Science.gov

Sample records for absolute photoabsorption cross

  1. Absolute vacuum ultraviolet photoabsorption cross section studies of atomic and molecular species: Techniques and observational data

    NASA Technical Reports Server (NTRS)

    Judge, D. L.; Wu, C. Y. R.

    1990-01-01

    Absorption of a high energy photon (greater than 6 eV) by an isolated molecule results in the formation of highly excited quasi-discrete or continuum states which evolve through a wide range of direct and indirect photochemical processes. These are: photoionization and autoionization, photodissociation and predissociation, and fluorescence. The ultimate goal is to understand the dynamics of the excitation and decay processes and to quantitatively measure the absolute partial cross sections for all processes which occur in photoabsorption. Typical experimental techniques and the status of observational results of particular interest to solar system observations are presented.

  2. Absolute cross sections for molecular photoabsorption, partial photoionization, and ionic photofragmentation process

    SciTech Connect

    Gallagher, J.W.; Brion, C.E.; Samson, J.A.R.; Langhoff, P.W.

    1988-01-01

    A compilation is provided of absolute total photoabsorption and partial-channel photoionization cross sections for the valence shells of selected molecules, including diatomics (H2, N2, O2, CO, NO) and triatomics (CO2, N2O), simple hydrides (H2O, NH3, CH4), hydrogen halides (HF, HCl, HBr, HI), sulfur compounds (H2S, CS2, OCS, SO2, SF6),and chlorine compounds (Cl2, CCl4). The partial-channel cross sections presented refer to production of the individual electronic states of molecular ions and also to production of parent and specific fragment ions, as functions of incident photon energy, typically from approximately 20 to 100 eV. Photoelectron anisotropy factors, which together with electronic partial cross sections provide cross sections differential in photon energy and in ejection angle, are also reported. There is generally good agreement between cross sections measured by the physically distinct optical and dipole electron-impact methods. The cross sections and anisotropy factors also compare favorably with selection ab initio and model potential (X-alpha) calculations which provide a basis for interpretation of the measurements.

  3. Absolute photoabsorption cross sections of Sr I from the 5s ionization threshold to the 5p threshold

    NASA Astrophysics Data System (ADS)

    Chu, C. C.; Fung, H. S.; Wu, H. H.; Yih, T. S.

    1998-09-01

    We have measured the absolute photoabsorption cross sections of Sr I from its 5s ionization threshold up to the 0953-4075/31/17/010/img1 thresholds. The spectrum includes the Sr I 0953-4075/31/17/010/img2, 0953-4075/31/17/010/img3, 0953-4075/31/17/010/img4 and 0953-4075/31/17/010/img5 doubly excited series which converge to the 0953-4075/31/17/010/img6 or 0953-4075/31/17/010/img1 series limits. Synchrotron radiation, from the 1 m Seya-Namioka beam line of the Synchrotron Radiation Research Center at Hsin-Chu, Taiwan, was used as the background continuum. The absolute column density was determined by measuring simultaneously the temperature distribution profiles and the total pressure in a heatpipe. Absolute cross sections were obtained using the Beer-Lambert law. The measured absolute cross section for the 5s ionization threshold was 0953-4075/31/17/010/img8. At the most significant autoionizing resonance, 0953-4075/31/17/010/img9 around 0953-4075/31/17/010/img10, the absolute cross section was measured as 0953-4075/31/17/010/img11. The absolute cross sections presented here are larger than those based on saturated vapour-pressure data, and less than those based on the f-value measurements. All the absolute cross sections in this work are compared with both recent experiments and

  4. Bibliography of photoabsorption cross-section data

    NASA Technical Reports Server (NTRS)

    Hudson, R. D.; Kieffer, L. J.

    1970-01-01

    This bibliography contains only references which report a measured or calculated photoabsorption cross section (relative or normalized) in regions of continuous absorption. The bibliography is current as of January 1, 1970.

  5. Photoabsorption cross section of acetylene in the EUV region

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. R.; Judge, D. L.

    1985-01-01

    The measurement of the absolute photoabsorption cross sections of C2H2 in the 175-740 A region by means of a double ionization chamber is reported. The continuum background source is the synchrotron radiation emitted by the Wisconsin 240 MeV electron storage ring. It is found that the cross sections range from 2 to a maximum of 36 Mb. Two new Rydberg series are identified and the cross section data are applied in the analysis of various sum rules. From the rules, it is shown that the data of C2H2 in the 580-1088 A range may be too low, while the measured ionization transition moment may be too high.

  6. Photoionization and photoabsorption cross sections for the aluminum iso-nuclear sequence

    SciTech Connect

    Witthoeft, M.C.; García, J.; Kallman, T.R.; Palmeri, P.; Quinet, P.

    2013-01-15

    K-shell photoionization and photoabsorption cross sections are presented for Li-like to Na-like Al. The calculations are performed using the Breit–Pauli R-matrix method where the effects of radiation and Auger dampings are included. We provide electronic data files for the raw cross sections as well as those convolved with a Gaussian of width ΔE/E=10{sup −4}. In addition to total cross sections for photoabsorption and photoionization, partial cross sections are available for photoionization.

  7. Absolute photoabsorption of BrCN in the valence shell and the bromine M, carbon K and nitrogen K shell regions (5 450 eV)

    NASA Astrophysics Data System (ADS)

    Olney, Terry N.; Brion, C. E.; Ibuki, T.

    1995-12-01

    Absolute oscillator strengths (cross sections) for photoabsorption by BrCN have been measured throughout the VUV and soft X-ray regions (5-451 eV) using dipole (e,e) spectroscopy at both high (0.05-0.10 eV fwhm) and low (1 eV fwhm) resolution. Measurement of the valence shell oscillator strengths are compared with the very limited direct optical data in the literature. For the sharper (Rydberg) bands and the presently determined dipole (e,e) oscillator strengths are considerably larger indicating that significant line saturation (bandwidth) errors are occurring in the previously published direct optical (Beer-Lambert law) measurements. The first absolute measurements and inner shell photoabsorption spectra are reported in the carbon K (1s), nitrogen K (1s) and bromine M (3d, 3p and 3s) regions of BrCN. The carbon and nitrogen 1s spectra show vibrational resolution in the respective, strongly resonance enhanced, 3π(π ∗) ← 1s bands. The Br 3d spectrum of BrCN shows clear evidence of ligand field splittings in the 3 d5/2(δ, π and gS) and 3 d3/2(δ and π ) excitations to the 5p Rydberg states. The first estimates of the inner shell ionization potentials for the C 1s and N 1s core orbitals of BrCN are obtained from density functional theory calculations. The Br 3d 5/2, 3/2, ligand field inner shell ionization energies are estimated using the 5p←Br 3d excitation energies and considerations of the (transferable) 5p Rydberg term values from the C 1s, N 1s and valence shell spectra.

  8. Photoabsorption cross section of CH3CN - Photodissociation rates by solar flux and interstellar radiation

    NASA Technical Reports Server (NTRS)

    Suto, M.; Lee, L. C.

    1985-01-01

    The photoabsorption cross section of CH2CN vapor was measured in the 106-180 nm region using synchrotron radiation as a light source. The cross section and the quantum yield for the production of CN (A, B-X) fluorescence were measured and were used to infer the photodissociation cross section of CH3CN. The cross sections were used to calculate the photodissociation rates of CH3CN by the solar flux and by the interstellar radiation. In both the stratosphere and the troposphere, the solar photodissociation of CH3CN is negligible in comparison with chemical degradation.

  9. HIGH PRECISION K-SHELL PHOTOABSORPTION CROSS SECTIONS FOR ATOMIC OXYGEN: EXPERIMENT AND THEORY

    SciTech Connect

    McLaughlin, B. M.; Ballance, C. P.; Bowen, K. P.; Gardenghi, D. J.; Stolte, W. C. E-mail: ballance@physics.auburn.edu E-mail: dgardenghi@gmail.com

    2013-07-01

    Photoabsorption of atomic oxygen in the energy region below the 1s {sup -1} threshold in X-ray spectroscopy from Chandra and XMM-Newton is observed in a variety of X-ray binary spectra. Photoabsorption cross sections determined from an R-matrix method with pseudo-states and new, high precision measurements from the Advanced Light Source (ALS) are presented. High-resolution spectroscopy with E/{Delta}E Almost-Equal-To 4250 {+-} 400 was obtained for photon energies from 520 eV to 555 eV at an energy resolution of 124 {+-} 12 meV FWHM. K-shell photoabsorption cross section measurements were made with a re-analysis of previous experimental data on atomic oxygen at the ALS. Natural line widths {Gamma} are extracted for the 1s {sup -1}2s {sup 2}2p {sup 4}({sup 4} P)np {sup 3} P Degree-Sign and 1s {sup -1}2s {sup 2}2p {sup 4}({sup 2} P)np {sup 3} P Degree-Sign Rydberg resonances series and compared with theoretical predictions. Accurate cross sections and line widths are obtained for applications in X-ray astronomy. Excellent agreement between theory and the ALS measurements is shown which will have profound implications for the modeling of X-ray spectra and spectral diagnostics.

  10. High-resolution, VUV (147-201 nm) photoabsorption cross sections for C2H2 at 195 and 295 K

    NASA Technical Reports Server (NTRS)

    Smith, Peter L.; Yoshino, Kouichi; Parkinson, W. H.; Ito, Kenji; Stark, Glenn

    1991-01-01

    Results of measurements of photoabsorption cross sections of acetylene at 195 and 295 K in the wavelength range of 147-201 nm are reported. Short-wavelength data are obtained at 0.002 nm intervals, but no structure was observed on that scale. Emission and absorption lines from contaminant species in xenon and hydrogen discharges are used to determine the correct wavelength scale for the data. The uncertainty in the relative wavelengths is estimated to be about 0.004 nm, whereas the absolute wavelength values are accurate to + or - 0.043 nm. No significant photodestruction of C2H2 was found during the measurements. Cross-section values determined at the beginning portions of the measurements are indistinguishable from the values determined at the ends, thus demonstrating that there was no loss of absorbers.

  11. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  12. Wide-range photoabsorption cross-sections of simple metals: large basis-set OPW calculations for sodium.

    PubMed

    Kitamura, Hikaru

    2013-02-13

    Photoabsorption cross-sections of simple metals are formulated through a solid-state band theory based on the orthogonalized-plane-wave (OPW) method in Slater's local-exchange approximation, where interband transitions of core and conduction electrons are evaluated up to the soft x-ray regime by using large basis sets. The photoabsorption cross-sections of a sodium crystal are computed for a wide photon energy range from 3 to 1800 eV. It is found that the numerical results reproduce the existing x-ray databases fairly well for energies above the L(2,3)-edge (31 eV), verifying a consistency between solid-state and atomic models for inner-shell photoabsorption; additional oscillatory structures in the present spectra manifest solid-state effects. Our computed results in the vacuum ultraviolet regime (6-30 eV) are also in better agreement with experimental data compared to earlier theories, although some discrepancies remain in the range of 20-30 eV. The influence of the core eigenvalues on the absorption spectra is examined. PMID:23334229

  13. UV photoabsorption cross sections of CO, N2, and SO2 for studies of the ISM and planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Smith, Peter L.; Rufus, J.; Yoshino, K.; Parkinson, W. H.; Stark, Glenn; Pickering, Juliet C.; Thorne, A. P.

    2002-01-01

    We report high-resolution laboratory measurements of photoabsorption cross sections of CO, N2, and SO2 in the wavelength range 80 to 320 nm. The motivation is to provide the quantitative data that are needed to analyze observations of absorption by, and to model photochemical processes in, the interstellar medium and a number of planetary atmospheres. Because of the high resolution of the spectrometers used, we can minimize distortion of the spectrum that occurs when instrument widths are greater than the widths of spectral features being measured. In many cases, we can determine oscillator strengths of individual rotational lines - a unique feature of our work.

  14. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  15. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  16. EFFECTS OF NITROGEN PHOTOABSORPTION CROSS SECTION RESOLUTION ON MINOR SPECIES VERTICAL PROFILES IN TITAN’S UPPER ATMOSPHERE

    SciTech Connect

    Luspay-Kuti, A.; Mandt, K. E.; Greathouse, T. K.; Plessis, S.

    2015-03-01

    The significant variations in both measured and modeled densities of minor species in Titan’s atmosphere call for the evaluation of possible influencing factors in photochemical modeling. The effect of nitrogen photoabsorption cross section selection on the modeled vertical profiles of minor species is analyzed here, with particular focus on C{sub 2}H{sub 6} and HCN. Our results show a clear impact of cross sections used on all neutral and ion species studied. Affected species include neutrals and ions that are not primary photochemical products, including species that do not even contain nitrogen. The results indicate that photochemical models that employ low-resolution cross sections may significantly miscalculate the vertical profiles of minor species. Such differences are expected to have important implications for Titan’s overall atmospheric structure and chemistry.

  17. Absolute Photoionization Cross Section with an Ultra-high Energy Resolution for Ne in the Region of 1s Rydberg States

    SciTech Connect

    Kato, M.; Morishita, Y.; Suzuki, I. H.; Saito, N.; Oura, M.; Yamaoka, H.; Okada, K.; Matsudo, T.; Gejo, T.

    2007-01-19

    The high-resolution absolute photoabsorption cross section with an absolute photon energy scale for Ne in the energy region of 864-872 eV (1s-1np Rydberg states) has been measured using a multi-electrode ionization chamber and monochromatized synchrotron radiation. The natural lifetime width of Ne 1s-13p resonance state has been obtained to be 252 {+-} 5 meV. The Ne+ (1s-1) ionization potential is determined to be 870.16 {+-} 0.04 eV by using the Rydberg formula. These absolute values are supposed to be more reliable than those previously reported.

  18. Resonances in near-threshold x-ray photoabsorption of inner shells

    SciTech Connect

    Del Grande, N.K.; Tirsell, K.G.; Schneider, M.B.; Garrett, R.F.; Kneedler, E.M.; Manson, S.T.

    1987-08-24

    Synchrotron radiation measurements of near-threshold and broad-range (20 eV - 3 keV) absolute photoabsorption cross sections were made at the Brookhaven National Laboratory (NSLS) and at Stanford (SSRL). Transmission data for well-characterized multilayer foils provided absolute cross sections with 10% overall uncertainties and better than 0.2% energy resolution. Several examples of our results are presented.

  19. The Effect of N2 Photoabsorption Cross Section Resolution on C2H6 Production in Titan’s Ionosphere

    NASA Astrophysics Data System (ADS)

    Luspay-Kuti, Adrienn; Mandt, Kathleen E.; Plessis, Sylvain; Greathouse, Thomas K.

    2014-11-01

    Titan’s rich organic chemistry begins with the photochemistry of only two molecules: N2 and CH4. The details on how higher-order hydrocarbons and nitriles are formed from these molecules have key implications for both the structure and evolution of Titan’s atmosphere, and for its surface-atmosphere interactions. Of high importance is the production of C2H6, which is a sink for CH4, and a main component in the polar lakes. Results of photochemical models, though, may be sensitive to the choice of input parameters, such as the N2 photoabsorption cross section resolution, as previously shown for nitrogen (Liang et al. (2007) ApJL 664, 115-118), and CH4 (Lavvas et al. (2011) Icarus 213, 233-251). Here we investigate the possibility of the same effect on the production rates of C2H6. We modeled production and loss rates, as well as mixing ratio and density profiles between an altitude of 600 and 1600 km for low and high resolution N2 cross sections via a coupled ion-neutral-thermal model (De La Haye et al. (2008) Icarus 197, 110-136; Mandt et al. (2012) JGR 117, E10006). Our results show a clear impact of photoabsorption cross section resolution used on all neutral and ion species contributing to C2H6 production. The magnitude of the influence varies amongst species. Ethane production profiles exhibit a significant increase with better resolution; a factor of 1.2 between 750 and 950 km, and a factor of 1.1 in the total column-integrated production rate. These values are lower limits, as additional reactions involving C2H5 not included in the model may also contribute to the production rates. The clear effect on C2H6 (which is not a parent molecule, nor does it bear nitrogen) may have important implications for other molecules in Titan’s atmosphere as well. The possible non-negligible impact of an isotope of nitrogen may argue for the inclusion of isotopes in photochemical models. For future analysis, development of a more efficient and streamlined model called

  20. Photoabsorption cross sections of methane and ethane, 1380-1600 A, at T equals 295 K and T equals 200 K. [in Jupiter atmosphere

    NASA Technical Reports Server (NTRS)

    Mount, G. H.; Moos, H. W.

    1978-01-01

    Photoabsorption cross sections of methane and ethane have been determined in the wavelength range from 1380 to 1600 A at room (295 K) and dry-ice (200 K) temperatures. It is found that the room-temperature ethane data are in excellent agreement with the older measurements of Okabe and Becker (1963) rather than with more recent determinations and that a small systematic blueshift occurs at the foot of the molecular absorption edges of both gases as the gases are cooled from room temperature to 200 K, a value close to the actual temperature of the Jovian atmosphere. It is concluded that methane photoabsorption will dominate until its cross section is about 0.01 that of ethane, which occurs at about 1440 A, and that ethane should be the dominant photoabsorber in the Jovian atmosphere in the region from above 1440 A to not farther than 1575 A.

  1. Absolute measurement of the photoionization cross section of atomic hydrogen with a shock tube for the extreme ultraviolet. [for astrophysical applications

    NASA Technical Reports Server (NTRS)

    Palenius, H. P.; Kohl, J. L.; Parkinson, W. H.

    1976-01-01

    The paper reports an experiment which is part of a program to measure the absolute values of the atomic photoionization cross sections of astrophysically abundant elements, particularly in stars and planetary atmospheres. An aerodynamic pressure-driven shock tube constructed from stainless steel with a quadratic cross section was used to measure the photoionization cross section of H I at 19 wavelength points from 910 to 609 A with experimental uncertainties between 7 and 20%. The shock tube was used to produce fully dissociated hydrogen and neon mixtures for the photoabsorption measurements.

  2. Using DNA origami nanostructures to determine absolute cross sections for UV photon-induced DNA strand breakage.

    PubMed

    Vogel, Stefanie; Rackwitz, Jenny; Schürman, Robin; Prinz, Julia; Milosavljević, Aleksandar R; Réfrégiers, Matthieu; Giuliani, Alexandre; Bald, Ilko

    2015-11-19

    We have characterized ultraviolet (UV) photon-induced DNA strand break processes by determination of absolute cross sections for photoabsorption and for sequence-specific DNA single strand breakage induced by photons in an energy range from 6.50 to 8.94 eV. These represent the lowest-energy photons able to induce DNA strand breaks. Oligonucleotide targets are immobilized on a UV transparent substrate in controlled quantities through attachment to DNA origami templates. Photon-induced dissociation of single DNA strands is visualized and quantified using atomic force microscopy. The obtained quantum yields for strand breakage vary between 0.06 and 0.5, indicating highly efficient DNA strand breakage by UV photons, which is clearly dependent on the photon energy. Above the ionization threshold strand breakage becomes clearly the dominant form of DNA radiation damage, which is then also dependent on the nucleotide sequence.

  3. Absolute photoneutron cross sections of Sm isotopes

    SciTech Connect

    Gheorghe, I.; Glodariu, T.; Utsunomiya, H.; Filipescu, D.; Nyhus, H.-T.; Renstrom, T.; Tesileanu, O.; Shima, T.; Takahisa, K.; Miyamoto, S.

    2015-02-24

    Photoneutron cross sections for seven samarium isotopes, {sup 144}Sm, {sup 147}Sm, {sup 148}Sm, {sup 149}Sm, {sup 150}Sm, {sup 152}Sm and {sup 154}Sm, have been investigated near neutron emission threshold using quasimonochromatic laser-Compton scattering γ-rays produced at the synchrotron radiation facility NewSUBARU. The results are important for nuclear astrophysics calculations and also for probing γ-ray strength functions in the vicinity of neutron threshold. Here we describe the neutron detection system and we discuss the related data analysis and the necessary method improvements for adapting the current experimental method to the working parameters of the future Gamma Beam System of Extreme Light Infrastructure - Nuclear Physics facility.

  4. The 4He Total Photo-Absorption Cross Section With Two- Plus Three-Nucleon Interactions From Chiral Effective Field Theory

    SciTech Connect

    Quaglioni, S; Navratil, P

    2007-03-09

    The total photo-absorption cross section of {sup 4}He is evaluated microscopically using two- (NN) and three-nucleon (NNN) interactions based upon chiral effective field theory ({chi}EFT). The calculation is performed using the Lorentz integral transform method along with the ab initio no-core shell model approach. An important feature of the present study is the consistency of the NN and NNN interactions and also, through the Siegert theorem, of the two- and three-body current operators. This is due to the application of the {chi}EFT framework. The inclusion of the NNN interaction produces a suppression of the peak height and enhancement of the tail of the cross section. We compare to calculations obtained using other interactions and to representative experiments. The rather confused experimental situation in the giant resonance region prevents discrimination among different interaction models.

  5. Photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 in the VUV region

    NASA Technical Reports Server (NTRS)

    Xia, T. J.; Chien, T. S.; Wu, C. Y. Robert; Judge, D. L.

    1991-01-01

    Using synchrotron radiation as a continuum light source, the photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 have been measured from their respective ionization thresholds to 1060 A. The vibrational constants associated with the nu(2) totally symmetric, out-of-plane bending vibration of the ground electronic state of PH3(+) have been obtained. The cross sections and quantum yields for producing neutral products through photoexcitation of these molecules in the given spectral regions have also been determined. In the present work, autoionization processes were found to be less important than dissociation and predissociation processes in NH3, PH3, and C2H4. Several experimental techniques have been employed in order to examine the various possible systematic errors critically.

  6. Absolute photoionization cross-section of the propargyl radical

    SciTech Connect

    Savee, John D.; Welz, Oliver; Taatjes, Craig A.; Osborn, David L.; Soorkia, Satchin; Selby, Talitha M.

    2012-04-07

    Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C{sub 3}H{sub 3}) radical, {sigma}{sub propargyl}{sup ion}(E), relative to the known absolute cross-section of the methyl (CH{sub 3}) radical. We generated a stoichiometric 1:1 ratio of C{sub 3}H{sub 3} : CH{sub 3} from 193 nm photolysis of two different C{sub 4}H{sub 6} isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(26.1{+-}4.2) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(23.4{+-}3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(23.6{+-}3.6) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(25.1{+-}3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations.

  7. Absolute photoionization cross-section of the methyl radical.

    SciTech Connect

    Taatjes, C. A.; Osborn, D. L.; Selby, T.; Meloni, G.; Fan, H.; Pratt, S. T.; Chemical Sciences and Engineering Division; SNL

    2008-01-01

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH{sub 3} photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; {sigma}{sub CH}(10.2 eV) = (5.7 {+-} 0.9) x 10{sup -18} cm{sup 2} and {sigma}{sub CH{sub 3}}(11.0 eV) = (6.0 {+-} 2.0) x 10{sup -18} cm{sup 2}. The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH{sub 3} and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.460 eV, (5.5 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.466 eV, and (4.9 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  8. High-resolution vacuum-ultraviolet photoabsorption spectra of 1-butyne and 2-butyne

    SciTech Connect

    Jacovella, U.; Holland, D. M. P.; Boyé-Péronne, S.; Gans, B.; Oliveira, N. de; Joyeux, D.; Archer, L. E.; Lucchese, R. R.; Xu, H.; Pratt, S. T.

    2015-07-21

    The absolute photoabsorption cross sections of 1- and 2-butyne have been recorded at high resolution by using the vacuum-ultraviolet Fourier-Transform spectrometer at the SOLEIL Synchrotron. Both spectra show more resolved structure than previously observed, especially in the case of 2-butyne. In this work, we assess the potential importance of Rydberg states with higher values of orbital angular momentum, l, than are typically observed in photoabsorption experiments from ground state molecules. We show how the character of the highest occupied molecular orbitals in 1- and 2-butyne suggests the potential importance of transitions to such high-l (l = 3 and 4) Rydberg states. Furthermore, we use theoretical calculations of the partial wave composition of the absorption cross section just above the ionization threshold and the principle of continuity of oscillator strength through an ionization threshold to support this conclusion. The new absolute photoabsorption cross sections are discussed in light of these arguments, and the results are consistent with the expectations. This type of argument should be valuable for assessing the potential importance of different Rydberg series when sufficiently accurate direct quantum chemical calculations are difficult, for example, in the n ≥ 5 manifolds of excited states of larger molecules.

  9. Absolute doubly differential bremsstrahlung cross sections from rare gas atoms

    NASA Astrophysics Data System (ADS)

    Portillo, Salvador

    The absolute doubly differential bremsstrahlung cross section has been measured for 28 and 50 keV electrons incident on the rare gases Xe, Kr, Ar and Ne. The cross sections are differential with respect to energy and photon emission. A SiLi solid state detector measured data at 90° with respect to the beam line. A thorough analysis of the experimental systematic error yielded a high degree of confidence in the experimental data. The absolute bremsstrahlung doubly differential cross sections provided for a rigorous test of the normal bremsstrahlung theory, tabulated by Kissel, Quarles and Pratt1 (KQP) and of the SA theory2 that includes the contribution from polarization bremsstrahlung. To test the theories a comparison of the overall magnitude of the cross section as well as comparison of the photon energy dependence was carried out. The KQP theoretical values underestimated the magnitude of the cross section for all targets and for both energies. The SA values were in excellent agreement with the 28 keV data. For the 50keV data the fit was also very good. However, there were energy regions where there was a small discrepancy between the theory and the data. This suggests that the Polarization Bremsstrahlung (PB) mechanism does contribute to the overall spectrum and is detectable in this parameter space. 1Kissel, L., Quarles, C. A., Pratt, R. H., Atom. Data Nucl. Data Tables 28, 381 (1983). 2Avdonina N. B., Pratt, R. H., J. Phys. B: At. Mol. Opt. Phys. 32 4261 (1999).

  10. Absolute photoionization cross sections of the ions Ca+ Ni+

    NASA Astrophysics Data System (ADS)

    Hansen, J. E.; Kjeldsen, H.; Folkmann, F.; Martins, M.; West, J. B.

    2007-01-01

    Absolute measurements of the photoionization cross sections of the singly charged ions in the sequence Ca to Ni are presented, focussing on the 3p → 3d resonance region. Major differences are found in both spectral structure and cross section as the 3d shell is filled progressively. The behaviour of the total oscillator strength is studied as well as its relation to the collapse of the 3d orbital. The 3p53d 1P term is found to have an influence on the spectra even when further 3d electrons are added and this dependence combined with the effect of Hund's rule leads to a considerable simplification in the structure of the absorption spectra before the half-filled 3d shell, while from the half-filled 3d shell Hund's rule is the main simplifying effect.

  11. High-resolution photoabsorption spectrum of jet-cooled propyne

    SciTech Connect

    Jacovella, U.; Holland, D. M. P.; Boyé-Péronne, S.; Joyeux, D.; Archer, L. E.; Oliveira, N. de; Nahon, L.; Lucchese, R. R.; Xu, Hong; Pratt, S. T.

    2014-09-21

    The absolute photoabsorption cross section of propyne was recorded between 62 000 and 88 000 cm{sup −1} by using the vacuum-ultraviolet, Fourier-transform spectrometer at the Synchrotron Soleil. This cross section spans the region including the lowest Rydberg bands and extends above the Franck-Condon envelope for ionization to the ground electronic state of the propyne cation, X{sup ~+}. Room-temperature spectra were recorded in a flowing cell at 0.9 cm{sup −1} resolution, and jet-cooled spectra were recorded at 1.8 cm{sup −1} resolution and a rotational temperature of ∼100 K. The reduced widths of the rotational band envelopes in the latter spectra reveal new structure and simplify a number of assignments. Although nf Rydberg series have not been assigned previously in the photoabsorption spectrum of propyne, arguments are presented for their potential importance, and the assignment of one nf series is proposed. As expected from previous photoelectron spectra, Rydberg series are also observed above the adiabatic ionization threshold that converge to the v{sub 3}{sup +} = 1 and 2 levels of the C≡C stretching vibration.

  12. VUV and mid-UV photoabsorption cross sections of thin films of guanine and uracil: application on their photochemistry in the solar system.

    PubMed

    Saïagh, Kafila; Cottin, Hervé; Aleian, Aicha; Fray, Nicolas

    2015-04-01

    We present a photostability study of two nucleobases, guanine and uracil. For the first time, the photoabsorption cross-section spectra of these molecules in the solid phase were measured in the VUV and mid-UV domain (115≤λ≤300 nm). They show a quite similar absorption level throughout this wavelength range, highlighting the importance of considering the whole VUV and UV domain during photolysis experiments in the laboratory. Their photolysis constant (J) can be estimated from those measurements as follows: 2.2×10(-2) s(-1)±11% for guanine and 5.3×10(-2) s(-1)±14% for uracil. This work shows that (i) measuring kinetic constants from a direct and "traditional" photolysis of a thin sample in the laboratory suffers strong limitations and (ii) achieving this measurement requires comprehensive modeling of the radiative transfer that occurs in any sample not optically thin (i.e.,≤2 nm). Moreover, this work has provided other data of interest: the refractive index of solid guanine and of uracil at 650 nm are 1.52 (±0.01) and 1.39 (±0.02), respectively, and the integrated IR band strengths (A) of solid guanine between 3700 and 2120 cm(-1) (3.4×10(-16) cm·molecule(-1)±13%) and of solid uracil between 3400 and 1890 cm(-1) (2.1×10(-16) cm·molecule(-1)±21%).

  13. VUV and mid-UV photoabsorption cross sections of thin films of guanine and uracil: application on their photochemistry in the solar system.

    PubMed

    Saïagh, Kafila; Cottin, Hervé; Aleian, Aicha; Fray, Nicolas

    2015-04-01

    We present a photostability study of two nucleobases, guanine and uracil. For the first time, the photoabsorption cross-section spectra of these molecules in the solid phase were measured in the VUV and mid-UV domain (115≤λ≤300 nm). They show a quite similar absorption level throughout this wavelength range, highlighting the importance of considering the whole VUV and UV domain during photolysis experiments in the laboratory. Their photolysis constant (J) can be estimated from those measurements as follows: 2.2×10(-2) s(-1)±11% for guanine and 5.3×10(-2) s(-1)±14% for uracil. This work shows that (i) measuring kinetic constants from a direct and "traditional" photolysis of a thin sample in the laboratory suffers strong limitations and (ii) achieving this measurement requires comprehensive modeling of the radiative transfer that occurs in any sample not optically thin (i.e.,≤2 nm). Moreover, this work has provided other data of interest: the refractive index of solid guanine and of uracil at 650 nm are 1.52 (±0.01) and 1.39 (±0.02), respectively, and the integrated IR band strengths (A) of solid guanine between 3700 and 2120 cm(-1) (3.4×10(-16) cm·molecule(-1)±13%) and of solid uracil between 3400 and 1890 cm(-1) (2.1×10(-16) cm·molecule(-1)±21%). PMID:25836367

  14. NITROGEN K-SHELL PHOTOABSORPTION

    SciTech Connect

    GarcIa, J.; Kallman, T. R.; Witthoeft, M.; Behar, E.; Mendoza, C.; Palmeri, P.; Quinet, P.; Bautista, M.A.; Klapisch, M. E-mail: michael.c.witthoeft@nasa.gov E-mail: behar@milkyway.gsfc.nasa.gov E-mail: palmeri@umons.ac.be E-mail: bautista@vt.edu

    2009-12-01

    Reliable atomic data have been computed for the spectral modeling of the nitrogen K lines, which may lead to useful astrophysical diagnostics. Data sets comprise valence and K-vacancy level energies, wavelengths, Einstein A-coefficients, radiative and Auger widths, and K-edge photoionization cross sections. An important issue is the lack of measurements that are usually employed to fine-tune calculations so as to attain spectroscopic accuracy. In order to estimate data quality, several atomic structure codes are used and extensive comparisons with previous theoretical data have been carried out. In the calculation of K photoabsorption with the Breit-Pauli R-matrix method, both radiation and Auger dampings, which cause the smearing of the K edge, are taken into account. This work is part of a wider project to compute atomic data in the X-ray regime to be included in the database of the popular XSTAR modeling code.

  15. Precision measurements of photoabsorption cross sections of Ar, Kr, Xe, and selected molecules at 58.4, 73.6, and 74.4 nm

    NASA Technical Reports Server (NTRS)

    Samson, James A. R.; Yin, Lifeng

    1989-01-01

    Absolute absorption cross sections have been measured for the rare gases at 58.43, 73.59, and 74.37 nm with an accuracy of + or - 0.8 percent. For the molecules H2, N2, O2, CO, N2O, CO2, and CH4, precision measurements were made at 58.43 nm with an accuracy of + or - 0.8 percent. Molecular absorption cross sections are also reported at 73.59 and 74.37 nm. However, in the vicinity of these wavelengths most molecules exhibit considerable structure, and cross sections measured at these wavelengths may depend on the widths and the amounts of self-reversal of these resonance lines. A detailed discussion is given of the systematic errors encountered with the double-ion chamber used in the cross-sectional measurements. Details are also given of precision pressure measurements.

  16. Beam Elements with Trapezoidal Cross Section Deformation Modes Based on the Absolute Nodal Coordinate Formulation

    NASA Astrophysics Data System (ADS)

    Matikainen, Marko K.; Dmitrochenko, Oleg; Mikkola, Aki

    2010-09-01

    In this study, higher order beam elements are developed based on the absolute nodal coordinate formulation. The absolute nodal coordinate formulation is a finite element procedure that was recently proposed for flexible multibody applications. Many different elements based on the absolute nodal coordinate formulation are introduced, but still the beam elements are not able to describe the trapezoidal cross section mode. This leads to the locking phenomena, and therefore, the beam elements based on the absolute nodal coordinate formulation with three dimensional elasticity converge to an inexact solution. In order to avoid the locking phenomena, the trapezoidal cross section deformation mode is included in the beam elements based on the absolute nodal coordinate with additional degrees of freedom. The proper description for the trapezoidal cross section deformation is important for the continuum beam elements based on three-dimensional elasticity where the material model is often based on general continuum mechanics.

  17. Quantitative photoabsorption and fluorescence spectroscopy of benzene, naphthalene, and some derivatives at 106-295 nm

    NASA Technical Reports Server (NTRS)

    Suto, Masako; Wang, Xiuyan; Shan, Jun; Lee, L. C.

    1992-01-01

    Photoabsorption and fluorescence cross sections of benzene, (o-, m-, p-) xylenes, naphthalene, 1-methylnaphthalene, and 2-ethylnaphthalene in the gas phase are measured at 106-295 nm using synchrotron radiation as a light source. Fluorescences are observed from the photoexcitation of benzene and xylenes at 230-280 nm and from naphthalene and its derivatives at 190-295 nm. The absolute fluorescence cross section is determined by calibration with respect to the emission intensity of the NO(A-X) system, for which the fluorescence quantum yield is equal to 1. To cross-check the current calibration method, the quantum yield of the SO2(C-X) system at 220-230 nm was measured since it is about equal to 1. The current quantum-yield data are compared with previously published values measured by different methods.

  18. Photoabsorption cross-section measurements of 32S, 33S, 34S, and 36S sulfur dioxide from 190 to 220 nm

    NASA Astrophysics Data System (ADS)

    Endo, Yoshiaki; Danielache, Sebastian O.; Ueno, Yuichiro; Hattori, Shohei; Johnson, Matthew S.; Yoshida, Naohiro; Kjaergaard, Henrik G.

    2015-03-01

    The ultraviolet absorption cross sections of the SO2 isotopologues are essential to understanding the photochemical fractionation of sulfur isotopes in planetary atmospheres. We present measurements of the absorption cross sections of 32SO2, 33SO2, 34SO2, and 36SO2, recorded from 190 to 220 nm at room temperature with a resolution of 0.1 nm (~25 cm-1) made using a dual-beam photospectrometer. The measured absorption cross sections show an apparent pressure dependence and a newly developed analytical model shows that this is caused by underresolved fine structure. The model made possible the calculation of absorption cross sections at the zero-pressure limit that can be used to calculate photolysis rates for atmospheric scenarios. The 32SO2, 33SO2, and 34SO2 cross sections improve upon previously published spectra including fine structure and peak widths. This is the first report of absolute absorption cross sections of the 36SO2 isotopologue for the C1B2-X1A2 band where the amplitude of the vibrational structure is smaller than the other isotopologues throughout the spectrum. Based on the new results, solar UV photodissociation of SO2 produces 34ɛ, 33Ε, and 36Ε isotopic fractionations of +4.6 ± 11.6‰, +8.8 ± 9.0‰, and -8.8 ± 19.6‰, respectively. From these spectra isotopic effects during photolysis in the Archean atmosphere can be calculated and compared to the Archean sedimentary record. Our results suggest that broadband solar UV photolysis is capable of producing the mass-independent fractionation observed in the Archean sedimentary record without involving shielding by specific gaseous compounds in the atmosphere including SO2 itself. The estimated magnitude of 33Ε, for example, is close to the maximum Δ33S observed in the geological record.

  19. Absolute UV absorption cross sections of dimethyl substituted Criegee intermediate (CH3)2COO

    NASA Astrophysics Data System (ADS)

    Chang, Yuan-Pin; Chang, Chun-Hung; Takahashi, Kaito; Lin, Jim-Min, Jr.

    2016-06-01

    The absolute absorption cross sections of (CH3)2COO under a jet-cooled condition were measured via laser depletion to be (1.32 ± 0.10) × 10-17 cm2 molecule-1 at 308 nm and (9.6 ± 0.8) × 10-18 cm2 molecule-1 at 352 nm. The peak UV cross section is estimated to be (1.75 ± 0.14) × 10-17 cm2 molecule-1 at 330 nm, according to the UV spectrum of (CH3)2COO (Huang et al., 2015) scaled to the absolute cross section at 308 nm.

  20. Principles and procedures for determining absolute differential electron-molecule (atom) scattering cross sections

    NASA Technical Reports Server (NTRS)

    Nickel, J. C.; Zetner, P. W.; Shen, G.; Trajmar, S.

    1989-01-01

    Procedures and calibration techniques for measuring the absolute elastic and inelastic differential cross sections (DCS) for electron impact on molecular (atomic) species are described and illustrated by examples. The elastic DCS for the molecule under study is first determined by calibration against helium using the relative flow technique. The second step involves the production of energy-loss spectra for the instrument response function, the unfolding of overlapping inelastic structures and the normalization of inelastic intensities to the elastic cross sections. It is concluded that this method of determining absolute differential electron-molecule (atom) scattering cross sections is generally applicable and provides reliable results.

  1. Absolute electron-impact total ionization cross sections of chlorofluoromethanes

    NASA Astrophysics Data System (ADS)

    Martínez, Roberto; Sierra, Borja; Redondo, Carolina; Rayo, María N. Sánchez; Castaño, Fernando

    2004-12-01

    An experimental study is reported on the electron-impact total ionization cross sections (TICSs) of CCl4, CCl3F, CCl2F2, and CClF3 molecules. The kinetic energy of the colliding electrons was in the 10-85 eV range. TICSs were obtained as the sum of the partial ionization cross sections of all fragment ions, measured and identified in a linear double focusing time-of-flight mass spectrometer. The resulting TICS profiles—as a function of the electron-impact energy—have been compared both with those computed by ab initio and (semi)empirical methods and with the available experimental data. The computational methods used include the binary-encounter-Bethe (BEB) modified to include atoms with principal quantum numbers n⩾3, the Deutsch and Märk (DM) formalism, and the modified additivity rule (MAR). It is concluded that both modified BEB and DM methods fit the experimental TICS for (CF4), CClF3, CCl2F2, CCl3F, and CCl4 to a high accuracy, in contrast with the poor accord of the MAR method. A discussion on the factors influencing the discrepancies of the fittings is presented.

  2. Absolute cross section for photoionization of Mn+ in the 3p region

    NASA Astrophysics Data System (ADS)

    Kjeldsen, H.; Folkmann, F.; Kristensen, B.; West, J. B.; Hansen, J. E.

    2004-03-01

    The absolute cross section for photoionization of Mn+ has been measured using the merged-beam technique, focusing on the region of the 'giant' 3p rarr 3d resonance. The main discrepancy between theory and earlier experiments has been removed. However, more extensive relativistic calculations are required for a rigorous comparison with theory.

  3. Measurement of the absolute differential cross section for np elastic scattering at 194 MeV

    SciTech Connect

    Sarsour, M.; Peterson, T.; Planinic, M.; Vigdor, S. E.; Allgower, C.; Hossbach, T.; Jacobs, W. W.; Klyachko, A. V.; Rinckel, T.; Stephenson, E. J.; Wissink, S. W.; Zhou, Y.; Bergenwall, B.; Blomgren, J.; Johansson, C.; Klug, J.; Nadel-Turonski, P.; Nilsson, L.; Olsson, N.; Pomp, S.

    2006-10-15

    A tagged medium-energy neutron beam was used in a precise measurement of the absolute differential cross section for np backscattering. The results resolve significant discrepancies within the np database concerning the angular dependence in this regime. The experiment has determined the absolute normalization with {+-}1.5% uncertainty, suitable to verify constraints of supposedly comparable precision that arise from the rest of the database in partial wave analyses. The analysis procedures, especially those associated with the evaluation of systematic errors in the experiment, are described in detail so that systematic uncertainties may be included in a reasonable way in subsequent partial wave analysis fits incorporating the present results.

  4. Absolute differential cross sections for electron capture and loss by kilo-electron-volt hydrogen atoms

    NASA Technical Reports Server (NTRS)

    Smith, G. J.; Johnson, L. K.; Gao, R. S.; Smith, K. A.; Stebbings, R. F.

    1991-01-01

    This paper reports measurements of absolute differential cross sections for electron capture and loss for fast hydrogen atoms incident on H2, N2, O2, Ar, and He. Cross sections have been determined in the 2.0- to 5.0-keV energy range over the laboratory angular range 0.02-2 deg, with an angular, resolution of 0.02 deg. The high angular resolution allows observation of the structure at small angles in some of the cross sections. Comparison of the present results with those of other authors generally shows very good agreement.

  5. Measurements of absolute absorption cross sections of ozone in the 185- to 254-nm wavelength region and the temperature dependence

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Freeman, D. E.; Parkinson, W. H.

    1993-01-01

    Laboratory measurements of the relative absorption cross sections of ozone at temperatures 195, 228, and 295 K have been made throughout the 185 to 254 nm wavelength region. The absolute absorption cross sections at the same temperatures have been measured at several discrete wavelengths in the 185 to 250 nm region. The absolute cross sections of ozone have been used to put the relative cross sections on a firm absolute basis throughout the 185 to 255 nm region. These recalibrated cross sections are slightly lower than those of Molina and Molina (1986), but the differences are within a few percent and would not be significant in atmospheric applications.

  6. Total absorption and photoionization cross sections of water vapor between 100 and 1000 A

    NASA Technical Reports Server (NTRS)

    Haddad, G. N.; Samson, J. A. R.

    1986-01-01

    Absolute photoabsorption and photoionization cross sections of water vapor are reported at a large number of discrete wavelengths between 100 and 1000 A with an estimate error of + or - 3 percent in regions free from any discrete structure. The double ionization chamber technique utilized is described. Recent calculations are shown to be in reasonable agreement with the present data.

  7. Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Molina, M. J.

    1986-01-01

    The absorption cross sections of ozone have been measured in the wavelength range 185-350 nm and in the temperature range 225-298 K. The absolute ozone concentrations were established by measuring the pressure of pure gaseous samples in the 0.08to 300-torr range, and the UV spectra were recorded under conditions where less than 1 percent of the sample decomposed. The temperature dependence is significant for wavelengths longer than about 280 nm. The absorption cross-section values around 210 nm were found to be about 10 percent larger than the previously accepted values.

  8. Absolute measurement of the 242Pu neutron-capture cross section

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Dance Collaboration

    2016-04-01

    The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n ,γ ) cross section was made over the incident neutron energy range from thermal to ≈6 keV, and the absolute scale of the (n ,γ ) cross section was set according to the known 239Pu(n ,f ) resonance at En ,R=7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the cross section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n ,γ ) cross section at the En ,R=2.68 eV resonance is within 2.4 % of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30 % lower than the evaluated data at En≈1 keV and are approximately 2 σ away from the previous measurement at En≈20 keV.

  9. Absolute X-ray emission cross section measurements of Fe K transitions

    NASA Astrophysics Data System (ADS)

    Hell, Natalie; Brown, Gregory V.; Beiersdorfer, Peter; Boyce, Kevin R.; Grinberg, Victoria; Kelley, Richard L.; Kilbourne, Caroline; Leutenegger, Maurice A.; Porter, Frederick Scott; Wilms, Jörn

    2016-06-01

    We have measured the absolute X-ray emission cross sections of K-shell transitions in highly charged L- and K-shell Fe ions using the LLNL EBIT-I electron beam ion trap and the NASA GSFC EBIT Calorimeter Spectrometer (ECS). The cross sections are determined by using the ECS to simultaneously record the spectrum of the bound-bound K-shell transitions and the emission from radiative recombination from trapped Fe ions. The measured spectrum is then brought to an absolute scale by normalizing the measured flux in the radiative recombination features to their theoretical cross sections, which are well known. Once the spectrum is brought to an absolute scale, the cross sections of the K-shell transitions are determined. These measurements are made possible by the ECS, which consists of a 32 channel array, with 14 channels optimized for detecting high energy photons (hν > 10 keV) and 18 channels optimized for detecting low energy photons (hν < 10 keV). The ECS has a large collection area, relatively high energy resolution, and a large bandpass; all properties necessary for this measurement technique to be successful. These data will be used to benchmark cross sections in the atomic reference data bases underlying the plasma modeling codes used to analyze astrophysical spectra, especially those measured by the Soft X-ray Spectrometer calorimeter instrument recently launched on the Hitomi X-ray Observatory.This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and supported by NASA grants to LLNL and NASA/GSFC and by ESA under contract No. 4000114313/15/NL/CB.

  10. Absolute absorption cross-section measurements of ozone in the wavelength region 238-335 nm and the temperature dependence

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Parkinson, W. H.

    1988-01-01

    The absolute absorption cross-section of ozone has been experimentally determined at the temperatures 195, 228, and 295 K at several discrete wavelengths in the 238-335-nm region. The present results for ozone at 295 K are found to be in agreement with those of Hearn (1961). Absolute cross-section measurements of ozone at 195 K have confirmed previous (Freeman et al., 1984) relative cross-section measurements throughout the 240-335-nm region.

  11. Absolute measurement of the 242Pu neutron-capture cross section

    DOE PAGES

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; et al

    2016-04-21

    Here, the absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n,γ) cross section was made over the incident neutron energy range from thermal to ≈ 6 keV, and the absolute scale of the (n,γ) cross section was set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the crossmore » section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈ 40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n,γ) cross section at the En,R = 2.68 eV resonance is within 2.4% of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30% lower than the evaluated data at En ≈ 1 keV and are approximately 2σ away from the previous measurement at En ≈ 20 keV.« less

  12. Absolute np and pp Cross Section Determinations Aimed At Improving The Standard For Cross Section Measurements

    SciTech Connect

    Laptev, A. B.; Haight, R. C.; Tovesson, F.; Arndt, R. A.; Briscoe, W. J.; Paris, M. W.; Strakovsky, I. I.; Workman, R. L.

    2011-06-01

    Purpose of present research is a keeping improvement of the standard for cross section measurements of neutron-induced reactions. The cross sections for np and pp scattering below 1 GeV are determined based on partial-wave analyses (PWAs) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-VII.0 and JENDL-4.0 data files, and the Nijmegen PWA. Also a comparison of evaluated data with recent experimental data was made to check a quality of evaluation. Excellent agreement was found between the new experimental data and our PWA predictions.

  13. Absolute np and pp cross section determinations aimed at improving the standard for cross section measurements

    SciTech Connect

    Laptev, Alexander B; Haight, Robert C; Tovesson, Fredrik; Arndt, Richard A; Briscoe, William J; Paris, Mark W; Strakovsky, Igor I; Workman, Ron L

    2010-01-01

    Purpose of present research is a keeping improvement of the standard for cross section measurements of neutron-induced reactions. The cross sections for np and pp scattering below 1000 MeV are determined based on partial-wave analyses (PW As) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-V11.0 and JENDL-4.0 data files, and the Nijmegen PWA. Also a comparison of evaluated data with recent experimental data was made to check a quality of evaluation. Excellent agreement was found between the new experimental data and our PWA predictions.

  14. Atmospheric Oxygen Photoabsorption

    NASA Technical Reports Server (NTRS)

    Slanger, Tom G.

    1996-01-01

    The work conducted on this grant was devoted to various aspects of the photophysics and photochemistry of the oxygen molecule. Predissociation linewidths were measured for several vibrational levels in the O2(B3 Sigma(sub u)(sup -)) state, providing good agreement with other groups working on this important problem. Extensive measurements were made on the loss kinetics of vibrationally excited oxygen, where levels between v = 5 and v = 22 were investigated. Cavity ring-down spectroscopy was used to measure oscillator strengths in the oxygen Herzberg bands. The great sensitivity of this technique made it possible to extend the known absorption bands to the dissociation limit as well as providing many new absorption lines that seem to be associated with new O2 transitions. The literature concerning the Herzberg band strengths was evaluated in light of our new measurements, and we made recommendations for the appropriate Herzberg continuum cross sections to be used in stratospheric chemistry. The transition probabilities for all three Herzberg band systems were re-evaluated, and we are recommending a new set of values.

  15. K-SHELL PHOTOABSORPTION OF MAGNESIUM IONS

    SciTech Connect

    Hasoğlu, M. F.; Abdel-Naby, Sh. A.; Gatuzz, E.; Mendoza, C.; García, J.; Kallman, T. R.; Gorczyca, T. W.

    2014-09-01

    X-ray photoabsorption cross sections have been computed for all magnesium ions with three or more electrons using the R-matrix method. A comparison with other available data for Mg II-Mg X shows good qualitative agreement in the resultant resonance shapes. However, for the lower ionization stages, and for singly ionized Mg II in particular, the previous R-matrix results overestimate the K-edge position due to the neglect of important orbital relaxation effects, and a global shift downward in photon energy of those cross sections is therefore warranted. We have found that the cross sections for Mg I and Mg II are further complicated by the M-shell (n = 3) occupancy. As a result, the treatment of spectator Auger decay of 1s → np resonances using a method based on multichannel quantum defect theory and an optical potential becomes problematic, making it necessary to implement an alternative, approximate treatment of Auger decay for neutral Mg I. The new cross sections are used to fit the Mg K edge in XMM-Newton spectra of the low-mass X-ray binary GS 1826-238, where most of the interstellar Mg is found to be in ionized form.

  16. Measurement of the absolute cross section for multiphoton ionization of atomic hydrogen at 248 nm

    SciTech Connect

    Kyrala, G.A.; Nichols, T.D.

    1990-01-01

    We present measurements of the absolute rates for multiphoton ionization of the ground state from atomic hydrogen by a linearly polarized, subpicosecond KrF laser pulse at a wavelength of 248 nm. A laser crossed atomic beam technique is used. The irradiance was varied from 3{times}10{sup 12} w/cm{sup 2} to 2{times}10{sup 14} w/cm{sup 2} and three above threshold ionization peaks were observed. The measured rate for total electron production is less than predicted by the numerical and perturbation calculations, but significantly higher than calculated by the Reiss and Keldysh methods. 21 refs., 7 figs.

  17. Saturation Dynamics Measures Absolute Cross Section and Generates Contrast within a Neuron.

    PubMed

    Kumar, Suraj; Singh, Aditya; Singh, Vijay R; George, Jude B; Balaji, J

    2016-09-20

    The intensity required to optically saturate a chromophore is a molecular property that is determined by its absorption cross section (σ) and the excited state lifetime. We present an analytical description of such a system and show that fluorescence around the onset of saturation is characterized by product of absorption cross section and lifetime. Using this approach we formulate a generalized method for measuring the multiphoton cross section of fluorophores and use it to obtain the absolute three-photon cross-section spectra of tryptophan. We find that the tryptophan three-photon cross section ranges from 0.28 S.I. units (m(6)s(2)photon(-2)) at 870 nm to 20 S.I. units at 740 nm. Further, we show that the product of molecular rate of excitation and de-excitation, denoted as β, serves as a vital contrasting agent for imaging local environment. Our contrast parameter, β, is related to fraction of the population present in the excited state and is independent of the fluorophore concentration. We show that β-imaging can be carried out in a regular two-photon microscope setup through a series of intensity scans. Using enhanced green fluorescent protein (EGFP) fluorescence from the brain slices of Thy-1 EGFP transgenic mice, we show that there is an inherent, concentration independent, variation in contrast across the soma and the dendrite.

  18. Saturation Dynamics Measures Absolute Cross Section and Generates Contrast within a Neuron.

    PubMed

    Kumar, Suraj; Singh, Aditya; Singh, Vijay R; George, Jude B; Balaji, J

    2016-09-20

    The intensity required to optically saturate a chromophore is a molecular property that is determined by its absorption cross section (σ) and the excited state lifetime. We present an analytical description of such a system and show that fluorescence around the onset of saturation is characterized by product of absorption cross section and lifetime. Using this approach we formulate a generalized method for measuring the multiphoton cross section of fluorophores and use it to obtain the absolute three-photon cross-section spectra of tryptophan. We find that the tryptophan three-photon cross section ranges from 0.28 S.I. units (m(6)s(2)photon(-2)) at 870 nm to 20 S.I. units at 740 nm. Further, we show that the product of molecular rate of excitation and de-excitation, denoted as β, serves as a vital contrasting agent for imaging local environment. Our contrast parameter, β, is related to fraction of the population present in the excited state and is independent of the fluorophore concentration. We show that β-imaging can be carried out in a regular two-photon microscope setup through a series of intensity scans. Using enhanced green fluorescent protein (EGFP) fluorescence from the brain slices of Thy-1 EGFP transgenic mice, we show that there is an inherent, concentration independent, variation in contrast across the soma and the dendrite. PMID:27653491

  19. Absolute photoionization cross sections of furanic fuels: 2-ethylfuran, 2-acetylfuran and furfural.

    PubMed

    Smith, Audrey R; Meloni, Giovanni

    2015-11-01

    Absolute photoionization cross sections of the molecules 2-ethylfuran, 2-acetylfuran and furfural, including partial ionization cross sections for the dissociative ionized fragments, are measured for the first time. These measurements are important because they allow fuel quantification via photoionization mass spectrometry and the development of quantitative kinetic modeling for the complex combustion of potential fuels. The experiments are carried out using synchrotron photoionization mass spectrometry with an orthogonal time-of-flight spectrometer used for mass analysis at the Advanced Light Source of Lawrence Berkeley National Laboratory. The CBS-QB3 calculations of adiabatic ionization energies and appearance energies agree well with the experimental results. Several bond dissociation energies are also derived and presented.

  20. Photodissociation of acetaldehyde and the absolute photoionization cross section of HCO.

    SciTech Connect

    Shubert, V. A.; Pratt, S. T.

    2010-01-01

    Photodissociation of acetaldehyde (CH{sub 3}CHO) at 266 nm produced CH{sub 3} and HCO radicals, and single-photon vacuum ultraviolet ionization was used to record velocity map ion images of both CH{sub 3}{sup +} and HCO{sup +}. Comparison of the translational energy distributions from both species indicates that secondary fragmentation of HCO is negligible for 266 nm photodissociation. Thus, the relative photoion signals for CH{sub 3}{sup +} and HCO{sup +} in the mass spectrometer, combined with the recently measured absolute photoionization cross section of CH{sub 3}, allowed the determination of the absolute photoionization cross section of HCO ({sigma}(HCO) = 4.8 {+-} {sub 1.5}{sup 2.0}, 5.9 {+-} {sub 1.6}{sup 2.2}, and 3.7 {+-} {sub 1.2}{sup 1.6} Mb at 10.257, 10.304, and 10.379 eV, respectively). The observed values are quite small but consistent with the similarly small value at threshold for the isoelectronic species NO. This behavior is discussed in terms of the character of the HOMO in both molecules.

  1. Absolute partial and total cross sections for electron-impact ionization of argon from threshold to 1000 eV

    NASA Astrophysics Data System (ADS)

    Straub, H. C.; Renault, P.; Lindsay, B. G.; Smith, K. A.; Stebbings, R. F.

    1995-08-01

    Absolute partial cross sections from threshold to 1000 eV are reported for the production of Arn+ (n=1-4) by electron-impact ionization of argon. The total cross sections, obtained from an appropriately weighted sum of the partial cross sections, are also reported. These results are obtained with an apparatus incorporating a time-of-flight mass spectrometer with position-sensitive detection of the product ions. The simple apparatus design embodies recent developments in pressure measurement and particle detection and is believed to yield more reliable results than those previously reported. For singly charged ions, the overall uncertainty in the absolute cross section values reported here is +/-3.5%. Previous measurements of absolute partial and total cross sections are reviewed and compared with the present results.

  2. High-Resolution Temperature-Dependent Photoabsorption Cross Section Measurements of S2, with Application to HST UV Spectra of SL9/Jupiter

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. Robert

    1997-01-01

    The Hubble Space Telescope (HST) UV spectra of Jupiter after the collision of Comet SL9 show predominantly molecular features of S2, CS2, NH3, and H2S in the 1800-3200 A region. The HST observations were made under various phases of impact conditions which gave temperatures higher than 1000 K. It is thus clear that temperature-dependent laboratory cross section data are required in order to determine the molecular abundances in Jupiter's atmosphere after the impact of Comet Shoemaker-Levy 9. The required high-resolution temperature dependent S2 absorption cross sections have not been directly measured in the laboratory. To provide the required data for modelers our objective is to accurately measure the high-resolution (FWHM = 0.003 A) and medium resolution (FWHM - 0.08 A) temperature dependent S2 in the 2450-3200 A region. Using the experimental setup we have obtained absorbtion spectra of S2 under various temperature conditions.

  3. Photoabsorption and photodissociation of molecules important in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Lee, Long C.; Suto, Masako

    1991-01-01

    The photoabsorption, photodissociation, and fluorescence cross sections of interstellar molecules are measured at 90 to 250 nm. These quantitative optical data are needed for the understanding of the formation and destruction processes of molecules under the intense interstellar UV radiation field. Research covering the following topics is presented: (1) fluorescences from photoexcitation of CH4, CH3OH, and CH3SH; (2) NO gamma emission from photoexcitation of NO; (3) photoexcitation cross sections of aromatic molecules; (4) IR emission from UV excitation of HONO2; (5) IR emission from UV excitation of benzene and methyl-derivitives; and (6) IR emission from UV excitation of polycyclic aromatic hydrocarbon molecules.

  4. ^241Am(n,γ) absolute cross sections measured with DANCE

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Macri, R. A.; Sheets, S. A.; Wu, C. Y.; Becker, J. A.

    2007-10-01

    ^241Am is present in plutonium due to the beta decay of ^241Pu (t1/2=14.38 years). As such ^241Am can be used as a detector for nuclear forensics. A precise measurement of ^241Am(n,γ) cross section is thus needed for this application. The measurement is also of interest for advanced reactor design as part of the Global Nuclear Energy Partnership (GNEP). The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for neutron capture cross section measurement on ^241Am. The high granularity of DANCE (160 BaF2 detectors in a 4π geometry) enables the efficient detection of prompt gamma-rays following a neutron capture. DANCE is located on the 20.26 m neutron flight path 14(FP14) at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE). The absolute ^241Am(n,γ) cross sections were obtained in the range of neutron energies from 0.02 eV to 320 keV. The results will be compared to existing evaluations in detail.

  5. Absolute angle-differential vibrational excitation cross sections for electron collisions with diacetylene

    SciTech Connect

    Allan, M.; May, O.; Fedor, J.; Ibanescu, B. C.; Andric, L.

    2011-05-15

    Absolute vibrational excitation cross sections were measured for diacetylene (1,3-butadiyne). The selectivity of vibrational excitation reveals detailed information about the shape resonances. Excitation of the C{identical_to}C stretch and of double quanta of the C-H bend vibrations reveals a {sup 2}{Pi}{sub u} resonance at 1 eV (autodetachment width {approx}30 meV) and a {sup 2}{Pi}{sub g} resonance at 6.2 eV (autodetachment width 1-2 eV). There is a strong preference for excitation of even quanta of the bending vibration. Excitation of the C-H stretch vibration reveals {sigma}* resonances at 4.3, 6.8, and 9.8 eV, with autodetachment widths of {approx}2 eV. Detailed information about resonances permits conclusions about the mechanism of the dissociative electron attachment.

  6. Photoabsorption spectra and the X-ray edge problem in graphene

    NASA Astrophysics Data System (ADS)

    Röder, G.; Tkachov, G.; Hentschel, M.

    2011-06-01

    We study the photoabsorption cross-section and Fermi-edge singularities (FES) in graphene. For fillings below one-half, we find, besides the expected FES in form of a peaked edge at the threshold (Fermi) energy, a second singularity to arise at excitation energies that correspond to the Dirac point in the density of states. We can explain this behaviour by comparing our results with the photoabsorption cross-section of a metal with a small central band gap where we find a very similar signature. The existence of the second singularity might prove useful for an experimental determination of the Dirac point. We also demonstrate that the photoabsorption signal is enhanced by the zigzag edge states due to their metallic-like character. Since the presence of the edge states indicates a topological defect at the boundary, our study gives an example for a Fermi-edge singularity in a system with a topologically nontrivial electronic spectrum.

  7. Systematic determination of absolute absorption cross-section of individual carbon nanotubes

    PubMed Central

    Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B.; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G.; Wang, Enge; Wang, Feng

    2014-01-01

    Optical absorption is the most fundamental optical property characterizing light–matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important

  8. Systematic determination of absolute absorption cross-section of individual carbon nanotubes.

    PubMed

    Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G; Wang, Enge; Wang, Feng

    2014-05-27

    Optical absorption is the most fundamental optical property characterizing light-matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important

  9. Photoabsorption and photodissociation of molecules important in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Lee, Long C.; Suto, Masako

    1989-01-01

    Photoabsorption and fluorescence cross sections of molecules important in the interstellar medium were measured in the 90 to 200 nm region using synchrotron radiation, excimer laser, and condensed discharge lamps as light sources. The quantitative spectroscopic data are currently needed for the modeling of formation and destruction rates of molecules by the interstellar radiation field. Fluorescences from excited photofragments produced by vacuum ultraviolet radiation of molecules are dispersed to identify the emitting species. The fluorescence data are useful for the identification of emission sources in interstellar clouds.

  10. Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV.

    PubMed

    Limão-Vieira, P; Ferreira da Silva, F; Almeida, D; Hoshino, M; Tanaka, H; Mogi, D; Tanioka, T; Mason, N J; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J

    2015-02-14

    The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0-10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) ((1)Δ←(1)Σ(+)) transition, with a new weak transition assigned to ((1)Σ(-)←(1)Σ(+)) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to (1)Σ(+) and (1)Π transitions. Based on our recent measurements of differential cross sections for the optically allowed ((1)Σ(+) and (1)Π) transitions of COS by electron impact, the optical oscillator strength f0 value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20-50 km).

  11. Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV.

    PubMed

    Limão-Vieira, P; Ferreira da Silva, F; Almeida, D; Hoshino, M; Tanaka, H; Mogi, D; Tanioka, T; Mason, N J; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J

    2015-02-14

    The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0-10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) ((1)Δ←(1)Σ(+)) transition, with a new weak transition assigned to ((1)Σ(-)←(1)Σ(+)) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to (1)Σ(+) and (1)Π transitions. Based on our recent measurements of differential cross sections for the optically allowed ((1)Σ(+) and (1)Π) transitions of COS by electron impact, the optical oscillator strength f0 value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20-50 km). PMID:25681902

  12. Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV

    SciTech Connect

    Limão-Vieira, P.; Ferreira da Silva, F.; Almeida, D.; Hoshino, M.; Tanaka, H.; Mogi, D.; Tanioka, T.; Mason, N. J.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.

    2015-02-14

    The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0–10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) ({sup 1}Δ←{sup 1}Σ{sup +}) transition, with a new weak transition assigned to ({sup 1}Σ{sup −}←{sup 1}Σ{sup +}) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to {sup 1}Σ{sup +} and {sup 1}Π transitions. Based on our recent measurements of differential cross sections for the optically allowed ({sup 1}Σ{sup +} and {sup 1}Π) transitions of COS by electron impact, the optical oscillator strength f{sub 0} value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20–50 km)

  13. Measurement of the absolute and differential cross sections for 7Li(γ, n0)6Li

    SciTech Connect

    W.A. Wurtz, R.E. Pywell, B.E. Norum, S. Kucuker, B.D. Sawatzky, H.R. Weller, M.W. Ahmed, S. Stave

    2011-10-01

    We have measured the cross section of the photoneutron reaction channel {sup 7}Li+{gamma}{yields}{sup 6}Li(g.s.)+n where the progeny nucleus is the ground state of {sup 6}Li. We obtained the absolute cross section at photon energies 10, 11, 12, 13, 15, 20, 25, 30, and 35 MeV and also the dependence of the cross section on polar angle for all but the highest photon energy. For the energies 10 to 15 MeV we were able to use linearly polarized photons to obtain the dependence of the cross section on the photon polarization.

  14. Absolute elastic differential electron scattering cross sections for He - A proposed calibration standard from 5 to 200 eV

    NASA Technical Reports Server (NTRS)

    Register, D. F.; Trajmar, S.; Srivastava, S. K.

    1980-01-01

    Absolute differential, integral, and momentum-transfer cross sections for electrons elastically scattered from helium are reported for the impact energy range of 5 to 200 eV. Angular distributions for elastically scattered electrons are measured in a crossed-beam geometry using a collimated, differentially pumped atomic-beam source which requires no effective-path-length correction. Below the first inelastic threshold the angular distributions were placed on an absolute scale by use of a phase-shift analysis. Above this threshold, the angular distributions from 10 to 140 deg were fitted using the phase-shift technique, and the resulting integral cross sections were normalized to a semiempirically derived integral elastic cross section. Depending on the impact energy, the data are estimated to be accurate to within 5 to 9%.

  15. Absolute triple-differential cross sections for ionization-excitation of helium

    SciTech Connect

    Bartschat, K.; Bray, I.; Fursa, D. V.; Stelbovics, A. T.

    2007-08-15

    Triple-differential cross sections (TDCSs) for electron-impact ionization of He(1s{sup 2}){sup 1}S leading to He{sup +}(1s) are calculated using the highly accurate convergent close-coupling (CCC) method for incident projectile energies of 268.6 and 112.6 eV, with at least one of the outgoing electrons having an energy of 44 eV. These results are used to obtain absolute TDCSs from the recent experimental data [Bellm et al., Phys. Rev. A 75, 042704 (2007)] for TDCS ratios of ionization with no excitation to ionization with excitation resulting in He{sup +}(n=2,3,4). The TDCSs can be used as comparison benchmarks in future studies, and already allow us to test the accuracy of the TDCSs obtained from the hybrid distorted-wave+R-matrix (close-coupling) model, which was fairly successful in predicting the ratios, using CCC for n=1 and experimental results for n=2,3,4.

  16. Absolute cross sections for dissociative electron attachment to HCN and DCN

    SciTech Connect

    May, O.; Kubala, D.; Allan, M.

    2010-07-15

    Absolute partial cross sections for the formation of CN{sup -} in dissociative electron attachment to HCN and DCN have been measured using a time-of-flight ion spectrometer combined with a trochoidal electron monochromator to be 940pm{sup 2} for CN{sup -}/HCN and 340pm{sup 2} for CN{sup -}/DCN at peaks of the bands due to the {sup 2{Pi}}-shape resonance. The dissociative electron attachment bands were then recorded under higher resolution, 60 meV, with a trochoidal monochromator plus quadrupole mass filter combination and found to have a nearly vertical onset at the threshold energy and to peak at 1.85 eV. Broad structure was observed on the bands, assigned to formation of vibrationally excited CN{sup -}, from which the branching ratios could be determined to be 1,0.49, and 0.22 for the formation of CN{sup -} in the v=0,1, and 2 states, respectively. The results are compared to the recent multidimensional ab initio calculations of Chourou and Orel [Phys. Rev. A 80, 032709 (2009)].

  17. Supplementary absolute differential cross sections for the excitation of atomic hydrogen's n=3 and 4 levels by electron impact

    SciTech Connect

    Sweeney, Christopher J.; Shyn, Tong W.; Grafe, Alan

    2004-05-01

    We have conducted measurements of absolute differential cross sections for the excitation of hydrogen atoms to their n=3(3S+3P+3D) and 4(4S+4P+4D+4F) levels. A modulated, crossed-beam method was employed, and the impact energies were 40 and 60 eV. Comparison of our results with those of others is quite favorable.

  18. ScaRaB: first results of absolute and cross calibration

    NASA Astrophysics Data System (ADS)

    Trémas, Thierry L.; Aznay, Ouahid; Chomette, Olivier

    2015-10-01

    ScaRaB (SCAnner for RAdiation Budget) is the name of three radiometers whose two first flight models have been launched in 1994 and 1997. The instruments were mounted on-board Russian satellites, METEOR and RESURS. On October 12th 2011, a last model has been launched from the Indian site of Sriharikota. ScaRaB is a passenger of MEGHA-TROPIQUES, an Indo-French joint Satellite Mission for studying the water cycle and energy exchanges in the tropics. ScaRaB is composed of four parallel and independent channels. Channel-2 and channel-3 are considered as the main ones. Channel-1 is dedicated to measure solar radiance (0.5 to 0.7 μm) while channel-4 (10 to 13 μm) is an infrared window. The absolute calibration of ScaRab is assured by internal calibration sources (black bodies and a lamp for channel-1). However, during the commissioning phase, the lamp used for the absolute calibration of channel-1 revealed to be inaccurate. We propose here an alternative calibration method based on terrestrial targets. Due to the spectral range of channel-1, only calibration over desert sites (temporal monitoring) and clouds (cross band) is suitable. Desert sites have been widely used for sensor calibration since they have a stable spectral response over time. Because of their high reflectances, the atmospheric effect on the upward radiance is relatively minimal. In addition, they are spatially uniform. Their temporal instability without atmospheric correction has been determined to be less than 1-2% over a year. Very-high-altitude (10 km) bright clouds are good validation targets in the visible and near-infrared spectra because of their high spectrally consistent reflectance. If the clouds are very high, there is no need to correct aerosol scattering and water vapor absorption as both aerosol and water vapor are distributed near the surface. Only Rayleigh scattering and ozone absorption need to be considered. This method has been found to give a 4% uncertainty. Radiometric cross

  19. Photoelectron-photoabsorption (PePa) database

    NASA Astrophysics Data System (ADS)

    Śmiałek, Małgorzata A.; Mason, Nigel J.

    2016-03-01

    In this paper a recently launched Photoelectron-Photoabsorption Database is presented. The database was developed in order to gather all the photoelectron and photoabsorption spectra measured by various collaborators over the years as well as to ease the access to the data to the potential users. In the paper the main features of the database were described and its outline explained. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  20. Theoretical photoabsorption spectra of Ar n+ clusters

    NASA Astrophysics Data System (ADS)

    Doltsinis, Nikos L.; Knowles, Peter J.

    2000-08-01

    The photoabsorption spectra of selected Ar n+ clusters ( n=7, 8, 17, 19, 23) have been investigated theoretically using an extended Diatomics-in-Molecules approach including induced dipole - induced dipole and spin-orbit coupling interaction effects. Our calculations at 0 K confirm the experimentally observed spectral red-shift of the visible photoabsorption peak in the region 15< n<20 [Levinger et al., J. Chem. Phys. 89 (1988) 5654]. Furthermore, we have been able to reproduce the additional red-shift measured for 7⩽ n⩽9 [Haberland et al., Phys. Rev. Lett. 67 (1991) 3290] by carrying out finite temperature Monte Carlo simulations.

  1. Absolute Rayleigh scattering cross sections of gases and freons of stratospheric interest in the visible and ultraviolet regions

    NASA Technical Reports Server (NTRS)

    SHARDANAND; Rao, A. D. P.

    1977-01-01

    The laboratory measurements of absolute Rayleigh scattering cross sections as a function wavelength are reported for gas molecules He, Ne, Ar, N2, H2, O2, CO2, CH4 and for vapors of most commonly used freons CCl2F2, CBrF3, CF4, and CHClf2. These cross sections are determined from the measurements of photon scattering at an angle of 54 deg 44 min which yield the absolute values independent of the value of normal depolarization ratios. The present results show that in the spectral range 6943-3638A deg, the values of the Rayleigh scattering cross section can be extrapolated from one wavelength to the other using 1/lambda (4) law without knowing the values of the polarizabilities. However, such an extrapolation can not be done in the region of shorter wavelengths.

  2. Measurement of the absolute Raman cross section of the optical phonon in silicon

    NASA Astrophysics Data System (ADS)

    Aggarwal, R. L.; Farrar, L. W.; Saikin, S. K.; Aspuru-Guzik, A.; Stopa, M.; Polla, D. L.

    2011-04-01

    The absolute Raman cross section σ of the first-order 519 cm -1 optical phonon in silicon was measured using a small temperature-controlled blackbody for the signal calibration of the Raman system. Measurements were made with a 25-mil thick (001) silicon sample located in the focal plane of a 20-mm effective focal length (EFL) lens using 785-, 1064-, and 1535-nm CW pump lasers for the excitation of Raman scattering. The pump beam was polarized along the [100] axis of the silicon sample. Values of 1.0±0.2×10 -27, 3.6±0.7×10 -28, and 1.1±0.2×10 -29 cm 2 were determined for σ for 785-, 1064-, and 1535-nm excitation, respectively. The corresponding values of the Raman scattering efficiency S are 4.0±0.8×10 -6, 1.4±0.3×10 -6, and 4.4±0.8×10 -8 cm -1 sr -1.The values of the Raman polarizability |d| for 785-, 1064-, and 1535-nm excitation are 4.4±0.4×10 -15, 5.1±0.5×10 -15, and 1.9±0.2×10 -15 cm 2, respectively. The values of 4.4±0.4×10 -15 and 5.1±0.5×10 -15 cm 2 for |d| for 785- and 1064-nm excitation, respectively, are 1.3 and 2.0 times larger than the values of 3.5×10 -15 and 2.5×10 -15 cm 2 calculated by Wendel. The Raman polarizability |d| computed using the density functional theory in the long-wavelength limit is consistent with the general trend of the measured data and Wendel's model.

  3. High resolution photoabsorption spectrum of hexafluoro-1,3-butadiene (1,3-C4F6) as studied by vacuum ultraviolet (VUV) synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Ferreira da Silva, F.; Almeida, D.; Vasekova, E.; Drage, E.; Mason, N. J.; Limão-Vieira, P.

    2012-10-01

    In this Letter we present a high resolution VUV photoabsorption spectrum of hexafluoro-1,3-butadiene (1,3-C4F6), over the wavelength range 113-247 nm (11.0-5.0 eV). The spectrum reveals several new features not previously reported in the literature. The assignment of the observed valence and Rydberg transitions and the associated vibronic series is presented based on our recent ab initio calculations on the vertical excitation energies of C4F6 isomers. The dominant excitation has been assigned to the υ1'(a) Cdbnd C stretching mode in the (51A ← 11A, 3pa ← πa(20a)) and (71A ← 11A, 3pb ← πb(19b)) transitions, with mean energies of 0.201 and 0.188 eV, respectively. The measured absolute photoabsorption cross section has been used to calculate the photolysis lifetime of 1,3-C4F6 in the upper stratosphere (20-50 km).

  4. Absolute Photoionization Cross Sections for Br2+ in the 4 p --> 4d and 3d --> 4p Energy Regions

    NASA Astrophysics Data System (ADS)

    Aguilar, A.; Juarez, A. M.; Bilodeau, R. C.; Esteves, D. A.; Hardy, D. A.; Red, E. C.

    2011-05-01

    Absolute single photoionization cross-section measurements are reported for Br2+ in the 31 eV to 46 eV and 64 eV to 72 eV photon energy ranges. The first energy range includes the low-lying 2P3 / 2 , 1 / 2 and 2D5 / 2 , 3 / 2 metastable state thresholds and extends for 10 eV above the 4S3 / 2 ground state threshold. Strong photoexcitation-autoionization resonances due to 4p --> nd transitions are seen in the cross-section spectrum and identified based on a quantum-defect analysis of the series. The systematic behavior of the quantum defect parameter of some of the Rydberg series observed in the Br2+ spectrum as well as in previously measured Se+ spectrum, are analyzed as a function of the nuclear charge. The 64 eV to 72 eV energy range contains discrete structure that arises from 3d --> np excitations. The R-matrix photoionization cross section calculations of Cummings and O'Sullivan, PRA, 54 (1996) are compared to our absolute cross section measurements in this energy range. Absolute single photoionization cross-section measurements are reported for Br2+ in the 31 eV to 46 eV and 64 eV to 72 eV photon energy ranges. The first energy range includes the low-lying 2P3 / 2 , 1 / 2 and 2D5 / 2 , 3 / 2 metastable state thresholds and extends for 10 eV above the 4S3 / 2 ground state threshold. Strong photoexcitation-autoionization resonances due to 4p --> nd transitions are seen in the cross-section spectrum and identified based on a quantum-defect analysis of the series. The systematic behavior of the quantum defect parameter of some of the Rydberg series observed in the Br2+ spectrum as well as in previously measured Se+ spectrum, are analyzed as a function of the nuclear charge. The 64 eV to 72 eV energy range contains discrete structure that arises from 3d --> np excitations. The R-matrix photoionization cross section calculations of Cummings and O'Sullivan, PRA, 54 (1996) are compared to our absolute cross section measurements in this energy range. This work is

  5. Absolute Rb one-color two-photon ionization cross-section measurement near a quantum interference

    SciTech Connect

    Takekoshi, T.; Brooke, G.M.; Patterson, B.M.; Knize, R.J.

    2004-05-01

    We observe destructive interference in the ground-state Rb two-photon ionization cross section when the single photon energy is tuned between the 5S{yields}5P and 5S{yields}6P transition energies. The minimum cross section is 5.9(1.5)x10{sup -52} cm{sup 4} s and it occurs at a wavelength of 441.0(3) nm (in vacuo). Relative measurements of these cross sections are made at various wavelengths by counting ions produced when magneto-optically trapped Rb atoms are exposed to light from a tunable pulsed laser. This relative curve is calibrated to an absolute cross-section measurement at 532 nm using the trap loss method. A simple calculation agrees reasonably with our results.

  6. Absolute cross sections for vibrational excitations of cytosine by low energy electron impact

    NASA Astrophysics Data System (ADS)

    Michaud, M.; Bazin, M.; Sanche, L.

    2012-09-01

    The absolute cross sections (CSs) for vibrational excitations of cytosine by electron impact between 0.5 and 18 eV were measured by electron-energy loss (EEL) spectroscopy of the molecule deposited at monolayer coverage on an inert Ar substrate. The vibrational energies compare to those that have been reported from IR spectroscopy of cytosine isolated in Ar matrix, IR and Raman spectra of polycrystalline cytosine, and ab initio calculation. The CSs for the various H bending modes at 142 and 160 meV are both rising from their energy threshold up to 1.7 and 2.1 × 10-17 cm2 at about 4 eV, respectively, and then decrease moderately while maintaining some intensity at 18 eV. The latter trend is displayed as well for the CS assigned to the NH2 scissor along with bending of all H at 179 meV. This overall behavior in electron-molecule collision is attributed to direct processes such as the dipole, quadrupole, and polarization contributions, etc. of the interaction of the incident electron with a molecule. The CSs for the ring deformation at 61 meV, the ring deformation with N-H symmetric wag at 77 meV, and the ring deformations with symmetric bending of all H at 119 meV exhibit common enhancement maxima at 1.5, 3.5, and 5.5 eV followed by a broad hump at about 12 eV, which are superimposed on the contribution due to the direct processes. At 3.5 eV, the CS values for the 61-, 77-, and 119-meV modes reach 4.0, 3.0, and 4.5 × 10-17 cm2, respectively. The CS for the C-C and C-O stretches at 202 meV, which dominates in the intermediate EEL region, rises sharply until 1.5 eV, reaches its maximum of 5.7 × 10-17 cm2 at 3.5 eV and then decreases toward 18 eV. The present vibrational enhancements, correspond to the features found around 1.5 and 4.5 eV in electron transmission spectroscopy (ETS) and those lying within 1.5-2.1 eV, 5.2-6.8 eV, and 9.5-10.9 eV range in dissociative electron attachment (DEA) experiments with cytosine in gas phase. While the ETS features are ascribed

  7. Absolute cross sections for vibrational excitations of cytosine by low energy electron impact.

    PubMed

    Michaud, M; Bazin, M; Sanche, L

    2012-09-21

    The absolute cross sections (CSs) for vibrational excitations of cytosine by electron impact between 0.5 and 18 eV were measured by electron-energy loss (EEL) spectroscopy of the molecule deposited at monolayer coverage on an inert Ar substrate. The vibrational energies compare to those that have been reported from IR spectroscopy of cytosine isolated in Ar matrix, IR and Raman spectra of polycrystalline cytosine, and ab initio calculation. The CSs for the various H bending modes at 142 and 160 meV are both rising from their energy threshold up to 1.7 and 2.1 × 10(-17) cm(2) at about 4 eV, respectively, and then decrease moderately while maintaining some intensity at 18 eV. The latter trend is displayed as well for the CS assigned to the NH(2) scissor along with bending of all H at 179 meV. This overall behavior in electron-molecule collision is attributed to direct processes such as the dipole, quadrupole, and polarization contributions, etc. of the interaction of the incident electron with a molecule. The CSs for the ring deformation at 61 meV, the ring deformation with N-H symmetric wag at 77 meV, and the ring deformations with symmetric bending of all H at 119 meV exhibit common enhancement maxima at 1.5, 3.5, and 5.5 eV followed by a broad hump at about 12 eV, which are superimposed on the contribution due to the direct processes. At 3.5 eV, the CS values for the 61-, 77-, and 119-meV modes reach 4.0, 3.0, and 4.5 × 10(-17) cm(2), respectively. The CS for the C-C and C-O stretches at 202 meV, which dominates in the intermediate EEL region, rises sharply until 1.5 eV, reaches its maximum of 5.7 × 10(-17) cm(2) at 3.5 eV and then decreases toward 18 eV. The present vibrational enhancements, correspond to the features found around 1.5 and 4.5 eV in electron transmission spectroscopy (ETS) and those lying within 1.5-2.1 eV, 5.2-6.8 eV, and 9.5-10.9 eV range in dissociative electron attachment (DEA) experiments with cytosine in gas phase. While the ETS features

  8. Absolute cross sections for the dissociation of hydrogen cluster ions in high-energy collisions with helium atoms

    SciTech Connect

    Eden, S.; Tabet, J.; Samraoui, K.; Louc, S.; Farizon, B.; Farizon, M.; Ouaskit, S.; Maerk, T. D.

    2006-02-15

    Absolute dissociation cross sections are reported for H{sub n}{sup +} clusters of varied mass (n=3,5,...,35) following collisions with He atoms at 60 keV/amu. Initial results have been published previously for a smaller range of cluster sizes [Ouaskit et al., Phys. Rev. A 49, 1484 (1994)]. The present extended study includes further experimental results, reducing the statistical errors associated with the absolute cross sections. The previously suggested quasilinear dependence of the H{sub n}{sup +} dissociation cross sections upon n is developed with reference to expected series of geometrical shells of H{sub 2} molecules surrounding a H{sub 3}{sup +} core. Recent calculations identify n=9 as corresponding to the first closed H{sub 2} shell [e.g., Stich et al., J. Chem. Phys. 107, 9482 (1997)]. Recurrence of the distinct characteristics observed in the dissociation-cross-section dependence upon cluster size around n=9 provides the basis for the presently proposed subsequent closed shells at n=15, 21, 27, and 33, in agreement with the calculations of Nagashima et al. [J. Phys. Chem. 96, 4294 (1992)].

  9. Absolute elastic differential electron scattering cross sections in the intermediate energy region. III - SF6 and UF6

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.; Trajmar, S.; Chutjian, A.; Williams, W.

    1976-01-01

    A recently developed technique has been used to measure the ratios of elastic differential electron scattering cross sections (DCS) for SF6 and UF6 to those of He at electron impact energies of 5, 10, 15, 20, 30, 40, 50, 60, and 75 eV and at scattering angles of 20 to 135 deg. In order to obtain the absolute values of DCS from these ratios, He DCS of McConkey and Preston have been employed in the 20 to 90 deg range. At angles in the 90 to 135 deg range the recently determined cross sections of Srivastava and Trajmar have been utilized. From these DCS, elastic integral and momentum transfer cross sections have been obtained.

  10. The recent absolute total np and pp cross section determinations: quality of data description and prediction of experimental observables

    SciTech Connect

    Laptev, Alexander B; Haight, Robert C; Arndt, Richard A; Briscoe, William J; Paris, Mark W; Strakovsky, Igor I; Workman, Ron L

    2010-01-01

    The absolute total cross sections for np and pp scattering below 1000 MeV are determined based on partial-wave analyses (PWAs) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-VII.0 and JENDL-3.3 data files, and the Nijmegen PWA. Systematic deviations from the ENDF/B-VII.0 and JENDL-3.3 evaluations are found to exist in the low-energy region. Comparison of the np evaluation with the result of most recent np total and differential cross section measurements will be discussed. Results of those measurements were not used in the evaluation database. A comparison was done to check a quality of evaluation and its capabilities to predict experimental observables. Excellent agreement was found between the new experimental data and our PWA predictions.

  11. Absolute elastic differential electron scattering cross sections in the intermediate energy region. IV - CO

    NASA Technical Reports Server (NTRS)

    Tanaka, H.; Srivastava, S. K.; Chutjian, A.

    1978-01-01

    Using a crossed electron beam-molecular beam scattering geometry and a relative-flow technique, ratios of elastic differential cross sections of CO to those of He have been measured at electron impact energies of 3, 5, 7.5, 9.9, 15, 20, 30, 50, 75, and 100 eV. At each energy, an angular range of 15 to 130 deg has been covered. These ratios have been multiplied by previously known He elastic differential cross sections to obtain elastic differential cross sections for CO. Since pure rotational excitations were not resolved, the elastic differential cross sections are a sum of elastic and pure rotational excitations at room temperature. From a knowledge of differential cross sections (DCS), integral and momentum transfer cross sections have been calculated. Both the DCS and integral cross sections are compared at 50, 75, and 100 eV to a recent two-potential theory of e-molecule scattering. Present results show that the isoelectronic molecules CO and N2 have very similar magnitudes and shapes of their differential cross sections.

  12. A Preliminary Report on X-Ray Photoabsorption Coefficients andAtomic Scattering Factors for 92 Elements in the 10-10,000 eVRegion

    SciTech Connect

    Henke, B.L.; Davis, J.C.; Gullikson, E.M.; Perera, R.C.C.

    1988-11-01

    Based on currently available photoabsorption measurements and recent theoretical calculations by Doolen and Liberman (Physica Scripta 36, 77 (1987)), a revised (from ADNDT 27, 1 (1982)) best-fit determination of the photoabsorption cross sections is presented here for the elements Z=1 to Z=92 in the 10-10,000 eV range. The photoabsorption data used include those described in the Lockheed and DOE listings of research abstracts for the past ten years and those which have been recently added to the comprehensive NBS Measured Data Base (NBSIR 86-3461, Hubbell et al.). The best-fit curves are compared with both the compilation of measurements and the calculations by Doolen and Liberman. Using the photoabsorption curves, the atomic scattering factors have been calculated for the energy range 50-10,000 eV and are also presented in this report.

  13. Absolute Charge Transfer and Fragmentation Cross Sections in He{sup 2+}-C{sub 60} Collisions

    SciTech Connect

    Rentenier, A.; Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A.; Ruiz, L. F.; Diaz-Tendero, S.; Alcami, M.; Martin, F.; Zarour, B.; Hanssen, J.; Hervieux, P.-A.; Politis, M. F.

    2008-05-09

    We have determined absolute charge transfer and fragmentation cross sections in He{sup 2+}+C{sub 60} collisions in the impact-energy range 0.1-250 keV by using a combined experimental and theoretical approach. We have found that the cross sections for the formation of He{sup +} and He{sup 0} are comparable in magnitude, which cannot be explained by the sole contribution of pure single and double electron capture but also by contribution of transfer-ionization processes that are important even at low impact energies. The results show that multifragmentation is important only at impact energies larger than 40 keV; at lower energies, sequential C{sub 2} evaporation is the dominant process.

  14. Measurement of the absolute vμ-CCQE cross section at the SciBooNE experiment

    SciTech Connect

    Aunion, Jose Luis Alcaraz

    2010-07-01

    This thesis presents the measurement of the charged current quasi-elastic (CCQE) neutrino-nucleon cross section at neutrino energies around 1 GeV. This measurement has two main physical motivations. On one hand, the neutrino-nucleon interactions at few GeV is a region where existing old data are sparse and with low statistics. The current measurement populates low energy regions with higher statistics and precision than previous experiments. On the other hand, the CCQE interaction is the most useful interaction in neutrino oscillation experiments. The CCQE channel is used to measure the initial and final neutrino fluxes in order to determine the neutrino fraction that disappeared. The neutrino oscillation experiments work at low neutrino energies, so precise measurement of CCQE interactions are essential for flux measurements. The main goal of this thesis is to measure the CCQE absolute neutrino cross section from the SciBooNE data. The SciBar Booster Neutrino Experiment (SciBooNE) is a neutrino and anti-neutrino scattering off experiment. The neutrino energy spectrum works at energies around 1 GeV. SciBooNE was running from June 8th 2007 to August 18th 2008. In that period, the experiment collected a total of 2.65 x 1020 protons on target (POT). This thesis has used full data collection in neutrino mode 0.99 x 1020 POT. A CCQE selection cut has been performed, achieving around 70% pure CCQE sample. A fit method has been exclusively developed to determine the absolute CCQE cross section, presenting results in a neutrino energy range from 0.2 to 2 GeV. The results are compatible with the NEUT predictions. The SciBooNE measurement has been compared with both Carbon (MiniBoonE) and deuterium (ANL and BNL) target experiments, showing a good agreement in both cases.

  15. Measurement of the absolute differential cross section of proton–proton elastic scattering at small angles

    DOE PAGES

    Mchedlishvili, D.; Chiladze, D.; Dymov, S.; Bagdasarian, Z.; Barsov, S.; Gebel, R.; Gou, B.; Hartmann, M.; Kacharava, A.; Keshelashvili, I.; et al

    2016-02-03

    The differential cross section for proton-proton elastic scattering has been measured at a beam kinetic energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12°-16° to 25°-30°, depending on the energy. A precision in the overall normalisation of typically 3% was achieved by studying the energy losses of the circulating beam of the COSY storage ring as it passed repeatedly through the windowless hydrogen target of the ANKE magnetic spectrometer. It is shown that the data have a significant impact upon the results of a partial wave analysis.more » Furthermore, after extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations.« less

  16. The realization of the dipole (γ, γ) method and its application to determine the absolute optical oscillator strengths of helium

    NASA Astrophysics Data System (ADS)

    Xu, Long-Quan; Liu, Ya-Wei; Kang, Xu; Ni, Dong-Dong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhu, Lin-Fan

    2015-12-01

    The dipole (γ, γ) method, which is the inelastic x-ray scattering operated at a negligibly small momentum transfer, is proposed and realized to determine the absolute optical oscillator strengths of the vanlence-shell excitations of atoms and molecules. Compared with the conventionally used photoabsorption method, this new method is free from the line saturation effect, which can seriously limit the accuracies of the measured photoabsorption cross sections for discrete transitions with narrow natural linewidths. Furthermore, the Bethe-Born conversion factor of the dipole (γ, γ) method varies much more slowly with the excitation energy than does that of the dipole (e, e) method. Absolute optical oscillator strengths for the excitations of 1s2 → 1 snp(n = 3 - 7) of atomic helium have been determined using the high-resolution dipole (γ, γ) method, and the excellent agreement of the present measurements with both those measured by the dipole (e, e) method and the previous theoretical calculations indicates that the dipole (γ, γ) method is a powerful tool to measure the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules.

  17. The realization of the dipole (γ, γ) method and its application to determine the absolute optical oscillator strengths of helium.

    PubMed

    Xu, Long-Quan; Liu, Ya-Wei; Kang, Xu; Ni, Dong-Dong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhu, Lin-Fan

    2015-01-01

    The dipole (γ, γ) method, which is the inelastic x-ray scattering operated at a negligibly small momentum transfer, is proposed and realized to determine the absolute optical oscillator strengths of the vanlence-shell excitations of atoms and molecules. Compared with the conventionally used photoabsorption method, this new method is free from the line saturation effect, which can seriously limit the accuracies of the measured photoabsorption cross sections for discrete transitions with narrow natural linewidths. Furthermore, the Bethe-Born conversion factor of the dipole (γ, γ) method varies much more slowly with the excitation energy than does that of the dipole (e, e) method. Absolute optical oscillator strengths for the excitations of 1s(2) → 1 snp(n = 3-7) of atomic helium have been determined using the high-resolution dipole (γ, γ) method, and the excellent agreement of the present measurements with both those measured by the dipole (e, e) method and the previous theoretical calculations indicates that the dipole (γ, γ) method is a powerful tool to measure the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules.

  18. The realization of the dipole (γ, γ) method and its application to determine the absolute optical oscillator strengths of helium

    PubMed Central

    Xu, Long-Quan; Liu, Ya-Wei; Kang, Xu; Ni, Dong-Dong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhu, Lin-Fan

    2015-01-01

    The dipole (γ, γ) method, which is the inelastic x-ray scattering operated at a negligibly small momentum transfer, is proposed and realized to determine the absolute optical oscillator strengths of the vanlence-shell excitations of atoms and molecules. Compared with the conventionally used photoabsorption method, this new method is free from the line saturation effect, which can seriously limit the accuracies of the measured photoabsorption cross sections for discrete transitions with narrow natural linewidths. Furthermore, the Bethe-Born conversion factor of the dipole (γ, γ) method varies much more slowly with the excitation energy than does that of the dipole (e, e) method. Absolute optical oscillator strengths for the excitations of 1s2 → 1 snp(n = 3 − 7) of atomic helium have been determined using the high-resolution dipole (γ, γ) method, and the excellent agreement of the present measurements with both those measured by the dipole (e, e) method and the previous theoretical calculations indicates that the dipole (γ, γ) method is a powerful tool to measure the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules. PMID:26678298

  19. The realization of the dipole (γ, γ) method and its application to determine the absolute optical oscillator strengths of helium.

    PubMed

    Xu, Long-Quan; Liu, Ya-Wei; Kang, Xu; Ni, Dong-Dong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhu, Lin-Fan

    2015-01-01

    The dipole (γ, γ) method, which is the inelastic x-ray scattering operated at a negligibly small momentum transfer, is proposed and realized to determine the absolute optical oscillator strengths of the vanlence-shell excitations of atoms and molecules. Compared with the conventionally used photoabsorption method, this new method is free from the line saturation effect, which can seriously limit the accuracies of the measured photoabsorption cross sections for discrete transitions with narrow natural linewidths. Furthermore, the Bethe-Born conversion factor of the dipole (γ, γ) method varies much more slowly with the excitation energy than does that of the dipole (e, e) method. Absolute optical oscillator strengths for the excitations of 1s(2) → 1 snp(n = 3-7) of atomic helium have been determined using the high-resolution dipole (γ, γ) method, and the excellent agreement of the present measurements with both those measured by the dipole (e, e) method and the previous theoretical calculations indicates that the dipole (γ, γ) method is a powerful tool to measure the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules. PMID:26678298

  20. A new method for measuring absolute total electron-impact cross sections with forward scattering corrections

    SciTech Connect

    Ma, C.; Liescheski, P.B.; Bonham, R.A. )

    1989-12-01

    In this article we describe an experimental technique to measure the total electron-impact cross section by measurement of the attenuation of an electron beam passing through a gas at constant pressure with the unwanted forward scattering contribution removed. The technique is based on the different spatial propagation properties of scattered and unscattered electrons. The correction is accomplished by measuring the electron beam attenuation dependence on both the target gas pressure (number density) and transmission length. Two extended forms of the Beer--Lambert law which approximately include the contributions for forward scattering and for forward scattering plus multiple scattering from the gas outside the electron beam were developed. It is argued that the dependence of the forward scattering on the path length through the gas is approximately independent of the model used to describe it. The proposed methods were used to determine the total cross section and forward scattering contribution from argon (Ar) with 300-eV electrons. Our results are compared with those in the literature and the predictions of theory and experiment for the forward scattering and multiple scattering contributions. In addition, Monte Carlo simulations were performed as a further test of the method.

  1. Absolute Raman cross-sections of some explosives: Trend to UV

    NASA Astrophysics Data System (ADS)

    Nagli, L.; Gaft, M.; Fleger, Y.; Rosenbluh, M.

    2008-07-01

    The Raman cross-section dependence on excitation energy in spectral range 620-248 nm have been investigated for UN, TATP, RDX, TNT, and PETN explosives. For all investigated explosive materials, significant pre-resonance enhancement in the UV spectral range has been revealed. Normalized Raman scattering signals are 100-200 times stronger with UV excitation at 248 nm compared to visible excitation at 532 nm. Thus the gated Raman technique with UV excitation has significant advantages compared to IR-VIS excitation for the remote detection of explosives. Certain of the observed Raman lines exhibit deviations from classical λ-4 dependence of Raman cross-section and may totally disappear with UV excitation. The possible explanation for this may be that numerous electronic transitions contribute to the molecular polarizability. These contributions could be of opposite sign and lead to partial cancellation of certain transitions. Another possible reason could be that this is a result of the stronger UV absorption that reduces the sampling volume and therefore the number of scatterers that produce the Raman signal.

  2. Absolute vibrational cross sections for 1-19 eV electron scattering from condensed tetrahydrofuran (THF)

    NASA Astrophysics Data System (ADS)

    Lemelin, V.; Bass, A. D.; Cloutier, P.; Sanche, L.

    2016-02-01

    Absolute cross sections (CSs) for vibrational excitation by 1-19 eV electrons impacting on condensed tetrahydrofuran (THF) were measured with a high-resolution electron energy loss spectrometer. Experiments were performed under ultra-high vacuum (3 × 10-11 Torr) at a temperature of about 20 K. The magnitudes of the vibrational CSs lie within the 10-17 cm2 range. Features observed near 4.5, 9.5, and 12.5 eV in the incident energy dependence of the CSs were compared to the results of theoretical calculations and other experiments on gas and solid-phase THF. These three resonances are attributed to the formation of shape or core-excited shape resonances. Another maximum observed around 2.5 eV is not found in the calculations but has been observed in gas-phase studies; it is attributed to the formation of a shape resonance.

  3. Nonadiabatic calculations of ultraviolet absorption cross section of sulfur monoxide: Isotopic effects on the photodissociation reaction

    SciTech Connect

    Danielache, Sebastian O.; Tomoya, Suzuki; Nanbu, Shinkoh; Kondorsky, Alexey; Tokue, Ikuo

    2014-01-28

    Ultraviolet absorption cross sections of the main and substituted sulfur monoxide (SO) isotopologues were calculated using R-Matrix expansion technique. Energies, transition dipole moments, and nonadiabatic coupling matrix elements were calculated at MRCI/AV6Z level. The calculated absorption cross section of {sup 32}S{sup 16}O was compared with experimental spectrum; the spectral feature and the absolute value of photoabsorption cross sections are in good agreement. Our calculation predicts a long lived photoexcited SO* species which causes large non-mass dependent isotopic effects depending on the excitation energy in the ultraviolet region.

  4. Enhanced photoabsorption efficiency of incomplete nanoshells.

    PubMed

    Venkatapathi, Murugesan; Dastidar, Sudipta G; Bharath, P; Roy, Arindam; Ghosh, Anupam

    2013-09-01

    The rather low scattering or extinction efficiency of small nanoparticles, metallic and otherwise, is significantly enhanced when they are adsorbed on a larger core particle. But the photoabsorption by particles with varying surface area fractions on a larger core particle is found to be limited by saturation. It is found that the core-shell particle can have a lower absorption efficiency than a dielectric core with its surface partially nucleated with absorbing particles-an "incomplete nanoshell" particle. We have both numerically and experimentally studied the optical efficiencies of titania (TiO2) nucleated in various degrees on silica (SiO2) nanospheres. We show that optimal surface nucleation over cores of appropriate sizes and optical properties will have a direct impact on the applications exploiting the absorption and scattering properties of such composite particles. PMID:23988933

  5. Enhanced photoabsorption efficiency of incomplete nanoshells.

    PubMed

    Venkatapathi, Murugesan; Dastidar, Sudipta G; Bharath, P; Roy, Arindam; Ghosh, Anupam

    2013-09-01

    The rather low scattering or extinction efficiency of small nanoparticles, metallic and otherwise, is significantly enhanced when they are adsorbed on a larger core particle. But the photoabsorption by particles with varying surface area fractions on a larger core particle is found to be limited by saturation. It is found that the core-shell particle can have a lower absorption efficiency than a dielectric core with its surface partially nucleated with absorbing particles-an "incomplete nanoshell" particle. We have both numerically and experimentally studied the optical efficiencies of titania (TiO2) nucleated in various degrees on silica (SiO2) nanospheres. We show that optimal surface nucleation over cores of appropriate sizes and optical properties will have a direct impact on the applications exploiting the absorption and scattering properties of such composite particles.

  6. Absolute total electron scattering cross sections for N/sub 2/ between 0. 5 and 50 eV

    SciTech Connect

    Kennerly, R.E.

    1980-06-01

    Absolute total electron scattering cross sections for N/sub 2/ from 0.5 to 50 eV have been measured with an estimated uncertainty of +- 3% using a transmission time-of-flight method previously described. The results are compared to previous experimental results and to recent calculations. The positions of the /sup 2/Pi/sub g/ resonance peaks were determined with much greater accuracy ( +- 15 meV) than in previous transmission measurements. The structure reported by Golden (1966) below the /sup 2/Pi/sub g/ resonance was clearly not present, indicating that, if real, these features are not a property of the N/sub 2/ ground vibronic state. The shape resonance predicted at 11 eV by Dill and Dehmer (1977) was not seen, perhaps because it was too weakly manifested in the total cross section. A weak broad band centered at 25 eV may be interpreted as being due to a sigma/sub u/ shape resonance as predicted by Dehmer, Siegel, Welch, and Dill.

  7. Absolute cross section for low-energy-electron damage to condensed macromolecules: A case study of DNA

    NASA Astrophysics Data System (ADS)

    Rezaee, Mohammad; Cloutier, Pierre; Bass, Andrew D.; Michaud, Marc; Hunting, Darel J.; Sanche, Léon

    2012-09-01

    Cross sections (CSs) for the interaction of low-energy electrons (LEE) with condensed macromolecules are essential parameters for accurate modeling of radiation-induced molecular decomposition and chemical synthesis. Electron irradiation of dry nanometer-scale macromolecular solid films has often been employed to measure CSs and other quantitative parameters for LEE interactions. Since such films have thicknesses comparable with electron thermalization distances, energy deposition varies throughout the film. Moreover, charge accumulation occurring inside the films shields a proportion of the macromolecules from electron irradiation. Such effects complicate the quantitative comparison of the CSs obtained in films of different thicknesses and limit the applicability of such measurements. Here, we develop a simple mathematical model, termed the molecular survival model, that employs a CS for a particular damage process together with an attenuation length related to the total CS, to investigate how a measured CS might be expected to vary with experimental conditions. As a case study, we measure the absolute CS for the formation of DNA strand breaks (SBs) by electron irradiation at 10 and 100 eV of lyophilized plasmid DNA films with thicknesses between 10 and 30 nm. The measurements are shown to depend strongly on the thickness and charging condition of the nanometer-scale films. Such behaviors are in accord with the model and support its validity. Via this analysis, the CS obtained for SB damage is nearly independent of film thickness and charging effects. In principle, this model can be adapted to provide absolute CSs for electron-induced damage or reactions occurring in other molecular solids across a wider range of experimental conditions.

  8. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  9. Absolute absorption cross sections of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Parkinson, W. H.; Freeman, D. E.

    1992-01-01

    An account is given of progress of work on absorption cross section measurements of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm. In this wavelength region, the penetration of solar radiation into the Earth's atmosphere is controlled by O2 and O3. The transmitted radiation is available to dissociate trace species such as halocarbons and nitrous oxide. We have recently measured absolute absorption cross sections of O3 in the wavelength region 240-350 nm (Freeman et al., 1985; Yoshino et al., 1988). We apply these proven techniques to the determination of the absorption cross section of O3 at 300 K, 228 K and 195 K throughout the wavelength region 185-240 nm. A paper titled 'Absolute Absorption Cross Section Measurements of Ozone in the Wavelength Region 185-254 nm and the Temperature Dependence' has been submitted for publication in the Journal of Geophysical Research.

  10. Measurement of Absolute Excitation Cross Sections in Highly-Charged Ions Using Electron Energy Loss and Merged Beams

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Smith, Steven J.; Lozano, J.

    2002-01-01

    There is increasing emphasis during this decade on understanding energy balance and phenomena observed in high electron temperature plasmas. The UV spectral return from FUSE, the X-ray spectral return from the HETG on Chandra and the LETGS 011 XMM-Newton are just beginning. Line emissions are almost entirely from highly-charged ions (HCIs) of C, N, 0, Ne, Mg, S, Si, Ca, and Fe. The Constellation-X mission will provide X-ray spectroscopy up to photon energies of 0.12 nm (10 keV) where primary line emitters will be HCIs. A variety of atomic parameters are required to model the stellar and solar plasma. These include cross sections for excitation, ionization, charge-exchange, X-ray emission, direct and indirect recombination, lifetimes and branching ratios, and dependences on l, m mixing by external E and B fields. In almost all cases the atomic quantities are calculated, and few comparisons to experiment have been carried out. Collision strengths and Einstein A-values are required to convert the observed spectral intensities to electron temperatures and densities in the stellar plasma. The JPL electron energy-loss and merged beam approach has been used to measure absolute collision strengths in a number of ions, with critical comparison made to the best available theories.

  11. Electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy and ab initio calculations of ethyl acetate

    NASA Astrophysics Data System (ADS)

    Śmialek, Malgorzata A.; Łabuda, Marta; Guthmuller, Julien; Hubin-Franskin, Marie-Jeanne; Delwiche, Jacques; Hoffmann, Søren Vrønning; Jones, Nykola C.; Mason, Nigel J.; Limão-Vieira, Paulo

    2016-06-01

    The high-resolution vacuum ultraviolet photoabsorption spectrum of ethyl acetate, C4H8O2, is presented over the energy range 4.5-10.7 eV (275.5-116.0 nm). Valence and Rydberg transitions and their associated vibronic series observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Also, the photoabsorption cross sections have been used to calculate the photolysis lifetime of this ester in the upper stratosphere (20-50 km). Calculations have also been carried out to determine the ionisation energies and fine structure of the lowest ionic state of ethyl acetate and are compared with a newly recorded photoelectron spectrum (from 9.5 to 16.7 eV). Vibrational structure is observed in the first photoelectron band of this molecule for the first time.

  12. Measured Absolute Cross Section of Charge Transfer in H + H2+ at Low Energy: Signature of vi = 2 and Trajectory Effects

    NASA Astrophysics Data System (ADS)

    Strom, R. A.; Bacani, K. G.; Chi, R. M.; Heczko, S. L.; Singh, B. N.; Tobar, J. A.; Vassantachart, A. K.; Andrianarijaona, V. M.; Seely, D. G.; Havener, C. C.

    2015-04-01

    Measurements of absolute cross sections of charge transfer (CT) in H + H2+--> H+ + H2 were conducted at the merged-beam apparatus at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, which can reliably create and access collision energies as low as 0.1 eV/u. The measured absolute cross section shows evidence of trajectory effects at low energy. Also, the comparison to state-to-state calculations (PRA 67 022708 (2003) suggests a strong contribution from vi = 2 of the H2+that are produced by the electron cyclotron resonance ion source. The data analysis will be presented here. Research supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy, the National Science Foundation through Grant No. PHY-1068877.

  13. Absolute cascade-free cross-sections for the 2S to 2P transition in Zn(+) using electron-energy-loss and merged-beams methods

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Man, K.-F.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.

    1991-01-01

    Absolute cascade-free excitation cross-sections in an ion have been measured for the resonance 2S to 2P transition in Zn(+) using electron-energy-loss and merged electron-ion beams methods. Measurements were carried out at electron energies of below threshold to 6 times threshold. Comparisons are made with 2-, 5-, and 15-state close-coupling and distorted-wave theories. There is good agreement between experiment and the 15-state close-coupling cross-sections over the energy range of the calculations.

  14. Electron-He(+) P-wave Elastic Scattering and Photoabsorption in Two-electron Systems

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.

    2006-01-01

    In a previous paper [Bhatia, Phys. Rev. A 69,032714 (2004)], electron-hydrogen P-wave scattering phase shifts were calculated using the optical potential approach based on the Feshbach projection operator formalism. This method is now extended to the singlet and triplet electron-He(+) P-wave scattering in the elastic region. Phase shifts are calculated using Hylleraas-type correlation functions with up to 220 terms. Results are rigorous lower bounds to the exact phase shifts and they are compared to phase shifts obtained from the method of polarized orbitals and close-coupling calculations. The continuum functions calculated here are used to calculate photoabsorption cross sections. Photoionization cross sections of He and photodetachment cross sections of H(-) are calculated in the elastic region, i.e. leaving He(+) and H in their respective ground states, and compared with previous calculations. Radiative attachment rates are also calculated.

  15. Photoabsorption in Ganymede’s atmosphere

    NASA Astrophysics Data System (ADS)

    Cessateur, Gaël; Lilensten, Jean; Barthélémy, Mathieu; Dudok de Wit, Thierry; Simon Wedlund, Cyril; Gronoff, Guillaume; Ménager, Hélène; Kretzschmar, Matthieu

    2012-03-01

    In the framework of future space missions to Ganymede, a pre-study of this satellite is a necessary step to constrain instrument performances according to the mission objectives. This work aims at characterizing the impact of the solar UV flux on Ganymede’s atmosphere and especially at deriving some key physical parameters that are measurable by an orbiter. Another objective is to test several models for reconstructing the solar flux in the Extreme-UV (EUV) in order to give recommendations for future space missions. Using a Beer-Lambert approach, we compute the primary production of excited and ionized states due to photoabsorption, neglecting the secondary production that is due to photoelectron impacts as well as to precipitated suprathermal electrons. Ions sputtered from the surface are also neglected. Computations are performed at the equator and close to the pole, in the same conditions as during the Galileo flyby. From the excitations, we compute the radiative relaxation leading to the atmospheric emissions. We also propose a simple chemical model to retrieve the stationary electron density. There are two main results: (i) the modelled electron density and the one measured by Galileo are in good agreement. The main atmospheric visible emission is the atomic oxygen red line at 630 nm, both in equatorial and in polar conditions, in spite of the different atmospheric compositions. This emission is measurable from space, especially for limb viewing conditions. The OH emission (continuum between 260 and 410 nm) is also probably measurable from space. (ii) The input EUV solar flux may be directly measured or reconstructed from only two passbands solar observing diodes with no degradation of the modelled response of the Ganymede’s atmosphere. With respect to these results, there are two main conclusions: (i) future missions to Ganymede should include the measurement of the red line as well as the measurement of OH emissions in order to constrain the atmospheric

  16. Absolute vibrational excitation cross sections for slow-electron (1-18 eV) scattering in solid H2O

    NASA Astrophysics Data System (ADS)

    Michaud, M.; Sanche, L.

    1987-11-01

    High-resolution vibrational electron-energy-loss spectra of amorphous ice films condensed at 14 K are reported for the incident-energy range 1-18 eV. Absolute electron scattering cross sections for elastic collisions, individual vibrational excitations, and the sum of electronic transitions are obtained by performing a two-stream multiple-scattering analysis of the spectra. The various features found in the energy-dependent cross sections are discussed, whenever possible, by comparison with data and mechanisms (e.g., transient anion formation) well established in the gas phase. Quantum-interference effects introduced implicitly in the cross sections by the classical analysis are discussed within the first Born approximation for electron-multiple-site scattering.

  17. The nuclear contact and the photoabsorption cross section

    NASA Astrophysics Data System (ADS)

    Barnea, Nir

    2015-04-01

    A few years ago, S. Tan suggested that the properties of universal quantum gases depend on a new characteristic quantity. This quantity, the contact, describes the probability of two particles coming close to each other, i.e. it is a measure of the number of close particle pairs in the system. Utilizing the contact, this theory predicts the energy, pressure and other properties of the system. It was proven right in a series of ultracold atomic experiments. In my talk I will present a generalization of Tan's contact to nuclear systems, introducing the various nuclear contacts, taking into account all possible pair configurations. The leading neutron-proton contact is then evaluated from medium energy photodisintegration experiments. To this end, the Levinger quasi-deuteron model of nuclear photodisintegration is reformulated, and the bridge between the Levinger constant and the contact is established. Using experimental evaluations of Levinger's constant the value of the neutron-proton contact in finite nuclei and in symmetric nuclear matter is extracted, and compared to the universal theory. Assuming isospin symmetry it is proposed to evaluate the neutron-neutron contact through measurement of photonuclear spin correlated neutron-proton pairs.

  18. Tracing multiple scattering patterns in absolute (e,2e) cross sections for H{sub 2} and He over a 4{pi} solid angle

    SciTech Connect

    Ren, X.; Senftleben, A.; Pflueger, T.; Dorn, A.; Ullrich, J.; Colgan, J.; Pindzola, M. S.; Al-Hagan, O.; Madison, D. H.; Bray, I.; Fursa, D. V.

    2010-09-15

    Absolutely normalized (e,2e) measurements for H{sub 2} and He covering the full solid angle of one ejected electron are presented for 16 eV sum energy of both final state continuum electrons. For both targets rich cross-section structures in addition to the binary and recoil lobes are identified and studied as a function of the fixed electron's emission angle and the energy sharing among both electrons. For H{sub 2} their behavior is consistent with multiple scattering of the projectile as discussed before [Al-Hagan et al., Nature Phys. 5, 59 (2009)]. For He the binary and recoil lobes are significantly larger than for H{sub 2} and partly cover the multiple scattering structures. To highlight these patterns we propose a alternative representation of the triply differential cross section. Nonperturbative calculations are in good agreement with the He results and show discrepancies for H{sub 2} in the recoil peak region. For H{sub 2} a perturbative approach reasonably reproduces the cross-section shape but deviates in absolute magnitude.

  19. Benchmark experiment for electron-impact ionization of argon: Absolute triple-differential cross sections via three-dimensional electron emission images

    SciTech Connect

    Ren Xueguang; Senftleben, Arne; Pflueger, Thomas; Dorn, Alexander; Ullrich, Joachim; Bartschat, Klaus

    2011-05-15

    Single ionization of argon by 195-eV electron impact is studied in an experiment, where the absolute triple-differential cross sections are presented as three-dimensional electron emission images for a series of kinematic conditions. Thereby a comprehensive set of experimental data for electron-impact ionization of a many-electron system is produced to provide a benchmark for comparison with theoretical predictions. Theoretical models using a hybrid first-order and second-order distorted-wave Born plus R-matrix approach are employed to compare their predictions with the experimental data. While the relative shape of the calculated cross section is generally in reasonable agreement with experiment, the magnitude appears to be the most significant problem with the theoretical treatment for the conditions studied in the present work. This suggests that the most significant challenge in the further development of theory for this process may lie in the reproduction of the absolute scale rather than the angular dependence of the cross section.

  20. Absolute state-selected and state-to-state total cross sections for the Ar sup + ( sup 2 P sub 3/2,1/2 )+CO reactions

    SciTech Connect

    Flesch, G.D.; Nourbakhsh, S.; Ng, C.Y. . Ames Laboratory Iowa State University, Ames, Iowa . Department of Chemistry)

    1991-09-01

    Absolute spin--orbit state-selected total cross sections for the reactions, Ar{sup +}({sup 2}{ital P}{sub 3/2,1/2})+CO{r arrow}CO{sup +}+Ar (reaction (1)), C{sup +}+O+Ar (reaction (2)), O{sup +}+C+Ar (reaction (3)), and ArC{sup +}+O (reaction (4)), have been measured in the center-of-mass collision energy ({ital E}{sub c.m.}) range of 0.04--123.5 eV. Absolute spin--orbit state transition total cross sections for the Ar{sup +}({sup 2}{ital P}{sub 3/2,1/2})+CO reactions at {ital E}{sub c.m.} have also been obtained. The appearance energies (AE) for C{sup +}({ital E}{sub c.m.}=6.6{plus minus}0.4 eV) and O{sup +}({ital E}{sub c.m.}=8.6{plus minus}0.4 eV) are in agreement with the thermochemical thresholds for reactions (2) and (3), respectively. The observed AE for reaction (4) yields a lower bound of 0.5 eV for the ArC{sup +} bond dissociation energy. The kinetic energy dependence of the absolute cross sections and the retarding potential analysis of the product ions support that ArC{sup +}, C{sup +}, and O{sup +} are formed via a charge transfer predissociation mechanism, similar to that proposed to be responsible for the formation of O{sup +} (N{sup +}) and ArO{sup +} (ArN{sup +}) in the collisions of Ar{sup +}({sup 2}{ital P}{sub 3/2,1/2})+O{sub 2}(N{sub 2}).

  1. Absolute partial electron impact ionization cross sections of Xe from threshold up to 180 eV

    SciTech Connect

    Stephan, K.; Maerk, T.D.

    1984-10-01

    Partial electron ionization cross section ratios and functions of Xe were determined in the low energy regime (< or =180 eV) using a refined mass spectrometric technique. The experimental results are compared with previous measurements and calculations.

  2. Absolute fragmentation cross sections in atom-molecule collisions: Scaling laws for non-statistical fragmentation of polycyclic aromatic hydrocarbon molecules

    SciTech Connect

    Chen, T.; Gatchell, M.; Stockett, M. H.; Alexander, J. D.; Schmidt, H. T.; Cederquist, H.; Zettergren, H.; Zhang, Y.; Rousseau, P.; Maclot, S.; Delaunay, R.; Adoui, L.; Domaracka, A.; Huber, B. A.

    2014-06-14

    We present scaling laws for absolute cross sections for non-statistical fragmentation in collisions between Polycyclic Aromatic Hydrocarbons (PAH/PAH{sup +}) and hydrogen or helium atoms with kinetic energies ranging from 50 eV to 10 keV. Further, we calculate the total fragmentation cross sections (including statistical fragmentation) for 110 eV PAH/PAH{sup +} + He collisions, and show that they compare well with experimental results. We demonstrate that non-statistical fragmentation becomes dominant for large PAHs and that it yields highly reactive fragments forming strong covalent bonds with atoms (H and N) and molecules (C{sub 6}H{sub 5}). Thus nonstatistical fragmentation may be an effective initial step in the formation of, e.g., Polycyclic Aromatic Nitrogen Heterocycles (PANHs). This relates to recent discussions on the evolution of PAHNs in space and the reactivities of defect graphene structures.

  3. Absolute cross sections for near-threshold electron-impact excitation of the 2s 2S-->2p 2P transition in C3+

    NASA Astrophysics Data System (ADS)

    Bannister, M. E.; Chung, Y.-S.; Djurić, N.; Wallbank, B.; Woitke, O.; Zhou, S.; Dunn, G. H.; Smith, A. C.

    1998-01-01

    Absolute total cross sections for electron-impact excitation of the 2s 2S-->2p 2P transition in C3+ were measured from 7.35 eV to 8.45 eV using the merged electron-ion-beams energy-loss technique. The results settle the discrepancy between two previous experiments using the crossed-beams fluorescence method, being in very good agreement with the older results [P. O. Taylor, D. Gregory, G. H. Dunn, R. A. Phaneuf, and D. H. Crandall, Phys. Rev. Lett. 39, 1256 (1977)] but less so with the more recent ones [D. W. Savin, L. D. Gardner, D. B. Reisenfeld, A. R. Young, and J. L. Kohl, Phys. Rev. A 51, 2162 (1995)]. The present measurements are also in good agreement with unitarized Coulomb-Born and close-coupling calculations.

  4. A novel double-focusing time-of-flight mass spectrometer for absolute recoil ion cross sections measurements.

    PubMed

    Sigaud, L; de Jesus, V L B; Ferreira, Natalia; Montenegro, E C

    2016-08-01

    In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell-to study ionization of atoms and molecules by electron impact-is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed. PMID:27587105

  5. A novel double-focusing time-of-flight mass spectrometer for absolute recoil ion cross sections measurements.

    PubMed

    Sigaud, L; de Jesus, V L B; Ferreira, Natalia; Montenegro, E C

    2016-08-01

    In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell-to study ionization of atoms and molecules by electron impact-is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed.

  6. A novel double-focusing time-of-flight mass spectrometer for absolute recoil ion cross sections measurements

    NASA Astrophysics Data System (ADS)

    Sigaud, L.; de Jesus, V. L. B.; Ferreira, Natalia; Montenegro, E. C.

    2016-08-01

    In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell—to study ionization of atoms and molecules by electron impact—is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed.

  7. K-SHELL PHOTOIONIZATION AND PHOTOABSORPTION OF Ne, Mg, Si, S, Ar, AND Ca

    SciTech Connect

    Witthoeft, M. C.; Kallman, T. R.; Bautista, M. A.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2009-05-15

    We present extensive computations of photoabsorption and photoionization cross sections across the K-edge of Ne, Mg, Si, S, Ar, and Ca ions with less than 11 electrons. The calculations are performed using the Breit-Pauli R-matrix method and include the effects of radiative and Auger damping by means of an optical potential. The wave functions are constructed from single-electron orbital bases obtained using a Thomas-Fermi-Dirac statistical model potential. Configuration interaction is considered among all fine-structure levels within the n = 2 complex. The damping processes affect the resonances converging to the K thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the photoionization thresholds.

  8. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios.

    PubMed

    Langhammer, Christoph; Kasemo, Bengt; Zorić, Igor

    2007-05-21

    Localized surface plasmons (LSPs) of metallic nanoparticles decay either radiatively or via an electron-hole pair cascade. In this work, the authors have experimentally and theoretically explored the branching ratio of the radiative and nonradiative LSP decay channels for nanodisks of Ag, Au, Pt, and Pd, with diameters D ranging from 38 to 530 nm and height h=20 nm, supported on a fused silica substrate. The branching ratio for the two plasmon decay channels was obtained by measuring the absorption and scattering cross sections as a function of photon energy. The former was obtained from measured extinction and scattering coefficients, using an integrating sphere detector combined with particle density measurements obtained from scanning electron microscopy images of the nanoparticles. Partly angle-resolved measurements of the scattered light allowed the authors to clearly identify contributions from dipolar and higher plasmonic modes to the extinction, scattering, and absorption cross sections. Based on these experiments they find that absorption dominates the total scattering cross section in all the examined cases for small metallic nanodisks (D<100 nm). For D>100 nm absorption still dominates for Pt and Pd nanodisks, while scattering dominates for Au and Ag. A theoretical approach, where the metal disks are approximated as oblate spheroids, is used to account for the trends in the measured cross sections. The field problem is solved in the electrostatic limit. The spheroid is treated as an induced dipole for which the dipolar polarizability is calculated based on spheroid geometry and the (bulk) dielectric response function of the metal the spheroid consists of and the dielectric medium surrounding it. One might expect this model to be inappropriate for disks with D>100 nm since effects due to the retardation of the incoming field across the metallic nanodisk and contributions from higher plasmonic modes are neglected. However, this model describes quite well

  9. Measurement of Absolute Excitation Cross Sections in Highly-Charged Ions Using Electron Energy Loss and Merged Beams

    NASA Astrophysics Data System (ADS)

    Chutjian, A.; Smith, Steven J.; Lozano, J. A.

    2002-11-01

    There is increasing emphasis within this decade on understanding energy balance and new phenomena observed in high electron temperature plasmas. The UV spectral return from FUSE, and the X-ray spectral return from the HETG on Chandra and the LETGS on XMM-Newton are just beginning. The line emissions are almost entirely from highly-charged ions (HCIs) of C, N, O, Ne, Mg, S, Si, Ca, and Fe. In addition, the Constellation-X mission, currently in the planning stages, will provide high-throughput X-ray spectroscopy up to photon energies of 0.12 nm (10 keV), where the primary line emitters will again be the HCIs. This array of space instruments is providing an overwhelming return of HCI spectral data from a variety of astrophysical objects. Collision strengths and Einstein A-values are required to convert the observed spectral intensities to electron temperatures and densities in the stellar plasma [1]. The JPL electron energy-loss and merged-beams approach [2] has been used to measure absolute collision strengths in a number of ions, with critical comparisons to the best available theories. Experimental methods will be reviewed, and results presented on experimental comparisons to R-Matrix and Breit-Pauli theoretical results in C3+[3], O2+[4], O5+[5], S2+[6], and Fe9+ [7]. Work is planned for comparisons in Mgq+, and higher charge states Fe(10-15)+. J. Lozano thanks the National Research Council for a fellowship though the NASA- NRC program. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was supported under contract with the National Aeronautics and Space Administration.

  10. Absolute optical oscillator strengths for the electronic excitation of atoms at high resolution: Experimental methods and measurements for helium

    SciTech Connect

    Chan, W.F.; Cooper, G.; Brion, C.E. )

    1991-07-01

    An alternative method is described for the measurement of absolute optical oscillator strengths (cross sections) for electronic excitation of free atoms and molecules throughout the discrete region of the valence-shell spectrum at high energy resolution (full width at half maximum of 0.048 eV). The technique, utilizing the virtual-photon field of a fast electron inelastically scattered at negligible momentum transfer, avoids many of the difficulties associated with the various direct optical techniques that have traditionally been used for absolute optical oscillator strength measurements. The method is also free of the bandwidth (line saturation) effects that can seriously limit the accuracy of photoabsorption cross-section measurements for discrete transitions of narrow linewidth obtained using the Beer-Lambert law ({ital I}{sub 0}/{ital I}=exp({ital nl}{sigma}{sub {ital p}})). Since the line-saturation effects are not widely appreciated and are only usually considered in the context of peak heights, a detailed analysis of this problem is presented, with consideration of the integrated cross section (oscillator strength) over the profile of each discrete peak.

  11. Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations.

    PubMed

    Śmiałek, M A; Łabuda, M; Guthmuller, J; Hubin-Franskin, M-J; Delwiche, J; Duflot, D; Mason, N J; Hoffmann, S V; Jones, N C; Limão-Vieira, P

    2014-09-14

    The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C2H5OCHO, yet reported is presented over the wavelength range 115.0-275.5 nm (10.75-4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). New vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20-50 km).

  12. Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations.

    PubMed

    Śmiałek, M A; Łabuda, M; Guthmuller, J; Hubin-Franskin, M-J; Delwiche, J; Duflot, D; Mason, N J; Hoffmann, S V; Jones, N C; Limão-Vieira, P

    2014-09-14

    The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C2H5OCHO, yet reported is presented over the wavelength range 115.0-275.5 nm (10.75-4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). New vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20-50 km). PMID:25217920

  13. Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations

    SciTech Connect

    Śmiałek, M. A.; Duflot, D.; Mason, N. J.; Hoffmann, S. V.; Jones, N. C.; Limão-Vieira, P.

    2014-09-14

    The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C{sub 2}H{sub 5}OCHO, yet reported is presented over the wavelength range 115.0–275.5 nm (10.75–4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). New vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20–50 km)

  14. Angular distribution of molecular K-shell Auger electrons: Spectroscopy of photoabsorption anisotropy

    SciTech Connect

    Dill, D.; Swanson, J.R.; Wallace, S.; Dehmer, J.L.

    1980-10-27

    The angular distribution of Auger electrons emitted in the decay of molecular K-shell vacancies created by photoabsorption is predicted to be a direct probe of the anisotropy of molecular photoabsorption. The sigma..--> pi.. discrete absorption of the sigma..-->..sigma f-wave shape resonance in N/sub 2/ and CO are given as examples.

  15. Rydberg states of chloroform studied by VUV photoabsorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Param Jeet; Shastri, Aparna; D'Souza, R.; Jagatap, B. N.

    2013-11-01

    The VUV photoabsorption spectra of CHCl3 and CDCl3 in the energy region 6.2-11.8 eV (50,000-95,000 cm-1) have been investigated using synchrotron radiation from the Indus-1 source. Rydberg series converging to the first four ionization limits at 11.48, 11.91, 12.01 and 12.85 eV corresponding to excitation from the 1a2, 4a1, 4e, 3e, orbitals of CHCl3 respectively are identified and analyzed. Quantum defect values are observed to be consistent with excitation from the chlorine lone pair orbitals. Vibrational progressions observed in the region of 72,500-76,500 cm-1 have been reassigned to ν3 and combination modes of ν3+ν6 belonging to the 1a2→4p transition in contrast to earlier studies where they were assigned to a ν3 progression superimposed on the 3e→4p Rydberg transition. The assignments are further confirmed based on isotopic substitution studies on CDCl3 whose VUV photoabsorption spectrum is reported here for the first time. The frequencies of the ν3 and ν6 modes in the 4p Rydberg state of CHCl3 (CDCl3) are proposed to be ~454 (409) cm-1 and~130 (129) cm-1 respectively based on the vibronic analysis. DFT calculations of neutral and ionic ground state vibrational frequencies support the vibronic analysis. Experimental spectrum is found to be in good agreement with that predicted by TDDFT calculations. This work presents a consolidated analysis of the VUV photoabsorption spectrum of chloroform.

  16. Calculations of photoabsorption by atoms using a linear response method

    SciTech Connect

    Doolen, G.; Liberman, D.A.

    1986-06-19

    We have made extensive calculations of photoabsorption by all neutral atoms from hydrogen to lawrencium for photon energies up to one kilovolt. Our method was the relativistic time-dependent local density approximation with the usual configuration average for open shells. The most important collective effects are included through an induced field. Expected features such as resonant photoemission and autoionization are seen. Examples of the calculations will be shown. The computer program used is available from the Computer Physics Communications Program Library. 11 refs., 6 figs.

  17. Absolute cross sections and branching ratios for the radiative decay of doubly excited helium determined by photon-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Mickat, S.; Schartner, K.-H.; Kammer, Sv; Schill, R.; Werner, L.; Klumpp, S.; Ehresmann, A.; Schmoranzer, H.; Sukhorukov, V. L.

    2005-08-01

    The decay of doubly excited helium states below the N = 2 threshold, cascading radiatively over three steps, were investigated using the photon-induced fluorescence spectroscopy (PIFS) at BESSY II. Absolute cross sections as the product of the resonance excitation cross section of the doubly excited states and their fluorescence rate to decay into the singly excited 1sms(1S) and 1smd(1D) states were measured. The experiments showed that the (sp,2n+)(1P) states decay predominantly into the 1sns(1S) states, whereas the (pd,2n)(1P) states prefer to decay into the 1snd(1D) states. For the (sp,2n-)(1P) states with n = 4, 5 and 6 we observed a broad and complex decay pattern. In addition the angular distribution of the fluorescence radiation was measured. The results are in good agreement with theoretical predictions. Furthermore, the weakening of the LS coupling scheme and the mixing between singlet and triplet states in helium was confirmed by observation of the 1s6d(3D0,1,2) → 1s2p(3P0,1,2) transition on a doubly excited singlet state.

  18. Photoabsorption spectrum of helium trimer cation—Theoretical modeling

    SciTech Connect

    Kalus, René; Karlický, František; Lepetit, Bruno; Paidarová, Ivana; Gadea, Florent Xavier

    2013-11-28

    The photoabsorption spectrum of He{sub 3}{sup +} is calculated for two semiempirical models of intracluster interactions and compared with available experimental data reported in the middle UV range [H. Haberland and B. von Issendorff, J. Chem. Phys. 102, 8773 (1995)]. Nuclear delocalization effects are investigated via several approaches comprising quantum samplings using either exact or approximate (harmonic) nuclear wavefunctions, as well as classical samplings based on the Monte Carlo methodology. Good agreement with the experiment is achieved for the model by Knowles et al., [Mol. Phys. 85, 243 (1995); Mol. Phys. 87, 827 (1996)] whereas the model by Calvo et al., [J. Chem. Phys. 135, 124308 (2011)] exhibits non-negligible deviations from the experiment. Predictions of far UV absorption spectrum of He{sub 3}{sup +}, for which no experimental data are presently available, are reported for both models and compared to each other as well as to the photoabsorption spectrum of He{sub 2}{sup +}. A simple semiempirical point-charge approximation for calculating transition probabilities is shown to perform well for He{sub 3}{sup +}.

  19. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  20. High resolution absolute absorption cross sections of the B ̃(1)A'-X ̃(1)A' transition of the CH2OO biradical.

    PubMed

    Foreman, Elizabeth S; Kapnas, Kara M; Jou, YiTien; Kalinowski, Jarosław; Feng, David; Gerber, R Benny; Murray, Craig

    2015-12-28

    Carbonyl oxides, or Criegee intermediates, are formed from the gas phase ozonolysis of alkenes and play a pivotal role in night-time and urban area atmospheric chemistry. Significant discrepancies exist among measurements of the strong B ̃(1)A'-X ̃(1)A' electronic transition of the simplest Criegee intermediate, CH2OO in the visible/near-UV. We report room temperature spectra of the B ̃(1)A'-X ̃(1)A' electronic absorption band of CH2OO acquired at higher resolution using both single-pass broadband absorption and cavity ring-down spectroscopy. The new absorption spectra confirm the vibrational structure on the red edge of the band that is absent from ionization depletion measurements. The absolute absorption cross sections over the 362-470 nm range are in good agreement with those reported by Ting et al. Broadband absorption spectra recorded over the temperature range of 276-357 K were identical within their mutual uncertainties, confirming that the vibrational structure is not due to hot bands.

  1. Valence and Ionic Lowest-Lying Electronic States of Isobutyl Formate Studied by High-Resolution Vacuum Ultraviolet Photoabsorption, Photoelectron Spectroscopy, and Ab Initio Calculations.

    PubMed

    Śmiałek, M A; Łabuda, M; Guthmuller, J; Hoffmann, S V; Jones, N C; MacDonald, M A; Zuin, L; Mason, N J; Limão-Vieira, P

    2015-08-13

    The highest resolution vacuum ultraviolet photoabsorption spectrum of isobutyl formate, C5H10O2, yet reported is presented over the energy range 4.5-10.7 eV (275.5-118.0 nm) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series observed in the photoabsorption spectrum have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of isobutyl formate and are compared with a newly recorded photoelectron spectrum (from 9.0 to 27.0 eV). The value of the first ionization energy was determined to be 10.508 eV (adiabatic) and 10.837 eV (vertical). New vibrational structure is observed in the first photoelectron band, predominantly resulting from C-O and C═O stretches of the molecule. The photoabsorption cross sections have been used to calculate the photolysis lifetime of isobutyl formate in the upper stratosphere (20-50 km), indicating that the hydroxyl radical processes will be the main loss process for isobutyl formate.

  2. Valence and Ionic Lowest-Lying Electronic States of Isobutyl Formate Studied by High-Resolution Vacuum Ultraviolet Photoabsorption, Photoelectron Spectroscopy, and Ab Initio Calculations.

    PubMed

    Śmiałek, M A; Łabuda, M; Guthmuller, J; Hoffmann, S V; Jones, N C; MacDonald, M A; Zuin, L; Mason, N J; Limão-Vieira, P

    2015-08-13

    The highest resolution vacuum ultraviolet photoabsorption spectrum of isobutyl formate, C5H10O2, yet reported is presented over the energy range 4.5-10.7 eV (275.5-118.0 nm) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series observed in the photoabsorption spectrum have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of isobutyl formate and are compared with a newly recorded photoelectron spectrum (from 9.0 to 27.0 eV). The value of the first ionization energy was determined to be 10.508 eV (adiabatic) and 10.837 eV (vertical). New vibrational structure is observed in the first photoelectron band, predominantly resulting from C-O and C═O stretches of the molecule. The photoabsorption cross sections have been used to calculate the photolysis lifetime of isobutyl formate in the upper stratosphere (20-50 km), indicating that the hydroxyl radical processes will be the main loss process for isobutyl formate. PMID:26176891

  3. Theoretical study of the photoabsorption spectrum of small chromium clusters

    NASA Astrophysics Data System (ADS)

    Martínez, J. I.; Alonso, J. A.

    2007-11-01

    The photoabsorption spectra of CrN (N=2-11) clusters have been calculated using the time-dependent density functional theory. Different approximations for exchange and correlation lead to a similar picture for the spectra. Small chromium clusters show a dimerization effect that controls the initial growth of the clusters up to N=11 . This effect consists in the formation of robust Cr2 dimers with a strong bond and an unusually short bond length. The dimerization effect becomes reflected in the high-energy part of the absorption spectra: An excitation peak appears at energies near 20eV , and its intensity increases each time a new Cr dimer forms in the structure as the cluster grows. However, experimental detection of this effect will be hard because of the competition from ionization.

  4. Boosting photoabsorption by attosecond control of electron correlation.

    PubMed

    Hu, S X

    2013-09-20

    Electron correlation plays an essential role in a wide range of fundamentally important many-body phenomena in modern physics and chemistry. An example is the importance of electron-electron correlation in multiple ionization of multielectron atoms and molecules exposed to intense laser pulses. Manipulating the dynamic electron correlation in such photoinduced processes is a crucial step toward the coherent control of chemical reactions and photobiological processes. The generation of an attosecond extreme ultraviolet (EUV) pulse may enable such controls. Here, we show for the first time, from full-dimensional ab initio calculations of double ionization of helium in intense laser pulses (λ = 780 nm), that the electron-electron interactions can be instantaneously tuned using a time-delayed attosecond EUV pulse. Consequently, the probability of producing energetic electrons from excessive photoabsorption can be enhanced by an order of magnitude, by the attosecond control of electron-electron correlation.

  5. Photoabsorption spectra of Xe atoms encapsulated inside fullerenes

    NASA Astrophysics Data System (ADS)

    Chen, Zhifan; Msezane, Alfred Z.

    2015-03-01

    The photoabsorption spectra of Xe atoms encapsulated inside the C180 and C240 have been investigated using the time-dependent density-functional theory (TDDFT) and compared with the result of our short range spherical well. The calculations are performed in the energy region of the Xe 4 d giant resonance and assumed the central location of the Xe atom inside the fullerenes. The Xe-C180 and Xe-C240 binding energies along the high symmetry direction, the z axis have been evaluated as well. The obtained curves show the possibility of other Xe positions. The main features of the confinement resonances for the Xe atoms in the center of the C180 and C240 may be estimated by the formula E(eV) = 67.55 + (12.25 n/2 r)2, where r is the radius in Å of the fullerene, n is the integer number 2, 3, 4, 5, ..., and E (eV) is the location of a confinement peak. The calculations indicate that if the radius of a fullerene equals an integer (≥2) × the half wave length of the photoelectron, then at this photon energy we may observe a confinement peak. The photoabsorption spectra of Xe atoms encaged in the center of the C58, C56 and C54 have also been studied. The results demonstrate that, except for the Xe atom inside C58, which has similar confinement resonances as those of the Xe atom inside C60, the Xe atoms inside C54 and C56 have completely different spectra. It is concluded that the quantum confinement resonances will be destroyed if the shape of the fullerene is deformed significantly from a sphere.

  6. Laboratory measurements and modeling of molecular photoabsorption in the ultraviolet for planetary atmospheres applications: diatomic sulfur and sulfur monoxide

    NASA Astrophysics Data System (ADS)

    Stark, Glenn

    2016-07-01

    Our research program comprises the measurement and modeling of ultraviolet molecular photoabsorption cross sections with the highest practical resolution. It supports efforts to interpret and model observations of planetary atmospheres. Measurement and modeling efforts on diatomic sulfur (S _{2}) and sulfur monoxide (SO) are in progress. S _{2}: Interpretations of atmospheric (Io, Jupiter, cometary comae) S _{2} absorption features are hindered by a complete lack of laboratory cross section data in the ultraviolet. We are working to quantify the photoabsorption spectrum of S _{2} from 240 to 300 nm based on laboratory measurements and theoretical calculations. We have constructed an experimental apparatus to produce a stable column of S _{2} vapor at a temperature of 800 K. High-resolution measurements of the absorption spectrum of the strong B - X system of S _{2} were completed using the NIST VUV-FTS at Gaithersburg, Maryland. These measurements are currently being incorporated into a coupled-channel model of the absorption spectrum of S _{2} to quantify the contributions from individual band features and to establish the mechanisms responsible for the strong predissociation signature of the B - X system. A successful coupled channels model can then be used to calculate the B - X absorption spectrum at any temperature. SO: There has been a long-standing need for high-resolution cross sections of sulfur monoxide radicals in the ultraviolet and vacuum ultraviolet regions, where the molecule strongly predissociates, for modeling the atmospheres of Io and Venus, and most recently for understanding sulfur isotope effects in the ancient (pre-O _{2}) atmosphere of Earth. We have produced a measurable column of SO in a continuous-flow DC discharge cell, using SO _{2} as a parent molecule. Photoabsorption measurements were recently recorded on the DESIRS beamline of the SOLEIL synchrotron, taking advantage of the high-resolution VUV-FTS on that beamline. A number of

  7. The visible photoabsorption spectrum and potential curves of ArN +

    NASA Astrophysics Data System (ADS)

    Broström, L.; Larsson, M.; Mannervik, S.; Sonnek, D.

    1991-02-01

    The photoabsorption spectrum of ArN+ has been studied in the visible wavelength region by means of photofragment kinetic energy spectroscopy. The mass selected ions were accelerated to 25 keV and the ion beam was merged or crossed with a laser beam. The photoproducts Ar+/N and, weakly, Ar/N+ were observed as ArN+ was photodissociated with photons in the range 1.8-2.5 eV. This is the first observation of electronic transitions in ArN+. In order to interpret the results, potential energy curves of ArN+ were calculated with complete active space self-consistent field and multireference configuration interaction methods. The observed spectra are assigned to the A 3Π←X 3Σ-, C 3Σ-←X 3Σ- and C 3Σ-←A 3Π transitions. From these assignments a value of 2.16 eV for the dissociation energy of ArN+ is inferred.

  8. Photoabsorption and fluorescence excitation spectra of CF 3CN in the region of 6-41 eV

    NASA Astrophysics Data System (ADS)

    Ibuki, Toshio; Okada, Kazumasa

    1996-12-01

    Photoabsorption and fluorescence cross sections of CF 3CN have been measured in the region of 6-41 eV by using synchrotron radiation. The bands observed have been assigned as the Rydberg transitions of the lone pair electrons on N and F atoms. It has been found that the CN and CF stretching and FCF bending frequencies are excited in the Rydberg states. Emissions from the CN(A 2IIIi, B 2Σ+ → X 2Σ+) transitions have been observed even in the ionization region, and increased at ≈ 22 eV by the ionization of the (2e) -1 and (4a 1) -1 valence electrons.

  9. Increasing quantum yield of sodium salicylate above 80 eV photon energy: Implications for photoemission cross sections

    SciTech Connect

    Lindle, D.W.; Ferrett, T.A.; Heimann, P.A.; Shirley, D.A.

    1986-08-01

    The quantum yield of the visible scintillator sodium salicylate is found to increase in the incident photon-energy range 80--270 eV. Because of its use as a photon-flux monitor in recent gas-phase photoelectron spectroscopy measurements, previously reported partial cross sections for Hg (4f-italic, 5p-italic, and 5d-italic subshells) and CH/sub 3/I (I 4d-italic subshell) in this energy range are corrected, and new values are reported. For Hg, the correction brings the experimental data into better overall agreement with theory. However, considerable uncertainty remains in the absolute scale derived from previous Hg photoabsorption measurements, and no single rescaling of the subshell cross sections could simultaneously bring all three into agreement with available theoretical calculations.

  10. Theoretical Calculations of Photoabsorption of Several Alicyclic Molecules in the Vacuum Ultraviolet Region

    SciTech Connect

    Matsuzawa, Nobuyuki; Ishitani, Akihiko; Dixon, David A.; Uda, Tsuyoshi

    2001-06-13

    In order to aid in the design of transparent materials for use as photoresists for F2 lithography (157 nm), we have performed time-dependent density functional theory (TD-DFT) calculations of the photoabsorption of molecules in the vacuum ultraviolet region. The application of this TD-DFT method to the prediction of photoabsorption was benchmarked using model molecules such as formaldehyde, and an empirical equation for correcting the calculated transition energy was obtained. The TD-DFT method with the empirical correction equation provides dramatically more accurate results than those obtained with the CIS (single-excitation configuration interaction) method, which we employed in previous studies. We used it to predict the photoabsorption of various molecules such as methanol, t-butylalcohol, acetic acid, methyl acetate, cycloalkane, norbonane, tricyclodecane, tetrahydropyrane, adamantane, maleic anhydride and their fluorinated derivatives.

  11. Assessment of experimental d-PIGE γ-ray production cross sections for 12C, 14N and 16O and comparison with absolute thick target yields

    NASA Astrophysics Data System (ADS)

    Csedreki, L.; Halász, Z.; Kiss, Á. Z.

    2016-08-01

    Measured differential cross sections for deuteron induced γ-ray emission from the reactions 12C(d,pγ)13C, (Eγ = 3089 keV), 14N(d,pγ)15N (Eγ = 8310 keV) and 16O(d,pγ)17O (Eγ = 871 keV) available in the literature were assessed. In order to cross check the assessed γ-ray production cross section data, thick target γ-yields calculated from the differential cross sections were compared with available measured thick target yields. Recommended differential cross section data for each reaction were deduced for particle induced γ-ray emission (PIGE) applications.

  12. Detecting the formation of single-walled carbon nanotube rings by photoabsorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hida, Akira; Suzuki, Takayuki; Ishibashi, Koji

    2016-08-01

    Photoabsorption spectroscopy was conducted on single-walled carbon nanotubes (SWNTs) during the formation of ring structures. The absorption bands observed before starting the formation gradually shifted while broadening in the middle. When they finally disappeared, it was found, via atomic force microscopy observations, that almost all SWNTs were transformed into rings. The spectral changes were assumed to be due to the changes in the electronic states of SWNTs. This idea was supported by the results of an investigation using a scanning tunneling microscope. It could be said that photoabsorption spectroscopy is useful for detecting ring formation in situ.

  13. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  14. Measurement of absolute total cross sections for the scattering of electrons by He, H/sub 2/, CH/sub 4/ and CCl/sub n/F/sub m/

    SciTech Connect

    Jones, R.K.

    1985-01-01

    Absolute total electron scattering sections (elastic plus inelastic, integrated over all angles) were measured for helium, molecular hydrogen, methane, tetrachloromethane, trichlorofluoromethane, dichlorodifluoromethane, chlorotrifluoromethane and tetrafluoromethane for incident electron energies from below 1 eV to 50 eV. The electron transmission spectrometer employed consisted of a broad spectrum pulsed electron source in line with a gas sample cell and electron detector. The electron energy was derived from the measured electron time of flight from the source to the detector. The total cross section was determined, using Beer's law, from the attenuation of the electron beam as it passed through a sample cell. Thorough theoretical studies have been reported for helium and the simpler molecules. For these systems, comparisons are made between the above results and reported absolute cross section measurements and calculations with careful consideration given to possible causes of the differences observed between recent measurements. For the more complicated molecules there are few reported calculations or measurements of the total cross sections. In these cases the low energy resonances associated with electron capture processes are not adequately described by available theoretical studies, so molecular orbital calculations and complementary experimental results are employed to explain the observed structure.

  15. Absolute cross sections for one electron capture into excited projectile states in collisions between He 2+ (15-150 keV) and Li atoms

    NASA Astrophysics Data System (ADS)

    Kadota, K.; Dijkkamp, D.; Van Der Woude, R.; Yan, Pan Guang; De Heer, F. J.

    1982-03-01

    We have studied the He 2+-Li collision system at laboratory energies between 15 and 150 keV using optical methods. From the measured emission cross sections we derive state-selective capture cross sections for n = 2,3,4 and n ⩾ 5 states of the He + ions. Our data are consistent with theoretical predictions of Bransden and Ermolaev. The total capture cross sections as evaluated from our emission cross section data, agree very well with the results of McCullough et al. obtained from projectile charge detection measurements. Near 15 keV our emission cross sections for 30.4 nm and 25.6 nm are much larger than those measured previously by Barrett and Leventhal at slightly lower energies.

  16. Absolute cross sections for near-threshold electron-impact excitation of the 2s{sup 2}S{r_arrow}2p{sup 2}P transition in C{sup 3+}

    SciTech Connect

    Bannister, M.E.; Chung, Y.; Djuric, N.; Wallbank, B.; Woitke, O.; Zhou, S.; Dunn, G.H.; Smith, A.C.

    1998-01-01

    Absolute total cross sections for electron-impact excitation of the 2s{sup 2}S{r_arrow}2p{sup 2}P transition in C{sup 3+} were measured from 7.35 eV to 8.45 eV using the merged electron-ion-beams energy-loss technique. The results settle the discrepancy between two previous experiments using the crossed-beams fluorescence method, being in very good agreement with the older results [P. O. Taylor, D. Gregory, G. H. Dunn, R. A. Phaneuf, and D. H. Crandall, Phys. Rev. Lett. {bold 39}, 1256 (1977)] but less so with the more recent ones [D. W. Savin, L. D. Gardner, D. B. Reisenfeld, A. R. Young, and J. L. Kohl, Phys. Rev. A {bold 51}, 2162 (1995)]. The present measurements are also in good agreement with unitarized Coulomb-Born and close-coupling calculations. {copyright} {ital 1998} {ital The American Physical Society}

  17. Measurement and calculation of absolute single- and double-charge-exchange cross sections for O6 + ions at 1.17 and 2.33 keV/u impacting He and H2

    NASA Astrophysics Data System (ADS)

    Machacek, J. R.; Mahapatra, D. P.; Schultz, D. R.; Ralchenko, Yu.; Chutjian, A.; Simcic, J.; Mawhorter, R. J.

    2014-11-01

    Absolute single- and double-charge-exchange cross sections for the astrophysically prominent O6 + ion with the atomic and molecular targets He and H2 are reported. These collisions give rise to x-ray emissions in the interplanetary medium, planetary atmospheres, and comets as they approach the sun. Measurements have been carried out using the Caltech Jet Propulsion Laboratory electron cyclotron resonance ion source with O6 + at energies of 1.17 and 2.33 keV/u characteristic of the slow and fast components of the solar wind. Absolute charge-exchange (CE) data are derived from knowledge of the target gas pressure, target path length, incident ion current, and charge-exchanged ion currents. These data are compared with results obtained using the n -electron classical trajectory Monte Carlo method. The radiative and Auger evolution of ion populations following one- and two-electron transfers is calculated with the time-dependent collisional-radiative code nomad using atomic data from the flexible atomic code. Calculated CE emission spectra for 100 Å <λ <1400 Å are reported as well and compared with experimental sublevel spectra and cross sections.

  18. Quantitative photoabsorption and fluorescence spectroscopy of H2S and D2S at 49-240 nm

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Wang, Xiuyan; Suto, Masako

    1987-01-01

    Photoabsorption and fluorescence cross sections of H2S and D2S were measured in the 49-240 nm region using synchrotron radiation as a light source. Fluorescence from photoexcitation of H2S appears at 49-97 nm, but not in the long wavelength region. Fluorescence spectra were dispersed, and used to identify the emitters to be H2S(+) (A), SH(+)(A), and H(n greater than 2). The fluorescence quantum yield is about 6 percent. Photoexcitation of D2S at 49-96 nm produces fluorescence with a quantum yield of about 5 percent. The emitters are identified from the fluorescence spectra to be D2S(+)(A), SD(+)(A), and D(n greater than 2). The Franck-Condon factors for the SH(+) and SD(+) (A-X) transitions were determined. The SD(A-X) fluorescence was observed from photoexcitation of D2S at 100-151 nm, for which the fluorescence cross section and quantum yield were measured.

  19. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  20. K-shell photoabsorption and photoionisation of trace elements. I. Isoelectronic sequences with electron number 3 ≤N ≤ 11

    NASA Astrophysics Data System (ADS)

    Palmeri, P.; Quinet, P.; Mendoza, C.; Bautista, M. A.; Witthoeft, M. C.; Kallman, T. R.

    2016-05-01

    Context. With the recent launching of the Hitomi X-ray space observatory, K lines and edges of chemical elements with low cosmic abundances, namely F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu and Zn, can be resolved and used to determine important properties of supernova remnants, galaxy clusters and accreting black holes and neutron stars. Aims: The second stage of the present ongoing project involves the computation of the accurate photoabsorption and photoionisation cross sections required to interpret the X-ray spectra of such trace elements. Methods: Depending on target complexity and computer tractability, ground-state cross sections are computed either with the close-coupling Breit-Pauli R-matrix method or with the autostructure atomic structure code in the isolated-resonance approximation. The intermediate-coupling scheme is used whenever possible. In order to determine a realistic K-edge behaviour for each species, both radiative and Auger dampings are taken into account, the latter being included in the R-matrix formalism by means of an optical potential. Results: Photoabsorption and total and partial photoionisation cross sections are reported for isoelectronic sequences with electron numbers 3 ≤ N ≤ 11. The Na sequence (N = 11) is used to estimate the contributions from configurations with a 2s hole (i.e. [2s]μ) and those containing 3d orbitals, which will be crucial when considering sequences with N > 11. Conclusions: It is found that the [2s]μ configurations must be included in the target representations of species with N ≥ 11 as they contribute significantly to the monotonic background of the cross section between the L and K edges. Configurations with 3d orbitals are important in rendering an accurate L edge, but they can be practically neglected in the K-edge region.

  1. Contribution of forbidden orbits in the photoabsorption spectra of atoms and molecules in a magnetic field

    NASA Astrophysics Data System (ADS)

    Matzkin, A.; Dando, P. A.; Monteiro, T. S.

    2003-02-01

    In a previous work [Phys. Rev. A 66, 013410 (2002)], we noted a partial disagreement between quantum R matrix and semiclassical calculations of photoabsorption spectra of molecules in a magnetic field. We show that this disagreement is due to a nonvanishing contribution of processes, which are forbidden according to the usual semiclassical formalism. Formulas to include these processes are obtained by using a refined stationary phase approximation. The resulting higher order in ħ contributions also account for previously unexplained “recurrences without closed orbits.” Quantum and semiclassical photoabsorption spectra for Rydberg atoms and molecules in a magnetic field are calculated and compared to assess the validity of the first-order forbidden orbit contributions.

  2. Photoabsorption spectra of argon cation clusters: Monte Carlo simulations using many-body polarization

    NASA Astrophysics Data System (ADS)

    Gascon, Jose A.; Hall, Randall W.

    2000-11-01

    A simple, semiempirical model that includes many-body polarization is used to study the ground and excited state properties of ArN+ clusters (N=3-23) at 80 K. For purposes of comparison, a model that does not include many-body polarization is used to study clusters with N=3-27. Monte Carlo simulations are used to calculate the average properties of these clusters. The model is similar to one previously used to study argon cation clusters without many-body polarization. The photoabsorption spectrum is in good agreement with experiment; in particular, the photoabsorption spectra for cluster sizes 4-10 do not show the blueshift that is seen with models that do not include many-body polarization.

  3. Dissociative recombination of CH{sub 5}{sup +} and CD{sub 5}{sup +}: Measurement of the product branching fractions and the absolute cross sections, and the breakup dynamics in the CH{sub 3}+H+H product channel

    SciTech Connect

    Kaminska, Magdalena; Zhaunerchyk, Vitali; Vigren, Erik; Danielsson, Mathias; Hamberg, Mathias; Geppert, Wolf D.; Larsson, Mats; Rosen, Stefan; Thomas, Richard D.; Semaniak, Jacek

    2010-06-15

    The dissociative recombination (DR) of CH{sub 5}{sup +} and CD{sub 5}{sup +} has been studied at the heavy-ion storage ring CRYRING. The fragmentation dynamics of the dominant reaction channel CH{sub 3}+H+H has been investigated using an imaging detector. The results indicate that a two-step process via the production of a CH{sub 4} intermediate, which has sufficient energy to fragment further to CH{sub 3}+H, may play an important role. Discrepancies between the present and earlier results obtained from storage ring measurements with those from flowing afterglow experiments are addressed. Newly measured branching fractions in the DR of CD{sub 5}{sup +} show an excellent agreement with branching fractions previously measured for CH{sub 5}{sup +}, and the absolute DR cross sections have been also measured over an interaction energy range between {approx}0 and 0.1 eV for both isotopologs.

  4. Absolute cross section for loss of supercoiled topology induced by 10 eV electrons in highly uniform /DNA/1,3-diaminopropane films deposited on highly ordered pyrolitic graphite

    NASA Astrophysics Data System (ADS)

    Boulanouar, Omar; Fromm, Michel; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon

    2013-08-01

    It was recently shown that the affinity of doubly charged, 1-3 diaminopropane (Dap2+) for DNA permits the growth on highly ordered pyrolitic graphite (HOPG) substrates, of plasmid DNA films, of known uniform thickness [O. Boulanouar, A. Khatyr, G. Herlem, F. Palmino, L. Sanche, and M. Fromm, J. Phys. Chem. C 115, 21291-21298 (2011)]. Post-irradiation analysis by electrophoresis of such targets confirms that electron impact at 10 eV produces a maximum in the yield of single strand breaks that can be associated with the formation of a DNA- transient anion. Using a well-adapted deterministic survival model for the variation of electron damage with fluence and film thickness, we have determined an absolute cross section for strand-break damage by 10 eV electrons and inelastic scattering attenuation length in DNA-Dap complex films.

  5. Absolute cross section for loss of supercoiled topology induced by 10 eV electrons in highly uniform /DNA/1,3-diaminopropane films deposited on highly ordered pyrolitic graphite

    SciTech Connect

    Boulanouar, Omar; Fromm, Michel; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon

    2013-08-07

    It was recently shown that the affinity of doubly charged, 1-3 diaminopropane (Dap{sup 2+}) for DNA permits the growth on highly ordered pyrolitic graphite (HOPG) substrates, of plasmid DNA films, of known uniform thickness [O. Boulanouar, A. Khatyr, G. Herlem, F. Palmino, L. Sanche, and M. Fromm, J. Phys. Chem. C 115, 21291–21298 (2011)]. Post-irradiation analysis by electrophoresis of such targets confirms that electron impact at 10 eV produces a maximum in the yield of single strand breaks that can be associated with the formation of a DNA{sup −} transient anion. Using a well-adapted deterministic survival model for the variation of electron damage with fluence and film thickness, we have determined an absolute cross section for strand-break damage by 10 eV electrons and inelastic scattering attenuation length in DNA-Dap complex films.

  6. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  7. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  8. Measurement of absolute cross sections for excitation of the 2s(2) S-1 -> 2s2p P-1 degrees transition in O+4

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Djuric, N.; Lozano, J. A.; Berrington, K. A.; Chutjian, A.

    2005-01-01

    Experimental cross sections are reported for the 1s(2)2s(2) S-1 -> 1s(2)2s2p P-1(o) transition in O+4 located at 19.689 eV. Use is made of the electron energy-loss method, using a merged electron-ion beam geometry. The center-of-mass interaction energies for the measurements in the S-1 -> P-1(o) transition are in the range 18 eV ( below the threshold) to 30 eV. Data are compared with other previous electron energy-loss measurements and with results of a 26 term R-matrix calculation that includes fine structure explicitly via the Breit-Pauli Hamiltonian. Clear resonance enhancement is observed in all experimental and theoretical results near the threshold for this S-1 -> P-1(o) transition.

  9. Electron photoemission from charged films: absolute cross section for trapping 0-5 eV electrons in condensed CO2.

    PubMed

    Michaud, M; Hébert, E M; Cloutier, P; Sanche, L

    2007-01-14

    The electron trapping or attachment cross section of carbon dioxide (CO2) condensed as thin films on a spacer of Ar is obtained using a simple model for electron trapping in a molecular film and then charge releasing from the same film by photon absorption. The measurements are presented for different electron exposures and impact energies, film thicknesses, and probing photon energies. The cross section for trapping an electron of incident energy between 0 and 5 eV reveals three different attachment processes characterized by a maximum at about 0.75 eV, a structured feature around 2.25 eV, and a shoulder around 3.75 eV. From the measurement of their dependence with the probing photon energy, the two lowest processes produce traps having a vertical electron binding energy of approximately 3.5 eV, whereas the highest one yields a slightly higher value of approximately 3.7 eV. The 0.75 eV maximum corresponds to the formation of vibrational Feshbach resonances in (CO2)n- anion clusters. The 2.25 eV feature is attributed to the formation of a vibrationally excited 2Piu anion in (CO2)n- clusters, followed by fast decay into its vibrational ground state without undergoing autodetachment. Finally, 3.75 eV shoulder is assigned to the well-known dissociative electron attachment process from 2Piu anion state producing the O- anion in the gas phase and the (CO2)nO- anions in clusters.

  10. Measurement of Absolute Cross Sections for Excitation of the 2s^2 ^1S - 2s2p ^1P^o Transition in O^4+

    NASA Astrophysics Data System (ADS)

    Smith, Steven J.; Berrington, K. A.

    2005-05-01

    Experimental electron excitation cross sections are reported for the 2s^2 1S - 2s2p^ 1P^o transitions in O^4+ located at 19.689 eV. The JPL electron-cyclotron resonance ion source is utilized [1], along with the electron energy loss method, in a merged electron-ion beams geometry[2]. The center-of-mass interaction energies for the measurements are in the range 18 eV (below threshold) to 30 eV. Data are compared with results of a 26-term R-matrix calculation that includes fine structure explicitly via the Breit-Pauli Hamiltonian [3]. There is good agreement with theoretical results and with previous electron energy-loss measurements [3]. Clear resonance enhancement is observed in both experiment and theoretical results near threshold for this ^1S - ^1P^o transition. J. Lozano and N. Djuric acknowledge support through the NASA-NRC program. This work was carried out at JPL/Caltech and was supported by NASA. [1] J. B. Greenwood, S. J. Smith, A.Chutjian, and E. Pollack, Phys. Rev. A 59 1348, (1999). [2] A. Chutjian, Physica Scripta T110, 203 (2004). [3] M. Bannister et al., Int.J. Mass Spectrometry 192, 39 (1999).

  11. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  12. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses.

  13. The Color Dipole Picture and the Ratio of the Longitudinal to the Transverse Photoabsorption Cross Section

    SciTech Connect

    Schildknecht, Dieter

    2009-03-23

    The transverse size of qq-bar fluctuations of a longitudinally polarized photon is reduced relative to the transverse size of qq-bar fluctuations of a transversely polarized photon. This implies a model-independent prediction of the ratio R(W{sup 2},Q{sup 2}){identical_to}{sigma}{sub L}/{sigma}{sub T} = 0.375, or, equivalently, F{sub L}/F{sub 2} = 0.27, for x congruent with Q{sup 2}/W{sup 2}<<1 and Q{sup 2} sufficiently large, while R(W{sup 2},Q{sup 2}) 0.50, if this effect is ignored. Experimental data from HERA confirm the transverse-size reduction.

  14. Information-theoretic analysis of x-ray photoabsorption based threat detection system for check-point

    NASA Astrophysics Data System (ADS)

    Lin, Yuzhang; Allouche, Genevieve G.; Huang, James; Ashok, Amit; Gong, Qian; Coccarelli, David; Stoian, Razvan-Ionut; Gehm, Michael E.

    2016-05-01

    In this work we present an information-theoretic framework for a systematic study of checkpoint x-ray systems using photoabsorption measurements. Conventional system performance analysis of threat detection systems confounds the effect of the system architecture choice with the performance of a threat detection algorithm. However, our system analysis approach enables a direct comparison of the fundamental performance limits of disparate hardware architectures, independent of the choice of a specific detection algorithm. We compare photoabsorptive measurements from different system architectures to understand the affect of system geometry (angular views) and spectral resolution on the fundamental limits of the system performance.

  15. Absolute cross sections with polarization effects in Ne{sup {asterisk}}(2p{sup 5}3p)+He collisions: A detailed comparison between theory and experiment

    SciTech Connect

    Bahrim, C. |; Kucal, H.; Masnou-Seeuws, F.

    1997-08-01

    Quantal calculations are presented for intramultiplet mixing collisions of Ne{sup {asterisk}}(2p{sup 5}3p) with He({sup 1}S{sub 0}) in the 60{endash}1250 meV collision energy range. The coupled equations are solved in a diabatic representation where the coupling terms are obtained using the model potential calculations of Hennecart and Masnou-Seeuws [J. Phys. B {bold 18}, 657 (1985)] for the interaction of the Ne{sup {asterisk}} outer electron with the two cores and values fitted on the spectroscopic data of Dabrowski and Herzberg [Mol. Spectrosc. {bold 73}, 183 (1978)] for the core-core interaction. An extensive comparison with the experimental data of the Eindhoven group is presented for absolute polarized cross sections and anisotropy parameters. Very good agreement is obtained with thermal energy data of Manders {ital et al.} [Phys. Rev. A {bold 39}, 4467 (1989)], while the systematic 30{endash}40{percent} discrepancy with superthermal data of Boom {ital et al.} [Phys. Rev. A {bold 49}, 4660 (1994)] might be attributed to a calibration problem in the experiment rather than to an inaccuracy in the long-range potentials. {copyright} {ital 1997} {ital The American Physical Society}

  16. Enhanced photoabsorption in front-tapered single-nanowire solar cells.

    PubMed

    Zhan, Yaohui; Li, Xiaofeng; Wu, Shaolong; Li, Ke; Yang, Zhenhai; Shang, Aixue

    2014-10-01

    Vertically aligned single-nanowire is verified to be a unique building block to realize the high-efficiency solar cell beyond Schockley-Queisser limit. We proposed a front-tapered vertically aligned single-nanowire solar cell (V-SNSC) and investigated numerically the possibility of this configuration to improve the photoabsorption efficiency compared to the conventional designs, by using 2.5D full-wave finite-element method. The influences of the feature sizes of aspect ratio, bottom radius, and nanowire length on the light-trapping properties were explored; the detailed field distribution and carrier generation rate were revealed as well based on the theory of dielectric resonant antenna, in order to elucidate the underlying physical mechanism. Results showed that, compared with the cylindrical counterparts, the absorption capability of V-SNSCs could be greatly enhanced by using a front-tapered configuration with less material utilized, and that such a positive effect can be further strengthened by increasing the nanowire length. The proposed configuration provides a promising approach to engineer the photoabsorption in the photovoltaic and other optoelectronic devices.

  17. Quantitative standards for absolute linguistic universals.

    PubMed

    Piantadosi, Steven T; Gibson, Edward

    2014-01-01

    Absolute linguistic universals are often justified by cross-linguistic analysis: If all observed languages exhibit a property, the property is taken to be a likely universal, perhaps specified in the cognitive or linguistic systems of language learners and users. In many cases, these patterns are then taken to motivate linguistic theory. Here, we show that cross-linguistic analysis will very rarely be able to statistically justify absolute, inviolable patterns in language. We formalize two statistical methods--frequentist and Bayesian--and show that in both it is possible to find strict linguistic universals, but that the numbers of independent languages necessary to do so is generally unachievable. This suggests that methods other than typological statistics are necessary to establish absolute properties of human language, and thus that many of the purported universals in linguistics have not received sufficient empirical justification.

  18. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  19. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  20. Wavelengths, f-Values, and Cross Sections in the UV Spectra of Astrophysical Atoms, Ions, and Molecules

    NASA Technical Reports Server (NTRS)

    Crane, Phil (Technical Monitor); Raymond, John C.; Parkinson, W. H.

    2004-01-01

    Contents include the following: Improved UV wavelengths, energy levels, and f-values for iron group ions. Update of Kurucz database of wavelengths and f-values. Publication of improved UV photodissociation cross sections for H2O. UV photoabsorption cross sections for CO bands. Service Activities and Data Outreach.

  1. Combined Use of Absolute and Differential Seismic Arrival Time Data to Improve Absolute Event Location

    NASA Astrophysics Data System (ADS)

    Myers, S.; Johannesson, G.

    2012-12-01

    Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement

  2. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  3. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  4. Ultraviolet photochemistry of buta-1,3- and buta-1,2-dienes: laser spectroscopic absolute hydrogen atom quantum yield and translational energy distribution measurements.

    PubMed

    Hanf, A; Volpp, H-R; Sharma, P; Mittal, J P; Vatsa, R K

    2010-07-14

    Using pulsed H-atom Lyman-alpha laser-induced fluorescence spectroscopy along with a photolytic calibration approach, absolute H-atom product quantum yields of phi(H-b13d) = (0.32+/-0.04) and phi(H-b12d) = (0.36+/-0.04) were measured under collision-free conditions for the 193 nm gas-phase laser flash photolysis of buta-1,3- and buta-1,2-diene at room temperature, which demonstrate that nascent H-atom formation is of comparable importance for both parent molecules. Comparison of the available energy fraction, f(T-b13d) = (0.22+/-0.03) and f(T-b12d) = (0.13+/-0.01), released as H+C(4)H(5) product translational energy with results of impulsive and statistical energy partitioning modeling calculations indicates that for both, buta-1,3- and buta-1,2-diene, H-atom formation is preceded by internal conversion to the respective electronic ground state (S(0)) potential energy surfaces. In addition, values of sigma(b-1,3-d-L alpha) = (3.5+/-0.2)x10(-17) cm(2) and sigma(b-1,2-d-L alpha) = (4.4+/-0.2)x10(-17) cm(2) for the previously unknown Lyman-alpha (121.6 nm) radiation photoabsorption cross sections of buta-1,3- and buta-1,2-diene in the gas-phase were determined.

  5. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  6. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  7. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  8. Redetermining CEBAF's Absolute Energy

    NASA Astrophysics Data System (ADS)

    Su, Tong; Jlab Marathon Collaboration

    2015-04-01

    With the upgrade of the Jefferson Lab accelerator (CEBAF) from 6 GeV max energy to 12 GeV, all the dipole magnets in the machine were refurbished. Most of them were switched from open c-shaped to closed h-shaped by adding extra iron. With these upgraded magnets, the energy calibration of the accelerator needed to be redetermined. We will show how an extra external dipole, which is run in series with those in the machine, helps us cross check the current in the magnets as well as precisely map out the integral field for any machine setting. Using knowledge of the relative performance of the dipoles as well as the bend angle into the Hall, has allowed us to already determine a 4th pass 7 GeV beam to better than 7 MeV. In the future, we will use g-2 spin precession as a second independent energy determination. This work is supported by Kent State University, NSF Grant PHY-1405814, and DOE Contract DE-AC05-06OR23177 (JLab).

  9. In situ Observation of Formation Process of Negative Electron Affinity Surface of GaAs by Surface Photo-Absorption

    NASA Astrophysics Data System (ADS)

    Hayase, Kazuya; Nishitani, Tomohiro; Suzuki, Katsunari; Imai, Hironobu; Hasegawa, Jun-ichi; Namba, Daiki; Meguro, Takashi

    2013-06-01

    We have used surface photo-absorption (SPA) to investigate the formation of negative electron affinity (NEA) surfaces on p-GaAs during the Yo-Yo method, under an alternating supply of Cs and O2. The SPA spectra showed that the surface during the first Cs step was different from those in the following Cs and O2 steps. This suggests that the surface structure did not change after the initial surface was formed, indicating that there could be two Cs adsorption sites on the GaAs surface, which is different from previously proposed models.

  10. Singular perturbation of absolute stability.

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.

    1972-01-01

    It was previously shown (author, 1969) that the regions of absolute stability in the parameter space can be determined when the parameters appear on the right-hand side of the system equations, i.e., the regular case. Here, the effect on absolute stability of a small parameter attached to higher derivatives in the equations (the singular case) is studied. The Lur'e-Postnikov class of nonlinear systems is considered.

  11. Use of an intravenous microdose of 14C-labeled drug and accelerator mass spectrometry to measure absolute oral bioavailability in dogs; cross-comparison of assay methods by accelerator mass spectrometry and liquid chromatography-tandem mass spectrometry.

    PubMed

    Miyaji, Yoshihiro; Ishizuka, Tomoko; Kawai, Kenji; Hamabe, Yoshimi; Miyaoka, Teiji; Oh-hara, Toshinari; Ikeda, Toshihiko; Kurihara, Atsushi

    2009-01-01

    A technique utilizing simultaneous intravenous microdosing of (14)C-labeled drug with oral dosing of non-labeled drug for measurement of absolute bioavailability was evaluated using R-142086 in male dogs. Plasma concentrations of R-142086 were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and those of (14)C-R-142086 were measured by accelerator mass spectrometry (AMS). The absence of metabolites in the plasma and urine was confirmed by a single radioactive peak of the parent compound in the chromatogram after intravenous microdosing of (14)C-R-142086 (1.5 microg/kg). Although plasma concentrations of R-142086 determined by LC-MS/MS were approximately 20% higher than those of (14)C-R-142086 as determined by AMS, there was excellent correlation (r=0.994) between both concentrations after intravenous dosing of (14)C-R-142086 (0.3 mg/kg). The oral bioavailability of R-142086 at 1 mg/kg obtained by simultaneous intravenous microdosing of (14)C-R-142086 was 16.1%, this being slightly higher than the value (12.5%) obtained by separate intravenous dosing of R-142086 (0.3 mg/kg). In conclusion, on utilizing simultaneous intravenous microdosing of (14)C-labeled drug in conjunction with AMS analysis, absolute bioavailability could be approximately measured in dogs, but without total accuracy. Bioavailability in humans may possibly be approximately measured at an earlier stage and at a lower cost. PMID:19430168

  12. Absolute calibration of sniffer probes on Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  13. Absolute calibration of sniffer probes on Wendelstein 7-X.

    PubMed

    Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured. PMID:27587121

  14. Absolute flux scale for radioastronomy

    SciTech Connect

    Ivanov, V.P.; Stankevich, K.S.

    1986-07-01

    The authors propose and provide support for a new absolute flux scale for radio astronomy, which is not encumbered with the inadequacies of the previous scales. In constructing it the method of relative spectra was used (a powerful tool for choosing reference spectra). A review is given of previous flux scales. The authors compare the AIS scale with the scale they propose. Both scales are based on absolute measurements by the ''artificial moon'' method, and they are practically coincident in the range from 0.96 to 6 GHz. At frequencies above 6 GHz, 0.96 GHz, the AIS scale is overestimated because of incorrect extrapolation of the spectra of the primary and secondary standards. The major results which have emerged from this review of absolute scales in radio astronomy are summarized.

  15. Dynamic linear response of atoms in plasmas and photo-absorption cross-section in the dipole approximation

    NASA Astrophysics Data System (ADS)

    Caizergues, C.; Blenski, T.; Piron, R.

    2016-03-01

    We report results on the self-consistent linear response theory of quantum average-atoms in plasmas. The approach is based on the two first orders of the cluster expansion of the plasma susceptibility. A change of variable is applied, which allows us to handle the diverging free-free transitions contribution in the self-consistent induced electron density and potential. The method is first tested on the case of rare gas isolated neutral atoms. A test of the Ehrenfest-type sum rule is then performed in a case of an actual average-atom in a plasma. At frequencies much higher than the plasma frequency, the sum rule seems to be fulfilled within the accuracy of the numerical methods. Close to the plasma frequency, the method seems not to account for the cold-plasma dielectric function renormalization in the sum rule, which was correctly reproduced in the case of the Thomas-Fermi-Bloch self-consistent linear response. This suggests the need for a better accounting for the outgoing waves in the asymptotic boundary conditions.

  16. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  17. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  18. Characterization of SiC fibers by soft x-ray photoelectron and photoabsorption spectroscopies and scanning Auger microscopy

    SciTech Connect

    Ma, Qing; McDowell, M.W.; Rosenberg, R.A.

    1996-08-01

    Synchrotron radiation soft x-ray photoelectron and photoabsorption spectroscopy was used to characterize commercially obtained SiC fibers produced by CVD on a W core and followed by a C passivating layer. Depth profiling of the fiber through the C/SiC interface was done by making Si 2p and C 1s core level PES and PAS, as well as scanning Auger microscopy, measurements following Ar{sup +} sputtering. No significant changes in either photoemission or absorption or Auger line shapes were observed versus depth, indicating no significant interfacial reaction. The line shapes of the carbonaceous coatings are predominantely graphite-like and those of the CVD SiC coatings are microcrystalline, with disorder present to some extent in both cases.

  19. Molecular Mechanism of Wide Photoabsorption Spectral Shifts of Color Variants of Human Cellular Retinol Binding Protein II.

    PubMed

    Cheng, Cheng; Kamiya, Motoshi; Uchida, Yoshihiro; Hayashi, Shigehiko

    2015-10-21

    Color variants of human cellular retinol binding protein II (hCRBPII) created by protein engineering were recently shown to exhibit anomalously wide photoabsorption spectral shifts over ∼200 nm across the visible region. The remarkable phenomenon provides a unique opportunity to gain insight into the molecular basis of the color tuning of retinal binding proteins for understanding of color vision as well as for engineering of novel color variants of retinal binding photoreceptor proteins employed in optogenetics. Here, we report a theoretical investigation of the molecular mechanism underlying the anomalously wide spectral shifts of the color variants of hCRBPII. Computational modeling of the color variants with hybrid molecular simulations of free energy geometry optimization succeeded in reproducing the experimentally observed wide spectral shifts, and revealed that protein flexibility, through which the active site structure of the protein and bound water molecules is altered by remote mutations, plays a significant role in inducing the large spectral shifts.

  20. Excited states of aniline by photoabsorption spectroscopy in the 30 000-90 000 cm-1 region using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Rajasekhar, B. N.; Veeraiah, A.; Sunanda, K.; Jagatap, B. N.

    2013-08-01

    The photoabsorption spectrum of aniline (C6H5NH2) in gas phase in the 30 000-90 000 cm-1 (3.7-11.2 eV) region is recorded at resolution limit of 0.008 eV using synchrotron radiation source for the first time to comprehend the nature of the excited valence and Rydberg states. The first half of the energy interval constitutes the richly structured valence transitions from the ground to excited states up to the first ionization potential (IP) at 8.02 eV. The spectrum in the second half consists of vibrational features up to second IP (9.12 eV) and structureless broad continuum up to the third IP (10.78 eV). The electronic states are assigned mainly to the singlets belonging to π → π* transitions. A few weak initial members of Rydberg states arising from π → 4s, np or nd transitions are also identified. Observed vibrational features are assigned to transitions from the ground state A' to the excited states 1A″, 3A', 5A,″ 6A', and 10A″ in Cs symmetry. Time dependent density functional theory (TDDFT) calculations at B3LYP level of theory are employed to obtain the vertical excitation energies and the symmetries of the excited states in equilibrium configuration. The computed values of the transition energies agree fairly well with the experimental data. Further the calculated oscillator strengths are used to substantiate the assignments of the bands. The work provides a comprehensive picture of the vacuum ultraviolet photoabsorption spectrum of aniline up to its third ionization limit.

  1. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  2. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate.

  3. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate. PMID:11262641

  4. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  5. Classification images predict absolute efficiency.

    PubMed

    Murray, Richard F; Bennett, Patrick J; Sekuler, Allison B

    2005-02-24

    How well do classification images characterize human observers' strategies in perceptual tasks? We show mathematically that from the classification image of a noisy linear observer, it is possible to recover the observer's absolute efficiency. If we could similarly predict human observers' performance from their classification images, this would suggest that the linear model that underlies use of the classification image method is adequate over the small range of stimuli typically encountered in a classification image experiment, and that a classification image captures most important aspects of human observers' performance over this range. In a contrast discrimination task and in a shape discrimination task, we found that observers' absolute efficiencies were generally well predicted by their classification images, although consistently slightly (approximately 13%) higher than predicted. We consider whether a number of plausible nonlinearities can account for the slight under prediction, and of these we find that only a form of phase uncertainty can account for the discrepancy.

  6. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  7. Influence of multiple scattering of relativistic electrons on the linewidth of Parametric X-ray Radiation produced in the extremely Bragg geometry in the absence of photoabsorption

    NASA Astrophysics Data System (ADS)

    Tabrizi, Mehdi

    2016-10-01

    The multiple scattering effect on the linewidth of backward Parametric X-ray Radiation (PXR) produced in the extremely Bragg geometry by low energy relativistic electrons traversing a single crystal is discussed. It is shown that there are conditions when the influence of photoabsorption on the linewidth can be neglected, and only the multiple scattering process of relativistic electrons in crystals leads to the PXR lines broadening. Based on obtained theoretical and numerical results for the linewidth broadening caused by multiple scattering of 30 and 50 MeV relativistic electrons in a Si crystal of various thicknesses, an experiment could be performed to help in revealing the scattering effect on the PXR lines in the absence of photoabsorption. This leads to more accurate understanding of the influence of scattering process on the linewidth of backward PXR and helps to better construct a table-top narrow bandwidth X-ray source for both scientific and industrial applications.

  8. Absolute Integral Cross Sections for the State-selected Ion-Molecule Reaction N2+(X2Σg+ v+ = 0-2) + C2H2 in the Collision Energy Range of 0.03-10.00 eV

    NASA Astrophysics Data System (ADS)

    Xu, Yuntao; Xiong, Bo; Chung Chang, Yih; Ng, C. Y.

    2016-08-01

    Using the vacuum ultraviolet laser pulsed field ionization-photoion source, together with the double-quadrupole-double-octopole mass spectrometer developed in our laboratory, we have investigated the state-selected ion-molecule reaction {{{{N}}}2}+({X}2{{{{Σ }}}{{g}}}+; v + = 0-2, N+ = 0-9) + C2H2, achieving high internal-state selectivity and high kinetic energy resolution for reactant {{{{N}}}2}+ ions. The charge transfer (CT) and hydrogen-atom transfer (HT) channels, which lead to the respective formation of product {{{C}}}2{{{{H}}}2}+ and N2H+ ions, are observed. The vibrationally selected absolute integral cross sections for the CT [σ CT(v +)] and HT [[σ HT(v +)] channels obtained in the center-of-mass collision energy (E cm) range of 0.03-10.00 eV reveal opposite E cm dependences. The σ CT(v +) is found to increase as E cm is decreased, and is consistent with the long-range exothermic CT mechanism, whereas the E cm enhancement observed for the σ HT(v +) suggests effective coupling of kinetic energy to internal energy, enhancing the formation of N2H+. The σ HT(v +) curve exhibits a step at E cm = 0.70-1.00 eV, suggesting the involvement of the excited {{{C}}}2{{{{H}}}2}+({A}2{{{{Σ }}}{{g}}}+) state in the HT reaction. Contrary to the strong E cm dependences for σ CT(v +) and σ HT(v +), the effect of vibrational excitation of {{{{N}}}2}+ on both the CT and HT channels is marginal. The branching ratios and cross sections for the CT and HT channels determined in the present study are useful for modeling the atmospheric compositions of Saturn's largest moon, Titan. These cross sections and branching ratios are also valuable for benchmarking theoretical calculations on chemical dynamics of the titled reaction.

  9. Absolute Integral Cross Sections for the State-selected Ion–Molecule Reaction N2+(X2Σg+ v+ = 0–2) + C2H2 in the Collision Energy Range of 0.03–10.00 eV

    NASA Astrophysics Data System (ADS)

    Xu, Yuntao; Xiong, Bo; Chung Chang, Yih; Ng, C. Y.

    2016-08-01

    Using the vacuum ultraviolet laser pulsed field ionization-photoion source, together with the double-quadrupole–double-octopole mass spectrometer developed in our laboratory, we have investigated the state-selected ion–molecule reaction {{{{N}}}2}+({X}2{{{{Σ }}}{{g}}}+; v + = 0–2, N+ = 0–9) + C2H2, achieving high internal-state selectivity and high kinetic energy resolution for reactant {{{{N}}}2}+ ions. The charge transfer (CT) and hydrogen-atom transfer (HT) channels, which lead to the respective formation of product {{{C}}}2{{{{H}}}2}+ and N2H+ ions, are observed. The vibrationally selected absolute integral cross sections for the CT [σ CT(v +)] and HT [[σ HT(v +)] channels obtained in the center-of-mass collision energy (E cm) range of 0.03–10.00 eV reveal opposite E cm dependences. The σ CT(v +) is found to increase as E cm is decreased, and is consistent with the long-range exothermic CT mechanism, whereas the E cm enhancement observed for the σ HT(v +) suggests effective coupling of kinetic energy to internal energy, enhancing the formation of N2H+. The σ HT(v +) curve exhibits a step at E cm = 0.70–1.00 eV, suggesting the involvement of the excited {{{C}}}2{{{{H}}}2}+({A}2{{{{Σ }}}{{g}}}+) state in the HT reaction. Contrary to the strong E cm dependences for σ CT(v +) and σ HT(v +), the effect of vibrational excitation of {{{{N}}}2}+ on both the CT and HT channels is marginal. The branching ratios and cross sections for the CT and HT channels determined in the present study are useful for modeling the atmospheric compositions of Saturn's largest moon, Titan. These cross sections and branching ratios are also valuable for benchmarking theoretical calculations on chemical dynamics of the titled reaction.

  10. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  11. Familial Aggregation of Absolute Pitch

    PubMed Central

    Baharloo, Siamak; Service, Susan K.; Risch, Neil; Gitschier, Jane; Freimer, Nelson B.

    2000-01-01

    Absolute pitch (AP) is a behavioral trait that is defined as the ability to identify the pitch of tones in the absence of a reference pitch. AP is an ideal phenotype for investigation of gene and environment interactions in the development of complex human behaviors. Individuals who score exceptionally well on formalized auditory tests of pitch perception are designated as “AP-1.” As described in this report, auditory testing of siblings of AP-1 probands and of a control sample indicates that AP-1 aggregates in families. The implications of this finding for the mapping of loci for AP-1 predisposition are discussed. PMID:10924408

  12. Strong light scattering and broadband (UV to IR) photoabsorption in stretchable 3D hybrid architectures based on Aerographite decorated by ZnO nanocrystallites.

    PubMed

    Tiginyanu, Ion; Ghimpu, Lidia; Gröttrup, Jorit; Postolache, Vitalie; Mecklenburg, Matthias; Stevens-Kalceff, Marion A; Ursaki, Veaceslav; Payami, Nader; Feidenhansl, Robert; Schulte, Karl; Adelung, Rainer; Mishra, Yogendra Kumar

    2016-09-12

    In present work, the nano- and microscale tetrapods from zinc oxide were integrated on the surface of Aerographite material (as backbone) in carbon-metal oxide hybrid hierarchical network via a simple and single step magnetron sputtering process. The fabricated hybrid networks are characterized for morphology, microstructural and optical properties. The cathodoluminescence investigations revealed interesting luminescence features related to carbon impurities and inherent host defects in zinc oxide. Because of the wide bandgap of zinc oxide and its intrinsic defects, the hybrid network absorbs light in the UV and visible regions, however, this broadband photoabsorption behavior extends to the infrared (IR) region due to the dependence of the optical properties of ZnO architectures upon size and shape of constituent nanostructures and their doping by carbon impurities. Such a phenomenon of broadband photoabsorption ranging from UV to IR for zinc oxide based hybrid materials is novel. Additionally, the fabricated network exhibits strong visible light scattering behavior. The developed Aerographite/nanocrystalline ZnO hybrid network materials, equipped with broadband photoabsorption and strong light scattering, are very promising candidates for optoelectronic technologies.

  13. Strong light scattering and broadband (UV to IR) photoabsorption in stretchable 3D hybrid architectures based on Aerographite decorated by ZnO nanocrystallites.

    PubMed

    Tiginyanu, Ion; Ghimpu, Lidia; Gröttrup, Jorit; Postolache, Vitalie; Mecklenburg, Matthias; Stevens-Kalceff, Marion A; Ursaki, Veaceslav; Payami, Nader; Feidenhansl, Robert; Schulte, Karl; Adelung, Rainer; Mishra, Yogendra Kumar

    2016-01-01

    In present work, the nano- and microscale tetrapods from zinc oxide were integrated on the surface of Aerographite material (as backbone) in carbon-metal oxide hybrid hierarchical network via a simple and single step magnetron sputtering process. The fabricated hybrid networks are characterized for morphology, microstructural and optical properties. The cathodoluminescence investigations revealed interesting luminescence features related to carbon impurities and inherent host defects in zinc oxide. Because of the wide bandgap of zinc oxide and its intrinsic defects, the hybrid network absorbs light in the UV and visible regions, however, this broadband photoabsorption behavior extends to the infrared (IR) region due to the dependence of the optical properties of ZnO architectures upon size and shape of constituent nanostructures and their doping by carbon impurities. Such a phenomenon of broadband photoabsorption ranging from UV to IR for zinc oxide based hybrid materials is novel. Additionally, the fabricated network exhibits strong visible light scattering behavior. The developed Aerographite/nanocrystalline ZnO hybrid network materials, equipped with broadband photoabsorption and strong light scattering, are very promising candidates for optoelectronic technologies. PMID:27616632

  14. Strong light scattering and broadband (UV to IR) photoabsorption in stretchable 3D hybrid architectures based on Aerographite decorated by ZnO nanocrystallites

    PubMed Central

    Tiginyanu, Ion; Ghimpu, Lidia; Gröttrup, Jorit; Postolache, Vitalie; Mecklenburg, Matthias; Stevens-Kalceff, Marion A.; Ursaki, Veaceslav; Payami, Nader; Feidenhansl, Robert; Schulte, Karl; Adelung, Rainer; Mishra, Yogendra Kumar

    2016-01-01

    In present work, the nano- and microscale tetrapods from zinc oxide were integrated on the surface of Aerographite material (as backbone) in carbon-metal oxide hybrid hierarchical network via a simple and single step magnetron sputtering process. The fabricated hybrid networks are characterized for morphology, microstructural and optical properties. The cathodoluminescence investigations revealed interesting luminescence features related to carbon impurities and inherent host defects in zinc oxide. Because of the wide bandgap of zinc oxide and its intrinsic defects, the hybrid network absorbs light in the UV and visible regions, however, this broadband photoabsorption behavior extends to the infrared (IR) region due to the dependence of the optical properties of ZnO architectures upon size and shape of constituent nanostructures and their doping by carbon impurities. Such a phenomenon of broadband photoabsorption ranging from UV to IR for zinc oxide based hybrid materials is novel. Additionally, the fabricated network exhibits strong visible light scattering behavior. The developed Aerographite/nanocrystalline ZnO hybrid network materials, equipped with broadband photoabsorption and strong light scattering, are very promising candidates for optoelectronic technologies. PMID:27616632

  15. Strong light scattering and broadband (UV to IR) photoabsorption in stretchable 3D hybrid architectures based on Aerographite decorated by ZnO nanocrystallites

    NASA Astrophysics Data System (ADS)

    Tiginyanu, Ion; Ghimpu, Lidia; Gröttrup, Jorit; Postolache, Vitalie; Mecklenburg, Matthias; Stevens-Kalceff, Marion A.; Ursaki, Veaceslav; Payami, Nader; Feidenhansl, Robert; Schulte, Karl; Adelung, Rainer; Mishra, Yogendra Kumar

    2016-09-01

    In present work, the nano- and microscale tetrapods from zinc oxide were integrated on the surface of Aerographite material (as backbone) in carbon-metal oxide hybrid hierarchical network via a simple and single step magnetron sputtering process. The fabricated hybrid networks are characterized for morphology, microstructural and optical properties. The cathodoluminescence investigations revealed interesting luminescence features related to carbon impurities and inherent host defects in zinc oxide. Because of the wide bandgap of zinc oxide and its intrinsic defects, the hybrid network absorbs light in the UV and visible regions, however, this broadband photoabsorption behavior extends to the infrared (IR) region due to the dependence of the optical properties of ZnO architectures upon size and shape of constituent nanostructures and their doping by carbon impurities. Such a phenomenon of broadband photoabsorption ranging from UV to IR for zinc oxide based hybrid materials is novel. Additionally, the fabricated network exhibits strong visible light scattering behavior. The developed Aerographite/nanocrystalline ZnO hybrid network materials, equipped with broadband photoabsorption and strong light scattering, are very promising candidates for optoelectronic technologies.

  16. Measurements of Photoabsorpton Cross Sections and their Temperature Dependence for CO2 in the 170nm to 200nm Region

    NASA Astrophysics Data System (ADS)

    Parkinson, W. H.; Yoshino, K.

    2001-11-01

    All the photochemical models for the predominately CO2 Martian atmosphere ar e very sensitive to the amount of CO2 and to the values and spectral details of the absorpton cross sections of CO2 in the region 170nm-200nm. Earlier we had measured and published absolute cross sections of CO2 in the region 118.0 nm-175.5 nm at 295K and 195K. We have recently extended these measurements from 170 nm to 200 nm at 300K and 1 95K. The new measurements have been carried out at high resolution with our 6.65 -m normal incidence , photoelectric spectrometer. To measure the weak photoabsorption of the CO2 bands in the wavelength region 170 --200 nm, we required a high column density of the gas. We obtained this by using a multi pass technique, a White cell. The White cell was designed to have a distance of 1.50 m between two main mirrors, and was set for four, double pas ses making a path length of 12.0 m. CO2 gas was frozen in a stainless cylinder immersed in liquid nitrogen, and t he frozen product (dryice) was pumped by the diffusion pump for purification. The CO2 was warmed up slowly and kept in the cylinder at high pressure. The CO2 pressure used in the White cell was varied from 1 to 1000 Torr depend ing on the wavelength region, and was measured with a a capacitance manometer (M KS Baratron, 10 Torr and 1000 Torr). We divided the spectral region into twenty sections of about 1.5 nm extent. At each scan range, another scan was obtained from the emission spectrum of the fourth positive bands of CO for wavelength calibration. We acknowledge funding from NASA, grant NAGS-7859 to Harvard College Observatory.

  17. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  18. Apparatus for absolute pressure measurement

    NASA Technical Reports Server (NTRS)

    Hecht, R. (Inventor)

    1969-01-01

    An absolute pressure sensor (e.g., the diaphragm of a capacitance manometer) was subjected to a superimposed potential to effectively reduce the mechanical stiffness of the sensor. This substantially increases the sensitivity of the sensor and is particularly useful in vacuum gauges. An oscillating component of the superimposed potential induced vibrations of the sensor. The phase of these vibrations with respect to that of the oscillating component was monitored, and served to initiate an automatic adjustment of the static component of the superimposed potential, so as to bring the sensor into resonance at the frequency of the oscillating component. This establishes a selected sensitivity for the sensor, since a definite relationship exists between resonant frequency and sensitivity.

  19. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < -1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  20. Photoabsorption modulation in GaAs: Ga sub 1-x In sub x as strained-layer superlattices

    SciTech Connect

    Sella, I.; Watkins, D.E.; Laurich, B.K.; Smith, D.L. ); Subbanna, S.; Kroemer, H. . Dept. of Electrical and Computer Engineering)

    1990-01-01

    Photoabsorption modulation measurements have been made on Ga{sub 1 {minus}x}In{sub x}As -- GaAs strained-layer superlattices using two approaches: In the first the modulating beam and the test beam have the same wavelength (near the exciton resonance). In the second, the modulation wavelength is much shorter than the test beam wavelength. A dramatic difference is observed in the modulated transmission spectra near the excitonic level for the two modulating wavelengths. The difference in behavior can be explained by screening of the residual surface electric field, which only occurs for the high photon energy modulating beam. This beam excites carriers that are free to drift in the surface field before they are captured in the quantum wells. Carriers excited by the low photon energy modulation beam are created in the wells and can not effectively screen the surface field. We describe a model which explains the nonlinear intensity saturation profile and qualitatively describes the spectral line shape. 4 refs., 4 figs.

  1. Direct potential and temperature effects on the MgHe line-core and far-wing photoabsorption profiles

    SciTech Connect

    Reggami, L.; Bouledroua, M.

    2011-03-15

    The present study deals with the collisional broadening of monatomic magnesium, evolving in a helium buffer gas, in the wavelength and temperature ranges 260-310 nm and 100-3000 K, respectively. The computed emission and absorption spectral profiles are based on the most recent potential-energy curves and transition dipole moments. The required interatomic Mg(3s{sup 2})+He(1s{sup 2}) and Mg(3s3p)+He(1s{sup 2}) potentials are constructed from two different sets. The purpose of this treatment is twofold. First, using the quantum-mechanical Baranger impact approximation, the width and shift of the line-core spectra are determined and their variation law with temperature is examined. Then, the satellite structures in the blue and red wings are analyzed quantum mechanically. The calculations show especially that the free-free transitions contribute most to the MgHe photoabsorption spectra and that a satellite structure is observable beyond the temperature 1800 K around the wavelengths 272 or 276 nm, depending on the used potential set. Weak satellites have also been investigated and, for all cases, the obtained results showed good agreement with those already published.

  2. Time-Resolved K-shell Photoabsorption Edge Measurement in a Strongly Coupled Matter Driven by Laser-converted Radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu

    2013-06-01

    A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.

  3. On the absolute alignment of GONG images

    NASA Astrophysics Data System (ADS)

    Toner, C. G.

    2001-01-01

    In order to combine data from the six instruments in the GONG network the alignment of all of the images must be known to a fairly high precision (~0°.1 for GONG Classic and ~0°.01 for GONG+). The relative orientation is obtained using the angular cross-correlation method described by (Toner & Harvey, 1998). To obtain the absolute orientation the Project periodically records a day of drift scans, where the image of the Sun is allowed to drift across the CCD repeatedly throughout the day. These data are then analyzed to deduce the direction of Terrestrial East-West as a function of hour angle (i.e., time) for that instrument. The transit of Mercury on Nov. 15, 1999, which was recorded by three of the GONG instruments, provided an independent check on the current alignment procedures. Here we present a comparison of the alignment of GONG images as deduced from both drift scans and the Mercury transit for two GONG sites: Tucson (GONG+ camera) and Mauna Loa (GONG Classic camera). The agreement is within ~0°.01 for both cameras, however, the scatter is substantially larger for GONG Classic: ~0°.03 compared to ~0°.01 for GONG+.

  4. Cross sections and reaction rates of relevance to aeronomy

    SciTech Connect

    Fox, J.L. )

    1991-01-01

    Experimental and theoretical data relevant to models and measurements of the chemical and thermal structures and luminosity of the thermospheres of the earth and planets published during the last four years are surveyed. Among chemical processes, attention is given to ion-molecule reactions, dissociative recombination of molecular ions, and reactions between neutral species. Both reactions between ground state species and species in excited states are considered, including energy transfer and quenching. Measured and calculated cross sections for interactions of solar radiation with atmospheric species, such as photoabsorption, photoionization, and photodissociation and related processes are surveyed.

  5. Absolute configuration of isovouacapenol C

    PubMed Central

    Fun, Hoong-Kun; Yodsaoue, Orapun; Karalai, Chatchanok; Chantrapromma, Suchada

    2010-01-01

    The title compound, C27H34O5 {systematic name: (4aR,5R,6R,6aS,7R,11aS,11bR)-4a,6-dihy­droxy-4,4,7,11b-tetra­methyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodeca­hydro­phenanthro[3,2-b]furan-5-yl benzoate}, is a cassane furan­oditerpene, which was isolated from the roots of Caesalpinia pulcherrima. The three cyclo­hexane rings are trans fused: two of these are in chair conformations with the third in a twisted half-chair conformation, whereas the furan ring is almost planar (r.m.s. deviation = 0.003 Å). An intra­molecular C—H⋯O inter­action generates an S(6) ring. The absolute configurations of the stereogenic centres at positions 4a, 5, 6, 6a, 7, 11a and 11b are R, R, R, S, R, S and R, respectively. In the crystal, mol­ecules are linked into infinite chains along [010] by O—H⋯O hydrogen bonds. C⋯O [3.306 (2)–3.347 (2) Å] short contacts and C—H⋯π inter­actions also occur. PMID:21588364

  6. Frequency-domain analysis of absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Svitlov, S.

    2012-12-01

    An absolute gravimeter is analysed as a linear time-invariant system in the frequency domain. Frequency responses of absolute gravimeters are derived analytically based on the propagation of the complex exponential signal through their linear measurement functions. Depending on the model of motion and the number of time-distance coordinates, an absolute gravimeter is considered as a second-order (three-level scheme) or third-order (multiple-level scheme) low-pass filter. It is shown that the behaviour of an atom absolute gravimeter in the frequency domain corresponds to that of the three-level corner-cube absolute gravimeter. Theoretical results are applied for evaluation of random and systematic measurement errors and optimization of an experiment. The developed theory agrees with known results of an absolute gravimeter analysis in the time and frequency domains and can be used for measurement uncertainty analyses, building of vibration-isolation systems and synthesis of digital filtering algorithms.

  7. Absolute instability from linear conversion of counter-propagating positive and negative energy waves

    SciTech Connect

    Kaufman, A.N.; Brizard, A.J.; Morehead, J.J.; Tracy, E.R.

    1997-12-31

    The resonant interaction of a negative-energy wave with a positive-energy wave gives rise to a linear instability. Whereas a single crossing of rays in a nonuniform medium leads to a convectively saturated instability, we show that a double crossing can yield an absolute instability.

  8. An Absolute Measurement of Resonance-Resolved Electron Impact Excitation

    NASA Astrophysics Data System (ADS)

    Reisenfeld, Daniel Brett

    1998-11-01

    An experiment to measure electron-impact excitation (EIE) of multiply-charged ions is described. An absolute measurement has been carried out of the cross section for EIE of Si2+(3s2/ 1S/to3s3p/ 1P) from energies below threshold to 11 eV above. A beams modulation technique with inclined electron and ion beams was used. Radiation at 120.7 nm from the excited ions was detected using an absolutely calibrated optical system. The analysis of the experimental data requires a determination of the population fraction of the Si2+ (3s3p/ 3Po) metastable state in the incident ion beam, which was measured to be 0.210 ± 0.018. The data have been corrected for contributions to the signal from radiative decay following excitation from the metastable state to 3s3p1P and 3p2/ 3P, and excitation of the ground state to levels above 3s3p/ 1P. The experimental 0.56 ± 0.08 eV energy spread has allowed us to resolve complex resonance structure throughout the studied energy range. At the reported ±14% uncertainty level (90% confidence limit), the measured structure and absolute scale of the cross section are in good agreement with 12-state close-coupling R-matrix calculations.

  9. High-resolution spectra and photoabsorption coefficients for carbon monoxide absorption bands between 94.0 nm and 100.4 nm

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Stark, G.; Smith, P. L.; Parkinson, W. H.; Ito, K.

    1988-01-01

    Photoabsorption coefficients have been measured for the CO in interstellar clouds at a resolving power more than 20 times greater than previously obtainable. In order to facilitate comparisons, these data have been integrated over the same wavelength ranges as used in Letzelter et al. (1987). It is found that most of the results obtained for bands between 94.0 and 100.4 nm are larger than those of Letzelter; the discrepancy may be attributable to the difference between the resolving powers of the spectrometers used, because the saturation effects associated with low resolution can underestimate absorption coefficient values.

  10. A model for Be-related photo-absorption in compensated GaN:Be substrates

    NASA Astrophysics Data System (ADS)

    Willoughby, W. R.; Zvanut, M. E.; Dashdorj, J.; Bockowski, M.

    2016-09-01

    A photo-induced electron paramagnetic resonance (EPR) attributed to beryllium-related acceptors was identified in GaN:Be substrates grown by the high nitrogen pressure solution technique. The acceptors, initially compensated by shallow O-related donors, were observed after illumination with photon energy greater than 2.7 eV. To adequately fit the time-dependent photo-EPR data over time periods up to 90 min, a two-defect model was developed based on three charge transfer processes: (1) photo-excitation of electrons from compensated acceptors, (2) electron capture by the positively charged donors and neutral acceptors directly from the conduction band, and (3) electron transfer from the donors to acceptors. The analysis of the spectral dependence of the optical cross section leads to the Be-related acceptor level lying 0.7 eV above the valence band maximum, consistent with the role of the acceptor as a compensating center as well as the 2.2 eV luminescence that others observed from these and other GaN:Be samples.

  11. Modélisation des effets de la photoabsorption K sur l'ADN

    NASA Astrophysics Data System (ADS)

    Vrigneaud, J. M.; Terrissol, M.

    1999-01-01

    Monte Carlo codes were used to simulate the transport of photons and their secondary electrons produced on a linear and hydrated DNA model. Between 150 and 550eV, the variation of photon cross section upon the K-ionisation threshold in C, N, O atoms of DNA is responsible for an increase of the biological effectiveness. We showed that, with the same number of absorbed photons, the distribution of breaks as a function of energy reaches a maximum around 450eV. Nous avons simulé le transport des photons et de leurs électrons secondaires mis en mouvement dans un modèle d'ADN linéaire hydraté, en utilisant la méthode de Monte Carlo. Entre 150 et 550 eV, la variation de section efficace photonique au- dessus du seuil d'ionisation K des atomes C, N, O de l'ADN est responsable d'un accroissement de l'efficacité biologique. Nous avons montré que, pour un même nombre de photons absorbés, la distribution des cassures en fonction de l'énergie passe par un maximum autour de 450 eV.

  12. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  13. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  14. Preschoolers' Success at Coding Absolute Size Values.

    ERIC Educational Resources Information Center

    Russell, James

    1980-01-01

    Forty-five 2-year-old and forty-five 3-year-old children coded relative and absolute sizes using 1.5-inch, 6-inch, and 18-inch cardboard squares. Results indicate that absolute coding is possible for children of this age. (Author/RH)

  15. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  16. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  17. Estimating the absolute wealth of households

    PubMed Central

    Gerkey, Drew; Hadley, Craig

    2015-01-01

    Abstract Objective To estimate the absolute wealth of households using data from demographic and health surveys. Methods We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. Findings The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723–6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R2 = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Conclusion Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality. PMID:26170506

  18. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  19. Theoretical Studies on Photoionization Cross Sections of Solid Gold

    NASA Astrophysics Data System (ADS)

    Ma, Xiao-Guang; Sun, Wei-Guo; Cheng, Yan-Song

    2005-01-01

    Accurate expression for photoabsorption (photoionization) cross sections of high density system proposed recently is used to study the photoionization of solid gold. The results show that the present theoretical photoionization cross sections have good agreement both in structure and in magnitude with the experimental results of gold crystal. The studies also indicate that both the real part ε' and the imaginary part ε'' of the complex dielectric constant ε, and the dielectric influence function of a nonideal system have rich structures in low energy side with a range about 50 eV, and suggest that the influence of particle interactions of surrounding particles with the photoionized particle on the photoionization cross sections can be easily investigated using the dielectric influence function. The electron overlap effects are suggested to be implemented in the future studies to improve the accuracy of theoretical photoionization cross sections of a solid system.

  20. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  1. High-resolution absorption cross sections of carbon monoxide bands at 295 K between 91.7 and 100.4 nanometers

    NASA Technical Reports Server (NTRS)

    Stark, G.; Yoshino, K.; Smith, Peter L.; Ito, K.; Parkinson, W. H.

    1991-01-01

    Theoretical descriptions of the abundance and excitation of carbon monoxide in interstellar clouds require accurate data on the vacuum-ultraviolet absorption spectrum of the molecule. The 6.65 m spectrometer at the Photon Factory synchrotron light source was used to measure photoabsorption cross sections of CO features between 91.2 and 100.4 nm. These data were recorded at a resolving power of 170,000, more than 20 times greater than that used in previous work.

  2. Strategy for the absolute neutron emission measurement on ITER.

    PubMed

    Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S

    2010-10-01

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  3. Strategy for the absolute neutron emission measurement on ITER

    SciTech Connect

    Sasao, M.; Bertalot, L.; Ishikawa, M.; Popovichev, S.

    2010-10-15

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10{sup 10} n/s (neutron/second) for DT and 10{sup 8} n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  4. Absolute magnitudes of trans-neptunian objects

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.

    2015-10-01

    Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.

  5. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  6. The Simplicity Argument and Absolute Morality

    ERIC Educational Resources Information Center

    Mijuskovic, Ben

    1975-01-01

    In this paper the author has maintained that there is a similarity of thought to be found in the writings of Cudworth, Emerson, and Husserl in his investigation of an absolute system of morality. (Author/RK)

  7. Son preference in Indian families: absolute versus relative wealth effects.

    PubMed

    Gaudin, Sylvestre

    2011-02-01

    The desire for male children is prevalent in India, where son preference has been shown to affect fertility behavior and intrahousehold allocation of resources. Economic theory predicts less gender discrimination in wealthier households, but demographers and sociologists have argued that wealth can exacerbate bias in the Indian context. I argue that these apparently conflicting theories can be reconciled and simultaneously tested if one considers that they are based on two different notions of wealth: one related to resource constraints (absolute wealth), and the other to notions of local status (relative wealth). Using cross-sectional data from the 1998-1999 and 2005-2006 National Family and Health Surveys, I construct measures of absolute and relative wealth by using principal components analysis. A series of statistical models of son preference is estimated by using multilevel methods. Results consistently show that higher absolute wealth is strongly associated with lower son preference, and the effect is 20%-40% stronger when the household's community-specific wealth score is included in the regression. Coefficients on relative wealth are positive and significant although lower in magnitude. Results are robust to using different samples, alternative groupings of households in local areas, different estimation methods, and alternative dependent variables.

  8. Deformation modes in the finite element absolute nodal coordinate formulation

    NASA Astrophysics Data System (ADS)

    Sugiyama, Hiroyuki; Gerstmayr, Johannes; Shabana, Ahmed A.

    2006-12-01

    The objective of this study is to provide interpretation of the deformation modes in the finite element absolute nodal coordinate formulation using several strain definitions. In this finite element formulation, the nodal coordinates consist of absolute position coordinates and gradients that can be used to define a unique rotation and deformation fields within the element as well as at the nodal points. The results obtained in this study clearly show cross-section deformation modes eliminated when the number of the finite element nodal coordinates is systematically and consistently reduced. Using the procedure discussed in this paper one can obtain a reduced order dynamic model, eliminate position vector gradients that introduce high frequencies to the solution of some problems, achieve the continuity of the remaining gradients at the nodal points, and obtain a formulation that automatically satisfies the principle of work and energy. Furthermore, the resulting dynamic model, unlike large rotation finite element formulations, leads to a unique rotation field, and as a consequence, the obtained formulation does not suffer from the problem of coordinate redundancy that characterizes existing large deformation finite element formulations. In order to accurately define strain components that can have easy physical interpretation, a material coordinate system is introduced to define the material element rotation and deformation. Using the material coordinate system, the Timoshenko-Reissner and Euler -Bernoulli beam models can be systematically obtained as special cases of the absolute nodal coordinate formulation beam models. While a constraint approach is used in this study to eliminate the cross-section deformation modes, it is important to point out as mentioned in this paper that lower-order finite elements, some of which already presented in previous investigations, can be efficiently used in thin and stiff structure applications.

  9. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed.

  10. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  11. The vacuum UV photoabsorption spectroscopy of vinyl fluoride (C 2H 3F): The vibrational fine structure and its analysis

    NASA Astrophysics Data System (ADS)

    Locht, R.; Leyh, B.; Dehareng, D.; Jochims, H. W.; Baumgärtel, H.

    2009-08-01

    The vacuum UV photoabsorption spectrum of C 2H 3F has been examined in detail between 6 eV and 25 eV photon energy by using synchrotron radiation. The analysis of the data is supported by ab initio quantum mechanical calculations applied to valence and Rydberg excited states of C 2H 3F. At 7.6 eV the π → π ∗ and the 2a″ → 3s transitions are observed. An analysis is proposed and applied to the mixed fine structure belonging to these transitions. For the π → π ∗ transition one single long vibrational progression is observed with hcω e = 95 ± 7 meV (766 ± 56 cm -1) and its adiabatic excitation energy is 6.892 eV (55 588 cm -1). The 2a″ → 3s transition is characterized by a single short progression with hcω e = 167 ± 10 meV (1350 ± 80 cm -1) starting at 6.974 eV (56 249 cm -1). From the present ab initio calculations these two wavenumbers best correspond to the vibrational modes v9 (CH 2 rock in-plane, FCC-bend) and v6 (CH 2 rock in-plane, CF stretch) calculated at 615 cm -1 in the π ∗ state and 1315 cm -1 in the ( 2A″)3s Rydberg state respectively. The C dbnd C stretching could not be excluded. The dense structured spectrum observed between 8.0 eV and 10.5 eV has been analyzed in terms of vibronic transitions to Rydberg states all converging to the CHF(X˜A) ionic ground state. An analysis of the associated complex fine structure of the individual Rydberg states has been attempted providing average values of the wavenumbers, e.g., for the ( 2A″)3p Rydberg state hcω9 = 60 ± 1 meV (or 484 ± 8 cm -1), hcω7 = 151 ± 7 meV (or 1218 ± 60 cm -1), hcω4 = 191 ± 3 meV (or 1540 ± 24 cm -1). The assignment of hcω = 105 ± 5 meV (or 823 ± 40 cm -1) is discussed. These experimental values are in good agreement with the theoretical predictions for C 2H 3F + [R. Locht, B. Leyh, D. Dehareng, K. Hottmann, H. Baumgärtel, Chem. Phys. (in press)]. Above 10.5 eV and up to 25 eV several broad and strong bands are tentatively assigned to

  12. Quantum theory allows for absolute maximal contextuality

    NASA Astrophysics Data System (ADS)

    Amaral, Barbara; Cunha, Marcelo Terra; Cabello, Adán

    2015-12-01

    Contextuality is a fundamental feature of quantum theory and a necessary resource for quantum computation and communication. It is therefore important to investigate how large contextuality can be in quantum theory. Linear contextuality witnesses can be expressed as a sum S of n probabilities, and the independence number α and the Tsirelson-like number ϑ of the corresponding exclusivity graph are, respectively, the maximum of S for noncontextual theories and for the theory under consideration. A theory allows for absolute maximal contextuality if it has scenarios in which ϑ /α approaches n . Here we show that quantum theory allows for absolute maximal contextuality despite what is suggested by the examination of the quantum violations of Bell and noncontextuality inequalities considered in the past. Our proof is not constructive and does not single out explicit scenarios. Nevertheless, we identify scenarios in which quantum theory allows for almost-absolute-maximal contextuality.

  13. Absolute calibration in vivo measurement systems

    SciTech Connect

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

  14. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record

  15. Absolute photoacoustic thermometry in deep tissue.

    PubMed

    Yao, Junjie; Ke, Haixin; Tai, Stephen; Zhou, Yong; Wang, Lihong V

    2013-12-15

    Photoacoustic thermography is a promising tool for temperature measurement in deep tissue. Here we propose an absolute temperature measurement method based on the dual temperature dependences of the Grüneisen parameter and the speed of sound in tissue. By taking ratiometric measurements at two adjacent temperatures, we can eliminate the factors that are temperature irrelevant but difficult to correct for in deep tissue. To validate our method, absolute temperatures of blood-filled tubes embedded ~9 mm deep in chicken tissue were measured in a biologically relevant range from 28°C to 46°C. The temperature measurement accuracy was ~0.6°C. The results suggest that our method can be potentially used for absolute temperature monitoring in deep tissue during thermotherapy.

  16. Molecular iodine absolute frequencies. Final report

    SciTech Connect

    Sansonetti, C.J.

    1990-06-25

    Fifty specified lines of {sup 127}I{sub 2} were studied by Doppler-free frequency modulation spectroscopy. For each line the classification of the molecular transition was determined, hyperfine components were identified, and one well-resolved component was selected for precise determination of its absolute frequency. In 3 cases, a nearby alternate line was selected for measurement because no well-resolved component was found for the specified line. Absolute frequency determinations were made with an estimated uncertainty of 1.1 MHz by locking a dye laser to the selected hyperfine component and measuring its wave number with a high-precision Fabry-Perot wavemeter. For each line results of the absolute measurement, the line classification, and a Doppler-free spectrum are given.

  17. GW Γ + Bethe-Salpeter equation approach for photoabsorption spectra: Importance of self-consistent GW Γ calculations in small atomic systems

    NASA Astrophysics Data System (ADS)

    Kuwahara, Riichi; Noguchi, Yoshifumi; Ohno, Kaoru

    2016-09-01

    The self-consistent GW Γ method satisfies the Ward-Takahashi identity (i.e., the gauge invariance or the local charge continuity) for arbitrary energy (ω ) and momentum (q ) transfers. Its self-consistent first-principles treatment of the vertex Γ =Γv or ΓW is possible to first order in the bare (v ) or dynamically screened (W ) Coulomb interaction. It is developed within a linearized scheme and combined with the Bethe-Salpeter equation (BSE) to accurately calculate photoabsorption spectra (PAS) and photoemission (or inverse photoemission) spectra (PES) simultaneously. The method greatly improves the PAS of Na, Na3, B2, and C2H2 calculated using the standard one-shot G0W0+BSE method that results in significantly redshifted PAS by 0.8-3.1 eV, although the PES are well reproduced already in G0W0 .

  18. Absolute Stability And Hyperstability In Hilbert Space

    NASA Technical Reports Server (NTRS)

    Wen, John Ting-Yung

    1989-01-01

    Theorems on stabilities of feedback control systems proved. Paper presents recent developments regarding theorems of absolute stability and hyperstability of feedforward-and-feedback control system. Theorems applied in analysis of nonlinear, adaptive, and robust control. Extended to provide sufficient conditions for stability in system including nonlinear feedback subsystem and linear time-invariant (LTI) feedforward subsystem, state space of which is Hilbert space, and input and output spaces having finite numbers of dimensions. (In case of absolute stability, feedback subsystem memoryless and possibly time varying. For hyperstability, feedback system dynamical system.)

  19. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  20. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  1. Teaching Absolute Value Inequalities to Mature Students

    ERIC Educational Resources Information Center

    Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea

    2011-01-01

    This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…

  2. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  3. Increasing Capacity: Practice Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Dodds, Pennie; Donkin, Christopher; Brown, Scott D.; Heathcote, Andrew

    2011-01-01

    In most of the long history of the study of absolute identification--since Miller's (1956) seminal article--a severe limit on performance has been observed, and this limit has resisted improvement even by extensive practice. In a startling result, Rouder, Morey, Cowan, and Pfaltz (2004) found substantially improved performance with practice in the…

  4. Absolute Radiometric Calibration Of The Thematic Mapper

    NASA Astrophysics Data System (ADS)

    Slater, P. N.; Biggar, S. F.; Holm, R. G.; Jackson, R. D.; Mao, Y.; Moran, M. S.; Palmer, J. M.; Yuan, B.

    1986-11-01

    The results are presented of five in-flight absolute radiometric calibrations, made in the period July 1984 to November 1985, at White Sands, New Mexico, of the solar reflective bands of the Landsat-5 Thematic Mapper (TM) . The 23 bandcalibrations made on the five dates show a ± 2.8% RMS variation from the mean as a percentage of the mean.

  5. On Relative and Absolute Conviction in Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2015-01-01

    Conviction is a central construct in mathematics education research on justification and proof. In this paper, we claim that it is important to distinguish between absolute conviction and relative conviction. We argue that researchers in mathematics education frequently have not done so and this has lead to researchers making unwarranted claims…

  6. Pleiades Absolute Calibration : Inflight Calibration Sites and Methodology

    NASA Astrophysics Data System (ADS)

    Lachérade, S.; Fourest, S.; Gamet, P.; Lebègue, L.

    2012-07-01

    In-flight calibration of space sensors once in orbit is a decisive step to be able to fulfil the mission objectives. This article presents the methods of the in-flight absolute calibration processed during the commissioning phase. Four In-flight calibration methods are used: absolute calibration, cross-calibration with reference sensors such as PARASOL or MERIS, multi-temporal monitoring and inter-bands calibration. These algorithms are based on acquisitions over natural targets such as African deserts, Antarctic sites, La Crau (Automatic calibration station) and Oceans (Calibration over molecular scattering) or also new extra-terrestrial sites such as the Moon and selected stars. After an overview of the instrument and a description of the calibration sites, it is pointed out how each method is able to address one or several aspects of the calibration. We focus on how these methods complete each other in their operational use, and how they help building a coherent set of information that addresses all aspects of in-orbit calibration. Finally, we present the perspectives that the high level of agility of PLEIADES offers for the improvement of its calibration and a better characterization of the calibration sites.

  7. Self-consistent calculation of nuclear photoabsorption cross sections: Finite amplitude method with Skyrme functionals in the three-dimensional real space

    NASA Astrophysics Data System (ADS)

    Inakura, Tsunenori; Nakatsukasa, Takashi; Yabana, Kazuhiro

    2009-10-01

    The finite amplitude method (FAM), which we have recently proposed [T. Nakatsukasa, T. Inakura, and K. Yabana, Phys. Rev. C 76, 024318 (2007)], significantly simplifies the fully self-consistent calculation of the random-phase approximation (RPA). This article presents a computational scheme of FAM suitable for systematic investigation and shows its performance for realistic Skyrme energy functionals. We adopt the mixed representation in which the forward and backward RPA amplitudes are represented by index of hole orbitals and of the spatial grid points for the three-dimensional real space. We solve a linear algebraic problem with a sparse non-Hermitian matrix, using an iterative method. We show results of the dipole response for selected spherical and deformed nuclei. The calculated peak energies of the giant dipole resonance well agree with experiments for heavy nuclei. However, they are systematically underestimated for light nuclei. We also discuss the width of the giant dipole resonance in the fully self-consistent RPA calculation.

  8. Upgrade of absolute extreme ultraviolet diagnostic on J-TEXT

    SciTech Connect

    Zhang, X. L.; Cheng, Z. F. Hou, S. Y.; Zhuang, G.; Luo, J.

    2014-11-15

    The absolute extreme ultraviolet (AXUV) diagnostic system is used for radiation observation on J-TEXT tokamak [J. Zhang, G. Zhuang, Z. J. Wang, Y. H. Ding, X. Q. Zhang, and Y. J. Tang, Rev. Sci. Instrum. 81, 073509 (2010)]. The upgrade of the AXUV system is aimed to improve the spatial resolution and provide a three-dimensional image on J-TEXT. The new system consists of 12 AXUV arrays (4 AXUV16ELG arrays, 8 AXUV20ELG arrays). The spatial resolution in the cross-section is 21 mm for the AXUV16ELG arrays and 17 mm for the AXUV20ELG arrays. The pre-amplifier is also upgraded for a higher signal to noise ratio. By upgrading the AXUV imaging system, a more accurate observation on the radiation information is obtained.

  9. A three-axis SQUID-based absolute vector magnetometer

    SciTech Connect

    Schönau, T.; Schmelz, M.; Stolz, R.; Anders, S.; Linzen, S.; Meyer, H.-G.; Zakosarenko, V.; Meyer, M.

    2015-10-15

    We report on the development of a three-axis absolute vector magnetometer suited for mobile operation in the Earth’s magnetic field. It is based on low critical temperature dc superconducting quantum interference devices (LTS dc SQUIDs) with sub-micrometer sized cross-type Josephson junctions and exhibits a white noise level of about 10 fT/Hz{sup 1/2}. The width of superconducting strip lines is restricted to less than 6 μm in order to avoid flux trapping during cool-down in magnetically unshielded environment. The long-term stability of the flux-to-voltage transfer coefficients of the SQUID electronics is investigated in detail and a method is presented to significantly increase their reproducibility. We further demonstrate the long-term operation of the setup in a magnetic field varying by about 200 μT amplitude without the need for recalibration.

  10. Landsat-5 TM reflective-band absolute radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Markham, B.L.; Dewald, J.D.; Kaita, E.; Thome, K.J.; Micijevic, E.; Ruggles, T.A.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) sensor provides the longest running continuous dataset of moderate spatial resolution remote sensing imagery, dating back to its launch in March 1984. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset of each detector. Due to observed degradations in the IC, a new procedure was implemented for U.S.-processed data in May 2003. This new calibration procedure is based on a lifetime radiometric calibration model for the instrument's reflective bands (1-5 and 7) and is derived, in part, from the IC response without the related degradation effects and is tied to the cross calibration with the Landsat-7 Enhanced Thematic Mapper Plus. Reflective-band absolute radiometric accuracy of the instrument tends to be on the order of 7% to 10%, based on a variety of calibration methods.

  11. A three-axis SQUID-based absolute vector magnetometer.

    PubMed

    Schönau, T; Zakosarenko, V; Schmelz, M; Stolz, R; Anders, S; Linzen, S; Meyer, M; Meyer, H-G

    2015-10-01

    We report on the development of a three-axis absolute vector magnetometer suited for mobile operation in the Earth's magnetic field. It is based on low critical temperature dc superconducting quantum interference devices (LTS dc SQUIDs) with sub-micrometer sized cross-type Josephson junctions and exhibits a white noise level of about 10 fT/Hz(1/2). The width of superconducting strip lines is restricted to less than 6 μm in order to avoid flux trapping during cool-down in magnetically unshielded environment. The long-term stability of the flux-to-voltage transfer coefficients of the SQUID electronics is investigated in detail and a method is presented to significantly increase their reproducibility. We further demonstrate the long-term operation of the setup in a magnetic field varying by about 200 μT amplitude without the need for recalibration.

  12. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  13. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum. PMID:25423049

  14. Absolute radiometry and the solar constant

    NASA Technical Reports Server (NTRS)

    Willson, R. C.

    1974-01-01

    A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).

  15. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  16. Impact of Winko on absolute discharges.

    PubMed

    Balachandra, Krishna; Swaminath, Sam; Litman, Larry C

    2004-01-01

    In Canada, case laws have had a significant impact on the way mentally ill offenders are managed, both in the criminal justice system and in the forensic mental health system. The Supreme Court of Canada's decision with respect to Winko has set a major precedent in the application of the test of significant risk to the safety of the public in making dispositions by the Ontario Review Board and granting absolute discharges to the mentally ill offenders in the forensic health system. Our study examines the impact of the Supreme Court of Canada's decision before and after Winko. The results show that the numbers of absolute discharges have increased post-Winko, which was statistically significant, but there could be other factors influencing this increase.

  17. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  18. Absolute-magnitude distributions of supernovae

    SciTech Connect

    Richardson, Dean; Wright, John; Jenkins III, Robert L.; Maddox, Larry

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  19. Absolute and relative dosimetry for ELIMED

    SciTech Connect

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  20. Relative errors can cue absolute visuomotor mappings.

    PubMed

    van Dam, Loes C J; Ernst, Marc O

    2015-12-01

    When repeatedly switching between two visuomotor mappings, e.g. in a reaching or pointing task, adaptation tends to speed up over time. That is, when the error in the feedback corresponds to a mapping switch, fast adaptation occurs. Yet, what is learned, the relative error or the absolute mappings? When switching between mappings, errors with a size corresponding to the relative difference between the mappings will occur more often than other large errors. Thus, we could learn to correct more for errors with this familiar size (Error Learning). On the other hand, it has been shown that the human visuomotor system can store several absolute visuomotor mappings (Mapping Learning) and can use associated contextual cues to retrieve them. Thus, when contextual information is present, no error feedback is needed to switch between mappings. Using a rapid pointing task, we investigated how these two types of learning may each contribute when repeatedly switching between mappings in the absence of task-irrelevant contextual cues. After training, we examined how participants changed their behaviour when a single error probe indicated either the often-experienced error (Error Learning) or one of the previously experienced absolute mappings (Mapping Learning). Results were consistent with Mapping Learning despite the relative nature of the error information in the feedback. This shows that errors in the feedback can have a double role in visuomotor behaviour: they drive the general adaptation process by making corrections possible on subsequent movements, as well as serve as contextual cues that can signal a learned absolute mapping. PMID:26280315

  1. The absolute spectrophotometric catalog by Anita Cochran

    NASA Astrophysics Data System (ADS)

    Burnashev, V. I.; Burnasheva, B. A.; Ruban, E. V.; Hagen-Torn, E. I.

    2014-06-01

    The absolute spectrophotometric catalog by Anita Cochran is presented in a machine-readable form. The catalog systematizes observations acquired at the McDonald Observatory in 1977-1978. The data are compared with other sources, in particular, the calculated broadband stellar magnitudes are compared with photometric observations by other authors, to show that the observational data given in the catalog are reliable and suitable for a variety of applications. Observations of variable stars of different types make Cochran's catalog especially valuable.

  2. Absolute magnitudes and kinematics of barium stars.

    NASA Astrophysics Data System (ADS)

    Gomez, A. E.; Luri, X.; Grenier, S.; Prevot, L.; Mennessier, M. O.; Figueras, F.; Torra, J.

    1997-03-01

    The absolute magnitude of barium stars has been obtained from kinematical data using a new algorithm based on the maximum-likelihood principle. The method allows to separate a sample into groups characterized by different mean absolute magnitudes, kinematics and z-scale heights. It also takes into account, simultaneously, the censorship in the sample and the errors on the observables. The method has been applied to a sample of 318 barium stars. Four groups have been detected. Three of them show a kinematical behaviour corresponding to disk population stars. The fourth group contains stars with halo kinematics. The luminosities of the disk population groups spread a large range. The intrinsically brightest one (M_v_=-1.5mag, σ_M_=0.5mag) seems to be an inhomogeneous group containing barium binaries as well as AGB single stars. The most numerous group (about 150 stars) has a mean absolute magnitude corresponding to stars in the red giant branch (M_v_=0.9mag, σ_M_=0.8mag). The third group contains barium dwarfs, the obtained mean absolute magnitude is characteristic of stars on the main sequence or on the subgiant branch (M_v_=3.3mag, σ_M_=0.5mag). The obtained mean luminosities as well as the kinematical results are compatible with an evolutionary link between barium dwarfs and classical barium giants. The highly luminous group is not linked with these last two groups. More high-resolution spectroscopic data will be necessary in order to better discriminate between barium and non-barium stars.

  3. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound. PMID:20070087

  4. Measurement of absolute gravity acceleration in Firenze

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  5. A Methodology for Absolute Isotope Composition Measurement

    NASA Astrophysics Data System (ADS)

    Shen, J. J.; Lee, D.; Liang, W.

    2007-12-01

    Double spike technique was a well defined method for isotope composition measurement by TIMS of samples which have natural mass fractionation effect, but it is still a problem to define the isotope composition for double spike itself. In this study, we modified the old double spike technique and found that we could use the modified technique to solve the ¡§true¡¨ isotope composition of double spike itself. According the true isotope composition of double spike, we can measure the absolute isotope composition if the sample has natural fractionation effect. A new vector analytical method has been developed in order to obtain the true isotopic composition of a 42Ca-48Ca double spike, and this is achieved by using two different sample-spike mixtures combined with the double spike and the natural Ca data. Because the natural sample, the two mixtures, and the spike should all lie on a single mixing line, we are able to constrain the true isotopic composition of our double spike using this new approach. This method not only can be used in Ca system but also in Ti, Cr, Fe, Ni, Zn, Mo, Ba and Pb systems. The absolute double spike isotopic ratio is important, which can save a lot of time to check different reference standards. Especially for Pb, radiogenic isotope system, the decay systems embodied in three of four naturally occurring isotopes induce difficult to obtain true isotopic ratios for absolute dating.

  6. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound.

  7. The Carina Project: Absolute and Relative Calibrations

    NASA Astrophysics Data System (ADS)

    Corsi, C. E.; Bono, G.; Walker, A. R.; Brocato, E.; Buonanno, R.; Caputo, F.; Castellani, M.; Castellani, V.; Dall'Ora, M.; Marconi, M.; Monelli, M.; Nonino, M.; Pulone, L.; Ripepi, V.; Smith, H. A.

    We discuss the reduction strategy adopted to perform the relative and the absolute calibration of the Wide Field Imager (WFI) available at the 2.2m ESO/MPI telescope and of the Mosaic Camera (MC) available at the 4m CTIO Blanco telescope. To properly constrain the occurrence of deceptive systematic errors in the relative calibration we observed with each chip the same set of stars. Current photometry seems to suggest that the WFI shows a positional effect when moving from the top to the bottom of individual chips. Preliminary results based on an independent data set collected with the MC suggest that this camera is only marginally affected by the same problem. To perform the absolute calibration we observed with each chip the same set of standard stars. The sample covers a wide color range and the accuracy both in the B and in the V-band appears to be of the order of a few hundredths of magnitude. Finally, we briefly outline the observing strategy to improve both relative and absolute calibrations of mosaic CCD cameras.

  8. 4d → 4f resonance in photoabsorption of cerium ion Ce3+ and endohedral cerium in fullerene complex {\\rm{Ce}}@{{{\\rm{C}}}_{82}}^{+}

    NASA Astrophysics Data System (ADS)

    Schrange-Kashenock, G.

    2016-09-01

    The theoretical investigation of the single-photoionization spectra in the 4d-resonance region (120-150 eV) for the ionic cerium Ce3+ and cerium in the endohedral complex {{Ce}}@{{{{C}}}82}+ (in practice, {{{Ce}}}3+@{{{{C}}}82}2-) is presented. The fullerene cage is modeled by ab initio spherical jellium shell with an accurate account for the real distribution of carbon electron density. The oscillator strengths are calculated within the multiconfiguration Dirac-Fock (MCDF) approach for phototransitions from the outermost shells of the ion Ce3+ with and without the influence of the potential generated by a fullerene cage. It is shown that the integrated oscillator strengths have the main contribution from the Ce3+ 4d → 4f (ten possible from the phototransitions {}2F{7/2,5/2}\\to {}2D{3/2,5/2},{}2F{5/2,7/2},{}2G{5/2,7/2}) resonance photoexcitations. The corresponding precise MCDF values for the oscillator strengths and the transition energies are presented for the first time. It is demonstrated that the resonance {f}4d\\to 4f oscillator strengths are slightly affected by the presence of the cage potential, despite the fact that the spectral levels structure is changed when the effect of this potential is included. The Auger 4d -1 decay from the cerium free ion Ce3+ and the encapsulated endohedral ion Ce3+@ are considered within the two-step model and the corresponding Lorentzian profiles are presented. This model clearly reveals the correspondence of the complex resonance profile in the Ce3+ photoabsorption to the fine structure of ion energy levels. The smoothing of the resonance profile in the photoabsorption of the endohedral system {{Ce}}@{{{{C}}}82}+ compared with the free ion Ce3+ is attributed to increasing the linewidths of the Auger transitions. This increase is estimated from the relevant experiment (Müller et al 2008 Phys. Rev. Lett. 101 133001) to be strong; as at least three times the value for an isolated ion. The presence of the confining fullerene

  9. 4d → 4f resonance in photoabsorption of cerium ion Ce3+ and endohedral cerium in fullerene complex {\\rm{Ce}}@{{{\\rm{C}}}_{82}}^{+}

    NASA Astrophysics Data System (ADS)

    Schrange-Kashenock, G.

    2016-09-01

    The theoretical investigation of the single-photoionization spectra in the 4d-resonance region (120–150 eV) for the ionic cerium Ce3+ and cerium in the endohedral complex {{Ce}}@{{{{C}}}82}+ (in practice, {{{Ce}}}3+@{{{{C}}}82}2-) is presented. The fullerene cage is modeled by ab initio spherical jellium shell with an accurate account for the real distribution of carbon electron density. The oscillator strengths are calculated within the multiconfiguration Dirac–Fock (MCDF) approach for phototransitions from the outermost shells of the ion Ce3+ with and without the influence of the potential generated by a fullerene cage. It is shown that the integrated oscillator strengths have the main contribution from the Ce3+ 4d → 4f (ten possible from the phototransitions {}2F{7/2,5/2}\\to {}2D{3/2,5/2},{}2F{5/2,7/2},{}2G{5/2,7/2}) resonance photoexcitations. The corresponding precise MCDF values for the oscillator strengths and the transition energies are presented for the first time. It is demonstrated that the resonance {f}4d\\to 4f oscillator strengths are slightly affected by the presence of the cage potential, despite the fact that the spectral levels structure is changed when the effect of this potential is included. The Auger 4d ‑1 decay from the cerium free ion Ce3+ and the encapsulated endohedral ion Ce3+@ are considered within the two-step model and the corresponding Lorentzian profiles are presented. This model clearly reveals the correspondence of the complex resonance profile in the Ce3+ photoabsorption to the fine structure of ion energy levels. The smoothing of the resonance profile in the photoabsorption of the endohedral system {{Ce}}@{{{{C}}}82}+ compared with the free ion Ce3+ is attributed to increasing the linewidths of the Auger transitions. This increase is estimated from the relevant experiment (Müller et al 2008 Phys. Rev. Lett. 101 133001) to be strong; as at least three times the value for an isolated ion. The presence of the confining

  10. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  11. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  12. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  13. Absolute calibration of the Auger fluorescence detectors

    SciTech Connect

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  14. Absolute rate theories of epigenetic stability

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.; Onuchic, José N.; Wolynes, Peter G.

    2005-12-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape and the transmission factor depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic, and strictly adiabatic regimes, characterized by the relative values of those input rates. rate theory | stochastic gene expression | gene switches

  15. Characterization of the DARA solar absolute radiometer

    NASA Astrophysics Data System (ADS)

    Finsterle, W.; Suter, M.; Fehlmann, A.; Kopp, G.

    2011-12-01

    The Davos Absolute Radiometer (DARA) prototype is an Electrical Substitution Radiometer (ESR) which has been developed as a successor of the PMO6 type on future space missions and ground based TSI measurements. The DARA implements an improved thermal design of the cavity detector and heat sink assembly to minimize air-vacuum differences and to maximize thermal symmetry of measuring and compensating cavity. The DARA also employs an inverted viewing geometry to reduce internal stray light. We will report on the characterization and calibration experiments which were carried out at PMOD/WRC and LASP (TRF).

  16. Absolute Priority for a Vehicle in VANET

    NASA Astrophysics Data System (ADS)

    Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad

    In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.

  17. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  18. Photoabsorption of the ground state of Ne and of Ne-like Na+, Mg2+, Al3+, Si4+, P5+, S6+, and Cl7+ ions

    NASA Astrophysics Data System (ADS)

    Sakho, I.

    2016-03-01

    Photoabsorption of the 1s2 2s2 2p6 (1S0) ground state of Ne-like ions is presented in this paper. Resonance energies and width of the 2 s 2p6 n p1P1 series of Ne and Ne-like Na+, Mg2+, Al3+, Si4+, P5+, S6+, and Cl7+ ions are reported. Wavelengths of the 2s2 2p6 (1S0) → 2s2 2p5(2P 3 / 2 , 1 / 2) n d transitions in neon-like Na+ ion and of the 2s2 2p6(1S0) → 2 s 2p6 n p1P1 transitions in Ne and in Ne-like Na+, Mg2+, Al3+, Si4+, P5+, S6+, and Cl7+ ions are tabulated. Analysis of the resonances investigated is done in the framework of the LS, jj and JK coupling schemes. All the calculations are made using the Screening constant by unit nuclear charge (SCUNC) formalism. Very good agreement is found between the SCUNC results and various experimental and theoretical literature values and new data for the Ne-like Si4+, P5+, S6+, and Cl7+ ions are listed.

  19. Simultaneously promoting charge separation and photoabsorption of BiOX (X = Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar

    NASA Astrophysics Data System (ADS)

    Li, Min; Huang, Hongwei; Yu, Shixin; Tian, Na; Dong, Fan; Du, Xin; Zhang, Yihe

    2016-11-01

    Exploration of novel and efficient composite photocatalysts is of great significance for advancing the practical application of photocatalysis. BiOX (X = Cl, Br) is a kind of promising photocatalysts, but the charge separation efficiency and photoabsorption need to be ameliorated. In this work, we first employ a low-cost and easily accessable carbon material biochar to modify BiOX (X = Cl, Br) and develop biochar/BiOX (X = Cl, Br) composite photocatalysts via a facile in-situ deposition method. The as-prepared composites are detailedly characterized by SEM, SEM-mapping, TEM, XRD and XPS, and DRS result demonstrates that the visible-light absorption of BiOX (X = Cl, Br) catalysts can be exceedingly enhanced by biochar. The biochar/BiOX (X = Cl, Br) composites are found to unfold remarkably enhanced visible-light-driven photocatalytic activity toward degradation of MO and photocurrent generation. The strengthened photocatalytic performance mainly stems from the profoundly improved charge separation and delivery efficiency, as evidenced by the electrochemical impedance spectra (EIS), photoluminescence (PL), and time-resolved PL decay spectra. Additionally, the biochar exerts importance in enhancing the two different types of photochemical reactions of BiOBr and BiOCl, in which the photocatalytic mechanisms are found to be photocatalysis and photosensitization process, respectively. The present work may open up a new avenue for framing economic and efficient photocatalytic materials and new composite materials for photoelectric application.

  20. Sentinel-2/MSI absolute calibration: first results

    NASA Astrophysics Data System (ADS)

    Lonjou, V.; Lachérade, S.; Fougnie, B.; Gamet, P.; Marcq, S.; Raynaud, J.-L.; Tremas, T.

    2015-10-01

    Sentinel-2 is an optical imaging mission devoted to the operational monitoring of land and coastal areas. It is developed in partnership between the European Commission and the European Space Agency. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. It will offer a unique combination of global coverage with a wide field of view (290km), a high revisit (5 days with two satellites), a high resolution (10m, 20m and 60m) and multi-spectral imagery (13 spectral bands in visible and shortwave infra-red domains). CNES is involved in the instrument commissioning in collaboration with ESA. This paper reviews all the techniques that will be used to insure an absolute calibration of the 13 spectral bands better than 5% (target 3%), and will present the first results if available. First, the nominal calibration technique, based on an on-board sun diffuser, is detailed. Then, we show how vicarious calibration methods based on acquisitions over natural targets (oceans, deserts, and Antarctica during winter) will be used to check and improve the accuracy of the absolute calibration coefficients. Finally, the verification scheme, exploiting photometer in-situ measurements over Lacrau plain, is described. A synthesis, including spectral coherence, inter-methods agreement and temporal evolution, will conclude the paper.

  1. Experimental results for absolute cylindrical wavefront testing

    NASA Astrophysics Data System (ADS)

    Reardon, Patrick J.; Alatawi, Ayshah

    2014-09-01

    Applications for Cylindrical and near-cylindrical surfaces are ever-increasing. However, fabrication of high quality cylindrical surfaces is limited by the difficulty of accurate and affordable metrology. Absolute testing of such surfaces represents a challenge to the optical testing community as cylindrical reference wavefronts are difficult to produce. In this paper, preliminary results for a new method of absolute testing of cylindrical wavefronts are presented. The method is based on the merging of the random ball test method with the fiber optic reference test. The random ball test assumes a large number of interferograms of a good quality sphere with errors that are statistically distributed such that the average of the errors goes to zero. The fiber optic reference test utilizes a specially processed optical fiber to provide a clean high quality reference wave from an incident line focus from the cylindrical wave under test. By taking measurements at different rotation and translations of the fiber, an analogous procedure can be employed to determine the quality of the converging cylindrical wavefront with high accuracy. This paper presents and discusses the results of recent tests of this method using a null optic formed by a COTS cylindrical lens and a free-form polished corrector element.

  2. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  3. Why to compare absolute numbers of mitochondria.

    PubMed

    Schmitt, Sabine; Schulz, Sabine; Schropp, Eva-Maria; Eberhagen, Carola; Simmons, Alisha; Beisker, Wolfgang; Aichler, Michaela; Zischka, Hans

    2014-11-01

    Prompted by pronounced structural differences between rat liver and rat hepatocellular carcinoma mitochondria, we suspected these mitochondrial populations to differ massively in their molecular composition. Aiming to reveal these mitochondrial differences, we came across the issue on how to normalize such comparisons and decided to focus on the absolute number of mitochondria. To this end, fluorescently stained mitochondria were quantified by flow cytometry. For rat liver mitochondria, this approach resulted in mitochondrial protein contents comparable to earlier reports using alternative methods. We determined similar protein contents for rat liver, heart and kidney mitochondria. In contrast, however, lower protein contents were determined for rat brain mitochondria and for mitochondria from the rat hepatocellular carcinoma cell line McA 7777. This result challenges mitochondrial comparisons that rely on equal protein amounts as a typical normalization method. Exemplarily, we therefore compared the activity and susceptibility toward inhibition of complex II of rat liver and hepatocellular carcinoma mitochondria and obtained significant discrepancies by either normalizing to protein amount or to absolute mitochondrial number. Importantly, the latter normalization, in contrast to the former, demonstrated a lower complex II activity and higher susceptibility toward inhibition in hepatocellular carcinoma mitochondria compared to liver mitochondria. These findings demonstrate that solely normalizing to protein amount may obscure essential molecular differences between mitochondrial populations.

  4. Absolute Proper Motions of Southern Globular Clusters

    NASA Astrophysics Data System (ADS)

    Dinescu, D. I.; Girard, T. M.; van Altena, W. F.

    1996-05-01

    Our program involves the determination of absolute proper motions with respect to galaxies for a sample of globular clusters situated in the southern sky. The plates cover a 6(deg) x 6(deg) area and are taken with the 51-cm double astrograph at Cesco Observatory in El Leoncito, Argentina. We have developed special methods to deal with the modelling error of the plate transformation and we correct for magnitude equation using the cluster stars. This careful astrometric treatment leads to accuracies of from 0.5 to 1.0 mas/yr for the absolute proper motion of each cluster, depending primarily on the number of measurable cluster stars which in turn is related to the cluster's distance. Space velocities are then derived which, in association with metallicities, provide key information for the formation scenario of the Galaxy, i.e. accretion and/or dissipational collapse. Here we present results for NGC 1851, NGC 6752, NGC 6584, NGC 6362 and NGC 288.

  5. Relational versus absolute representation in categorization.

    PubMed

    Edwards, Darren J; Pothos, Emmanuel M; Perlman, Amotz

    2012-01-01

    This study explores relational-like and absolute-like representations in categorization. Although there is much evidence that categorization processes can involve information about both the particular physical properties of studied instances and abstract (relational) properties, there has been little work on the factors that lead to one kind of representation as opposed to the other. We tested 370 participants in 6 experiments, in which participants had to classify new items into predefined artificial categories. In 4 experiments, we observed a predominantly relational-like mode of classification, and in 2 experiments we observed a shift toward an absolute-like mode of classification. These results suggest 3 factors that promote a relational-like mode of classification: fewer items per group, more training groups, and the presence of a time delay. Overall, we propose that less information about the distributional properties of a category or weaker memory traces for the category exemplars (induced, e.g., by having smaller categories or a time delay) can encourage relational-like categorization.

  6. Transient absolute robustness in stochastic biochemical networks.

    PubMed

    Enciso, German A

    2016-08-01

    Absolute robustness allows biochemical networks to sustain a consistent steady-state output in the face of protein concentration variability from cell to cell. This property is structural and can be determined from the topology of the network alone regardless of rate parameters. An important question regarding these systems is the effect of discrete biochemical noise in the dynamical behaviour. In this paper, a variable freezing technique is developed to show that under mild hypotheses the corresponding stochastic system has a transiently robust behaviour. Specifically, after finite time the distribution of the output approximates a Poisson distribution, centred around the deterministic mean. The approximation becomes increasingly accurate, and it holds for increasingly long finite times, as the total protein concentrations grow to infinity. In particular, the stochastic system retains a transient, absolutely robust behaviour corresponding to the deterministic case. This result contrasts with the long-term dynamics of the stochastic system, which eventually must undergo an extinction event that eliminates robustness and is completely different from the deterministic dynamics. The transiently robust behaviour may be sufficient to carry out many forms of robust signal transduction and cellular decision-making in cellular organisms. PMID:27581485

  7. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  8. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  9. Landsat-7 ETM+ radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Barker, J.L.; Barsi, J.A.; Kaita, E.; Thome, K.J.; Helder, D.L.; Palluconi, Frank Don; Schott, J.R.; Scaramuzza, P.; ,

    2002-01-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than ??1%, reflective band absolute calibration to better than ??5%, and thermal band absolute calibration to better than ??0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m 2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of ??0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  10. Landsat-7 ETM+ radiometric stability and absolute calibration

    NASA Astrophysics Data System (ADS)

    Markham, Brian L.; Barker, John L.; Barsi, Julia A.; Kaita, Ed; Thome, Kurtis J.; Helder, Dennis L.; Palluconi, Frank D.; Schott, John R.; Scaramuzza, Pat

    2003-04-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than +/-1%, reflective band absolute calibration to better than +/-5%, and thermal band absolute calibration to better than +/- 0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of +/- 0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  11. The Absolute Radiometric Calibration of Space - Sensors.

    NASA Astrophysics Data System (ADS)

    Holm, Ronald Gene

    1987-09-01

    The need for absolute radiometric calibration of space-based sensors will continue to increase as new generations of space sensors are developed. A reflectance -based in-flight calibration procedure is used to determine the radiance reaching the entrance pupil of the sensor. This procedure uses ground-based measurements coupled with a radiative transfer code to characterize the effects the atmosphere has on the signal reaching the sensor. The computed radiance is compared to the digital count output of the sensor associated with the image of a test site. This provides an update to the preflight calibration of the system and a check on the on-board internal calibrator. This calibration procedure was used to perform a series of five calibrations of the Landsat-5 Thematic Mapper (TM). For the 12 measurements made in TM bands 1-3, the RMS variation from the mean as a percentage of the mean is (+OR-) 1.9%, and for measurements in the IR, TM bands 4,5, and 7, the value is (+OR-) 3.4%. The RMS variation for all 23 measurements is (+OR-) 2.8%. The absolute calibration techniques were put to another test with a series of three calibration of the SPOT-1 High Resolution Visible, (HRV), sensors. The ratio, HRV-2/HRV-1, of absolute calibration coefficients compared very well with ratios of histogrammed data obtained when the cameras simultaneously imaged the same ground site. Bands PA, B1 and B3 agreed to within 3%, while band B2 showed a 7% difference. The procedure for performing a satellite calibration was then used to demonstrate how a calibrated satellite sensor can be used to quantitatively evaluate surface reflectance over a wide range of surface features. Predicted reflectance factors were compared to values obtained from aircraft -based radiometer data. This procedure was applied on four dates with two different surface conditions per date. A strong correlation, R('2) = .996, was shown between reflectance values determined from satellite imagery and low-flying aircraft

  12. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  13. High precision absolute distance measurement with the fiber femtosecond optical frequency comb

    NASA Astrophysics Data System (ADS)

    Guo, Jiashuai; Wu, Tengfei; Liang, Zhiguo; Wang, Yu; Han, Jibo

    2016-01-01

    The absolute distance measurement was experimentally demonstrated by using the fiber femtosecond optical frequency comb in air. The technique is based on the measurement of cross correlation between reference and measurement optical pulses. This method can achieve accuracy better than the commercial laser interferometer. It is attained sub-micrometer resolution in large scale measurement by using the fiber femtosecond optical frequency comb. It will be benefit for future laser lidar and satellite formation flying mission.

  14. Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases

    SciTech Connect

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; Di Giulio, C.; Luis, P.Facal San; Gonzales, D.; Hojvat, C.; Horandel, J.R.; Hrabovsky, M.; Iarlori, M.; /INFN, Aquila /Karlsruhe, Inst. Technol.

    2011-01-01

    We have performed a measurement of the absolute yield of fluorescence photons at the Fermilab Test Beam. A systematic uncertainty at 5% level was achieved by the use of Cherenkov radiation as a reference calibration light source. A cross-check was performed by an independent calibration using a laser light source. A significant improvement on the energy scale uncertainty of Ultra-High Energy Cosmic Rays is expected.

  15. Energy dispersive X-ray analysis on an absolute scale in scanning transmission electron microscopy.

    PubMed

    Chen, Z; D'Alfonso, A J; Weyland, M; Taplin, D J; Allen, L J; Findlay, S D

    2015-10-01

    We demonstrate absolute scale agreement between the number of X-ray counts in energy dispersive X-ray spectroscopy using an atomic-scale coherent electron probe and first-principles simulations. Scan-averaged spectra were collected across a range of thicknesses with precisely determined and controlled microscope parameters. Ionization cross-sections were calculated using the quantum excitation of phonons model, incorporating dynamical (multiple) electron scattering, which is seen to be important even for very thin specimens.

  16. Inverse bremsstrahlung cross section estimated within evolving plasmas using effective ion potentials

    NASA Astrophysics Data System (ADS)

    Wang, F.; Weckert, E.; Ziaja, B.

    2009-06-01

    We estimate the total cross sections for field-stimulated photoemissions and photoabsorptions by quasi-free electrons within a non-equilibrium plasma evolving from the strong coupling to the weak coupling regime. Such a transition may occur within laser-created plasmas, when the initially created plasma is cold but the heating of the plasma by the laser field is efficient. In particular, such a transition may occur within plasmas created by intense vacuum ultraviolet (VUV) radiation from a free-electron laser (FEL) as indicated by the results of the first experiments performed by Wabnitz at the FLASH facility at DESY. In order to estimate the inverse bremsstrahlung cross sections, we use point-like and effective atomic potentials. For ions modelled as point-like charges, the total cross sections are strongly affected by the changing plasma environment. The maximal change of the cross sections may be of the order of 75 at the change of the plasma parameters: inverse Debye length, κ, in the range κ = 0 - 3 Å-1 and the electron density, ρe, in the range ρe = 0.01 - 1 Å-3. These ranges correspond to the physical conditions within the plasmas created during the first cluster experiments performed at the FLASH facility at DESY. In contrast, for the effective atomic potentials the total cross sections for photoemission and photoabsorption change only by a factor of seven at most in the same plasma parameter range. Our results show that the inverse bremsstrahlung cross section estimated with the effective atomic potentials is not affected much by the plasma environment. This observation validates the estimations of the enhanced heating effect obtained by Walters, Santra and Greene. This is important as this effect may be responsible for the high-energy absorption within clusters irradiated with VUV radiation.

  17. Absolute radiometric calibration of the CCRS SAR

    NASA Astrophysics Data System (ADS)

    Ulander, Lars M. H.; Hawkins, Robert K.; Livingstone, Charles E.; Lukowski, Tom I.

    1991-11-01

    Determining the radar scattering coefficients from SAR (synthetic aperture radar) image data requires absolute radiometric calibration of the SAR system. The authors describe an internal calibration methodology for the airborne Canada Centre for Remote Sensing (CCRS) SAR system, based on radar theory, a detailed model of the radar system, and measurements of system parameters. The methodology is verified by analyzing external calibration data acquired over a 6-month period in 1988 by the C-band radar using HH polarization. The results indicate that the overall error is +/- 0.8 dB (1-sigma) for incidence angles +/- 20 deg from antenna boresight. The dominant error contributions are due to the antenna radome and uncertainties in the elevation angle relative to the antenna boresight.

  18. Absolute calibration of ultraviolet filter photometry

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Fairchild, T.; Code, A. D.

    1972-01-01

    The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.

  19. Absolute measurements of fast neutrons using yttrium

    SciTech Connect

    Roshan, M. V.; Springham, S. V.; Rawat, R. S.; Lee, P.; Krishnan, M.

    2010-08-15

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f{sub n}{approx}4.1x10{sup -4} with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10{sup 8} neutrons per discharge.

  20. Absolute geostrophic currents in global tropical oceans

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Yuan, Dongliang

    2016-11-01

    A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.

  1. Absolute Measurement of Electron Cloud Density

    SciTech Connect

    Covo, M K; Molvik, A W; Cohen, R H; Friedman, A; Seidl, P A; Logan, G; Bieniosek, F; Baca, D; Vay, J; Orlando, E; Vujic, J L

    2007-06-21

    Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 {micro}s duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.

  2. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  3. Absolute calibration of remote sensing instruments

    NASA Astrophysics Data System (ADS)

    Biggar, S. F.; Bruegge, C. J.; Capron, B. A.; Castle, K. R.; Dinguirard, M. C.; Holm, R. G.; Lingg, L. J.; Mao, Y.; Palmer, J. M.; Phillips, A. L.

    1985-12-01

    Source-based and detector-based methods for the absolute radiometric calibration of a broadband field radiometer are described. Using such a radiometer, calibrated by both methods, the calibration of the integrating sphere used in the preflight calibration of the Thematic Mapper was redetermined. The results are presented. The in-flight calibration of space remote sensing instruments is discussed. A method which uses the results of ground-based reflectance and atmospheric measurements as input to a radiative transfer code to predict the radiance at the instrument is described. A calibrated, helicopter-mounted radiometer is used to determine the radiance levels at intermediate altitudes to check the code predictions. Results of such measurements for the calibration of the Thematic Mapper on Landsat 5 and an analysis that shows the value of such measurements are described.

  4. Absolute radiometric calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Biggar, S. F.; Holm, R. G.; Jackson, R. D.; Mao, Y.

    1986-01-01

    Calibration data for the solar reflective bands of the Landsat-5 TM obtained from five in-flight absolute radiometric calibrations from July 1984-November 1985 at White Sands, New Mexico are presented and analyzed. Ground reflectance and atmospheric data were utilized to predict the spectral radiance at the entrance pupil of the TM and the average number of digital counts in each TM band. The calibration of each of the TM solar reflective bands was calculated in terms of average digital counts/unit spectral radiance for each band. It is observed that for the 12 reflectance-based measurements the rms variation from the means as a percentage of the mean is + or - 1.9 percent; for the 11 measurements in the IR bands, it is + or - 3.4 percent; and the rms variation for all 23 measurements is + or - 2.8 percent.

  5. Swarm's Absolute Scalar Magnetometer metrological performances

    NASA Astrophysics Data System (ADS)

    Leger, J.; Fratter, I.; Bertrand, F.; Jager, T.; Morales, S.

    2012-12-01

    The Absolute Scalar Magnetometer (ASM) has been developed for the ESA Earth Observation Swarm mission, planned for launch in November 2012. As its Overhauser magnetometers forerunners flown on Oersted and Champ satellites, it will deliver high resolution scalar measurements for the in-flight calibration of the Vector Field Magnetometer manufactured by the Danish Technical University. Latest results of the ground tests carried out to fully characterize all parameters that may affect its accuracy, both at instrument and satellite level, will be presented. In addition to its baseline function, the ASM can be operated either at a much higher sampling rate (burst mode at 250 Hz) or in a dual mode where it also delivers vector field measurements as a by-product. The calibration procedure and the relevant vector performances will be discussed.

  6. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  7. Convective-to-absolute instability transition in a viscoelastic capillary jet subject to unrelaxed axial elastic tension.

    PubMed

    Mohamed, A Said; Herrada, M A; Gañán-Calvo, A M; Montanero, J M

    2015-08-01

    The convective-to-absolute instability transition in an Oldroyd-B capillary jet subject to unrelaxed axial stress is examined theoretically. There is a critical Weber number below which the jet is absolutely unstable under axisymmetric perturbations. We analyze the dependence of this critical parameter with respect to the Reynolds and Deborah numbers, as well as the unrelaxed axial stress. For small Deborah numbers, the unrelaxed stress destabilizes the viscoelastic jet, increasing the critical Weber number for which the convective-to-absolute instability transition takes place. If the Deborah number takes higher values, then the transitional Weber number decreases as the unrelaxed stress increases until two solution branches cross each other. The dominant branch for large axial stress leads to a threshold of this quantity above which the viscoelastic jet becomes absolutely unstable independently of the Weber number. The threshold depends on neither the Reynolds nor the Deborah number for sufficiently large values of these parameters.

  8. Convective-to-absolute instability transition in a viscoelastic capillary jet subject to unrelaxed axial elastic tension.

    PubMed

    Mohamed, A Said; Herrada, M A; Gañán-Calvo, A M; Montanero, J M

    2015-08-01

    The convective-to-absolute instability transition in an Oldroyd-B capillary jet subject to unrelaxed axial stress is examined theoretically. There is a critical Weber number below which the jet is absolutely unstable under axisymmetric perturbations. We analyze the dependence of this critical parameter with respect to the Reynolds and Deborah numbers, as well as the unrelaxed axial stress. For small Deborah numbers, the unrelaxed stress destabilizes the viscoelastic jet, increasing the critical Weber number for which the convective-to-absolute instability transition takes place. If the Deborah number takes higher values, then the transitional Weber number decreases as the unrelaxed stress increases until two solution branches cross each other. The dominant branch for large axial stress leads to a threshold of this quantity above which the viscoelastic jet becomes absolutely unstable independently of the Weber number. The threshold depends on neither the Reynolds nor the Deborah number for sufficiently large values of these parameters. PMID:26382502

  9. Development of new free-fall absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Rothleitner, Ch; Svitlov, S.; Mérimèche, H.; Hu, H.; Wang, L. J.

    2009-06-01

    The design and first results of two free-fall absolute gravimeters are reported: a stationary gravimeter is designed and can be used as a reference system and a portable gravimeter is aimed at field measurements. The determination of the acceleration due to gravity is done interferometrically in both instruments. The whole fringe signal is digitized by a high-speed analogue-to-digital converter, which is locked to a rubidium frequency standard. This fringe recording and processing is novel as compared with commercial free-fall gravimeters, which use an electronic zero-crossing discrimination. Advantages such as the application of a zero-phase-shifting digital filter to the digitized data are depicted. The portable gravimeter's mechanics deviate from the conventional type. Springs are used to accelerate and decelerate the carriage supporting the falling object. A detailed uncertainty budget is given for both gravimeters. The combined standard uncertainty for the portable and for the stationary gravimeter is estimated at 38.8 µGal and 16.6 µGal, respectively. The corresponding statistical uncertainties are 1.6 µGal (over one day of measurement) and 0.6 µGal (over one month of measurement). The different designs and dimensions of the new free-fall gravimeters can help to reveal unknown or so far underestimated systematic effects. The assessments of the uncertainties due to seismic noise and shock vibrations, and electronic phase shifts give validity to this assumption.

  10. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  11. Absolute flux measurements for swift atoms

    NASA Technical Reports Server (NTRS)

    Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.

    1987-01-01

    While a torsion balance in vacuum can easily measure the momentum transfer from a gas beam impinging on a surface attached to the balance, this measurement depends on the accommodation coefficients of the atoms with the surface and the distribution of the recoil. A torsion balance is described for making absolute flux measurements independent of recoil effects. The torsion balance is a conventional taut suspension wire design and the Young modulus of the wire determines the relationship between the displacement and the applied torque. A compensating magnetic field is applied to maintain zero displacement and provide critical damping. The unique feature is to couple the impinging gas beam to the torsion balance via a Wood's horn, i.e., a thin wall tube with a gradual 90 deg bend. Just as light is trapped in a Wood's horn by specular reflection from the curved surfaces, the gas beam diffuses through the tube. Instead of trapping the beam, the end of the tube is open so that the atoms exit the tube at 90 deg to their original direction. Therefore, all of the forward momentum of the gas beam is transferred to the torsion balance independent of the angle of reflection from the surfaces inside the tube.

  12. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    SciTech Connect

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  13. Issues in Absolute Spectral Radiometric Calibration: Intercomparison of Eight Sources

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Kindel, Bruce; Pilewskie, Peter

    1998-01-01

    The application of atmospheric models to AVIRIS and other spectral imaging data to derive surface reflectance requires that the sensor output be calibrated to absolute radiance. Uncertainties in absolute calibration are to be expected, and claims of 92% accuracy have been published. Measurements of accurate surface albedos and cloud absorption to be used in radiative balance calculations depend critically on knowing the absolute spectral-radiometric response of the sensor. The Earth Observing System project is implementing a rigorous program of absolute radiometric calibration for all optical sensors. Since a number of imaging instruments that provide output in terms of absolute radiance are calibrated at different sites, it is important to determine the errors that can be expected among calibration sites. Another question exists about the errors in the absolute knowledge of the exoatmospheric spectral solar irradiance.

  14. Absolute nuclear material assay using count distribution (LAMBDA) space

    SciTech Connect

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  15. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  16. Antifungal activity of tuberose absolute and some of its constituents.

    PubMed

    Nidiry, Eugene Sebastian J; Babu, C S Bujji

    2005-05-01

    The antifungal activity of the absolute of tuberose (Polianthes tuberosa ) and some of its constituents were evaluated against the mycelial growth of Colletotrichum gloeosporioides on potato-dextrose-agar medium. Tuberose absolute showed only mild activity at a concentration of 500 mg/L. However, three constituents present in the absolute, namely geraniol, indole and methyl anthranilate exhibited significant activity showing total inhibition of the mycelial growth at this concentration.

  17. The absolute disparity anomaly and the mechanism of relative disparities.

    PubMed

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1).

  18. The absolute disparity anomaly and the mechanism of relative disparities

    PubMed Central

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-01-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  19. Absolute Plate Velocities from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kreemer, Corné; Zheng, Lin; Gordon, Richard

    2015-04-01

    The orientation of seismic anisotropy inferred beneath plate interiors may provide a means to estimate the motions of the plate relative to the sub-asthenospheric mantle. Here we analyze two global sets of shear-wave splitting data, that of Kreemer [2009] and an updated and expanded data set, to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. We also explore the effect of using geologically current plate velocities (i.e., the MORVEL set of angular velocities [DeMets et al. 2010]) compared with geodetically current plate velocities (i.e., the GSRM v1.2 angular velocities [Kreemer et al. 2014]). We demonstrate that the errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. The SKS-MORVEL absolute plate angular velocities (based on the Kreemer [2009] data set) are determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11° Ma-1 (95% confidence limits) right-handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2° ) differs insignificantly from that for continental lithosphere (σ=21.6° ). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4° ) than for continental

  20. Evaluation of the Absolute Regional Temperature Potential

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.

    2012-01-01

    The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  1. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  2. Orion Absolute Navigation System Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2012-01-01

    The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.

  3. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  4. Absolute Ligand Discrimination by Dimeric Signaling Receptors.

    PubMed

    Fathi, Sepehr; Nayak, Chitra R; Feld, Jordan J; Zilman, Anton G

    2016-09-01

    Many signaling pathways act through shared components, where different ligand molecules bind the same receptors or activate overlapping sets of response regulators downstream. Nevertheless, different ligands acting through cross-wired pathways often lead to different outcomes in terms of the target cell behavior and function. Although a number of mechanisms have been proposed, it still largely remains unclear how cells can reliably discriminate different molecular ligands under such circumstances. Here we show that signaling via ligand-induced receptor dimerization-a very common motif in cellular signaling-naturally incorporates a mechanism for the discrimination of ligands acting through the same receptor. PMID:27602720

  5. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%–0.68% (k  =  2).

  6. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%-0.68% (k  =  2).

  7. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    SciTech Connect

    Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C

    2012-05-03

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  8. Radial velocity studies and absolute parameters of contact binaries. I - AB Andromedae

    NASA Technical Reports Server (NTRS)

    Hrivnak, Bruce J.

    1988-01-01

    New radial velocity curves have been obtained for the contact binary AB And, using the cross-correlation technique. A mass ratio of 0.479 is determined, which is revised to 0.491 when the velocities are corrected for proximity effects using a light curve model. These values differ by less than ten percent from the photometric mass ratio. An analysis of the symmetric B and V light curves reported by Rigterink in 1973 using the spectroscopic mass ratio yields a consistent set of light and velocity curve elements. These also produce a reasonably good fit to the infrared J and K light curves reported by Jameson and Akinci in 1979. Absolute elements are determined, and these indicate that both components have a main-sequence internal structure. These absolute parameters, together with the Galactic kinematics, suggest an age for the system similar to or greater than that of the Sun.

  9. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  10. Absolute Pitch in Infant Auditory Learning: Evidence for Developmental Reorganization.

    ERIC Educational Resources Information Center

    Saffran, Jenny R.; Griepentrog, Gregory J.

    2001-01-01

    Two experiments examined 8-month-olds' use of absolute and relative pitch cues in a tone-sequence statistical learning task. Results suggest that, given unsegmented stimuli that do not conform to rules of musical composition, infants are more likely to track patterns of absolute pitches than of relative pitches. A third experiment found that adult…

  11. Supplementary and Enrichment Series: Absolute Value. Teachers' Commentary. SP-25.

    ERIC Educational Resources Information Center

    Bridgess, M. Philbrick, Ed.

    This is one in a series of manuals for teachers using SMSG high school supplementary materials. The pamphlet includes commentaries on the sections of the student's booklet, answers to the exercises, and sample test questions. Topics covered include addition and multiplication in terms of absolute value, graphs of absolute value in the Cartesian…

  12. Supplementary and Enrichment Series: Absolute Value. SP-24.

    ERIC Educational Resources Information Center

    Bridgess, M. Philbrick, Ed.

    This is one in a series of SMSG supplementary and enrichment pamphlets for high school students. This series is designed to make material for the study of topics of special interest to students readily accessible in classroom quantity. Topics covered include absolute value, addition and multiplication in terms of absolute value, graphs of absolute…

  13. Absolute dimensions of unevolved O type close binaries

    SciTech Connect

    Doom, C.; de Loore, C.

    1984-03-15

    A method is presented to derive the absolute dimensions of early-type detached binaries by combining the observed parameters with results of evolutionary computations. The method is used to obtain the absolute dimensions of nine close binaries. We find that most systems have an initial masss ratio near 1.

  14. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  15. Determination of Absolute Zero Using a Computer-Based Laboratory

    ERIC Educational Resources Information Center

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  16. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  17. Mini-implants and miniplates generate sub-absolute and absolute anchorage

    PubMed Central

    Consolaro, Alberto

    2014-01-01

    The functional demand imposed on bone promotes changes in the spatial properties of osteocytes as well as in their extensions uniformly distributed throughout the mineralized surface. Once spatial deformation is established, osteocytes create the need for structural adaptations that result in bone formation and resorption that happen to meet the functional demands. The endosteum and the periosteum are the effectors responsible for stimulating adaptive osteocytes in the inner and outer surfaces.Changes in shape, volume and position of the jaws as a result of skeletal correction of the maxilla and mandible require anchorage to allow bone remodeling to redefine morphology, esthetics and function as a result of spatial deformation conducted by orthodontic appliances. Examining the degree of changes in shape, volume and structural relationship of areas where mini-implants and miniplates are placed allows us to classify mini-implants as devices of subabsolute anchorage and miniplates as devices of absolute anchorage. PMID:25162561

  18. An All Fiber White Light Interferometric Absolute Temperature Measurement System

    PubMed Central

    Kim, Jeonggon Harrison

    2008-01-01

    Recently the author of this article proposed a new signal processing algorithm for an all fiber white light interferometer. In this article, an all fiber white light interferometric absolute temperature measurement system is presented using the previously proposed signal processing algorithm. Stability and absolute temperature measurement were demonstrated. These two tests demonstrated the feasibility of absolute temperature measurement with an accuracy of 0.015 fringe and 0.0005 fringe, respectively. A hysteresis test from 373K to 873K was also presented. Finally, robustness of the sensor system towards laser diode temperature drift, AFMZI temperature drift and PZT non-linearity was demonstrated.

  19. Measurement of Disintegration Rates and Absolute {gamma}-ray Intensities

    SciTech Connect

    DeVries, Daniel J.; Griffin, Henry C.

    2006-03-13

    The majority of practical radioactive materials decay by modes that include {gamma}-ray emission. For questions of 'how much' or 'how pure', one must know the absolute intensities of the major radiations. We are using liquid scintillation counting (LSC) to measurements of disintegration rates, coupled with {gamma}-ray spectroscopy to measure absolute {gamma}-ray emission probabilities. Described is a study of the 227Th chain yielding absolute {gamma}-ray intensities with {approx}0.5% accuracy and information on LSC efficiencies.

  20. Absolute Antenna Calibration at the US National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.

    2012-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO

  1. OCT angiography by absolute intensity difference applied to normal and diseased human retinas

    PubMed Central

    Ruminski, Daniel; Sikorski, Bartosz L.; Bukowska, Danuta; Szkulmowski, Maciej; Krawiec, Krzysztof; Malukiewicz, Grazyna; Bieganowski, Lech; Wojtkowski, Maciej

    2015-01-01

    We compare four optical coherence tomography techniques for noninvasive visualization of microcapillary network in the human retina and murine cortex. We perform phantom studies to investigate contrast-to-noise ratio for angiographic images obtained with each of the algorithm. We show that the computationally simplest absolute intensity difference angiographic OCT algorithm that bases only on two cross-sectional intensity images may be successfully used in clinical study of healthy eyes and eyes with diabetic maculopathy and branch retinal vein occlusion. PMID:26309740

  2. Absolute pitch in infant auditory learning: evidence for developmental reorganization.

    PubMed

    Saffran, J R; Griepentrog, G J

    2001-01-01

    To what extent do infants represent the absolute pitches of complex auditory stimuli? Two experiments with 8-month-old infants examined the use of absolute and relative pitch cues in a tone-sequence statistical learning task. The results suggest that, given unsegmented stimuli that do not conform to the rules of musical composition, infants are more likely to track patterns of absolute pitches than of relative pitches. A 3rd experiment tested adults with or without musical training on the same statistical learning tasks used in the infant experiments. Unlike the infants, adult listeners relied primarily on relative pitch cues. These results suggest a shift from an initial focus on absolute pitch to the eventual dominance of relative pitch, which, it is argued, is more useful for both music and speech processing.

  3. Temporal Dynamics of Microbial Rhodopsin Fluorescence Reports Absolute Membrane Voltage

    PubMed Central

    Hou, Jennifer H.; Venkatachalam, Veena; Cohen, Adam E.

    2014-01-01

    Plasma membrane voltage is a fundamentally important property of a living cell; its value is tightly coupled to membrane transport, the dynamics of transmembrane proteins, and to intercellular communication. Accurate measurement of the membrane voltage could elucidate subtle changes in cellular physiology, but existing genetically encoded fluorescent voltage reporters are better at reporting relative changes than absolute numbers. We developed an Archaerhodopsin-based fluorescent voltage sensor whose time-domain response to a stepwise change in illumination encodes the absolute membrane voltage. We validated this sensor in human embryonic kidney cells. Measurements were robust to variation in imaging parameters and in gene expression levels, and reported voltage with an absolute accuracy of 10 mV. With further improvements in membrane trafficking and signal amplitude, time-domain encoding of absolute voltage could be applied to investigate many important and previously intractable bioelectric phenomena. PMID:24507604

  4. Absolute Value Boundedness, Operator Decomposition, and Stochastic Media and Equations

    NASA Technical Reports Server (NTRS)

    Adomian, G.; Miao, C. C.

    1973-01-01

    The research accomplished during this period is reported. Published abstracts and technical reports are listed. Articles presented include: boundedness of absolute values of generalized Fourier coefficients, propagation in stochastic media, and stationary conditions for stochastic differential equations.

  5. Preparation of an oakmoss absolute with reduced allergenic potential.

    PubMed

    Ehret, C; Maupetit, P; Petrzilka, M; Klecak, G

    1992-06-01

    Synopsis Oakmoss absolute, an extract of the lichen Evernia prunastri, is known to cause allergenic skin reactions due to the presence of certain aromatic aldehydes such as atranorin, chloratranorin, ethyl hematommate and ethyl chlorohematommate. In this paper it is shown that treatment of Oakmoss absolute with amino acids such as lysine and/or leucine, lowers considerably the content of these allergenic constituents including atranol and chloratranol. The resulting Oakmoss absolute, which exhibits an excellent olfactive quality, was tested extensively in comparative studies on guinea pigs and on man. The results of the Guinea Pig Maximization Test (GPMT) and Human Repeated Insult Patch Test (HRIPT) indicate that, in comparison with the commercial test sample, the allergenicity of this new quality of Oakmoss absolute was considerably reduced, and consequently better skin tolerance of this fragrance for man was achieved. PMID:19272096

  6. HIRDLS observations of global gravity wave absolute momentum fluxes: A wavelet based approach

    NASA Astrophysics Data System (ADS)

    John, Sherine Rachel; Kishore Kumar, Karanam

    2016-02-01

    Using wavelet technique for detection of height varying vertical and horizontal wavelengths of gravity waves, the absolute values of gravity wave momentum fluxes are estimated from High Resolution Dynamics Limb Sounder (HIRDLS) temperature measurements. Two years of temperature measurements (2005 December-2007 November) from HIRDLS onboard EOS-Aura satellite over the globe are used for this purpose. The least square fitting method is employed to extract the 0-6 zonal wavenumber planetary wave amplitudes, which are removed from the instantaneous temperature profiles to extract gravity wave fields. The vertical and horizontal wavelengths of the prominent waves are computed using wavelet and cross correlation techniques respectively. The absolute momentum fluxes are then estimated using prominent gravity wave perturbations and their vertical and horizontal wavelengths. The momentum fluxes obtained from HIRDLS are compared with the fluxes obtained from ground based Rayleigh LIDAR observations over a low latitude station, Gadanki (13.5°N, 79.2°E) and are found to be in good agreement. After validation, the absolute gravity wave momentum fluxes over the entire globe are estimated. It is found that the winter hemisphere has the maximum momentum flux magnitudes over the high latitudes with a secondary maximum over the summer hemispheric low-latitudes. The significance of the present study lies in introducing the wavelet technique for estimating the height varying vertical and horizontal wavelengths of gravity waves and validating space based momentum flux estimations using ground based lidar observations.

  7. Glassy carbon as an absolute intensity calibration standard for small-angle scattering.

    SciTech Connect

    Zhang, F.; Ilavsky, J.; Long, G.; Allen, A.; Quintana, J.; Jemian, P.; NIST

    2010-05-01

    Absolute calibration of small-angle scattering (SAS) intensity data (measured in terms of the differential scattering cross section per unit sample volume per unit solid angle) is essential for many important aspects of quantitative SAS analysis, such as obtaining the number density, volume fraction, and specific surface area of the scatterers. It also enables scattering data from different instruments (light, X-ray, or neutron scattering) to be combined, and it can even be useful to detect the existence of artifacts in the experimental data. Different primary or secondary calibration methods are available. In the latter case, absolute intensity calibration requires a stable artifact with the necessary scattering profile. Glassy carbon has sometimes been selected as this intensity calibration standard. Here we review the spatial homogeneity and temporal stability of one type of commercially available glassy carbon that is being used as an intensity calibration standard at a number of SAS facilities. We demonstrate that glassy carbon is sufficiently homogeneous and stable during routine use to be relied upon as a suitable standard for absolute intensity calibration of SAS data.

  8. Progress Toward an Absolute Measurement of Electron Impact Excitation of Si^2+

    NASA Astrophysics Data System (ADS)

    Reisenfeld, D. B.; Janzen, P. H.; Gardner, L. D.; Kohl, J. L.

    1997-04-01

    We are in the process of measuring the electron impact excitation (EIE) absolute rate coefficients for Si^2+(3s^2 ^1S - 3s3p ^1P) and Si^2+(3s3p ^3P^o - 3p^2 ^3P) for energies near threshold. A beams modulation technique with inclined electron and ion beams is being used. The radiation from the excited ions at λ 120.6 nm and λ 130.0 nm is detected using an absolutely calibrated optical system that subtends slightly over π steradians. The population of the Si^2+(3s3p ^3P^o) metastable state in the incident ion beam is determined by making an absolute measurement of the intensity of the λ 189.2 nm light from the beam due to radiative decay of the metastable state(G. P. Layfatis and J. L. Kohl, Phys. Rev. A 36), 59 (1987).. Because of the high density of overlapping resonances above threshold, the cross sections should exhibit a complex energy dependence(D. C. Griffin et al)., Phys. Rev. A 47, 2871 (1993).. We expect to resolve some of this structure. Research progress and the experimental apparatus will be described. There are no previous measurements of EIE in a Mg-like system, nor of EIE in a metastable ion. This work was supported in part by NASA Supporting Research and Technology Program in Solar Physics grant NAGW-1687 and NASA Training Grant NGT-51081.

  9. Variable selection for modeling the absolute magnitude at maximum of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Uemura, Makoto; Kawabata, Koji S.; Ikeda, Shiro; Maeda, Keiichi

    2015-06-01

    We discuss what is an appropriate set of explanatory variables in order to predict the absolute magnitude at the maximum of Type Ia supernovae. In order to have a good prediction, the error for future data, which is called the "generalization error," should be small. We use cross-validation in order to control the generalization error and a LASSO-type estimator in order to choose the set of variables. This approach can be used even in the case that the number of samples is smaller than the number of candidate variables. We studied the Berkeley supernova database with our approach. Candidates for the explanatory variables include normalized spectral data, variables about lines, and previously proposed flux ratios, as well as the color and light-curve widths. As a result, we confirmed the past understanding about Type Ia supernovae: (i) The absolute magnitude at maximum depends on the color and light-curve width. (ii) The light-curve width depends on the strength of Si II. Recent studies have suggested adding more variables in order to explain the absolute magnitude. However, our analysis does not support adding any other variables in order to have a better generalization error.

  10. Relative and Absolute Availability of Healthier Food and Beverage Alternatives Across Communities in the United States

    PubMed Central

    Powell, Lisa M.; Rimkus, Leah; Isgor, Zeynep; Barker, Dianne C.; Ohri-Vachaspati, Punam; Chaloupka, Frank

    2014-01-01

    Objectives. We examined associations between the relative and absolute availability of healthier food and beverage alternatives at food stores and community racial/ethnic, socioeconomic, and urban–rural characteristics. Methods. We analyzed pooled, annual cross-sectional data collected in 2010 to 2012 from 8462 food stores in 468 communities spanning 46 US states. Relative availability was the ratio of 7 healthier products (e.g., whole-wheat bread) to less healthy counterparts (e.g., white bread); we based absolute availability on the 7 healthier products. Results. The mean healthier food and beverage ratio was 0.71, indicating that stores averaged 29% fewer healthier than less healthy products. Lower relative availability of healthier alternatives was associated with low-income, Black, and Hispanic communities. Small stores had the largest differences: relative availability of healthier alternatives was 0.61 and 0.60, respectively, for very low-income Black and very low-income Hispanic communities, and 0.74 for very high-income White communities. We found fewer associations between absolute availability of healthier products and community characteristics. Conclusions. Policies to improve the relative availability of healthier alternatives may be needed to improve population health and reduce disparities. PMID:25211721

  11. Absolute Free Energies for Biomolecules in Implicit or Explicit Solvent

    NASA Astrophysics Data System (ADS)

    Berryman, Joshua T.; Schilling, Tanja

    Methods for absolute free energy calculation by alchemical transformation of a quantitative model to an analytically tractable one are discussed. These absolute free energy methods are placed in the context of other methods, and an attempt is made to describe the best practice for such calculations given the current state of the art. Calculations of the equilibria between the four free energy basins of the dialanine molecule and the two right- and left-twisted basins of DNA are discussed as examples.

  12. Heat capacity and absolute entropy of iron phosphides

    SciTech Connect

    Dobrokhotova, Z.V.; Zaitsev, A.I.; Litvina, A.D.

    1994-09-01

    There is little or no data on the thermodynamic properties of iron phosphides despite their importance for several areas of science and technology. The information available is of a qualitative character and is based on assessments of the heat capacity and absolute entropy. In the present work, we measured the heat capacity over the temperature range of 113-873 K using a differential scanning calorimeter (DSC) and calculated the absolute entropy.

  13. Global absolut gravity reference system as replacement of IGSN 71

    NASA Astrophysics Data System (ADS)

    Wilmes, Herbert; Wziontek, Hartmut; Falk, Reinhard

    2015-04-01

    The determination of precise gravity field parameters is of great importance in a period in which earth sciences are achieving the necessary accuracy to monitor and document global change processes. This is the reason why experts from geodesy and metrology joined in a successful cooperation to make absolute gravity observations traceable to SI quantities, to improve the metrological kilogram definition and to monitor mass movements and smallest height changes for geodetic and geophysical applications. The international gravity datum is still defined by the International Gravity Standardization Net adopted in 1971 (IGSN 71). The network is based upon pendulum and spring gravimeter observations taken in the 1950s and 60s supported by the early free fall absolute gravimeters. Its gravity values agreed in every case to better than 0.1 mGal. Today, more than 100 absolute gravimeters are in use worldwide. The series of repeated international comparisons confirms the traceability of absolute gravity measurements to SI quantities and confirm the degree of equivalence of the gravimeters in the order of a few µGal. For applications in geosciences where e.g. gravity changes over time need to be analyzed, the temporal stability of an absolute gravimeter is most important. Therefore, the proposition is made to replace the IGSN 71 by an up-to-date gravity reference system which is based upon repeated absolute gravimeter comparisons and a global network of well controlled gravity reference stations.

  14. Method to obtain absolute impurity density profiles combining charge exchange and beam emission spectroscopy without absolute intensity calibrationa)

    NASA Astrophysics Data System (ADS)

    Kappatou, A.; Jaspers, R. J. E.; Delabie, E.; Marchuk, O.; Biel, W.; Jakobs, M. A.

    2012-10-01

    Investigation of impurity transport properties in tokamak plasmas is essential and a diagnostic that can provide information on the impurity content is required. Combining charge exchange recombination spectroscopy (CXRS) and beam emission spectroscopy (BES), absolute radial profiles of impurity densities can be obtained from the CXRS and BES intensities, electron density and CXRS and BES emission rates, without requiring any absolute calibration of the spectra. The technique is demonstrated here with absolute impurity density radial profiles obtained in TEXTOR plasmas, using a high efficiency charge exchange spectrometer with high etendue, that measures the CXRS and BES spectra along the same lines-of-sight, offering an additional advantage for the determination of absolute impurity densities.

  15. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site

    USGS Publications Warehouse

    Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, Xiaoxiong; Angal, A.; Choi, Tae-young

    2013-01-01

    Pseudo invariant calibration sites (PICS) have been used for on-orbit radiometric trending of optical satellite systems for more than 15 years. This approach to vicarious calibration has demonstrated a high degree of reliability and repeatability at the level of 1-3% depending on the site, spectral channel, and imaging geometries. A variety of sensors have used this approach for trending because it is broadly applicable and easy to implement. Models to describe the surface reflectance properties, as well as the intervening atmosphere have also been developed to improve the precision of the method. However, one limiting factor of using PICS is that an absolute calibration capability has not yet been fully developed. Because of this, PICS are primarily limited to providing only long term trending information for individual sensors or cross-calibration opportunities between two sensors. This paper builds an argument that PICS can be used more extensively for absolute calibration. To illustrate this, a simple empirical model is developed for the well-known Libya 4 PICS based on observations by Terra MODIS and EO-1 Hyperion. The model is validated by comparing model predicted top-of-atmosphere reflectance values to actual measurements made by the Landsat ETM+ sensor reflective bands. Following this, an outline is presented to develop a more comprehensive and accurate PICS absolute calibration model that can be Système international d'unités (SI) traceable. These initial concepts suggest that absolute calibration using PICS is possible on a broad scale and can lead to improved on-orbit calibration capabilities for optical satellite sensors.

  16. Effective light absorption and absolute electron transport rates in the coral Pocillopora damicornis.

    PubMed

    Szabó, Milán; Wangpraseurt, Daniel; Tamburic, Bojan; Larkum, Anthony W D; Schreiber, Ulrich; Suggett, David J; Kühl, Michael; Ralph, Peter J

    2014-10-01

    Pulse Amplitude Modulation (PAM) fluorometry has been widely used to estimate the relative photosynthetic efficiency of corals. However, both the optical properties of intact corals as well as past technical constrains to PAM fluorometers have prevented calculations of the electron turnover rate of PSII. We used a new Multi-colour PAM (MC-PAM) in parallel with light microsensors to determine for the first time the wavelength-specific effective absorption cross-section of PSII photochemistry, σII(λ), and thus PAM-based absolute electron transport rates of the coral photosymbiont Symbiodinium both in culture and in hospite in the coral Pocillopora damicornis. In both cases, σII of Symbiodinium was highest in the blue spectral region and showed a progressive decrease towards red wavelengths. Absolute values for σII at 440 nm were up to 1.5-times higher in culture than in hospite. Scalar irradiance within the living coral tissue was reduced by 20% in the blue when compared to the incident downwelling irradiance. Absolute electron transport rates of P. damicornis at 440 nm revealed a maximum PSII turnover rate of ca. 250 electrons PSII(-1) s(-1), consistent with one PSII turnover for every 4 photons absorbed by PSII; this likely reflects the limiting steps in electron transfer between PSII and PSI. Our results show that optical properties of the coral host strongly affect light use efficiency of Symbiodinium. Therefore, relative electron transport rates do not reflect the productivity rates (or indeed how the photosynthesis-light response is parameterised). Here we provide a non-invasive approach to estimate absolute electron transport rates in corals.

  17. Intensity evaluation using a femtosecond pulse laser for absolute distance measurement.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Li, Jianshuang; Cao, Shiying; Meng, Xiangsong; Qu, Xinghua

    2015-06-10

    In this paper, we propose a method of intensity evaluation based on different pulse models using a femtosecond pulse laser, which enables long-range absolute distance measurement with nanometer precision and large non-ambiguity range. The pulse cross-correlation is analyzed based on different pulse models, including Gaussian, Sech(2), and Lorenz. The DC intensity and the amplitude of the cross-correlation patterns are also demonstrated theoretically. In the experiments, we develop a new combined system and perform the distance measurements on an underground granite rail system. The DC intensity and amplitude of the interference fringes are measured and show a good agreement with the theory, and the distance to be determined can be up to 25 m using intensity evaluation, within 64 nm deviation compared with a He-Ne incremental interferometer, and corresponds to a relative precision of 2.7×10(-9). PMID:26192864

  18. Intensity evaluation using a femtosecond pulse laser for absolute distance measurement.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Li, Jianshuang; Cao, Shiying; Meng, Xiangsong; Qu, Xinghua

    2015-06-10

    In this paper, we propose a method of intensity evaluation based on different pulse models using a femtosecond pulse laser, which enables long-range absolute distance measurement with nanometer precision and large non-ambiguity range. The pulse cross-correlation is analyzed based on different pulse models, including Gaussian, Sech(2), and Lorenz. The DC intensity and the amplitude of the cross-correlation patterns are also demonstrated theoretically. In the experiments, we develop a new combined system and perform the distance measurements on an underground granite rail system. The DC intensity and amplitude of the interference fringes are measured and show a good agreement with the theory, and the distance to be determined can be up to 25 m using intensity evaluation, within 64 nm deviation compared with a He-Ne incremental interferometer, and corresponds to a relative precision of 2.7×10(-9).

  19. Estimation of absolute protein quantities of unlabeled samples by selected reaction monitoring mass spectrometry.

    PubMed

    Ludwig, Christina; Claassen, Manfred; Schmidt, Alexander; Aebersold, Ruedi

    2012-03-01

    For many research questions in modern molecular and systems biology, information about absolute protein quantities is imperative. This information includes, for example, kinetic modeling of processes, protein turnover determinations, stoichiometric investigations of protein complexes, or quantitative comparisons of different proteins within one sample or across samples. To date, the vast majority of proteomic studies are limited to providing relative quantitative comparisons of protein levels between limited numbers of samples. Here we describe and demonstrate the utility of a targeting MS technique for the estimation of absolute protein abundance in unlabeled and nonfractionated cell lysates. The method is based on selected reaction monitoring (SRM) mass spectrometry and the "best flyer" hypothesis, which assumes that the specific MS signal intensity of the most intense tryptic peptides per protein is approximately constant throughout a whole proteome. SRM-targeted best flyer peptides were selected for each protein from the peptide precursor ion signal intensities from directed MS data. The most intense transitions per peptide were selected from full MS/MS scans of crude synthetic analogs. We used Monte Carlo cross-validation to systematically investigate the accuracy of the technique as a function of the number of measured best flyer peptides and the number of SRM transitions per peptide. We found that a linear model based on the two most intense transitions of the three best flying peptides per proteins (TopPep3/TopTra2) generated optimal results with a cross-correlated mean fold error of 1.8 and a squared Pearson coefficient R(2) of 0.88. Applying the optimized model to lysates of the microbe Leptospira interrogans, we detected significant protein abundance changes of 39 target proteins upon antibiotic treatment, which correlate well with literature values. The described method is generally applicable and exploits the inherent performance advantages of SRM

  20. Absolute intensity and polarization of rotational Raman scattering from N2, O2, and CO2

    NASA Technical Reports Server (NTRS)

    Penney, C. M.; St.peters, R. L.; Lapp, M.

    1973-01-01

    An experimental examination of the absolute intensity, polarization, and relative line intensities of rotational Raman scattering (RRS) from N2, O2, and CO2 is reported. The absolute scattering intensity for N2 is characterized by its differential cross section for backscattering of incident light at 647.1 nm, which is calculated from basic measured values. The ratio of the corresponding cross section for O2 to that for N2 is 2.50 plus or minus 5 percent. The intensity recent for N2, O2, and CO2 are shown to compare favorably to values calculated from recent measurements of the depolarization of Rayleigh scattering plus RRS. Measured depolarizations of various RRS lines agree to within a few percent with the theoretical value of 3/4. Detailed error analyses are presented for intensity and depolarization measurements. Finally, extensive RRS spectra at nominal gas temperatures of 23 C, 75 C, and 125 C are presented and shown to compare favorably to theoretical predictions.

  1. Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross Bracing Detail, Vertical Cross Bracing-End Detail - Cumberland Covered Bridge, Spanning Mississinewa River, Matthews, Grant County, IN

  2. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; ,

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  3. Absolute neutrophil values in malignant patients on cytotoxic chemotherapy.

    PubMed

    Madu, A J; Ibegbulam, O G; Ocheni, S; Madu, K A; Aguwa, E N

    2011-01-01

    A total of eighty patients with various malignancies seen between September 2008 and April 2009 at the University of Nigeria Teaching Hospital (UNTH) Ituku Ozalla, Enugu, Nigeria, had their absolute neutrophil counts, done at Days 0 and 12 of the first cycle of their various chemotherapeutic regimens. They were adult patients who had been diagnosed of various malignancies, consisting of Breast cancer 36 (45%), Non-Hodgkin's lymphoma 8 (10%), Hodgkin's lymphoma 13 (16.25%), Colorectal carcinoma 6 (7.5%), Multiple myeloma 7 (8.75%), Cervical carcinoma 1 (1.25%) and other malignancies 9 (11.25%), Manual counting of absolute neutrophil count was done using Turks solution and improved Neubauer counting chamber and Galen 2000 Olympus microscope. The socio demographic data of the patients were assessed from a questionnaire. There were 27 males (33.75%) and 53 females (66.25%). Their ages ranged from 18 - 80 years with a median of 45 years. The mean absolute neutrophil count of the respondents pre-and post chemotherapy was 3.7 +/- 2.1 x 10(9)/L and 2.5 +/- 1.6 x 10(9)/L respectively. There were significant differences in both the absolute neutrophil count (p=0.00) compared to the pre-chemotherapy values. Chemotherapeutic combinations containing cyclophosphamide and Adriamycin were observed to cause significant reduction in absolute neutrophil.

  4. The Application of Optimisation Methods to Constrain Absolute Plate Motions

    NASA Astrophysics Data System (ADS)

    Tetley, M. G.; Williams, S.; Hardy, S.; Müller, D.

    2015-12-01

    Plate tectonic reconstructions are an excellent tool for understanding the configuration and behaviour of continents through time on both global and regional scales, and are relatively well understood back to ~200 Ma. However, many of these models represent only relative motions between continents, providing little information of absolute tectonic motions and their relationship with the deep Earth. Significant issues exist in solving this problem, including how to combine constraints from multiple, diverse data into a unified model of absolute plate motions; and how to address uncertainties both in the available data, and in the assumptions involved in this process (e.g. hotspot motion, true polar wander). In deep time (pre-Pangea breakup), plate reconstructions rely more heavily on paleomagnetism, but these data often imply plate velocities much larger than those observed since the breakup of the supercontinent Pangea where plate velocities are constrained by the seafloor spreading record. Here we present two complementary techniques to address these issues, applying parallelized numerical methods to quantitatively investigate absolute plate motions through time. Firstly, we develop a data-fit optimized global absolute reference frame constrained by kinematic reconstruction data, hotspot-trail observations, and trench migration statistics. Secondly we calculate optimized paleomagnetic data-derived apparent polar wander paths (APWPs) for both the Phanerozoic and Precambrian. Paths are generated from raw pole data with optimal spatial and temporal pole configurations calculated using all known uncertainties and quality criteria to produce velocity-optimized absolute motion paths through deep time.

  5. Nuclear depolarization and absolute sensitivity in magic-angle spinning cross effect dynamic nuclear polarization.

    PubMed

    Mentink-Vigier, Frédéric; Paul, Subhradip; Lee, Daniel; Feintuch, Akiva; Hediger, Sabine; Vega, Shimon; De Paëpe, Gaël

    2015-09-14

    Over the last two decades solid state Nuclear Magnetic Resonance has witnessed a breakthrough in increasing the nuclear polarization, and thus experimental sensitivity, with the advent of Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP). To enhance the nuclear polarization of protons, exogenous nitroxide biradicals such as TOTAPOL or AMUPOL are routinely used. Their efficiency is usually assessed as the ratio between the NMR signal intensity in the presence and the absence of microwave irradiation εon/off. While TOTAPOL delivers an enhancement εon/off of about 60 on a model sample, the more recent AMUPOL is more efficient: >200 at 100 K. Such a comparison is valid as long as the signal measured in the absence of microwaves is merely the Boltzmann polarization and is not affected by the spinning of the sample. However, recent MAS-DNP studies at 25 K by Thurber and Tycko (2014) have demonstrated that the presence of nitroxide biradicals combined with sample spinning can lead to a depolarized nuclear state, below the Boltzmann polarization. In this work we demonstrate that TOTAPOL and AMUPOL both lead to observable depolarization at ≈110 K, and that the magnitude of this depolarization is radical dependent. Compared to the static sample, TOTAPOL and AMUPOL lead, respectively, to nuclear polarization losses of up to 20% and 60% at a 10 kHz MAS frequency, while Trityl OX63 does not depolarize at all. This experimental work is analyzed using a theoretical model that explains how the depolarization process works under MAS and gives new insights into the DNP mechanism and into the spin parameters, which are relevant for the efficiency of a biradical. In light of these results, the outstanding performance of AMUPOL must be revised and we propose a new method to assess the polarization gain for future radicals.

  6. Method for estimating absolute lung volumes at constant inflation pressure.

    PubMed

    Hills, B A; Barrow, R E

    1979-10-01

    A method has been devised for measuring functional residual capacity in the intact killed animal or absolute lung volumes in any excised lung preparation without changing the inflation pressure. This is achieved by titrating the absolute pressure of a chamber in which the preparation is compressed until a known volume of air has entered the lungs. This technique was used to estimate the volumes of five intact rabbit lungs and five rigid containers of known dimensions by means of Boyle's law. Results were found to agree to within +/- 1% with values determined by alternative methods. In the discussion the advantage of determining absolute lung volumes at almost any stage in a study of lung mechanics without the determination itself changing inflation pressure and, hence, lung volume is emphasized. PMID:511699

  7. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  8. Method and apparatus for two-dimensional absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2004-01-01

    This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.

  9. Neural Sensitivity to Absolute and Relative Anticipated Reward in Adolescents

    PubMed Central

    Vaidya, Jatin G.; Knutson, Brian; O'Leary, Daniel S.; Block, Robert I.; Magnotta, Vincent

    2013-01-01

    Adolescence is associated with a dramatic increase in risky and impulsive behaviors that have been attributed to developmental differences in neural processing of rewards. In the present study, we sought to identify age differences in anticipation of absolute and relative rewards. To do so, we modified a commonly used monetary incentive delay (MID) task in order to examine brain activity to relative anticipated reward value (neural sensitivity to the value of a reward as a function of other available rewards). This design also made it possible to examine developmental differences in brain activation to absolute anticipated reward magnitude (the degree to which neural activity increases with increasing reward magnitude). While undergoing fMRI, 18 adolescents and 18 adult participants were presented with cues associated with different reward magnitudes. After the cue, participants responded to a target to win money on that trial. Presentation of cues was blocked such that two reward cues associated with $.20, $1.00, or $5.00 were in play on a given block. Thus, the relative value of the $1.00 reward varied depending on whether it was paired with a smaller or larger reward. Reflecting age differences in neural responses to relative anticipated reward (i.e., reference dependent processing), adults, but not adolescents, demonstrated greater activity to a $1 reward when it was the larger of the two available rewards. Adults also demonstrated a more linear increase in ventral striatal activity as a function of increasing absolute reward magnitude compared to adolescents. Additionally, reduced ventral striatal sensitivity to absolute anticipated reward (i.e., the difference in activity to medium versus small rewards) correlated with higher levels of trait Impulsivity. Thus, ventral striatal activity in anticipation of absolute and relative rewards develops with age. Absolute reward processing is also linked to individual differences in Impulsivity. PMID:23544046

  10. Neural sensitivity to absolute and relative anticipated reward in adolescents.

    PubMed

    Vaidya, Jatin G; Knutson, Brian; O'Leary, Daniel S; Block, Robert I; Magnotta, Vincent

    2013-01-01

    Adolescence is associated with a dramatic increase in risky and impulsive behaviors that have been attributed to developmental differences in neural processing of rewards. In the present study, we sought to identify age differences in anticipation of absolute and relative rewards. To do so, we modified a commonly used monetary incentive delay (MID) task in order to examine brain activity to relative anticipated reward value (neural sensitivity to the value of a reward as a function of other available rewards). This design also made it possible to examine developmental differences in brain activation to absolute anticipated reward magnitude (the degree to which neural activity increases with increasing reward magnitude). While undergoing fMRI, 18 adolescents and 18 adult participants were presented with cues associated with different reward magnitudes. After the cue, participants responded to a target to win money on that trial. Presentation of cues was blocked such that two reward cues associated with $.20, $1.00, or $5.00 were in play on a given block. Thus, the relative value of the $1.00 reward varied depending on whether it was paired with a smaller or larger reward. Reflecting age differences in neural responses to relative anticipated reward (i.e., reference dependent processing), adults, but not adolescents, demonstrated greater activity to a $1 reward when it was the larger of the two available rewards. Adults also demonstrated a more linear increase in ventral striatal activity as a function of increasing absolute reward magnitude compared to adolescents. Additionally, reduced ventral striatal sensitivity to absolute anticipated reward (i.e., the difference in activity to medium versus small rewards) correlated with higher levels of trait Impulsivity. Thus, ventral striatal activity in anticipation of absolute and relative rewards develops with age. Absolute reward processing is also linked to individual differences in Impulsivity. PMID:23544046

  11. Non-Invasive Method of Determining Absolute Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor); Hargens, Alan E. (Inventor)

    2004-01-01

    A method is presented for determining absolute intracranial pressure (ICP) in a patient. Skull expansion is monitored while changes in ICP are induced. The patient's blood pressure is measured when skull expansion is approximately zero. The measured blood pressure is indicative of a reference ICP value. Subsequently, the method causes a known change in ICP and measured the change in skull expansion associated therewith. The absolute ICP is a function of the reference ICP value, the known change in ICP and its associated change in skull expansion; and a measured change in skull expansion.

  12. Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices

    NASA Astrophysics Data System (ADS)

    Goyeneche, Dardo; Alsina, Daniel; Latorre, José I.; Riera, Arnau; Życzkowski, Karol

    2015-09-01

    Absolutely maximally entangled (AME) states are those multipartite quantum states that carry absolute maximum entanglement in all possible bipartitions. AME states are known to play a relevant role in multipartite teleportation, in quantum secret sharing, and they provide the basis novel tensor networks related to holography. We present alternative constructions of AME states and show their link with combinatorial designs. We also analyze a key property of AME states, namely, their relation to tensors, which can be understood as unitary transformations in all of their bipartitions. We call this property multiunitarity.

  13. In-flight absolute radiometric calibration of the thematic mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1983-01-01

    The TM multispectral scanner system was calibrated in an absolute manner before launch. To determine the temporal changes of the absolute radiometric calibration of the entire system, spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM collections over White Sands, New Mexico. By entering the measured values in an atmospheric radiative transfer program, the radiance levels of the in four of the spectral bands of the TM were determined. Tables show values for the reflectance of snow at White Sands measured by a modular 8 channel radiometer, and values for exoatmospheric irradiance within the TM passbands, calculated for the Earth-Sun distance using a solar radiometer.

  14. Absolute photon-flux measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Haddad, G. N.

    1974-01-01

    Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

  15. Measurements of the reactor neutron power in absolute units

    SciTech Connect

    Lebedev, G. V.

    2015-12-15

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  16. Absolute Stability Analysis of a Phase Plane Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol

    2010-01-01

    Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.

  17. From Hubble's Next Generation Spectral Library (NGSL) to Absolute Fluxes

    NASA Astrophysics Data System (ADS)

    Heap, S. R.; Lindler, D.

    2016-05-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R˜1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.03 μ. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsl/. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We have therefore developed an observing procedure, data-reduction procedure, and correction algorithms that should yield fluxes with uncertainties less than 1%.

  18. A general relativistic model for free-fall absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Tan, Yu-Jie; Shao, Cheng-Gang; Li, Jia; Hu, Zhong-Kun

    2016-04-01

    Although the relativistic manifestations of gravitational fields in gravimetry were first studied 40 years ago, the relativistic effects combined with free-fall absolute gravimeters have rarely been considered. In light of this, we present a general relativistic model for free-fall absolute gravimeters in a local-Fermi coordinates system, where we focus on effects related to the measuring devices: relativistic transverse Doppler effects, gravitational redshift effects and Earth’s rotation effects. Based on this model, a general relativistic expression of the measured gravity acceleration is obtained.

  19. STS-9 Shuttle grow - Ram angle effect and absolute intensities

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.; Mende, S. B.; Clifton, K. S.

    1986-01-01

    Visible imagery from Space Shuttle mission STS-9 (Spacelab 1) has been analyzed for the ram angle effect and the absolute intensity of glow. The data are compared with earlier measurements and the anomalous high intensities at large ram angles are confirmed. Absolute intensities of the ram glow on the shuttle tile, at 6563 A, are observed to be about 20 times more intense than those measured on the AE-E spacecraft. Implications of these observations for an existing theory of glow involving NO2 are presented.

  20. False Cross

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The asterism formed by the four stars δ and κ Velorum, and ɛ and ι Carinae, all of the second magnitude, which make up a cross of about 10°×6°. It is so named because it is sometimes mistaken for the Southern Cross (Crux) by observers unfamiliar with the southern sky. There is a superficial resemblance, but Crux is more compact (about 7°×5°) and comprises rather brighter stars. The two crosses ca...

  1. Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna

    2015-09-01

    Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.

  2. Absolute Value Inequalities: High School Students' Solutions and Misconceptions

    ERIC Educational Resources Information Center

    Almog, Nava; Ilany, Bat-Sheva

    2012-01-01

    Inequalities are one of the foundational subjects in high school math curricula, but there is a lack of academic research into how students learn certain types of inequalities. This article fills part of the research gap by presenting the findings of a study that examined high school students' methods of approaching absolute value inequalities,…

  3. Individual Differences in Absolute and Relative Metacomprehension Accuracy

    ERIC Educational Resources Information Center

    Maki, Ruth H.; Shields, Micheal; Wheeler, Amanda Easton; Zacchilli, Tammy Lowery

    2005-01-01

    The authors investigated absolute and relative metacomprehension accuracy as a function of verbal ability in college students. Students read hard texts, revised texts, or a mixed set of texts. They then predicted their performance, took a multiple-choice test on the texts, and made posttest judgments about their performance. With hard texts,…

  4. Ion chambers simplify absolute intensity measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Sampson, J. A. R.

    1966-01-01

    Single or double ion chamber technique measures absolute radiation intensities in the extreme vacuum ultraviolet region of the spectrum. The ion chambers use rare gases as the ion carrier. Photon absorbed by the gas creates one ion pair so a measure of these is a measure of the number of incident photons.

  5. Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Reichmann, Edwin J.

    1987-01-01

    Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.

  6. An improved generalized Newton method for absolute value equations.

    PubMed

    Feng, Jingmei; Liu, Sanyang

    2016-01-01

    In this paper, we suggest and analyze an improved generalized Newton method for solving the NP-hard absolute value equations [Formula: see text] when the singular values of A exceed 1. We show that the global and local quadratic convergence of the proposed method. Numerical experiments show the efficiency of the method and the high accuracy of calculation. PMID:27462490

  7. Absolute configurations of zingiberenols isolated from ginger (Zingiber officinale) rhizomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sesquiterpene alcohol zingiberenol, or 1,10-bisaboladien-3-ol, was isolated some time ago from ginger, Zingiber officinale, rhizomes, but its absolute configuration had not been determined. With three chiral centers present in the molecule, zingiberenol can exist in eight stereoisomeric forms. ...

  8. Series that Converge Absolutely but Don't Converge

    ERIC Educational Resources Information Center

    Kantrowitz, Robert; Schramm, Michael

    2012-01-01

    If a series of real numbers converges absolutely, then it converges. The usual proof requires completeness in the form of the Cauchy criterion. Failing completeness, the result is false. We provide examples of rational series that illustrate this point. The Cantor set appears in connection with one of the examples.

  9. Absolute calibration in the 1750 - 3350 A region

    NASA Technical Reports Server (NTRS)

    Strongylis, G. J.; Bohlin, R. C.

    1977-01-01

    The absolute flux measurements in the rocket ultraviolet made by Bohlin, Frimout, and Lillie (BFL) are revised using a more correct treatment of the air extinction that enters the air calibration of their instrument. The absorption by molecular oxygen and ozone, Rayleigh scattering, and extinction by aerosols is tabulated for general use in ultraviolet calibrations performed in air. The revised absolute flux of eta UMa and final fluxes for alpha Lyr and zeta Oph are presented in the 1750-3350 A region. The absolute flux of the star eta UMa is compared to four other independent determinations in the 1200-3400 A region and a maximum difference of 35% is found near 1500 A between the OAO-2 and Apollo 17 fluxes. The rocket measurements of BFL, the ANS and TD-1 satellite data, and the Apollo 17 data are compared to the ultraviolet fluxes from the OAO-2, demonstrating a photometric reproducibility of about + or - 3 percent. Therefore, all four sets of spectrophotometry can be reduced to a common absolute scale.

  10. Europe's Other Poverty Measures: Absolute Thresholds Underlying Social Assistance

    ERIC Educational Resources Information Center

    Bavier, Richard

    2009-01-01

    The first thing many learn about international poverty measurement is that European nations apply a "relative" poverty threshold and that they also do a better job of reducing poverty. Unlike the European model, the "absolute" U.S. poverty threshold does not increase in real value when the nation's standard of living rises, even though it is…

  11. Analysis of standard reference materials by absolute INAA

    SciTech Connect

    Heft, R.E.; Koszykowski, R.F.

    1981-07-01

    Three standard reference materials, flyash, soil, and ASI 4340 steel, were analyzed by a method of absolute instrumental neutron activation analysis (INAA). Two different light water pool-type reactors were used to produce equivalent analytical results even though the epithermal to thermal flux ratio in one reactor was higher than that in the other by a factor of two.

  12. Absolute calibration of Landsat instruments using the moon.

    USGS Publications Warehouse

    Kieffer, H.H.; Wildey, R.L.

    1985-01-01

    A lunar observation by Landsat could provide improved radiometric and geometric calibration of both the Thematic Mapper and the Multispectral Scanner in terms of absolute radiometry, determination of the modulation transfer function, and sensitivity to scattered light. A pitch of the spacecraft would be required. -Authors

  13. Urey: to measure the absolute age of Mars

    NASA Technical Reports Server (NTRS)

    Randolph, J. E.; Plescia, J.; Bar-Cohen, Y.; Bartlett, P.; Bickler, D.; Carlson, R.; Carr, G.; Fong, M.; Gronroos, H.; Guske, P. J.; Herring, M.; Javadi, H.; Johnson, D. W.; Larson, T.; Malaviarachchi, K.; Sherrit, S.; Stride, S.; Trebi-Ollennu, A.; Warwick, R.

    2003-01-01

    UREY, a proposed NASA Mars Scout mission will, for the first time, measure the absolute age of an identified igneous rock formation on Mars. By extension to relatively older and younger rock formations dated by remote sensing, these results will enable a new and better understanding of Martian geologic history.

  14. Is There a Rule of Absolute Neutralization in Nupe?

    ERIC Educational Resources Information Center

    Krohn, Robert

    1975-01-01

    A previously prosed rule of absolute neutralization (merging underlying low vowels) is eliminated in an alternative analysis including instead a rule that "breaks" the feature matrix of certain low vowels and redistributes the features of each vowel as a sequence of vowel-like transition plus (a). (Author/RM)

  15. Absolute Radiometer for Reproducing the Solar Irradiance Unit

    NASA Astrophysics Data System (ADS)

    Sapritskii, V. I.; Pavlovich, M. N.

    1989-01-01

    A high-precision absolute radiometer with a thermally stabilized cavity as receiving element has been designed for use in solar irradiance measurements. The State Special Standard of the Solar Irradiance Unit has been built on the basis of the developed absolute radiometer. The Standard also includes the sun tracking system and the system for automatic thermal stabilization and information processing, comprising a built-in microcalculator which calculates the irradiance according to the input program. During metrological certification of the Standard, main error sources have been analysed and the non-excluded systematic and accidental errors of the irradiance-unit realization have been determined. The total error of the Standard does not exceed 0.3%. Beginning in 1984 the Standard has been taking part in a comparison with the Å 212 pyrheliometer and other Soviet and foreign standards. In 1986 it took part in the international comparison of absolute radiometers and standard pyrheliometers of socialist countries. The results of the comparisons proved the high metrological quality of this Standard based on an absolute radiometer.

  16. Relative versus Absolute Stimulus Control in the Temporal Bisection Task

    ERIC Educational Resources Information Center

    de Carvalho, Marilia Pinhiero; Machado, Armando

    2012-01-01

    When subjects learn to associate two sample durations with two comparison keys, do they learn to associate the keys with the short and long samples (relational hypothesis), or with the specific sample durations (absolute hypothesis)? We exposed 16 pigeons to an ABA design in which phases A and B corresponded to tasks using samples of 1 s and 4 s,…

  17. Multifrequency continuous wave terahertz spectroscopy for absolute thickness determination

    SciTech Connect

    Scheller, Maik; Baaske, Kai; Koch, Martin

    2010-04-12

    We present a tunable multifrequency continuous wave terahertz spectrometer based on two laser diodes, photoconductive antennas, and a coherent detection scheme. The system is employed to determine the absolute thickness of samples utilizing a proposed synthetic difference frequency method to circumvent the 2pi uncertainty known from conventional photomixing systems while preserving a high spatial resolution.

  18. Absolute Interrogative Intonation Patterns in Buenos Aires Spanish

    ERIC Educational Resources Information Center

    Lee, Su Ar

    2010-01-01

    In Spanish, each uttered phrase, depending on its use, has one of a variety of intonation patterns. For example, a phrase such as "Maria viene manana" "Mary is coming tomorrow" can be used as a declarative or as an absolute interrogative (a yes/no question) depending on the intonation pattern that a speaker produces. Patterns of usage also…

  19. Absolute V-R colors of trans-Neptunian objects

    NASA Astrophysics Data System (ADS)

    Alvarez-Candal, Alvaro; Ayala-Loera, Carmen; Ortiz, Jose-Luis; Duffard, Rene; Estela, Fernandez-Valenzuela; Santos-Sanz, Pablo

    2016-10-01

    The absolute magnitude of a minor body is the apparent magnitude that the body would have if observed from the Sun at a distance of 1AU. Absolute magnitudes are measured using phase curves, showing the change of the magnitude, normalized to unit helio and geo-centric distance, vs. phase angle. The absolute magnitude is then the Y-intercept of the curve. Absolute magnitudes are related to the total reflecting surface of the body and thus bring information of its size, coupled with the reflecting properties.Since 2011 our team has been collecting data from several telescopes spread in Europe and South America. We complemented our data with those available in the literature in order to construct phase curves of trans-Neptunian objects with at least three points. In a first release (Alvarez-Candal et al. 2016, A&A, 586, A155) we showed results for 110 trans-Neptunian objects using V magnitudes only, assuming an overall linear trend and taking into consideration rotational effects, for objects with known light-curves.In this contribution we show results for more than 130 objects, about 100 of them with phase curves in two filters: V and R. We compute absolute magnitudes and phase coefficients in both filters, when available. The average values are HV = 6.39 ± 2.37, βV = (0.09 ± 0.32) mag per degree, HR = 5.38 ± 2.30, and βR = (0.08 ± 0.42) mag per degree.

  20. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant

  1. GNSS Absolute Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.; Geoghegan, C.

    2011-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and compare absolute calibrations to the traditional NGS relative calibrations.

  2. [Absolute bioavailability of a special sustained-release acetylsalicylic acid formulation].

    PubMed

    Lücker, P W; Swoboda, M; Wetzelsberger, N

    1989-03-01

    Absolute Bioavailability of a Special Acetylsalicylic Acid Sustained Release Formulation. The absolute bioavailability of an acetylsalicylic acid (ASA) sustained release formulation (Contrheuma retard), containing 300 mg ASA as initial dose and 350 mg in a retard formulation, was determined in comparison to a standard ASA solution for intravenous administration in a two-treatment, two-period cross-over trial with 6 healthy male volunteers by comparing the areas under the plasma-fluctuation-time curves of the primary metabolite. In addition, it was examined by comparison of the mean times after administration of both formulations, whether the test formulation meets the requirements of a sustained release formulation. The investigations led to the following results: The absolute bioavailability of the test formulation was 95%. The statistical comparison of the areas under the concentration-time courses allowed no decision (neither for equivalence nor difference). The maximal concentration of SA after intravenous administration of the standard formulation was reached after 0.4 h on an average and amounted to 62 micrograms/ml. After oral administration of the test formulation, a mean concentration maximum of 28 micrograms/ml was calculated, which had been reached after about 2 h. The differences are statistically significant. The mean time for SA was 6 h after the standard formulation, whereas after administration of the test compound, a mean of 11.5 h was calculated. 24 h following administration, the concentration of SA was 1.3 micrograms/ml after intravenous administration of the standard formulation and 5.5 micrograms/ml after administration of the test formulation. These differences, too, are statistically significant. From the comparison of the mean time for SA, a retard factor of 1.9 was calculated. PMID:2757664

  3. A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation

    NASA Astrophysics Data System (ADS)

    Dufva, K. E.; Sopanen, J. T.; Mikkola, A. M.

    2005-02-01

    In this study, a new two-dimensional shear deformable beam element is proposed for large deformation problems. The kinematics of the beam are defined using an exact displacement field, where the rotation angles of the cross-section caused by bending and shear deformations are described separately. Cubic interpolation is used for determining the curvature of the beam due to bending, while linear interpolation polynomials are used for the shear strain. The absolute nodal coordinate formulation, in which global displacements and slopes are used as the nodal coordinates, is employed for the finite element discretization of the beam. The capability of the element to predict static deformation is studied using numerical examples. The results imply that the element is free of a phenomenon called shear-locking. The capability of the element to model highly nonlinear behaviour is established using a bending test where the cantilever is bent into a full circle using only four elements. A flexible pendulum and a spin-up manoeuvre are modelled in order to study the behaviour of the element in dynamical problems. The proposed element is also compared with an existing shear deformable beam element based on the absolute nodal coordinate formulation. Finally, the simple linearization of the beam curvature based on the assumption of small strain will be discussed.

  4. Challenging process to make the Lateglacial tree-ring chronologies from Europe absolute - an inventory

    NASA Astrophysics Data System (ADS)

    Kaiser, Klaus Felix; Friedrich, Michael; Miramont, Cécile; Kromer, Bernd; Sgier, Mario; Schaub, Matthias; Boeren, Ilse; Remmele, Sabine; Talamo, Sahra; Guibal, Frédéric; Sivan, Olivier

    2012-03-01

    Here we present the entire range of Lateglacial tree-ring chronologies from Switzerland, Germany, France, covering the Lateglacial north and west of the Alps without interruption as well as finds from northern Italy, complemented by a 14C data set of the Swiss chronologies. Geographical expansion of cross-matched European Lateglacial chronologies, limits and prospects of teleconnection between remote sites and extension of the absolute tree-ring chronology are discussed. High frequency signals and long-term fluctuations are revealed by the ring-width data sets of the newly constructed Swiss Late-glacial Master Chronology (SWILM) as well as the Central European Lateglacial Master Chronology (CELM) spanning 1606 years. They agree well with the characteristics of Boelling/Alleroed (GI-1) and the transition into Younger Dryas (GS-1). The regional chronologies of Central Europe may provide improved interconnection to other terrestrial or marine high-resolution archives. Nevertheless the breakthrough to a continuous absolute chronology back to Boelling (GI-1e) has not yet been achieved. A gap remains, even though it is covered by several floating chronologies from France and Switzerland.

  5. Toxicokinetic study and absolute oral bioavailability of deoxynivalenol, T-2 toxin and zearalenone in broiler chickens.

    PubMed

    Osselaere, Ann; Devreese, Mathias; Goossens, Joline; Vandenbroucke, Virginie; De Baere, Siegrid; De Backer, Patrick; Croubels, Siska

    2013-01-01

    Mycotoxins lead to economic losses in animal production. A way to counteract mycotoxicosis is the use of detoxifiers. The European Food Safety Authority stated that the efficacy of detoxifiers should be investigated based on toxicokinetic studies. Little information is available on the absolute oral bioavailability and the toxicokinetic parameters of deoxynivalenol, T-2 and zearalenone in broilers. Toxins were administered intravenously and orally in a two-way cross-over design. For deoxynivalenol a bolus of 0.75mg/kg BW was administered, for T-2 toxin 0.02mg/kg BW and for zearalenone 0.3mg/kg BW. Blood was collected at several time points. Plasma levels of the mycotoxins and their metabolite(s) were quantified using LC-MS/MS methods and toxicokinetic parameters were analyzed. Deoxynivalenol has a low absolute oral bioavailability (19.3%). For zearalenone and T-2 no plasma levels above the limit of quantification were observed after an oral bolus. Volumes of distribution were recorded, i.e. 4.99, 0.14 and 22.26L/kg for deoxynivalenol, T-2 toxin and zearalenone, respectively. Total body clearance was 0.12, 0.03 and 0.48L/minkg for deoxynivalenol, T-2 toxin and zearalenone, respectively. After IV administration, T-2 toxin had the shortest elimination half-life (3.9min), followed by deoxynivalenol (27.9min) and zearalenone (31.8min).

  6. Absolute density measurement of SD radicals in a supersonic jet at the quantum-noise-limit.

    PubMed

    Mizouri, Arin; Deng, L Z; Eardley, Jack S; Nahler, N Hendrik; Wrede, Eckart; Carty, David

    2013-12-01

    The absolute density of SD radicals in a supersonic jet has been measured down to (1.1 ± 0.1) × 10(5) cm(-3) in a modestly specified apparatus that uses a cross-correlated combination of cavity ring-down and laser-induced fluorescence detection. Such a density corresponds to 215 ± 21 molecules in the probe volume at any given time. The minimum detectable absorption coefficient was quantum-noise-limited and measured to be (7.9 ± 0.6) × 10(-11) cm(-1), in 200 s of acquisition time, corresponding to a noise-equivalent absorption sensitivity for the apparatus of (1.6 ± 0.1) × 10(-9) cm(-1) Hz(-1/2).

  7. SO_2 Absorption Cross Sections and N_2 VUV Oscillator Strengths for Planetary Atmosphere Studies

    NASA Astrophysics Data System (ADS)

    Smith, Peter L.; Stark, G.; Rufus, J.; Pickering, J. C.; Cox, G.; Huber, K. P.

    1998-09-01

    The determination of the chemical composition of the atmosphere of Io from Hubble Space Telescope observations in the 190-220 nm wavelength region requires knowledge of the photoabsorption cross sections of SO_2 at temperatures ranging from about 110 K to 300 K. We are engaged in a laboratory program to measure SO_2 absorption cross sections with very high resolving power (lambda /delta lambda =~ 450,000) and at a range of temperatures appropriate to the Io atmosphere. Previous photoabsorption measurements, with lambda /delta lambda =~ 100,000, have been unable to resolve the very congested SO_2 spectrum, and, thus, to elucidate the temperature dependence of the cross sections. Our measurements are being performed at Imperial College, London, using an ultraviolet Fourier transform spectrometer. We will present our recently completed room temperature measurements of SO_2 cross sections in the 190-220 nm region and plans for extending these to ~ 195 K. Analyses of Voyager VUV occultation measurements of the N_2-rich atmospheres of Titan and Triton have been hampered by the lack of fundamental spectroscopic data for N_2, in particular, by the lack of reliable f-values and line widths for electronic bands of N_2 in the 80-100 nm wavelength region. We are continuing our program of measurements of band oscillator strengths for the many (approximately 100) N_2 bands between 80 and 100 nm. We report new f-values, derived from data obtained at the Photon Factory (Tsukuba, Japan) synchrotron radiation facility with lambda /delta lambda =~ 130,000, of 37 bands in the 80-86 nm region and 21 bands in the 90-95 nm region. We have also begun the compilation of a searchable archive of N_2 data on the World Wide Web; see http://cfa-www.harvard. edu/amp/data/n2/n2home.html. The archive, covering the spectroscopy of N_2 between 80 and 100 nm, will include published and unpublished (14) N_2, (14) N(15) N, and (15) N_2 line lists and spectroscopic identifications, excited state energy

  8. Absolute quantum cutting efficiency of Tb{sup 3+}-Yb{sup 3+} co-doped glass

    SciTech Connect

    Duan, Qianqian; Qin, Feng; Zhang, Zhiguo; Zhao, Hua; Cao, Wenwu

    2013-12-07

    The absolute quantum cutting efficiency of Tb{sup 3+}-Yb{sup 3+} co-doped glass was quantitatively measured by an integrating sphere detection system, which is independent of the excitation power. As the Yb{sup 3+} concentration increases, the near infrared quantum efficiency exhibited an exponential growth with an upper limit of 13.5%, but the visible light efficiency was reduced rapidly. As a result, the total quantum efficiency monotonically decreases rather than increases as theory predicted. In fact, the absolute quantum efficiency was far less than the theoretical value due to the low radiative efficiency of Tb{sup 3+} (<61%) and significant cross-relaxation nonradiative loss between Yb{sup 3+} ions.

  9. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R

    2012-10-01

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  10. Normal incidence spectrophotometer using high density transmission grating technology and highly efficiency silicon photodiodes for absolute solar EUV irradiance measurements

    NASA Technical Reports Server (NTRS)

    Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Korde, R.

    1992-01-01

    New developments in transmission grating and photodiode technology now make it possible to realize spectrometers in the extreme ultraviolet (EUV) spectral region (wavelengths less than 1000 A) which are expected to be virtually constant in their diffraction and detector properties. Time dependent effects associated with reflection gratings are eliminated through the use of free standing transmission gratings. These gratings together with recently developed and highly stable EUV photodiodes have been utilized to construct a highly stable normal incidence spectrophotometer to monitor the variability and absolute intensity of the solar 304 A line. Owing to its low weight and compactness, such a spectrometer will be a valuable tool for providing absolute solar irradiance throughout the EUV. This novel instrument will also be useful for cross-calibrating other EUV flight instruments and will be flown on a series of Hitchhiker Shuttle Flights and on SOHO. A preliminary version of this instrument has been fabricated and characterized, and the results are described.

  11. Absolute Configurations of Zingiberenols Isolated from Ginger (Zingiber officinale) Rhizomes.

    PubMed

    Khrimian, Ashot; Shirali, Shyam; Guzman, Filadelfo

    2015-12-24

    Two stereoisomeric zingiberenols in ginger were identified as (3R,6R,7S)-1,10-bisaboladien-3-ol (2) and (3S,6R,7S)-1,10-bisaboladien-3-ol (5). Absolute configurations were assigned by utilizing 1,10-bisaboladien-3-ol stereoisomers and two gas-chromatography columns: a 25 m Hydrodex-β-6TBDM and 60 m DB-5MS. The C-6 and C-7 absolute configurations in both zingiberenols match those of zingiberene present abundantly in ginger rhizomes. Interestingly, zingiberenol 2 has recently been identified as a male-produced sex pheromone of the rice stink bug, Oebalus poecilus, thus indicating that ginger plants may be a potential source of the sex pheromone of this bug.

  12. In-flight Absolute Radiometric Calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, D.; Savage, R. K.

    1984-01-01

    The Thematic Mapper (TM) multispectral scanner system was placed into Earth orbit on July 16, 1982, as part of NASA's LANDSAT 4 payload. To determine temporal changes of the absolute radiometric calibration of the entire system in flight, spectroradiometric measurements of the ground and the atmosphere are made simultaneously with TM image acquisitions over the White Sands, New Mexico area. By entering the measured values into an atmospheric radiative transfer program, the radiance levels at the entrance pupil of the TM in four of the TM spectral bands are determined. These levels are compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors. By reference to an adjacent, larger uniform area, the calibration is extended to all 16 detectors in each of the three bands.

  13. Absolute measurement of the extreme UV solar flux

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Ogawa, H. S.; Judge, D. L.; Phillips, E.

    1984-01-01

    A windowless rare-gas ionization chamber has been developed to measure the absolute value of the solar extreme UV flux in the 50-575-A region. Successful results were obtained on a solar-pointing sounding rocket. The ionization chamber, operated in total absorption, is an inherently stable absolute detector of ionizing UV radiation and was designed to be independent of effects from secondary ionization and gas effusion. The net error of the measurement is + or - 7.3 percent, which is primarily due to residual outgassing in the instrument, other errors such as multiple ionization, photoelectron collection, and extrapolation to the zero atmospheric optical depth being small in comparison. For the day of the flight, Aug. 10, 1982, the solar irradiance (50-575 A), normalized to unit solar distance, was found to be 5.71 + or - 0.42 x 10 to the 10th photons per sq cm sec.

  14. In-flight absolute radiometric calibration of the thematic mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1984-01-01

    In order to determine temporal changes of the absolute radiometric calibration of the entire TM system in flight spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM image collections over the White Sands, New Mexico area. By entering the measured values in an atmospheric radiative transfer program, the radiance levels in four of the spectral bands of the TM were determined, band 1:0.45 to 0.52 micrometers, band 2:0.53 to 0.61 micrometers band 3:0.62 to 0.70 micrometers and 4:0.78 to 0.91 micrometers. These levels were compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors.

  15. In-flight absolute radiometric calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1984-01-01

    In order to determine temporal changes of the absolute radiometric calibration of the entire TM system in flight spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM image collections over the White Sands, NM area. By entering the measured values in an atmospheric radiative transfer program, the radiance levels in four of the spectral bands of the TM were determined, band 1: 0.45 to 0.52 micrometers, band 2: 0.53 to 0.61 micrometers, band 3: 0.62 to 0.70 micrometers, and 4: 0.78 to 0.91 micrometers. These levels were compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors. Previously announced in STAR as N84-15633

  16. Absolute concentration measurements inside a jet plume using video digitization

    NASA Astrophysics Data System (ADS)

    Vauquelin, O.

    An experimental system based on digitized video image analysis is used to measure the local value of the concentration inside a plume. Experiments are carried out in a wind-tunnel for a smoke-seeded turbulent jet plume illuminated with a laser beam. Each test is filmed, subsequently video images are digitized and analysed in order to determine the smoke absolute concentration corresponding to each pixel gray level. This non-intrusive measurement technique is first calibrated and different laws connecting gray level to concentration are established. As a first application, concentration measurements are made inside a turbulent jet plume and compared with measurements conducted using a classic gas analysis method. We finally present and discuss the possibilities offered for the measurements of absolute concentration fluctuations.

  17. Absolute limit on rotation of gravitationally bound stars

    NASA Astrophysics Data System (ADS)

    Glendenning, N. K.

    1994-03-01

    The authors seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass-shedding would occur, is 0.33 ms for a M = 1.442 solar mass neutron star (the mass of PSR1913+16). If the limit were found to be broken by any pulsar, it would signal that the confined hadronic phase of ordinary nucleons and nuclei is only metastable.

  18. Absolute limit on rotation of gravitationally bound stars

    SciTech Connect

    Glendenning, N.K.

    1994-03-01

    The authors seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein`s theory of relativity, Le Chatelier`s principle, causality and a low-density equation of state, uncertainties which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass-shedding would occur, is 0.33 ms for a M = 1.442 M{circle_dot} neutron star (the mass of PSR1913+16). If the limit were found to be broken by any pulsar, it would signal that the confined hadronic phase of ordinary nucleons and nuclei is only metastable, an extraordinary conclusion.

  19. Henry More and the development of absolute time.

    PubMed

    Thomas, Emily

    2015-12-01

    This paper explores the nature, development and influence of the first English account of absolute time, put forward in the mid-seventeenth century by the 'Cambridge Platonist' Henry More. Against claims in the literature that More does not have an account of time, this paper sets out More's evolving account and shows that it reveals the lasting influence of Plotinus. Further, this paper argues that More developed his views on time in response to his adoption of Descartes' vortex cosmology and cosmogony, providing new evidence of More's wider project to absorb Cartesian natural philosophy into his Platonic metaphysics. Finally, this paper argues that More should be added to the list of sources that later English thinkers - including Newton and Samuel Clarke - drew on in constructing their absolute accounts of time. PMID:26568082

  20. Precision goniometer equipped with a 22-bit absolute rotary encoder.

    PubMed

    Xiaowei, Z; Ando, M; Jidong, W

    1998-05-01

    The calibration of a compact precision goniometer equipped with a 22-bit absolute rotary encoder is presented. The goniometer is a modified Huber 410 goniometer: the diffraction angles can be coarsely generated by a stepping-motor-driven worm gear and precisely interpolated by a piezoactuator-driven tangent arm. The angular accuracy of the precision rotary stage was evaluated with an autocollimator. It was shown that the deviation from circularity of the rolling bearing utilized in the precision rotary stage restricts the angular positioning accuracy of the goniometer, and results in an angular accuracy ten times larger than the angular resolution of 0.01 arcsec. The 22-bit encoder was calibrated by an incremental rotary encoder. It became evident that the accuracy of the absolute encoder is approximately 18 bit due to systematic errors.

  1. Determination of absolute internal conversion coefficients using the SAGE spectrometer

    NASA Astrophysics Data System (ADS)

    Sorri, J.; Greenlees, P. T.; Papadakis, P.; Konki, J.; Cox, D. M.; Auranen, K.; Partanen, J.; Sandzelius, M.; Pakarinen, J.; Rahkila, P.; Uusitalo, J.; Herzberg, R.-D.; Smallcombe, J.; Davies, P. J.; Barton, C. J.; Jenkins, D. G.

    2016-03-01

    A non-reference based method to determine internal conversion coefficients using the SAGE spectrometer is carried out for transitions in the nuclei of 154Sm, 152Sm and 166Yb. The Normalised-Peak-to-Gamma method is in general an efficient tool to extract internal conversion coefficients. However, in many cases the required well-known reference transitions are not available. The data analysis steps required to determine absolute internal conversion coefficients with the SAGE spectrometer are presented. In addition, several background suppression methods are introduced and an example of how ancillary detectors can be used to select specific reaction products is given. The results obtained for ground-state band E2 transitions show that the absolute internal conversion coefficients can be extracted using the methods described with a reasonable accuracy. In some cases of less intense transitions only an upper limit for the internal conversion coefficient could be given.

  2. Flow rate calibration for absolute cell counting rationale and design.

    PubMed

    Walker, Clare; Barnett, David

    2006-05-01

    There is a need for absolute leukocyte enumeration in the clinical setting, and accurate, reliable (and affordable) technology to determine absolute leukocyte counts has been developed. Such technology includes single platform and dual platform approaches. Derivations of these counts commonly incorporate the addition of a known number of latex microsphere beads to a blood sample, although it has been suggested that the addition of beads to a sample may only be required to act as an internal quality control procedure for assessing the pipetting error. This unit provides the technical details for undertaking flow rate calibration that obviates the need to add reference beads to each sample. It is envisaged that this report will provide the basis for subsequent clinical evaluations of this novel approach. PMID:18770842

  3. Enumeration of absolute cell counts using immunophenotypic techniques.

    PubMed

    Mandy, F; Brando, B

    2001-05-01

    Absolute counting of cells or cell subsets has a number of significant clinical applications: monitoring the disease status of HIV-infected patients, enumerating residual white blood cells in leukoreduced blood products, and assessing immunodeficiency in a variety of situations. The single-platform method (flow cytometry alone) has emerged as the method of choice for absolute cell enumeration. This technology counts only the cells of interest in a precisely determined blood volume. Exact cell identification is accomplished by a logical electronic gating algorithm capable of identifying lineage-specific immunofluorescent markers. Exclusion of unwanted cells is automatic. This extensive and detailed unit presents protocols for both volumetric and flow-rate determination of residual white blood cells and of leukocyte subsets. PMID:18770719

  4. Proposal for an absolute, atomic definition of mass

    NASA Astrophysics Data System (ADS)

    Wignall, J. W. G.

    1991-11-01

    It is proposed that the mass of a particle be defined absolutely as its de Broglie frequency, measured as the mean de Broglie wavelength of the particle when it has a mean speed (v) and Lorentz factor (gamma); the masses of systems too large to have a measurable de Broglie wavelength mean are then to be derived by specifying the usual inertial and additive properties of mass. This definition avoids the use of an arbitrary macroscopic standard such as the prototype kilogram, and, if present theory is correct, does not even require the choice of a specific particle as a mass standard. Suggestions are made as to how this absolute mass can be realized and measured at the macroscopic level and, finally, some comments are made on the effect of the new definition on the form of the equations of physics.

  5. Simultaneously improving the sensitivity and absolute accuracy of CPT magnetometer.

    PubMed

    Liang, Shang-Qing; Yang, Guo-Qing; Xu, Yun-Fei; Lin, Qiang; Liu, Zhi-Heng; Chen, Zheng-Xiang

    2014-03-24

    A new method to improve the sensitivity and absolute accuracy simultaneously for coherent population trapping (CPT) magnetometer based on the differential detection method is presented. Two modulated optical beams with orthogonal circular polarizations are applied, in one of which two magnetic resonances are excited simultaneously by modulating a 3.4GHz microwave with Larmor frequency. When a microwave frequency shift is introduced, the difference in the power transmitted through the cell in each beam shows a low noise resonance. The sensitivity of 2pT/Hz @ 10Hz is achieved. Meanwhile, the absolute accuracy of ± 0.5nT within the magnetic field ranging from 20000nT to 100000nT is realized.

  6. Absolute phase effects on CPMG-type pulse sequences

    NASA Astrophysics Data System (ADS)

    Mandal, Soumyajit; Oh, Sangwon; Hürlimann, Martin D.

    2015-12-01

    We describe and analyze the effects of transients within radio-frequency (RF) pulses on multiple-pulse NMR measurements such as the well-known Carr-Purcell-Meiboom-Gill (CPMG) sequence. These transients are functions of the absolute RF phases at the beginning and end of the pulse, and are thus affected by the timing of the pulse sequence with respect to the period of the RF waveform. Changes in transients between refocusing pulses in CPMG-type sequences can result in signal decay, persistent oscillations, changes in echo shape, and other effects. We have explored such effects by performing experiments in two different low-frequency NMR systems. The first uses a conventional tuned-and-matched probe circuit, while the second uses an ultra-broadband un-tuned or non-resonant probe circuit. We show that there are distinct differences between the absolute phase effects in these two systems, and present simple models that explain these differences.

  7. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  8. Recovery of absolute threshold with UVA-induced retinal damage

    SciTech Connect

    Henton, W.W.; Sykes, S.M.

    1984-06-01

    A within-trial psychophysical procedure tracked the initial loss and subsequent recovery of visual thresholds in albino rats exposed to ultraviolet light at 350 nanometers and 0.4 milliwatts per square centimeter. Absolute thresholds increased up to 5 log units immediately following the 15 hour ultraviolet exposure, with a daily recovery of 1-2 log to asymptotic thresholds over a 7-day post-exposure period. The corresponding retinal damage on Day 1 included extensive vesiculation of the photoreceptor outer segments, vacuolation of the inner segments, and pyknosis of cell nuclei. The total number of photoreceptor nuclei and outer segments was unchanged relative to control eyes through post-exposure Day 3. Both nuclei and outer segment counts then consistently decreased 15-20 percent between Days 3-7. The two-stage loss of photoreceptors but daily recovery of absolute thresholds again suggests a significant dissociation of retinal structure and psychophysical function in light-induced ocular pathology.

  9. Diagnostic Application of Absolute Neutron Activation Analysis in Hematology

    SciTech Connect

    Zamboni, C.B.; Oliveira, L.C.; Dalaqua, L. Jr.

    2004-10-03

    The Absolute Neutron Activation Analysis (ANAA) technique was used to determine element concentrations of Cl and Na in blood of healthy group (male and female blood donators), select from Blood Banks at Sao Paulo city, to provide information which can help in diagnosis of patients. This study permitted to perform a discussion about the advantages and limitations of using this nuclear methodology in hematological examinations.

  10. Absolute Helicity Induction in Three-Dimensional Homochiral Frameworks

    PubMed Central

    Zhang, Jian; Bu, Xianhui

    2009-01-01

    Three Co(II) isomers assembled from d-, or l-, or dl-camphorate together with achiral isonicotinate exhibit a clear relationship between chirality and helicity even though chiral molecules are not in the backbone of the helix: the absolute sense of helix made of achiral components is controlled by chains of metal and enantiopure chiral ligands running perpendicular to helix in two enantiomeric forms. PMID:19099070

  11. Absolute configuration of hydroxycitric acid produced by microorganisms.

    PubMed

    Hida, Hiroyuki; Yamada, Takashi; Yamada, Yasuhiro

    2006-08-01

    Optical resolution for (2S,3R) and (2R,3S)-hydroxycitric acid (HCA) enantiomers was developed using chiral column chromatography. HCA from Bacillus megaterium G45C and Streptomyces sp. U121, newly isolated in our previous study, was analyzed to determine the absolute configuration. These results indicate that both strains generate optically pure (2S,3R)-hibiscus type HCA enantiomer. PMID:16926511

  12. On the Absolute Continuity of the Blackwell Measure

    NASA Astrophysics Data System (ADS)

    Bárány, Balázs; Kolossváry, István

    2015-04-01

    In 1957, Blackwell expressed the entropy of hidden Markov chains using a measure which can be characterised as an invariant measure for an iterated function system with place-dependent weights. This measure, called the Blackwell measure, plays a central role in understanding the entropy rate and other important characteristics of fundamental models in information theory. We show that for a suitable set of parameter values the Blackwell measure is absolutely continuous for almost every parameter in the case of binary symmetric channels.

  13. Absolute Bunch Length Measurements by Incoherent Radiation Fluctuation Analysis

    SciTech Connect

    Sannibale, F.; Stupakov, G.V.; Zolotorev, M.S.; Filippetto, D.; Jagerhofer, L.; /Vienna, Tech. U.

    2009-12-09

    By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and successfully tested a simple scheme based on this principle that allows for the absolute measurement of the rms bunch length. A description of the method and the experimental results are presented.

  14. Absolute bunch length measurements by incoherent radiation fluctuation analysis

    SciTech Connect

    Sannibale, Fernando; Stupakov, Gennady; Zolotorev, Max; Filippetto, Daniele; Jagerhofer, Lukas

    2008-09-29

    By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and successfully tested a simple scheme based on this principle that allows for the absolute measurement of the rms bunch length. A description of the method and the experimental results are presented.

  15. Successful treatment of pyogenic granuloma with injection of absolute ethanol.

    PubMed

    Ichimiya, Makoto; Yoshikawa, Yoshiaki; Hamamoto, Yoshiaki; Muto, Masahiko

    2004-04-01

    Pyogenic granuloma (PG) is a small, almost always solitary, sessile or pedunculated, raspberry-like vegetation of exuberant granulation tissue. Conservative treatment by techniques such as cryosurgery, laser surgery, and electrodesiccation are usually adequate, whereas excisional treatment can often result in noticeable scars. We attempted a different approach using an injection of absolute ethanol in five patients with recurrence due to inadequate cryosurgery. This therapy is less invasive than surgical excision and appears to be an alternative therapy for PG.

  16. Engine performance and the determination of absolute ceiling

    NASA Technical Reports Server (NTRS)

    Diehl, Walter S

    1924-01-01

    This report contains a brief study of the variation of engine power with temperature and pressure. The variation of propeller efficiency in standard atmosphere is obtained from the general efficiency curve which is developed in NACA report no. 168. The variation of both power available and power required are then determined and curves plotted, so that the absolute ceiling may be read directly from any known sea-level value of the ratio of power available to power required.

  17. Absolute GNSS Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G.; Bilich, A.; Geoghegan, C.

    2012-04-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and outline future planned refinements to the system.

  18. Electroweak absolute, meta-, and thermal stability in neutrino mass models

    NASA Astrophysics Data System (ADS)

    Lindner, Manfred; Patel, Hiren H.; Radovčić, Branimir

    2016-04-01

    We analyze the stability of the electroweak vacuum in neutrino mass models containing right-handed neutrinos or fermionic isotriplets. In addition to considering absolute stability, we place limits on the Yukawa couplings of new fermions based on metastability and thermal stability in the early Universe. Our results reveal that the upper limits on the neutrino Yukawa couplings can change significantly when the top quark mass is allowed to vary within the experimental range of uncertainty in its determination.

  19. Absolute calibration and beam background of the Squid Polarimeter

    SciTech Connect

    Blaskiewicz, M.M.; Cameron, P.R.; Shea, T.J.

    1996-12-31

    The problem of beam background in Squid Polarimetry is not without residual benefits. The authors may deliberately generate beam background by gently kicking the beam at the spin tune frequency. This signal may be used to accomplish a simple and accurate absolute calibration of the polarimeter. The authors present details of beam background calculations and their application to polarimeter calibration, and suggest a simple proof-of-principle accelerator experiment.

  20. Absolute intensity of radiation emitted by uranium plasmas

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Lee, J. H.; Mcfarland, D. R.

    1975-01-01

    The absolute intensity of radiation emitted by fissioning and nonfissioning uranium plasmas in the spectral range from 350 nm to 1000 nm was measured. The plasma was produced in a plasma-focus apparatus and the plasma properties are simular to those anticipated for plasma-core nuclear reactors. The results are expected to contribute to the establishment of design criteria for the development of plasma-core reactors.

  1. On the Absolutely Continuous Spectrum of Stark Operators

    NASA Astrophysics Data System (ADS)

    Perelman, Galina

    The stability of the absolutely continuous spectrum of the one-dimensional Stark operator under perturbations of the potential is discussed. The focus is on proving this stability under minimal assumptions on smoothness of the perturbation. A general criterion is presented together with some applications. These include the case of periodic perturbations where we show that any perturbation vL1()∩H-1/2() preserves the a.c. spectrum.

  2. Bio-Inspired Stretchable Absolute Pressure Sensor Network.

    PubMed

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X

    2016-01-02

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4'' wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles.

  3. Bio-Inspired Stretchable Absolute Pressure Sensor Network

    PubMed Central

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X.

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  4. Overspecification of color, pattern, and size: salience, absoluteness, and consistency

    PubMed Central

    Tarenskeen, Sammie; Broersma, Mirjam; Geurts, Bart

    2015-01-01

    The rates of overspecification of color, pattern, and size are compared, to investigate how salience and absoluteness contribute to the production of overspecification. Color and pattern are absolute and salient attributes, whereas size is relative and less salient. Additionally, a tendency toward consistent responses is assessed. Using a within-participants design, we find similar rates of color and pattern overspecification, which are both higher than the rate of size overspecification. Using a between-participants design, however, we find similar rates of pattern and size overspecification, which are both lower than the rate of color overspecification. This indicates that although many speakers are more likely to include color than pattern (probably because color is more salient), they may also treat pattern like color due to a tendency toward consistency. We find no increase in size overspecification when the salience of size is increased, suggesting that speakers are more likely to include absolute than relative attributes. However, we do find an increase in size overspecification when mentioning the attributes is triggered, which again shows that speakers tend to refer in a consistent manner, and that there are circumstances in which even size overspecification is frequently produced. PMID:26594190

  5. Absolute measurements of nonlinear absorption near LIDT at 193 nm

    NASA Astrophysics Data System (ADS)

    Blaschke, Holger; Ristau, Detlev; Welsch, Eberhard; Apel, Oliver

    2001-04-01

    Previous investigations indicate that oxide coatings exhibit non-linear absorption phenomena below 200 nm. Hereby, absorption data of Al2O3 thin film coatings has been determined absolutely by laser calorimetry (LCA) at 193 nm in the low fluence regime. As an alternative, on the basis of the pulsed surface thermal lens technique (STL), photothermal measurements allow to determine the absorption relatively at fluence levels both in the subdamage fluence range far from the damage onset and close to the LIDT. By combining the two measurement techniques, the absolute determination of linear as well as multiphoton absorption can be achieved also in the vicinity of the laser damage fluences. This is of crucial interest because the initiation of damage onset can be observed immediately. Absolute absorption data of Al2O3 coatings at different laser fluences stating of some mJoule/cm2 will be presented for the wavelength 193 nm. Thus, the correlation between the increase of absorption and the onset of breakdown can be illustrated impressively. The evaluation and discussion of the experimental results are focused on the degree of non-linearity of the investigated absorption behavior of oxide single layers initiating the optical breakdown of UV oxide coatings.

  6. Bio-Inspired Stretchable Absolute Pressure Sensor Network.

    PubMed

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4'' wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  7. Absolute surface reconstruction by slope metrology and photogrammetry

    NASA Astrophysics Data System (ADS)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  8. Measurement of Absolute Carbon Isotope Ratios: Mechanisms and Implications

    NASA Astrophysics Data System (ADS)

    Vogel, J. S.; Giacomo, J. A.; Dueker, S. R.

    2012-12-01

    An accelerator mass spectrometer (AMS) produced absolute isotope ratio measurements for 14C/13C as tested against >500 samples of NIST SRM-4990-C (OxII 14C standard) to an accuracy of 2.2±0.6‰ over a period of one year with measurements made to 1% counting statistics. The spectrometer is not maximized for 13C/12C, but measured ∂13C to 0.4±0.1‰ accuracy, with known methods for improvement. An AMS produces elemental anions from a sputter ion source and includes a charge-changing collision in a gas cell to isolate the rare 14C from the common isotopes and molecular isobars. Both these physical processes have been modeled to determine the parameters providing such absolute measures. Neutral resonant ionization in a cesium plasma produces mass-independent ionization, while velocity dependent charge-state distributions in gas collisions produce relative ion beam intensities that are linear in mass at specific collision energies. The mechanisms are not specific to carbon isotopes, but stand alone absolute IRMS (AIR-MS) instruments have not yet been made. Aside from the obvious applications in metrology, AIR-MS is particularly valuable in coupled separatory MS because no internal or external standards are required. Sample definition processes can be compared, even if no exact standard reference sample exists. Isotope dilution measurements do not require standards matching the dilution end-points and can be made over an extended, even extrapolated, range.

  9. Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross Bracing Joint, Vertical Cross Bracing End Detail - Ceylon Covered Bridge, Limberlost Park, spanning Wabash River at County Road 900 South, Geneva, Adams County, IN

  10. Trends in absolute socioeconomic inequalities in mortality in Sweden and New Zealand. A 20-year gender perspective

    PubMed Central

    Wamala, Sarah; Blakely, Tony; Atkinson, June

    2006-01-01

    Background Both trends in socioeconomic inequalities in mortality, and cross-country comparisons, may give more information about the causes of health inequalities. We analysed trends in socioeconomic differentials by mortality from early 1980s to late 1990s, comparing Sweden with New Zealand. Methods The New Zealand Census Mortality Study (NZCMS) consisting of over 2 million individuals and the Swedish Survey of Living Conditions (ULF) comprising over 100, 000 individuals were used for analyses. Education and household income were used as measures of socioeconomic position (SEP). The slope index of inequality (SII) was calculated to estimate absolute inequalities in mortality. Analyses were based on 3–5 year follow-up and limited to individuals aged 25–77 years. Age standardised mortality rates were calculated using the European population standard. Results Absolute inequalities in mortality on average over the 1980s and 1990s for both men and women by education were similar in Sweden and New Zealand, but by income were greater in Sweden. Comparing trends in absolute inequalities over the 1980s and 1990s, men's absolute inequalities by education decreased by 66% in Sweden and by 17% in New Zealand (p for trend <0.01 in both countries). Women's absolute inequalities by education decreased by 19% in Sweden (p = 0.03) and by 8% in New Zealand (p = 0.53). Men's absolute inequalities by income decreased by 51% in Sweden (p for trend = 0.06), but increased by 16% in New Zealand (p = 0.13). Women's absolute inequalities by income increased in both countries: 12% in Sweden (p = 0.03) and 21% in New Zealand (p = 0.04). Conclusion Trends in socioeconomic inequalities in mortality were clearly most favourable for men in Sweden. Trends also seemed to be more favourable for men than women in New Zealand. Assuming the trends in male inequalities in Sweden were not a statistical chance finding, it is not clear what the substantive reason(s) was for the pronounced decrease

  11. The new Absolute Quantum Gravimeter (AQG): first results and perspectives

    NASA Astrophysics Data System (ADS)

    Bonvalot, Sylvain; Le Moigne, Nicolas; Merlet, Sebastien; Desruelle, Bruno; Lautier-Gaud, Jean; Menoret, Vincent; Vermeulen, Pierre

    2016-04-01

    Cold atom gravimetry represents one of the most innovative evolution in gravity instrumentation since the last 20 years. The concept of measuring the gravitational acceleration by dropping atoms and the development of the first instrumental devices during this last decade quickly revealed the promising perspectives of this new generation of gravity meters enabling accurate and absolute measurements of the Earth's gravity field for a wide range of applications (geophysics, geodesy, metrology, etc.). The Absolute Quantum Gravimeter (AQG) gravity meter, developed by MUQUANS (Talence, France - http://www.muquans.com/) with the support of RESIF, the French Seismologic and Geodetic Network (http://www.resif.fr/) belongs to this new generation of instruments. It also represents the first commercial device based on the utilization of advanced matter-wave interferometry techniques, which allow to characterize precisely the vertical acceleration experienced by a cloud of cold atoms. Recently, the first operational unit (AQG01) has been achieved as a compact transportable gravimeter with the aim of satisfying absolute gravity measurements in laboratory conditions under the following specifications: measurements the μGal level at a few Hz cycling frequency, sensitivity of 50μGal/√Hz, immunity to ground vibrations, easy and quickness of operation, automated continuous data acquisition for several months, etc. In order to evaluate the current performances of the AQG01, several experiments are carried out in collaboration between RESIF user's teams and the MUQUANS manufacturer on different reference gravity sites and laboratories in France. These measurements performed in indoor conditions including simultaneous observations with classical reference gravity instruments (corner-cube absolute gravity meters, relative superconducting meters) as well with the Cold Atom Gravity meter (CAG) developed by LNE-SYRTE, lead to a first objective characterization of the performances of

  12. On the role of spatial position of bridged oxygen atoms as surface passivants on the ground-state gap and photo-absorption spectrum of silicon nano-crystals

    SciTech Connect

    Nazemi, Sanaz; Soleimani, Ebrahim Asl; Pourfath, Mahdi E-mail: pourfath@iue.tuwien.ac.at

    2015-11-28

    Silicon nano-crystals (NCs) are potential candidates for enhancing and tuning optical properties of silicon for optoelectronic and photo-voltaic applications. Due to the high surface-to-volume ratio, however, optical properties of NC result from the interplay of quantum confinement and surface effects. In this work, we show that both the spatial position of surface terminants and their relative positions have strong effects on NC properties as well. This is accomplished by investigating the ground-state HOMO-LUMO band-gap, the photo-absorption spectra, and the localization and overlap of HOMO and LUMO orbital densities for prototype ∼1.2 nm Si{sub 32–x}H{sub 42–2x}O{sub x} hydrogenated silicon NC with bridged oxygen atoms as surface terminations. It is demonstrated that the surface passivation geometry significantly alters the localization center and thus the overlap of frontier molecular orbitals, which correspondingly modifies the electronic and optical properties of NC.

  13. SU-E-I-43: Photoelectric Cross Section Revisited

    SciTech Connect

    Haga, A; Nakagawa, K; Kotoku, J; Horikawa, Y

    2015-06-15

    Purpose: The importance of the precision in photoelectric cross-section value increases for recent developed technology such as dual energy computed tomography, in which some reconstruction algorithms require the energy dependence of the photo-absorption in each material composition of human being. In this study, we revisited the photoelectric cross-section calculation by self-consistent relativistic Hartree-Fock (HF) atomic model and compared with that widely distributed as “XCOM database” in National Institute of Standards and Technology, which was evaluated with localdensity approximation for electron-exchange (Fock)z potential. Methods: The photoelectric cross section can be calculated with the electron wave functions in initial atomic state (bound electron) and final continuum state (photoelectron). These electron states were constructed based on the selfconsistent HF calculation, where the repulsive Coulomb potential from the electron charge distribution (Hartree term) and the electron exchange potential with full electromagnetic interaction (Fock term) were included for the electron-electron interaction. The photoelectric cross sections were evaluated for He (Z=2), Be (Z=4), C (Z=6), O (Z=8), and Ne (Z=10) in energy range of 10keV to 1MeV. The Result was compared with XCOM database. Results: The difference of the photoelectric cross section between the present calculation and XCOM database was 8% at a maximum (in 10keV for Be). The agreement tends to be better as the atomic number increases. The contribution from each atomic shell has a considerable discrepancy with XCOM database except for K-shell. However, because the photoelectric cross section arising from K-shell is dominant, the net photoelectric cross section was almost insensitive to the different handling in Fock potential. Conclusion: The photoelectric cross-section program has been developed based on the fully self-consistent relativistic HF atomic model. Due to small effect on the Fock

  14. Absolute versus relative ascertainment of pedophilia in men.

    PubMed

    Blanchard, Ray; Kuban, Michael E; Blak, Thomas; Cantor, James M; Klassen, Philip E; Dickey, Robert

    2009-12-01

    There are at least two different criteria for assessing pedophilia in men: absolute ascertainment (their sexual interest in children is intense) and relative ascertainment (their sexual interest in children is greater than their interest in adults). The American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders, 3rd edition (DSM-III) used relative ascertainment in its diagnostic criteria for pedophilia; this was abandoned and replaced by absolute ascertainment in the DSM-III-R and all subsequent editions. The present study was conducted to demonstrate the continuing need for relative ascertainment, particularly in the laboratory assessment of pedophilia. A total of 402 heterosexual men were selected from a database of patients referred to a specialty clinic. These had undergone phallometric testing, a psychophysiological procedure in which their penile blood volume was monitored while they were presented with a standardized set of laboratory stimuli depicting male and female children, pubescents, and adults.The 130 men selected for the Teleiophilic Profile group responded substantially to prepubescent girls but even more to adult women; the 272 men selected for the Pedophilic Profile group responded weakly to prepubescent girls but even less to adult women. In terms of absolute magnitude, every patient in the Pedophilic Profile group had a lesser penile response to prepubescent girls than every patient in the Teleiophilic Profile group. Nevertheless, the Pedophilic Profile group had a significantly greater number of known sexual offenses against prepubescent girls, indicating that they contained a higher proportion of true pedophiles. These results dramatically demonstrate the utility-or perhaps necessity-of relative ascertainment in the laboratory assessment of erotic age-preference.

  15. Morphology and Absolute Magnitudes of the SDSS DR7 QSOs

    NASA Astrophysics Data System (ADS)

    Coelho, B.; Andrei, A. H.; Antón, S.

    2014-10-01

    The ESA mission Gaia will furnish a complete census of the Milky Way, delivering astrometrics, dynamics, and astrophysics information for 1 billion stars. Operating in all-sky repeated survey mode, Gaia will also provide measurements of extra-galactic objects. Among the later there will be at least 500,000 QSOs that will be used to build the reference frame upon which the several independent observations will be combined and interpreted. Not all the QSOs are equally suited to fulfill this role of fundamental, fiducial grid-points. Brightness, morphology, and variability define the astrometric error budget for each object. We made use of 3 morphological parameters based on the PSF sharpness, circularity and gaussianity, which enable us to distinguish the "real point-like" QSOs. These parameters are being explored on the spectroscopically certified QSOs of the SDSS DR7, to compare the performance against other morphology classification schemes, as well as to derive properties of the host galaxy. We present a new method, based on the Gaia quasar database, to derive absolute magnitudes, on the SDSS filters domain. The method can be extrapolated all over the optical window, including the Gaia filters. We discuss colors derived from SDSS apparent magnitudes and colors based on absolute magnitudes that we obtained tanking into account corrections for dust extinction, either intergalactic or from the QSO host, and for the Lyman α forest. In the future we want to further discuss properties of the host galaxies, comparing for e.g. the obtained morphological classification with the color, the apparent and absolute magnitudes, and the redshift distributions.

  16. Absolute quantification of cell-bound DNA aptamers during SELEX.

    PubMed

    Avci-Adali, Meltem; Wilhelm, Nadja; Perle, Nadja; Stoll, Heidi; Schlensak, Christian; Wendel, Hans P

    2013-04-01

    In the fields of diagnosis, imaging, regenerative medicine, and drug targeting, aptamers are promising nucleic acid ligands for specific recognition and binding of whole living cells. These aptamers are selected by a combinatorial chemistry technique called cell-SELEX (Systematic Evolution of Ligands by EXponential enrichment). During this iterative procedure of in vitro selection and enzymatic amplification, the enrichment of cell binding aptamers is generally monitored by flow cytometry. This method needs the use of fluorophore-labeled oligonucleotides for detection and allows only the relative evaluation of the aptamer binding compared with the control. Here, we describe the development and validation of a new quantitative real time polymerase chain reaction (qPCR) method for the absolute determination of cell bound aptamers during cell-SELEX. The method is based on SYBR Green I real-time PCR technology and uses an aptamer standard curve to determine the accurate aptamer amount on cells after the incubations. Lysates of cells with bound aptamers were used to identify the absolute amount of aptamers on cells. This method is highly sensitive and allows the detection of very small quantities of aptamers in cell lysate samples. The lower detection limit is 20 fg. The established qPCR method can be used as an additional monitoring tool during cell-SELEX to determine the enrichment of cell binding aptamers on cells, whereby the absolute quantity is determined. Furthermore, the contamination of the amplified aptamer pool with by-products can be prevented by prior determination of bound aptamer amount on cells. PMID:23405949

  17. ICP-MS for multiplex absolute determinations of proteins.

    PubMed

    Sanz-Medel, Alfredo

    2010-11-01

    In the last few years MS-based proteomics has been turning quantitative because only the quantity of existing proteins or changes of their abundance in a studied sample reflect the actual status and the extent of possible changes in a given biological system. So far, however, only relative quantifications are common place. Recently, the ideal analytical features of ICP-MS that allow robust, accurate and precise absolute determinations of heteroelements (present in proteins and their peptides) have opened the door to its use, as a complementary ion source of MALDI- and/or ESI-(MS), in achieving the "absolute" quantification of a protein. Unfortunately, so far such "heteroatom-tagged proteomics" applications deal with only single-heteroatom measurements. Thus, the outstanding capability of ICP-MS for multi-element (-isotope) simultaneous determinations is somewhat wasted. On the other hand, multiplexed determinations of proteins (e.g. in common or new multiplexed formats) today constitute a pressing need in medical science (e.g. to determine accurately many biomarkers at a time). This is a clear trend in analytical science where ICP-MS could eventually play an important role. Therefore, reported approaches to multiplex protein determinations using ICP-MS, with liquid sample nebulisation and with laser direct sampling from a solid, are discussed here. Apart from such multiplex bioassays for absolute protein determinations, efforts to simultaneously quantitate enzyme activities are also discussed. It appears that the time is ripe to combine the multi-isotopic character of ICP-MS with well-known multi-analyte separation techniques (e.g. HPLC or multiplex immunoassays) to tackle the challenge of analysing abundances and activities of several proteins and enzymes, respectively, in a single assay. Many attractive opportunities for creative work and interdisciplinary developments for analytical atomic spectroscopists seem to lie ahead related to multiplexed quantitative

  18. Absolute Memory for Tempo in Musicians and Non-Musicians

    PubMed Central

    Brandimonte, Maria A.; Bruno, Nicola

    2016-01-01

    The ability to remember tempo (the perceived frequency of musical pulse) without external references may be defined, by analogy with the notion of absolute pitch, as absolute tempo (AT). Anecdotal reports and sparse empirical evidence suggest that at least some individuals possess AT. However, to our knowledge, no systematic assessments of AT have been performed using laboratory tasks comparable to those assessing absolute pitch. In the present study, we operationalize AT as the ability to identify and reproduce tempo in the absence of rhythmic or melodic frames of reference and assess these abilities in musically trained and untrained participants. We asked 15 musicians and 15 non-musicians to listen to a seven-step `tempo scale’ of metronome beats, each associated to a numerical label, and then to perform two memory tasks. In the first task, participants heard one of the tempi and attempted to report the correct label (identification task), in the second, they saw one label and attempted to tap the correct tempo (production task). A musical and visual excerpt was presented between successive trials as a distractor to prevent participants from using previous tempi as anchors. Thus, participants needed to encode tempo information with the corresponding label, store the information, and recall it to give the response. We found that more than half were able to perform above chance in at least one of the tasks, and that musical training differentiated between participants in identification, but not in production. These results suggest that AT is relatively wide-spread, relatively independent of musical training in tempo production, but further refined by training in tempo identification. We propose that at least in production, the underlying motor representations are related to tactus, a basic internal rhythmic period that may provide a body-based reference for encoding tempo. PMID:27760198

  19. Absolute versus relative ascertainment of pedophilia in men.

    PubMed

    Blanchard, Ray; Kuban, Michael E; Blak, Thomas; Cantor, James M; Klassen, Philip E; Dickey, Robert

    2009-12-01

    There are at least two different criteria for assessing pedophilia in men: absolute ascertainment (their sexual interest in children is intense) and relative ascertainment (their sexual interest in children is greater than their interest in adults). The American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders, 3rd edition (DSM-III) used relative ascertainment in its diagnostic criteria for pedophilia; this was abandoned and replaced by absolute ascertainment in the DSM-III-R and all subsequent editions. The present study was conducted to demonstrate the continuing need for relative ascertainment, particularly in the laboratory assessment of pedophilia. A total of 402 heterosexual men were selected from a database of patients referred to a specialty clinic. These had undergone phallometric testing, a psychophysiological procedure in which their penile blood volume was monitored while they were presented with a standardized set of laboratory stimuli depicting male and female children, pubescents, and adults.The 130 men selected for the Teleiophilic Profile group responded substantially to prepubescent girls but even more to adult women; the 272 men selected for the Pedophilic Profile group responded weakly to prepubescent girls but even less to adult women. In terms of absolute magnitude, every patient in the Pedophilic Profile group had a lesser penile response to prepubescent girls than every patient in the Teleiophilic Profile group. Nevertheless, the Pedophilic Profile group had a significantly greater number of known sexual offenses against prepubescent girls, indicating that they contained a higher proportion of true pedophiles. These results dramatically demonstrate the utility-or perhaps necessity-of relative ascertainment in the laboratory assessment of erotic age-preference. PMID:19901237

  20. Lens transmission measurement for an absolute radiation thermometer

    SciTech Connect

    Hao, X.; Yuan, Z.; Lu, X.

    2013-09-11

    The lens transmission for the National Institute of Metrology of China absolute radiation thermometer is measured by a hybrid method. The results of the lens transmission measurements are 99.002% and 86.792% for filter radiometers with center wavelengths 633 nm and 900 nm, respectively. These results, after correcting for diffraction factors and the size-of-source effect when the lens is incorporated within the radiometer, can be used for measurement of thermodynamic temperature. The expanded uncertainty of the lens transmission measurement system has been evaluated. It is 1.3×10{sup −3} at 633 nm and 900 nm, respectively.

  1. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  2. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-03

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  3. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2008-10-21

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  4. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-17

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  5. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-10-02

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  6. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2009-09-01

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  7. Prelaunch absolute radiometric calibration of LANDSAT-4 protoflight Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Ball, D. L.; Leung, K. C.; Walker, J. A.

    1984-01-01

    Results are summarized and analyzed from several prelaunch tests with a 122 cm integrating sphere used as part of the absolute radiometric calibration experiments for the protoflight TM sensor carried on the LANDSAT-4 satellite. The calibration procedure is presented and the radiometric sensitivity of the TM is assessed. The internal calibrator and dynamic range after calibration are considered. Tables show dynamic range after ground processing, spectral radiance to digital number and digital number to spectral radiance values for TM bands 1, 2, 3, 4, 5, 7 and for channel 4 of band 6.

  8. Measuring Postglacial Rebound with GPS and Absolute Gravity

    NASA Technical Reports Server (NTRS)

    Larson, Kristine M.; vanDam, Tonie

    2000-01-01

    We compare vertical rates of deformation derived from continuous Global Positioning System (GPS) observations and episodic measurements of absolute gravity. We concentrate on four sites in a region of North America experiencing postglacial rebound. The rates of uplift from gravity and GPS agree within one standard deviation for all sites. The GPS vertical deformation rates are significantly more precise than the gravity rates, primarily because of the denser temporal spacing provided by continuous GPS tracking. We conclude that continuous GPS observations are more cost efficient and provide more precise estimates of vertical deformation rates than campaign style gravity observations where systematic errors are difficult to quantify.

  9. On the convective-absolute nature of river bedform instabilities

    NASA Astrophysics Data System (ADS)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca; Chomaz, Jean Marc

    2014-12-01

    River dunes and antidunes are induced by the morphological instability of stream-sediment boundary. Such bedforms raise a number of subtle theoretical questions and are crucial for many engineering and environmental problems. Despite their importance, the absolute/convective nature of the instability has never been addressed. The present work fills this gap as we demonstrate, by the cusp map method, that dune instability is convective for all values of the physical control parameters, while the antidune instability exhibits both behaviors. These theoretical predictions explain some previous experimental and numerical observations and are important to correctly plan flume experiments, numerical simulations, paleo-hydraulic reconstructions, and river works.

  10. Absolute dating of dedolomitization by means of paleomagnetic techniques

    NASA Astrophysics Data System (ADS)

    Elmore, R. Douglas; Dunn, William; Peck, Craig

    1985-08-01

    Paleomagnetic analysis, in conjunction with petrographic studies, is an approach whereby absolute dates can be placed on diagenetic events. Hematite is associated with dedolomite in the Lower Ordovician Kindblade Formation in south-central Oklahoma and is interpreted as a by-product of the dedolomitization of ferroan dolomite. Paleomagnetic results date the time of dedolomitization as Late Pennsylvanian-Early Permian. Dedolomitization was probably caused by oxidizing fluids with high calcium contents that migrated through the Kindblade Formation following uplift of the Arbuckle Mountains.

  11. Electromagnetic hydrophone with tomographic system for absolute velocity field mapping

    NASA Astrophysics Data System (ADS)

    Grasland-Mongrain, Pol; Mari, Jean-Martial; Gilles, Bruno; Chapelon, Jean-Yves; Lafon, Cyril

    2012-06-01

    The velocity and pressure of an ultrasonic wave can be measured by an electromagnetic hydrophone made of a thin wire and a magnet. The ultrasonic wave vibrates the wire inside a magnetic field, inducing an electrical current. Previous articles reported poor spatial resolution of comparable hydrophones along the axis of the wire. In this study, submillimetric spatial resolution has been achieved by using a tomographic method. Moreover, a physical model is presented for obtaining absolute measurements. A pressure differential of 8% has been found between piezoelectric and electromagnetic hydrophone measurements. These characteristics show this technique as an alternative to standard hydrophones.

  12. (+)- and (-)-mutisianthol: first total synthesis, absolute configuration, and antitumor activity.

    PubMed

    Bianco, Graziela G; Ferraz, Helena M C; Costa, Arinice M; Costa-Lotufo, Letícia V; Pessoa, Cláudia; de Moraes, Manoel O; Schrems, Marcus G; Pfaltz, Andreas; Silva, Luiz F

    2009-03-20

    The first synthesis of the natural product (+)-mutisianthol was accomplished in 11 steps and in 21% overall yield from 2-methylanisole. The synthesis of its enantiomer was also performed in a similar overall yield. The absolute configuration of the sesquiterpene (+)-mutisianthol was assigned as (1S,3R). Key steps in the route are the asymmetric hydrogenation of a nonfunctionalized olefin using chiral iridium catalysts and the ring contraction of 1,2-dihydronaphthalenes using thallium(III) or iodine(III). The target molecules show moderate activity against the human tumor cell lines SF-295, HCT-8, and MDA-MB-435.

  13. Evaluation of Absolute Dynamic Ocean Topography Profiles along the Brazilian Coast

    NASA Astrophysics Data System (ADS)

    Luz, R. T.; Bosch, W.; Freitas, S. R. C.; Heck, B.

    2009-04-01

    Based on a new approach, which consistently filters GRACE-based geoid undulations and altimetry-derived sea surface heights along the tracks of altimeter satellites, absolute dynamic ocean topography (DOT) profiles are estimated along the Brazilian coast. Such DOT profiles can be used to perform levelling over the sea. Connecting these profiles with Brazilian Geodetic Tide Gauge Network (RMPG) stations it would be possible to validate the current studies on the modernization of the Brazilian height system, extended over many thousand kilometers on land. The link with coastal reference sites would also allow to connect isolated height systems, e.g. north of the Amazonas River mouth. We perform long-term mean DOT-profiles of cross-calibrated altimeter satellites which operated for many years over repeated ground tracks (TOPEX, Jason-1, ERS-2). Moreover, we analyze the consistency among crossing profiles (single- and dual-satellite) in particular in areas with strong mesoscale currents. The extrapolation of DOT profiles towards selected RMPG stations is investigated. For this connection strategies are considered to overcome the degradation of coastal altimetry due to errors in ocean tide models and the land contamination of the radiometer observations.

  14. Study on improving the turbidity measurement of the absolute coagulation rate constant.

    PubMed

    Sun, Zhiwei; Liu, Jie; Xu, Shenghua

    2006-05-23

    The existing theories dealing with the evaluation of the absolute coagulation rate constant by turbidity measurement were experimentally tested for different particle-sized (radius = a) suspensions at incident wavelengths (lambda) ranging from near-infrared to ultraviolet light. When the size parameter alpha = 2pi a/lambda > 3, the rate constant data from previous theories for fixed-sized particles show significant inconsistencies at different light wavelengths. We attribute this problem to the imperfection of these theories in describing the light scattering from doublets through their evaluation of the extinction cross section. The evaluations of the rate constants by all previous theories become untenable as the size parameter increases and therefore hampers the applicable range of the turbidity measurement. By using the T-matrix method, we present a robust solution for evaluating the extinction cross section of doublets formed in the aggregation. Our experiments show that this new approach is effective in extending the applicability range of the turbidity methodology and increasing measurement accuracy.

  15. Laser interferometry method for absolute measurement of the acceleration of gravity

    NASA Technical Reports Server (NTRS)

    Hudson, O. K.

    1971-01-01

    Gravimeter permits more accurate and precise absolute measurement of g without reference to Potsdam values as absolute standards. Device is basically Michelson laser beam interferometer in which one arm is mass fitted with corner cube reflector.

  16. Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification

    EPA Science Inventory

    Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...

  17. Southern Ocean hotspot tracks and the Cenozoic absolute motion of the African, Antarctic, and South American plates

    NASA Astrophysics Data System (ADS)

    Hartnady, C. J. H.; le Roex, A. P.

    1985-10-01

    A detailed analysis, based on an Antarctica-Africa finite reconstruction at chron C29 (64 Ma), an assumption of no relative wander between the Marion/Prince Edward and Tristan hotspots, and on recently revised bathymetric maps of the Southern Ocean region, shows that the fixed hotspot reference frame is tenable for "absolute" plate motions. Bouvet hotspot, and probably Trinidade as well, also shows little or no Cenozoic relative motion. Contrary to previous models. Bouvet hotspot is unrelated to the Meteor Rise-Cape Rise seamount chain. Instead, the bathymetric data, when compared with the predicted hotspot tracks, indicate another hotspot exists near the southernmost South Atlantic spreading ridge segment. New geochemical evidence from the latter region supports this hypothesis in showing the effects of "plume enrichment" from a source that is compositionally distinct from Bouvet. The peculiar zig-zag shape of the Cape Rise-Meteor Rise lineament is the result of this hotspot crossing the active transform segment of the Falkland-Agulhas Fracture Zone in Late Mesozoic times, followed by an early Cenozoic ridge-jump to the pre-weakened trace on the then South American plate. From the averaged Cenozoic absolute motions of the African, Antarctic, and South American plates, it is evident that Antarctica has been most nearly stationary in an absolute motion sense.

  18. Enabling Dark Energy and Beyond Science with Precise Absolute Photometry

    NASA Astrophysics Data System (ADS)

    Deustua, Susana E.; Hines, D. C.; Bohlin, R.; Gordon, K. D.

    2014-01-01

    We have obtain WFC3/IR observations of 15 carefully selected stars with the immediate objective of establishing their Absolute Physical Flux (ABF), and an ultimate goal of achieving the sub-1% absolute photometric accuracies required by Dark Energy science with JWST and other facilities. Even with the best data available, the current determination of ABFs is plagued by the reliance on the Vega photometric system, which is known to be problematic primarily due to the fact that Vega is a pole-on rapid rotator with an infrared excess from its circumstellar disk! which makes it difficult to model. Vega is also far too bright for large aperture telescopes. In an effort to remedy these difficulties, teams from the National Institute of Standards (NIST), the University of New Mexico, Johns Hopkins University and STScI have begun to develop a catalog of stars that have spectral energy distributions that are tied directly to NIST (diode) standards with very precisely determined physical characteristics. A key element in this pursuit has been the efforts at STScI to measure the spectra of many of these objects with STIS. We discuss our program to extend this effort into the near-IR which is crucial to reliably extend the SEDs to longer wavelengths, including the mid IR.

  19. Absolute phase effects on CPMG-type pulse sequences.

    PubMed

    Mandal, Soumyajit; Oh, Sangwon; Hürlimann, Martin D

    2015-12-01

    We describe and analyze the effects of transients within radio-frequency (RF) pulses on multiple-pulse NMR measurements such as the well-known Carr-Purcell-Meiboom-Gill (CPMG) sequence. These transients are functions of the absolute RF phases at the beginning and end of the pulse, and are thus affected by the timing of the pulse sequence with respect to the period of the RF waveform. Changes in transients between refocusing pulses in CPMG-type sequences can result in signal decay, persistent oscillations, changes in echo shape, and other effects. We have explored such effects by performing experiments in two different low-frequency NMR systems. The first uses a conventional tuned-and-matched probe circuit, while the second uses an ultra-broadband un-tuned or non-resonant probe circuit. We show that there are distinct differences between the absolute phase effects in these two systems, and present simple models that explain these differences. PMID:26575106

  20. Low cost varying synthetic wavelength technique for absolute distance measurement

    NASA Astrophysics Data System (ADS)

    Le Floch, S.; Salvadé, Y.

    2010-04-01

    A new low-cost superheterodyne configuration, without acousto-optic modulator, is applied to the two-wavelength interferometry for absolute distance measurement. The principle relies on a synchronized frequency sweep of two optical signals, but with different frequency excursions. The frequency difference between the two optical waves is highly accurate. This is realized by injecting a frequency modulated laser signal in an intensity modulator that is biased at halfwave voltage and driven by a digitally swept radio-frequency signal between 13 and 15 GHz. This latter is a continuous up and down ramp. The two synchronized optical signals emerging from the modulator produce in a Michelson interferometer a distance dependent superheterodyne signal, with a variable synthetic wavelength of about 10 mm. The superheterodyne frequency depends linearly on distance and on the radio-frequency excursion. The integration time for a distance measurement point corresponds to the duration of single sweep (i.e. one millisecond in our case). Absolute distance measurements from 1 to 15 meters yield an accuracy of +/-50 μm, showing the validity of the technique.