard, P-L; Amato, M; Degache, F; Edouard, P; Ramdani, S; Blain, H; Calmels, P; Codine, P

    2012-05-01

    Although peak torque has shown acceptable reproducibility, this may not be the case with two other often used parameters: time to peak torque (TPT) and the angle of peak torque (APT). Those two parameters should be used for the characterization of muscular adaptations in athletes. The isokinetic performance of the knee extensors and flexors in both limbs was measured in 29 male athletes. The experimental protocol consisted of three consecutive identical paradigms separated by 45 min breaks. Each test consisted of four maximal concentric efforts performed at 60 and 180°/s. Reproducibility was quantified by the standard error measurement (SEM), the coefficient of variation (CV) and by means of intra-class correlation coefficients (ICCs) with the calculation of 6 forms of ICCs. Using ICC as the indicator of reproducibility, the correlations for TPT of both limbs showed a range of 0.51-0.65 in extension and 0.50-0.63 in flexion. For APT, the values were 0.46-0.60 and 0.51-0.81, respectively. In addition, the calculated standard error of measurement (SEM) and CV scores confirmed the low level of absolute reproducibility. Due to their low reproducibility, neither TPT nor APT can serve as independent isokinetic parameters of knee flexor and extensor performance. So, given its reproducibility level, TPT and APT should not be used for the characterization of muscular adaptations in athletes. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  12. Estimating Seismic Hazards from the Catalog of Taiwan Earthquakes from 1900 to 2014 in Terms of Maximum Magnitude

    NASA Astrophysics Data System (ADS)

    Chen, Kuei-Pao; Chang, Wen-Yen

    2017-04-01

    Maximum expected earthquake magnitude is an important parameter when designing mitigation measures for seismic hazards. This study calculated the maximum magnitude of potential earthquakes for each cell in a 0.1° × 0.1° grid of Taiwan. Two zones vulnerable to maximum magnitudes of M w ≥6.0, which will cause extensive building damage, were identified: one extends from Hsinchu southward to Taichung, Nantou, Chiayi, and Tainan in western Taiwan; the other extends from Ilan southward to Hualian and Taitung in eastern Taiwan. These zones are also characterized by low b values, which are consistent with high peak ground shaking. We also employed an innovative method to calculate (at intervals of M w 0.5) the bounds and median of recurrence time for earthquakes of magnitude M w 6.0-8.0 in Taiwan.

  13. Variance computations for functional of absolute risk estimates.

    PubMed

    Pfeiffer, R M; Petracci, E

    2011-07-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates.

  14. Variance computations for functional of absolute risk estimates

    PubMed Central

    Pfeiffer, R.M.; Petracci, E.

    2011-01-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates. PMID:21643476

  15. The impact of water temperature on the measurement of absolute dose

    NASA Astrophysics Data System (ADS)

    Islam, Naveed Mehdi

    To standardize reference dosimetry in radiation therapy, Task Group 51 (TG 51) of American Association of Physicist's in Medicine (AAPM) recommends that dose calibration measurements be made in a water tank at a depth of 10 cm and at a reference geometry. Methodologies are provided for calculating various correction factors to be applied in calculating the absolute dose. However the protocol does not specify the water temperature to be used. In practice, the temperature of water during dosimetry may vary considerably between independent sessions and different centers. In this work the effect of water temperature on absolute dosimetry has been investigated. Density of water varies with temperature, which in turn may impact the beam attenuation and scatter properties. Furthermore, due to thermal expansion or contraction air volume inside the chamber may change. All of these effects can result in a change in the measurement. Dosimetric measurements were made using a Farmer type ion chamber on a Varian Linear Accelerator for 6 MV and 23 MV photon energies for temperatures ranging from 10 to 40 °C. A thermal insulation was designed for the water tank in order to maintain relatively stable temperature over the duration of the experiment. Dose measured at higher temperatures were found to be consistently higher by a very small magnitude. Although the differences in dose were less than the uncertainty in each measurement, a linear regression of the data suggests that the trend is statistically significant with p-values of 0.002 and 0.013 for 6 and 23 MV beams respectively. For a 10 degree difference in water phantom temperatures, which is a realistic deviation across clinics, the final calculated reference dose can differ by 0.24% or more. To address this effect, first a reference temperature (e.g.22 °C) can be set as the standard; subsequently a correction factor can be implemented for deviations from this reference. Such a correction factor is expected to be of similar

  16. Effects of urban tree canopy loss on land surface temperature magnitude and timing

    NASA Astrophysics Data System (ADS)

    Elmes, Arthur; Rogan, John; Williams, Christopher; Ratick, Samuel; Nowak, David; Martin, Deborah

    2017-06-01

    temperature curves than persistence areas, and also larger peak LST values, with peak increases ranging from 1 to 6 °C. Timing of summer warm period was extended in UTC loss areas by up to 15 days. UTC gain provided moderate LST mitigation, with lower monotonic trends, lower peak temperatures, and smaller seasonal curve changes than both persistence and loss locations. This study shows that urban trees mitigate the magnitude and timing of the surface urban heat island effect, even in suburban areas with less proportional impervious coverage than the dense urban areas traditionally associated with SUHI. Trees can therefore be seen as an effective means of offsetting the energy-intensive urban heat island effect.

  17. Local magnitude determinations for intermountain seismic belt earthquakes from broadband digital data

    USGS Publications Warehouse

    Pechmann, J.C.; Nava, S.J.; Terra, F.M.; Bernier, J.C.

    2007-01-01

    The University of Utah Seismograph Stations (UUSS) earthquake catalogs for the Utah and Yellowstone National Park regions contain two types of size measurements: local magnitude (ML) and coda magnitude (MC), which is calibrated against ML. From 1962 through 1993, UUSS calculated ML values for southern and central Intermountain Seismic Belt earthquakes using maximum peak-to-peak (p-p) amplitudes on paper records from one to five Wood-Anderson (W-A) seismographs in Utah. For ML determinations of earthquakes since 1994, UUSS has utilized synthetic W-A seismograms from U.S. National Seismic Network and UUSS broadband digital telemetry stations in the region, which numbered 23 by the end of our study period on 30 June 2002. This change has greatly increased the percentage of earthquakes for which ML can be determined. It is now possible to determine ML for all M ???3 earthquakes in the Utah and Yellowstone regions and earthquakes as small as M <1 in some areas. To maintain continuity in the magnitudes in the UUSS earthquake catalogs, we determined empirical ML station corrections that minimize differences between MLs calculated from paper and synthetic W-A records. Application of these station corrections, in combination with distance corrections from Richter (1958) which have been in use at UUSS since 1962, produces ML values that do not show any significant distance dependence. ML determinations for the Utah and Yellowstone regions for 1981-2002 using our station corrections and Richter's distance corrections have provided a reliable data set for recalibrating the MC scales for these regions. Our revised ML values are consistent with available moment magnitude determinations for Intermountain Seismic Belt earthquakes. To facilitate automatic ML measurements, we analyzed the distribution of the times of maximum p-p amplitudes in synthetic W-A records. A 30-sec time window for maximum amplitudes, beginning 5 sec before the predicted Sg time, encompasses 95% of the

  18. Determination of the Limiting Magnitude

    NASA Technical Reports Server (NTRS)

    Kingery, Aaron; Blaauw, Rhiannon

    2017-01-01

    The limiting magnitude of an optical camera system is an important property to understand since it is used to find the completeness limit of observations. Limiting magnitude depends on the hardware and software of the system, current weather conditions, and the angular speed of the objects observed. If an object exhibits a substantial angular rate during the exposure, its light spreads out over more pixels than the stationary stars. This spreading causes the limiting magnitude to be brighter when compared to the stellar limiting magnitude. The effect, which begins to become important when the object moves a full width at half max during a single exposure or video frame. For targets with high angular speeds or camera systems with narrow field of view or long exposures, this correction can be significant, up to several magnitudes. The stars in an image are often used to measure the limiting magnitude since they are stationary, have known brightness, and are present in large numbers, making the determination of the limiting magnitude fairly simple. In order to transform stellar limiting magnitude to object limiting magnitude, a correction must be applied accounting for the angular velocity. This technique is adopted in meteor and other fast-moving object observations, as the lack of a statistically significant sample of targets makes it virtually impossible to determine the limiting magnitude before the weather conditions change. While the weather is the dominant factor in observing satellites, the limiting magnitude for meteors also changes throughout the night due to the motion of a meteor shower or sporadic source radiant across the sky. This paper presents methods for determining the limiting stellar magnitude and the conversion to the target limiting magnitude.

  19. Techniques for estimating flood-peak discharges from urban basins in Missouri

    USGS Publications Warehouse

    Becker, L.D.

    1986-01-01

    Techniques are defined for estimating the magnitude and frequency of future flood peak discharges of rainfall-induced runoff from small urban basins in Missouri. These techniques were developed from an initial analysis of flood records of 96 gaged sites in Missouri and adjacent states. Final regression equations are based on a balanced, representative sampling of 37 gaged sites in Missouri. This sample included 9 statewide urban study sites, 18 urban sites in St. Louis County, and 10 predominantly rural sites statewide. Short-term records were extended on the basis of long-term climatic records and use of a rainfall-runoff model. Linear least-squares regression analyses were used with log-transformed variables to relate flood magnitudes of selected recurrence intervals (dependent variables) to selected drainage basin indexes (independent variables). For gaged urban study sites within the State, the flood peak estimates are from the frequency curves defined from the synthesized long-term discharge records. Flood frequency estimates are made for ungaged sites by using regression equations that require determination of the drainage basin size and either the percentage of impervious area or a basin development factor. Alternative sets of equations are given for the 2-, 5-, 10-, 25-, 50-, and 100-yr recurrence interval floods. The average standard errors of estimate range from about 33% for the 2-yr flood to 26% for the 100-yr flood. The techniques for estimation are applicable to flood flows that are not significantly affected by storage caused by manmade activities. Flood peak discharge estimating equations are considered applicable for sites on basins draining approximately 0.25 to 40 sq mi. (Author 's abstract)

  20. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  1. Individual Impact Magnitude vs. Cumulative Magnitude for Estimating Concussion Odds.

    PubMed

    O'Connor, Kathryn L; Peeters, Thomas; Szymanski, Stefan; Broglio, Steven P

    2017-08-01

    Helmeted impact devices have allowed researchers to investigate the biomechanics of head impacts in vivo. While increased impact magnitude has been associated with greater concussion risk, a definitive concussive threshold has not been established. It is likely that concussion risk is not determined by a single impact itself, but a host of predisposing factors. These factors may include genetics, fatigue, and/or prior head impact exposure. The objective of the current paper is to investigate the association between cumulative head impact magnitude and concussion risk. It is hypothesized that increased cumulative magnitudes will be associated with greater concussion risk. This retrospective analysis included participants that were recruited from regional high-schools in Illinois and Michigan from 2007 to 2014 as part of an ongoing study on concussion biomechanics. Across seven seasons, 185 high school football athletes were instrumented with the Head Impact Telemetry system. Out of 185 athletes, 31 (17%) sustained a concussion, with two athletes sustaining two concussions over the study period, yielding 33 concussive events. The system recorded 78,204 impacts for all concussed players. Linear acceleration, rotational acceleration, and head impact telemetry severity profile (HITsp) magnitudes were summed within five timeframes: the day of injury, three days prior to injury, seven days prior to injury, 30 days prior to injury, and prior in-season exposure. Logistic regressions were modeled to explain concussive events based on the singular linear acceleration, rotational acceleration, and HITsp event along with the calculated summations over time. Linear acceleration, rotational acceleration, and HITsp all produced significant models estimating concussion (p < 0.05). The strongest estimators of a concussive impact were the linear acceleration (OR = 1.040, p < 0.05), rotational acceleration (OR = 1.001, p < 0.05), and HITsp (OR = 1.003, p < 0.05) for the

  2. Availability of high-magnitude streamflow for groundwater banking in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Kocis, Tiffany N.; Dahlke, Helen E.

    2017-08-01

    California’s climate is characterized by the largest precipitation and streamflow variability observed within the conterminous US This, combined with chronic groundwater overdraft of 0.6-3.5 km3 yr-1, creates the need to identify additional surface water sources available for groundwater recharge using methods such as agricultural groundwater banking, aquifer storage and recovery, and spreading basins. High-magnitude streamflow, i.e. flow above the 90th percentile, that exceeds environmental flow requirements and current surface water allocations under California water rights, could be a viable source of surface water for groundwater banking. Here, we present a comprehensive analysis of the magnitude, frequency, duration and timing of high-magnitude streamflow (HMF) for 93 stream gauges covering the Sacramento, San Joaquin and Tulare basins in California. The results show that in an average year with HMF approximately 3.2 km3 of high-magnitude flow is exported from the entire Central Valley to the Sacramento-San Joaquin Delta often at times when environmental flow requirements of the Delta and major rivers are exceeded. High-magnitude flow occurs, on average, during 7 and 4.7 out of 10 years in the Sacramento River and the San Joaquin-Tulare Basins, respectively, from just a few storm events (5-7 1-day peak events) lasting for 25-30 days between November and April. The results suggest that there is sufficient unmanaged surface water physically available to mitigate long-term groundwater overdraft in the Central Valley.

  3. New Frontiers in Characterization of Sub-Catalog Microseismicity: Utilizing Inter-Event Waveform Cross Correlation for Estimating Precise Locations, Magnitudes, and Focal Mechanisms of Tiny Earthquakes

    NASA Astrophysics Data System (ADS)

    Ellsworth, W. L.; Shelly, D. R.; Hardebeck, J.; Hill, D. P.

    2017-12-01

    Microseismicity often conveys the most direct information about active processes in the earth's subsurface. However, routine network processing typically leaves most earthquakes uncharacterized. These "sub-catalog" events can provide critical clues to ongoing processes in the source region. To address this issue, we have developed waveform-based processing that leverages the existing routine catalog of earthquakes to detect and characterize "sub-catalog" events (those absent in routine catalogs). By correlating waveforms of cataloged events with the continuous data stream, we 1) identify events with similar waveform signatures in the continuous data across multiple stations, 2) precisely measure relative time lags across these stations for both P- and S-wave time windows, and 3) estimate the relative polarity between events by the sign of the peak absolute value correlations and its height above the secondary peak. When combined, these inter-event comparisons yield robust measurements, which enable sensitive event detection, relative relocation, and relative magnitude estimation. The most recent addition, focal mechanisms derived from correlation-based relative polarities, addresses a significant shortcoming in microseismicity analyses (see Shelly et al., JGR, 2016). Depending on the application, we can characterize 2-10 times as many events as included in the initial catalog. This technique is particularly well suited for compact zones of active seismicity such as seismic swarms. Application to a 2014 swarm in Long Valley Caldera, California, illuminates complex patterns of faulting that would have otherwise remained obscured. The prevalence of such features in other environments remains an important, as yet unresolved, question.

  4. Estimated flood peak discharges on Twin, Brock, and Lightning creeks, Southwest Oklahoma City, Oklahoma, May 8, 1993

    USGS Publications Warehouse

    Tortorelli, R.L.

    1996-01-01

    The flash flood in southwestern Oklahoma City, Oklahoma, May 8, 1993, was the result of an intense 3-hour rainfall on saturated ground or impervious surfaces. The total precipitation of 5.28 inches was close to the 3-hour, 100-year frequency and produced extensive flooding. The most serious flooding was on Twin, Brock, and Lightning Creeks. Four people died in this flood. Over 1,900 structures were damaged along the 3 creeks. There were about $3 million in damages to Oklahoma City public facilities, the majority of which were in the three basins. A study was conducted to determine the magnitude of the May 8, 1993, flood peak discharge in these three creeks in southwestern Oklahoma City and compare these peaks with published flood estimates. Flood peak-discharge estimates for these creeks were determined at 11 study sites using a step-backwater analysis to match the flood water-surface profiles defined by high-water marks. The unit discharges during peak runoff ranged from 881 cubic feet per second per square mile for Lightning Creek at SW 44th Street to 3,570 cubic feet per second per square mile for Brock Creek at SW 59th Street. The ratios of the 1993 flood peak discharges to the Federal Emergency Management Agency 100-year flood peak discharges ranged from 1.25 to 3.29. The water-surface elevations ranged from 0.2 foot to 5.9 feet above the Federal Emergency Management Agency 500-year flood water-surface elevations. The very large flood peaks in these 3 small urban basins were the result of very intense rainfall in a short period of time, close to 100 percent runoff due to ground surfaces being essentially impervious, and the city streets acting as efficient conveyances to the main channels. The unit discharges compare in magnitude to other extraordinary Oklahoma urban floods.

  5. Early results from the Far Infrared Absolute Spectrophotometer (FIRAS)

    NASA Technical Reports Server (NTRS)

    Mather, J. C.; Cheng, E. S.; Shafer, R. A.; Eplee, R. E.; Isaacman, R. B.; Fixsen, D. J.; Read, S. M.; Meyer, S. S.; Weiss, R.; Wright, E. L.

    1991-01-01

    The Far Infrared Absolute Spectrophotometer (FIRAS) on the Cosmic Background Explorer (COBE) mapped 98 percent of the sky, 60 percent of it twice, before the liquid helium coolant was exhausted. The FIRAS covers the frequency region from 1 to 100/cm with a 7 deg angular resolution. The spectral resolution is 0.2/cm for frequencies less than 20/cm and 0.8/cm for higher frequencies. Preliminary results include: a limit on the deviations from a Planck curve of 1 percent of the peak brightness from 1 to 20/cm, a temperature of 2.735 +/- 0.06 K, a limit on the Comptonization parameter y of 0.001, on the chemical potential parameter mu of 0.01, a strong limit on the existence of a hot smooth intergalactic medium, and a confirmation that the dipole anisotropy spectrum is that of a Doppler shifted blackbody.

  6. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  7. Absolute Radiation Measurements in Earth and Mars Entry Conditions

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2014-01-01

    This paper reports on the measurement of radiative heating for shock heated flows which simulate conditions for Mars and Earth entries. Radiation measurements are made in NASA Ames' Electric Arc Shock Tube at velocities from 3-15 km/s in mixtures of N2/O2 and CO2/N2/Ar. The technique and limitations of the measurement are summarized in some detail. The absolute measurements will be discussed in regards to spectral features, radiative magnitude and spatiotemporal trends. Via analysis of spectra it is possible to extract properties such as electron density, and rotational, vibrational and electronic temperatures. Relaxation behind the shock is analyzed to determine how these properties relax to equilibrium and are used to validate and refine kinetic models. It is found that, for some conditions, some of these values diverge from non-equilibrium indicating a lack of similarity between the shock tube and free flight conditions. Possible reasons for this are discussed.

  8. Robust control design with real parameter uncertainty using absolute stability theory. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Hall, Steven R.

    1993-01-01

    The purpose of this thesis is to investigate an extension of mu theory for robust control design by considering systems with linear and nonlinear real parameter uncertainties. In the process, explicit connections are made between mixed mu and absolute stability theory. In particular, it is shown that the upper bounds for mixed mu are a generalization of results from absolute stability theory. Both state space and frequency domain criteria are developed for several nonlinearities and stability multipliers using the wealth of literature on absolute stability theory and the concepts of supply rates and storage functions. The state space conditions are expressed in terms of Riccati equations and parameter-dependent Lyapunov functions. For controller synthesis, these stability conditions are used to form an overbound of the H2 performance objective. A geometric interpretation of the equivalent frequency domain criteria in terms of off-axis circles clarifies the important role of the multiplier and shows that both the magnitude and phase of the uncertainty are considered. A numerical algorithm is developed to design robust controllers that minimize the bound on an H2 cost functional and satisfy an analysis test based on the Popov stability multiplier. The controller and multiplier coefficients are optimized simultaneously, which avoids the iteration and curve-fitting procedures required by the D-K procedure of mu synthesis. Several benchmark problems and experiments on the Middeck Active Control Experiment at M.I.T. demonstrate that these controllers achieve good robust performance and guaranteed stability bounds.

  9. Annual peak discharges from small drainage areas in Montana through September 1977

    USGS Publications Warehouse

    Omang, R.J.; Hull, J.A.

    1978-01-01

    Annual peak stage and stream-discharge data have been collected and tabulated for crest-stage gaging sites in Montana. The crest-stage program was begun in July 1955 to investigate the magnitude and frequency of floods from small drainage areas. The program has expanded from 45 crest-stage gaging stations initially to 191 stations in 1977. Data are tabulated for 336 sites throughout the period of record. (Woodard-USGS)

  10. Annual peak discharges from small drainage areas in Montana through September 1980

    USGS Publications Warehouse

    Omang, R.J.; Parrett, Charles; Hull, J.A.

    1955-01-01

    Annual peak stage and discharge data have been collected and tabulated for crest-stage gaging sites in Montana. The crest-stage program was begun in July 1955 to investigate the magnitude and frequency of floods from small drainage areas. The program has expanded from 45 crest-stage gaging stations initially to 172 stations maintained in 1980. Data in the report are tabulated for the period of record. (USGS)

  11. Annual peak discharges from small drainage areas in Montana through September 1979

    USGS Publications Warehouse

    Omang, R.J.; Parrett, C.; Hull, J.A.

    1955-01-01

    Annual peak stage and discharge data have been collected and tabulated for crest-stage gaging sites in Montana. The crest-stage program was begun in July 1955 to investigate the magnitude and frequency of floods from small drainage areas. The program has expanded from 45 crest-stage gaging stations initially to 173 stations maintained in 1979. Data in the report are tabulated for the period of record. (USGS)

  12. Acute ethanol and taurine intake affect absolute alpha power in frontal cortex before and after exercise.

    PubMed

    Paulucio, Dailson; da Costa, Bruno M; Santos, Caleb G; Velasques, Bruna; Ribeiro, Pedro; Gongora, Mariana; Cagy, Mauricio; Alvarenga, Renato L; Pompeu, Fernando A M S

    2017-09-14

    Taurine and alcohol has been popularly ingested through energy drinks. Reports from both compounds shows they are active on nervous system but little is known about the acute effect of these substances on the frontal cortex in an exercise approach. The aim of this study was to determine the effects of 0,6mldL -1 of ethanol (ET), 6g of taurine (TA), and taurine with ethanol (TA+ET) intake on absolute alpha power (AAP) in the frontal region, before and after exercise. Nine participants were recruited, five women (22±3years) and four men (26±5years), for a counterbalanced experimental design. For each treatment, the tests were performed considering three moments: "baseline", "peak" and "post-exercise". In the placebo treatment (PL), the frontal areas showed AAP decrease at the post-exercise. However, in the TA, AAP decreased at peak and increased at post-exercise. In the ET treatment, AAP increased at the peak moment for the left frontal electrodes. In the TA+ET treatment, an AAP increase was observed at peak, and it continued after exercise ended. These substances were able to produce electrocortical activity changes in the frontal regions after a short duration and low intensity exercise. Left and right regions showed different AAP dynamics during peak and post-exercise moments when treatments were compared. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Ethics of Information: Absolute Risk Reduction and Patient Understanding of Screening

    PubMed Central

    Meslin, Eric M.

    2008-01-01

    Some experts have argued that patients should routinely be told the specific magnitude and absolute probability of potential risks and benefits of screening tests. This position is motivated by the idea that framing risk information in ways that are less precise violates the ethical principle of respect for autonomy and its application in informed consent or shared decision-making. In this Perspective, we consider a number of problems with this view that have not been adequately addressed. The most important challenges stem from the danger that patients will misunderstand the information or have irrational responses to it. Any initiative in this area should take such factors into account and should consider carefully how to apply the ethical principles of respect for autonomy and beneficence. PMID:18421509

  14. VizieR Online Data Catalog: Extragalactic peaked-spectrum radio sources (Callingham+, 2017)

    NASA Astrophysics Data System (ADS)

    Callingham, J. R.; Ekers, R. D.; Gaensler, B. M.; Line, J. L. B.; Hurley-Walker, N.; Sadler, E. M.; Tingay, S. J.; Hancock, P. J.; Bell, M. E.; Dwarakanath, K. S.; For, B.-Q.; Franzen, T. M. O.; Hindson, L.; Johnston-Hollitt, M.; Kapinska, A. D.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.

    2017-09-01

    The GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) extragalactic catalog represents a significant advance in selecting peaked-spectrum sources, since it is constituted of sources that were contemporaneously surveyed with the widest fractional radio bandwidth to date, with 20 flux density measurements between 72 and 231MHz. We also use the NRAO VLA Sky Survey (NVSS; Condon+ 1998, VIII/65) and the Sydney University Molonglo Sky Survey (SUMSS; See Mauch+ 2008, VIII/81). Since the combination of NVSS and SUMSS cover the entire GLEAM survey and are an order of magnitude more sensitive, this study is sensitive to peaked-spectrum sources that peak anywhere between 72MHz and 843MHz/1.4GHz. The GLEAM survey was formed from observations conducted by the Murchison Widefield Array (MWA), which surveyed the sky between 72 and 231MHz from 2013 August to 2014 July (Wayth+ 2015PASA...32...25W - see also VIII/100). (5 data files).

  15. Peak load demand forecasting using two-level discrete wavelet decomposition and neural network algorithm

    NASA Astrophysics Data System (ADS)

    Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak

    2010-02-01

    This paper proposed the discrete transform and neural network algorithms to obtain the monthly peak load demand in mid term load forecasting. The mother wavelet daubechies2 (db2) is employed to decomposed, high pass filter and low pass filter signals from the original signal before using feed forward back propagation neural network to determine the forecasting results. The historical data records in 1997-2007 of Electricity Generating Authority of Thailand (EGAT) is used as reference. In this study, historical information of peak load demand(MW), mean temperature(Tmean), consumer price index (CPI), and industrial index (economic:IDI) are used as feature inputs of the network. The experimental results show that the Mean Absolute Percentage Error (MAPE) is approximately 4.32%. This forecasting results can be used for fuel planning and unit commitment of the power system in the future.

  16. A global algorithm for estimating Absolute Salinity

    NASA Astrophysics Data System (ADS)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  17. Flood frequency estimates and documented and potential extreme peak discharges in Oklahoma

    USGS Publications Warehouse

    Tortorelli, Robert L.; McCabe, Lan P.

    2001-01-01

    Knowledge of the magnitude and frequency of floods is required for the safe and economical design of highway bridges, culverts, dams, levees, and other structures on or near streams; and for flood plain management programs. Flood frequency estimates for gaged streamflow sites were updated, documented extreme peak discharges for gaged and miscellaneous measurement sites were tabulated, and potential extreme peak discharges for Oklahoma streamflow sites were estimated. Potential extreme peak discharges, derived from the relation between documented extreme peak discharges and contributing drainage areas, can provide valuable information concerning the maximum peak discharge that could be expected at a stream site. Potential extreme peak discharge is useful in conjunction with flood frequency analysis to give the best evaluation of flood risk at a site. Peak discharge and flood frequency for selected recurrence intervals from 2 to 500 years were estimated for 352 gaged streamflow sites. Data through 1999 water year were used from streamflow-gaging stations with at least 8 years of record within Oklahoma or about 25 kilometers into the bordering states of Arkansas, Kansas, Missouri, New Mexico, and Texas. These sites were in unregulated basins, and basins affected by regulation, urbanization, and irrigation. Documented extreme peak discharges and associated data were compiled for 514 sites in and near Oklahoma, 352 with streamflow-gaging stations and 162 at miscellaneous measurements sites or streamflow-gaging stations with short record, with a total of 671 measurements.The sites are fairly well distributed statewide, however many streams, large and small, have never been monitored. Potential extreme peak-discharge curves were developed for streamflow sites in hydrologic regions of the state based on documented extreme peak discharges and the contributing drainage areas. Two hydrologic regions, east and west, were defined using 98 degrees 15 minutes longitude as the

  18. Peak oxygen uptake in Paralympic sitting sports: A systematic literature review, meta- and pooled-data analysis

    PubMed Central

    Brurok, Berit; Sandbakk, Øyvind

    2018-01-01

    min-1 in wheelchair rugby. Large within-sports variation was found in sports with few included studies and corresponding low sample sizes. The meta-regression and pooled-data multiple regression analyses showed that being a man, having an amputation, not being tetraplegic, testing in a wheelchair ergometer and treadmill mode, were found to be favorable for high absolute and body-mass normalized VO2peak values. Furthermore, high body mass was favourable for high absolute VO2peak values and low body mass for high body-mass normalized VO2peak values. Conclusion The highest VO2peak values were found in Nordic sit skiing, an endurance sport with continuously high physical efforts, and the lowest values in shooting, a sport with low levels of displacement, and in wheelchair rugby where mainly athletes with tetraplegia compete. However, VO2peak values need to be interpreted carefully in sports-disciplines with few included studies and large within-sports variation. Future studies should include detailed information on training status, sex, age, test mode, as well as the type and extent of disability in order to more precisely evaluate the effect of these factors on VO2peak. PMID:29474386

  19. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  20. 49 CFR 236.709 - Block, absolute.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Block, absolute. 236.709 Section 236.709 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Block, absolute. A block in which no train is permitted to enter while it is occupied by another train. ...

  1. 49 CFR 236.709 - Block, absolute.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Block, absolute. 236.709 Section 236.709 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Block, absolute. A block in which no train is permitted to enter while it is occupied by another train. ...

  2. Earthquake magnitude estimation using the τ c and P d method for earthquake early warning systems

    NASA Astrophysics Data System (ADS)

    Jin, Xing; Zhang, Hongcai; Li, Jun; Wei, Yongxiang; Ma, Qiang

    2013-10-01

    Earthquake early warning (EEW) systems are one of the most effective ways to reduce earthquake disaster. Earthquake magnitude estimation is one of the most important and also the most difficult parts of the entire EEW system. In this paper, based on 142 earthquake events and 253 seismic records that were recorded by the KiK-net in Japan, and aftershocks of the large Wenchuan earthquake in Sichuan, we obtained earthquake magnitude estimation relationships using the τ c and P d methods. The standard variances of magnitude calculation of these two formulas are ±0.65 and ±0.56, respectively. The P d value can also be used to estimate the peak ground motion of velocity, then warning information can be released to the public rapidly, according to the estimation results. In order to insure the stability and reliability of magnitude estimation results, we propose a compatibility test according to the natures of these two parameters. The reliability of the early warning information is significantly improved though this test.

  3. Determining the importance of model calibration for forecasting absolute/relative changes in streamflow from LULC and climate changes

    USGS Publications Warehouse

    Niraula, Rewati; Meixner, Thomas; Norman, Laura M.

    2015-01-01

    Land use/land cover (LULC) and climate changes are important drivers of change in streamflow. Assessing the impact of LULC and climate changes on streamflow is typically done with a calibrated and validated watershed model. However, there is a debate on the degree of calibration required. The objective of this study was to quantify the variation in estimated relative and absolute changes in streamflow associated with LULC and climate changes with different calibration approaches. The Soil and Water Assessment Tool (SWAT) was applied in an uncalibrated (UC), single outlet calibrated (OC), and spatially-calibrated (SC) mode to compare the relative and absolute changes in streamflow at 14 gaging stations within the Santa Cruz River Watershed in southern Arizona, USA. For this purpose, the effect of 3 LULC, 3 precipitation (P), and 3 temperature (T) scenarios were tested individually. For the validation period, Percent Bias (PBIAS) values were >100% with the UC model for all gages, the values were between 0% and 100% with the OC model and within 20% with the SC model. Changes in streamflow predicted with the UC and OC models were compared with those of the SC model. This approach implicitly assumes that the SC model is “ideal”. Results indicated that the magnitude of both absolute and relative changes in streamflow due to LULC predicted with the UC and OC results were different than those of the SC model. The magnitude of absolute changes predicted with the UC and SC models due to climate change (both P and T) were also significantly different, but were not different for OC and SC models. Results clearly indicated that relative changes due to climate change predicted with the UC and OC were not significantly different than that predicted with the SC models. This result suggests that it is important to calibrate the model spatially to analyze the effect of LULC change but not as important for analyzing the relative change in streamflow due to climate change. This

  4. Absolute quantification of microbial taxon abundances.

    PubMed

    Props, Ruben; Kerckhof, Frederiek-Maarten; Rubbens, Peter; De Vrieze, Jo; Hernandez Sanabria, Emma; Waegeman, Willem; Monsieurs, Pieter; Hammes, Frederik; Boon, Nico

    2017-02-01

    High-throughput amplicon sequencing has become a well-established approach for microbial community profiling. Correlating shifts in the relative abundances of bacterial taxa with environmental gradients is the goal of many microbiome surveys. As the abundances generated by this technology are semi-quantitative by definition, the observed dynamics may not accurately reflect those of the actual taxon densities. We combined the sequencing approach (16S rRNA gene) with robust single-cell enumeration technologies (flow cytometry) to quantify the absolute taxon abundances. A detailed longitudinal analysis of the absolute abundances resulted in distinct abundance profiles that were less ambiguous and expressed in units that can be directly compared across studies. We further provide evidence that the enrichment of taxa (increase in relative abundance) does not necessarily relate to the outgrowth of taxa (increase in absolute abundance). Our results highlight that both relative and absolute abundances should be considered for a comprehensive biological interpretation of microbiome surveys.

  5. The color-magnitude distribution of small Kuiper Belt objects

    NASA Astrophysics Data System (ADS)

    Wong, Ian; Brown, Michael E.

    2015-11-01

    Occupying a vast region beyond the ice giants is an extensive swarm of minor bodies known as the Kuiper Belt. Enigmatic in their formation, composition, and evolution, these Kuiper Belt objects (KBOs) lie at the intersection of many of the most important topics in planetary science. Improved instruments and large-scale surveys have revealed a complex dynamical picture of the Kuiper Belt. Meanwhile, photometric studies have indicated that small KBOs display a wide range of colors, which may reflect a chemically diverse initial accretion environment and provide important clues to constraining the surface compositions of these objects. Notably, some recent work has shown evidence for bimodality in the colors of non-cold classical KBOs, which would have major implications for the formation and subsequent evolution of the entire KBO population. However, these previous color measurements are few and mostly come from targeted observations of known objects. As a consequence, the effect of observational biases cannot be readily removed, preventing one from obtaining an accurate picture of the true color distribution of the KBOs as a whole.We carried out a survey of KBOs using the Hyper Suprime-Cam instrument on the 8.2-meter Subaru telescope. Our observing fields targeted regions away from the ecliptic plane so as to avoid contamination from cold classical KBOs. Each field was imaged in both the g’ and i’ filters, which allowed us to calculate the g’-i’ color of each detected object. We detected more than 500 KBOs over two nights of observation, with absolute magnitudes from H=6 to H=11. Our survey increases the number of KBOs fainter than H=8 with known colors by more than an order of magnitude. We find that the distribution of colors demonstrates a robust bimodality across the entire observed range of KBO sizes, from which we can categorize individual objects into two color sub-populations -- the red and very-red KBOs. We present the very first analysis of the

  6. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  7. Aided Electrophysiology Using Direct Audio Input: Effects of Amplification and Absolute Signal Level

    PubMed Central

    Billings, Curtis J.; Miller, Christi W.; Tremblay, Kelly L.

    2016-01-01

    Purpose This study investigated (a) the effect of amplification on cortical auditory evoked potentials (CAEPs) at different signal levels when signal-to-noise ratios (SNRs) were equated between unaided and aided conditions, and (b) the effect of absolute signal level on aided CAEPs when SNR was held constant. Method CAEPs were recorded from 13 young adults with normal hearing. A 1000-Hz pure tone was presented in unaided and aided conditions with a linear analog hearing aid. Direct audio input was used, allowing recorded hearing aid noise floor to be added to unaided conditions to equate SNRs between conditions. An additional stimulus was created through scaling the noise floor to study the effect of signal level. Results Amplification resulted in delayed N1 and P2 peak latencies relative to the unaided condition. An effect of absolute signal level (when SNR was constant) was present for aided CAEP area measures, such that larger area measures were found at higher levels. Conclusion Results of this study further demonstrate that factors in addition to SNR must also be considered before CAEPs can be used to clinically to measure aided thresholds. PMID:26953543

  8. The Galaxy Color-Magnitude Diagram in the Local Universe from GALEX and SDSS Data

    NASA Astrophysics Data System (ADS)

    Wyder, T. K.; GALEX Science Team

    2005-12-01

    We present the relative density of galaxies in the local universe as a function of their r-band absolute magnitudes and ultraviolet minus r-band colors. The Sloan Digital Sky Survey (SDSS) main galaxy sample selected in the r-band was matched with a sample of galaxies from the Galaxy Evolution Explorer (GALEX) Medium Imaging Survey in both the far-UV (FUV) and near-UV (NUV) bands. Simlar to previous optical studies, the distribution of galaxies in (FUV-r) and (NUV-r) is bimodal with well-defined blue and red sequences. We compare the distribution of galaxies in these colors with both the D4000 index measured from the SDSS spectra as well as the SDSS (u-r) color.

  9. A naked eye refractive index sensor with a visible multiple peak metamaterial absorber.

    PubMed

    Ma, Heli; Song, Kun; Zhou, Liang; Zhao, Xiaopeng

    2015-03-26

    We report a naked eye refractive index sensor with a visible metamaterial absorber. The visible metamaterial absorber consisting of a silver dendritic/dielectric/metal structure shows multiple absorption peaks. By incorporating a gain material (rhodamine B) into the dielectric layer, the maximal magnitude of the absorption peak can be improved by about 30%. As the metamaterial absorber is sensitive to the refractive index of glucose solutions, it can function as a sensor that quickly responds to variations of the refractive index of the liquid. Meanwhile, since the response is presented via color changes, it can be clearly observed by the naked eyes. Further experiments have confirmed that the sensor can be used repeatedly.

  10. Magnitude of flood flows for selected annual exceedance probabilities for streams in Massachusetts

    USGS Publications Warehouse

    Zarriello, Phillip J.

    2017-05-11

    significant at the 95-percent confidence level for any of the AEPs examined. The effect of urbanization on flood flows indicates a complex interaction with other basin characteristics. Another complicating factor is the assumption of stationarity, that is, the assumption that annual peak flows exhibit no significant trend over time. The results of the analysis show that stationarity does not prevail at all of the streamgages. About 27 percent of streamgages in Massachusetts and about 42 percent of streamgages in adjacent States with 20 or more years of systematic record used in the study show a significant positive trend at the 95-percent confidence level. The remaining streamgages had both positive and negative trends, but the trends were not statistically significant. Trends were shown to vary over time. In particular, during the past decade (2004–2013), peak flows were persistently above normal, which may give the impression of positive trends. Only continued monitoring will provide the information needed to determine whether recent increases in annual peak flows are a normal oscillation or a true trend.The analysis used 37 years of additional data obtained since the last comprehensive study of flood flows in Massa­chusetts. In addition, new methods for computing flood flows at streamgages and regionalization improved estimates of flood magnitudes at gaged and ungaged locations and better defined the uncertainty of the estimates of AEP floods.

  11. Peak Running Intensity of International Rugby: Implications for Training Prescription.

    PubMed

    Delaney, Jace A; Thornton, Heidi R; Pryor, John F; Stewart, Andrew M; Dascombe, Ben J; Duthie, Grant M

    2017-09-01

    To quantify the duration and position-specific peak running intensities of international rugby union for the prescription and monitoring of specific training methodologies. Global positioning systems (GPS) were used to assess the activity profile of 67 elite-level rugby union players from 2 nations across 33 international matches. A moving-average approach was used to identify the peak relative distance (m/min), average acceleration/deceleration (AveAcc; m/s 2 ), and average metabolic power (P met ) for a range of durations (1-10 min). Differences between positions and durations were described using a magnitude-based network. Peak running intensity increased as the length of the moving average decreased. There were likely small to moderate increases in relative distance and AveAcc for outside backs, halfbacks, and loose forwards compared with the tight 5 group across all moving-average durations (effect size [ES] = 0.27-1.00). P met demands were at least likely greater for outside backs and halfbacks than for the tight 5 (ES = 0.86-0.99). Halfbacks demonstrated the greatest relative distance and P met outputs but were similar to outside backs and loose forwards in AveAcc demands. The current study has presented a framework to describe the peak running intensities achieved during international rugby competition by position, which are considerably higher than previously reported whole-period averages. These data provide further knowledge of the peak activity profiles of international rugby competition, and this information can be used to assist coaches and practitioners in adequately preparing athletes for the most demanding periods of play.

  12. Historical changes in annual peak flows in Maine and implications for flood-frequency analyses

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2010-01-01

    To safely and economically design bridges, culverts, and other structures that are in or near streams (fig. 1 for example), it is necessary to determine the magnitude of peak streamflows such as the 100-year flow. Flood-frequency analyses use statistical methods to compute peak flows for selected recurrence intervals (100 years, for example). The recurrence interval is the average number of years between peak flows that are equal to or greater than a specified peak flow. Floodfrequency analyses are based on annual peak flows at a stream. It has long been assumed that annual peak streamflows are stationary over very long periods of time, except in river basins subject to urbanization, regulation, and other direct human activities. Stationarity is the concept that natural systems fluctuate within an envelope of variability that does not change over time (Milly and others, 2008). Because of the potential effects of global warming on peak flows, the assumption of peak-flow stationarity has recently been questioned (Milly and others, 2008). Maine has many streamgaging stations with 50 to 105 years of recorded annual peak streamflows. This long-term record has been tested for historical flood-frequency stationarity, to provide some insight into future flood frequency (Hodgkins, 2010). This fact sheet, prepared by the U.S. Geological Survey (USGS) in cooperation with the Maine Department of Transportation (MaineDOT), provides a partial summary of the results of the study by Hodgkins (2010).

  13. Low absolute neutrophil counts in African infants.

    PubMed

    Kourtis, Athena P; Bramson, Brian; van der Horst, Charles; Kazembe, Peter; Ahmed, Yusuf; Chasela, Charles; Hosseinipour, Mina; Knight, Rodney; Lugalia, Lebah; Tegha, Gerald; Joaki, George; Jafali, Robert; Jamieson, Denise J

    2005-07-01

    Infants of African origin have a lower normal range of absolute neutrophil counts than white infants; this fact, however, remains under appreciated by clinical researchers in the United States. During the initial stages of a clinical trial in Malawi, the authors noted an unexpectedly high number of infants with absolute neutrophil counts that would be classifiable as neutropenic using the National Institutes of Health's Division of AIDS toxicity tables. The authors argue that the relevant Division of AIDS table does not take into account the available evidence of low absolute neutrophil counts in African infants and that a systematic collection of data from many African settings might help establish the absolute neutrophil count cutpoints to be used for defining neutropenia in African populations.

  14. Absolute colorimetric characterization of a DSLR camera

    NASA Astrophysics Data System (ADS)

    Guarnera, Giuseppe Claudio; Bianco, Simone; Schettini, Raimondo

    2014-03-01

    A simple but effective technique for absolute colorimetric camera characterization is proposed. It offers a large dynamic range requiring just a single, off-the-shelf target and a commonly available controllable light source for the characterization. The characterization task is broken down in two modules, respectively devoted to absolute luminance estimation and to colorimetric characterization matrix estimation. The characterized camera can be effectively used as a tele-colorimeter, giving an absolute estimation of the XYZ data in cd=m2. The user is only required to vary the f - number of the camera lens or the exposure time t, to better exploit the sensor dynamic range. The estimated absolute tristimulus values closely match the values measured by a professional spectro-radiometer.

  15. Changes in peak oxygen uptake and plasma volume in fit and unfit subjects following exposure to a simulation of microgravity

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1998-01-01

    To test the hypothesis that the magnitude of reduction in plasma volume and work capacity following exposure to simulated microgravity is dependent on the initial level of aerobic fitness, peak oxygen uptake (VO2peak) was measured in a group of physically fit subjects and compared with VO2peak in a group of relatively unfit subjects before and after 10 days of continuous 6 degrees head-down tilt (HDT). Ten fit subjects (40 +/- 2 year) with mean +/- SE VO2peak = 48.9 +/- 1.7 mL kg-1 min-1 were matched for age, height, and lean body weight with 10 unfit subjects (VO2peak = 37.7 +/- 1.6 mL kg-1 min-1). Before and after HDT, plasma, blood, and red cell volumes and body composition were measured and all subjects underwent a graded supine cycle ergometer test to determine VO2peak period needed. Reduced VO2peak in fit subjects (-16.2%) was greater than that of unfit subjects (-6.1%). Similarly, reductions in plasma (-18.3%) and blood volumes (-16.0%) in fit subjects were larger than those of unfit subjects (blood volume = -5.6%; plasma volume = -6.6%). Reduced plasma volume was associated with greater negative body fluid balance during the initial 24 h of HDT in the fit group (912 +/- 154 mL) compared with unfit subjects (453 +/- 200 mL). The percentage change for VO2peak correlated with percentage change in plasma volume (r = +0.79). Following exposure to simulated microgravity, fit subjects demonstrated larger reductions in VO2peak than unfit subjects which was associated with larger reductions in plasma and blood volume. These data suggest that the magnitude of physical deconditioning induced by exposure to microgravity without intervention of countermeasures was influenced by the initial fitness of the subjects.

  16. Very Fast Estimation of Epicentral Distance and Magnitude from a Single Three Component Seismic Station Using Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Ochoa Gutierrez, L. H.; Niño Vasquez, L. F.; Vargas-Jimenez, C. A.

    2012-12-01

    To minimize adverse effects originated by high magnitude earthquakes, early warning has become a powerful tool to anticipate a seismic wave arrival to an specific location and lets to bring people and government agencies opportune information to initiate a fast response. To do this, a very fast and accurate characterization of the event must be done but this process is often made using seismograms recorded in at least 4 stations where processing time is usually greater than the wave travel time to the interest area, mainly in coarse networks. A faster process can be done if only one three component seismic station is used that is the closest unsaturated station respect to the epicenter. Here we present a Support Vector Regression algorithm which calculates Magnitude and Epicentral Distance using only 5 seconds of signal since P wave onset. This algorithm was trained with 36 records of historical earthquakes where the input were regression parameters of an exponential function estimated by least squares, corresponding to the waveform envelope and the maximum value of the observed waveform for each component in one single station. A 10 fold Cross Validation was applied for a Normalized Polynomial Kernel obtaining the mean absolute error for different exponents and complexity parameters. Magnitude could be estimated with 0.16 of mean absolute error and the distance with an error of 7.5 km for distances within 60 to 120 km. This kind of algorithm is easy to implement in hardware and can be used directly in the field station to make possible the broadcast of estimations of this values to generate fast decisions at seismological control centers, increasing the possibility to have an effective reactiontribute and Descriptors calculator for SVR model training and test

  17. PeakRanger: A cloud-enabled peak caller for ChIP-seq data

    PubMed Central

    2011-01-01

    Background Chromatin immunoprecipitation (ChIP), coupled with massively parallel short-read sequencing (seq) is used to probe chromatin dynamics. Although there are many algorithms to call peaks from ChIP-seq datasets, most are tuned either to handle punctate sites, such as transcriptional factor binding sites, or broad regions, such as histone modification marks; few can do both. Other algorithms are limited in their configurability, performance on large data sets, and ability to distinguish closely-spaced peaks. Results In this paper, we introduce PeakRanger, a peak caller software package that works equally well on punctate and broad sites, can resolve closely-spaced peaks, has excellent performance, and is easily customized. In addition, PeakRanger can be run in a parallel cloud computing environment to obtain extremely high performance on very large data sets. We present a series of benchmarks to evaluate PeakRanger against 10 other peak callers, and demonstrate the performance of PeakRanger on both real and synthetic data sets. We also present real world usages of PeakRanger, including peak-calling in the modENCODE project. Conclusions Compared to other peak callers tested, PeakRanger offers improved resolution in distinguishing extremely closely-spaced peaks. PeakRanger has above-average spatial accuracy in terms of identifying the precise location of binding events. PeakRanger also has excellent sensitivity and specificity in all benchmarks evaluated. In addition, PeakRanger offers significant improvements in run time when running on a single processor system, and very marked improvements when allowed to take advantage of the MapReduce parallel environment offered by a cloud computing resource. PeakRanger can be downloaded at the official site of modENCODE project: http://www.modencode.org/software/ranger/ PMID:21554709

  18. A preliminary report on the magnetic measurements of samples 72275 and 72255. [direction and magnitude of remanent magnetization

    NASA Technical Reports Server (NTRS)

    Banerjee, S. K.

    1974-01-01

    The direction and magnitude of natural remanent magnetization of five approximately 3-g subsamples of 72275 and 72255 and the high field saturation magnetization, coercive force, and isothermal remanent magnetization of 100-mg chip from each of these samples, were studied. Given an understanding of the magnetization processes, group 1 experiments provide information about the absolute direction of the ancient magnetizing field and a qualitative estimate of its size (paleointensity). The group 2 experiments yield a quantitative estimate of the iron content and a qualitative ideal of the grain sizes.

  19. The Dependence of Cloud Property Trend Detection on Absolute Calibration Accuracy of Passive Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Shea, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Zelinka, M. D.

    2016-12-01

    Detecting trends in climate variables on global, decadal scales requires highly accurate, stable measurements and retrieval algorithms. Trend uncertainty depends on its magnitude, natural variability, and instrument and retrieval algorithm accuracy and stability. We applied a climate accuracy framework to quantify the impact of absolute calibration on cloud property trend uncertainty. The cloud properties studied were cloud fraction, effective temperature, optical thickness, and effective radius retrieved using the Clouds and the Earth's Radiant Energy System (CERES) Cloud Property Retrieval System, which uses Moderate-resolution Imaging Spectroradiometer measurements (MODIS). Modeling experiments from the fifth phase of the Climate Model Intercomparison Project (CMIP5) agree that net cloud feedback is likely positive but disagree regarding its magnitude, mainly due to uncertainty in shortwave cloud feedback. With the climate accuracy framework we determined the time to detect trends for instruments with various calibration accuracies. We estimated a relationship between cloud property trend uncertainty, cloud feedback, and Equilibrium Climate Sensitivity and also between effective radius trend uncertainty and aerosol indirect effect trends. The direct relationship between instrument accuracy requirements and climate model output provides the level of instrument absolute accuracy needed to reduce climate model projection uncertainty. Different cloud types have varied radiative impacts on the climate system depending on several attributes, such as their thermodynamic phase, altitude, and optical thickness. Therefore, we also conducted these studies by cloud types for a clearer understanding of instrument accuracy requirements needed to detect changes in their cloud properties. Combining this information with the radiative impact of different cloud types helps to prioritize among requirements for future satellite sensors and understanding the climate detection

  20. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  1. Absolute colors and phase coefficients of Trans-Neptunian objects: HV - HR colors.

    NASA Astrophysics Data System (ADS)

    Ayala-Loera, Carmen; Alvarez-Candal, Alvaro; Ortiz, Jose Luis; Duffard, Rene; Fernández-Valenzuela, Estela; Santos-Sanz, Pablo; Morales, Nicolas

    2017-10-01

    We present results of our photometric follow up of Trans-Neptunian objects (TNOs). New data for 35 objects, together with previously data presented in Alvarez-Candal et al. 2016, as well as data from literature allow us to obtain absolute magnitudes and absolute coefficients HV (βV) for 113 TNOs and HR (βR) for 117 TNOs from which we obtained absolute colors HV - HR, and relative phase coefficients Δβ, for 106 objects.We explored associations between HV - HR and Δβ vs. orbital and physical parameters of TNOs, such associations were tested by Spearman’s coefficient rs . The correlations we found between HV - HR and orbital parameters semimayor axis a, eccentricity e, and inclination i, reflect observational biases: first, against farther fainter objects; second, against eccentric and high-inclination orbits.We followed Brown criteria (Brown 2012), and separated into two groups: large and small using HV = 4.5 instead of D=500 km. We detected a gap at HV = 4.5 which not reported before to the best of our knowledge.We found a strong anticorrelation between HV - HR and Δβ, with rs = -0.8273, which indicates that redder objects have steeper phase curves in the R filter than in the V filter, while the opposite is true for bluer objects. The anticorrelation holds if we consider different bins in semi-major axis and separate between large HV < 4.5 mag (D > 500 km) and small objects HV > 4.5 mag (D < 500 km). Therefore, we conclude it is intrinsic to the TNO (and associated) populations. As many different surfaces types, sizes, and dynamical evolutions of TNOs we considered in our sample, we cannot assure that we are seeing an evolutionary effect, but probably something related to the porosity and compation of the surfaces. Further studies are granted.

  2. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  3. Using Caspar Creek flow records to test peak flow estimation methods applicable to crossing design

    Treesearch

    Peter H. Cafferata; Leslie M. Reid

    2017-01-01

    Long-term flow records from sub-watersheds in the Caspar Creek Experimental Watersheds were used to test the accuracy of four methods commonly used to estimate peak flows in small forested watersheds: the Rational Method, the updated USGS Magnitude and Frequency Method, flow transference methods, and the NRCS curve number method. Comparison of measured and calculated...

  4. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  5. The Impact of Different Absolute Solar Irradiance Values on Current Climate Model Simulations

    NASA Technical Reports Server (NTRS)

    Rind, David H.; Lean, Judith L.; Jonas, Jeffrey

    2014-01-01

    Simulations of the preindustrial and doubled CO2 climates are made with the GISS Global Climate Middle Atmosphere Model 3 using two different estimates of the absolute solar irradiance value: a higher value measured by solar radiometers in the 1990s and a lower value measured recently by the Solar Radiation and Climate Experiment. Each of the model simulations is adjusted to achieve global energy balance; without this adjustment the difference in irradiance produces a global temperature change of 0.48C, comparable to the cooling estimated for the Maunder Minimum. The results indicate that by altering cloud cover the model properly compensates for the different absolute solar irradiance values on a global level when simulating both preindustrial and doubled CO2 climates. On a regional level, the preindustrial climate simulations and the patterns of change with doubled CO2 concentrations are again remarkably similar, but there are some differences. Using a higher absolute solar irradiance value and the requisite cloud cover affects the model's depictions of high-latitude surface air temperature, sea level pressure, and stratospheric ozone, as well as tropical precipitation. In the climate change experiments it leads to an underestimation of North Atlantic warming, reduced precipitation in the tropical western Pacific, and smaller total ozone growth at high northern latitudes. Although significant, these differences are typically modest compared with the magnitude of the regional changes expected for doubled greenhouse gas concentrations. Nevertheless, the model simulations demonstrate that achieving the highest possible fidelity when simulating regional climate change requires that climate models use as input the most accurate (lower) solar irradiance value.

  6. Jasminum sambac flower absolutes from India and China--geographic variations.

    PubMed

    Braun, Norbert A; Sim, Sherina

    2012-05-01

    Seven Jasminum sambac flower absolutes from different locations in the southern Indian state of Tamil Nadu were analyzed using GC and GC-MS. Focus was placed on 41 key ingredients to investigate geographic variations in this species. These seven absolutes were compared with an Indian bud absolute and commercially available J. sambac flower absolutes from India and China. All absolutes showed broad variations for the 10 main ingredients between 8% and 96%. In addition, the odor of Indian and Chinese J. sambac flower absolutes were assessed.

  7. Advancing Absolute Calibration for JWST and Other Applications

    NASA Astrophysics Data System (ADS)

    Rieke, George; Bohlin, Ralph; Boyajian, Tabetha; Carey, Sean; Casagrande, Luca; Deustua, Susana; Gordon, Karl; Kraemer, Kathleen; Marengo, Massimo; Schlawin, Everett; Su, Kate; Sloan, Greg; Volk, Kevin

    2017-10-01

    We propose to exploit the unique optical stability of the Spitzer telescope, along with that of IRAC, to (1) transfer the accurate absolute calibration obtained with MSX on very bright stars directly to two reference stars within the dynamic range of the JWST imagers (and of other modern instrumentation); (2) establish a second accurate absolute calibration based on the absolutely calibrated spectrum of the sun, transferred onto the astronomical system via alpha Cen A; and (3) provide accurate infrared measurements for the 11 (of 15) highest priority stars with no such data but with accurate interferometrically measured diameters, allowing us to optimize determinations of effective temperatures using the infrared flux method and thus to extend the accurate absolute calibration spectrally. This program is integral to plans for an accurate absolute calibration of JWST and will also provide a valuable Spitzer legacy.

  8. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  9. The Near-infrared Tip of the Red Giant Branch. II. An Absolute Calibration in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Hoyt, Taylor J.; Freedman, Wendy L.; Madore, Barry F.; Seibert, Mark; Beaton, Rachael L.; Hatt, Dylan; Jang, In Sung; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.

    2018-05-01

    We present a new empirical JHK absolute calibration of the tip of the red giant branch (TRGB) in the Large Magellanic Cloud (LMC). We use published data from the extensive Near-Infrared Synoptic Survey containing 3.5 million stars, 65,000 of which are red giants that fall within one magnitude of the TRGB. Adopting the TRGB slopes from a companion study of the isolated dwarf galaxy IC 1613, as well as an LMC distance modulus of μ 0 = 18.49 mag from (geometric) detached eclipsing binaries, we derive absolute JHK zero points for the near-infrared TRGB. For a comparison with measurements in the bar alone, we apply the calibrated JHK TRGB to a 500 deg2 area of the 2MASS survey. The TRGB reveals the 3D structure of the LMC with a tilt in the direction perpendicular to the major axis of the bar, which is in agreement with previous studies.

  10. Effects of task and age on the magnitude and structure of force fluctuations: insights into underlying neuro-behavioral processes.

    PubMed

    Vieluf, Solveig; Temprado, Jean-Jacques; Berton, Eric; Jirsa, Viktor K; Sleimen-Malkoun, Rita

    2015-03-13

    The present study aimed at characterizing the effects of increasing (relative) force level and aging on isometric force control. To achieve this objective and to infer changes in the underlying control mechanisms, measures of information transmission, as well as magnitude and time-frequency structure of behavioral variability were applied to force-time-series. Older adults were found to be weaker, more variable, and less efficient than young participants. As a function of force level, efficiency followed an inverted-U shape in both groups, suggesting a similar organization of the force control system. The time-frequency structure of force output fluctuations was only significantly affected by task conditions. Specifically, a narrower spectral distribution with more long-range correlations and an inverted-U pattern of complexity changes were observed with increasing force level. Although not significant older participants displayed on average a less complex behavior for low and intermediate force levels. The changes in force signal's regularity presented a strong dependence on time-scales, which significantly interacted with age and condition. An inverted-U profile was only observed for the time-scale relevant to the sensorimotor control process. However, in both groups the peak was not aligned with the optimum of efficiency. Our results support the view that behavioral variability, in terms of magnitude and structure, has a functional meaning and affords non-invasive markers of the adaptations of the sensorimotor control system to various constraints. The measures of efficiency and variability ought to be considered as complementary since they convey specific information on the organization of control processes. The reported weak age effect on variability and complexity measures suggests that the behavioral expression of the loss of complexity hypothesis is not as straightforward as conventionally admitted. However, group differences did not completely vanish

  11. Conversion of Local and Surface-Wave Magnitudes to Moment Magnitude for Earthquakes in the Chinese Mainland

    NASA Astrophysics Data System (ADS)

    Li, X.; Gao, M.

    2017-12-01

    The magnitude of an earthquake is one of its basic parameters and is a measure of its scale. It plays a significant role in seismology and earthquake engineering research, particularly in the calculations of the seismic rate and b value in earthquake prediction and seismic hazard analysis. However, several current types of magnitudes used in seismology research, such as local magnitude (ML), surface wave magnitude (MS), and body-wave magnitude (MB), have a common limitation, which is the magnitude saturation phenomenon. Fortunately, the problem of magnitude saturation was solved by a formula for calculating the seismic moment magnitude (MW) based on the seismic moment, which describes the seismic source strength. Now the moment magnitude is very commonly used in seismology research. However, in China, the earthquake scale is primarily based on local and surface-wave magnitudes. In the present work, we studied the empirical relationships between moment magnitude (MW) and local magnitude (ML) as well as surface wave magnitude (MS) in the Chinese Mainland. The China Earthquake Networks Center (CENC) ML catalog, China Seismograph Network (CSN) MS catalog, ANSS Comprehensive Earthquake Catalog (ComCat), and Global Centroid Moment Tensor (GCMT) are adopted to regress the relationships using the orthogonal regression method. The obtained relationships are as follows: MW=0.64+0.87MS; MW=1.16+0.75ML. Therefore, in China, if the moment magnitude of an earthquake is not reported by any agency in the world, we can use the equations mentioned above for converting ML to MW and MS to MW. These relationships are very important, because they will allow the China earthquake catalogs to be used more effectively for seismic hazard analysis, earthquake prediction, and other seismology research. We also computed the relationships of and (where Mo is the seismic moment) by linear regression using the Global Centroid Moment Tensor. The obtained relationships are as follows: logMo=18

  12. Moment Magnitude discussion in Austria

    NASA Astrophysics Data System (ADS)

    Weginger, Stefan; Jia, Yan; Hausmann, Helmut; Lenhardt, Wolfgang

    2017-04-01

    We implemented and tested the Moment Magnitude estimation „dbmw" from the University of Trieste in our Antelope near real-time System. It is used to get a fast Moment Magnitude solutions and Ground Motion Parameter (PGA, PGV, PSA 0.3, PSA 1.0 and PSA 3.0) to calculate Shake and Interactive maps. A Moment Magnitude Catalogue was generated and compared with the Austrian Earthquake Catalogue and all available Magnitude solution of the neighbouring agencies. Relations of Mw to Ml and Ground Motion to Intensity are presented.

  13. Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY.

    PubMed

    Koradi, R; Billeter, M; Engeli, M; Güntert, P; Wüthrich, K

    1998-12-01

    A new approach for automated peak picking of multidimensional protein NMR spectra with strong overlap is introduced, which makes use of the program AUTOPSY (automated peak picking for NMR spectroscopy). The main elements of this program are a novel function for local noise level calculation, the use of symmetry considerations, and the use of lineshapes extracted from well-separated peaks for resolving groups of strongly overlapping peaks. The algorithm generates peak lists with precise chemical shift and integral intensities, and a reliability measure for the recognition of each peak. The results of automated peak picking of NOESY spectra with AUTOPSY were tested in combination with the combined automated NOESY cross peak assignment and structure calculation routine NOAH implemented in the program DYANA. The quality of the resulting structures was found to be comparable with those from corresponding data obtained with manual peak picking. Copyright 1998 Academic Press.

  14. Pragmatic perspective on aerobic scope: peaking, plummeting, pejus and apportioning.

    PubMed

    Farrell, A P

    2016-01-01

    A major challenge for fish biologists in the 21st century is to predict the biotic effects of global climate change. With marked changes in biogeographic distribution already in evidence for a variety of aquatic animals, mechanistic explanations for these shifts are being sought, ones that then can be used as a foundation for predictive models of future climatic scenarios. One mechanistic explanation for the thermal performance of fishes that has gained some traction is the oxygen and capacity-limited thermal tolerance (OCLTT) hypothesis, which suggests that an aquatic organism's capacity to supply oxygen to tissues becomes limited when body temperature reaches extremes. Central to this hypothesis is an optimum temperature for absolute aerobic scope (AAS, loosely defined as the capacity to deliver oxygen to tissues beyond a basic need). On either side of this peak for AAS are pejus temperatures that define when AAS falls off and thereby reduces an animal's absolute capacity for activity. This article provides a brief perspective on the potential uses and limitations of some of the key physiological indicators related to aerobic scope in fishes. The intent is that practitioners who attempt predictive ecological applications can better recognize limitations and make better use of the OCLTT hypothesis and its underlying physiology. © 2015 The Fisheries Society of the British Isles.

  15. Estimated Magnitudes and Recurrence Intervals of Peak Flows on the Mousam and Little Ossipee Rivers for the Flood of April 2007 in Southern Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Stewart, Gregory J.; Cohn, Timothy A.; Dudley, Robert W.

    2007-01-01

    Large amounts of rain fell on southern Maine from the afternoon of April 15, 2007, to the afternoon of April 16, 2007, causing substantial damage to houses, roads, and culverts. This report provides an estimate of the peak flows on two rivers in southern Maine--the Mousam River and the Little Ossipee River--because of their severe flooding. The April 2007 estimated peak flow of 9,230 ft3/s at the Mousam River near West Kennebunk had a recurrence interval between 100 and 500 years; 95-percent confidence limits for this flow ranged from 25 years to greater than 500 years. The April 2007 estimated peak flow of 8,220 ft3/s at the Little Ossipee River near South Limington had a recurrence interval between 100 and 500 years; 95-percent confidence limits for this flow ranged from 50 years to greater than 500 years.

  16. Peak flow responses to landscape disturbances caused by the cataclysmic 1980 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Major, Jon J.; Mark, Linda E.

    2006-01-01

    Years of discharge measurements that precede and follow the cataclysmic 1980 eruption of Mount St. Helens, Washington, provide an exceptional opportunity to examine the responses of peak flows to abrupt, widespread, devastating landscape disturbance. Multiple basins surrounding Mount St. Helens (300–1300 km2 drainage areas) were variously disturbed by: (1) a debris avalanche that buried 60 km2 of valley; (2) a lateral volcanic blast and associated pyroclastic flow that destroyed 550 km2 of mature forest and blanketed the landscape with silt-capped lithic tephra; (3) debris flows that reamed riparian corridors and deposited tens to hundreds of centimeters of gravelly sand on valley floors; and (4) a Plinian tephra fall that blanketed areas proximal to the volcano with up to tens of centimeters of pumiceous silt, sand, and gravel. The spatially complex disturbances produced a variety of potentially compensating effects that interacted with and influenced hydrological responses. Changes to water transfer on hillslopes and to flow storage and routing along channels both enhanced and retarded runoff. Rapid post-eruption modifications of hillslope surface textures, adjustments of channel networks, and vegetation recovery, in conjunction with the complex nature of the eruptive impacts and strong seasonal variability in regional climate hindered a consistent or persistent shift in peak discharges. Overall, we detected a short-lived (5–10 yr) increase in the magnitudes of autumn and winter peak flows. In general, peak flows were larger, and moderate to large flows (>Q2 yr) were more substantively affected than predicted by early modeling efforts. Proportional increases in the magnitudes of both small and large flows in basins subject to severe channel disturbances, but not in basins subject solely to hillslope disturbances, suggest that eruption-induced modifications to flow efficiency along alluvial channels that have very mobile beds differentially affected flows of

  17. Effects of reinforcer magnitude on responding under differential-reinforcement-of-low-rate schedules of rats and pigeons.

    PubMed

    Doughty, Adam H; Richards, Jerry B

    2002-07-01

    Experiment I investigated the effects of reinforcer magnitude on differential-reinforcement-of-low-rate (DRL) schedule performance in three phases. In Phase 1, two groups of rats (n = 6 and 5) responded under a DRI. 72-s schedule with reinforcer magnitudes of either 30 or 300 microl of water. After acquisition, the water amounts were reversed for each rat. In Phase 2, the effects of the same reinforcer magnitudes on DRL 18-s schedule performance were examined across conditions. In Phase 3, each rat responded unider a DR1. 18-s schedule in which the water amotnts alternated between 30 and 300 microl daily. Throughout each phase of Experiment 1, the larger reinforcer magnitude resulted in higher response rates and lower reinforcement rates. The peak of the interresponse-time distributions was at a lower value tinder the larger reinforcer magnitude. In Experiment 2, 3 pigeons responded under a DRL 20-s schedule in which reinforcer magnitude (1-s or 6-s access to grain) varied iron session to session. Higher response rates and lower reinforcement rates occurred tinder the longer hopper duration. These results demonstrate that larger reinforcer magnitudes engender less efficient DRL schedule performance in both rats and pigeons, and when reinforcer magnitude was held constant between sessions or was varied daily. The present results are consistent with previous research demonstrating a decrease in efficiency as a function of increased reinforcer magnituide tinder procedures that require a period of time without a specified response. These findings also support the claim that DRI. schedule performance is not governed solely by a timing process.

  18. Using absolute gravimeter data to determine vertical gravity gradients

    USGS Publications Warehouse

    Robertson, D.S.

    2001-01-01

    The position versus time data from a free-fall absolute gravimeter can be used to estimate the vertical gravity gradient in addition to the gravity value itself. Hipkin has reported success in estimating the vertical gradient value using a data set of unusually good quality. This paper explores techniques that may be applicable to a broader class of data that may be contaminated with "system response" errors of larger magnitude than were evident in the data used by Hipkin. This system response function is usually modelled as a sum of exponentially decaying sinusoidal components. The technique employed here involves combining the x0, v0 and g parameters from all the drops made during a site occupation into a single least-squares solution, and including the value of the vertical gradient and the coefficients of system response function in the same solution. The resulting non-linear equations must be solved iteratively and convergence presents some difficulties. Sparse matrix techniques are used to make the least-squares problem computationally tractable.

  19. Testing Cataclysmic Variable Evolution Models with Light Curves of >10,000 Magnitudes Over >100 years and Fully-Corrected to Johnson B & V

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.

    2014-06-01

    A combination of magnitudes from the Harvard and Sonneberg plates stacks and the AAVSO data base can create very well-sampled light curves with >10,000 magnitudes and covering all of 1890-2014 for roughly a hundred cataclysmic variables (CVs; novae, novalikes, and dwarf novae). Care must be taken to get all these magnitudes into a modern magnitude system. For the archival plates, these are all close to the B magnitude system so that color terms are small, hence, with the use of modern B magnitudes for the comparison stars, these magnitudes can all be placed onto the Johnson B system. For the archival visual observations, the original comparison sequences can always be found, and the magnitudes for the CV and comparisons must be converted from visual to V, so that the reported magnitudes can be fully corrected to Johnson V. The uncertainties from the plates and the visual magnitudes can always be beaten down by daily or yearly averaging to typical real total error bars of ±0.03 mag, and these are always much smaller than the sampling error arising from flickering and greatly smaller than the range of variations. These very-well-sampled >100 year Johnson B & V light curves can be used to test long term evolution models for CVs. With colleagues, I have made light curves for old novae (GK Per from 1890-2014 with 47,000 mags, V603 Aql from 1898-2014 using 22,722 mags, Q Cyg from 1876-2014 with 6400 mags, T CrB from 1855-2014 using 104,000 mags), Z Cam stars (Z Cam from 1923-2014 with 90,000 mags), and dwarf novae (SS Cyg from 1896-2014 with 403,800 mags). The relative accretion rate is given by both the average flux and by the inverse of the average peak-to-peak time for the dwarf novae. By this means, I have measured the changes in the accretion rate for many CVs and how they change on a yearly basis for a century and longer. These observations are directly compared to various CV evolution models. A complex set of agreements and disagreements is found.

  20. Measurement of absolute concentrations of individual compounds in metabolite mixtures by gradient-selective time-zero 1H-13C HSQC with two concentration references and fast maximum likelihood reconstruction analysis.

    PubMed

    Hu, Kaifeng; Ellinger, James J; Chylla, Roger A; Markley, John L

    2011-12-15

    Time-zero 2D (13)C HSQC (HSQC(0)) spectroscopy offers advantages over traditional 2D NMR for quantitative analysis of solutions containing a mixture of compounds because the signal intensities are directly proportional to the concentrations of the constituents. The HSQC(0) spectrum is derived from a series of spectra collected with increasing repetition times within the basic HSQC block by extrapolating the repetition time to zero. Here we present an alternative approach to data collection, gradient-selective time-zero (1)H-(13)C HSQC(0) in combination with fast maximum likelihood reconstruction (FMLR) data analysis and the use of two concentration references for absolute concentration determination. Gradient-selective data acquisition results in cleaner spectra, and NMR data can be acquired in both constant-time and non-constant-time mode. Semiautomatic data analysis is supported by the FMLR approach, which is used to deconvolute the spectra and extract peak volumes. The peak volumes obtained from this analysis are converted to absolute concentrations by reference to the peak volumes of two internal reference compounds of known concentration: DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid) at the low concentration limit (which also serves as chemical shift reference) and MES (2-(N-morpholino)ethanesulfonic acid) at the high concentration limit. The linear relationship between peak volumes and concentration is better defined with two references than with one, and the measured absolute concentrations of individual compounds in the mixture are more accurate. We compare results from semiautomated gsHSQC(0) with those obtained by the original manual phase-cycled HSQC(0) approach. The new approach is suitable for automatic metabolite profiling by simultaneous quantification of multiple metabolites in a complex mixture.

  1. Linking Comparisons of Absolute Gravimeters: A Proof of Concept for a new Global Absolute Gravity Reference System.

    NASA Astrophysics Data System (ADS)

    Wziontek, H.; Palinkas, V.; Falk, R.; Vaľko, M.

    2016-12-01

    Since decades, absolute gravimeters are compared on a regular basis on an international level, starting at the International Bureau for Weights and Measures (BIPM) in 1981. Usually, these comparisons are based on constant reference values deduced from all accepted measurements acquired during the comparison period. Temporal changes between comparison epochs are usually not considered. Resolution No. 2, adopted by IAG during the IUGG General Assembly in Prague 2015, initiates the establishment of a Global Absolute Gravity Reference System based on key comparisons of absolute gravimeters (AG) under the International Committee for Weights and Measures (CIPM) in order to establish a common level in the microGal range. A stable and unique reference frame can only be achieved, if different AG are taking part in different kind of comparisons. Systematic deviations between the respective comparison reference values can be detected, if the AG can be considered stable over time. The continuous operation of superconducting gravimeters (SG) on selected stations further supports the temporal link of comparison reference values by establishing a reference function over time. By a homogenous reprocessing of different comparison epochs and including AG and SG time series at selected stations, links between several comparisons will be established and temporal comparison reference functions will be derived. By this, comparisons on a regional level can be traced to back to the level of key comparisons, providing a reference for other absolute gravimeters. It will be proved and discussed, how such a concept can be used to support the future absolute gravity reference system.

  2. A semi-empirical analysis of strong-motion peaks in terms of seismic source, propagation path, and local site conditions

    NASA Astrophysics Data System (ADS)

    Kamiyama, M.; Orourke, M. J.; Flores-Berrones, R.

    1992-09-01

    A new type of semi-empirical expression for scaling strong-motion peaks in terms of seismic source, propagation path, and local site conditions is derived. Peak acceleration, peak velocity, and peak displacement are analyzed in a similar fashion because they are interrelated. However, emphasis is placed on the peak velocity which is a key ground motion parameter for lifeline earthquake engineering studies. With the help of seismic source theories, the semi-empirical model is derived using strong motions obtained in Japan. In the derivation, statistical considerations are used in the selection of the model itself and the model parameters. Earthquake magnitude M and hypocentral distance r are selected as independent variables and the dummy variables are introduced to identify the amplification factor due to individual local site conditions. The resulting semi-empirical expressions for the peak acceleration, velocity, and displacement are then compared with strong-motion data observed during three earthquakes in the U.S. and Mexico.

  3. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  4. Monte Carlo Modeling-Based Digital Loop-Mediated Isothermal Amplification on a Spiral Chip for Absolute Quantification of Nucleic Acids.

    PubMed

    Xia, Yun; Yan, Shuangqian; Zhang, Xian; Ma, Peng; Du, Wei; Feng, Xiaojun; Liu, Bi-Feng

    2017-03-21

    Digital loop-mediated isothermal amplification (dLAMP) is an attractive approach for absolute quantification of nucleic acids with high sensitivity and selectivity. Theoretical and numerical analysis of dLAMP provides necessary guidance for the design and analysis of dLAMP devices. In this work, a mathematical model was proposed on the basis of the Monte Carlo method and the theories of Poisson statistics and chemometrics. To examine the established model, we fabricated a spiral chip with 1200 uniform and discrete reaction chambers (9.6 nL) for absolute quantification of pathogenic DNA samples by dLAMP. Under the optimized conditions, dLAMP analysis on the spiral chip realized quantification of nucleic acids spanning over 4 orders of magnitude in concentration with sensitivity as low as 8.7 × 10 -2 copies/μL in 40 min. The experimental results were consistent with the proposed mathematical model, which could provide useful guideline for future development of dLAMP devices.

  5. Accuracy of mini peak flow meters in indicating changes in lung function in children with asthma.

    PubMed Central

    Sly, P. D.; Cahill, P.; Willet, K.; Burton, P.

    1994-01-01

    OBJECTIVE--To assess whether mini flow meters used to measure peak expiratory flow can track changes in lung function and indicate clinically important changes. DESIGN--Comparison of measurements with a spirometer and different brands of mini flow meter; the meters were allocated to subjects haphazardly. SUBJECTS--12 boys with asthma aged 11 to 17 attending boarding school. MAIN OUTCOME MEASURES--Peak expiratory flow measured twice daily for three months with a spirometer and at least one of four brands of mini flow meter. RESULTS--The relation between changes in lung function measured with the spirometer and those measured with the mini flow meters was generally poor. In all, 26 episodes (range 1-3 in an individual child) of clinically important deterioration in lung function were detected from the records obtained with the spirometer. One mini flow meter detected six of 19 episodes, one detected six of 15, one detected six of 18, and one detected three of 21. CONCLUSIONS--Not only are the absolute values of peak expiratory flow obtained with mini flow meters inaccurate but the clinical message may also be incorrect. These findings do not imply that home monitoring of peak expiratory flow has no place in the management of childhood asthma but that the values obtained should be interpreted cautiously. PMID:8148680

  6. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. A Bayesian perspective on magnitude estimation.

    PubMed

    Petzschner, Frederike H; Glasauer, Stefan; Stephan, Klaas E

    2015-05-01

    Our representation of the physical world requires judgments of magnitudes, such as loudness, distance, or time. Interestingly, magnitude estimates are often not veridical but subject to characteristic biases. These biases are strikingly similar across different sensory modalities, suggesting common processing mechanisms that are shared by different sensory systems. However, the search for universal neurobiological principles of magnitude judgments requires guidance by formal theories. Here, we discuss a unifying Bayesian framework for understanding biases in magnitude estimation. This Bayesian perspective enables a re-interpretation of a range of established psychophysical findings, reconciles seemingly incompatible classical views on magnitude estimation, and can guide future investigations of magnitude estimation and its neurobiological mechanisms in health and in psychiatric diseases, such as schizophrenia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Adolescents with Developmental Dyscalculia Do Not Have a Generalized Magnitude Deficit - Processing of Discrete and Continuous Magnitudes.

    PubMed

    McCaskey, Ursina; von Aster, Michael; O'Gorman Tuura, Ruth; Kucian, Karin

    2017-01-01

    The link between number and space has been discussed in the literature for some time, resulting in the theory that number, space and time might be part of a generalized magnitude system. To date, several behavioral and neuroimaging findings support the notion of a generalized magnitude system, although contradictory results showing a partial overlap or separate magnitude systems are also found. The possible existence of a generalized magnitude processing area leads to the question how individuals with developmental dyscalculia (DD), known for deficits in numerical-arithmetical abilities, process magnitudes. By means of neuropsychological tests and functional magnetic resonance imaging (fMRI) we aimed to examine the relationship between number and space in typical and atypical development. Participants were 16 adolescents with DD (14.1 years) and 14 typically developing (TD) peers (13.8 years). In the fMRI paradigm participants had to perform discrete (arrays of dots) and continuous magnitude (angles) comparisons as well as a mental rotation task. In the neuropsychological tests, adolescents with dyscalculia performed significantly worse in numerical and complex visuo-spatial tasks. However, they showed similar results to TD peers when making discrete and continuous magnitude decisions during the neuropsychological tests and the fMRI paradigm. A conjunction analysis of the fMRI data revealed commonly activated higher order visual (inferior and middle occipital gyrus) and parietal (inferior and superior parietal lobe) magnitude areas for the discrete and continuous magnitude tasks. Moreover, no differences were found when contrasting both magnitude processing conditions, favoring the possibility of a generalized magnitude system. Group comparisons further revealed that dyscalculic subjects showed increased activation in domain general regions, whilst TD peers activate domain specific areas to a greater extent. In conclusion, our results point to the existence of a

  9. The frequencies of IFNγ+IL2+TNFα+ PPD-specific CD4+CD45RO+ T-cells correlate with the magnitude of the QuantiFERON® gold in-tube response in a prospective study of healthy indian adolescents.

    PubMed

    Jenum, Synne; Grewal, Harleen M S; Hokey, David A; Kenneth, John; Vaz, Mario; Doherty, Timothy Mark; Jahnsen, Frode Lars

    2014-01-01

    QuantiFERON-TB Gold In-Tube (QFT) is an IFNγ-release assay used in the diagnosis of Mycobacterium tuberculosis (MTB) infection. The risk of TB progression increases with the magnitude of the MTB-specific IFNγ-response. QFT reversion, also associated with low Tuberculin Skin Test responses, may therefore represent a transient immune response with control of M. tuberculosis infection. However, studies at the single cell level have suggested that the quality (polyfunctionality) of the T-cell response is more important than the quantity of cytokines produced. To explore the quality and/or magnitude of mycobacteria-specific T-cell responses associated with QFT reversion and persistent QFT-positivity. Multi-color flowcytometry on prospectively collected peripheral blood mononuclear cells was applied to assess mycobacteria-specific T-cell responses in 42 QFT positive Indian adolescents of whom 21 became QFT negative (reverters) within one year. Ten QFT consistent negatives were also included as controls. There was no difference in the qualitative PPD-specific CD4+ T-cell response between QFT consistent positives and reverters. However, compared with QFT consistent positives, reverters displayed lower absolute frequencies of polyfunctional (IFNγ+IL2+TNFα+) CD4+ T-cells at baseline, which were further reduced to the point where they were not different to QFT negative controls one year later. Moreover, absolute frequencies of these cells correlated well with the magnitude of the QFT-response. Whereas specific polyfunctional CD4+ T-cells have been suggested to protect against TB progression, our data do not support that higher relative or absolute frequencies of PPD-specific polyfunctional CD4+ T-cells in peripheral blood can explain the reduced risk of TB progression observed in QFT reverters. On the contrary, absolute frequencies of these cells correlated with the QFT-response, suggesting that this readout reflects antigenic load.

  10. Providing peak river flow statistics and forecasting in the Niger River basin

    NASA Astrophysics Data System (ADS)

    Andersson, Jafet C. M.; Ali, Abdou; Arheimer, Berit; Gustafsson, David; Minoungou, Bernard

    2017-08-01

    Flooding is a growing concern in West Africa. Improved quantification of discharge extremes and associated uncertainties is needed to improve infrastructure design, and operational forecasting is needed to provide timely warnings. In this study, we use discharge observations, a hydrological model (Niger-HYPE) and extreme value analysis to estimate peak river flow statistics (e.g. the discharge magnitude with a 100-year return period) across the Niger River basin. To test the model's capacity of predicting peak flows, we compared 30-year maximum discharge and peak flow statistics derived from the model vs. derived from nine observation stations. The results indicate that the model simulates peak discharge reasonably well (on average + 20%). However, the peak flow statistics have a large uncertainty range, which ought to be considered in infrastructure design. We then applied the methodology to derive basin-wide maps of peak flow statistics and their associated uncertainty. The results indicate that the method is applicable across the hydrologically active part of the river basin, and that the uncertainty varies substantially depending on location. Subsequently, we used the most recent bias-corrected climate projections to analyze potential changes in peak flow statistics in a changed climate. The results are generally ambiguous, with consistent changes only in very few areas. To test the forecasting capacity, we ran Niger-HYPE with a combination of meteorological data sets for the 2008 high-flow season and compared with observations. The results indicate reasonable forecasting capacity (on average 17% deviation), but additional years should also be evaluated. We finish by presenting a strategy and pilot project which will develop an operational flood monitoring and forecasting system based in-situ data, earth observations, modelling, and extreme statistics. In this way we aim to build capacity to ultimately improve resilience toward floods, protecting lives and

  11. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  12. Absolute pitch in a four-year-old boy with autism.

    PubMed

    Brenton, James N; Devries, Seth P; Barton, Christine; Minnich, Heike; Sokol, Deborah K

    2008-08-01

    Absolute pitch is the ability to identify the pitch of an isolated tone. We report on a 4-year-old boy with autism and absolute pitch, one of the youngest reported in the literature. Absolute pitch is thought to be attributable to a single gene, transmitted in an autosomal-dominant fashion. The association of absolute pitch with autism raises the speculation that this talent could be linked to a genetically distinct subset of children with autism. Further, the identification of absolute pitch in even young children with autism may lead to a lifelong skill.

  13. On the impact of the magnitude of interstellar pressure on physical properties of molecular cloud

    NASA Astrophysics Data System (ADS)

    Anathpindika, S.; Burkert, A.; Kuiper, R.

    2017-04-01

    Recently reported variations in the typical physical properties of Galactic and extra-Galactic molecular clouds (MCs), and, in their star-forming ability, have been attributed to local variations in the magnitude of interstellar pressure. Inferences from these surveys have called into question two long-standing beliefs that: (1) MCs are virialized and (2) they obey the Larson's third law. Here we invoked the framework of cloud formation via collision between warm gas-flows to examine if these latest observational inferences can be reconciled. To this end, we traced the temporal evolution of the gas surface density, the fraction of dense gas, the distribution of gas column density (N-PDF) and the virial nature of the assembled clouds. We conclude that these physical properties exhibit temporal variation and their respective peak magnitude also increases in proportion with the magnitude of external pressure, Pext. The velocity dispersion in assembled clouds appears to follow the power law, σ _{gas}∝ P_{ext}^{0.23}. The power-law tail of the N-PDFs at higher densities becomes shallower with increasing magnitude of external pressure for Pext/kB ≲ 107 K cm-3; at higher magnitudes such as those typically found in the Galactic Central Molecular Zone (Pext/kB > 107 K cm-3), the power-law shows significant steepening. While our results are broadly consistent with inferences from various recent observational surveys, it appears that MCs do not exhibit a unique set of properties, but rather a wide variety that can be reconciled with a range of magnitudes of pressure between 104 and 108 K cm-3.

  14. Exhaustive thin-layer cyclic voltammetry for absolute multianalyte halide detection.

    PubMed

    Cuartero, Maria; Crespo, Gastón A; Ghahraman Afshar, Majid; Bakker, Eric

    2014-11-18

    Water analysis is one of the greatest challenges in the field of environmental analysis. In particular, seawater analysis is often difficult because a large amount of NaCl may mask the determination of other ions, i.e., nutrients, halides, and carbonate species. We demonstrate here the use of thin-layer samples controlled by cyclic voltammetry to analyze water samples for chloride, bromide, and iodide. The fabrication of a microfluidic electrochemical cell based on a Ag/AgX wire (working electrode) inserted into a tubular Nafion membrane is described, which confines the sample solution layer to less than 15 μm. By increasing the applied potential, halide ions present in the thin-layer sample (X(-)) are electrodeposited on the working electrode as AgX, while their respective counterions are transported across the perm-selective membrane to an outer solution. Thin-layer cyclic voltammetry allows us to obtain separated peaks in mixed samples of these three halides, finding a linear relationship between the halide concentration and the corresponding peak area from about 10(-5) to 0.1 M for bromide and iodide and from 10(-4) to 0.6 M for chloride. This technique was successfully applied for the halide analysis in tap, mineral, and river water as well as seawater. The proposed methodology is absolute and potentially calibration-free, as evidenced by an observed 2.5% RSD cell to cell reproducibility and independence from the operating temperature.

  15. Effects of reinforcer magnitude on responding under differential-reinforcement-of-low-rate schedules of rats and pigeons.

    PubMed Central

    Doughty, Adam H; Richards, Jerry B

    2002-01-01

    Experiment I investigated the effects of reinforcer magnitude on differential-reinforcement-of-low-rate (DRL) schedule performance in three phases. In Phase 1, two groups of rats (n = 6 and 5) responded under a DRI. 72-s schedule with reinforcer magnitudes of either 30 or 300 microl of water. After acquisition, the water amounts were reversed for each rat. In Phase 2, the effects of the same reinforcer magnitudes on DRL 18-s schedule performance were examined across conditions. In Phase 3, each rat responded unider a DR1. 18-s schedule in which the water amotnts alternated between 30 and 300 microl daily. Throughout each phase of Experiment 1, the larger reinforcer magnitude resulted in higher response rates and lower reinforcement rates. The peak of the interresponse-time distributions was at a lower value tinder the larger reinforcer magnitude. In Experiment 2, 3 pigeons responded under a DRL 20-s schedule in which reinforcer magnitude (1-s or 6-s access to grain) varied iron session to session. Higher response rates and lower reinforcement rates occurred tinder the longer hopper duration. These results demonstrate that larger reinforcer magnitudes engender less efficient DRL schedule performance in both rats and pigeons, and when reinforcer magnitude was held constant between sessions or was varied daily. The present results are consistent with previous research demonstrating a decrease in efficiency as a function of increased reinforcer magnituide tinder procedures that require a period of time without a specified response. These findings also support the claim that DRI. schedule performance is not governed solely by a timing process. PMID:12144310

  16. Climatic Stress during Stand Development Alters the Sign and Magnitude of Age-Related Growth Responses in a Subtropical Mountain Pine.

    PubMed

    Ruiz-Benito, Paloma; Madrigal-González, Jaime; Young, Sarah; Mercatoris, Pierre; Cavin, Liam; Huang, Tsurng-Juhn; Chen, Jan-Chang; Jump, Alistair S

    2015-01-01

    The modification of typical age-related growth by environmental changes is poorly understood, In part because there is a lack of consensus at individual tree level regarding age-dependent growth responses to climate warming as stands develop. To increase our current understanding about how multiple drivers of environmental change can modify growth responses as trees age we used tree ring data of a mountain subtropical pine species along an altitudinal gradient covering more than 2,200 m of altitude. We applied mixed-linear models to determine how absolute and relative age-dependent growth varies depending on stand development; and to quantify the relative importance of tree age and climate on individual tree growth responses. Tree age was the most important factor for tree growth in models parameterised using data from all forest developmental stages. Contrastingly, the relationship found between tree age and growth became non-significant in models parameterised using data corresponding to mature stages. These results suggest that although absolute tree growth can continuously increase along tree size when trees reach maturity age had no effect on growth. Tree growth was strongly reduced under increased annual temperature, leading to more constant age-related growth responses. Furthermore, young trees were the most sensitive to reductions in relative growth rates, but absolute growth was strongly reduced under increased temperature in old trees. Our results help to reconcile previous contrasting findings of age-related growth responses at the individual tree level, suggesting that the sign and magnitude of age-related growth responses vary with stand development. The different responses found to climate for absolute and relative growth rates suggest that young trees are particularly vulnerable under warming climate, but reduced absolute growth in old trees could alter the species' potential as a carbon sink in the future.

  17. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  18. The absolute disparity anomaly and the mechanism of relative disparities.

    PubMed

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1).

  19. The absolute disparity anomaly and the mechanism of relative disparities

    PubMed Central

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-01-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  20. Persistence of carbon release events through the peak of early Eocene global warmth

    NASA Astrophysics Data System (ADS)

    Kirtland Turner, Sandra; Sexton, Philip F.; Charles, Christopher D.; Norris, Richard D.

    2014-10-01

    The Early Eocene Climatic Optimum (53-50 million years ago) was preceded by approximately six million years of progressive global warming. This warming was punctuated by a series of rapid hyperthermal warming events triggered by the release of greenhouse gases. Over these six million years, the carbon isotope record suggests that the events became more frequent but smaller in magnitude. This pattern has been suggested to reflect a thermodynamic threshold for carbon release that was more easily crossed as global temperature rose, combined with a decrease in the size of carbon reservoirs during extremely warm conditions. Here we present a continuous, 4.25-million-year-long record of the stable isotope composition of carbonate sediments from the equatorial Atlantic, spanning the peak of early Eocene global warmth. A composite of this and pre-existing records shows that the carbon isotope excursions that identify the hyperthermals exhibit continuity in magnitude and frequency throughout the approximately 10-million-year period covering the onset, peak and termination of the Early Eocene Climate Optimum. We suggest that the carbon cycle processes behind these events, excluding the largest event, the Palaeocene-Eocene Thermal Maximum (about 56 million years ago), were not exceptional. Instead, we argue that the hyperthermals may reflect orbital forcing of the carbon cycle analogous to the mechanisms proposed to operate in the cooler Oligocene and Miocene.

  1. The stress state near Spanish Peaks, colorado determined from a dike pattern

    USGS Publications Warehouse

    Muller, O.H.; Pollard, D.D.

    1977-01-01

    The radial pattern of syenite and syenodiorite dikes of the Spanish Peaks region is analysed using theories of elasticity and dike emplacement. The three basic components of Ode??'s model for the dike pattern (a pressurized, circular hole; a rigid, planar boundary; and uniform regional stresses) are adopted, but modified to free the regional stresses from the constraint of being orthogonal to the rigid boundary. Dike areal density, the White Peaks intrusion, the strike of the upturned Mesozoic strata, and the contact between these strata and the intensely folded and faulted Paleozoic rocks are used to brient the rigid boundary along a north-south line. The line of dike terminations locates the rigid boundary about 8 km west of West Peak. The location of a circular plug, Goemmer Butte, is chosen as a point of isotropic stress. A map correlating the location of isotropic stress points with regional stress parameters is derived from the theory and used to determine a regional stress orientation (N82E) and a normalized stress magnitude. The stress trajectory map constructed using these parameters mimics the dike pattern exceptionally well. The model indicates that the regional principal stress difference was less than 0.05 times the driving pressure in the West Peak intrusion. The regional stress difference probably did not exced 5 MN/m2. ?? 1977 Birkha??user Verlag.

  2. Automatic Locking of Laser Frequency to an Absorption Peak

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.

    2006-01-01

    An electronic system adjusts the frequency of a tunable laser, eventually locking the frequency to a peak in the optical absorption spectrum of a gas (or of a Fabry-Perot cavity that has an absorption peak like that of a gas). This system was developed to enable precise locking of the frequency of a laser used in differential absorption LIDAR measurements of trace atmospheric gases. This system also has great commercial potential as a prototype of means for precise control of frequencies of lasers in future dense wavelength-division-multiplexing optical communications systems. The operation of this system is completely automatic: Unlike in the operation of some prior laser-frequency-locking systems, there is ordinarily no need for a human operator to adjust the frequency manually to an initial value close enough to the peak to enable automatic locking to take over. Instead, this system also automatically performs the initial adjustment. The system (see Figure 1) is based on a concept of (1) initially modulating the laser frequency to sweep it through a spectral range that includes the desired absorption peak, (2) determining the derivative of the absorption peak with respect to the laser frequency for use as an error signal, (3) identifying the desired frequency [at the very top (which is also the middle) of the peak] as the frequency where the derivative goes to zero, and (4) thereafter keeping the frequency within a locking range and adjusting the frequency as needed to keep the derivative (the error signal) as close as possible to zero. More specifically, the system utilizes the fact that in addition to a zero crossing at the top of the absorption peak, the error signal also closely approximates a straight line in the vicinity of the zero crossing (see Figure 2). This vicinity is the locking range because the linearity of the error signal in this range makes it useful as a source of feedback for a proportional + integral + derivative control scheme that

  3. The development of a peak-time criterion for designing controlled-release devices.

    PubMed

    Simon, Laurent; Ospina, Juan

    2016-08-25

    This work consists of estimating dynamic characteristics for topically-applied drugs when the magnitude of the flux increases to a maximum value, called peak flux, before declining to zero. This situation is typical of controlled-released systems with a finite donor or vehicle volume. Laplace transforms were applied to the governing equations and resulted in an expression for the flux in terms of the physical characteristics of the system. After approximating this function by a second-order model, three parameters of this reduced structure captured the essential features of the original process. Closed-form relationships were then developed for the peak flux and time-to-peak based on the empirical representation. Three case studies that involve mechanisms, such as diffusion, partitioning, dissolution and elimination, were selected to illustrate the procedure. The technique performed successfully as shown by the ability of the second-order flux to match the prediction of the original transport equations. A main advantage of the proposed method is that it does not require a solution of the original partial differential equations. Less accurate results were noted for longer lag times. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Developmental Foundations of Children's Fraction Magnitude Knowledge.

    PubMed

    Mou, Yi; Li, Yaoran; Hoard, Mary K; Nugent, Lara D; Chu, Felicia W; Rouder, Jeffrey N; Geary, David C

    2016-01-01

    The conceptual insight that fractions represent magnitudes is a critical yet daunting step in children's mathematical development, and the knowledge of fraction magnitudes influences children's later mathematics learning including algebra. In this study, longitudinal data were analyzed to identify the mathematical knowledge and domain-general competencies that predicted 8 th and 9 th graders' (n=122) knowledge of fraction magnitudes and its cross-grade gains. Performance on the fraction magnitude measures predicted 9 th grade algebra achievement. Understanding and fluently identifying the numerator-denominator relation in 7 th grade emerged as the key predictor of later fraction magnitudes knowledge in both 8 th and 9 th grades. Competence at using fraction procedures, knowledge of whole number magnitudes, and the central executive contributed to 9 th but not 8 th graders' fraction magnitude knowledge, and knowledge of whole number magnitude contributed to cross-grade gains. The key results suggest fluent processing of numerator-denominator relations presages students' understanding of fractions as magnitudes and that the integration of whole number and fraction magnitudes occurs gradually.

  5. The relation between peak response magnitudes and agreement in diagnoses obtained from two different phallometric tests for pedophilia.

    PubMed

    Lykins, Amy D; Cantor, James M; Kuban, Michael E; Blak, Thomas; Dickey, Robert; Klassen, Philip E; Blanchard, Ray

    2010-03-01

    Phallometric testing is widely considered the best psychophysiological procedure for assessing erotic preferences in men. Researchers have differed, however, on the necessity of setting some minimum criterion of penile response for ascertaining the interpretability of a phallometric test result. Proponents of a minimum criterion have generally based their view on the intuitive notion that "more is better" rather than any formal demonstration of this. The present study was conducted to investigate whether there is any empirical evidence for this intuitive notion, by examining the relation between magnitude of penile response and the agreement in diagnoses obtained in two test sessions using different laboratory stimuli. The results showed that examinees with inconsistent diagnoses responded less on both tests and that examinees with inconsistent diagnoses responded less on the second test after controlling for their response on the first test. Results also indicated that at response levels less than 1 cm(3), diagnostic consistency was no better than chance, supporting the establishment of a minimum response level criterion.

  6. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  7. Monolithically integrated absolute frequency comb laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  8. Defining and Detecting Complex Peak Relationships in Mass Spectral Data: The Mz.unity Algorithm.

    PubMed

    Mahieu, Nathaniel G; Spalding, Jonathan L; Gelman, Susan J; Patti, Gary J

    2016-09-20

    Analysis of a single analyte by mass spectrometry can result in the detection of more than 100 degenerate peaks. These degenerate peaks complicate spectral interpretation and are challenging to annotate. In mass spectrometry-based metabolomics, this degeneracy leads to inflated false discovery rates, data sets containing an order of magnitude more features than analytes, and an inefficient use of resources during data analysis. Although software has been introduced to annotate spectral degeneracy, current approaches are unable to represent several important classes of peak relationships. These include heterodimers and higher complex adducts, distal fragments, relationships between peaks in different polarities, and complex adducts between features and background peaks. Here we outline sources of peak degeneracy in mass spectra that are not annotated by current approaches and introduce a software package called mz.unity to detect these relationships in accurate mass data. Using mz.unity, we find that data sets contain many more complex relationships than we anticipated. Examples include the adduct of glutamate and nicotinamide adenine dinucleotide (NAD), fragments of NAD detected in the same or opposite polarities, and the adduct of glutamate and a background peak. Further, the complex relationships we identify show that several assumptions commonly made when interpreting mass spectral degeneracy do not hold in general. These contributions provide new tools and insight to aid in the annotation of complex spectral relationships and provide a foundation for improved data set identification. Mz.unity is an R package and is freely available at https://github.com/nathaniel-mahieu/mz.unity as well as our laboratory Web site http://pattilab.wustl.edu/software/ .

  9. Determination of the absolute carrier-envelope phase by angle-resolved photoelectron spectra of Ar by intense circularly polarized few-cycle pulses

    NASA Astrophysics Data System (ADS)

    Fukahori, Shinichi; Ando, Toshiaki; Miura, Shun; Kanya, Reika; Yamanouchi, Kaoru; Rathje, Tim; Paulus, Gerhard G.

    2017-05-01

    The angle-resolved photoelectron spectra of Ar are recorded using intense circularly polarized near-infrared few-cycle laser pulses, and the effect of the depletion of Ar atoms by the ionization and the effect of the Coulombic potential are examined by the classical trajectory Monte Carlo simulations. On the basis of the comparison between the experimental and theoretical photoelectron spectra, a procedure for estimating the absolute carrier-envelope phase (CEP) of the few-cycle laser pulses interacting with atoms and molecules is proposed. It is confirmed that the absolute CEP can securely be estimated without any numerical calculations once the angular distribution of the yield of photoelectrons having the kinetic energy larger than 30 eV is measured with the peak laser intensity in the range between 1 ×1014 and 5 ×1014W /c m2 .

  10. Coronary calcium predicts events better with absolute calcium scores than age-sex-race/ethnicity percentiles: MESA (Multi-Ethnic Study of Atherosclerosis).

    PubMed

    Budoff, Matthew J; Nasir, Khurram; McClelland, Robyn L; Detrano, Robert; Wong, Nathan; Blumenthal, Roger S; Kondos, George; Kronmal, Richard A

    2009-01-27

    In this study, we aimed to establish whether age-sex-specific percentiles of coronary artery calcium (CAC) predict cardiovascular outcomes better than the actual (absolute) CAC score. The presence and extent of CAC correlates with the overall magnitude of coronary atherosclerotic plaque burden and with the development of subsequent coronary events. MESA (Multi-Ethnic Study of Atherosclerosis) is a prospective cohort study of 6,814 asymptomatic participants followed for coronary heart disease (CHD) events including myocardial infarction, angina, resuscitated cardiac arrest, or CHD death. Time to incident CHD was modeled with Cox regression, and we compared models with percentiles based on age, sex, and/or race/ethnicity to categories commonly used (0, 1 to 100, 101 to 400, 400+ Agatston units). There were 163 (2.4%) incident CHD events (median follow-up 3.75 years). Expressing CAC in terms of age- and sex-specific percentiles had significantly lower area under the receiver-operating characteristic curve (AUC) than when using absolute scores (women: AUC 0.73 versus 0.76, p = 0.044; men: AUC 0.73 versus 0.77, p < 0.001). Akaike's information criterion indicated better model fit with the overall score. Both methods robustly predicted events (>90th percentile associated with a hazard ratio [HR] of 16.4, 95% confidence interval [CI]: 9.30 to 28.9, and score >400 associated with HR of 20.6, 95% CI: 11.8 to 36.0). Within groups based on age-, sex-, and race/ethnicity-specific percentiles there remains a clear trend of increasing risk across levels of the absolute CAC groups. In contrast, once absolute CAC category is fixed, there is no increasing trend across levels of age-, sex-, and race/ethnicity-specific categories. Patients with low absolute scores are low-risk, regardless of age-, sex-, and race/ethnicity-specific percentile rank. Persons with an absolute CAC score of >400 are high risk, regardless of percentile rank. Using absolute CAC in standard groups performed

  11. Estimates of Tibial Shock Magnitude in Men and Women at the Start and End of a Military Drill Training Program.

    PubMed

    Rice, Hannah M; Saunders, Samantha C; McGuire, Stephen J; O'Leary, Thomas J; Izard, Rachel M

    2018-03-26

    Foot drill is a key component of military training and is characterized by frequent heel stamping, likely resulting in high tibial shock magnitudes. Higher tibial shock during running has previously been associated with risk of lower limb stress fractures, which are prevalent among military populations. Quantification of tibial shock during drill training is, therefore, warranted. This study aimed to provide estimates of tibial shock during military drill in British Army Basic training. The study also aimed to compare values between men and women, and to identify any differences between the first and final sessions of training. Tibial accelerometers were secured on the right medial, distal shank of 10 British Army recruits (n = 5 men; n = 5 women) throughout a scheduled drill training session in week 1 and week 12 of basic military training. Peak positive accelerations, the average magnitude above given thresholds, and the rate at which each threshold was exceeded were quantified. Mean (SD) peak positive acceleration was 20.8 (2.2) g across all sessions, which is considerably higher than values typically observed during high impact physical activity. Magnitudes of tibial shock were higher in men than women, and higher in week 12 compared with week 1 of training. This study provides the first estimates of tibial shock magnitude during military drill training in the field. The high values suggest that military drill is a demanding activity and this should be considered when developing and evaluating military training programs. Further exploration is required to understand the response of the lower limb to military drill training and the etiology of these responses in the development of lower limb stress fractures.

  12. Resolving Peak Ground Displacements in Real-Time GNSS PPP Solutions

    NASA Astrophysics Data System (ADS)

    Hodgkinson, K. M.; Mencin, D.; Mattioli, G. S.; Sievers, C.; Fox, O.

    2017-12-01

    The goal of early earthquake warning (EEW) systems is to provide warning of impending ground shaking to the public, infrastructure managers, and emergency responders. Shaking intensity can be estimated using Ground Motion Prediction Equations (GMPEs), but only if site characteristics, hypocentral distance and event magnitude are known. In recent years work has been done analyzing the first few seconds of the seismic P wave to derive event location and magnitude. While initial rupture locations seem to be sufficiently constrained, it has been shown that P-wave magnitude estimates tend to saturate at M>7. Regions where major and great earthquakes occur may therefore be vulnerable to an underestimation of shaking intensity if only P waves magnitudes are used. Crowell et al., (2013) first demonstrated that Peak Ground Displacement (PGD) from long-period surface waves recorded by GNSS receivers could provide a source-scaling relation that does not saturate with event magnitude. GNSS PGD derived magnitudes could improve the accuracy of EEW GMPE calculations. If such a source-scaling method were to be implemented in EEW algorithms it is critical that the noise levels in real-time GNSS processed time-series are low enough to resolve long-period surface waves. UNAVCO currently operates 770 real-time GNSS sites, most of which are located along the North American-Pacific Plate Boundary. In this study, we present an analysis of noise levels observed in the GNSS Precise Point Positioning (PPP) solutions generated and distributed in real-time by UNAVCO for periods from seconds to hours. The analysis is performed using the 770 sites in the real-time network and data collected through July 2017. We compare noise levels determined from various monument types and receiver-antenna configurations. This analysis gives a robust estimation of noise levels in PPP solutions because the solutions analyzed are those that were generated in real-time and thus contain all the problems observed

  13. Adolescents with Developmental Dyscalculia Do Not Have a Generalized Magnitude Deficit – Processing of Discrete and Continuous Magnitudes

    PubMed Central

    McCaskey, Ursina; von Aster, Michael; O’Gorman Tuura, Ruth; Kucian, Karin

    2017-01-01

    The link between number and space has been discussed in the literature for some time, resulting in the theory that number, space and time might be part of a generalized magnitude system. To date, several behavioral and neuroimaging findings support the notion of a generalized magnitude system, although contradictory results showing a partial overlap or separate magnitude systems are also found. The possible existence of a generalized magnitude processing area leads to the question how individuals with developmental dyscalculia (DD), known for deficits in numerical-arithmetical abilities, process magnitudes. By means of neuropsychological tests and functional magnetic resonance imaging (fMRI) we aimed to examine the relationship between number and space in typical and atypical development. Participants were 16 adolescents with DD (14.1 years) and 14 typically developing (TD) peers (13.8 years). In the fMRI paradigm participants had to perform discrete (arrays of dots) and continuous magnitude (angles) comparisons as well as a mental rotation task. In the neuropsychological tests, adolescents with dyscalculia performed significantly worse in numerical and complex visuo-spatial tasks. However, they showed similar results to TD peers when making discrete and continuous magnitude decisions during the neuropsychological tests and the fMRI paradigm. A conjunction analysis of the fMRI data revealed commonly activated higher order visual (inferior and middle occipital gyrus) and parietal (inferior and superior parietal lobe) magnitude areas for the discrete and continuous magnitude tasks. Moreover, no differences were found when contrasting both magnitude processing conditions, favoring the possibility of a generalized magnitude system. Group comparisons further revealed that dyscalculic subjects showed increased activation in domain general regions, whilst TD peers activate domain specific areas to a greater extent. In conclusion, our results point to the existence of a

  14. An examination of the jump-and-lift factors influencing the time to reach peak catch height during a Rugby Union lineout.

    PubMed

    Smith, Tiaki Brett; Hébert-Losier, Kim; McClymont, Doug

    2018-05-01

    The goal of an offensive Rugby Union lineout is to throw the ball in a manner that allows your team to maintain possession. Typically, the player catching the ball jumps and is lifted upwards by two teammates, reaching above the opposing player who is competing for the ball also. Despite various beliefs regarding the importance of the jumper's mass and attempted jump height, and lifters' magnitude and point of force application, there is negligible published data on the topic. The squeeze technique is one lifting method commonly employed by New Zealand teams during lineout plays, whereby the jumper initiates the jump quickly and the lifters provide assistance only once the jumper reaches 20-30 cm. While this strategy may reduce cues to the opposition, it might also constrain the jumper and lifters. We developed a model to explore how changes in the jumper's body mass and attempted jump height, and lifters' magnitude and point of force application influence the time to reach peak catch height. The magnitude of the lift force impacted the time-to-reach peak catch height the most; followed by the jumper's (attempted) jump height and body mass; and lastly, the point of lift force application.

  15. Sensitivity of sensor-based sit-to-stand peak power to the effects of training leg strength, leg power and balance in older adults.

    PubMed

    Regterschot, G Ruben H; Folkersma, Marjanne; Zhang, Wei; Baldus, Heribert; Stevens, Martin; Zijlstra, Wiebren

    2014-01-01

    Increasing leg strength, leg power and overall balance can improve mobility and reduce fall risk. Sensor-based assessment of peak power during the sit-to-stand (STS) transfer may be useful for detecting changes in mobility and fall risk. Therefore, this study investigated whether sensor-based STS peak power and related measures are sensitive to the effects of increasing leg strength, leg power and overall balance in older adults. A further aim was to compare sensitivity between sensor-based STS measures and standard clinical measures of leg strength, leg power, balance, mobility and fall risk, following an exercise-based intervention. To achieve these aims, 26 older adults (age: 70-84 years) participated in an eight-week exercise program aimed at improving leg strength, leg power and balance. Before and after the intervention, performance on normal and fast STS transfers was evaluated with a hybrid motion sensor worn on the hip. In addition, standard clinical tests (isometric quadriceps strength, Timed Up and Go test, Berg Balance Scale) were performed. Standard clinical tests as well as sensor-based measures of peak power, maximal velocity and duration of normal and fast STS showed significant improvements. Sensor-based measurement of peak power, maximal velocity and duration of normal STS demonstrated a higher sensitivity (absolute standardized response mean (SRM): ≥ 0.69) to the effects of training leg strength, leg power and balance than standard clinical measures (absolute SRM: ≤ 0.61). Therefore, the presented sensor-based method appears to be useful for detecting changes in mobility and fall risk. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Measurement of Absolute Concentrations of Individual Compounds in Metabolite Mixtures by Gradient-Selective Time-Zero 1H-13C HSQC (gsHSQC0) with Two Concentration References and Fast Maximum Likelihood Reconstruction Analysis

    PubMed Central

    Hu, Kaifeng; Ellinger, James J.; Chylla, Roger A.; Markley, John L.

    2011-01-01

    Time-zero 2D 13C HSQC (HSQC0) spectroscopy offers advantages over traditional 2D NMR for quantitative analysis of solutions containing a mixture of compounds because the signal intensities are directly proportional to the concentrations of the constituents. The HSQC0 spectrum is derived from a series of spectra collected with increasing repetition times within the basic HSQC block by extrapolating the repetition time to zero. Here we present an alternative approach to data collection, gradient-selective time-zero 1H-13C HSQC0 in combination with fast maximum likelihood reconstruction (FMLR) data analysis and the use of two concentration references for absolute concentration determination. Gradient-selective data acquisition results in cleaner spectra, and NMR data can be acquired in both constant-time and non-constant time mode. Semi-automatic data analysis is supported by the FMLR approach, which is used to deconvolute the spectra and extract peak volumes. The peak volumes obtained from this analysis are converted to absolute concentrations by reference to the peak volumes of two internal reference compounds of known concentration: DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid) at the low concentration limit (which also serves as chemical shift reference) and MES (2-(N-morpholino)ethanesulfonic acid) at the high concentration limit. The linear relationship between peak volumes and concentration is better defined with two references than with one, and the measured absolute concentrations of individual compounds in the mixture are more accurate. We compare results from semi-automated gsHSQC0 with those obtained by the original manual phase-cycled HSQC0 approach. The new approach is suitable for automatic metabolite profiling by simultaneous quantification of multiple metabolites in a complex mixture. PMID:22029275

  17. Integrated Circuit Stellar Magnitude Simulator

    ERIC Educational Resources Information Center

    Blackburn, James A.

    1978-01-01

    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)

  18. Analysis of flood-magnitude and flood-frequency data for streamflow-gaging stations in the Delaware and North Branch Susquehanna River Basins in Pennsylvania

    USGS Publications Warehouse

    Roland, Mark A.; Stuckey, Marla H.

    2007-01-01

    The Delaware and North Branch Susquehanna River Basins in Pennsylvania experienced severe flooding as a result of intense rainfall during June 2006. The height of the flood waters on the rivers and tributaries approached or exceeded the peak of record at many locations. Updated flood-magnitude and flood-frequency data for streamflow-gaging stations on tributaries in the Delaware and North Branch Susquehanna River Basins were analyzed using data through the 2006 water year to determine if there were any major differences in the flood-discharge data. Flood frequencies for return intervals of 2, 5, 10, 50, 100, and 500 years (Q2, Q5, Q10, Q50, Q100, and Q500) were determined from annual maximum series (AMS) data from continuous-record gaging stations (stations) and were compared to flood discharges obtained from previously published Flood Insurance Studies (FIS) and to flood frequencies using partial-duration series (PDS) data. A Wilcoxon signed-rank test was performed to determine any statistically significant differences between flood frequencies computed from updated AMS station data and those obtained from FIS. Percentage differences between flood frequencies computed from updated AMS station data and those obtained from FIS also were determined for the 10, 50, 100, and 500 return intervals. A Mann-Kendall trend test was performed to determine statistically significant trends in the updated AMS peak-flow data for the period of record at the 41 stations. In addition to AMS station data, PDS data were used to determine flood-frequency discharges. The AMS and PDS flood-frequency data were compared to determine any differences between the two data sets. An analysis also was performed on AMS-derived flood frequencies for four stations to evaluate the possible effects of flood-control reservoirs on peak flows. Additionally, flood frequencies for three stations were evaluated to determine possible effects of urbanization on peak flows. The results of the Wilcoxon signed

  19. Sign-And-Magnitude Up/Down Counter

    NASA Technical Reports Server (NTRS)

    Cole, Steven W.

    1991-01-01

    Magnitude-and-sign counter includes conventional up/down counter for magnitude part and special additional circuitry for sign part. Negative numbers indicated more directly. Counter implemented by programming erasable programmable logic device (EPLD) or programmable logic array (PLA). Used in place of conventional up/down counter to provide sign and magnitude values directly to other circuits.

  20. A comprehensive analysis of high-magnitude streamflow and trends in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Kocis, T. N.; Dahlke, H. E.

    2017-12-01

    California's climate is characterized by the largest precipitation and streamflow variability observed within the conterminous US. This, combined with chronic groundwater overdraft of 0.6-3.5 km3 yr-1, creates the need to identify additional surface water sources available for groundwater recharge using methods such as agricultural groundwater banking, aquifer storage and recovery, and spreading basins. High-magnitude streamflow, i.e. flow above the 90th percentile, that exceeds environmental flow requirements and current surface water allocations under California water rights, could be a viable source of surface water for groundwater banking. Here, we present a comprehensive analysis of the magnitude, frequency, duration and timing of high-magnitude streamflow (HMF "metrics") over multiple time periods for 93 stream gauges covering the Sacramento, San Joaquin and Tulare basins in California. In addition, we present trend analyses conducted on the same dataset and all HMF metrics using generalized additive models, the Mann-Kendall trend test, and the Signal to Noise Ratio test. The results of the comprehensive analysis show, in short, that in an average year with HMF approximately 3.2 km3 of high-magnitude flow is exported from the entire Central Valley to the Sacramento-San Joaquin Delta, often at times when environmental flow requirements of the Delta and major rivers are exceeded. High-magnitude flow occurs, on average, during 7 and 4.7 out of 10 years in the Sacramento River and the San Joaquin-Tulare Basins, respectively, from just a few storm events (5-7 1-day peak events) lasting for a total of 25-30 days between November and April. Preliminary trend tests suggest that all HMF metrics show limited change over the last 50 years. As a whole, the results suggest that there is sufficient unmanaged surface water physically available to mitigate long-term groundwater overdraft in the Central Valley.

  1. Absolute response and noise equivalent power of cyclotron resonance-assisted InSb detectors at submillimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Brown, E. R.; Wengler, M. J.; Phillips, T. G.

    1985-01-01

    Spectra are presented of the responsivity and noise equivalent power (NEP) of liquid-helium-cooled InSb detectors as a function of magnetic field in the range 20-110 per cm. The measurements are all made using a Fourier transform spectrometer with thermal sources. The results show a discernable peak in the detector response at the conduction electron cyclotron resonance (CCR) frequency for magnetic fields as low as 3 kG. The magnitude of responsivity at the resonance peaks is roughly constant with magnetic field and is comparable to the low-frequency hot-electron bolometer response. The NEP at the peaks is found to be comparable to the best long wavelength results previously reported. For example, NEP = 4.5 x 10 to the 13th W/(square root of Hz) at 4.2 K, 6 kG, and 40 per cm was measured. The InSb CCR will provide a much improved detector for laboratory spectroscopy, as compared with hot electron bolometers, in the 20-100 per cm range.

  2. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  3. Comparative Analysis of Peak Ground Acceleration Before and After Padang Earthquake 2009 Using Mc. Guirre Method

    NASA Astrophysics Data System (ADS)

    Ayu Rahmalia, Diah; Nilamprasasti, Hesti

    2017-04-01

    We have analyzed the earthquakes data in West Sumatra province to determine peak ground acceleration value. The peak ground acceleration is a parameter that describes the strength of the tremor that ever happened. This paper aims to compare the value of the peak ground acceleration by considering the b-value before and after the Padang earthquake 2009. This research was carried out in stages, starting by taking the earthquake data in West Sumatra province with boundary coordinates 0.923° LU - 2.811° LS and 97.075° - 102.261° BT, before and after the 2009 Padang earthquake with a magnitude ≥ 3 and depth of ≤ 300 km, calculation of the b-value, and ended by creating peak ground acceleration map based on Mc. Guirre empirical formula with Excel and Surfer software. Based on earthquake data from 2002 until before Padang earthquake 2009, the b-value is 0.874 while the b-value after the Padang earthquake in 2009 to 2016 is 0.891. Considering b value, it can be known that peak ground acceleration before and after the 2009 Padang earthquake might be different. Based on the seismic data before 2009, the peak ground acceleration value of West Sumatra province is ranged from 7,002 to 308.875 gal. This value will be compared by the value of the peak ground acceleration after the Padang earthquake in 2009 which ranged from 7,946 to 372,736 gal.

  4. Mid-Crustal Stress Magnitude and Rotation Transients Related to the Seismic Cycle

    NASA Astrophysics Data System (ADS)

    Nüchter, J. A.; Ellis, S.

    2008-12-01

    stress increase results mainly from a drop in the minimum principal stress, and the stress tensor rotates clockwise by 45-60°. A change in the magnitude of differential stress can be addressed by the addition of an incremental stress tensor resulting from elastic strain to the preexisting stress tensor. In an isotropic medium, the orientation of the maximum and the minimum principal stress changes are controlled by the directions of maximum compression and maximum extension, respectively. The magnitude and the orientation of the resulting stress tensor depend: 1) on the absolute magnitudes and on the ratio of the magnitudes of pre-existing stress and incremental change in the stress tensor; and 2) on the mis-orientation between existing stress and stress change principal directions. The zone of coseismic loading correlates to the interval in which seismic slip tapers off with depth. For a normal fault, the crust here is subjected to fault-parallel compression in the hanging wall, and to extension in the footwall. The resulting orientation of the seismic principal compressive stress change parallel to the fault in the hanging wall and normal to the fault in the footwall causes the particular deflection of the resulting stress tensor . During the interseismic period, the stress peak relaxes by thermally activated creep, while the deflection of the stress tensor is persistent. We show that significant mis- orientations of the stress tensor can be preserved over timescales typical for a seismic cycle, in dependence on the far field extension rate. We conclude that seismic activity causes 1) a non-steady state mid-crustal stress field, and 2) a persistent deflection of the stress tensor orientation from the predictions of the Anderson theory.

  5. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  6. Planck absolute entropy of a rotating BTZ black hole

    NASA Astrophysics Data System (ADS)

    Riaz, S. M. Jawwad

    2018-04-01

    In this paper, the Planck absolute entropy and the Bekenstein-Smarr formula of the rotating Banados-Teitelboim-Zanelli (BTZ) black hole are presented via a complex thermodynamical system contributed by its inner and outer horizons. The redefined entropy approaches zero as the temperature of the rotating BTZ black hole tends to absolute zero, satisfying the Nernst formulation of a black hole. Hence, it can be regarded as the Planck absolute entropy of the rotating BTZ black hole.

  7. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  8. Absolute versus relative measures of plasma fatty acids and health outcomes: example of phospholipid omega-3 and omega-6 fatty acids and all-cause mortality in women.

    PubMed

    Miura, Kyoko; Hughes, Maria Celia B; Ungerer, Jacobus P J; Smith, David D; Green, Adèle C

    2018-03-01

    In a well-characterised community-based prospective study, we aimed to systematically assess the differences in associations of plasma omega-3 and omega-6 fatty acid (FA) status with all-cause mortality when plasma FA status is expressed in absolute concentrations versus relative levels. In a community sample of 564 women aged 25-75 years in Queensland, Australia, baseline plasma phospholipid FA levels were measured using gas chromatography. Specific FAs analysed were eicosapentaenoic acid, docosapentaenoic acid, docosahexaenoic acid, total long-chain omega-3 FAs, linoleic acid, arachidonic acid, and total omega-6 FAs. Levels of each FA were expressed in absolute amounts (µg/mL) and relative levels (% of total FAs) and divided into thirds. Deaths were monitored for 17 years and hazard ratios and 95% confidence intervals calculated to assess risk of death according to absolute versus relative plasma FA levels. In total 81 (14%) women died during follow-up. Agreement between absolute and relative measures of plasma FAs was higher in omega-3 than omega-6 FAs. The results of multivariate analyses for risk of all-cause mortality were generally similar with risk tending to inverse associations with plasma phospholipid omega-3 FAs and no association with omega-6 FAs. Sensitivity analyses examining effects of age and presence of serious medical conditions on risk of mortality did not alter findings. The directions and magnitude of associations with mortality of absolute versus relative FA levels were comparable. However, plasma FA expressed as absolute concentrations may be preferred for ease of comparison and since relative units can be deduced from absolute units.

  9. Hurricane Mitch: Peak Discharge for Selected River Reachesin Honduras

    USGS Publications Warehouse

    Smith, Mark E.; Phillips, Jeffrey V.; Spahr, Norman E.

    2002-01-01

    peak discharge are based on post-flood surveys of the river channel (observed high-water marks, cross sections, and hydraulic properties) and model computation of peak discharge. Determination of the flood peaks associated with Hurricane Mitch will help scientists understand the magnitude of this devastating hurricane. Peak-discharge information also is critical for the proper design of hydraulic structures (such as bridges and levees), delineation of theoretical flood boundaries, and development of stage-discharge relations at streamflow-monitoring sites.

  10. Agreement Between VO2peak Predicted From PACER and One-Mile Run Time-Equated Laps.

    PubMed

    Saint-Maurice, Pedro F; Anderson, Katelin; Bai, Yang; Welk, Gregory J

    2016-12-01

    This study examined the agreement between estimated peak oxygen consumption (VO 2peak ) obtained from the Progressive Aerobic Cardiovascular Endurance Run (PACER) fitness test and equated PACER laps derived from One-Mile Run time (MR). A sample of 680 participants (324 boys and 356 girls) in Grades 7 through 12 completed both the PACER and the MR assessments. MR time was converted to PACER laps (PACER-MEQ) using previously developed conversion algorithms. Agreement between PACER and PACER-MEQ VO 2peak was examined using Pearson correlations, mean absolute percent error (MAPE), and equivalence testing procedures. Classification agreement based on health-related standards was examined using sensitivity, specificity, and Kappa statistics. Overall agreement between estimated VO 2peak obtained from the PACER and PACER-MEQ was high in boys, r(324) = .79, R 2  = .63, and moderate in girls, r(356) = .57, R 2  = .33. The MAPE for estimates obtained from PACER-MEQ was 10.3% and estimates were deemed equivalent to the PACER (43.1 ± 6.9 mL/kg/min vs. 44.6 ± 0.3 mL/kg/min). Classification agreement as illustrated by sensitivity and specificity ranged from 20.4% to 90.2% and was higher for classifications in the Healthy Fitness Zone (HFZ). Kappa statistics ranged from .14 to .51 and were also higher for the HFZ. Equated PACER laps can be used to obtain equivalent estimates of PACER VO 2peak in groups of adolescents, but some disparities can be found when students' scores are classified into the Needs Improvement Zone.

  11. Automatic alignment of individual peaks in large high-resolution spectral data sets

    NASA Astrophysics Data System (ADS)

    Stoyanova, Radka; Nicholls, Andrew W.; Nicholson, Jeremy K.; Lindon, John C.; Brown, Truman R.

    2004-10-01

    Pattern recognition techniques are effective tools for reducing the information contained in large spectral data sets to a much smaller number of significant features which can then be used to make interpretations about the chemical or biochemical system under study. Often the effectiveness of such approaches is impeded by experimental and instrument induced variations in the position, phase, and line width of the spectral peaks. Although characterizing the cause and magnitude of these fluctuations could be important in its own right (pH-induced NMR chemical shift changes, for example) in general they obscure the process of pattern discovery. One major area of application is the use of large databases of 1H NMR spectra of biofluids such as urine for investigating perturbations in metabolic profiles caused by drugs or disease, a process now termed metabonomics. Frequency shifts of individual peaks are the dominant source of such unwanted variations in this type of data. In this paper, an automatic procedure for aligning the individual peaks in the data set is described and evaluated. The proposed method will be vital for the efficient and automatic analysis of large metabonomic data sets and should also be applicable to other types of data.

  12. Annual peak discharges from small drainage areas in Montana for stations discontinued before 1978

    USGS Publications Warehouse

    Omang, R.J.; Hull, J.A.; Parrett, Charles

    1979-01-01

    Annual peak stage and discharge data have been tabulated for crest-stage gage sites in Montana. The crest-stage program was begun in July 1955 to investigate the magnitude and frequency of floods from samll drainage areas. The program has expanded from 45 crest-stage gaging stations initially to 172 stations maintained in 1978. From 1955 to 1978, 156 stations have been discontinued. This report is a tabulation of the stage and discharge data for the discontinued stations. (Woodard-USGS)

  13. Bridging the gap between peak and average loads on science networks

    DOE PAGES

    Nickolay, Sam; Jung, Eun -Sung; Kettimuthu, Rajkumar; ...

    2017-05-12

    Backbone networks are typically overprovisioned in order to support peak loads. Research and education networks (RENs), for example, are often designed to operate at 20–30% of capacity. Thus, Internet2 upgrades its backbone interconnects when the weekly 95th-percentile load is reliably above 30% of link capacity, and analysis of ESnet traffic between major laboratories shows a substantial gap between peak and average utilization. As science data volumes increase exponentially, it is unclear whether this overprovisioning trend can continue into the future. Even if overprovisioning is possible, it may not be the most cost-effective (and desirable) approach going forward. Under the currentmore » mode of free access to RENs, traffic at peak load may include both flows that need to be transferred in near-real time–for example, for computation and instrument monitoring and steering–and flows that are less time-critical, for example, archival and storage replication operations. Thus, peak load does not necessarily indicate the capacity that is absolutely required at that moment. We thus examine how data transfers are impacted when the average network load is increased while the network capacity is kept at the current levels. We also classify data transfers into on-demand (time-critical) and best-effort (less time-critical) and study the impact on both classes for different proportions of both the number of on-demand transfers and amount of bandwidth allocated for on-demand transfers. For our study, we use real transfer logs from production GridFTP servers to do simulation-based experiments as well as real experiments on a testbed. We find that when the transfer load is doubled and the network capacity is fixed at the current level, the gap between peak and average throughput decreases by an average of 18% in the simulation experiments and 16% in the testbed experiments, and the average slowdown experienced by the data transfers is under 1.5×. Moreover, when

  14. Bridging the gap between peak and average loads on science networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickolay, Sam; Jung, Eun -Sung; Kettimuthu, Rajkumar

    Backbone networks are typically overprovisioned in order to support peak loads. Research and education networks (RENs), for example, are often designed to operate at 20–30% of capacity. Thus, Internet2 upgrades its backbone interconnects when the weekly 95th-percentile load is reliably above 30% of link capacity, and analysis of ESnet traffic between major laboratories shows a substantial gap between peak and average utilization. As science data volumes increase exponentially, it is unclear whether this overprovisioning trend can continue into the future. Even if overprovisioning is possible, it may not be the most cost-effective (and desirable) approach going forward. Under the currentmore » mode of free access to RENs, traffic at peak load may include both flows that need to be transferred in near-real time–for example, for computation and instrument monitoring and steering–and flows that are less time-critical, for example, archival and storage replication operations. Thus, peak load does not necessarily indicate the capacity that is absolutely required at that moment. We thus examine how data transfers are impacted when the average network load is increased while the network capacity is kept at the current levels. We also classify data transfers into on-demand (time-critical) and best-effort (less time-critical) and study the impact on both classes for different proportions of both the number of on-demand transfers and amount of bandwidth allocated for on-demand transfers. For our study, we use real transfer logs from production GridFTP servers to do simulation-based experiments as well as real experiments on a testbed. We find that when the transfer load is doubled and the network capacity is fixed at the current level, the gap between peak and average throughput decreases by an average of 18% in the simulation experiments and 16% in the testbed experiments, and the average slowdown experienced by the data transfers is under 1.5×. Moreover, when

  15. Comparison of body weight distribution, peak vertical force, and vertical impulse as measures of hip joint pain and efficacy of total hip replacement.

    PubMed

    Seibert, Rachel; Marcellin-Little, Denis J; Roe, Simon C; DePuy, Venita; Lascelles, B Duncan X

    2012-05-01

    To determine whether there is a difference between the ability of peak vertical force (PVF), vertical impulse (VI), and percentage body weight distribution (%BW(dist) ) in differentiating which leg is most affected by hip joint pain before total hip replacement (THR) surgery, and for measuring changes in limb use after THR surgery. Prospective clinical study. Dogs (n = 47). Ground reaction force (GRF) data were collected using a pressure-sensitive walkway the day before THR surgery and at ∼3, 6, and 12 months postoperatively. PVF and VI expressed as a percentage of body weight (%PVF, %VI), and %BW(dist) were recorded. Regression models performed separately for each outcome were used for statistical analysis. When comparing limb use between the affected limb (AP) and the nonaffected limb (NP) preoperatively, differences between limbs were statistically significant when evaluated using PVF (P = .023), VI (P = .010), and %BW(dist) (P = .012). When evaluating the magnitude of absolute and percentage change difference in AP limb use preoperatively versus postoperatively, differences were statistically significant when evaluated using PVF (P < .001 and P = .001, respectively), VI (P = .001 and P < .001) and %BW(dist) (P < .001 and P < .001). There appeared to be no difference in the sensitivity of VI, PVF, and %BW(dist) for evaluating limb use before and after THR. © Copyright 2012 by The American College of Veterinary Surgeons.

  16. Absolute Properties of the Eclipsing Binary Star BF Draconis

    NASA Astrophysics Data System (ADS)

    Lacy, Claud H. Sandberg; Torres, Guillermo; Fekel, Francis C.; Sabby, Jeffrey A.; Claret, Antonio

    2012-06-01

    BF Dra is now known to be an eccentric double-lined F6+F6 binary star with relatively deep (0.7 mag) partial eclipses. Previous studies of the system are improved with 7494 differential photometric observations from the URSA WebScope and 9700 from the NFO WebScope, 106 high-resolution spectroscopic observations from the Tennessee State University 2 m automatic spectroscopic telescope and the 1 m coudé-feed spectrometer at Kitt Peak National Observatory, and 31 accurate radial velocities from the CfA. Very accurate (better than 0.6%) masses and radii are determined from analysis of the two new light curves and four radial velocity curves. Theoretical models match the absolute properties of the stars at an age of about 2.72 Gyr and [Fe/H] = -0.17, and tidal theory correctly confirms that the orbit should still be eccentric. Our observations of BF Dra constrain the convective core overshooting parameter to be larger than about 0.13 Hp . We find, however, that standard tidal theory is unable to match the observed slow rotation rates of the components' surface layers.

  17. Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: A summary of recent work

    USGS Publications Warehouse

    Boore, D.M.; Joyner, W.B.; Fumal, T.E.

    1997-01-01

    In this paper we summarize our recently-published work on estimating horizontal response spectra and peak acceleration for shallow earthquakes in western North America. Although none of the sets of coefficients given here for the equations are new, for the convenience of the reader and in keeping with the style of this special issue, we provide tables for estimating random horizontal-component peak acceleration and 5 percent damped pseudo-acceleration response spectra in terms of the natural, rather than common, logarithm of the ground-motion parameter. The equations give ground motion in terms of moment magnitude, distance, and site conditions for strike-slip, reverse-slip, or unspecified faulting mechanisms. Site conditions are represented by the shear velocity averaged over the upper 30 m, and recommended values of average shear velocity are given for typical rock and soil sites and for site categories used in the National Earthquake Hazards Reduction Program's recommended seismic code provisions. In addition, we stipulate more restrictive ranges of magnitude and distance for the use of our equations than in our previous publications. Finally, we provide tables of input parameters that include a few corrections to site classifications and earthquake magnitude (the corrections made a small enough difference in the ground-motion predictions that we chose not to change the coefficients of the prediction equations).

  18. Theoretical basis to measure the impact of short-lasting control of an infectious disease on the epidemic peak

    PubMed Central

    2011-01-01

    Background While many pandemic preparedness plans have promoted disease control effort to lower and delay an epidemic peak, analytical methods for determining the required control effort and making statistical inferences have yet to be sought. As a first step to address this issue, we present a theoretical basis on which to assess the impact of an early intervention on the epidemic peak, employing a simple epidemic model. Methods We focus on estimating the impact of an early control effort (e.g. unsuccessful containment), assuming that the transmission rate abruptly increases when control is discontinued. We provide analytical expressions for magnitude and time of the epidemic peak, employing approximate logistic and logarithmic-form solutions for the latter. Empirical influenza data (H1N1-2009) in Japan are analyzed to estimate the effect of the summer holiday period in lowering and delaying the peak in 2009. Results Our model estimates that the epidemic peak of the 2009 pandemic was delayed for 21 days due to summer holiday. Decline in peak appears to be a nonlinear function of control-associated reduction in the reproduction number. Peak delay is shown to critically depend on the fraction of initially immune individuals. Conclusions The proposed modeling approaches offer methodological avenues to assess empirical data and to objectively estimate required control effort to lower and delay an epidemic peak. Analytical findings support a critical need to conduct population-wide serological survey as a prior requirement for estimating the time of peak. PMID:21269441

  19. SU-F-T-492: The Impact of Water Temperature On Absolute Dose Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, N; Podgorsak, M; Roswell Park Cancer Institute, Buffalo, NY

    Purpose: The Task Group 51 (TG 51) protocol prescribes that dose calibration of photon beams be done by irradiating an ionization chamber in a water tank at pre-defined depths. Methodologies are provided to account for variations in measurement conditions by applying correction factors. However, the protocol does not completely account for the impact of water temperature. It is well established that water temperature will influence the density of air in the ion chamber collecting volume. Water temperature, however, will also influence the size of the collecting volume via thermal expansion of the cavity wall and the density of the watermore » in the tank. In this work the overall effect of water temperature on absolute dosimetry has been investigated. Methods: Dose measurements were made using a Farmer-type ion chamber for 6 and 23 MV photon beams with water temperatures ranging from 10 to 40°C. A reference ion chamber was used to account for fluctuations in beam output between successive measurements. Results: For the same beam output, the dose determined using TG 51 was dependent on the temperature of the water in the tank. A linear regression of the data suggests that the dependence is statistically significant with p-values of the slope equal to 0.003 and 0.01 for 6 and 23 MV beams, respectively. For a 10 degree increase in water phantom temperature, the absolute dose determined with TG 51 increased by 0.27% and 0.31% for 6 and 23 MV beams, respectively. Conclusion: There is a measurable effect of water temperature on absolute dose calibration. To account for this effect, a reference temperature can be defined and a correction factor applied to account for deviations from this reference temperature during beam calibration. Such a factor is expected to be of similar magnitude to most of the existing TG 51 correction factors.« less

  20. Effects of ventricular rate and regularity on the velocity and magnitude of left atrial appendage flow in atrial fibrillation

    PubMed Central

    Obel, O A; Luddington, L; Maarouf, N; Aytemir, K; Ekwall, C; Malik, M; Camm, A J

    2005-01-01

    Objective: To prospectively determine whether ventricular rate and regularity are significant determinants of the velocity and magnitude of left atrial appendage (LAA) flow. Design and patients: 12 patients with atrial fibrillation (AF), high degree atrioventricular block, and indwelling permanent pacemakers were studied. Setting: Cardiology department of a tertiary referral centre. Interventions: Pacing was triggered by an external programmable transcutaneous device. Patients were paced at 60, 120, and 150 beats/min in both regular and irregular rhythm. LAA flow velocity and magnitude were assessed with transoesophageal Doppler echocardiography. Main outcome measures: Peak and mean LAA inflow and outflow velocity, and time-velocity interval (TVI) of LAA flow. Results: Increasing ventricular rate was associated with significantly lower peak inflow (p < 0.01), peak outflow (p < 0.05), mean inflow (p < 0.01), and mean outflow (p < 0.05) velocities and with a lower TVI of LAA filling and emptying velocities (p < 0.01). This effect was noted at rates of 60 beats/min compared with both 120 and 150 beats/min. At a pacing rate of 120 beats/min there was a significantly higher total TVI when pacing at a regular than at an irregular rhythm (40.16 (14.6) cm v 30.74 (10.9) cm, p < 0.05). Conclusions: In this study, LAA filling velocities in patients in AF were significantly influenced by paced ventricular rate and to a much lesser extent ventricular rhythm. These results suggest that rapid ventricular rates may predispose to stasis in the LAA in AF. PMID:15894771

  1. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  2. Relationships between body composition, body dimensions, and peak speed in cross-country sprint skiing.

    PubMed

    Stoggl, Thomas; Enqvist, Jonas; Muller, Erich; Holmberg, Hans-Christer

    2010-01-01

    In modern sprint cross-country skiing, strength and maximal speed are major determinants of performance. The aims of this study were to ascertain the anthropometric characteristics of world-class sprint skiers and to evaluate whether a specific body composition and/or body dimension characterizes a successful sprint skier. Our hypothesis was that body height and lean body mass are related to peak speed in double poling and diagonal stride. Fourteen male national and international elite skiers performed two peak speed tests in double poling and diagonal stride roller skiing on a treadmill and were analysed using dual-energy X-ray absorptiometry to determine body composition and body dimensions. Relative pole length was positively correlated with both techniques (double poling: r = 0.77, P < 0.01; diagonal stride: r = 0.60, P < 0.05) and was the only variable that was part of the multiple regression model for both double poling and diagonal stride peak speed. Body height was not correlated with any technique, whereas lean trunk mass (r = 0.75, P < 0.01), body mass index (r = 0.66, P < 0.01), total lean mass (r = 0.69, P < 0.01), and body mass (r = 0.57, P < 0.05) were positively related to double poling peak speed. Total lean mass (absolute: r = 0.58, P < 0.05; relative: r = 0.76, P < 0.001) and relative lean mass of the trunk, arms (both r = 0.72, P < 0.01), and legs (r = 0.54, P < 0.05) were positively related to diagonal stride peak speed. In conclusion, skiers should aim to achieve a body composition with a high percentage of lean mass and low fat mass. A focus on trunk mass through increased muscle mass appears to be important, especially for double poling. The use of longer poles (percent body height) seems to be advantageous for both double poling and diagonal stride peak speed, whereas body dimensions do not appear to be a predictive factor.

  3. Population-based absolute risk estimation with survey data

    PubMed Central

    Kovalchik, Stephanie A.; Pfeiffer, Ruth M.

    2013-01-01

    Absolute risk is the probability that a cause-specific event occurs in a given time interval in the presence of competing events. We present methods to estimate population-based absolute risk from a complex survey cohort that can accommodate multiple exposure-specific competing risks. The hazard function for each event type consists of an individualized relative risk multiplied by a baseline hazard function, which is modeled nonparametrically or parametrically with a piecewise exponential model. An influence method is used to derive a Taylor-linearized variance estimate for the absolute risk estimates. We introduce novel measures of the cause-specific influences that can guide modeling choices for the competing event components of the model. To illustrate our methodology, we build and validate cause-specific absolute risk models for cardiovascular and cancer deaths using data from the National Health and Nutrition Examination Survey. Our applications demonstrate the usefulness of survey-based risk prediction models for predicting health outcomes and quantifying the potential impact of disease prevention programs at the population level. PMID:23686614

  4. Absolute marine gravimetry with matter-wave interferometry.

    PubMed

    Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F

    2018-02-12

    Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5  m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.

  5. Peak tree: a new tool for multiscale hierarchical representation and peak detection of mass spectrometry data.

    PubMed

    Zhang, Peng; Li, Houqiang; Wang, Honghui; Wong, Stephen T C; Zhou, Xiaobo

    2011-01-01

    Peak detection is one of the most important steps in mass spectrometry (MS) analysis. However, the detection result is greatly affected by severe spectrum variations. Unfortunately, most current peak detection methods are neither flexible enough to revise false detection results nor robust enough to resist spectrum variations. To improve flexibility, we introduce peak tree to represent the peak information in MS spectra. Each tree node is a peak judgment on a range of scales, and each tree decomposition, as a set of nodes, is a candidate peak detection result. To improve robustness, we combine peak detection and common peak alignment into a closed-loop framework, which finds the optimal decomposition via both peak intensity and common peak information. The common peak information is derived and loopily refined from the density clustering of the latest peak detection result. Finally, we present an improved ant colony optimization biomarker selection method to build a whole MS analysis system. Experiment shows that our peak detection method can better resist spectrum variations and provide higher sensitivity and lower false detection rates than conventional methods. The benefits from our peak-tree-based system for MS disease analysis are also proved on real SELDI data.

  6. Forecasting the magnitude and onset of El Niño based on climate network

    NASA Astrophysics Data System (ADS)

    Meng, Jun; Fan, Jingfang; Ashkenazy, Yosef; Bunde, Armin; Havlin, Shlomo

    2018-04-01

    El Niño is probably the most influential climate phenomenon on inter-annual time scales. It affects the global climate system and is associated with natural disasters; it has serious consequences in many aspects of human life. However, the forecasting of the onset and in particular the magnitude of El Niño are still not accurate enough, at least more than half a year ahead. Here, we introduce a new forecasting index based on climate network links representing the similarity of low frequency temporal temperature anomaly variations between different sites in the Niño 3.4 region. We find that significant upward trends in our index forecast the onset of El Niño approximately 1 year ahead, and the highest peak since the end of last El Niño in our index forecasts the magnitude of the following event. We study the forecasting capability of the proposed index on several datasets, including, ERA-Interim, NCEP Reanalysis I, PCMDI-AMIP 1.1.3 and ERSST.v5.

  7. The absolute dynamic ocean topography (ADOT)

    NASA Astrophysics Data System (ADS)

    Bosch, Wolfgang; Savcenko, Roman

    The sea surface slopes relative to the geoid (an equipotential surface) basically carry the in-formation on the absolute velocity field of the surface circulation. Pure oceanographic models may remain unspecific with respect to the absolute level of the ocean topography. In contrast, the geodetic approach to estimate the ocean topography as difference between sea level and the geoid gives by definition an absolute dynamic ocean topography (ADOT). This approach requires, however, a consistent treatment of geoid and sea surface heights, the first being usually derived from a band limited spherical harmonic series of the Earth gravity field and the second observed with much higher spectral resolution by satellite altimetry. The present contribution shows a procedure for estimating the ADOT along the altimeter profiles, preserving as much sea surface height details as the consistency w.r.t. the geoid heights will allow. The consistent treatment at data gaps and the coast is particular demanding and solved by a filter correction. The ADOT profiles are inspected for their innocent properties towards the coast and compared to external estimates of the ocean topography or the velocity field of the surface circulation as derived, for example, by ARGO floats.

  8. Developmental Foundations of Children’s Fraction Magnitude Knowledge

    PubMed Central

    Mou, Yi; Li, Yaoran; Hoard, Mary K.; Nugent, Lara D.; Chu, Felicia W.; Rouder, Jeffrey N.; Geary, David C.

    2016-01-01

    The conceptual insight that fractions represent magnitudes is a critical yet daunting step in children’s mathematical development, and the knowledge of fraction magnitudes influences children’s later mathematics learning including algebra. In this study, longitudinal data were analyzed to identify the mathematical knowledge and domain-general competencies that predicted 8th and 9th graders’ (n=122) knowledge of fraction magnitudes and its cross-grade gains. Performance on the fraction magnitude measures predicted 9th grade algebra achievement. Understanding and fluently identifying the numerator-denominator relation in 7th grade emerged as the key predictor of later fraction magnitudes knowledge in both 8th and 9th grades. Competence at using fraction procedures, knowledge of whole number magnitudes, and the central executive contributed to 9th but not 8th graders’ fraction magnitude knowledge, and knowledge of whole number magnitude contributed to cross-grade gains. The key results suggest fluent processing of numerator-denominator relations presages students’ understanding of fractions as magnitudes and that the integration of whole number and fraction magnitudes occurs gradually. PMID:27773965

  9. Absolute configuration of a chiral CHD group via neutron diffraction: confirmation of the absolute stereochemistry of the enzymatic formation of malic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bau, R.; Brewer, I.; Chiang, M.Y.

    Neutron diffraction has been used to monitor the absolute stereochemistry of an enzymatic reaction. (-)(2S)malic-3-d acid was prepared by the action of fumarase on fumaric acid in D/sub 2/O. After a large number of cations were screened, it was found that (+)(R)..cap alpha..-phenylethylamine forms the large crystals necessary for a neutron diffraction analysis. The subsequent structure determination showed that (+)(R)..cap alpha..-phenylethylammonium (-)(2S)malate-3-d has an absolute configuration of R at the CHD site. This result confirms the absolute stereochemistry of fumarate-to-malate transformation as catalyzed by the enzyme fumarase.

  10. Correlated peak relative light intensity and peak current in triggered lightning subsequent return strokes

    NASA Technical Reports Server (NTRS)

    Idone, V. P.; Orville, R. E.

    1985-01-01

    The correlation between peak relative light intensity L(R) and stroke peak current I(R) is examined for 39 subsequent return strokes in two triggered lightning flashes. One flash contained 19 strokes and the other 20 strokes for which direct measurements were available of the return stroke peak current at ground. Peak currents ranged from 1.6 to 21 kA. The measurements of peak relative light intensity were obtained from photographic streak recordings using calibrated film and microsecond resolution. Correlations, significant at better than the 0.1 percent level, were found for several functional relationships. Although a relation between L(R) and I(R) is evident in these data, none of the analytical relations considered is clearly favored. The correlation between L(R) and the maximum rate of current rise is also examined, but less correlation than between L(R) and I(R) is found. In addition, the peak relative intensity near ground is evaluated for 22 dart leaders, and a mean ratio of peak dart leader to peak return stroke relative light intensity was found to be 0.1 with a range of 0.02-0.23. Using two different methods, the peak current near ground in these dart leaders is estimated to range from 0.1 to 6 kA.

  11. Absolute calibration of sniffer probes on Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  12. Absolute calibration of sniffer probes on Wendelstein 7-X.

    PubMed

    Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured.

  13. Preparation of an oakmoss absolute with reduced allergenic potential.

    PubMed

    Ehret, C; Maupetit, P; Petrzilka, M; Klecak, G

    1992-06-01

    Synopsis Oakmoss absolute, an extract of the lichen Evernia prunastri, is known to cause allergenic skin reactions due to the presence of certain aromatic aldehydes such as atranorin, chloratranorin, ethyl hematommate and ethyl chlorohematommate. In this paper it is shown that treatment of Oakmoss absolute with amino acids such as lysine and/or leucine, lowers considerably the content of these allergenic constituents including atranol and chloratranol. The resulting Oakmoss absolute, which exhibits an excellent olfactive quality, was tested extensively in comparative studies on guinea pigs and on man. The results of the Guinea Pig Maximization Test (GPMT) and Human Repeated Insult Patch Test (HRIPT) indicate that, in comparison with the commercial test sample, the allergenicity of this new quality of Oakmoss absolute was considerably reduced, and consequently better skin tolerance of this fragrance for man was achieved.

  14. Scaling relation between earthquake magnitude and the departure time from P wave similar growth

    USGS Publications Warehouse

    Noda, Shunta; Ellsworth, William L.

    2016-01-01

    We introduce a new scaling relation between earthquake magnitude (M) and a characteristic of initial P wave displacement. By examining Japanese K-NET data averaged in bins partitioned by Mw and hypocentral distance, we demonstrate that the P wave displacement briefly displays similar growth at the onset of rupture and that the departure time (Tdp), which is defined as the time of departure from similarity of the absolute displacement after applying a band-pass filter, correlates with the final M in a range of 4.5 ≤ Mw ≤ 7. The scaling relation between Mw and Tdp implies that useful information on the final M can be derived while the event is still in progress because Tdp occurs before the completion of rupture. We conclude that the scaling relation is important not only for earthquake early warning but also for the source physics of earthquakes.

  15. Physics of negative absolute temperatures.

    PubMed

    Abraham, Eitan; Penrose, Oliver

    2017-01-01

    Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.

  16. SN 2015as: a low-luminosity Type IIb supernova without an early light-curve peak

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Anjasha; Misra, Kuntal; Pastorello, A.; Sahu, D. K.; Tomasella, L.; Tartaglia, L.; Singh, Mridweeka; Dastidar, Raya; Srivastav, S.; Ochner, P.; Brown, Peter J.; Anupama, G. C.; Benetti, S.; Cappellaro, E.; Kumar, Brajesh; Kumar, Brijesh; Pandey, S. B.

    2018-05-01

    We present results of the photometric (from 3 to 509 d post-explosion) and spectroscopic (up to 230 d post-explosion) monitoring campaign of the He-rich Type IIb supernova (SN) 2015as. The (B - V) colour evolution of SN 2015as closely resemble those of SN 2008ax, suggesting that SN 2015as belongs to the SN IIb subgroup that does not show the early, short-duration photometric peak. The light curve of SN 2015as reaches the B-band maximum about 22 d after the explosion, at an absolute magnitude of -16.82 ± 0.18 mag. At ˜75 d after the explosion, its spectrum transitions from that of a SN II to a SN Ib. P Cygni features due to He I lines appear at around 30 d after explosion, indicating that the progenitor of SN 2015as was partially stripped. For SN 2015as, we estimate a 56Ni mass of ˜0.08 M⊙ and ejecta mass of 1.1-2.2 M⊙, which are similar to the values inferred for SN 2008ax. The quasi-bolometric analytical light-curve modelling suggests that the progenitor of SN 2015as has a modest mass (˜0.1 M⊙), a nearly compact (˜0.05 × 1013 cm) H envelope on top of a dense, compact (˜2 × 1011 cm) and a more massive (˜1.2 M⊙) He core. The analysis of the nebular phase spectra indicates that ˜0.44 M⊙ of O is ejected in the explosion. The intensity ratio of the [Ca II]/[O I] nebular lines favours either a main-sequence progenitor mass of ˜15 M⊙ or a Wolf-Rayet star of 20 M⊙.

  17. Pikes Peak, Colorado

    USGS Publications Warehouse

    Brunstein, Craig; Quesenberry, Carol; Davis, John; Jackson, Gene; Scott, Glenn R.; D'Erchia, Terry D.; Swibas, Ed; Carter, Lorna; McKinney, Kevin; Cole, Jim

    2006-01-01

    For 200 years, Pikes Peak has been a symbol of America's Western Frontier--a beacon that drew prospectors during the great 1859-60 Gold Rush to the 'Pikes Peak country,' the scenic destination for hundreds of thousands of visitors each year, and an enduring source of pride for cities in the region, the State of Colorado, and the Nation. November 2006 marks the 200th anniversary of the Zebulon M. Pike expedition's first sighting of what has become one of the world's most famous mountains--Pikes Peak. In the decades following that sighting, Pikes Peak became symbolic of America's Western Frontier, embodying the spirit of Native Americans, early explorers, trappers, and traders who traversed the vast uncharted wilderness of the Western Great Plains and the Southern Rocky Mountains. High-quality printed paper copies of this poster are available at no cost from Information Services, U.S. Geological Survey (1-888-ASK-USGS).

  18. Uncertainty of the peak flow reconstruction of the 1907 flood in the Ebro River in Xerta (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Ruiz-Bellet, Josep Lluís; Castelltort, Xavier; Balasch, J. Carles; Tuset, Jordi

    2017-02-01

    There is no clear, unified and accepted method to estimate the uncertainty of hydraulic modelling results. In historical floods reconstruction, due to the lower precision of input data, the magnitude of this uncertainty could reach a high value. With the objectives of giving an estimate of the peak flow error of a typical historical flood reconstruction with the model HEC-RAS and of providing a quick, simple uncertainty assessment that an end user could easily apply, the uncertainty of the reconstructed peak flow of a major flood in the Ebro River (NE Iberian Peninsula) was calculated with a set of local sensitivity analyses on six input variables. The peak flow total error was estimated at ±31% and water height was found to be the most influential variable on peak flow, followed by Manning's n. However, the latter, due to its large uncertainty, was the greatest contributor to peak flow total error. Besides, the HEC-RAS resulting peak flow was compared to the ones obtained with the 2D model Iber and with Manning's equation; all three methods gave similar peak flows. Manning's equation gave almost the same result than HEC-RAS. The main conclusion is that, to ensure the lowest peak flow error, the reliability and precision of the flood mark should be thoroughly assessed.

  19. Absolute gravimetry for monitoring geodynamics in Greenland.

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Strykowski, G.; Forsberg, R.

    2015-12-01

    Here are presented the preliminary results of the absolute gravity measurements done in Greenland by DTU Space with their A10 absolute gravimeter (the A10-019). The purpose, besides establishing and maintaining a national gravity network, is to study geodynamics.The absolute gravity measurements are juxtaposed with the permanent GNET GNSS stations. The first measurements were conducted in 2009 and a few sites have been re-visited. As of present is there a gravity value at 18 GNET sites.There are challenges in interpreting the measurements from Greenland and several signals has to be taken into account, besides the geodynamical signals originating from the changing load of the ice, there is also a clear signal of direct attraction from different masses. Here are presented the preliminary results of our measurements in Greenland and attempts explain them through modelling of the geodynamical signals and the direct attraction from the ocean and ice.

  20. Establishment of peak bone mass.

    PubMed

    Mora, Stefano; Gilsanz, Vicente

    2003-03-01

    Among the main areas of progress in osteoporosis research during the last decade or so are the general recognition that this condition, which is the cause of so much pain in the elderly population, has its antecedents in childhood and the identification of the structural basis accounting for much of the differences in bone strength among humans. Nevertheless, current understanding of the bone mineral accrual process is far from complete. The search for genes that regulate bone mass acquisition is ongoing, and current results are not sufficient to identify subjects at risk. However, there is solid evidence that BMD measurements can be helpful for the selection of subjects that presumably would benefit from preventive interventions. The questions regarding the type of preventive interventions, their magnitude, and duration remain unanswered. Carefully designed controlled trials are needed. Nevertheless, previous experience indicates that weight-bearing activity and possibly calcium supplements are beneficial if they are begun during childhood and preferably before the onset of puberty. Modification of unhealthy lifestyles and increments in exercise or calcium assumption are logical interventions that should be implemented to improve bone mass gains in all children and adolescents who are at risk of failing to achieve an optimal peak bone mass.

  1. Peak Experience Project

    ERIC Educational Resources Information Center

    Scott, Daniel G.; Evans, Jessica

    2010-01-01

    This paper emerges from the continued analysis of data collected in a series of international studies concerning Childhood Peak Experiences (CPEs) based on developments in understanding peak experiences in Maslow's hierarchy of needs initiated by Dr Edward Hoffman. Bridging from the series of studies, Canadian researchers explore collected…

  2. Valence and magnitude ambiguity in feedback processing.

    PubMed

    Gu, Ruolei; Feng, Xue; Broster, Lucas S; Yuan, Lu; Xu, Pengfei; Luo, Yue-Jia

    2017-05-01

    Outcome feedback which indicates behavioral consequences are crucial for reinforcement learning and environmental adaptation. Nevertheless, outcome information in daily life is often totally or partially ambiguous. Studying how people interpret this kind of information would provide important knowledge about the human evaluative system. This study concentrates on the neural processing of partially ambiguous feedback, that is, either its valence or magnitude is unknown to participants. To address this topic, we sequentially presented valence and magnitude information; electroencephalography (EEG) response to each kind of presentation was recorded and analyzed. The event-related potential components feedback-related negativity (FRN) and P3 were used as indices of neural activity. Consistent with previous literature, the FRN elicited by ambiguous valence was not significantly different from that elicited by negative valence. On the other hand, the FRN elicited by ambiguous magnitude was larger than both the large and small magnitude, indicating the motivation to seek unambiguous magnitude information. The P3 elicited by ambiguous valence and ambiguous magnitude was not significantly different from that elicited by negative valence and small magnitude, respectively, indicating the emotional significance of feedback ambiguity. Finally, the aforementioned effects also manifested in the stage of information integration. These findings indicate both similarities and discrepancies between the processing of valence ambiguity and that of magnitude ambiguity, which may help understand the mechanisms of ambiguous information processing.

  3. Strongly nonlinear theory of rapid solidification near absolute stability

    NASA Astrophysics Data System (ADS)

    Kowal, Katarzyna N.; Altieri, Anthony L.; Davis, Stephen H.

    2017-10-01

    We investigate the nonlinear evolution of the morphological deformation of a solid-liquid interface of a binary melt under rapid solidification conditions near two absolute stability limits. The first of these involves the complete stabilization of the system to cellular instabilities as a result of large enough surface energy. We derive nonlinear evolution equations in several limits in this scenario and investigate the effect of interfacial disequilibrium on the nonlinear deformations that arise. In contrast to the morphological stability problem in equilibrium, in which only cellular instabilities appear and only one absolute stability boundary exists, in disequilibrium the system is prone to oscillatory instabilities and a second absolute stability boundary involving attachment kinetics arises. Large enough attachment kinetics stabilize the oscillatory instabilities. We derive a nonlinear evolution equation to describe the nonlinear development of the solid-liquid interface near this oscillatory absolute stability limit. We find that strong asymmetries develop with time. For uniform oscillations, the evolution equation for the interface reduces to the simple form f''+(βf')2+f =0 , where β is the disequilibrium parameter. Lastly, we investigate a distinguished limit near both absolute stability limits in which the system is prone to both cellular and oscillatory instabilities and derive a nonlinear evolution equation that captures the nonlinear deformations in this limit. Common to all these scenarios is the emergence of larger asymmetries in the resulting shapes of the solid-liquid interface with greater departures from equilibrium and larger morphological numbers. The disturbances additionally sharpen near the oscillatory absolute stability boundary, where the interface becomes deep-rooted. The oscillations are time-periodic only for small-enough initial amplitudes and their frequency depends on a single combination of physical parameters, including the

  4. Measurement of the absolute reflectance of polytetrafluoroethylene (PTFE) immersed in liquid xenon

    NASA Astrophysics Data System (ADS)

    Neves, F.; Lindote, A.; Morozov, A.; Solovov, V.; Silva, C.; Bras, P.; Rodrigues, J. P.; Lopes, M. I.

    2017-01-01

    The performance of a detector using liquid xenon (LXe) as a scintillator is strongly dependent on the collection efficiency for xenon scintillation light, which in turn is critically dependent on the reflectance of the surfaces that surround the active volume. To improve the light collection in such detectors the active volume is usually surrounded by polytetrafluoroethylene (PTFE) reflector panels, used due to its very high reflectance—even at the short wavelength of scintillation light of LXe (peaked at 178 nm). In this work, which contributed to the overall R&D effort towards the LUX-ZEPLIN (LZ) experiment, we present experimental results for the absolute reflectance measurements of three different PTFE samples (including the material used in the LUX detector) immersed in LXe for its scintillation light. The obtained results show that very high bi-hemispherical reflectance values (>= 97%) can be achieved, enabling very low energy thresholds in liquid xenon scintillator-based detectors.

  5. The 1954 Rainbow Mountain-Fairview Peak-Dixie Valley earthquakes: A triggered normal faulting sequence

    NASA Astrophysics Data System (ADS)

    Hodgkinson, Kathleen M.; Stein, Ross S.; King, Geoffrey C. P.

    1996-11-01

    In 1954, four earthquakes of M > 6.0 occurred within a 30 km radius in a period of six months. The Rainbow Mountain-Fairview Peak-Dixie Valley earthquakes are among the largest to have been recorded geodetically in the Basin and Range province. The Fairview Peak earthquake (M = 7.2, December 12, 1954) followed two events in the Rainbow Mountains (M = 6.2, July 6, and M = 6.5, August 24, 1954) by 6 months. Four minutes later the Dixie Valley fault ruptured (M = 6.7, December 12, 1954). The changes in static stresses caused by the events are calculated using the Coulomb-Navier failure criterion and assuming uniform slip on rectangular dislocations embedded in an elastic half-space. Coulomb stress changes are resolved on optimally oriented faults and on each of the faults that ruptured in the chain of events. These calculations show that each earthquake in the Rainbow Mountain-Fairview Peak-Dixie Valley sequence was preceded by a static stress change that encouraged failure. The magnitude of the stress increases transferred from one earthquake to another ranged from 0.01 MPa (0.1 bar) to over 0.1 MPa (1 bar). Stresses were reduced by up to 0.1 MPa over most of the Rainbow Mountain-Fairview Peak area as a result of the earthquake sequence.

  6. Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA

    USGS Publications Warehouse

    Fenton, C.R.; Webb, R.H.; Cerling, T.E.

    2006-01-01

    The failure of a lava dam 165,000 yr ago produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 m high, and geochemical evidence linked this structure to outburst-flood deposits that occurred for 32 km downstream. Using the Hyaloclastite outburst-flood deposits as paleostage indicators, we used dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. Failure of the Hyaloclastite Dam released a maximum 11 ?? 109 m3 of water in 31 h. Peak discharges, estimated from uncertainty in channel geometry, dam height, and hydraulic characteristics, ranged from 2.3 to 5.3 ?? 105 m3 s-1 for the Hyaloclastite outburst flood. This discharge is an order of magnitude greater than the largest known discharge on the Colorado River (1.4 ?? 104 m3 s-1) and the largest peak discharge resulting from failure of a constructed dam in the USA (6.5 ?? 104 m3 s-1). Moreover, the Hyaloclastite outburst flood is the oldest documented Quaternary flood and one of the largest to have occurred in the continental USA. The peak discharge for this flood ranks in the top 30 floods (>105 m3 s-1) known worldwide and in the top ten largest floods in North America. ?? 2005 University of Washington. All rights reserved.

  7. The 1954 Rainbow Mountain-Fairview Peak-Dixie Valley earthquakes: A triggered normal faulting sequence

    USGS Publications Warehouse

    Hodgkinson, K.M.; Stein, R.S.; King, G.C.P.

    1996-01-01

    In 1954, four earthquakes of M > 6.0 occurred within a 30 km radius in a period of six months. The Rainbow Mountain-Fairview Peak-Dixie Valley earthquakes are among the largest to have been recorded geodetically in the Basin and Range province. The Fairview Peak earthquake (M=7.2, December 12, 1954) followed two events in the Rainbow Mountains (M=6.2, July 6, and M=6.5, August 24, 1954) by 6 months. Four minutes later the Dixie Valley fault ruptured (M=6.7, December 12, 1954). The changes in static stresses caused by the events are calculated using the Coulomb-Navier failure criterion and assuming uniform slip on rectangular dislocations embedded in an elastic half-space. Coulomb stress changes are resolved on optimally oriented faults and on each of the faults that ruptured in the chain of events. These calculations show that each earthquake in the Rainbow Mountain-Fairview Peak-Dixie Valley sequence was preceded by a static stress change that encouraged failure. The magnitude of the stress increases transferred from one earthquake to another ranged from 0.01 MPa (0.1 bar) to over 0.1 MPa (1 bar). Stresses were reduced by up to 0.1 MPa over most of the Rainbow Mountain-Fairview Peak area as a result of the earthquake sequence. Copyright 1996 by the American Geophysical Union.

  8. Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Fenton, Cassandra R.; Webb, Robert H.; Cerling, Thure E.

    2006-03-01

    The failure of a lava dam 165,000 yr ago produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 m high, and geochemical evidence linked this structure to outburst-flood deposits that occurred for 32 km downstream. Using the Hyaloclastite outburst-flood deposits as paleostage indicators, we used dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. Failure of the Hyaloclastite Dam released a maximum 11 × 10 9 m 3 of water in 31 h. Peak discharges, estimated from uncertainty in channel geometry, dam height, and hydraulic characteristics, ranged from 2.3 to 5.3 × 10 5 m 3 s -1 for the Hyaloclastite outburst flood. This discharge is an order of magnitude greater than the largest known discharge on the Colorado River (1.4 × 10 4 m 3 s -1) and the largest peak discharge resulting from failure of a constructed dam in the USA (6.5 × 10 4 m 3 s -1). Moreover, the Hyaloclastite outburst flood is the oldest documented Quaternary flood and one of the largest to have occurred in the continental USA. The peak discharge for this flood ranks in the top 30 floods (>10 5 m 3 s -1) known worldwide and in the top ten largest floods in North America.

  9. Magnitude scale for the Central American tsunamis

    NASA Astrophysics Data System (ADS)

    Hatori, Tokutaro

    1995-09-01

    Based on the tsunami data in the Central American region, the regional characteristic of tsunami magnitude scales is discussed in relation to earthquake magnitudes during the period from 1900 to 1993. Tsunami magnitudes on the Imamura-Iida scale of the 1985 Mexico and 1992 Nicaragua tsunamis are determined to be m=2.5, judging from the tsunami height-distance diagram. The magnitude values of the Central American tsunamis are relatively small compared to earthquakes with similar size in other regions. However, there are a few large tsunamis generated by low-frequency earthquakes such as the 1992 Nicaragua earthquake. Inundation heights of these unusual tsunamis are about 10 times higher than those of normal tsunamis for the same earthquake magnitude ( M s =6.9 7.2). The Central American tsunamis having magnitude m>1 have been observed by the Japanese tide stations, but the effect of directivity toward Japan is very small compared to that of the South American tsunamis.

  10. Absolute far-ultraviolet spectrophotometry of hot subluminous stars from Voyager

    NASA Technical Reports Server (NTRS)

    Holberg, J. B.; Ali, B.; Carone, T. E.; Polidan, R. S.

    1991-01-01

    Observations, obtained with the Voyager ultraviolet spectrometers, are presented of absolute fluxes for two well-known hot subluminous stars: BD + 28 deg 4211, an sdO, and G191 - B2B, a hot DA white dwarf. Complete absolute energy distributions for these two stars, from the Lyman limit at 912 A to 1 micron, are given. For BD + 28 deg 4211, a single power law closely represents the entire observed energy distribution. For G191 - B2B, a pure hydrogen model atmosphere provides an excellent match to the entire absolute energy distribution. Voyager absolute fluxes are discussed in relation to those reported from various sounding rocket experiments, including a recent rocket observation of BD + 28 deg 4211.

  11. Absolute water storages in the Congo River floodplains from integration of InSAR and satellite radar altimetry

    NASA Astrophysics Data System (ADS)

    Lee, H.; Yuan, T.; Jung, H. C.; Aierken, A.; Beighley, E.; Alsdorf, D. E.; Tshimanga, R.; Kim, D.

    2017-12-01

    Floodplains delay the transport of water, dissolved matter and sediments by storing water during flood peak seasons. Estimation of water storage over the floodplains is essential to understand the water balances in the fluvial systems and the role of floodplains in nutrient and sediment transport. However, spatio-temporal variations of water storages over floodplains are not well known due to their remoteness, vastness, and high temporal variability. In this study, we propose a new method to estimate absolute water storages over the floodplains by establishing relations between water depths (d) and water volumes (V) using 2-D water depth maps from the integration of Interferometric Synthetic Aperture Radar (InSAR) and altimetry measurements. We applied this method over the Congo River floodplains and modeled the d-V relation using a power function (note that d-V indicates relation between d and V, not d minus V), which revealed the cross-section geometry of the floodplains as a convex curve. Then, we combined this relation and Envisat altimetry measurements to construct time series of floodplain's absolute water storages from 2002 to 2011. Its mean annual amplitude over the floodplains ( 7,777 km2) is 3.860.59 km3 with peaks in December, which lags behind total water storage (TWS) changes from the Gravity Recovery and Climate Experiment (GRACE) and precipitation changes from Tropical Rainfall Measuring Mission (TRMM) by about one month. The results also exhibit inter-annual variability, with maximum water volume to be 5.9 +- 0.72 km3 in the wet year of 2002 and minimum volume to be 2.01 +- 0.63 km3 in the dry year of 2005. The inter-annual variation of water storages can be explained by the changes of precipitation from TRMM.

  12. Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio

    USGS Publications Warehouse

    Koltun, G.F.; Roberts, J.W.

    1990-01-01

    Multiple-regression equations are presented for estimating flood-peak discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at ungaged sites on rural, unregulated streams in Ohio. The average standard errors of prediction for the equations range from 33.4% to 41.4%. Peak discharge estimates determined by log-Pearson Type III analysis using data collected through the 1987 water year are reported for 275 streamflow-gaging stations. Ordinary least-squares multiple-regression techniques were used to divide the State into three regions and to identify a set of basin characteristics that help explain station-to- station variation in the log-Pearson estimates. Contributing drainage area, main-channel slope, and storage area were identified as suitable explanatory variables. Generalized least-square procedures, which include historical flow data and account for differences in the variance of flows at different gaging stations, spatial correlation among gaging station records, and variable lengths of station record were used to estimate the regression parameters. Weighted peak-discharge estimates computed as a function of the log-Pearson Type III and regression estimates are reported for each station. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site located on the same stream. Limitations and shortcomings cited in an earlier report on the magnitude and frequency of floods in Ohio are addressed in this study. Geographic bias is no longer evident for the Maumee River basin of northwestern Ohio. No bias is found to be associated with the forested-area characteristic for the range used in the regression analysis (0.0 to 99.0%), nor is this characteristic significant in explaining peak discharges. Surface-mined area likewise is not significant in explaining peak discharges, and the regression equations are not biased when applied to basins having approximately 30% or less

  13. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  14. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  15. Probative value of absolute and relative judgments in eyewitness identification.

    PubMed

    Clark, Steven E; Erickson, Michael A; Breneman, Jesse

    2011-10-01

    It is well-accepted that eyewitness identification decisions based on relative judgments are less accurate than identification decisions based on absolute judgments. However, the theoretical foundation for this view has not been established. In this study relative and absolute judgments were compared through simulations of the WITNESS model (Clark, Appl Cogn Psychol 17:629-654, 2003) to address the question: Do suspect identifications based on absolute judgments have higher probative value than suspect identifications based on relative judgments? Simulations of the WITNESS model showed a consistent advantage for absolute judgments over relative judgments for suspect-matched lineups. However, simulations of same-foils lineups showed a complex interaction based on the accuracy of memory and the similarity relationships among lineup members.

  16. Determination of Absolute Zero Using a Computer-Based Laboratory

    ERIC Educational Resources Information Center

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  17. Computationally Aided Absolute Stereochemical Determination of Enantioenriched Amines.

    PubMed

    Zhang, Jun; Gholami, Hadi; Ding, Xinliang; Chun, Minji; Vasileiou, Chrysoula; Nehira, Tatsuo; Borhan, Babak

    2017-03-17

    A simple and efficient protocol for sensing the absolute stereochemistry and enantiomeric excess of chiral monoamines is reported. Preparation of the sample requires a single-step reaction of the 1,1'-(bromomethylene)dinaphthalene (BDN) with the chiral amine. Analysis of the exciton coupled circular dichroism generated from the BDN-derivatized chiral amine sample, along with comparison to conformational analysis performed computationally, yields the absolute stereochemistry of the parent chiral monoamine.

  18. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  19. A Special Application of Absolute Value Techniques in Authentic Problem Solving

    ERIC Educational Resources Information Center

    Stupel, Moshe

    2013-01-01

    There are at least five different equivalent definitions of the absolute value concept. In instances where the task is an equation or inequality with only one or two absolute value expressions, it is a worthy educational experience for learners to solve the task using each one of the definitions. On the other hand, if more than two absolute value…

  20. Structure elucidation and absolute stereochemistry of isomeric monoterpene chromane esters.

    PubMed

    Batista, João M; Batista, Andrea N L; Mota, Jonas S; Cass, Quezia B; Kato, Massuo J; Bolzani, Vanderlan S; Freedman, Teresa B; López, Silvia N; Furlan, Maysa; Nafie, Laurence A

    2011-04-15

    Six novel monoterpene chromane esters were isolated from the aerial parts of Peperomia obtusifolia (Piperaceae) using chiral chromatography. This is the first time that chiral chromane esters of this kind, ones with a tethered chiral terpene, have been isolated in nature. Due to their structural features, it is not currently possible to assess directly their absolute stereochemistry using any of the standard classical approaches, such as X-ray crystallography, NMR, optical rotation, or electronic circular dichroism (ECD). Herein we report the absolute configuration of these molecules, involving four chiral centers, using vibrational circular dichroism (VCD) and density functional theory (DFT) (B3LYP/6-31G*) calculations. This work further reinforces the capability of VCD to determine unambiguously the absolute configuration of structurally complex molecules in solution, without crystallization or derivatization, and demonstrates the sensitivity of VCD to specify the absolute configuration for just one among a number of chiral centers. We also demonstrate the sufficiency of using the so-called inexpensive basis set 6-31G* compared to the triple-ζ basis set TZVP for absolute configuration analysis of larger molecules using VCD. Overall, this work extends our knowledge of secondary metabolites in plants and provides a straightforward way to determine the absolute configuration of complex natural products involving a chiral parent moiety combined with a chiral terpene adduct.

  1. Sound-Intensity Feedback During Running Reduces Loading Rates and Impact Peak.

    PubMed

    Tate, Jeremiah J; Milner, Clare E

    2017-08-01

    Study Design Controlled laboratory study, within-session design. Background Gait retraining has been proposed as an effective intervention to reduce impact loading in runners at risk of stress fractures. Interventions that can be easily implemented in the clinic are needed. Objective To assess the immediate effects of sound-intensity feedback related to impact during running on vertical impact peak, peak vertical instantaneous loading rate, and vertical average loading rate. Methods Fourteen healthy, college-aged runners who ran at least 9.7 km/wk participated (4 male, 10 female; mean ± SD age, 23.7 ± 2.0 years; height, 1.67 ± 0.08 m; mass, 60.9 ± 8.7 kg). A decibel meter provided real-time sound-intensity feedback of treadmill running via an iPad application. Participants were asked to reduce the sound intensity of running while receiving continuous feedback for 15 minutes, while running at their self-selected preferred speed. Baseline and follow-up ground reaction force data were collected during overground running at participants' self-selected preferred running speed. Results Dependent t tests indicated a statistically significant reduction in vertical impact peak (1.56 BW to 1.13 BW, P≤.001), vertical instantaneous loading rate (95.48 BW/s to 62.79 BW/s, P = .001), and vertical average loading rate (69.09 BW/s to 43.91 BW/s, P≤.001) after gait retraining, compared to baseline. Conclusion The results of the current study support the use of sound-intensity feedback during treadmill running to immediately reduce loading rate and impact force. The transfer of within-session reductions in impact peak and loading rates to overground running was demonstrated. Decreases in loading were of comparable magnitude to those observed in other gait retraining methods. J Orthop Sports Phys Ther 2017;47(8):565-569. Epub 6 Jul 2017. doi:10.2519/jospt.2017.7275.

  2. Peak high-frequency HRV and peak alpha frequency higher in PTSD.

    PubMed

    Wahbeh, Helané; Oken, Barry S

    2013-03-01

    Posttraumatic stress disorder (PTSD) is difficult to treat and current PTSD treatments are not effective for all people. Despite limited evidence for its efficacy, some clinicians have implemented biofeedback for PTSD treatment. As a first step in constructing an effective biofeedback treatment program, we assessed respiration, electroencephalography (EEG) and heart rate variability (HRV) as potential biofeedback parameters for a future clinical trial. This cross-sectional study included 86 veterans; 59 with and 27 without PTSD. Data were collected on EEG measures, HRV, and respiration rate during an attentive resting state. Measures were analyzed to assess sensitivity to PTSD status and the relationship to PTSD symptoms. Peak alpha frequency was higher in the PTSD group (F(1,84) = 6.14, p = 0.01). Peak high-frequency HRV was lower in the PTSD group (F(2,78) = 26.5, p < 0.00005) when adjusting for respiration rate. All other EEG and HRV measures and respiration were not different between groups. Peak high-frequency HRV and peak alpha frequency are sensitive to PTSD status and may be potential biofeedback parameters for future PTSD clinical trials.

  3. Timing at peak force may be the hidden target controlled in continuation and synchronization tapping.

    PubMed

    Du, Yue; Clark, Jane E; Whitall, Jill

    2017-05-01

    Timing control, such as producing movements at a given rate or synchronizing movements to an external event, has been studied through a finger-tapping task where timing is measured at the initial contact between finger and tapping surface or the point when a key is pressed. However, the point of peak force is after the time registered at the tapping surface and thus is a less obvious but still an important event during finger tapping. Here, we compared the time at initial contact with the time at peak force as participants tapped their finger on a force sensor at a given rate after the metronome was turned off (continuation task) or in synchrony with the metronome (sensorimotor synchronization task). We found that, in the continuation task, timing was comparably accurate between initial contact and peak force. These two timing events also exhibited similar trial-by-trial statistical dependence (i.e., lag-one autocorrelation). However, the central clock variability was lower at the peak force than the initial contact. In the synchronization task, timing control at peak force appeared to be less variable and more accurate than that at initial contact. In addition to lower central clock variability, the mean SE magnitude at peak force (SEP) was around zero while SE at initial contact (SEC) was negative. Although SEC and SEP demonstrated the same trial-by-trial statistical dependence, we found that participants adjusted the time of tapping to correct SEP, but not SEC, toward zero. These results suggest that timing at peak force is a meaningful target of timing control, particularly in synchronization tapping. This result may explain the fact that SE at initial contact is typically negative as widely observed in the preexisting literature.

  4. Bio-Inspired Stretchable Absolute Pressure Sensor Network

    PubMed Central

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X.

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  5. On the Perceptual Subprocess of Absolute Pitch.

    PubMed

    Kim, Seung-Goo; Knösche, Thomas R

    2017-01-01

    Absolute pitch (AP) is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma) and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label). In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC) or based on absolute pitch memory (APM). A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC) that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM), only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them.

  6. On the Perceptual Subprocess of Absolute Pitch

    PubMed Central

    Kim, Seung-Goo; Knösche, Thomas R.

    2017-01-01

    Absolute pitch (AP) is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma) and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label). In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC) or based on absolute pitch memory (APM). A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC) that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM), only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them. PMID:29085275

  7. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate.

  8. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; ,

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  9. High-resolution absolute position detection using a multiple grating

    NASA Astrophysics Data System (ADS)

    Schilling, Ulrich; Drabarek, Pawel; Kuehnle, Goetz; Tiziani, Hans J.

    1996-08-01

    To control electro-mechanical engines, high-resolution linear and rotary encoders are needed. Interferometric methods (grating interferometers) promise a resolution of a few nanometers, but have an ambiguity range of some microns. Incremental encoders increase the absolute measurement range by counting the signal periods starting from a defined initial point. In many applications, however, it is not possible to move to this initial point, so that absolute encoders have to be used. Absolute encoders generally have a scale with two or more tracks placed next to each other. Therefore, they use a two-dimensional grating structure to measure a one-dimensional position. We present a new method, which uses a one-dimensional structure to determine the position in one dimension. It is based on a grating with a large grating period up to some millimeters, having the same diffraction efficiency in several predefined diffraction orders (multiple grating). By combining the phase signals of the different diffraction orders, it is possible to establish the position in an absolute range of the grating period with a resolution like incremental grating interferometers. The principal functionality was demonstrated by applying the multiple grating in a heterodyne grating interferometer. The heterodyne frequency was generated by a frequency modulated laser in an unbalanced interferometer. In experimental measurements an absolute range of 8 mm was obtained while achieving a resolution of 10 nm.

  10. Measuring Your Peak Flow Rate

    MedlinePlus

    ... Living with Asthma > Managing Asthma Measuring Your Peak Flow Rate Download Instructions A peak flow meter is ... to use. Who Benefits from Using a Peak Flow Meter? Many healthcare providers believe that people who ...

  11. Magnitude Based Discrimination of Manmade Seismic Events From Naturally Occurring Earthquakes in Utah, USA

    NASA Astrophysics Data System (ADS)

    Koper, K. D.; Pechmann, J. C.; Burlacu, R.; Pankow, K. L.; Stein, J. R.; Hale, J. M.; Roberson, P.; McCarter, M. K.

    2016-12-01

    We investigate the feasibility of using the difference between local (ML) and coda duration (MC) magnitude as a means of discriminating manmade seismic events from naturally occurring tectonic earthquakes in and around Utah. Using a dataset of nearly 7,000 well-located earthquakes in the Utah region, we find that ML-MC is on average 0.44 magnitude units smaller for mining induced seismicity (MIS) than for tectonic seismicity (TS). MIS occurs within near-surface low-velocity layers that act as a waveguide and preferentially increase coda duration relative to peak amplitude, while the vast majority of TS occurs beneath the near-surface waveguide. A second dataset of more than 3,700 probable explosions in the Utah region also has significantly lower ML-MC values than TS, likely for the same reason as the MIS. These observations suggest that ML-MC, or related measures of peak amplitude versus signal duration, may be useful for discriminating small explosions from earthquakes at local-to-regional distances. ML and MC can be determined for small events with relatively few observations, hence an ML-MC discriminant can be effective in cases where moment tensor inversion is not possible because of low data quality or poorly known Green's functions. Furthermore, an ML-MC discriminant does not rely on the existence of the fast attenuating Rg phase at regional distances. ML-MC may provide a local-to-regional distance extension of the mb-MS discriminant that has traditionally been effective at identifying large nuclear explosions with teleseismic data. This topic is of growing interest in forensic seismology, in part because the Comprehensive Nuclear Test Ban Treaty (CTBT) is a zero tolerance treaty that prohibits all nuclear explosions, no matter how small. If the CTBT were to come into force, source discrimination at local distances would be required to verify compliance.

  12. "Magnitude-based inference": a statistical review.

    PubMed

    Welsh, Alan H; Knight, Emma J

    2015-04-01

    We consider "magnitude-based inference" and its interpretation by examining in detail its use in the problem of comparing two means. We extract from the spreadsheets, which are provided to users of the analysis (http://www.sportsci.org/), a precise description of how "magnitude-based inference" is implemented. We compare the implemented version of the method with general descriptions of it and interpret the method in familiar statistical terms. We show that "magnitude-based inference" is not a progressive improvement on modern statistics. The additional probabilities introduced are not directly related to the confidence interval but, rather, are interpretable either as P values for two different nonstandard tests (for different null hypotheses) or as approximate Bayesian calculations, which also lead to a type of test. We also discuss sample size calculations associated with "magnitude-based inference" and show that the substantial reduction in sample sizes claimed for the method (30% of the sample size obtained from standard frequentist calculations) is not justifiable so the sample size calculations should not be used. Rather than using "magnitude-based inference," a better solution is to be realistic about the limitations of the data and use either confidence intervals or a fully Bayesian analysis.

  13. The Peak Flow Working Group: test of portable peak flow meters by explosive decompression.

    PubMed

    Pedersen, O F; Miller, M R

    1997-02-01

    In 1991, 50 new Vitalograph peak flow meters and 27 previously used mini-Wright peak flow meters were tested at three peak flows by use of a calibrator applying explosive decompression. The mini-Wright peak flow meters were also compared with eight new meters. For both makes of meter there was an excellent within-meter and between-meter variation. The accuracy, however, was poor, with a maximal overestimation of true flows of 50 and 70 L.min-1 in the interval from 200 to 400 L.min-1 for the Vitalograph and mini-Wright meters, respectively. The deviation is explained by the physical characteristics of the variable orifice peak flow meters. They have been supplied with equidistant scales, which give non-linear readings.

  14. PFReports: A program for systematic checking of annual peaks in NWISWeb

    USGS Publications Warehouse

    Ryberg, Karen R.

    2008-01-01

    The accuracy, characterization, and completeness of the U.S. Geological Survey (USGS) peak-flow data drive the determination of flood-frequency estimates that are used daily to design water and transportation infrastructure, delineate flood-plain boundaries, and regulate development and utilization of lands throughout the Nation and are essential to understanding the implications of climate change on flooding. Indeed, this high-profile database reflects and highlights the quality of USGS water-data collection programs. Its extension and improvement are essential to efforts to strengthen USGS networks and science leadership and is worthy of the attention of Water Science Center (WSC) hydrographers. This document describes a computer program, PFReports, and its output that facilitates efficient and robust review and correction of data in the USGS Peak Flow File (PFF) hosted as part of NWISWeb (the USGS public Web interface to much of the data stored and managed within the National Water Information System or NWIS). Checks embedded in the program are recommended as part of a more comprehensive assessment of peak flow data that will eventually include examination of possible regional changes, seasonal changes, and decadal variations in magnitude, timing, and frequency. Just as important as the comprehensive assessment, cleaning up the database will increase the likelihood of improved WSC regional flood-frequency equations. As an example of the value of cleaning up the PFF, data for 26,921 sites in the PFF were obtained. Of those sites, 17,542 sites had peak streamflow values and daily values. For the 17,542 sites, 1,097 peaks were identified that were less than the daily value for the day on which the peak occurred. Of the 26,921 sites, 11,643 had peak streamflow values, concurrent daily values, and at least 10 peaks. At the 11,643 sites, 2,205 peaks were identified as potential outliers in a regression of peak streamflows on daily values. Previous efforts to identify

  15. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  16. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  17. Absolute Distance Measurement with the MSTAR Sensor

    NASA Technical Reports Server (NTRS)

    Lay, Oliver P.; Dubovitsky, Serge; Peters, Robert; Burger, Johan; Ahn, Seh-Won; Steier, William H.; Fetterman, Harrold R.; Chang, Yian

    2003-01-01

    The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. The sensor uses a single laser in conjunction with fast phase modulators and low frequency detectors. We describe the design of the system - the principle of operation, the metrology source, beamlaunching optics, and signal processing - and show results for target distances up to 1 meter. We then demonstrate how the system can be scaled to kilometer-scale distances.

  18. Is Order the Defining Feature of Magnitude Representation? An ERP Study on Learning Numerical Magnitude and Spatial Order of Artificial Symbols

    PubMed Central

    Zhao, Hui; Chen, Chuansheng; Zhang, Hongchuan; Zhou, Xinlin; Mei, Leilei; Chen, Chunhui; Chen, Lan; Cao, Zhongyu; Dong, Qi

    2012-01-01

    Using an artificial-number learning paradigm and the ERP technique, the present study investigated neural mechanisms involved in the learning of magnitude and spatial order. 54 college students were divided into 2 groups matched in age, gender, and school major. One group was asked to learn the associations between magnitude (dot patterns) and the meaningless Gibson symbols, and the other group learned the associations between spatial order (horizontal positions on the screen) and the same set of symbols. Results revealed differentiated neural mechanisms underlying the learning processes of symbolic magnitude and spatial order. Compared to magnitude learning, spatial-order learning showed a later and reversed distance effect. Furthermore, an analysis of the order-priming effect showed that order was not inherent to the learning of magnitude. Results of this study showed a dissociation between magnitude and order, which supports the numerosity code hypothesis of mental representations of magnitude. PMID:23185363

  19. Peak-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.

  20. Some things ought never be done: moral absolutes in clinical ethics.

    PubMed

    Pellegrino, Edmund D

    2005-01-01

    Moral absolutes have little or no moral standing in our morally diverse modern society. Moral relativism is far more palatable for most ethicists and to the public at large. Yet, when pressed, every moral relativist will finally admit that there are some things which ought never be done. It is the rarest of moral relativists that will take rape, murder, theft, child sacrifice as morally neutral choices. In general ethics, the list of those things that must never be done will vary from person to person. In clinical ethics, however, the nature of the physician-patient relationship is such that certain moral absolutes are essential to the attainment of the good of the patient - the end of the relationship itself. These are all derivatives of the first moral absolute of all morality: Do good and avoid evil. In the clinical encounter, this absolute entails several subsidiary absolutes - act for the good of the patient, do not kill, keep promises, protect the dignity of the patient, do not lie, avoid complicity with evil. Each absolute is intrinsic to the healing and helping ends of the clinical encounter.

  1. Absolute and relative educational inequalities in depression in Europe.

    PubMed

    Dudal, Pieter; Bracke, Piet

    2016-09-01

    To investigate (1) the size of absolute and relative educational inequalities in depression, (2) their variation between European countries, and (3) their relationship with underlying prevalence rates. Analyses are based on the European Social Survey, rounds three and six (N = 57,419). Depression is measured using the shortened Centre of Epidemiologic Studies Depression Scale. Education is coded by use of the International Standard Classification of Education. Country-specific logistic regressions are applied. Results point to an elevated risk of depressive symptoms among the lower educated. The cross-national patterns differ between absolute and relative measurements. For men, large relative inequalities are found for countries including Denmark and Sweden, but are accompanied by small absolute inequalities. For women, large relative and absolute inequalities are found in Belgium, Bulgaria, and Hungary. Results point to an empirical association between inequalities and the underlying prevalence rates. However, the strength of the association is only moderate. This research stresses the importance of including both measurements for comparative research and suggests the inclusion of the level of population health in research into inequalities in health.

  2. Path length dependent neutron diffraction peak shifts observed during residual strain measurements in U–8 wt% Mo castings

    DOE PAGES

    Steiner, M. A.; Bunn, J. R.; Einhorn, J. R.; ...

    2017-05-16

    This study reports an angular diffraction peak shift that scales linearly with the neutron beam path length traveled through a diffracting sample. This shift was observed in the context of mapping the residual stress state of a large U–8 wt% Mo casting, as well as during complementary measurements on a smaller casting of the same material. If uncorrected, this peak shift implies a non-physical level of residual stress. A hypothesis for the origin of this shift is presented, based upon non-ideal focusing of the neutron monochromator in combination with changes to the wavelength distribution reaching the detector due to factorsmore » such as attenuation. The magnitude of the shift is observed to vary linearly with the width of the diffraction peak reaching the detector. Consideration of this shift will be important for strain measurements requiring long path lengths through samples with significant attenuation. This effect can probably be reduced by selecting smaller voxel slit widths.« less

  3. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  4. Peak High-Frequency HRV and Peak Alpha Frequency Higher in PTSD

    PubMed Central

    Oken, Barry S.

    2012-01-01

    Posttraumatic stress disorder (PTSD) is difficult to treat and current PTSD treatments are not effective for all people. Despite limited evidence for its efficacy, some clinicians have implemented biofeedback for PTSD treatment. As a first step in constructing an effective biofeedback treatment program, we assessed respiration, electroencephalography (EEG) and heart rate variability (HRV) as potential biofeedback parameters for a future clinical trial. This cross-sectional study included 86 veterans; 59 with and 27 without PTSD. Data were collected on EEG measures, HRV, and respiration rate during an attentive resting state. Measures were analyzed to assess sensitivity to PTSD status and the relationship to PTSD symptoms. Peak alpha frequency was higher in the PTSD group (F(1,84) = 6.14, p = 0.01). Peak high-frequency HRV was lower in the PTSD group (F(2,78) = 26.5, p<0.00005) when adjusting for respiration rate. All other EEG and HRV measures and respiration were not different between groups. Peak high-frequency HRV and peak alpha frequency are sensitive to PTSD status and may be potential biofeedback parameters for future PTSD clinical trials. PMID:23178990

  5. Determining absolute protein numbers by quantitative fluorescence microscopy.

    PubMed

    Verdaasdonk, Jolien Suzanne; Lawrimore, Josh; Bloom, Kerry

    2014-01-01

    Biological questions are increasingly being addressed using a wide range of quantitative analytical tools to examine protein complex composition. Knowledge of the absolute number of proteins present provides insights into organization, function, and maintenance and is used in mathematical modeling of complex cellular dynamics. In this chapter, we outline and describe three microscopy-based methods for determining absolute protein numbers--fluorescence correlation spectroscopy, stepwise photobleaching, and ratiometric comparison of fluorescence intensity to known standards. In addition, we discuss the various fluorescently labeled proteins that have been used as standards for both stepwise photobleaching and ratiometric comparison analysis. A detailed procedure for determining absolute protein number by ratiometric comparison is outlined in the second half of this chapter. Counting proteins by quantitative microscopy is a relatively simple yet very powerful analytical tool that will increase our understanding of protein complex composition. © 2014 Elsevier Inc. All rights reserved.

  6. Equivalent peak resolution: characterization of the extent of separation for two components based on their relative peak overlap.

    PubMed

    Dvořák, Martin; Svobodová, Jana; Dubský, Pavel; Riesová, Martina; Vigh, Gyula; Gaš, Bohuslav

    2015-03-01

    Although the classical formula of peak resolution was derived to characterize the extent of separation only for Gaussian peaks of equal areas, it is often used even when the peaks follow non-Gaussian distributions and/or have unequal areas. This practice can result in misleading information about the extent of separation in terms of the severity of peak overlap. We propose here the use of the equivalent peak resolution value, a term based on relative peak overlap, to characterize the extent of separation that had been achieved. The definition of equivalent peak resolution is not constrained either by the form(s) of the concentration distribution function(s) of the peaks (Gaussian or non-Gaussian) or the relative area of the peaks. The equivalent peak resolution value and the classically defined peak resolution value are numerically identical when the separated peaks are Gaussian and have identical areas and SDs. Using our new freeware program, Resolution Analyzer, one can calculate both the classically defined and the equivalent peak resolution values. With the help of this tool, we demonstrate here that the classical peak resolution values mischaracterize the extent of peak overlap even when the peaks are Gaussian but have different areas. We show that under ideal conditions of the separation process, the relative peak overlap value is easily accessible by fitting the overall peak profile as the sum of two Gaussian functions. The applicability of the new approach is demonstrated on real separations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Osteoporosis: Peak Bone Mass in Women

    MedlinePlus

    ... Osteoporosis: Peak Bone Mass in Women Osteoporosis: Peak Bone Mass in Women Bones are the framework for ... that affect peak bone mass. Factors Affecting Peak Bone Mass A variety of genetic and environmental factors ...

  8. Impact Crater with Peak

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 14 June 2002) The Science This THEMIS visible image shows a classic example of a martian impact crater with a central peak. Central peaks are common in large, fresh craters on both Mars and the Moon. This peak formed during the extremely high-energy impact cratering event. In many martian craters the central peak has been either eroded or buried by later sedimentary processes, so the presence of a peak in this crater indicates that the crater is relatively young and has experienced little degradation. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that the central peak contains material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study the composition of the martian interior using THEMIS multi-spectral infrared observations. The ejecta material around the crater can is well preserved, again indicating relatively little modification of this landform since its initial creation. The inner walls of this approximately 18 km diameter crater show complex slumping that likely occurred during the impact event. Since that time there has been some downslope movement of material to form the small chutes and gullies that can be seen on the inner crater wall. Small (50-100 m) mega-ripples composed of mobile material can be seen on the floor of the crater. Much of this material may have come from the walls of the crater itself, or may have been blown into the crater by the wind. The Story When a meteor smacked into the surface of Mars with extremely high energy, pow! Not only did it punch an 11-mile-wide crater in the smoother terrain, it created a central peak in the middle of the crater. This peak forms kind of on the 'rebound.' You can see this same effect if you drop a single drop of milk into a glass of milk. With craters, in the heat and fury of the impact, some of the land material can even liquefy. Central peaks like the one

  9. New non-geosynchronous orbits for communications satellites to off-load daily peaks in geostationary traffic

    NASA Technical Reports Server (NTRS)

    Turner, A. E.

    1987-01-01

    The potential for satellites in two orbits, the sun-synchronous 12-hour equatorial orbit (STET) and the apogee at constant time-of-day equatorial orbit (ACE), to off-load peaks in the CONUS geostationary communications traffic is discussed. These orbits are found to require maneuvers of smaller magnitudes for insertion than geostationary orbits. Advantages of the ACE orbit over the STET orbit are discussed, including larger satellite mass capability for a given launch vehicle, lower slant ranges, and larger angular separation from the geostationary arc for a nonequatorial ground observer.

  10. Absolute quantification of Dehalococcoides proteins: enzyme bioindicators of chlorinated ethene dehalorespiration.

    PubMed

    Werner, Jeffrey J; Ptak, A Celeste; Rahm, Brian G; Zhang, Sheng; Richardson, Ruth E

    2009-10-01

    The quantification of trace proteins in complex environmental samples and mixed microbial communities would be a valuable monitoring tool in countless applications, including the bioremediation of groundwater contaminated with chlorinated solvents. Measuring the concentrations of specific proteins provides unique information about the activity and physiological state of organisms in a sample. We developed sensitive (< 5 fmol), selective bioindicator assays for the absolute quantification of select proteins used by Dehalococcoides spp. when reducing carbon atoms in the common pollutants trichloroethene (TCE) and tetrachloroethene (PCE). From complex whole-sample digests of two different dechlorinating mixed communities, we monitored the chromatographic peaks of selected tryptic peptides chosen to represent 19 specific Dehalococcoides proteins. This was accomplished using multiple-reaction monitoring (MRM) assays using nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS), which provided the selectivity, sensitivity and reproducibility required to quantify Dehalococcoides proteins in complex samples. We observed reproducible peak areas (average CV = 0.14 over 4 days, n = 3) and linear responses in standard curves (n = 5, R(2) > 0.98) using synthetic peptide standards spiked into a background matrix of sediment peptides. We detected and quantified TCE reductive dehalogenase (TceA) at 7.6 +/- 1.7 x 10(3) proteins cell(-1) in the KB1 bioaugmentation culture, previously thought to be lacking TceA. Fragmentation data from MS/MS shotgun proteomics experiments were helpful in developing the MRM targets. Similar shotgun proteomics data are emerging in labs around the world for many environmentally relevant microbial proteins, and these data are a valuable resource for the future development of MRM assays. We expect targeted peptide quantification in environmental samples to be a useful tool in environmental monitoring.

  11. Estimating the magnitude of annual peak discharges with recurrence intervals between 1.1 and 3.0 years for rural, unregulated streams in West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Atkins, John T.; Newell, Dawn A.

    2002-01-01

    Multiple and simple least-squares regression models for the log10-transformed 1.5- and 2-year recurrence intervals of peak discharges with independent variables describing the basin characteristics (log10-transformed and untransformed) for 236 streamflow-gaging stations were evaluated, and the regression residuals were plotted as areal distributions that defined three regions in West Virginia designated as East, North, and South. Regional equations for the 1.1-, 1.2-, 1.3-, 1.4-, 1.5-, 1.6-, 1.7-, 1.8-, 1.9-, 2.0-, 2.5-, and 3-year recurrence intervals of peak discharges were determined by generalized least-squares regression. Log10-transformed drainage area was the most significant independent variable for all regions. Equations developed in this study are applicable only to rural, unregulated streams within the boundaries of West Virginia. The accuracies of estimating equations are quantified by measuring the average prediction error (from 27.4 to 52.4 percent) and equivalent years of record (from 1.1 to 3.4 years).

  12. An absolute calibration system for millimeter-accuracy APOLLO measurements

    NASA Astrophysics Data System (ADS)

    Adelberger, E. G.; Battat, J. B. R.; Birkmeier, K. J.; Colmenares, N. R.; Davis, R.; Hoyle, C. D.; Huang, L. R.; McMillan, R. J.; Murphy, T. W., Jr.; Schlerman, E.; Skrobol, C.; Stubbs, C. W.; Zach, A.

    2017-12-01

    Lunar laser ranging provides a number of leading experimental tests of gravitation—important in our quest to unify general relativity and the standard model of physics. The apache point observatory lunar laser-ranging operation (APOLLO) has for years achieved median range precision at the  ∼2 mm level. Yet residuals in model-measurement comparisons are an order-of-magnitude larger, raising the question of whether the ranging data are not nearly as accurate as they are precise, or if the models are incomplete or ill-conditioned. This paper describes a new absolute calibration system (ACS) intended both as a tool for exposing and eliminating sources of systematic error, and also as a means to directly calibrate ranging data in situ. The system consists of a high-repetition-rate (80 MHz) laser emitting short (< 10 ps) pulses that are locked to a cesium clock. In essence, the ACS delivers photons to the APOLLO detector at exquisitely well-defined time intervals as a ‘truth’ input against which APOLLO’s timing performance may be judged and corrected. Preliminary analysis indicates no inaccuracies in APOLLO data beyond the  ∼3 mm level, suggesting that historical APOLLO data are of high quality and motivating continued work on model capabilities. The ACS provides the means to deliver APOLLO data both accurate and precise below the 2 mm level.

  13. Essential Oils, Part VI: Sandalwood Oil, Ylang-Ylang Oil, and Jasmine Absolute.

    PubMed

    de Groot, Anton C; Schmidt, Erich

    In this article, some aspects of sandalwood oil, ylang-ylang oil, and jasmine absolute are discussed including their botanical origin, uses of the plants and the oils and absolute, chemical composition, contact allergy to and allergic contact dermatitis from these essential oils and absolute, and their causative allergenic ingredients.

  14. Absolute Quantification of Norovirus Capsid Protein in Food, Water, and Soil Using Synthetic Peptides with Electrospray and MALDI Mass Spectrometry

    PubMed Central

    Hartmann, Erica M.; Colquhoun, David R.; Schwab, Kellogg J.; Halden, Rolf U.

    2015-01-01

    Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrixassisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences. PMID:25603302

  15. Afterslip Enhanced Aftershock Activity During the 2017 Earthquake Sequence Near Sulphur Peak, Idaho

    DOE PAGES

    Koper, Keith D.; Pankow, Kristine L.; Pechmann, James C.; ...

    2018-05-29

    An energetic earthquake sequence occurred during September to October 2017 near Sulphur Peak, Idaho. The normal–faulting M w 5.3 mainshock of 2 September 2017 was widely felt in Idaho, Utah, and Wyoming. Over 1,000 aftershocks were located within the first 2 months, 29 of which had magnitudes ≥4.0 M L. High–accuracy locations derived with data from a temporary seismic array show that the sequence occurred in the upper (<10 km) crust of the Aspen Range, east of the northern section of the range–bounding, west–dipping East Bear Lake Fault. Moment tensors for 77 of the largest events show normal and strike–slipmore » faulting with a summed aftershock moment that is 1.8–2.4 times larger than the mainshock moment. Here, we propose that the unusually high productivity of the 2017 Sulphur Peak sequence can be explained by aseismic afterslip, which triggered a secondary swarm south of the coseismic rupture zone beginning ~1 day after the mainshock.« less

  16. Afterslip Enhanced Aftershock Activity During the 2017 Earthquake Sequence Near Sulphur Peak, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koper, Keith D.; Pankow, Kristine L.; Pechmann, James C.

    An energetic earthquake sequence occurred during September to October 2017 near Sulphur Peak, Idaho. The normal–faulting M w 5.3 mainshock of 2 September 2017 was widely felt in Idaho, Utah, and Wyoming. Over 1,000 aftershocks were located within the first 2 months, 29 of which had magnitudes ≥4.0 M L. High–accuracy locations derived with data from a temporary seismic array show that the sequence occurred in the upper (<10 km) crust of the Aspen Range, east of the northern section of the range–bounding, west–dipping East Bear Lake Fault. Moment tensors for 77 of the largest events show normal and strike–slipmore » faulting with a summed aftershock moment that is 1.8–2.4 times larger than the mainshock moment. Here, we propose that the unusually high productivity of the 2017 Sulphur Peak sequence can be explained by aseismic afterslip, which triggered a secondary swarm south of the coseismic rupture zone beginning ~1 day after the mainshock.« less

  17. Reward Magnitude Effects on Temporal Discrimination

    ERIC Educational Resources Information Center

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2010-01-01

    Changes in reward magnitude or value have been reported to produce effects on timing behavior, which have been attributed to changes in the speed of an internal pacemaker in some instances and to attentional factors in other cases. The present experiments therefore aimed to clarify the effects of reward magnitude on timing processes. In Experiment…

  18. Effect of gear ratio on peak power and time to peak power in BMX cyclists.

    PubMed

    Rylands, Lee P; Roberts, Simon J; Hurst, Howard T

    2017-03-01

    The aim of this study was to ascertain if gear ratio selection would have an effect on peak power and time to peak power production in elite Bicycle Motocross (BMX) cyclists. Eight male elite BMX riders volunteered for the study. Each rider performed three, 10-s maximal sprints on an Olympic standard indoor BMX track. The riders' bicycles were fitted with a portable SRM power meter. Each rider performed the three sprints using gear ratios of 41/16, 43/16 and 45/16 tooth. The results from the 41/16 and 45/16 gear ratios were compared to the current standard 43/16 gear ratio. Statistically, significant differences were found between the gear ratios for peak power (F(2,14) = 6.448; p = .010) and peak torque (F(2,14) = 4.777; p = .026), but no significant difference was found for time to peak power (F(2,14) = 0.200; p = .821). When comparing gear ratios, the results showed a 45/16 gear ratio elicited the highest peak power,1658 ± 221 W, compared to 1436 ± 129 W and 1380 ± 56 W, for the 43/16 and 41/16 ratios, respectively. The time to peak power showed a 41/16 tooth gear ratio attained peak power in -0.01 s and a 45/16 in 0.22 s compared to the 43/16. The findings of this study suggest that gear ratio choice has a significant effect on peak power production, though time to peak power output is not significantly affected. Therefore, selecting a higher gear ratio results in riders attaining higher power outputs without reducing their start time.

  19. Temporal Dynamics of Microbial Rhodopsin Fluorescence Reports Absolute Membrane Voltage

    PubMed Central

    Hou, Jennifer H.; Venkatachalam, Veena; Cohen, Adam E.

    2014-01-01

    Plasma membrane voltage is a fundamentally important property of a living cell; its value is tightly coupled to membrane transport, the dynamics of transmembrane proteins, and to intercellular communication. Accurate measurement of the membrane voltage could elucidate subtle changes in cellular physiology, but existing genetically encoded fluorescent voltage reporters are better at reporting relative changes than absolute numbers. We developed an Archaerhodopsin-based fluorescent voltage sensor whose time-domain response to a stepwise change in illumination encodes the absolute membrane voltage. We validated this sensor in human embryonic kidney cells. Measurements were robust to variation in imaging parameters and in gene expression levels, and reported voltage with an absolute accuracy of 10 mV. With further improvements in membrane trafficking and signal amplitude, time-domain encoding of absolute voltage could be applied to investigate many important and previously intractable bioelectric phenomena. PMID:24507604

  20. PeakVizor: Visual Analytics of Peaks in Video Clickstreams from Massive Open Online Courses.

    PubMed

    Chen, Qing; Chen, Yuanzhe; Liu, Dongyu; Shi, Conglei; Wu, Yingcai; Qu, Huamin

    2016-10-01

    Massive open online courses (MOOCs) aim to facilitate open-access and massive-participation education. These courses have attracted millions of learners recently. At present, most MOOC platforms record the web log data of learner interactions with course videos. Such large amounts of multivariate data pose a new challenge in terms of analyzing online learning behaviors. Previous studies have mainly focused on the aggregate behaviors of learners from a summative view; however, few attempts have been made to conduct a detailed analysis of such behaviors. To determine complex learning patterns in MOOC video interactions, this paper introduces a comprehensive visualization system called PeakVizor. This system enables course instructors and education experts to analyze the "peaks" or the video segments that generate numerous clickstreams. The system features three views at different levels: the overview with glyphs to display valuable statistics regarding the peaks detected; the flow view to present spatio-temporal information regarding the peaks; and the correlation view to show the correlation between different learner groups and the peaks. Case studies and interviews conducted with domain experts have demonstrated the usefulness and effectiveness of PeakVizor, and new findings about learning behaviors in MOOC platforms have been reported.

  1. Asymmetry in power-law magnitude correlations.

    PubMed

    Podobnik, Boris; Horvatić, Davor; Tenenbaum, Joel N; Stanley, H Eugene

    2009-07-01

    Time series of increments can be created in a number of different ways from a variety of physical phenomena. For example, in the phenomenon of volatility clustering-well-known in finance-magnitudes of adjacent increments are correlated. Moreover, in some time series, magnitude correlations display asymmetry with respect to an increment's sign: the magnitude of |x_{i}| depends on the sign of the previous increment x_{i-1} . Here we define a model-independent test to measure the statistical significance of any observed asymmetry. We propose a simple stochastic process characterized by a an asymmetry parameter lambda and a method for estimating lambda . We illustrate both the test and process by analyzing physiological data.

  2. Absolute vibrational cross sections for 1-19 eV electron scattering from condensed tetrahydrofuran (THF).

    PubMed

    Lemelin, V; Bass, A D; Cloutier, P; Sanche, L

    2016-02-21

    Absolute cross sections (CSs) for vibrational excitation by 1-19 eV electrons impacting on condensed tetrahydrofuran (THF) were measured with a high-resolution electron energy loss spectrometer. Experiments were performed under ultra-high vacuum (3 × 10(-11) Torr) at a temperature of about 20 K. The magnitudes of the vibrational CSs lie within the 10(-17) cm(2) range. Features observed near 4.5, 9.5, and 12.5 eV in the incident energy dependence of the CSs were compared to the results of theoretical calculations and other experiments on gas and solid-phase THF. These three resonances are attributed to the formation of shape or core-excited shape resonances. Another maximum observed around 2.5 eV is not found in the calculations but has been observed in gas-phase studies; it is attributed to the formation of a shape resonance.

  3. Absolute ozone absorption cross section in the Huggins Chappuis minimum (350-470 nm) at 296 K

    NASA Astrophysics Data System (ADS)

    Axson, J. L.; Washenfelder, R. A.; Kahan, T. F.; Young, C. J.; Vaida, V.; Brown, S. S.

    2011-11-01

    We report the ozone absolute absorption cross section between 350-470 nm, the minimum between the Huggins and Chappuis bands, where the ozone cross section is less than 10-22 cm2. Ozone spectra were acquired using an incoherent broadband cavity enhanced absorption spectrometer, with three channels centered at 365, 405, and 455 nm. The accuracy of the measured cross section is 4-30%, with the greatest uncertainty near the minimum absorption at 375-390 nm. Previous measurements vary by more than an order of magnitude in this spectral region. The measurements reported here provide much greater spectral coverage than the most recent measurements. The effect of O3 concentration and water vapor partial pressure were investigated, however there were no observable changes in the absorption spectrum most likely due to the low optical density of the complex.

  4. PolyaPeak: Detecting Transcription Factor Binding Sites from ChIP-seq Using Peak Shape Information

    PubMed Central

    Wu, Hao; Ji, Hongkai

    2014-01-01

    ChIP-seq is a powerful technology for detecting genomic regions where a protein of interest interacts with DNA. ChIP-seq data for mapping transcription factor binding sites (TFBSs) have a characteristic pattern: around each binding site, sequence reads aligned to the forward and reverse strands of the reference genome form two separate peaks shifted away from each other, and the true binding site is located in between these two peaks. While it has been shown previously that the accuracy and resolution of binding site detection can be improved by modeling the pattern, efficient methods are unavailable to fully utilize that information in TFBS detection procedure. We present PolyaPeak, a new method to improve TFBS detection by incorporating the peak shape information. PolyaPeak describes peak shapes using a flexible Pólya model. The shapes are automatically learnt from the data using Minorization-Maximization (MM) algorithm, then integrated with the read count information via a hierarchical model to distinguish true binding sites from background noises. Extensive real data analyses show that PolyaPeak is capable of robustly improving TFBS detection compared with existing methods. An R package is freely available. PMID:24608116

  5. A psychophysical study of endogenous analgesia: the role of the conditioning pain in the induction and magnitude of conditioned pain modulation.

    PubMed

    Nir, Rony-Reuven; Granovsky, Yelena; Yarnitsky, David; Sprecher, Elliot; Granot, Michal

    2011-05-01

    Endogenous analgesia (EA) can be examined experimentally using a conditioned pain modulation (CPM) paradigm. While noxious conditioning stimulation intensities (CSIs) are mainly used, it has not been fully investigated in the same experimental design whether the experienced conditioning pain level affects CPM responses. The principal goal of the present study was to characterize CPM induction and magnitudes evoked by various conditioning pain levels. Furthermore, we explored associations between conditioning pain reports and CPM responses across various CSIs. Thirty healthy, young, right-handed males were tested with a parallel CPM paradigm. Three different CSIs (hand water-immersion) induced mild, moderate and intense pain levels, rated 12.41 ± 7.85, 31.57 ± 9.56 and 58.1 ± 11.43, respectively (0-100 numerical pain scale) (P < 0.0001). Contact-heat 'test-stimulus' levels were compared before and during conditioning. Within the group, (i) CPM was induced only by the moderate and intense CSIs (Ps ≤ 0.001); (ii) no difference was demonstrated between the magnitudes of these CPM responses. Regression analysis revealed that CPM induction was independent of the perceived conditioning pain level, but associated with the absolute CSI (P < 0.0001). Conditioning pain levels were correlated across all CSIs, as were CPM magnitudes (Ps ≤ 0.01). We conclude that among males, (i) once a CPM response is evoked by a required conditioning pain experience, its magnitude is not further affected by increasing conditioning pain and (ii) CPM magnitudes are inter-correlated, but unrelated to conditioning pain reports. These observations may suggest that CPM responses represent an intrinsic element of an individual's EA processes, which are not significantly affected by the experienced conditioning pain. Copyright © 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.

  6. [Prognostic value of absolute monocyte count in chronic lymphocytic leukaemia].

    PubMed

    Szerafin, László; Jakó, János; Riskó, Ferenc

    2015-04-01

    The low peripheral absolute lymphocyte and high monocyte count have been reported to correlate with poor clinical outcome in various lymphomas and other cancers. However, a few data known about the prognostic value of absolute monocyte count in chronic lymphocytic leukaemia. The aim of the authors was to investigate the impact of absolute monocyte count measured at the time of diagnosis in patients with chronic lymphocytic leukaemia on the time to treatment and overal survival. Between January 1, 2005 and December 31, 2012, 223 patients with newly-diagnosed chronic lymphocytic leukaemia were included. The rate of patients needing treatment, time to treatment, overal survival and causes of mortality based on Rai stages, CD38, ZAP-70 positivity and absolute monocyte count were analyzed. Therapy was necessary in 21.1%, 57.4%, 88.9%, 88.9% and 100% of patients in Rai stage 0, I, II, III an IV, respectively; in 61.9% and 60.8% of patients exhibiting CD38 and ZAP-70 positivity, respectively; and in 76.9%, 21.2% and 66.2% of patients if the absolute monocyte count was <0.25 G/l, between 0.25-0.75 G/l and >0.75 G/l, respectively. The median time to treatment and the median overal survival were 19.5, 65, and 35.5 months; and 41.5, 65, and 49.5 months according to the three groups of monocyte counts. The relative risk of beginning the therapy was 1.62 (p<0.01) in patients with absolute monocyte count <0.25 G/l or >0.75 G/l, as compared to those with 0.25-0.75 G/l, and the risk of overal survival was 2.41 (p<0.01) in patients with absolute monocyte count lower than 0.25 G/l as compared to those with higher than 0.25 G/l. The relative risks remained significant in Rai 0 patients, too. The leading causes of mortality were infections (41.7%) and the chronic lymphocytic leukaemia (58.3%) in patients with low monocyte count, while tumours (25.9-35.3%) and other events (48.1 and 11.8%) occurred in patients with medium or high monocyte counts. Patients with low and high monocyte

  7. OH radical production in an atmospheric pressure surface micro-discharge array

    NASA Astrophysics Data System (ADS)

    Li, D.; Nikiforov, A.; Britun, N.; Snyders, R.; Kong, M. G.; Leys, C.

    2016-11-01

    The generation of OH radicals from an array of surface micro-discharges working in atmospheric pressure He/Ar/H2O mixtures is investigated. The absolute OH density and its temporal-and-spatial dynamics are detected by UV broadband absorption spectroscopy (UV-BAS) and laser-induced fluorescence (LIF) spectroscopy. The measured absolute density of OH(X) state is about 1021 m-3 in Ar/H2O mixture reaching a peak at 0.05% of H2O. In the case of He/H2O mixtures however, the peaking at ~1019 m-3 is approximately two orders of magnitude lower and decreases monotonously with increasing H2O content. From a control standpoint, the ratio of the Ar/He mixture may be adjusted to tune the OH density over two orders of magnitude and to modulate the H2O content dependence of the OH density. The capability of modulating the OH radical production over a large density range is of practical interest for many applications such as atmospheric chemistry and biochemistry. With the array of atmospheric micro-discharges sustained over a large electrode area, a uniform distribution of its OH density can be achieved in a plane parallel to the electrodes thus enabling spatially controlled surface treatment of large samples.

  8. Developmental Dyscalculia in Adults: Beyond Numerical Magnitude Impairment.

    PubMed

    De Visscher, Alice; Noël, Marie-Pascale; Pesenti, Mauro; Dormal, Valérie

    2017-09-01

    Numerous studies have tried to identify the core deficit of developmental dyscalculia (DD), mainly by assessing a possible deficit of the mental representation of numerical magnitude. Research in healthy adults has shown that numerosity, duration, and space share a partly common system of magnitude processing and representation. However, in DD, numerosity processing has until now received much more attention than the processing of other non-numerical magnitudes. To assess whether or not the processing of non-numerical magnitudes is impaired in DD, the performance of 15 adults with DD and 15 control participants was compared in four categorization tasks using numerosities, lengths, durations, and faces (as non-magnitude-based control stimuli). Results showed that adults with DD were impaired in processing numerosity and duration, while their performance in length and face categorization did not differ from controls' performance. Our findings support the idea of a nonsymbolic magnitude deficit in DD, affecting numerosity and duration processing but not length processing.

  9. Confidence-Accuracy Calibration in Absolute and Relative Face Recognition Judgments

    ERIC Educational Resources Information Center

    Weber, Nathan; Brewer, Neil

    2004-01-01

    Confidence-accuracy (CA) calibration was examined for absolute and relative face recognition judgments as well as for recognition judgments from groups of stimuli presented simultaneously or sequentially (i.e., simultaneous or sequential mini-lineups). When the effect of difficulty was controlled, absolute and relative judgments produced…

  10. Effect of surface conductivity on the peak magnetic field radiated by first return strokes in cloud-to-ground lightning

    NASA Technical Reports Server (NTRS)

    Tyahla, Lori J.; Lopez, Raul E.

    1994-01-01

    The effect of surface conductivity on the peak magnetic field radiated by the first return stroke in cloud-to-ground lightning was investigated by comparing the peak magnetic fields from return strokes that struck water with those that struck land. The data were obtained from a network of three gated, wideband magnetic direction finders (DFs) at the NASA Kennedy Space Center during the summer of 1985. Two geographical areas that were equidistant from two of the direction finders were compared where the flash distances ranged from approximately 40 to 60 km. An unbiased data set was obtained by correcting site errors, equalizing differences in sensor gain, eliminating directional biases in DF triggering, and keeping differences in signal attenuation over the two surfaces to a minimum. When a statistical analysis was performed on the frequency distributions of the signal amplitudes, there was no statistically significant difference in the peak amplitudes of first return strokes over land (lambda = 8.2 x 10(exp -3) mho/m) and over water (lambda = 4 mho/m). Therefore we infer that the conductivity of the underlying surface does not significantly affect the magnitude of the peak magnetic field, and hence the peak current, in the first return stroke of a cloud-to-ground lightning flash.

  11. Magnitude 8.1 Earthquake off the Solomon Islands

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On April 1, 2007, a magnitude 8.1 earthquake rattled the Solomon Islands, 2,145 kilometers (1,330 miles) northeast of Brisbane, Australia. Centered less than ten kilometers beneath the Earth's surface, the earthquake displaced enough water in the ocean above to trigger a small tsunami. Though officials were still assessing damage to remote island communities on April 3, Reuters reported that the earthquake and the tsunami killed an estimated 22 people and left as many as 5,409 homeless. The most serious damage occurred on the island of Gizo, northwest of the earthquake epicenter, where the tsunami damaged the hospital, schools, and hundreds of houses, said Reuters. This image, captured by the Landsat-7 satellite, shows the location of the earthquake epicenter in relation to the nearest islands in the Solomon Island group. Gizo is beyond the left edge of the image, but its triangular fringing coral reefs are shown in the upper left corner. Though dense rain forest hides volcanic features from view, the very shape of the islands testifies to the geologic activity of the region. The circular Kolombangara Island is the tip of a dormant volcano, and other circular volcanic peaks are visible in the image. The image also shows that the Solomon Islands run on a northwest-southeast axis parallel to the edge of the Pacific plate, the section of the Earth's crust that carries the Pacific Ocean and its islands. The earthquake occurred along the plate boundary, where the Australia/Woodlark/Solomon Sea plates slide beneath the denser Pacific plate. Friction between the sinking (subducting) plates and the overriding Pacific plate led to the large earthquake on April 1, said the United States Geological Survey (USGS) summary of the earthquake. Large earthquakes are common in the region, though the section of the plate that produced the April 1 earthquake had not caused any quakes of magnitude 7 or larger since the early 20th century, said the USGS.

  12. Reliable absolute analog code retrieval approach for 3D measurement

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Chen, Deyun

    2017-11-01

    The wrapped phase of phase-shifting approach can be unwrapped by using Gray code, but both the wrapped phase error and Gray code decoding error can result in period jump error, which will lead to gross measurement error. Therefore, this paper presents a reliable absolute analog code retrieval approach. The combination of unequal-period Gray code and phase shifting patterns at high frequencies are used to obtain high-frequency absolute analog code, and at low frequencies, the same unequal-period combination patterns are used to obtain the low-frequency absolute analog code. Next, the difference between the two absolute analog codes was employed to eliminate period jump errors, and a reliable unwrapped result can be obtained. Error analysis was used to determine the applicable conditions, and this approach was verified through theoretical analysis. The proposed approach was further verified experimentally. Theoretical analysis and experimental results demonstrate that the proposed approach can perform reliable analog code unwrapping.

  13. Auditory working memory predicts individual differences in absolute pitch learning.

    PubMed

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  14. The magnitude of translational and rotational head accelerations experienced by riders during downhill mountain biking.

    PubMed

    Hurst, Howard T; Atkins, Stephen; Dickinson, Ben D

    2018-03-21

    To determine the magnitude of translational and rotational head accelerations during downhill mountain biking. Observational study. Sixteen male downhill cyclists (age 26.4±8.4years; stature 179.4±7.2cm; mass 75.3±5.9kg) were monitored during two rounds of the British Downhill Series. Riders performed two runs on each course wearing a triaxial accelerometer behind the right ear. The means of the two runs for each course were used to determine differences between courses for mean and maximum peak translational (g) and rotational accelerations (rad/s 2 ) and impact duration for each course. Significant differences (p<0.05) were revealed for the mean number of impacts (>10g), FW=12.5±7.6, RYF=42.8±27.4 (t (22.96) =-4.70; p<0.001; 95% CI=17.00 to 43.64); maximum peak rotational acceleration, FW=6805.4±3073.8rad/s 2 , RYF=9799.9±3381.7rad/s 2 (t (32) =-2.636; p=0.01; 95% CI=680.31 to 5308.38); mean acceleration duration FW=4.7±1.2ms, RYF=6.5±1.4ms (t (32) =-4.05; p<0.001; 95% CI=0.91 to 2.76) and maximum acceleration duration, FW=11.6±4.5ms, RYF=21.2±9.1 (t (29.51) =-4.06; p=0.001; 95% CI=4.21 to 14.94). No other significant differences were found. Findings indicate that downhill riders may be at risk of sustaining traumatic brain injuries and course design influences the number and magnitude of accelerations. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. Method and apparatus for two-dimensional absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2004-01-01

    This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.

  16. Magnitude and frequency of floods in small drainage basins in Idaho

    USGS Publications Warehouse

    Thomas, C.A.; Harenberg, W.A.; Anderson, J.M.

    1973-01-01

    A method is presented in this report for determining magnitude and frequency of floods on streams with drainage areas between 0.5 and 200 square miles. The method relates basin characteristics, including drainage area, percentage of forest cover, percentage of water area, latitude, and longitude, with peak flow characteristics. Regression equations for each of eight regions are presented for determination of QIQ/ the peak discharge, which, on the average, will be exceeded once in 10 years. Peak flows, Q25 and Q 50 , can then be estimated from Q25/Q10 and Q-50/Q-10 ratios developed for each region. Nomographs are included which solve the equations for basins between 1 and 50 square miles. The regional regression equations were developed using multiple regression techniques. Annual peaks for 303 sites were analyzed in the study. These included all records on unregulated streams with drainage areas less than about 500 square miles with 10 years or more of record or which could readily be extended to 10 years on the basis of nearby streams. The log-Pearson Type III method as modified and a digital computer were employed to estimate magnitude and frequency of floods for each of the 303 gaged sites. A large number of physical and climatic basin characteristics were determined for each of the gaged sites. The multiple regression method was then applied to determine the equations relating the floodflows and the most significant basin characteristics. For convenience of the users, several equations were simplified and some complex characteristics were deleted at the sacrifice of some increase in the standard error. Standard errors of estimate and many other statistical data were computed in the analysis process and are available in the Boise district office files. The analysis showed that QIQ was the best defined and most practical index flood for determination of the Q25 and 0,50 flood estimates.Regression equations are not developed because of poor definition for areas

  17. New design and facilities for the International Database for Absolute Gravity Measurements (AGrav): A support for the Establishment of a new Global Absolute Gravity Reference System

    NASA Astrophysics Data System (ADS)

    Wziontek, Hartmut; Falk, Reinhard; Bonvalot, Sylvain; Rülke, Axel

    2017-04-01

    After about 10 years of successful joint operation by BGI and BKG, the International Database for Absolute Gravity Measurements "AGrav" (see references hereafter) was under a major revision. The outdated web interface was replaced by a responsive, high level web application framework based on Python and built on top of Pyramid. Functionality was added, like interactive time series plots or a report generator and the interactive map-based station overview was updated completely, comprising now clustering and the classification of stations. Furthermore, the database backend was migrated to PostgreSQL for better support of the application framework and long-term availability. As comparisons of absolute gravimeters (AG) become essential to realize a precise and uniform gravity standard, the database was extended to document the results on international and regional level, including those performed at monitoring stations equipped with SGs. By this it will be possible to link different AGs and to trace their equivalence back to the key comparisons under the auspices of International Committee for Weights and Measures (CIPM) as the best metrological realization of the absolute gravity standard. In this way the new AGrav database accommodates the demands of the new Global Absolute Gravity Reference System as recommended by the IAG Resolution No. 2 adopted in Prague 2015. The new database will be presented with focus on the new user interface and new functionality, calling all institutions involved in absolute gravimetry to participate and contribute with their information to built up a most complete picture of high precision absolute gravimetry and improve its visibility. A Digital Object Identifier (DOI) will be provided by BGI to contributors to give a better traceability and facilitate the referencing of their gravity surveys. Links and references: BGI mirror site : http://bgi.obs-mip.fr/data-products/Gravity-Databases/Absolute-Gravity-data/ BKG mirror site: http

  18. Verification of 1921 peak discharge at Skagit River near Concrete, Washington, using 2003 peak-discharge data

    USGS Publications Warehouse

    Mastin, M.C.; Kresch, D.L.

    2005-01-01

    The 1921 peak discharge at Skagit River near Concrete, Washington (U.S. Geological Survey streamflow-gaging station 12194000), was verified using peak-discharge data from the flood of October 21, 2003, the largest flood since 1921. This peak discharge is critical to determining other high discharges at the gaging station and to reliably estimating the 100-year flood, the primary design flood being used in a current flood study of the Skagit River basin. The four largest annual peak discharges of record (1897, 1909, 1917, and 1921) were used to determine the 100-year flood discharge at Skagit River near Concrete. The peak discharge on December 13, 1921, was determined by James E. Stewart of the U.S. Geological Survey using a slope-area measurement and a contracted-opening measurement. An extended stage-discharge rating curve based on the 1921 peak discharge was used to determine the peak discharges of the three other large floods. Any inaccuracy in the 1921 peak discharge also would affect the accuracies of the three other largest peak discharges. The peak discharge of the 1921 flood was recalculated using the cross sections and high-water marks surveyed after the 1921 flood in conjunction with a new estimate of the channel roughness coefficient (n value) based on an n-verification analysis of the peak discharge of the October 21, 2003, flood. The n value used by Stewart for his slope-area measurement of the 1921 flood was 0.033, and the corresponding calculated peak discharge was 240,000 cubic feet per second (ft3/s). Determination of a single definitive water-surface profile for use in the n-verification analysis was precluded because of considerable variation in elevations of surveyed high-water marks from the flood on October 21, 2003. Therefore, n values were determined for two separate water-surface profiles thought to bracket a plausible range of water-surface slopes defined by high-water marks. The n value determined using the flattest plausible slope was 0

  19. Speed, not magnitude, of knee extensor torque production is associated with self-reported knee function early after anterior cruciate ligament reconstruction.

    PubMed

    Hsieh, Chao-Jung; Indelicato, Peter A; Moser, Michael W; Vandenborne, Krista; Chmielewski, Terese L

    2015-11-01

    To examine the magnitude and speed of knee extensor torque production at the initiation of advanced anterior cruciate ligament (ACL) reconstruction rehabilitation and the associations with self-reported knee function. Twenty-eight subjects who were 12 weeks post-ACL reconstruction and 28 age- and sex-matched physically active controls participated in this study. Knee extensor torque was assessed bilaterally with an isokinetic dynamometer at 60°/s. The variables of interest were peak torque, average rate of torque development, time to peak torque and quadriceps symmetry index. Knee function was assessed with the International Knee Documentation Committee Subjective Knee Form (IKDC-SKF). Peak torque and average rate of torque development were lower on the surgical side compared to the non-surgical side and controls. Quadriceps symmetry index was lower in subjects with ACL reconstruction compared to controls. On the surgical side, average rate of torque development was positively correlated with IKDC-SKF score (r = 0.379) while time to peak torque was negatively correlated with IKDC-SKF score (r = -0.407). At the initiation of advanced ACL reconstruction rehabilitation, the surgical side displayed deficits in peak torque and average rate of torque development. A higher rate of torque development and shorter time to peak torque were associated with better self-reported knee function. The results suggest that the rate of torque development should be addressed during advanced ACL reconstruction rehabilitation and faster knee extensor torque generation may lead to better knee function. III.

  20. Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.

    PubMed

    Foley, Joe P; Blackney, Donna M; Ennis, Erin J

    2017-11-10

    The origins of the peak capacity concept are described and the important contributions to the development of that concept in chromatography and electrophoresis are reviewed. Whereas numerous quantitative expressions have been reported for one- and two-dimensional separations, most are focused on chromatographic separations and few, if any, quantitative unbiased expressions have been developed for capillary or microchip zone electrophoresis. Making the common assumption that longitudinal diffusion is the predominant source of zone broadening in capillary electrophoresis, analytical expressions for the peak capacity are derived, first in terms of migration time, diffusion coefficient, migration distance, and desired resolution, and then in terms of the remaining underlying fundamental parameters (electric field, electroosmotic and electrophoretic mobilities) that determine the migration time. The latter expressions clearly illustrate the direct square root dependence of peak capacity on electric field and migration distance and the inverse square root dependence on solute diffusion coefficient. Conditions that result in a high peak capacity will result in a low peak capacity per unit time and vice-versa. For a given symmetrical range of relative electrophoretic mobilities for co- and counter-electroosmotic species (cations and anions), the peak capacity increases with the square root of the electric field even as the temporal window narrows considerably, resulting in a significant reduction in analysis time. Over a broad relative electrophoretic mobility interval [-0.9, 0.9], an approximately two-fold greater amount of peak capacity can be generated for counter-electroosmotic species although it takes about five-fold longer to do so, consistent with the well-known bias in migration time and resolving power for co- and counter-electroosmotic species. The optimum lower bound of the relative electrophoretic mobility interval [μ r,Z , μ r,A ] that provides the maximum

  1. 237Np absolute delayed neutron yield measurements

    NASA Astrophysics Data System (ADS)

    Doré, D.; Ledoux, X.; Nolte, R.; Gagnon-Moisan, F.; Thulliez, L.; Litaize, O.; Roettger, S.; Serot, O.

    2017-09-01

    237Np absolute delayed neutron yields have been measured at different incident neutron energies from 1.5 to 16 MeV. The experiment was performed at the Physikalisch-Technische Bundesanstalt (PTB) facility where the Van de Graaff accelerator and the cyclotron CV28 delivered 9 different neutron energy beams using p+T, d+D and d+T reactions. The detection system is made up of twelve 3He tubes inserted into a polyethylene cylinder. In this paper, the experimental setup and the data analysis method are described. The evolution of the absolute DN yields as a function of the neutron incident beam energies are presented and compared to experimental data found in the literature and data from the libraries.

  2. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  3. The Role of Climatic Conditions in Controlling Observed Variability of Timing and Peak Discharge of Glacial Lake Outburst Floods: Lago Cachet Dos, Chile

    NASA Astrophysics Data System (ADS)

    Jacquet, J.; McCoy, S. W.; McGrath, D.; Nimick, D.; Friesen, B.; Fahey, M. J.; Leidich, J.; Okuinghttons, J.

    2016-12-01

    The sudden release of water from an ice-dammed lake poses substantial hazard to the downstream environment, but predicting the timing and magnitude of such an event is difficult. We use a series of high-resolution discharge measurements from a glacier-dammed lake, Lago Cachet Dos (LC2), during outburst events to evaluate the environmental conditions that influence the timing of initiation and peak discharge of observed glacial lake outburst floods (GLOFs). Since April 2008, 20 GLOFs have initiated out of LC2, located on the eastern edge of the Northern Patagonia Icefield, Chile and flooded areas along the Rio Colonia- Rio Baker system. GLOF frequency has averaged 2-3 events annually and peak discharges exiting LC2 have ranged widely from 2,000 to >15,000 m3 s-1. Although some LC2 GLOFs are consistent with global compilations relating peak discharge to lake volume, large deviations from the global trend and large intra-event variability are striking and call into question the predictive ability of simple empirical scaling equations. To evaluate the environmental conditions that lead to variability in observed peak discharge, we use a variation of the theoretical model of Nye (1976), which describes the process of englacial conduit evolution as a competition between thermally induced conduit growth and viscous flow of ice causing conduit collapse. We show that, consistent with theory, initial lake volume, lake temperature, and the rate of meltwater input into the glacially dammed lake all influence the peak discharge of measured GLOFs. Consequently, evolving climatic conditions of a region can greatly influence the potential hazard of GLOFs. Our results suggest that more accurate predictions of GLOF timing and magnitude from ice dammed lakes can be made by incorporating additional measurements of environmental conditions.

  4. Non-Invasive Method of Determining Absolute Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor); Hargens, Alan E. (Inventor)

    2004-01-01

    A method is presented for determining absolute intracranial pressure (ICP) in a patient. Skull expansion is monitored while changes in ICP are induced. The patient's blood pressure is measured when skull expansion is approximately zero. The measured blood pressure is indicative of a reference ICP value. Subsequently, the method causes a known change in ICP and measured the change in skull expansion associated therewith. The absolute ICP is a function of the reference ICP value, the known change in ICP and its associated change in skull expansion; and a measured change in skull expansion.

  5. Bias in Magnitude Estimation Following Left Hemisphere Injury

    PubMed Central

    Woods, Adam J.; Mennemeier, Mark; Garcia-Rill, Edgar; Meythaler, Jay; Mark, Victor W.; Jewel, George R.; Murphy, Heather

    2015-01-01

    There is a growing interest both in identifying the neural mechanisms of magnitude estimation and in identifying forms of bias that can explain aspects of behavioral syndromes like unilateral neglect. Magnitude estimation is associated with activation of temporo-parietal cortex in both cerebral hemispheres of normal subjects; however, it is unclear if and how left hemisphere lesions bias magnitude estimation because the infrequency of neglect and the presence of aphasia in these subjects confound examination. In contrast, we examined magnitude estimation using 12 different types of sensory stimuli that spanned five sensory domains in two patients with very different clinical presentations following unilateral left hemisphere stroke. One patient had neglect sub-acutely without aphasia. The other had aphasia chronically after a temporo-parietal lesion but not neglect. The neglect patient was re-examined 48 hours after being treated with modafinil (Provigil) for decreased arousal. Both patients demonstrated bias in magnitude estimation relative to normal subjects (n=83). Alertness improved in the neglect patient after taking modafinil. His neglect also resolved and his magnitude estimates more closely resembled those of normal subjects. This is the first evidence, to our knowledge, that the left hemisphere injury can bias magnitude estimation in a manner similar but not identical to that associated with right hemisphere injury. PMID:16434066

  6. A highly accurate absolute gravimetric network for Albania, Kosovo and Montenegro

    NASA Astrophysics Data System (ADS)

    Ullrich, Christian; Ruess, Diethard; Butta, Hubert; Qirko, Kristaq; Pavicevic, Bozidar; Murat, Meha

    2016-04-01

    The objective of this project is to establish a basic gravity network in Albania, Kosovo and Montenegro to enable further investigations in geodetic and geophysical issues. Therefore the first time in history absolute gravity measurements were performed in these countries. The Norwegian mapping authority Kartverket is assisting the national mapping authorities in Kosovo (KCA) (Kosovo Cadastral Agency - Agjencia Kadastrale e Kosovës), Albania (ASIG) (Autoriteti Shtetëror i Informacionit Gjeohapësinor) and in Montenegro (REA) (Real Estate Administration of Montenegro - Uprava za nekretnine Crne Gore) in improving the geodetic frameworks. The gravity measurements are funded by Kartverket. The absolute gravimetric measurements were performed from BEV (Federal Office of Metrology and Surveying) with the absolute gravimeter FG5-242. As a national metrology institute (NMI) the Metrology Service of the BEV maintains the national standards for the realisation of the legal units of measurement and ensures their international equivalence and recognition. Laser and clock of the absolute gravimeter were calibrated before and after the measurements. The absolute gravimetric survey was carried out from September to October 2015. Finally all 8 scheduled stations were successfully measured: there are three stations located in Montenegro, two stations in Kosovo and three stations in Albania. The stations are distributed over the countries to establish a gravity network for each country. The vertical gradients were measured at all 8 stations with the relative gravimeter Scintrex CG5. The high class quality of some absolute gravity stations can be used for gravity monitoring activities in future. The measurement uncertainties of the absolute gravity measurements range around 2.5 micro Gal at all stations (1 microgal = 10-8 m/s2). In Montenegro the large gravity difference of 200 MilliGal between station Zabljak and Podgorica can be even used for calibration of relative gravimeters

  7. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound.

  8. Measurement of absolute gravity acceleration in Firenze

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  9. Absolute angular encoder based on optical diffraction

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Zhou, Tingting; Yuan, Bo; Wang, Liqiang

    2015-08-01

    A new encoding method for absolute angular encoder based on optical diffraction was proposed in the present study. In this method, an encoder disc is specially designed that a series of elements are uniformly spaced in one circle and each element is consisted of four diffraction gratings, which are tilted in the directions of 30°, 60°, -60° and -30°, respectively. The disc is illuminated by a coherent light and the diffractive signals are received. The positions of diffractive spots are used for absolute encoding and their intensities are for subdivision, which is different from the traditional optical encoder based on transparent/opaque binary principle. Since the track's width in the disc is not limited in the diffraction pattern, it provides a new way to solve the contradiction between the size and resolution, which is good for minimization of encoder. According to the proposed principle, the diffraction pattern disc with a diameter of 40 mm was made by lithography in the glass substrate. A prototype of absolute angular encoder with a resolution of 20" was built up. Its maximum error was tested as 78" by comparing with a small angle measuring system based on laser beam deflection.

  10. Magnitude Scaling of the early displacement for the 2007, Mw 7.8 Tocopilla sequence (Chile)

    NASA Astrophysics Data System (ADS)

    Lancieri, M.; Fuenzalida, A.; Ruiz, S.; Madariaga, R. I.

    2009-12-01

    We investigate the empirical relationships between the initial portion of P and S-phase and the final event magnitude, on the Tocopilla (Chile) event and its aftershocks. Such correlations, on which real-time magnitude estimation for seismic early warning is founded, have been widely studied on several data sets, merging earthquakes generated in different tectonic settings and recorded with very different networks. The Tocopilla (Mw 7.8) earthquake, occurred along the northern Chile seismic gap on 14 November 2007, provides, together with its aftershocks, a unique opportunity of studying a homogeneous data set in terms of tectonic environment, focal mechanism, and recording network. The preliminary analysis required to build the seismic catalogue includes the automatic identification of more than 570 aftershocks using an automatic phase detector and picker algorithm, and the subsequent location of the events through a non-linear and probabilistic code. The seismic moment (M0) has been calculated by spectral modeling of P and S waves, assuming a Brune omega-square model. This analysis also yields values for the corner frequency and quality factor. The estimated range of moment magnitude for the aftershocks sequence is [2.8 - 6.8]. The correlation between the low pass filtered peak displacement (PD) and the final magnitude has been investigated for 90 events with magnitude greater than 4. These include the main event, its larger aftershock (Mw 6.8 occurred twenty-four hours after the main shock), and seven events with magnitude greater than 5.7. The recovered relationships confirm the observations of Zollo et al. [2006, 2007] of a clear correlation between distance corrected PD and final magnitude in the magnitude range [4.0 - 7.4], when considering time windows of 4 sec of P- or 2 sec of S- wave. In contrast with the previous studies, when examining time windows of 2 sec of P-wave, we surprisingly do not observe any saturation effect for magnitudes greater than 6

  11. Peak phosphorus - peak food? The need to close the phosphorus cycle.

    PubMed

    Rhodes, Christopher J

    2013-01-01

    The peak in the world production of phosphorus has been predicted to occur in 2033, based on world reserves of rock phosphate (URR) reckoned at around 24,000 million tonnes (Mt), with around 18,000 Mt remaining. This figure was reckoned-up to 71,000 Mt, by the USGS, in 2012, but a production maximum during the present century is still highly probable. There are complex issues over what the demand will be for phosphorus in the future, as measured against a rising population (from 7 billion to over 9 billion in 2050), and a greater per capita demand for fertiliser to grow more grain, in part to feed animals and meet a rising demand for meat by a human species that is not merely more populous but more affluent. As a counterweight to this, we may expect that greater efficiencies in the use of phosphorus - including recycling from farms and of human and animal waste - will reduce the per capita demand for phosphate rock. The unseen game changer is peak oil, since phosphate is mined and recovered using machinery powered by liquid fuels refined from crude oil. Hence, peak oil and peak phosphorus might appear as conjoined twins. There is no unequivocal case that we can afford to ignore the likelihood of a supply-demand gap for phosphorus occurring sometime this century, and it would be perilous to do so.

  12. Defining Tsunami Magnitude as Measure of Potential Impact

    NASA Astrophysics Data System (ADS)

    Titov, V. V.; Tang, L.

    2016-12-01

    The goal of tsunami forecast, as a system for predicting potential impact of a tsunami at coastlines, requires quick estimate of a tsunami magnitude. This goal has been recognized since the beginning of tsunami research. The work of Kajiura, Soloviev, Abe, Murty, and many others discussed several scales for tsunami magnitude based on estimates of tsunami energy. However, difficulties of estimating tsunami energy based on available tsunami measurements at coastal sea-level stations has carried significant uncertainties and has been virtually impossible in real time, before tsunami impacts coastlines. The slow process of tsunami magnitude estimates, including collection of vast amount of available coastal sea-level data from affected coastlines, made it impractical to use any tsunami magnitude scales in tsunami warning operations. Uncertainties of estimates made tsunami magnitudes difficult to use as universal scale for tsunami analysis. Historically, the earthquake magnitude has been used as a proxy of tsunami impact estimates, since real-time seismic data is available of real-time processing and ample amount of seismic data is available for an elaborate post event analysis. This measure of tsunami impact carries significant uncertainties in quantitative tsunami impact estimates, since the relation between the earthquake and generated tsunami energy varies from case to case. In this work, we argue that current tsunami measurement capabilities and real-time modeling tools allow for establishing robust tsunami magnitude that will be useful for tsunami warning as a quick estimate for tsunami impact and for post-event analysis as a universal scale for tsunamis inter-comparison. We present a method for estimating the tsunami magnitude based on tsunami energy and present application of the magnitude analysis for several historical events for inter-comparison with existing methods.

  13. DETECTION OF ELEMENTS AT ALL THREE r-PROCESS PEAKS IN THE METAL-POOR STAR HD 160617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U.; Lawler, James E., E-mail: iur@obs.carnegiescience.edu, E-mail: jelawler@wisc.edu

    2012-05-01

    We report the first detection of elements at all three r-process peaks in the metal-poor halo star HD 160617. These elements include arsenic and selenium, which have not been detected previously in halo stars, and the elements tellurium, osmium, iridium, and platinum, which have been detected previously. Absorption lines of these elements are found in archive observations made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. We present up-to-date absolute atomic transition probabilities and complete line component patterns for these elements. Additional archival spectra of this star from several ground-based instruments allow us to derive abundancesmore » or upper limits of 45 elements in HD 160617, including 27 elements produced by neutron-capture reactions. The average abundances of the elements at the three r-process peaks are similar to the predicted solar system r-process residuals when scaled to the abundances in the rare earth element domain. This result for arsenic and selenium may be surprising in light of predictions that the production of the lightest r-process elements generally should be decoupled from the heavier r-process elements.« less

  14. Magnitude knowledge: the common core of numerical development.

    PubMed

    Siegler, Robert S

    2016-05-01

    The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: (1) representing increasingly precisely the magnitudes of non-symbolic numbers, (2) connecting small symbolic numbers to their non-symbolic referents, (3) extending understanding from smaller to larger whole numbers, and (4) accurately representing the magnitudes of rational numbers. The present review identifies substantial commonalities, as well as differences, in these four aspects of numerical development. With both whole and rational numbers, numerical magnitude knowledge is concurrently correlated with, longitudinally predictive of, and causally related to multiple aspects of mathematical understanding, including arithmetic and overall math achievement. Moreover, interventions focused on increasing numerical magnitude knowledge often generalize to other aspects of mathematics. The cognitive processes of association and analogy seem to play especially large roles in this development. Thus, acquisition of numerical magnitude knowledge can be seen as the common core of numerical development. © 2016 John Wiley & Sons Ltd.

  15. Magnitude and intensity: Measures of earthquake size and severity

    USGS Publications Warehouse

    Spall, Henry

    1982-01-01

    Earthquakes can be measured in terms of either the amount of energy they release (magnitude) or the degree of ground shaking they cause at a particular locality (intensity).  Although magnitude and intensity are basically different measures of an earthquake, they are frequently confused by the public and new reports of earthquakes.  Part of the confusion probably arises from the general similarity of scales used express these quantities.  The various magnitude scales represent logarithmic expressions of the energy released by an earthquake.  Magnitude is calculated from the record made by an earthquake on a calibrated seismograph.  There are no upper or lower limits to magnitude, although no measured earthquakes have exceeded magnitude 8.9.

  16. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  17. Laser interferometry method for absolute measurement of the acceleration of gravity

    NASA Technical Reports Server (NTRS)

    Hudson, O. K.

    1971-01-01

    Gravimeter permits more accurate and precise absolute measurement of g without reference to Potsdam values as absolute standards. Device is basically Michelson laser beam interferometer in which one arm is mass fitted with corner cube reflector.

  18. How to use your peak flow meter

    MedlinePlus

    Peak flow meter - how to use; Asthma - peak flow meter; Reactive airway disease - peak flow meter; Bronchial asthma - peak flow meter ... your airways are narrowed and blocked due to asthma, your peak flow values drop. You can check ...

  19. Frequency comb calibrated frequency-sweeping interferometry for absolute group refractive index measurement of air.

    PubMed

    Yang, Lijun; Wu, Xuejian; Wei, Haoyun; Li, Yan

    2017-04-10

    The absolute group refractive index of air at 194061.02 GHz is measured in real time using frequency-sweeping interferometry calibrated by an optical frequency comb. The group refractive index of air is calculated from the calibration peaks of the laser frequency variation and the interference signal of the two beams passing through the inner and outer regions of a vacuum cell when the frequency of a tunable external cavity diode laser is scanned. We continuously measure the refractive index of air for 2 h, which shows that the difference between measured results and Ciddor's equation is less than 9.6×10-8, and the standard deviation of that difference is 5.9×10-8. The relative uncertainty of the measured refractive index of air is estimated to be 8.6×10-8. The data update rate is 0.2 Hz, making it applicable under conditions in which air refractive index fluctuates fast.

  20. Absolute Coefficients and the Graphical Representation of Airfoil Characteristics

    NASA Technical Reports Server (NTRS)

    Munk, Max

    1921-01-01

    It is argued that there should be an agreement as to what conventions to use in determining absolute coefficients used in aeronautics and in how to plot those coefficients. Of particular importance are the absolute coefficients of lift and drag. The author argues for the use of the German method over the kind in common use in the United States and England, and for the Continental over the usual American and British method of graphically representing the characteristics of an airfoil. The author notes that, on the whole, it appears that the use of natural absolute coefficients in a polar diagram is the logical method for presentation of airfoil characteristics, and that serious consideration should be given to the advisability of adopting this method in all countries, in order to advance uniformity and accuracy in the science of aeronautics.

  1. Peripheral absolute threshold spectral sensitivity in retinitis pigmentosa.

    PubMed Central

    Massof, R W; Johnson, M A; Finkelstein, D

    1981-01-01

    Dark-adapted spectral sensitivities were measured in the peripheral retinas of 38 patients diagnosed as having typical retinitis pigmentosa (RP) and in 3 normal volunteers. The patients included those having autosomal dominant and autosomal recessive inheritance patterns. Results were analysed by comparisons with the CIE standard scotopic spectral visibility function and with Judd's modification of the photopic spectral visibility function, with consideration of contributions from changes in spectral transmission of preretinal media. The data show 3 general patterns. One group of patients had absolute threshold spectral sensitivities that were fit by Judd's photopic visibility curve. Absolute threshold spectral sensitivities for a second group of patients were fit by a normal scotopic spectral visibility curve. The third group of patients had absolute threshold spectral sensitivities that were fit by a combination of scotopic and photopic spectral visibility curves. The autosomal dominant and autosomal recessive modes of inheritance were represented in each group of patients. These data indicate that RP patients have normal rod and/or cone spectral sensitivities, and support the subclassification of patients described previously by Massof and Finkelstein. PMID:7459312

  2. Evaluation of different time domain peak models using extreme learning machine-based peak detection for EEG signal.

    PubMed

    Adam, Asrul; Ibrahim, Zuwairie; Mokhtar, Norrima; Shapiai, Mohd Ibrahim; Cumming, Paul; Mubin, Marizan

    2016-01-01

    Various peak models have been introduced to detect and analyze peaks in the time domain analysis of electroencephalogram (EEG) signals. In general, peak model in the time domain analysis consists of a set of signal parameters, such as amplitude, width, and slope. Models including those proposed by Dumpala, Acir, Liu, and Dingle are routinely used to detect peaks in EEG signals acquired in clinical studies of epilepsy or eye blink. The optimal peak model is the most reliable peak detection performance in a particular application. A fair measure of performance of different models requires a common and unbiased platform. In this study, we evaluate the performance of the four different peak models using the extreme learning machine (ELM)-based peak detection algorithm. We found that the Dingle model gave the best performance, with 72 % accuracy in the analysis of real EEG data. Statistical analysis conferred that the Dingle model afforded significantly better mean testing accuracy than did the Acir and Liu models, which were in the range 37-52 %. Meanwhile, the Dingle model has no significant difference compared to Dumpala model.

  3. Absolute flux density calibrations of radio sources: 2.3 GHz

    NASA Technical Reports Server (NTRS)

    Freiley, A. J.; Batelaan, P. D.; Bathker, D. A.

    1977-01-01

    A detailed description of a NASA/JPL Deep Space Network program to improve S-band gain calibrations of large aperture antennas is reported. The program is considered unique in at least three ways; first, absolute gain calibrations of high quality suppressed-sidelobe dual mode horns first provide a high accuracy foundation to the foundation to the program. Second, a very careful transfer calibration technique using an artificial far-field coherent-wave source was used to accurately obtain the gain of one large (26 m) aperture. Third, using the calibrated large aperture directly, the absolute flux density of five selected galactic and extragalactic natural radio sources was determined with an absolute accuracy better than 2 percent, now quoted at the familiar 1 sigma confidence level. The follow-on considerations to apply these results to an operational network of ground antennas are discussed. It is concluded that absolute gain accuracies within + or - 0.30 to 0.40 db are possible, depending primarily on the repeatability (scatter) in the field data from Deep Space Network user stations.

  4. Assessing epistemic sophistication by considering domain-specific absolute and multiplicistic beliefs separately.

    PubMed

    Peter, Johannes; Rosman, Tom; Mayer, Anne-Kathrin; Leichner, Nikolas; Krampen, Günter

    2016-06-01

    Particularly in higher education, not only a view of science as a means of finding absolute truths (absolutism), but also a view of science as generally tentative (multiplicism) can be unsophisticated and obstructive for learning. Most quantitative epistemic belief inventories neglect this and understand epistemic sophistication as disagreement with absolute statements. This article suggests considering absolutism and multiplicism as separate dimensions. Following our understanding of epistemic sophistication as a cautious and reluctant endorsement of both positions, we assume evaluativism (a contextually adaptive view of knowledge as personally constructed and evidence-based) to be reflected by low agreement with both generalized absolute and generalized multiplicistic statements. Three studies with a total sample size of N = 416 psychology students were conducted. A domain-specific inventory containing both absolute and multiplicistic statements was developed. Expectations were tested by exploratory factor analysis, confirmatory factor analysis, and correlational analyses. Results revealed a two-factor solution with an absolute and a multiplicistic factor. Criterion validity of both factors was confirmed. Cross-sectional analyses revealed that agreement to generalized multiplicistic statements decreases with study progress. Moreover, consistent with our understanding of epistemic sophistication as a reluctant attitude towards generalized epistemic statements, evidence for a negative relationship between epistemic sophistication and need for cognitive closure was found. We recommend including multiplicistic statements into epistemic belief questionnaires and considering them as a separate dimension, especially when investigating individuals in later stages of epistemic development (i.e., in higher education). © 2015 The British Psychological Society.

  5. Origin of weak lensing convergence peaks

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Haiman, Zoltán

    2016-08-01

    Weak lensing convergence peaks are a promising tool to probe nonlinear structure evolution at late times, providing additional cosmological information beyond second-order statistics. Previous theoretical and observational studies have shown that the cosmological constraints on Ωm and σ8 are improved by a factor of up to ≈2 when peak counts and second-order statistics are combined, compared to using the latter alone. We study the origin of lensing peaks using observational data from the 154 deg2 Canada-France-Hawaii Telescope Lensing Survey. We found that while high peaks (with height κ >3.5 σκ , where σκ is the rms of the convergence κ ) are typically due to one single massive halo of ≈1 015M⊙ , low peaks (κ ≲σκ ) are associated with constellations of 2-8 smaller halos (≲1 013M⊙ ). In addition, halos responsible for forming low peaks are found to be significantly offset from the line of sight towards the peak center (impact parameter ≳ their virial radii), compared with ≈0.25 virial radii for halos linked with high peaks, hinting that low peaks are more immune to baryonic processes whose impact is confined to the inner regions of the dark matter halos. Our findings are in good agreement with results from the simulation work by Yang et al. [Phys. Rev. D 84, 043529 (2011)].

  6. Multiscale peak detection in wavelet space.

    PubMed

    Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-12-07

    Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .

  7. Peak-discharge frequency and potential extreme peak discharge for natural streams in the Brazos River basin, Texas

    USGS Publications Warehouse

    Raines, Timothy H.

    1998-01-01

    The potential extreme peak-discharge curves as related to contributing drainage area were estimated for each of the three hydrologic regions from measured extreme peaks of record at 186 sites with streamflow-gaging stations and from measured extreme peaks at 37 sites without streamflow-gaging stations in and near the Brazos River Basin. The potential extreme peak-discharge curves generally are similar for hydrologic regions 1 and 2, and the curve for region 3 consistently is below the curves for regions 1 and 2, which indicates smaller peak discharges.

  8. Absolute photon-flux measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Haddad, G. N.

    1974-01-01

    Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

  9. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  10. Absolute gravity measurements in California

    NASA Astrophysics Data System (ADS)

    Zumberge, M. A.; Sasagawa, G.; Kappus, M.

    1986-08-01

    An absolute gravity meter that determines the local gravitational acceleration by timing a freely falling mass with a laser interferometer has been constructed. The instrument has made measurements at 11 sites in California, four in Nevada, and one in France. The uncertainty in the results is typically 10 microgal. Repeated measurements have been made at several of the sites; only one shows a substantial change in gravity.

  11. Magnitude-based Inference”: A Statistical Review

    PubMed Central

    Welsh, Alan H.; Knight, Emma J.

    2015-01-01

    ABSTRACT Purpose We consider “magnitude-based inference” and its interpretation by examining in detail its use in the problem of comparing two means. Methods We extract from the spreadsheets, which are provided to users of the analysis (http://www.sportsci.org/), a precise description of how “magnitude-based inference” is implemented. We compare the implemented version of the method with general descriptions of it and interpret the method in familiar statistical terms. Results and Conclusions We show that “magnitude-based inference” is not a progressive improvement on modern statistics. The additional probabilities introduced are not directly related to the confidence interval but, rather, are interpretable either as P values for two different nonstandard tests (for different null hypotheses) or as approximate Bayesian calculations, which also lead to a type of test. We also discuss sample size calculations associated with “magnitude-based inference” and show that the substantial reduction in sample sizes claimed for the method (30% of the sample size obtained from standard frequentist calculations) is not justifiable so the sample size calculations should not be used. Rather than using “magnitude-based inference,” a better solution is to be realistic about the limitations of the data and use either confidence intervals or a fully Bayesian analysis. PMID:25051387

  12. Can You Hear That Peak? Utilization of Auditory and Visual Feedback at Peak Limb Velocity.

    PubMed

    Loria, Tristan; de Grosbois, John; Tremblay, Luc

    2016-09-01

    At rest, the central nervous system combines and integrates multisensory cues to yield an optimal percept. When engaging in action, the relative weighing of sensory modalities has been shown to be altered. Because the timing of peak velocity is the critical moment in some goal-directed movements (e.g., overarm throwing), the current study sought to test whether visual and auditory cues are optimally integrated at that specific kinematic marker when it is the critical part of the trajectory. Participants performed an upper-limb movement in which they were required to reach their peak limb velocity when the right index finger intersected a virtual target (i.e., a flinging movement). Brief auditory, visual, or audiovisual feedback (i.e., 20 ms in duration) was provided to participants at peak limb velocity. Performance was assessed primarily through the resultant position of peak limb velocity and the variability of that position. Relative to when no feedback was provided, auditory feedback significantly reduced the resultant endpoint variability of the finger position at peak limb velocity. However, no such reductions were found for the visual or audiovisual feedback conditions. Further, providing both auditory and visual cues concurrently also failed to yield the theoretically predicted improvements in endpoint variability. Overall, the central nervous system can make significant use of an auditory cue but may not optimally integrate a visual and auditory cue at peak limb velocity, when peak velocity is the critical part of the trajectory.

  13. Relational versus absolute representation in categorization.

    PubMed

    Edwards, Darren J; Pothos, Emmanuel M; Perlman, Amotz

    2012-01-01

    This study explores relational-like and absolute-like representations in categorization. Although there is much evidence that categorization processes can involve information about both the particular physical properties of studied instances and abstract (relational) properties, there has been little work on the factors that lead to one kind of representation as opposed to the other. We tested 370 participants in 6 experiments, in which participants had to classify new items into predefined artificial categories. In 4 experiments, we observed a predominantly relational-like mode of classification, and in 2 experiments we observed a shift toward an absolute-like mode of classification. These results suggest 3 factors that promote a relational-like mode of classification: fewer items per group, more training groups, and the presence of a time delay. Overall, we propose that less information about the distributional properties of a category or weaker memory traces for the category exemplars (induced, e.g., by having smaller categories or a time delay) can encourage relational-like categorization.

  14. Fourier transform magnitudes are unique pattern recognition templates.

    PubMed

    Gardenier, P H; McCallum, B C; Bates, R H

    1986-01-01

    Fourier transform magnitudes are commonly used in the generation of templates in pattern recognition applications. We report on recent advances in Fourier phase retrieval which are relevant to pattern recognition. We emphasise in particular that the intrinsic form of a finite, positive image is, in general, uniquely related to the magnitude of its Fourier transform. We state conditions under which the Fourier phase can be reconstructed from samples of the Fourier magnitude, and describe a method of achieving this. Computational examples of restoration of Fourier phase (and hence, by Fourier transformation, the intrinsic form of the image) from samples of the Fourier magnitude are also presented.

  15. Development of an Empirical Local Magnitude Formula for Northern Oklahoma

    NASA Astrophysics Data System (ADS)

    Spriggs, N.; Karimi, S.; Moores, A. O.

    2015-12-01

    In this paper we focus on determining a local magnitude formula for northern Oklahoma that is unbiased with distance by empirically constraining the attenuation properties within the region of interest based on the amplitude of observed seismograms. For regional networks detecting events over several hundred kilometres, distance correction terms play an important role in determining the magnitude of an event. Standard distance correction terms such as Hutton and Boore (1987) may have a significant bias with distance if applied in a region with different attenuation properties, resulting in an incorrect magnitude. We have presented data from a regional network of broadband seismometers installed in bedrock in northern Oklahoma. The events with magnitude in the range of 2.0 and 4.5, distributed evenly across this network are considered. We find that existing models show a bias with respect to hypocentral distance. Observed amplitude measurements demonstrate that there is a significant Moho bounce effect that mandates the use of a trilinear attenuation model in order to avoid bias in the distance correction terms. We present two different approaches of local magnitude calibration. The first maintains the classic definition of local magnitude as proposed by Richter. The second method calibrates local magnitude so that it agrees with moment magnitude where a regional moment tensor can be computed. To this end, regional moment tensor solutions and moment magnitudes are computed for events with magnitude larger than 3.5 to allow calibration of local magnitude to moment magnitude. For both methods the new formula results in magnitudes systematically lower than previous values computed with Eaton's (1992) model. We compare the resulting magnitudes and discuss the benefits and drawbacks of each method. Our results highlight the importance of correct calibration of the distance correction terms for accurate local magnitude assessment in regional networks.

  16. Magnitude and frequency of floods in the United States. Part 13. Snake River basin

    USGS Publications Warehouse

    Thomas, C.A.; Broom, H.C.; Cummans, J.E.

    1963-01-01

    The magnitude of a flood of any selected frequency up to 50 years for any site on any stream in the Snake River basin can be determined by methods outlined in this report, with some limitations. The methods are not applicable for regulated streams, for drainage basins smaller than 10 or larger than 5,000 square miles, for streams fed by large springs, or for streams that have flow characteristics materially different from the regional pattern. The magnitude of a flood for a selected frequency at a given site is determined by using the appropriate composite frequency curve and the mean annual flood for the given site. The mean annual flood is computed from either a formula or a nomograph in which drainage area, mean annual precipitation, and a geographic factor are used as independent variables. The standard error of estimate for the computation of mean annual floods is plus 17 percent and minus 15 percent.Nine flood-frequency regions (A-I) are defined. In all except regions B and I, frequency relations vary with the mean altitude of the basin as well as with the geographic location; therefore, families of curves are required for 7 of the 9 flood-frequency regions.The report includes a brief description of the physiography and climate of the Snake River basin to explain the reason for the large variation in mean annual floods, which range from zero to about 27 cubic feet per second per square mile.Composite frequency curves and formulas for computing mean annual floods are based on all suitable flood data collected in the Snake River basin. Tables show the data used to derive the formula. Following the analysis of data are station descriptions and lists of peak stages and discharges for 295 gaging stations at which 5 or more years of annual flood records were collected pr'or to Sept. 30, 1957. Many flood peak data are not usable in defining the frequency curves and deriving the formula because of large diversions and regulation upstream from the gaging stations.

  17. Standardization approaches in absolute quantitative proteomics with mass spectrometry.

    PubMed

    Calderón-Celis, Francisco; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo

    2017-07-31

    Mass spectrometry-based approaches have enabled important breakthroughs in quantitative proteomics in the last decades. This development is reflected in the better quantitative assessment of protein levels as well as to understand post-translational modifications and protein complexes and networks. Nowadays, the focus of quantitative proteomics shifted from the relative determination of proteins (ie, differential expression between two or more cellular states) to absolute quantity determination, required for a more-thorough characterization of biological models and comprehension of the proteome dynamism, as well as for the search and validation of novel protein biomarkers. However, the physico-chemical environment of the analyte species affects strongly the ionization efficiency in most mass spectrometry (MS) types, which thereby require the use of specially designed standardization approaches to provide absolute quantifications. Most common of such approaches nowadays include (i) the use of stable isotope-labeled peptide standards, isotopologues to the target proteotypic peptides expected after tryptic digestion of the target protein; (ii) use of stable isotope-labeled protein standards to compensate for sample preparation, sample loss, and proteolysis steps; (iii) isobaric reagents, which after fragmentation in the MS/MS analysis provide a final detectable mass shift, can be used to tag both analyte and standard samples; (iv) label-free approaches in which the absolute quantitative data are not obtained through the use of any kind of labeling, but from computational normalization of the raw data and adequate standards; (v) elemental mass spectrometry-based workflows able to provide directly absolute quantification of peptides/proteins that contain an ICP-detectable element. A critical insight from the Analytical Chemistry perspective of the different standardization approaches and their combinations used so far for absolute quantitative MS-based (molecular and

  18. Towards absolute laser spectroscopic CO2 isotope ratio measurements

    NASA Astrophysics Data System (ADS)

    Anyangwe Nwaboh, Javis; Werhahn, Olav; Ebert, Volker

    2017-04-01

    Knowledge of isotope composition of carbon dioxide (CO2) in the atmosphere is necessary to identify sources and sinks of this key greenhouse gas. In the last years, laser spectroscopic techniques such as cavity ring-down spectroscopy (CRDS) and tunable diode laser absorption spectroscopy (TDLAS) have been shown to perform accurate isotope ratio measurements for CO2 and other gases like water vapour (H2O) [1,2]. Typically, isotope ratios are reported in literature referring to reference materials provided by e.g. the International Atomic Energy Agency (IAEA). However, there could be some benefit if field deployable absolute isotope ratio measurement methods were developed to address issues such as exhausted reference material like the Pee Dee Belemnite (PDB) standard. Absolute isotope ratio measurements would be particularly important for situations where reference materials do not even exist. Here, we present CRDS and TDLAS-based absolute isotope ratios (13C/12C ) in atmospheric CO2. We demonstrate the capabilities of the used methods by measuring CO2 isotope ratios in gas standards. We compare our results to values reported for the isotope certified gas standards. Guide to the expression of uncertainty in measurement (GUM) compliant uncertainty budgets on the CRDS and TDLAS absolute isotope ratio measurements are presented, and traceability is addressed. We outline the current impediments in realizing high accuracy absolute isotope ratio measurements using laser spectroscopic methods, propose solutions and the way forward. Acknowledgement Parts of this work have been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References [1] B. Kühnreich, S. Wagner, J. C. Habig,·O. Möhler, H. Saathoff, V. Ebert, Appl. Phys. B 119:177-187 (2015). [2] E. Kerstel, L. Gianfrani, Appl. Phys. B 92, 439-449 (2008).

  19. Peak broadening and peak shift pole figures investigations by STRESS-SPEC diffractometer at FRM II

    NASA Astrophysics Data System (ADS)

    Gan, W. M.; Randau, C.; Hofmann, M.; Brokmeier, H. G.; Mueller, M.; Schreyer, A.

    2012-02-01

    This paper studied for the first time peak intensity, peak position and FHWM pole figures with one time measurement at the neutron diffractometer STRESS-SPEC via in-situ tensile deformation on austenitic steel. Fibre distribution with its evolution from central tensile direction to normal direction of these three kinds of pole figures was obtained. Variation of peak position and FWHM can be correlated to the reorientation of the texture component.

  20. A Moment Rate Function Deduced from Peak Ground Motions from M 3.3-5.3 Earthquakes: Implications for Scaling, Corner Frequency and Stress Drop

    NASA Astrophysics Data System (ADS)

    Archuleta, R. J.; Ji, C.

    2016-12-01

    Based on 3827 records of peak horizontal ground motions in the NGA-West2 database we computed linear regressions for Log PGA, Log PGV and the ratio PGA/2πPGV (which we call dominant frequency, DomF) versus moment magnitude for M 3.3-5.3 earthquakes. The slopes are nearly one for Log PGA and Log PGV and negative one for PGA/PGV. For magnitudes 5.3 and smaller the source can be treated as a point source. Using these regressions and an expression between the half peak-to-peak amplitude of Wood Anderson records (PWA) and moment magnitude, we have deduced an `apparent' moment rate function (aMRF) that increases quadratically in time until it reaches its maximum at time tp after which it decays linearly until a final duration td. For t*=0.054 s and with parameters tp and td scaling with seismic moment, tp(M0) = 0.03[M0/ M0(M=3.3)]1/7.0 and td(M0) = 0.31[M0/ M0(M=3.3)]1/3.3 . all the magnitude dependence within M 3.3-5.3 can be explained. The Fourier amplitude spectrum (FAS) of the aMRF has two corner frequencies connected by an intermediate slope of f-1. The smaller corner frequency fC 1/ td, i.e., a corner frequency related to the full duration. Stress drop associated with the average over the fault scales weakly with seismic moment Δσ M00.09. The larger corner frequency is proportional to 1/ tp. We also find that DomF ≈ 1/[2.2(tp(M0) + t*)], thus there is a strong tradeoff between tp and t*. The higher corner frequency and the intermediate slope in the spectrum could be completely obscured by t* for t* 0.04-0.06 s, producing a Brune-type spectrum. If so, it will be practically impossible to retrieve the true spectrum. Because the fC derived from the spectrum is controlled by td while PGA and PGV are controlled mostly by the time scale tp, this aMRF could explain the difference in uncertainty of the mean stress drop inferred from peak ground motion data and that inferred from displacement amplitude spectra. This aMRF is consistent with a rupture that initiates from

  1. Continuous sweep versus discrete step protocols for studying effects of wearable robot assistance magnitude.

    PubMed

    Malcolm, Philippe; Rossi, Denise Martineli; Siviy, Christopher; Lee, Sangjun; Quinlivan, Brendan Thomas; Grimmer, Martin; Walsh, Conor J

    2017-07-12

    Different groups developed wearable robots for walking assistance, but there is still a need for methods to quickly tune actuation parameters for each robot and population or sometimes even for individual users. Protocols where parameters are held constant for multiple minutes have traditionally been used for evaluating responses to parameter changes such as metabolic rate or walking symmetry. However, these discrete protocols are time-consuming. Recently, protocols have been proposed where a parameter is changed in a continuous way. The aim of the present study was to compare effects of continuously varying assistance magnitude with a soft exosuit against discrete step conditions. Seven participants walked on a treadmill wearing a soft exosuit that assists plantarflexion and hip flexion. In Continuous-up, peak exosuit ankle moment linearly increased from approximately 0 to 38% of biological moment over 10 min. Continuous-down was the opposite. In Discrete, participants underwent five periods of 5 min with steady peak moment levels distributed over the same range as Continuous-up and Continuous-down. We calculated metabolic rate for the entire Continuous-up and Continuous-down conditions and the last 2 min of each Discrete force level. We compared kinematics, kinetics and metabolic rate between conditions by curve fitting versus peak moment. Reduction in metabolic rate compared to Powered-off was smaller in Continuous-up than in Continuous-down at most peak moment levels, due to physiological dynamics causing metabolic measurements in Continuous-up and Continuous-down to lag behind the values expected during steady-state testing. When evaluating the average slope of metabolic reduction over the entire peak moment range there was no significant difference between Continuous-down and Discrete. Attempting to correct the lag in metabolics by taking the average of Continuous-up and Continuous-down removed all significant differences versus Discrete. For kinematic and

  2. Characterizing mid-ultraviolet to optical light curves of nearby type IIn supernovae

    DOE PAGES

    de la Rosa, Janie; Roming, Pete; Pritchard, Tyler; ...

    2016-03-21

    Here, we present early mid-ultraviolet and optical observations of Type IIn supernovae (SNe IIn) observed from 2007 to 2013. Our results focus on the properties of UV light curves: peak absolute magnitudes, temporal decay, and color evolution. During early times, this sample demonstrates that UV light decays faster than optical, and each event transitions from a predominantly UV-bright phase to an optically bright phase. In order to understand early UV behavior, we generate and analyze the sample's blackbody luminosity, temperature, and radius as the SN ejecta expand and cool. Since most of our observations were detected post maximum luminosity, wemore » introduce a method for estimating the date of peak magnitude. When our observations are compared based on filter, we find that even though these SNe IIn vary in peak magnitudes, there are similarities in UV decay rates. We use a simple semi-analytical SN model in order to understand the effects of the explosion environment on our UV observations. Understanding the UV characteristics of nearby SNe IIn during an early phase can provide valuable information about the environment surrounding these explosions, leading us to evaluating the diversity of observational properties in this subclass.« less

  3. Effect of Absolute From Hibiscus syriacus L. Flower on Wound Healing in Keratinocytes

    PubMed Central

    Yoon, Seok Won; Lee, Kang Pa; Kim, Do-Yoon; Hwang, Dae Il; Won, Kyung-Jong; Lee, Dae Won; Lee, Hwan Myung

    2017-01-01

    Background: Proliferation and migration of keratinocytes are essential for the repair of cutaneous wounds. Hibiscus syriacus L. has been used in Asian medicine; however, research on keratinocytes is inadequate. Objective: To establish the dermatological properties of absolute from Hibiscus syriacus L. flower (HSF) and to provide fundamental research for alternative medicine. Materials and Methods: We identified the composition of HSF absolute using gas chromatography-mass spectrometry analysis. We also examined the effect of HSF absolute in HaCaT cells using the XTT assay, Boyden chamber assay, sprout-out growth assay, and western blotting. We conducted an in-vivo wound healing assay in rat tail-skin. Results: Ten major active compounds were identified from HSF absolute. As determined by the XTT assay, Boyden chamber assay, and sprout-out growth assay results, HSF absolute exhibited similar effects as that of epidermal growth factor on the proliferation and migration patterns of keratinocytes (HaCaT cells), which were significantly increased after HSF absolute treatment. The expression levels of the phosphorylated signaling proteins relevant to proliferation, including extracellular signal-regulated kinase 1/2 (Erk 1/2) and Akt, were also determined by western blot analysis. Conclusion: These results of our in-vitro and ex-vivo studies indicate that HSF absolute induced cell growth and migration of HaCaT cells by phosphorylating both Erk 1/2 and Akt. Moreover, we confirmed the wound-healing effect of HSF on injury of the rat tail-skin. Therefore, our results suggest that HSF absolute is promising for use in cosmetics and alternative medicine. SUMMARY Hisbiscus syriacus L. flower absolute increases HaCaT cell migration and proliferation.Hisbiscus syriacus L. flower absolute regulates phosphorylation of ERK 1/2 and Akt in HaCaT cell.Treatment with Hisbiscus syriacus L. flower induced sprout outgrowth.The wound in the tail-skin of rat was reduced by Hisbiscus syriacus

  4. Effect of Absolute From Hibiscus syriacus L. Flower on Wound Healing in Keratinocytes.

    PubMed

    Yoon, Seok Won; Lee, Kang Pa; Kim, Do-Yoon; Hwang, Dae Il; Won, Kyung-Jong; Lee, Dae Won; Lee, Hwan Myung

    2017-01-01

    Proliferation and migration of keratinocytes are essential for the repair of cutaneous wounds. Hibiscus syriacus L. has been used in Asian medicine; however, research on keratinocytes is inadequate. To establish the dermatological properties of absolute from Hibiscus syriacus L. flower (HSF) and to provide fundamental research for alternative medicine. We identified the composition of HSF absolute using gas chromatography-mass spectrometry analysis. We also examined the effect of HSF absolute in HaCaT cells using the XTT assay, Boyden chamber assay, sprout-out growth assay, and western blotting. We conducted an in-vivo wound healing assay in rat tail-skin. Ten major active compounds were identified from HSF absolute. As determined by the XTT assay, Boyden chamber assay, and sprout-out growth assay results, HSF absolute exhibited similar effects as that of epidermal growth factor on the proliferation and migration patterns of keratinocytes (HaCaT cells), which were significantly increased after HSF absolute treatment. The expression levels of the phosphorylated signaling proteins relevant to proliferation, including extracellular signal-regulated kinase 1/2 (Erk 1/2) and Akt, were also determined by western blot analysis. These results of our in-vitro and ex-vivo studies indicate that HSF absolute induced cell growth and migration of HaCaT cells by phosphorylating both Erk 1/2 and Akt. Moreover, we confirmed the wound-healing effect of HSF on injury of the rat tail-skin. Therefore, our results suggest that HSF absolute is promising for use in cosmetics and alternative medicine. Hisbiscus syriacus L. flower absolute increases HaCaT cell migration and proliferation. Hisbiscus syriacus L. flower absolute regulates phosphorylation of ERK 1/2 and Akt in HaCaT cell.Treatment with Hisbiscus syriacus L. flower induced sprout outgrowth.The wound in the tail-skin of rat was reduced by Hisbiscus syriacus L. flower absolute Abbreviations used: HSF: Hibiscus syriacus L. flower

  5. Landslide seismic magnitude

    NASA Astrophysics Data System (ADS)

    Lin, C. H.; Jan, J. C.; Pu, H. C.; Tu, Y.; Chen, C. C.; Wu, Y. M.

    2015-11-01

    Landslides have become one of the most deadly natural disasters on earth, not only due to a significant increase in extreme climate change caused by global warming, but also rapid economic development in topographic relief areas. How to detect landslides using a real-time system has become an important question for reducing possible landslide impacts on human society. However, traditional detection of landslides, either through direct surveys in the field or remote sensing images obtained via aircraft or satellites, is highly time consuming. Here we analyze very long period seismic signals (20-50 s) generated by large landslides such as Typhoon Morakot, which passed though Taiwan in August 2009. In addition to successfully locating 109 large landslides, we define landslide seismic magnitude based on an empirical formula: Lm = log ⁡ (A) + 0.55 log ⁡ (Δ) + 2.44, where A is the maximum displacement (μm) recorded at one seismic station and Δ is its distance (km) from the landslide. We conclude that both the location and seismic magnitude of large landslides can be rapidly estimated from broadband seismic networks for both academic and applied purposes, similar to earthquake monitoring. We suggest a real-time algorithm be set up for routine monitoring of landslides in places where they pose a frequent threat.

  6. The fading American dream: Trends in absolute income mobility since 1940.

    PubMed

    Chetty, Raj; Grusky, David; Hell, Maximilian; Hendren, Nathaniel; Manduca, Robert; Narang, Jimmy

    2017-04-28

    We estimated rates of "absolute income mobility"-the fraction of children who earn more than their parents-by combining data from U.S. Census and Current Population Survey cross sections with panel data from de-identified tax records. We found that rates of absolute mobility have fallen from approximately 90% for children born in 1940 to 50% for children born in the 1980s. Increasing Gross Domestic Product (GDP) growth rates alone cannot restore absolute mobility to the rates experienced by children born in the 1940s. However, distributing current GDP growth more equally across income groups as in the 1940 birth cohort would reverse more than 70% of the decline in mobility. These results imply that reviving the "American dream" of high rates of absolute mobility would require economic growth that is shared more broadly across the income distribution. Copyright © 2017, American Association for the Advancement of Science.

  7. Magnitude, frequency, and trends of floods at gaged and ungaged sites in Washington, based on data through water year 2014

    USGS Publications Warehouse

    Mastin, Mark C.; Konrad, Christopher P.; Veilleux, Andrea G.; Tecca, Alison E.

    2016-09-20

    An investigation into the magnitude and frequency of floods in Washington State computed the annual exceedance probability (AEP) statistics for 648 U.S. Geological Survey unregulated streamgages in and near the borders of Washington using the recorded annual peak flows through water year 2014. This is an updated report from a previous report published in 1998 that used annual peak flows through the water year 1996. New in this report, a regional skew coefficient was developed for the Pacific Northwest region that includes areas in Oregon, Washington, Idaho and western Montana within the Columbia River drainage basin south of the United States-Canada border, the coastal areas of Oregon and western Washington, and watersheds draining into Puget Sound, Washington. The skew coefficient is an important term in the Log Pearson Type III equation used to define the distribution of the log-transformed annual peaks. The Expected Moments Algorithm was used to fit historical and censored peak-flow data to the log Pearson Type III distribution. A Multiple Grubb-Beck test was employed to censor low outliers of annual peak flows to improve on the frequency distribution. This investigation also includes a section on observed trends in annual peak flows that showed significant trends (p-value < 0.05) in 21 of 83 long-term sites, but with small magnitude Kendall tau values suggesting a limited monotonic trend in the time series of annual peaks. Most of the sites with a significant trend in western Washington were positive and all the sites with significant trends (three sites) in eastern Washington were negative.Multivariate regression analysis with measured basin characteristics and the AEP statistics at long-term, unregulated, and un-urbanized (defined as drainage basins with less than 5 percent impervious land cover for this investigation) streamgages within Washington and some in Idaho and Oregon that are near the Washington border was used to develop equations to estimate AEP

  8. 34 CFR 648.33 - What priorities and absolute preferences does the Secretary establish?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What priorities and absolute preferences does the... AREAS OF NATIONAL NEED How Does the Secretary Make an Award? § 648.33 What priorities and absolute... area of national need and gives absolute preference to one or more of the general disciplines and sub...

  9. 34 CFR 648.33 - What priorities and absolute preferences does the Secretary establish?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What priorities and absolute preferences does the... AREAS OF NATIONAL NEED How Does the Secretary Make an Award? § 648.33 What priorities and absolute... area of national need and gives absolute preference to one or more of the general disciplines and sub...

  10. Reward magnitude tracking by neural populations in ventral striatum

    PubMed Central

    Fiallos, Ana M.; Bricault, Sarah J.; Cai, Lili X.; Worku, Hermoon A.; Colonnese, Matthew T.; Westmeyer, Gil; Jasanoff, Alan

    2017-01-01

    Evaluation of the magnitudes of intrinsically rewarding stimuli is essential for assigning value and guiding behavior. By combining parametric manipulation of a primary reward, medial forebrain bundle (MFB) microstimulation, with functional magnetic imaging (fMRI) in rodents, we delineated a broad network of structures activated by behaviorally characterized levels of rewarding stimulation. Correlation of psychometric behavioral measurements with fMRI response magnitudes revealed regions whose activity corresponded closely to the subjective magnitude of rewards. The largest and most reliable focus of reward magnitude tracking was observed in the shell region of the nucleus accumbens (NAc). Although the nonlinear nature of neurovascular coupling complicates interpretation of fMRI findings in precise neurophysiological terms, reward magnitude tracking was not observed in vascular compartments and could not be explained by saturation of region-specific hemodynamic responses. In addition, local pharmacological inactivation of NAc changed the profile of animals’ responses to rewards of different magnitudes without altering mean reward response rates, further supporting a hypothesis that neural population activity in this region contributes to assessment of reward magnitudes. PMID:27789262

  11. A model to forecast peak spreading.

    DOT National Transportation Integrated Search

    2012-04-01

    As traffic congestion increases, the K-factor, defined as the proportion of the 24-hour traffic volume that occurs during the peak hour, may decrease. This behavioral response is known as peak spreading: as congestion grows during the peak travel tim...

  12. Absolute branching fraction measurements of exclusive D+ semileptonic decays.

    PubMed

    Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Adams, G S; Chasse, M; Cravey, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Park, W; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Nandakumar, R; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Crede, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Shepherd, M R; Stroiney, S; Sun, W M; Urner, D; Weaver, K M; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Williams, J; Wiss, J; Edwards, K W; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Mahmood, A H; Severini, H; Asner, D M; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J

    2005-10-28

    Using data collected at the psi(3770) resonance with the CLEO-c detector at the Cornell e+e- storage ring, we present improved measurements of the absolute branching fractions of D+decays to K0e+ve, pi0e+ve, K*0e+ve, and p0e+ve, and the first observation and absolute branching fraction measurement of D+ --> omega e+ve. We also report the most precise tests to date of isospin invariance in semileptonic D0 and D+ decays.

  13. The effect of modeled absolute timing variability and relative timing variability on observational learning.

    PubMed

    Grierson, Lawrence E M; Roberts, James W; Welsher, Arthur M

    2017-05-01

    There is much evidence to suggest that skill learning is enhanced by skill observation. Recent research on this phenomenon indicates a benefit of observing variable/erred demonstrations. In this study, we explore whether it is variability within the relative organization or absolute parameterization of a movement that facilitates skill learning through observation. To do so, participants were randomly allocated into groups that observed a model with no variability, absolute timing variability, relative timing variability, or variability in both absolute and relative timing. All participants performed a four-segment movement pattern with specific absolute and relative timing goals prior to and following the observational intervention, as well as in a 24h retention test and transfers tests that featured new relative and absolute timing goals. Absolute timing error indicated that all groups initially acquired the absolute timing, maintained their performance at 24h retention, and exhibited performance deterioration in both transfer tests. Relative timing error revealed that the observation of no variability and relative timing variability produced greater performance at the post-test, 24h retention and relative timing transfer tests, but for the no variability group, deteriorated at absolute timing transfer test. The results suggest that the learning of absolute timing following observation unfolds irrespective of model variability. However, the learning of relative timing benefits from holding the absolute features constant, while the observation of no variability partially fails in transfer. We suggest learning by observing no variability and variable/erred models unfolds via similar neural mechanisms, although the latter benefits from the additional coding of information pertaining to movements that require a correction. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  15. The Inactivation Principle: Mathematical Solutions Minimizing the Absolute Work and Biological Implications for the Planning of Arm Movements

    PubMed Central

    Berret, Bastien; Darlot, Christian; Jean, Frédéric; Pozzo, Thierry; Papaxanthis, Charalambos; Gauthier, Jean Paul

    2008-01-01

    An important question in the literature focusing on motor control is to determine which laws drive biological limb movements. This question has prompted numerous investigations analyzing arm movements in both humans and monkeys. Many theories assume that among all possible movements the one actually performed satisfies an optimality criterion. In the framework of optimal control theory, a first approach is to choose a cost function and test whether the proposed model fits with experimental data. A second approach (generally considered as the more difficult) is to infer the cost function from behavioral data. The cost proposed here includes a term called the absolute work of forces, reflecting the mechanical energy expenditure. Contrary to most investigations studying optimality principles of arm movements, this model has the particularity of using a cost function that is not smooth. First, a mathematical theory related to both direct and inverse optimal control approaches is presented. The first theoretical result is the Inactivation Principle, according to which minimizing a term similar to the absolute work implies simultaneous inactivation of agonistic and antagonistic muscles acting on a single joint, near the time of peak velocity. The second theoretical result is that, conversely, the presence of non-smoothness in the cost function is a necessary condition for the existence of such inactivation. Second, during an experimental study, participants were asked to perform fast vertical arm movements with one, two, and three degrees of freedom. Observed trajectories, velocity profiles, and final postures were accurately simulated by the model. In accordance, electromyographic signals showed brief simultaneous inactivation of opposing muscles during movements. Thus, assuming that human movements are optimal with respect to a certain integral cost, the minimization of an absolute-work-like cost is supported by experimental observations. Such types of optimality

  16. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  17. Main flood peaks in the medieval Carpathian Basin (1000-1500): Annual and decadal overview

    NASA Astrophysics Data System (ADS)

    Kiss, Andrea

    2013-04-01

    The analysis of over 140 reported floods is mainly based on contemporary legal evidence (charters), partly on other types of contemporary documentary evidence. Majority of sources contains data on individual flood events (i.e. occurrence, seasonality, magnitude). Concerning main flood peaks, evidence on annual and multi-annual (decadal, multi-decadal) level is also available. Despite data increase in the 13th century, only in the 14th-15th centuries documentation is representative enough to draw further conclusions. Apart from secondary flood peaks (probably in the mid-13th century and the turn of the 13th-14th centuries), three main periods with high flood frequencies are detected: 1330s-1350s, 1390s-1430s, and the late 1480s-1490s (continuing in the early 16th century). The first major flood peak was primarily reported in the eastern Carpathian Basin (the Tisa catchment), and can be characterised by a number of high-intensity flood events (with 1342-1343 in centre). During the second major, prolonged flood peak of 1390s-1430s, and that of the third, late 15th century one the importance of floods occurred on the Danube and in the Danube catchment area has to be as well highlighted. Moreover, in the first half of the 15th century long-term hydrological problems (prolonged high water-level and high flood frequency problems) can be identified. In some cases high flood-frequency periods were accompanied by documented hydromorphological impacts and some impacts on society can be also detected. Results show good agreement with the decadal precipitation reconstruction based on speleothem investigations carried out in North-Hungary.

  18. Reliability and day-to-day variability of peak fat oxidation during treadmill ergometry.

    PubMed

    De Souza Silveira, Raul; Carlsohn, Anja; Langen, Georg; Mayer, Frank; Scharhag-Rosenberger, Friederike

    2016-01-01

    Exercising at intensities where fat oxidation rates are high has been shown to induce metabolic benefits in recreational and health-oriented sportsmen. The exercise intensity (Fatpeak) eliciting peak fat oxidation rates is therefore of particular interest when aiming to prescribe exercise for the purpose of fat oxidation and related metabolic effects. Although running and walking are feasible and popular among the target population, no reliable protocols are available to assess Fatpeak as well as its actual velocity (VPFO) during treadmill ergometry. Our purpose was therefore, to assess the reliability and day-to-day variability of VPFO and Fatpeak during treadmill ergometry running. Sixteen recreational athletes (f = 7, m = 9; 25 ± 3 y; 1.76 ± 0.09 m; 68.3 ± 13.7 kg; 23.1 ± 2.9 kg/m(2)) performed 2 different running protocols on 3 different days with standardized nutrition the day before testing. At day 1, peak oxygen uptake (VO2peak) and the velocities at the aerobic threshold (VLT) and respiratory exchange ratio (RER) of 1.00 (VRER) were assessed. At days 2 and 3, subjects ran an identical submaximal incremental test (Fat-peak test) composed of a 10 min warm-up (70 % VLT) followed by 5 stages of 6 min with equal increments (stage 1 = VLT, stage 5 = VRER). Breath-by-breath gas exchange data was measured continuously and used to determine fat oxidation rates. A third order polynomial function was used to identify VPFO and subsequently Fatpeak. The reproducibility and variability of variables was verified with an intraclass correlation coefficient (ICC), Pearson's correlation coefficient, coefficient of variation (CV) and the mean differences (bias) ± 95 % limits of agreement (LoA). ICC, Pearson's correlation and CV for VPFO and Fatpeak were 0.98, 0.97, 5.0 %; and 0.90, 0.81, 7.0 %, respectively. Bias ± 95 % LoA was -0.3 ± 0.9 km/h for VPFO and -2 ± 8 % of VO2peak for Fatpeak. In summary, relative

  19. Identification of the country of growth of Sophora flavescens using direct analysis in real time mass spectrometry (DART-MS).

    PubMed

    Fukuda, Eriko; Uesawa, Yoshihiro; Baba, Masaki; Suzuki, Ryuichiro; Fukuda, Tatsuo; Shirataki, Yoshiaki; Okada, Yoshihito

    2014-11-01

    In order to identify the country of growth of Sophora flavescens by chemical fingerprinting, extracts of plants grown in China and Japan were analyzed using direct analysis in real time mass spectrometry (DART)-MS. The peaks characteristic of each country of growth were statistically analyzed using a volcano plot to summarize the relationship between the p-values of a statistical test and the magnitude of the difference in the peak intensities of the samples in the groups. Peaks with ap value < 0.05 in the t-test and a ≥ 2 absolute difference were defined as characteristic. Peaks characteristic of Chinese S. flavescens were found at m/z 439 and 440. In contrast, peaks characteristic of Japanese S. flavescens were found at m/z 313, 423, 437 and 441. The intensity of the selected peaks was similar in Japanese samples, whereas the m/z 439 peak had a significantly higher intensity than the other peaks in Chinese samples. Therefore, differences in selected peak patterns may allow identification of the country of growth of S. flavescens.

  20. Absolute instabilities of travelling wave solutions in a Keller-Segel model

    NASA Astrophysics Data System (ADS)

    Davis, P. N.; van Heijster, P.; Marangell, R.

    2017-11-01

    We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have parts of the essential spectrum in the right half plane. However, we show that in the case of constant or sublinear consumption there exists a range of parameters such that the absolute spectrum is contained in the open left half plane and the essential spectrum can thus be weighted into the open left half plane. For the constant and sublinear consumption rate models we also determine critical parameter values for which the absolute spectrum crosses into the right half plane, indicating the onset of an absolute instability of the travelling wave solution. We observe that this crossing always occurs off of the real axis.