Science.gov

Sample records for absolute position estimation

  1. Estimating the absolute position of a mobile robot using position probability grids

    SciTech Connect

    Burgard, W.; Fox, D.; Hennig, D.; Schmidt, T.

    1996-12-31

    In order to re-use existing models of the environment mobile robots must be able to estimate their position and orientation in such models. Most of the existing methods for position estimation are based on special purpose sensors or aim at tracking the robot`s position relative to the known starting point. This paper describes the position probability grid approach to estimating the robot`s absolute position and orientation in a metric model of the environment. Our method is designed to work with standard sensors and is independent of any knowledge about the starting point. It is a Bayesian approach based on certainty grids. In each cell of such a grid we store the probability that this cell refers to the current position of the robot. These probabilities are obtained by integrating the likelihoods of sensor readings over time. Results described in this paper show that our technique is able to reliably estimate the position of a robot in complex environments. Our approach has proven to be robust with respect to inaccurate environmental models, noisy sensors, and ambiguous situations.

  2. Estimating the absolute wealth of households

    PubMed Central

    Gerkey, Drew; Hadley, Craig

    2015-01-01

    Abstract Objective To estimate the absolute wealth of households using data from demographic and health surveys. Methods We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. Findings The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723–6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R2 = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Conclusion Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality. PMID:26170506

  3. Absolute Position Encoders With Vertical Image Binning

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2005-01-01

    Improved optoelectronic patternrecognition encoders that measure rotary and linear 1-dimensional positions at conversion rates (numbers of readings per unit time) exceeding 20 kHz have been invented. Heretofore, optoelectronic pattern-recognition absoluteposition encoders have been limited to conversion rates <15 Hz -- too low for emerging industrial applications in which conversion rates ranging from 1 kHz to as much as 100 kHz are required. The high conversion rates of the improved encoders are made possible, in part, by use of vertically compressible or binnable (as described below) scale patterns in combination with modified readout sequences of the image sensors [charge-coupled devices (CCDs)] used to read the scale patterns. The modified readout sequences and the processing of the images thus read out are amenable to implementation by use of modern, high-speed, ultra-compact microprocessors and digital signal processors or field-programmable gate arrays. This combination of improvements makes it possible to greatly increase conversion rates through substantial reductions in all three components of conversion time: exposure time, image-readout time, and image-processing time.

  4. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  5. Optimal Centroid Position Estimation

    SciTech Connect

    Candy, J V; McClay, W A; Awwal, A S; Ferguson, S W

    2004-07-23

    The alignment of high energy laser beams for potential fusion experiments demand high precision and accuracy by the underlying positioning algorithms. This paper discusses the feasibility of employing online optimal position estimators in the form of model-based processors to achieve the desired results. Here we discuss the modeling, development, implementation and processing of model-based processors applied to both simulated and actual beam line data.

  6. Method for estimating absolute lung volumes at constant inflation pressure.

    PubMed

    Hills, B A; Barrow, R E

    1979-10-01

    A method has been devised for measuring functional residual capacity in the intact killed animal or absolute lung volumes in any excised lung preparation without changing the inflation pressure. This is achieved by titrating the absolute pressure of a chamber in which the preparation is compressed until a known volume of air has entered the lungs. This technique was used to estimate the volumes of five intact rabbit lungs and five rigid containers of known dimensions by means of Boyle's law. Results were found to agree to within +/- 1% with values determined by alternative methods. In the discussion the advantage of determining absolute lung volumes at almost any stage in a study of lung mechanics without the determination itself changing inflation pressure and, hence, lung volume is emphasized. PMID:511699

  7. Absolute positioning using DORIS tracking of the SPOT-2 satellite

    NASA Technical Reports Server (NTRS)

    Watkins, M. M.; Ries, J. C.; Davis, G. W.

    1992-01-01

    The ability of the French DORIS system operating on the SPOT-2 satellite to provide absolute site positioning at the 20-30-centimeter level using 80 d of data is demonstrated. The accuracy of the vertical component is comparable to that of the horizontal components, indicating that residual troposphere error is not a limiting factor. The translation parameters indicate that the DORIS network realizes a geocentric frame to about 50 nm in each component. The considerable amount of data provided by the nearly global, all-weather DORIS network allowed this complex parameterization required to reduce the unmodeled forces acting on the low-earth satellite. Site velocities with accuracies better than 10 mm/yr should certainly be possible using the multiyear span of the SPOT series and Topex/Poseidon missions.

  8. Absolute position total internal reflection microscopy with an optical tweezer

    PubMed Central

    Liu, Lulu; Woolf, Alexander; Rodriguez, Alejandro W.; Capasso, Federico

    2014-01-01

    A noninvasive, in situ calibration method for total internal reflection microscopy (TIRM) based on optical tweezing is presented, which greatly expands the capabilities of this technique. We show that by making only simple modifications to the basic TIRM sensing setup and procedure, a probe particle’s absolute position relative to a dielectric interface may be known with better than 10 nm precision out to a distance greater than 1 μm from the surface. This represents an approximate 10× improvement in error and 3× improvement in measurement range over conventional TIRM methods. The technique’s advantage is in the direct measurement of the probe particle’s scattering intensity vs. height profile in situ, rather than relying on assumptions, inexact system analogs, or detailed knowledge of system parameters for calibration. To demonstrate the improved versatility of the TIRM method in terms of tunability, precision, and range, we show our results for the hindered near-wall diffusion coefficient for a spherical dielectric particle. PMID:25512542

  9. An ERP Investigation of Orthographic Priming with Relative-Position and Absolute-Position Primes

    PubMed Central

    Grainger, Jonathan; Holcomb, Phillip J.

    2009-01-01

    The present study used event-related potentials to examine the time-course of relative-position and absolute-position orthographic priming. Relative-position priming was examined using primes formed by a concatenated subset of the target word’s letters (e.g., cllet/COLLECT vs. dlema/COLLECT), and absolute-position priming was investigated using hyphenated versions of these primes (c-lle-t/COLLECT vs. d-lem-a/COLLECT). Both manipulations modulated the ERP waveform starting at around 100 ms post-target onset and extending into the N400 component. The first clear manifestation of priming was found in the N250 component, where hyphenated primes were found to have an earlier, more robust and more widely distributed effect than the concatenated primes. On the other hand, both prime types had similar effects on N400 amplitude. These results provide important information about the time-course of activation of location-specific and location-invariant (word-centered) orthographic representations during visual word recognition. PMID:19285966

  10. System providing limit switch function with simultaneous absolute position output

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2006-01-01

    A limit and position sensing system includes a sensor assembly and an emitter. The sensor assembly includes first and second electrical conductors arranged in opposing parallel planes. The first electrical conductor is coiled outwardly from either end thereof in a clockwise fashion to form a first coil region and a second coil region. The second electrical conductor forms a single coil with portions of the single coil's rings lying between the first end and second end of the first electrical conductor being parallel to an axis of the first electrical conductor's plane. Ferromagnetic material is aligned with the first and second electrical conductors and spans beyond (a) the first and second ends of the first electrical conductor, and (b) the portions of the rings of the second electrical conductor's single coil that lie between the first end and second end of the first electrical conductor. The emitter is spaced apart from the sensor assembly and transmits a periodic electromagnetic wave towards the sensor assembly.

  11. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering.

    PubMed

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-05-23

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level.

  12. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering

    PubMed Central

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293

  13. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering.

    PubMed

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293

  14. Absolute instability from linear conversion of counter-propagating positive and negative energy waves

    SciTech Connect

    Kaufman, A.N.; Brizard, A.J.; Morehead, J.J.; Tracy, E.R.

    1997-12-31

    The resonant interaction of a negative-energy wave with a positive-energy wave gives rise to a linear instability. Whereas a single crossing of rays in a nonuniform medium leads to a convectively saturated instability, we show that a double crossing can yield an absolute instability.

  15. Absolute continuity for operator valued completely positive maps on C*-algebras

    SciTech Connect

    Gheondea, Aurelian; Kavruk, Ali Samil

    2009-02-15

    Motivated by applicability to quantum operations, quantum information, and quantum probability, we investigate the notion of absolute continuity for operator valued completely positive maps on C*-algebras, previously introduced by Parthasarathy [in Athens Conference on Applied Probability and Time Series Analysis I (Springer-Verlag, Berlin, 1996), pp. 34-54]. We obtain an intrinsic definition of absolute continuity, we show that the Lebesgue decomposition defined by Parthasarathy is the maximal one among all other Lebesgue-type decompositions and that this maximal Lebesgue decomposition does not depend on the jointly dominating completely positive map, we obtain more flexible formulas for calculating the maximal Lebesgue decomposition, and we point out the nonuniqueness of the Lebesgue decomposition as well as a sufficient condition for uniqueness. In addition, we consider Radon-Nikodym derivatives for absolutely continuous completely positive maps that, in general, are unbounded positive self-adjoint operators affiliated to a certain von Neumann algebra, and we obtain a spectral approximation by bounded Radon-Nikodym derivatives. An application to the existence of the infimum of two completely positive maps is indicated, and formulas in terms of Choi's matrices for the Lebesgue decomposition of completely positive maps in matrix algebras are obtained.

  16. Rotational positioning measurement for the absolute angle based on a hetero-core fiber optics sensor

    NASA Astrophysics Data System (ADS)

    Nishiyama, Michiko; Watanabe, Kazuhiro

    2009-10-01

    We proposed a new approach to measure the rotational angle and describe how the rotational positioning sensor could be devised arranging the hetero-core fiber-optic macro-bending sensors in terms of detecting the absolute rotational angle. The hetero-core fiber optic sensor has many advantages such as ability of macro-bend sensing with optical intensity-based measurement, single-mode transmission basis and independence of temperature fluctuation for external environment. Therefore, it is suitable that the rotational positioning sensor is fabricated with the hetero-core fiber-optic technique. We designed two types of the absolute rotational position sensor modules to convert the absolute rotational angle to the displacement. The result showed that the proposed rotational positioning modules were sufficiently sensitive to the given rotational angle with monotonic loss change characteristics. The hetero-core rotational positioning sensors were successfully perceptive with typical sensitivities approximately 0.77 and 0.71 dB in the rotational angle ranges of 60 - 360 and 60 - 180 degrees. The deviation of the module in the range of 60 - 180 degrees induced 1.74 % that corresponded to 2.13 degrees.

  17. Position Estimation Using Image Derivative

    NASA Technical Reports Server (NTRS)

    Mortari, Daniele; deDilectis, Francesco; Zanetti, Renato

    2015-01-01

    This paper describes an image processing algorithm to process Moon and/or Earth images. The theory presented is based on the fact that Moon hard edge points are characterized by the highest values of the image derivative. Outliers are eliminated by two sequential filters. Moon center and radius are then estimated by nonlinear least-squares using circular sigmoid functions. The proposed image processing has been applied and validated using real and synthetic Moon images.

  18. Absolute Position Sensing Based on a Robust Differential Capacitive Sensor with a Grounded Shield Window.

    PubMed

    Bai, Yang; Lu, Yunfeng; Hu, Pengcheng; Wang, Gang; Xu, Jinxin; Zeng, Tao; Li, Zhengkun; Zhang, Zhonghua; Tan, Jiubin

    2016-01-01

    A simple differential capacitive sensor is provided in this paper to measure the absolute positions of length measuring systems. By utilizing a shield window inside the differential capacitor, the measurement range and linearity range of the sensor can reach several millimeters. What is more interesting is that this differential capacitive sensor is only sensitive to one translational degree of freedom (DOF) movement, and immune to the vibration along the other two translational DOFs. In the experiment, we used a novel circuit based on an AC capacitance bridge to directly measure the differential capacitance value. The experimental result shows that this differential capacitive sensor has a sensitivity of 2 × 10(-4) pF/μm with 0.08 μm resolution. The measurement range of this differential capacitive sensor is 6 mm, and the linearity error are less than 0.01% over the whole absolute position measurement range. PMID:27187393

  19. Absolute Position Sensing Based on a Robust Differential Capacitive Sensor with a Grounded Shield Window

    PubMed Central

    Bai, Yang; Lu, Yunfeng; Hu, Pengcheng; Wang, Gang; Xu, Jinxin; Zeng, Tao; Li, Zhengkun; Zhang, Zhonghua; Tan, Jiubin

    2016-01-01

    A simple differential capacitive sensor is provided in this paper to measure the absolute positions of length measuring systems. By utilizing a shield window inside the differential capacitor, the measurement range and linearity range of the sensor can reach several millimeters. What is more interesting is that this differential capacitive sensor is only sensitive to one translational degree of freedom (DOF) movement, and immune to the vibration along the other two translational DOFs. In the experiment, we used a novel circuit based on an AC capacitance bridge to directly measure the differential capacitance value. The experimental result shows that this differential capacitive sensor has a sensitivity of 2 × 10−4 pF/μm with 0.08 μm resolution. The measurement range of this differential capacitive sensor is 6 mm, and the linearity error are less than 0.01% over the whole absolute position measurement range. PMID:27187393

  20. Absolute Position Sensing Based on a Robust Differential Capacitive Sensor with a Grounded Shield Window.

    PubMed

    Bai, Yang; Lu, Yunfeng; Hu, Pengcheng; Wang, Gang; Xu, Jinxin; Zeng, Tao; Li, Zhengkun; Zhang, Zhonghua; Tan, Jiubin

    2016-05-11

    A simple differential capacitive sensor is provided in this paper to measure the absolute positions of length measuring systems. By utilizing a shield window inside the differential capacitor, the measurement range and linearity range of the sensor can reach several millimeters. What is more interesting is that this differential capacitive sensor is only sensitive to one translational degree of freedom (DOF) movement, and immune to the vibration along the other two translational DOFs. In the experiment, we used a novel circuit based on an AC capacitance bridge to directly measure the differential capacitance value. The experimental result shows that this differential capacitive sensor has a sensitivity of 2 × 10(-4) pF/μm with 0.08 μm resolution. The measurement range of this differential capacitive sensor is 6 mm, and the linearity error are less than 0.01% over the whole absolute position measurement range.

  1. Global-Scale Location and Distance Estimates: Common Representations and Strategies in Absolute and Relative Judgments

    ERIC Educational Resources Information Center

    Friedman, Alinda; Montello, Daniel R.

    2006-01-01

    The authors examined whether absolute and relative judgments about global-scale locations and distances were generated from common representations. At the end of a 10-week class on the regional geography of the United States, participants estimated the latitudes of 16 North American cities and all possible pairwise distances between them. Although…

  2. Fundamental physics and absolute positioning metrology with the MAGIA lunar orbiter

    NASA Astrophysics Data System (ADS)

    Dell'Agnello, Simone; Lops, Caterina; Delle Monache, Giovanni O.; Currie, Douglas G.; Martini, Manuele; Vittori, Roberto; Coradini, Angioletta; Dionisio, Cesare; Garattini, Marco; Boni, Alessandro; Cantone, Claudio; March, Riccardo; Bellettini, Giovanni; Tauraso, Roberto; Maiello, Mauro; Porcelli, Luca; Berardi, Simone; Intaglietta, Nicola

    2011-10-01

    MAGIA is a mission approved by the Italian Space Agency (ASI) for Phase A study. Using a single large-diameter laser retroreflector, a large laser retroreflector array and an atomic clock onboard MAGIA we propose to perform several fundamental physics and absolute positioning metrology experiments: VESPUCCI, an improved test of the gravitational redshift in the Earth-Moon system predicted by General Relativity; MoonLIGHT-P, a precursor test of a second generation Lunar Laser Ranging (LLR) payload for precision gravity and lunar science measurements under development for NASA, ASI and robotic missions of the proposed International Lunar Network (ILN); Selenocenter (the center of mass of the Moon), the determination of the position of the Moon center of mass with respect to the International Terrestrial Reference Frame/System (ITRF/ITRS); this will be compared to the one from Apollo and Lunokhod retroreflectors on the surface; MapRef, the absolute referencing of MAGIA's lunar altimetry, gravity and geochemical maps with respect to the ITRF/ITRS. The absolute positioning of MAGIA will be achieved thanks to: (1) the laboratory characterization of the retroreflector performance at INFN-LNF; (2) the precision tracking by the International Laser Ranging Service (ILRS), which gives two fundamental contributions to the ITRF/ITRS, i.e. the metrological definition of the geocenter (the Earth center of mass) and of the scale of length; (3) the radio science and accelerometer payloads; (4) support by the ASI Space Geodesy Center in Matera, Italy. Future ILN geodetic nodes equipped with MoonLIGHT and the Apollo/Lunokhod retroreflectors will become the first realization of the International Moon Reference Frame (IMRF), the lunar analog of the ITRF.

  3. SAR image registration in absolute coordinates using GPS carrier phase position and velocity information

    SciTech Connect

    Burgett, S.; Meindl, M.

    1994-09-01

    It is useful in a variety of military and commercial application to accurately register the position of synthetic aperture radar (SAR) imagery in absolute coordinates. The two basic SAR measurements, range and doppler, can be used to solve for the position of the SAR image. Imprecise knowledge of the SAR collection platform`s position and velocity vectors introduce errors in the range and doppler measurements and can cause the apparent location of the SAR image on the ground to be in error by tens of meters. Recent advances in carrier phase GPS techniques can provide an accurate description of the collection vehicle`s trajectory during the image formation process. In this paper, highly accurate carrier phase GPS trajectory information is used in conjunction with SAR imagery to demonstrate a technique for accurate registration of SAR images in WGS-84 coordinates. Flight test data will be presented that demonstrates SAR image registration errors of less than 4 meters.

  4. Position Estimation of Tranceivers in Communication Networks

    SciTech Connect

    Kent, C A; Dowla, F U

    2003-10-13

    With the rapid development in wireless sensor networks, there is an important need for transceiver position estimation independent of Global Positioning Systems (GPS) [1,3]. While GPS might be useful for outdoor sensor nodes, it is not for indoor node localization. In this case, position estimation is possible through network range estimates from time-of-flight (TOF) measurements, a technique well suited to large bandwidth physical links, such as in ultra-wideband (UWB) communications. For example, in our UWB systems, with pulse duration less than 200 pico-seconds, range can easily be resolved to less than a foot. Assuming an encoded UWB or spread spectrum physical layer, we developed algorithms and simulation tools to test transceiver position localization. Simulations were designed to lend insight into system characteristics such as position error sensitivities to network geometry, to range estimation errors, and to number of sensor nodes.

  5. Absolute Position of Targets Measured Through a Chamber Window Using Lidar Metrology Systems

    NASA Technical Reports Server (NTRS)

    Kubalak, David; Hadjimichael, Theodore; Ohl, Raymond; Slotwinski, Anthony; Telfer, Randal; Hayden, Joseph

    2012-01-01

    Lidar is a useful tool for taking metrology measurements without the need for physical contact with the parts under test. Lidar instruments are aimed at a target using azimuth and elevation stages, then focus a beam of coherent, frequency modulated laser energy onto the target, such as the surface of a mechanical structure. Energy from the reflected beam is mixed with an optical reference signal that travels in a fiber path internal to the instrument, and the range to the target is calculated based on the difference in the frequency of the returned and reference signals. In cases when the parts are in extreme environments, additional steps need to be taken to separate the operator and lidar from that environment. A model has been developed that accurately reduces the lidar data to an absolute position and accounts for the three media in the testbed air, fused silica, and vacuum but the approach can be adapted for any environment or material. The accuracy of laser metrology measurements depends upon knowing the parameters of the media through which the measurement beam travels. Under normal conditions, this means knowledge of the temperature, pressure, and humidity of the air in the measurement volume. In the past, chamber windows have been used to separate the measuring device from the extreme environment within the chamber and still permit optical measurement, but, so far, only relative changes have been diagnosed. The ability to make accurate measurements through a window presents a challenge as there are a number of factors to consider. In the case of the lidar, the window will increase the time-of-flight of the laser beam causing a ranging error, and refract the direction of the beam causing angular positioning errors. In addition, differences in pressure, temperature, and humidity on each side of the window will cause slight atmospheric index changes and induce deformation and a refractive index gradient within the window. Also, since the window is a

  6. Absolute magnitude estimation and relative judgement approaches to subjective workload assessment

    NASA Technical Reports Server (NTRS)

    Vidulich, Michael A.; Tsang, Pamela S.

    1987-01-01

    Two rating scale techniques employing an absolute magnitude estimation method, were compared to a relative judgment method for assessing subjective workload. One of the absolute estimation techniques used was an unidimensional overall workload scale and the other was the multidimensional NASA-Task Load Index technique. Thomas Saaty's Analytic Hierarchy Process was the unidimensional relative judgment method used. These techniques were used to assess the subjective workload of various single- and dual-tracking conditions. The validity of the techniques was defined as their ability to detect the same phenomena observed in the tracking performance. Reliability was assessed by calculating test-retest correlations. Within the context of the experiment, the Saaty Analytic Hierarchy Process was found to be superior in validity and reliability. These findings suggest that the relative judgment method would be an effective addition to the currently available subjective workload assessment techniques.

  7. Absolute value optimization to estimate phase properties of stochastic time series

    NASA Technical Reports Server (NTRS)

    Scargle, J. D.

    1977-01-01

    Most existing deconvolution techniques are incapable of determining phase properties of wavelets from time series data; to assure a unique solution, minimum phase is usually assumed. It is demonstrated, for moving average processes of order one, that deconvolution filtering using the absolute value norm provides an estimate of the wavelet shape that has the correct phase character when the random driving process is nonnormal. Numerical tests show that this result probably applies to more general processes.

  8. Detecting Positioning Errors and Estimating Correct Positions by Moving Window

    PubMed Central

    Song, Ha Yoon; Lee, Jun Seok

    2015-01-01

    In recent times, improvements in smart mobile devices have led to new functionalities related to their embedded positioning abilities. Many related applications that use positioning data have been introduced and are widely being used. However, the positioning data acquired by such devices are prone to erroneous values caused by environmental factors. In this research, a detection algorithm is implemented to detect erroneous data over a continuous positioning data set with several options. Our algorithm is based on a moving window for speed values derived by consecutive positioning data. Both the moving average of the speed and standard deviation in a moving window compose a moving significant interval at a given time, which is utilized to detect erroneous positioning data along with other parameters by checking the newly obtained speed value. In order to fulfill the designated operation, we need to examine the physical parameters and also determine the parameters for the moving windows. Along with the detection of erroneous speed data, estimations of correct positioning are presented. The proposed algorithm first estimates the speed, and then the correct positions. In addition, it removes the effect of errors on the moving window statistics in order to maintain accuracy. Experimental verifications based on our algorithm are presented in various ways. We hope that our approach can help other researchers with regard to positioning applications and human mobility research. PMID:26624282

  9. Detecting Positioning Errors and Estimating Correct Positions by Moving Window.

    PubMed

    Song, Ha Yoon; Lee, Jun Seok

    2015-01-01

    In recent times, improvements in smart mobile devices have led to new functionalities related to their embedded positioning abilities. Many related applications that use positioning data have been introduced and are widely being used. However, the positioning data acquired by such devices are prone to erroneous values caused by environmental factors. In this research, a detection algorithm is implemented to detect erroneous data over a continuous positioning data set with several options. Our algorithm is based on a moving window for speed values derived by consecutive positioning data. Both the moving average of the speed and standard deviation in a moving window compose a moving significant interval at a given time, which is utilized to detect erroneous positioning data along with other parameters by checking the newly obtained speed value. In order to fulfill the designated operation, we need to examine the physical parameters and also determine the parameters for the moving windows. Along with the detection of erroneous speed data, estimations of correct positioning are presented. The proposed algorithm first estimates the speed, and then the correct positions. In addition, it removes the effect of errors on the moving window statistics in order to maintain accuracy. Experimental verifications based on our algorithm are presented in various ways. We hope that our approach can help other researchers with regard to positioning applications and human mobility research.

  10. Detecting Positioning Errors and Estimating Correct Positions by Moving Window.

    PubMed

    Song, Ha Yoon; Lee, Jun Seok

    2015-01-01

    In recent times, improvements in smart mobile devices have led to new functionalities related to their embedded positioning abilities. Many related applications that use positioning data have been introduced and are widely being used. However, the positioning data acquired by such devices are prone to erroneous values caused by environmental factors. In this research, a detection algorithm is implemented to detect erroneous data over a continuous positioning data set with several options. Our algorithm is based on a moving window for speed values derived by consecutive positioning data. Both the moving average of the speed and standard deviation in a moving window compose a moving significant interval at a given time, which is utilized to detect erroneous positioning data along with other parameters by checking the newly obtained speed value. In order to fulfill the designated operation, we need to examine the physical parameters and also determine the parameters for the moving windows. Along with the detection of erroneous speed data, estimations of correct positioning are presented. The proposed algorithm first estimates the speed, and then the correct positions. In addition, it removes the effect of errors on the moving window statistics in order to maintain accuracy. Experimental verifications based on our algorithm are presented in various ways. We hope that our approach can help other researchers with regard to positioning applications and human mobility research. PMID:26624282

  11. Absolute reliability of isokinetic knee flexion and extension measurements adopting a prone position.

    PubMed

    Ayala, F; De Ste Croix, M; Sainz de Baranda, P; Santonja, F

    2013-01-01

    The main purpose of this study was to determine the absolute and relative reliability of isokinetic peak torque (PT), angle of peak torque (APT), average power (PW) and total work (TW) for knee flexion and extension during concentric and eccentric actions measured in a prone position at 60, 180 and 240° s(-1). A total of 50 recreational athletes completed the study. PT, APT, PW and TW for concentric and eccentric knee extension and flexion were recorded at three different angular velocities (60, 180 and 240° s(-1)) on three different occasions with a 72- to 96-h rest interval between consecutive testing sessions. Absolute reliability was examined through typical percentage error (CV(TE)), percentage change in the mean (ChM) and relative reliability with intraclass correlations (ICC(3,1)). For both the knee extensor and flexor muscle groups, all strength data (except APT during knee flexion movements) demonstrated moderate absolute reliability (ChM < 3%; ICCs > 0·70; and CV(TE) < 20%) independent of the knee movement (flexion and extension), type of muscle action (concentric and eccentric) and angular velocity (60, 180 and 240° s(-1)). Therefore, the current study suggests that the CV(TE) values reported for PT (8-20%), APT (8-18%) (only during knee extension movements), PW (14-20%) and TW (12-28%) may be acceptable to detect the large changes usually observed after rehabilitation programmes, but not acceptable to examine the effect of preventative training programmes in healthy individuals.

  12. Comparison of two methods for estimating absolute risk of prostate cancer based on SNPs and family history

    PubMed Central

    Hsu, Fang-Chi; Sun, Jielin; Zhu, Yi; Kim, Seong-Tae; Jin, Tao; Zhang, Zheng; Wiklund, Fredrik; Kader, A. Karim; Zheng, S. Lilly; Isaacs, William; Grönberg, Henrik; Xu, Jianfeng

    2010-01-01

    Disease risk-associated single nucleotide polymorphisms (SNPs) identified from genome-wide association studies have the potential to be used for disease risk prediction. An important feature of these risk-associated SNPs is their weak individual effect but stronger cumulative effect on disease risk. Several approaches are commonly used to model the combined effect in risk prediction but their performance is unclear. We compared two methods to model the combined effect of 14 prostate cancer (PCa) risk-associated SNPs and family history for the estimation of absolute risk for PCa in a population-based case-control study in Sweden (2,899 cases and 1,722 controls). Method 1 weighs each risk allele equally using a simple method of counting the number of risk alleles while Method 2 weighs each risk SNP differently based on their respective Odds Ratios. We found considerable differences between the two methods. Absolute risk estimates from Method 1 were generally higher than that of Method 2, especially among men at higher risk. The difference in the overall discriminative performance, measured by area under the curve (AUC) of the receiver operating characteristic was small between Method 1 (0.614) and Method 2 (0.618), P = 0.20. However, the performance of these two methods in identifying high-risk individuals (two-fold or three-fold higher than average risk), measured by positive predictive values (PPV), was higher for Method 2 than Method 1. In conclusion, these results suggest that Method 2 is superior to Method 1 in estimating absolute risk if the purpose of risk prediction is to identify high-risk individuals. PMID:20332264

  13. Improving absolute gravity estimates by the L p -norm approximation of the ballistic trajectory

    NASA Astrophysics Data System (ADS)

    Nagornyi, V. D.; Svitlov, S.; Araya, A.

    2016-04-01

    Iteratively re-weighted least squares (IRLS) were used to simulate the L p -norm approximation of the ballistic trajectory in absolute gravimeters. Two iterations of the IRLS delivered sufficient accuracy of the approximation without a significant bias. The simulations were performed on different samplings and perturbations of the trajectory. For the platykurtic distributions of the perturbations, the L p -approximation with 3  <  p  <  4 was found to yield several times more precise gravity estimates compared to the standard least-squares. The simulation results were confirmed by processing real gravity observations performed at the excessive noise conditions.

  14. Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations

    NASA Astrophysics Data System (ADS)

    Pravec, Petr; Harris, Alan W.; Kušnirák, Peter; Galád, Adrián; Hornoch, Kamil

    2012-09-01

    We obtained estimates of the Johnson V absolute magnitudes (H) and slope parameters (G) for 583 main-belt and near-Earth asteroids observed at Ondřejov and Table Mountain Observatory from 1978 to 2011. Uncertainties of the absolute magnitudes in our sample are <0.21 mag, with a median value of 0.10 mag. We compared the H data with absolute magnitude values given in the MPCORB, Pisa AstDyS and JPL Horizons orbit catalogs. We found that while the catalog absolute magnitudes for large asteroids are relatively good on average, showing only little biases smaller than 0.1 mag, there is a systematic offset of the catalog values for smaller asteroids that becomes prominent in a range of H greater than ∼10 and is particularly big above H ∼ 12. The mean (Hcatalog - H) value is negative, i.e., the catalog H values are systematically too bright. This systematic negative offset of the catalog values reaches a maximum around H = 14 where the mean (Hcatalog - H) is -0.4 to -0.5. We found also smaller correlations of the offset of the catalog H values with taxonomic types and with lightcurve amplitude, up to ∼0.1 mag or less. We discuss a few possible observational causes for the observed correlations, but the reason for the large bias of the catalog absolute magnitudes peaking around H = 14 is unknown; we suspect that the problem lies in the magnitude estimates reported by asteroid surveys. With our photometric H and G data, we revised the preliminary WISE albedo estimates made by Masiero et al. (Masired, J.R. et al. [2011]. Astrophys. J. 741, 68-89) and Mainzer et al. (Mainzer, A. et al. [2011b]. Astrophys. J. 743, 156-172) for asteroids in our sample. We found that the mean geometric albedo of Tholen/Bus/DeMeo C/G/B/F/P/D types with sizes of 25-300 km is pV = 0.057 with the standard deviation (dispersion) of the sample of 0.013 and the mean albedo of S/A/L types with sizes 0.6-200 km is 0.197 with the standard deviation of the sample of 0.051. The standard errors of the

  15. Position estimation of transceivers in communication networks

    DOEpatents

    Kent, Claudia A.; Dowla, Farid

    2008-06-03

    This invention provides a system and method using wireless communication interfaces coupled with statistical processing of time-of-flight data to locate by position estimation unknown wireless receivers. Such an invention can be applied in sensor network applications, such as environmental monitoring of water in the soil or chemicals in the air where the position of the network nodes is deemed critical. Moreover, the present invention can be arranged to operate in areas where a Global Positioning System (GPS) is not available, such as inside buildings, caves, and tunnels.

  16. Estimation of absolute protein quantities of unlabeled samples by selected reaction monitoring mass spectrometry.

    PubMed

    Ludwig, Christina; Claassen, Manfred; Schmidt, Alexander; Aebersold, Ruedi

    2012-03-01

    For many research questions in modern molecular and systems biology, information about absolute protein quantities is imperative. This information includes, for example, kinetic modeling of processes, protein turnover determinations, stoichiometric investigations of protein complexes, or quantitative comparisons of different proteins within one sample or across samples. To date, the vast majority of proteomic studies are limited to providing relative quantitative comparisons of protein levels between limited numbers of samples. Here we describe and demonstrate the utility of a targeting MS technique for the estimation of absolute protein abundance in unlabeled and nonfractionated cell lysates. The method is based on selected reaction monitoring (SRM) mass spectrometry and the "best flyer" hypothesis, which assumes that the specific MS signal intensity of the most intense tryptic peptides per protein is approximately constant throughout a whole proteome. SRM-targeted best flyer peptides were selected for each protein from the peptide precursor ion signal intensities from directed MS data. The most intense transitions per peptide were selected from full MS/MS scans of crude synthetic analogs. We used Monte Carlo cross-validation to systematically investigate the accuracy of the technique as a function of the number of measured best flyer peptides and the number of SRM transitions per peptide. We found that a linear model based on the two most intense transitions of the three best flying peptides per proteins (TopPep3/TopTra2) generated optimal results with a cross-correlated mean fold error of 1.8 and a squared Pearson coefficient R(2) of 0.88. Applying the optimized model to lysates of the microbe Leptospira interrogans, we detected significant protein abundance changes of 39 target proteins upon antibiotic treatment, which correlate well with literature values. The described method is generally applicable and exploits the inherent performance advantages of SRM

  17. A modified algorithm for estimating Absolute Salinity in the global ocean

    NASA Astrophysics Data System (ADS)

    Uchida, H.; Kawano, T.; Aoyama, M.; Wakita, M.; Nishino, S.; Ozawa, S.

    2012-04-01

    In 2010, the Intergovernmental Oceanographic Commission (IOC), International Association for the Physical Sciences of the Ocean (IAPSO) and the Scientific Committee on Oceanic Research (SCOR) adopted the new Thermodynamic Equation of Seawater - 2010 (TEOS-10). One of the substantial changes from previous practice is the use of Absolute Salinity (g/kg) instead of Practical Salinity in TEOS-10. Since there is no sensor that can precisely measure Absolute Salinity in situ, an algorithm to estimate Absolute Salinity was provided along with TEOS-10. The algorithm exploits the correlation between the Absolute Salinity anomaly (dSA) relative to the Reference-Composition Salinity and the silicate concentration, making use of the global atlas of silicate concentrations, and the correlation coefficient is a function of latitude determined for each ocean basin (McDougall et al., Ocean Sci. Discuss., 6, 215-242, 2009). However, the dSA shows latitude dependent systematic discrepancy from dSA estimated from another model which exploits more precisely the correlation between dSA and nutrient concentrations and carbonate system parameters based on mathematical investigation (Pawlowicz et al., Ocean Sci., 7, 363-387, 2011). These two models for estimating dSA were evaluated using measured dSA with an oscillation-type density meter for the North Pacific, the Bering Sea, and the Arctic Ocean. The measured dSA agreed well with the estimates of the multi-parameter model. These results suggest that the algorithm for estimating dSA used in TEOS-10 have latitude dependent systematic biases (~0.01 g/kg), probably due to systematic biases in density data used. To minimize these systematic biases, a simple relationship between dSA and silicate concentration was determined for the global ocean, regardless of latitude dependency, by combining previously used and newly obtained density data. For the surface water of the Arctic Ocean, however, dSA is related with alkalinity by the input of

  18. Global-scale location and distance estimates: common representations and strategies in absolute and relative judgments.

    PubMed

    Friedman, Alinda; Montello, Daniel R

    2006-03-01

    The authors examined whether absolute and relative judgments about global-scale locations and distances were generated from common representations. At the end of a 10-week class on the regional geography of the United States, participants estimated the latitudes of 16 North American cities and all possible pairwise distances between them. Although participants were relative experts, their latitude estimates revealed the presence of psychologically based regions with large gaps between them and a tendency to stretch North America southward toward the equator. The distance estimates revealed the same properties in the representation recovered via multidimensional scaling. Though the aggregated within- and between-regions distance estimates were fitted by Stevens's law (S. S. Stevens, 1957), this was an averaging artifact: The appropriateness of a power function to describe distance estimates depended on the regional membership of the cities. The authors conclude that plausible reasoning strategies, combined with regionalized representations and beliefs about the location of these relative to global landmarks, underlie global-scale latitude and distance judgments.

  19. Position estimator for underground mine equipment

    SciTech Connect

    Shaffer, G.K.; Stentz, A.; Whittaker, W.L.; Fitzpatrick, K.W. )

    1992-10-01

    This paper describes a 2-D perception system that exploits the accuracy and resolution of a laser range sensor to determine the position and orientation of a mobile robot in a mine environment. The perception system detects features from range sensor data and matches the features to a map of the mine to compute the sensor position. The features used are line segments and corners, which represent the typical geometry of the mine walls and intersections found in room-0and-pillar type mining. The position estimate is refined by minimizing the error between the map and sensed features. This position information can be used for autonomous navigation when a map of the mine is available or to survey the mine to build such a map. The technique is applied to robot navigation in a mine mockup. A refinement of this system could guide machines to yield productive, safe mining operations.

  20. Estimate of absolute geostrophic velocity from the density field in the northeastern Pacific Ocean

    SciTech Connect

    Coats, D.A.

    1981-09-20

    A pair of hydrographic sections (35/sup 0/N, 155/sup 0/W) were analyzed to compute absolute velocity by using a variation of the technique by Stommel and Schott (1977). Absolute velocity is determined from an integrated form of the potential vorticity equation by a technique suggested by Davis (1978). This study is the first application of this technique that allows a direct comparison between the uncertainty in estimating a smooth density field and the amount of imbalance in the system of model equations. Because the amount of incompatibility (imbalance) in the system of equations is far smaller than is allowed by the uncertainty in defining the smooth field, the model equation is considered adequate for this set of data. Below 400 m, the nearly constant zonal isopycnal slope indicates that potential vorticity is uniform on isopycnal surfaces. Since the method depends on resolving flow directions from the intersection of isopycnals and surfaces of constant potential vorticity, the absolute velocity is indeterminate in this region. The model equation does, however, constrain the structure of the meridional density field and requires a poleward shift in the latitude which successively deeper isopycnals reach their maximum depth. The fact that this poleward translation can be predicted over several degrees of latitude suggests potential vorticity is uniform over a substantial portion of the North Pacific subtropical gyre. This poleward translation of the density field is an aspect of subtropical density fields, in general, and occurs in conjunction with a translation in the field of geopotential anomaly. It is directly related to the curvature in the deep portion of the beta spiral.

  1. Estimating Absolute Salinity (SA) in the World's Oceans Using Density and Composition

    NASA Astrophysics Data System (ADS)

    Woosley, R. J.; Huang, F.; Millero, F. J., Jr.

    2014-12-01

    The practical salinity (Sp), which is determined by the relationship of conductivity to the known proportions of the major components of seawater, and reference salinity (SR = (35.16504/35)*Sp), do not account for variations in physical properties such as density and enthalpy. Trace and minor components of seawater, such as nutrients or inorganic carbon and total alkalinity affect these properties and contribute to the absolute salinity (SA). This limitation has been recognized and several studies have been made to estimate the effect of these compositional changes on the conductivity-density relationship. These studies have been limited in number and geographic scope. Here, we combine the measurements of previous studies with new measurements for a total of 2,857 conductivity-density measurements covering all of the world's major oceans to derive empirical equations for the effect of silica and total alkalinity on the density and absolute salinity of the global oceans and recommend an equation applicable to most of the world oceans. The potential impact on salinity as a result of uptake of anthropogenic CO2 is also discussed.

  2. Optimal Design of the Absolute Positioning Sensor for a High-Speed Maglev Train and Research on Its Fault Diagnosis

    PubMed Central

    Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge

    2012-01-01

    This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project. PMID:23112619

  3. Optimal design of the absolute positioning sensor for a high-speed maglev train and research on its fault diagnosis.

    PubMed

    Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge

    2012-01-01

    This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project.

  4. Position Estimation of Transceivers in Communication Networks

    SciTech Connect

    Dowla, F; Kent, C

    2004-01-20

    With rapid developments in wireless sensor networks, there is a growing need for transceiver position estimation independent of GPS, which may not be available in indoor networks. Our approach is to use range estimates from time-of-flight (TOF) measurements, a technique well suited to large bandwidth physical links, such as in ultra-wideband (UWB) systems. In our UWB systems, pulse duration less than 200 psecs can easily be resolved to less than a foot. Assuming an encoded UWB physical layer, we first test positioning accuracy using simulations. We are interested in sensitivity to range errors and the required number of ranging nodes, and we show that in a high-precision environment, such as UWB, the optimal number of transmitters is four. Four transmitters with {+-}20ft. range error can locate a receiver to within one or two feet. We then implement these algorithms on an 802.11 wireless network and demonstrate the ability to locate a network access point to approximately 20 feet.

  5. Estimation of absolute water surface temperature based on atmospherically corrected thermal infrared multispectral scanner digital data

    NASA Technical Reports Server (NTRS)

    Anderson, James E.

    1986-01-01

    Airborne remote sensing systems, as well as those on board Earth orbiting satellites, sample electromagnetic energy in discrete wavelength regions and convert the total energy sampled into data suitable for processing by digital computers. In general, however, the total amount of energy reaching a sensor system located at some distance from the target is composed not only of target related energy, but, in addition, contains a contribution originating from the atmosphere itself. Thus, some method must be devised for removing or at least minimizing the effects of the atmosphere. The LOWTRAN-6 Program was designed to estimate atmospheric transmittance and radiance for a given atmospheric path at moderate spectral resolution over an operational wavelength region from 0.25 to 28.5 microns. In order to compute the Thermal Infrared Multispectral Scanner (TIMS) digital values which were recorded in the absence of the atmosphere, the parameters derived from LOWTRAN-6 are used in a correction equation. The TIMS data were collected at 1:00 a.m. local time on November 21, 1983, over a recirculating cooling pond for a power plant in southeastern Mississippi. The TIMS data were analyzed before and after atmospheric corrections were applied using a band ratioing model to compute the absolute surface temperature of various points on the power plant cooling pond. The summarized results clearly demonstrate the desirability of applying atmospheric corrections.

  6. A Concurrent Mixed Methods Approach to Examining the Quantitative and Qualitative Meaningfulness of Absolute Magnitude Estimation Scales in Survey Research

    ERIC Educational Resources Information Center

    Koskey, Kristin L. K.; Stewart, Victoria C.

    2014-01-01

    This small "n" observational study used a concurrent mixed methods approach to address a void in the literature with regard to the qualitative meaningfulness of the data yielded by absolute magnitude estimation scaling (MES) used to rate subjective stimuli. We investigated whether respondents' scales progressed from less to more and…

  7. Absolute measurement of electron-cloud density in a positively charged particle beam.

    PubMed

    Kireeff Covo, Michel; Molvik, Arthur W; Friedman, Alex; Vay, Jean-Luc; Seidl, Peter A; Logan, Grant; Baca, David; Vujic, Jasmina L

    2006-08-01

    Clouds of stray electrons are ubiquitous in particle accelerators and frequently limit the performance of storage rings. Earlier measurements of electron energy distribution and flux to the walls provided only a relative electron-cloud density. We have measured electron accumulation using ions expelled by the beam. The ion energy distribution maps the depressed beam potential and gives the dynamic cloud density. Clearing electrode current reveals the static background cloud density, allowing the first absolute measurement of the time-dependent electron-cloud density during the beam pulse.

  8. The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: A simulation study

    PubMed Central

    Schuster, Tibor

    2014-01-01

    Observational studies are increasingly being used to estimate the effect of treatments, interventions and exposures on outcomes that can occur over time. Historically, the hazard ratio, which is a relative measure of effect, has been reported. However, medical decision making is best informed when both relative and absolute measures of effect are reported. When outcomes are time-to-event in nature, the effect of treatment can also be quantified as the change in mean or median survival time due to treatment and the absolute reduction in the probability of the occurrence of an event within a specified duration of follow-up. We describe how three different propensity score methods, propensity score matching, stratification on the propensity score and inverse probability of treatment weighting using the propensity score, can be used to estimate absolute measures of treatment effect on survival outcomes. These methods are all based on estimating marginal survival functions under treatment and lack of treatment. We then conducted an extensive series of Monte Carlo simulations to compare the relative performance of these methods for estimating the absolute effects of treatment on survival outcomes. We found that stratification on the propensity score resulted in the greatest bias. Caliper matching on the propensity score and a method based on earlier work by Cole and Hernán tended to have the best performance for estimating absolute effects of treatment on survival outcomes. When the prevalence of treatment was less extreme, then inverse probability of treatment weighting-based methods tended to perform better than matching-based methods. PMID:24463885

  9. Estimates of absolute flux and radiance factor of localized regions on Mars in the 2-4 micron wavelength region

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Roush, Eileen A.; Singer, Robert B.; Lucey, Paul G.

    1992-01-01

    IRTF spectrophotometric observations of Mars obtained during the 1986 opposition are the bases for the present estimates of 2.0-4.15 micron absolute flux and radiance factor values. The bright/dark ratios obtained show a wavelength dependence similar to that observed by Bell and Crisp (1991) in 1990, but the spectral contrast for 1986 is lower than in those observations; this difference could be due to changes in the location, sample are size, and/or suspended atmospheric dust.

  10. Adaptive position estimation for an automated guided vehicle

    NASA Astrophysics Data System (ADS)

    Lapin, Brett D.

    1993-05-01

    In a mobile robotic system, complexities in positioning arise due to the motion. An adaptive position estimation scheme has been developed for an automated guide vehicle (AGV) to overcome these complexities. The scheme's purpose is to minimize the position error--the difference between the estimated position and the actual position. The method to achieve this is to adapt the system model by incorporating a parameter vector and using a maximum likelihood algorithm to estimate the parameters after an accurate position determination is made. A simulation of the vehicle's guidance system was developed and the estimator tested on an oval-shaped path. Upon injecting biases into the system, initial position errors were 10 centimeters or more. After the estimator converged, the maximum final errors were on the order of 1 to 2 centimeters (prior to measurement update). After each measurement update, after the estimator had converged, errors were on the order of 1 to 2 millimeters.

  11. Absolute probability estimates of lethal vessel strikes to North Atlantic right whales in Roseway Basin, Scotian Shelf.

    PubMed

    van der Hoop, Julie M; Vanderlaan, Angelia S M; Taggart, Christopher T

    2012-10-01

    Vessel strikes are the primary source of known mortality for the endangered North Atlantic right whale (Eubalaena glacialis). Multi-institutional efforts to reduce mortality associated with vessel strikes include vessel-routing amendments such as the International Maritime Organization voluntary "area to be avoided" (ATBA) in the Roseway Basin right whale feeding habitat on the southwestern Scotian Shelf. Though relative probabilities of lethal vessel strikes have been estimated and published, absolute probabilities remain unknown. We used a modeling approach to determine the regional effect of the ATBA, by estimating reductions in the expected number of lethal vessel strikes. This analysis differs from others in that it explicitly includes a spatiotemporal analysis of real-time transits of vessels through a population of simulated, swimming right whales. Combining automatic identification system (AIS) vessel navigation data and an observationally based whale movement model allowed us to determine the spatial and temporal intersection of vessels and whales, from which various probability estimates of lethal vessel strikes are derived. We estimate one lethal vessel strike every 0.775-2.07 years prior to ATBA implementation, consistent with and more constrained than previous estimates of every 2-16 years. Following implementation, a lethal vessel strike is expected every 41 years. When whale abundance is held constant across years, we estimate that voluntary vessel compliance with the ATBA results in an 82% reduction in the per capita rate of lethal strikes; very similar to a previously published estimate of 82% reduction in the relative risk of a lethal vessel strike. The models we developed can inform decision-making and policy design, based on their ability to provide absolute, population-corrected, time-varying estimates of lethal vessel strikes, and they are easily transported to other regions and situations.

  12. Integration Window Position Estimation in TR Receivers

    SciTech Connect

    Nekoogar, F; Dowla, F; Spiridon, A

    2005-03-15

    Transmitted-reference (TR) receivers avoid the stringent synchronization requirements that exist in conventional pulse detection schemes. However, the performance of such receivers is highly sensitive to precise timing acquisition and tracking as well as the length of their integration window. This window in TR receivers defines the limits of the finite integrator prior to the final decision making block. In this paper, we propose a novel technique that allows us to extract the timing information of the integration window very accurately in UWB-TR receivers in the presence of channel noise. The principles of the method are presented and the BER performance of a modified UWB-TR receiver is investigated by computer simulation. Our studies show that the proposed estimation technique adds value to the conventional TR receiver structure with modest increase in complexity.

  13. APIC: Absolute Position Interfero Coronagraph for direct exoplanet detection: first laboratory results

    NASA Astrophysics Data System (ADS)

    Allouche, Fatmé; Glindemann, Andreas; Aristidi, Eric; Vakili, Farrokh

    2010-07-01

    For the detection and direct imaging of exoplanets, when the intensity ratio between a star and its orbiting planet can largely exceed 106, coronagraphic methods are mandatory. In 1996, a concept of achromatic interferocoronagraph (AIC) was presented by J. Gay and Y. Rabbia for the detection of very faint stellar companions, such as exoplanets. In an earlier paper, we presented a modified version of the AIC permitting to determine the relative position of these faint companions with respect to the parent star, a problem unsolved in the original design of the AIC. Our modification lied in the use of cylindrical lens doublets as field rotator. By placing two of them in one arm of the interferometric set-up of AIC, we destroyed the axis of symmetry induced by the AIC's original design. Our theoretical study, along with the numerical computations, presented then, and the preliminary test bench results aiming at validating the cylindrical lens doublet field rotation capability, presented in this paper, show that the axis of symmetry is destroyed when one of the cylindrical doublets is rotated around the optic axis.

  14. Predictors of indoor absolute humidity and estimated effects on influenza virus survival in grade schools

    PubMed Central

    2013-01-01

    Background Low absolute humidity (AH) has been associated with increased influenza virus survival and transmissibility and the onset of seasonal influenza outbreaks. Humidification of indoor environments may mitigate viral transmission and may be an important control strategy, particularly in schools where viral transmission is common and contributes to the spread of influenza in communities. However, the variability and predictors of AH in the indoor school environment and the feasibility of classroom humidification to levels that could decrease viral survival have not been studied. Methods Automated sensors were used to measure temperature, humidity and CO2 levels in two Minnesota grade schools without central humidification during two successive winters. Outdoor AH measurements were derived from the North American Land Data Assimilation System. Variability in indoor AH within classrooms, between classrooms in the same school, and between schools was assessed using concordance correlation coefficients (CCC). Predictors of indoor AH were examined using time-series Auto-Regressive Conditional Heteroskedasticity models. Classroom humidifiers were used when school was not in session to assess the feasibility of increasing indoor AH to levels associated with decreased influenza virus survival, as projected from previously published animal experiments. Results AH varied little within classrooms (CCC >0.90) but was more variable between classrooms in the same school (CCC 0.81 for School 1, 0.88 for School 2) and between schools (CCC 0.81). Indoor AH varied widely during the winter (range 2.60 to 10.34 millibars [mb]) and was strongly associated with changes in outdoor AH (p < 0.001). Changes in indoor AH on school weekdays were strongly associated with CO2 levels (p < 0.001). Over 4 hours, classroom humidifiers increased indoor AH by 4 mb, an increase sufficient to decrease projected 1-hour virus survival by an absolute value of 30% during winter months

  15. Accurate radiocarbon age estimation using "early" measurements: a new approach to reconstructing the Paleolithic absolute chronology

    NASA Astrophysics Data System (ADS)

    Omori, Takayuki; Sano, Katsuhiro; Yoneda, Minoru

    2014-05-01

    This paper presents new correction approaches for "early" radiocarbon ages to reconstruct the Paleolithic absolute chronology. In order to discuss time-space distribution about the replacement of archaic humans, including Neanderthals in Europe, by the modern humans, a massive data, which covers a wide-area, would be needed. Today, some radiocarbon databases focused on the Paleolithic have been published and used for chronological studies. From a viewpoint of current analytical technology, however, the any database have unreliable results that make interpretation of radiocarbon dates difficult. Most of these unreliable ages had been published in the early days of radiocarbon analysis. In recent years, new analytical methods to determine highly-accurate dates have been developed. Ultrafiltration and ABOx-SC methods, as new sample pretreatments for bone and charcoal respectively, have attracted attention because they could remove imperceptible contaminates and derive reliable accurately ages. In order to evaluate the reliability of "early" data, we investigated the differences and variabilities of radiocarbon ages on different pretreatments, and attempted to develop correction functions for the assessment of the reliability. It can be expected that reliability of the corrected age is increased and the age applied to chronological research together with recent ages. Here, we introduce the methodological frameworks and archaeological applications.

  16. Estimation of base station position using timing advance measurements

    NASA Astrophysics Data System (ADS)

    Raitoharju, Matti; Ali-Löytty, Simo; Wirola, Lauri

    2011-10-01

    Timing Advance is used in TDMA (Time Division Multiple Access) systems, such as GSM and LTE, to synchronize the mobile phone to the cellular BS (Base Station). Mobile phone positioning can use TA measurements if BS positions are known, but in many cases BS positions are not in the public domain. In this work we study how to use a set of TA measurements taken by mobile phones at known positions to estimate the position of a BS. This paper describes two methods -- GMF (Gaussian Mixture Filter) and PMF (Point Mass Filter) for estimation of the BS position. Positioning performance is evaluated using simulated and real measurements. In suburban field tests, TA measurements suffice to determine BS position with an error comparable to the TA granularity (550m). GMF computes BS position much faster than PMF and is only slightly less accurate.

  17. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  18. Adaptive anisotropic kernels for nonparametric estimation of absolute configurational entropies in high-dimensional configuration spaces.

    PubMed

    Hensen, Ulf; Grubmüller, Helmut; Lange, Oliver F

    2009-07-01

    The quasiharmonic approximation is the most widely used estimate for the configurational entropy of macromolecules from configurational ensembles generated from atomistic simulations. This method, however, rests on two assumptions that severely limit its applicability, (i) that a principal component analysis yields sufficiently uncorrelated modes and (ii) that configurational densities can be well approximated by Gaussian functions. In this paper we introduce a nonparametric density estimation method which rests on adaptive anisotropic kernels. It is shown that this method provides accurate configurational entropies for up to 45 dimensions thus improving on the quasiharmonic approximation. When embedded in the minimally coupled subspace framework, large macromolecules of biological interest become accessible, as demonstrated for the 67-residue coldshock protein. PMID:19658735

  19. Vehicle Position Estimation Based on Magnetic Markers: Enhanced Accuracy by Compensation of Time Delays

    PubMed Central

    Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won

    2015-01-01

    The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test. PMID:26580622

  20. Vehicle Position Estimation Based on Magnetic Markers: Enhanced Accuracy by Compensation of Time Delays.

    PubMed

    Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won

    2015-01-01

    The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test. PMID:26580622

  1. Positional estimation techniques for an autonomous mobile robot

    NASA Technical Reports Server (NTRS)

    Nandhakumar, N.; Aggarwal, J. K.

    1990-01-01

    Techniques for positional estimation of a mobile robot navigation in an indoor environment are described. A comprehensive review of the various positional estimation techniques studied in the literature is first presented. The techniques are divided into four different types and each of them is discussed briefly. Two different kinds of environments are considered for positional estimation; mountainous natural terrain and an urban, man-made environment with polyhedral buildings. In both cases, the robot is assumed to be equipped with single visual camera that can be panned and tilted and also a 3-D description (world model) of the environment is given. Such a description could be obtained from a stereo pair of aerial images or from the architectural plans of the buildings. Techniques for positional estimation using the camera input and the world model are presented.

  2. Estimating Relative Positions of Outer-Space Structures

    NASA Technical Reports Server (NTRS)

    Balian, Harry; Breckenridge, William; Brugarolas, Paul

    2009-01-01

    A computer program estimates the relative position and orientation of two structures from measurements, made by use of electronic cameras and laser range finders on one structure, of distances and angular positions of fiducial objects on the other structure. The program was written specifically for use in determining errors in the alignment of large structures deployed in outer space from a space shuttle. The program is based partly on equations for transformations among the various coordinate systems involved in the measurements and on equations that account for errors in the transformation operators. It computes a least-squares estimate of the relative position and orientation. Sequential least-squares estimates, acquired at a measurement rate of 4 Hz, are averaged by passing them through a fourth-order Butterworth filter. The program is executed in a computer aboard the space shuttle, and its position and orientation estimates are displayed to astronauts on a graphical user interface.

  3. Estimating stellar atmospheric parameters, absolute magnitudes and elemental abundances from the LAMOST spectra with Kernel-based Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Xiang, M.-S.; Liu, X.-W.; Shi, J.-R.; Yuan, H.-B.; Huang, Y.; Luo, A.-L.; Zhang, H.-W.; Zhao, Y.-H.; Zhang, J.-N.; Ren, J.-J.; Chen, B.-Q.; Wang, C.; Li, J.; Huo, Z.-Y.; Zhang, W.; Wang, J.-L.; Zhang, Y.; Hou, Y.-H.; Wang, Y.-F.

    2016-10-01

    Accurate determination of stellar atmospheric parameters and elemental abundances is crucial for Galactic archeology via large-scale spectroscopic surveys. In this paper, we estimate stellar atmospheric parameters - effective temperature Teff, surface gravity log g and metallicity [Fe/H], absolute magnitudes MV and MKs, α-element to metal (and iron) abundance ratio [α/M] (and [α/Fe]), as well as carbon and nitrogen abundances [C/H] and [N/H] from the LAMOST spectra with a multivariate regression method based on kernel-based principal component analysis, using stars in common with other surveys (Hipparcos, Kepler, APOGEE) as training data sets. Both internal and external examinations indicate that given a spectral signal-to-noise ratio (SNR) better than 50, our method is capable of delivering stellar parameters with a precision of ˜100 K for Teff, ˜0.1 dex for log g, 0.3 - 0.4 mag for MV and MKs, 0.1 dex for [Fe/H], [C/H] and [N/H], and better than 0.05 dex for [α/M] ([α/Fe]). The results are satisfactory even for a spectral SNR of 20. The work presents first determinations of [C/H] and [N/H] abundances from a vast data set of LAMOST, and, to our knowledge, the first reported implementation of absolute magnitude estimation directly based on the observed spectra. The derived stellar parameters for millions of stars from the LAMOST surveys will be publicly available in the form of value-added catalogues.

  4. Huber's M-estimation in relative GPS positioning: computational aspects

    NASA Astrophysics Data System (ADS)

    Chang, X.-W.; Guo, Y.

    2005-08-01

    When GPS signal measurements have outliers, using least squares (LS) estimation is likely to give poor position estimates. One of the typical approaches to handle this problem is to use robust estimation techniques. We study the computational issues of Huber’s M-estimation applied to relative GPS positioning. First for code-based relative positioning, we use simulation results to show that Newton’s method usually converges faster than the iteratively reweighted least squares (IRLS) method, which is often used in geodesy for computing robust estimates of parameters. Then for code- and carrier-phase-based relative positioning, we present a recursive modified Newton method to compute Huber’s M-estimates of the positions. The structures of the model are exploited to make the method efficient, and orthogonal transformations are used to ensure numerical reliability of the method. Economical use of computer memory is also taken into account in designing the method. Simulation results show that the method is effective.

  5. The Impact of Strategy Instruction and Timing of Estimates on Low and High Working-Memory Capacity Readers' Absolute Monitoring Accuracy

    ERIC Educational Resources Information Center

    Linderholm, Tracy; Zhao, Qin

    2008-01-01

    Working-memory capacity, strategy instruction, and timing of estimates were investigated for their effects on absolute monitoring accuracy, which is the difference between estimated and actual reading comprehension test performance. Participants read two expository texts under one of two randomly assigned reading strategy instruction conditions…

  6. Indirectly estimated absolute lung cancer mortality rates by smoking status and histological type based on a systematic review

    PubMed Central

    2013-01-01

    Background National smoking-specific lung cancer mortality rates are unavailable, and studies presenting estimates are limited, particularly by histology. This hinders interpretation. We attempted to rectify this by deriving estimates indirectly, combining data from national rates and epidemiological studies. Methods We estimated study-specific absolute mortality rates and variances by histology and smoking habit (never/ever/current/former) based on relative risk estimates derived from studies published in the 20th century, coupled with WHO mortality data for age 70–74 for the relevant country and period. Studies with populations grossly unrepresentative nationally were excluded. 70–74 was chosen based on analyses of large cohort studies presenting rates by smoking and age. Variations by sex, period and region were assessed by meta-analysis and meta-regression. Results 148 studies provided estimates (Europe 59, America 54, China 22, other Asia 13), 54 providing estimates by histology (squamous cell carcinoma, adenocarcinoma). For all smoking habits and lung cancer types, mortality rates were higher in males, the excess less evident for never smokers. Never smoker rates were clearly highest in China, and showed some increasing time trend, particularly for adenocarcinoma. Ever smoker rates were higher in parts of Europe and America than in China, with the time trend very clear, especially for adenocarcinoma. Variations by time trend and continent were clear for current smokers (rates being higher in Europe and America than Asia), but less clear for former smokers. Models involving continent and trend explained much variability, but non-linearity was sometimes seen (with rates lower in 1991–99 than 1981–90), and there was regional variation within continent (with rates in Europe often high in UK and low in Scandinavia, and higher in North than South America). Conclusions The indirect method may be questioned, because of variations in definition of smoking and

  7. Exploring the Relationship between Absolute and Relative Position and Late-Life Depression: Evidence from 10 European Countries

    ERIC Educational Resources Information Center

    Ladin, Keren; Daniels, Norman; Kawachi, Ichiro

    2010-01-01

    Purpose: Socioeconomic inequality has been associated with higher levels of morbidity and mortality. This study explores the role of absolute and relative deprivation in predicting late-life depression on both individual and country levels. Design and Methods: Country- and individual-level inequality indicators were used in multivariate logistic…

  8. Approaches to relativistic positioning around Earth and error estimations

    NASA Astrophysics Data System (ADS)

    Puchades, Neus; Sáez, Diego

    2016-01-01

    In the context of relativistic positioning, the coordinates of a given user may be calculated by using suitable information broadcast by a 4-tuple of satellites. Our 4-tuples belong to the Galileo constellation. Recently, we estimated the positioning errors due to uncertainties in the satellite world lines (U-errors). A distribution of U-errors was obtained, at various times, in a set of points covering a large region surrounding Earth. Here, the positioning errors associated to the simplifying assumption that photons move in Minkowski space-time (S-errors) are estimated and compared with the U-errors. Both errors have been calculated for the same points and times to make comparisons possible. For a certain realistic modeling of the world line uncertainties, the estimated S-errors have proved to be smaller than the U-errors, which shows that the approach based on the assumption that the Earth's gravitational field produces negligible effects on photons may be used in a large region surrounding Earth. The applicability of this approach - which simplifies numerical calculations - to positioning problems, and the usefulness of our S-error maps, are pointed out. A better approach, based on the assumption that photons move in the Schwarzschild space-time governed by an idealized Earth, is also analyzed. More accurate descriptions of photon propagation involving non symmetric space-time structures are not necessary for ordinary positioning and spacecraft navigation around Earth.

  9. Estimating missing marker positions using low dimensional Kalman smoothing.

    PubMed

    Burke, M; Lasenby, J

    2016-06-14

    Motion capture is frequently used for studies in biomechanics, and has proved particularly useful in understanding human motion. Unfortunately, motion capture approaches often fail when markers are occluded or missing and a mechanism by which the position of missing markers can be estimated is highly desirable. Of particular interest is the problem of estimating missing marker positions when no prior knowledge of marker placement is known. Existing approaches to marker completion in this scenario can be broadly divided into tracking approaches using dynamical modelling, and low rank matrix completion. This paper shows that these approaches can be combined to provide a marker completion algorithm that not only outperforms its respective components, but also solves the problem of incremental position error typically associated with tracking approaches.

  10. Estimating missing marker positions using low dimensional Kalman smoothing.

    PubMed

    Burke, M; Lasenby, J

    2016-06-14

    Motion capture is frequently used for studies in biomechanics, and has proved particularly useful in understanding human motion. Unfortunately, motion capture approaches often fail when markers are occluded or missing and a mechanism by which the position of missing markers can be estimated is highly desirable. Of particular interest is the problem of estimating missing marker positions when no prior knowledge of marker placement is known. Existing approaches to marker completion in this scenario can be broadly divided into tracking approaches using dynamical modelling, and low rank matrix completion. This paper shows that these approaches can be combined to provide a marker completion algorithm that not only outperforms its respective components, but also solves the problem of incremental position error typically associated with tracking approaches. PMID:27155749

  11. A Landmark Based Position Estimation for Pinpoint Landing on Mars

    NASA Technical Reports Server (NTRS)

    Cheng, Yang; Ansar, Adnan

    2005-01-01

    Real-time position estimation for a descent lander is a critical technological need for many of NASA's planned in situ missions including landing on a number of bodies at locations of greatest scientific interest and sample return. In particular, it enables the capability to land precisely and safely in a scientifically promising but hazardous site and is a key technology to be demonstrated by NASA in the next decade. The key challenge of pinpoint landing (PPL) is how to localize the lander by recognizing the landmarks (craters) in the landing area and match them positively to a preexisting landmark database while the spacecraft is descending. In this paper, a real-time landmark based position estimation technique for pinpoint landing is suggested. This system includes three crucial components: (1) real time landmark detection, (2) real-time landmark matching and (3) state (both position and velocity) estimation. We discuss the performance analysis of this system. Finally, we show that the suggested technology is able to deliver a spacecraft to less than 100 m from a pre-selected landing site on Mars.

  12. Predictive Attitude Estimation Using Global Positioning System Signals

    NASA Technical Reports Server (NTRS)

    Crassidis, John L.; Markley, F. Landis; Lightsey, E. Glenn; Ketchum, Eleanor

    1997-01-01

    In this paper, a new algorithm is developed for attitude estimation using Global Positioning System (GPS) signals. The new algorithm is based on a predictive filtering scheme designed for spacecraft without rate measuring devices. The major advantage of this new algorithm over traditional Kalman filter approaches is that the model error is not assumed to represented by an unbiased Gaussian noise process with known covariance, but instead is determined during the estimation process. This is achieved by simultaneously solving system optimality conditions and an output error constraint. This approach is well suited for GPS attitude estimation since some error sources that contribute to attitude inaccuracy, such as signal multipath, are known to be non-Gaussian processes. Also, the predictive filter scheme can use either GPS signals or vector observations or a combination of both for attitude estimation, so that performance characteristics can be maintained during periods of GPS attitude sensor outage. The performance of the new algorithm is tested using flight data from the REX-2 spacecraft. Results are shown using the predictive filter to estimate the attitude from both GPS signals and magnetometer measurements, and comparing that solution to a magnetometer-only based solution. Results using the new estimation algorithm indicate that GPS-based solutions are verified to within 2 degrees using the magnetometer cross-check for the REX-2 spacecraft. GPS attitude accuracy of better than 1 degree is expected per axis, but cannot be reliably proven due to inaccuracies in the magnetic field model.

  13. Time-based position estimation in monolithic scintillator detectors

    NASA Astrophysics Data System (ADS)

    Tabacchini, Valerio; Borghi, Giacomo; Schaart, Dennis R.

    2015-07-01

    Gamma-ray detectors based on bright monolithic scintillation crystals coupled to pixelated photodetectors are currently being considered for several applications in the medical imaging field. In a typical monolithic detector, both the light intensity and the time of arrival of the earliest scintillation photons can be recorded by each of the photosensor pixels every time a gamma interaction occurs. Generally, the time stamps are used to determine the gamma interaction time while the light intensities are used to estimate the 3D position of the interaction point. In this work we show that the spatio-temporal distribution of the time stamps also carries information on the location of the gamma interaction point and thus the time stamps can be used as explanatory variables for position estimation. We present a model for the spatial resolution obtainable when the interaction position is estimated using exclusively the time stamp of the first photon detected on each of the photosensor pixels. The model is shown to be in agreement with experimental measurements on a 16 mm  ×  16 mm  ×  10 mm LSO : Ce,0.2%Ca crystal coupled to a digital photon counter (DPC) array where a spatial resolution of 3 mm (root mean squared error) is obtained. Finally we discuss the effects of the main parameters such as scintillator rise and decay time, light output and photosensor single photon time resolution and pixel size.

  14. Global positioning system watches for estimating energy expenditure.

    PubMed

    Hongu, Nobuko; Orr, Barron J; Roe, Denise J; Reed, Rebecca G; Going, Scott B

    2013-11-01

    Global positioning system (GPS) watches have been introduced commercially, converting frequent measurements of time, location, speed (pace), and elevation into energy expenditure (EE) estimates. The purpose of this study was to compare EE estimates of 4 different GPS watches (Forerunner, Suunto, Polar, Adeo), at various walking speeds, with EE estimate from a triaxial accelerometer (RT3), which was used as a reference measure in this study. Sixteen healthy young adults completed the study. Participants wore 4 different GPS watches and an RT3 accelerometer and walked at 6-minute intervals on an outdoor track at 3 speeds (3, 5, and 7 km/hr). The statistical significance of differences in EE between the 3 watches was assessed using linear contrasts of the coefficients from the overall model. Reliability across trials for a given device was assessed using intraclass correlation coefficients as estimated in the mixed model. The GPS watches demonstrated lower reliability (intraclass correlation coefficient) across trials when compared with the RT3, particularly at the higher speed, 7 km/hr. Three GPS watches (Forerunner, Polar, and Suunto) significantly and consistently underestimated EE compared with the reference EE given by the RT3 accelerometer (average mean difference: Garmin, -50.5%; Polar, -41.7%; and Suunto, -41.7%; all p < 0.001). Results suggested that caution should be exercised when using commercial GPS watches to estimate EE in athletes during field-based testing and training.

  15. Monocular camera and IMU integration for indoor position estimation.

    PubMed

    Zhang, Yinlong; Tan, Jindong; Zeng, Ziming; Liang, Wei; Xia, Ye

    2014-01-01

    This paper presents a monocular camera (MC) and inertial measurement unit (IMU) integrated approach for indoor position estimation. Unlike the traditional estimation methods, we fix the monocular camera downward to the floor and collect successive frames where textures are orderly distributed and feature points robustly detected, rather than using forward oriented camera in sampling unknown and disordered scenes with pre-determined frame rate and auto-focus metric scale. Meanwhile, camera adopts the constant metric scale and adaptive frame rate determined by IMU data. Furthermore, the corresponding distinctive image feature point matching approaches are employed for visual localizing, i.e., optical flow for fast motion mode; Canny Edge Detector & Harris Feature Point Detector & Sift Descriptor for slow motion mode. For superfast motion and abrupt rotation where images from camera are blurred and unusable, the Extended Kalman Filter is exploited to estimate IMU outputs and to derive the corresponding trajectory. Experimental results validate that our proposed method is effective and accurate in indoor positioning. Since our system is computationally efficient and in compact size, it's well suited for visually impaired people indoor navigation and wheelchaired people indoor localization.

  16. Using Visual Odometry to Estimate Position and Attitude

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Cheng, Yang; Matthies, Larry; Schoppers, Marcel; Olson, Clark

    2007-01-01

    A computer program in the guidance system of a mobile robot generates estimates of the position and attitude of the robot, using features of the terrain on which the robot is moving, by processing digitized images acquired by a stereoscopic pair of electronic cameras mounted rigidly on the robot. Developed for use in localizing the Mars Exploration Rover (MER) vehicles on Martian terrain, the program can also be used for similar purposes on terrestrial robots moving in sufficiently visually textured environments: examples include low-flying robotic aircraft and wheeled robots moving on rocky terrain or inside buildings. In simplified terms, the program automatically detects visual features and tracks them across stereoscopic pairs of images acquired by the cameras. The 3D locations of the tracked features are then robustly processed into an estimate of overall vehicle motion. Testing has shown that by use of this software, the error in the estimate of the position of the robot can be limited to no more than 2 percent of the distance traveled, provided that the terrain is sufficiently rich in features. This software has proven extremely useful on the MER vehicles during driving on sandy and highly sloped terrains on Mars.

  17. A signal strength priority based position estimation for mobile platforms

    NASA Astrophysics Data System (ADS)

    Kalgikar, Bhargav; Akopian, David; Chen, Philip

    2010-01-01

    Global Positioning System (GPS) products help to navigate while driving, hiking, boating, and flying. GPS uses a combination of orbiting satellites to determine position coordinates. This works great in most outdoor areas, but the satellite signals are not strong enough to penetrate inside most indoor environments. As a result, a new strain of indoor positioning technologies that make use of 802.11 wireless LANs (WLAN) is beginning to appear on the market. In WLAN positioning the system either monitors propagation delays between wireless access points and wireless device users to apply trilateration techniques or it maintains the database of location-specific signal fingerprints which is used to identify the most likely match of incoming signal data with those preliminary surveyed and saved in the database. In this paper we investigate the issue of deploying WLAN positioning software on mobile platforms with typically limited computational resources. We suggest a novel received signal strength rank order based location estimation system to reduce computational loads with a robust performance. The proposed system performance is compared to conventional approaches.

  18. Maximum likelihood estimation of vehicle position for outdoor image sensor-based visible light positioning system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiang; Lin, Jiming

    2016-04-01

    Image sensor-based visible light positioning can be applied not only to indoor environments but also to outdoor environments. To determine the performance bounds of the positioning accuracy from the view of statistical optimization for an outdoor image sensor-based visible light positioning system, we analyze and derive the maximum likelihood estimation and corresponding Cramér-Rao lower bounds of vehicle position, under the condition that the observation values of the light-emitting diode (LED) imaging points are affected by white Gaussian noise. For typical parameters of an LED traffic light and in-vehicle camera image sensor, simulation results show that accurate estimates are available, with positioning error generally less than 0.1 m at a communication distance of 30 m between the LED array transmitter and the camera receiver. With the communication distance being constant, the positioning accuracy depends on the number of LEDs used, the focal length of the lens, the pixel size, and the frame rate of the camera receiver.

  19. SU-E-T-33: An EPID-Based Method for Testing Absolute Leaf Position for MLC Without Backup Jaws

    SciTech Connect

    Hancock, S; Whitaker, M

    2014-06-01

    Purpose: Methods in common use for MLC leaf position QA are limited to measurements relative to an arbitrary reference position. The authors previously presented an EPID-based method for efficiently testing accuracy of leaf position relative to the mechanical isocenter for MLC with backup jaws. The purpose of this work is to extend that method to the general case of MLC without backup jaws. Methods: A pair of collimator walkout images is used to determine the location of the mechanical isocenter relative to the center of one field using a parameter called X-offset. The method allows for shift of the imager panel to cover subsets of MLC leaves within the limited field of view of the imager. For a shifted panel position, an image of three beam strips defined by a subset of MLC leaves allows determination of the position of each leaf relative to the isocenter. The location of the isocenter is determined by applying X-offset to an image of a single rectangular field obtained at that panel position. The method can also be used to test backup jaws instead of MLC leaves. A software tool was developed to efficiently analyze the images. Results: The software tool reports leaf position and deviation from nominal position, and provides visual displays to facilitate rapid qualitative interpretation. Test results using this method agree well with results using the previous method requiring backup jaws. Test results have been successfully used to recalibrate one model MLC (Elekta MLCi2™). Work in progress includes extension of the software tool to other MLC models, and quantification of reproducibility of the measurements. Conclusion: This work successfully demonstrates a method to efficiently and accurately measure MLC leaf position, or backup jaw position, relative to the mechanical isocenter of the collimator.

  20. An approach for filtering hyperbolically positioned underwater acoustic telemetry data with position precision estimates

    USGS Publications Warehouse

    Meckley, Trevor D.; Holbrook, Christopher M.; Wagner, C. Michael; Binder, Thomas R.

    2014-01-01

    The use of position precision estimates that reflect the confidence in the positioning process should be considered prior to the use of biological filters that rely on a priori expectations of the subject’s movement capacities and tendencies. Position confidence goals should be determined based upon the needs of the research questions and analysis requirements versus arbitrary selection, in which filters of previous studies are adopted. Data filtering with this approach ensures that data quality is sufficient for the selected analyses and presents the opportunity to adjust or identify a different analysis in the event that the requisite precision was not attained. Ignoring these steps puts a practitioner at risk of reporting errant findings.

  1. ON A NEW NEAR-INFRARED METHOD TO ESTIMATE THE ABSOLUTE AGES OF STAR CLUSTERS: NGC 3201 AS A FIRST TEST CASE

    SciTech Connect

    Bono, G.; Di Cecco, A.; Sanna, N.; Buonanno, R.; Stetson, P. B.; VandenBerg, D. A.; Calamida, A.; Amico, P.; Marchetti, E.; D'Odorico, S.; Gilmozzi, R.; Dall'Ora, M.; Iannicola, G.; Caputo, F.; Corsi, C. E.; Ferraro, I.; Monelli, M.; Walker, A. R.; Zoccali, M.; Degl'Innocenti, S.

    2010-01-10

    We present a new method to estimate the absolute ages of stellar systems. This method is based on the difference in magnitude between the main-sequence turnoff (MSTO) and a well-defined knee located along the lower main sequence (MSK). This feature is caused by the collisionally induced absorption of molecular hydrogen, and it can easily be identified in near-infrared (NIR) and in optical-NIR color-magnitude diagrams of stellar systems. We took advantage of deep and accurate NIR images collected with the Multi-Conjugate Adaptive Optics Demonstrator temporarily available on the Very Large Telescope and of optical images collected with the Advanced Camera for Surveys Wide Field Camera on the Hubble Space Telescope and with ground-based telescopes to estimate the absolute age of the globular NGC 3201 using both the MSTO and the {delta}(MSTO-MSK). We have adopted a new set of cluster isochrones, and we found that the absolute ages based on the two methods agree to within 1{sigma}. However, the errors of the ages based on the {delta}(MSTO-MSK) method are potentially more than a factor of 2 smaller, since they are not affected by uncertainties in cluster distance or reddening. Current isochrones appear to predict slightly bluer ({approx}0.05 mag) NIR and optical-NIR colors than observed for magnitudes fainter than the MSK.

  2. Absolute backscatter coefficient estimates of tissue-mimicking phantoms in the 5–50 MHz frequency range

    PubMed Central

    McCormick, Matthew M.; Madsen, Ernest L.; Deaner, Meagan E.; Varghese, Tomy

    2011-01-01

    Absolute backscatter coefficients in tissue-mimicking phantoms were experimentally determined in the 5–50 MHz frequency range using a broadband technique. A focused broadband transducer from a commercial research system, the VisualSonics Vevo 770, was used with two tissue-mimicking phantoms. The phantoms differed regarding the thin layers covering their surfaces to prevent desiccation and regarding glass bead concentrations and diameter distributions. Ultrasound scanning of these phantoms was performed through the thin layer. To avoid signal saturation, the power spectra obtained from the backscattered radio frequency signals were calibrated by using the signal from a liquid planar reflector, a water-brominated hydrocarbon interface with acoustic impedance close to that of water. Experimental values of absolute backscatter coefficients were compared with those predicted by the Faran scattering model over the frequency range 5–50 MHz. The mean percent difference and standard deviation was 54% ± 45% for the phantom with a mean glass bead diameter of 5.40 μm and was 47% ± 28% for the phantom with 5.16 μm mean diameter beads. PMID:21877789

  3. Two-probe optical encoder for absolute positioning of precision stages by using an improved scale grating.

    PubMed

    Li, Xinghui; Wang, Huanhuan; Ni, Kai; Zhou, Qian; Mao, Xinyu; Zeng, Lijiang; Wang, Xiaohao; Xiao, Xiang

    2016-09-19

    In this paper, a novel optical encoder enabling the simultaneous measurement of displacement and the position of precision stages is presented. The encoder is composed of an improved single-track scale grating and a compact two-probe reading head. In the scale grating, multiple reference codes are physically superimposed onto the incremental grooves, in contrast to conventional designs, where an additional track is necessary. The distribution of the reference codes follows a specific mathematical algorithm. For the reading head, a two-probe structure is designed to identify the discrete reference codes by means of the superimposition of the codes with a stationary mask and to read the continuous incremental grooves by means of a grating interferometry, respectively. A prototype encoder was designed, constructed and evaluated, and experimental results show that the distance code precision achieved is 0.5 μm, while the linearity error of the linear displacement measurement is less than 0.06%. PMID:27661879

  4. Daily estimates of the earth's pole position with the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Lindqwister, Ulf J.; Freedman, Adam P.; Blewitt, Geoffrey

    1992-01-01

    Daily estimates of the earth's pole position have been obtained with measurements from a worldwide network of GPS receivers, obtained during the three week GIG '91 experiment in January-February 1991. For this short-term study, the GPS based polar motion series agrees with the other space based geodetic techniques (Very Long Baseline Interferometry and Satellite Laser Ranging) to about 0.4 mas rms, after the removal of mean biases of order 1-3 mas. The small error in day-to-day variability is not sensitive to the fiducial strategy used, nor are fiducial sites even necessary for monitoring high frequency pole position variability. The small biases indicate that the applied reference frames of the three geodetic techniques are nearly aligned, that the GPS fiducial errors are small, and that systematic errors in GPS are also small (of order 5 ppb). A well determined reference frame is necessary for monitoring the long-term stability of polar motion and for separating it from other long-term signals such as tectonic motion and internal systematic errors.

  5. A sensorless initial rotor position's estimation for permanent magnet synchronous machines

    NASA Astrophysics Data System (ADS)

    Krasnov, I.; Langraf, S.; Odnolopylov, I.; Koltun, V.

    2015-10-01

    Permanent magnet synchronous motors for the effective start require information about the initial position of a rotor. In this regard, most systems use position sensors, which substantially increase entirely a cost of an electrical drive [1-3]. The aim of this article is to develop a new method, allowing determining the absolute angular position of the permanent magnet synchronous motors’ rotor [4,5]. With a certain voltage pulses applied to the motor, its stator is magnetized by currents leakage in the windings. This allows using a special algorithm to calculate the absolute position of the rotor without using any motor parameters [6]. Simulation results prove the simplicity and efficiency of this method for determining an initial position of the permanent magnet synchronous motors’ rotor. Thus, this method can be widely used in the electrical industry.

  6. COMPARISON OF RECURSIVE ESTIMATION TECHNIQUES FOR POSITION TRACKING RADIOACTIVE SOURCES

    SciTech Connect

    K. MUSKE; J. HOWSE

    2000-09-01

    This paper compares the performance of recursive state estimation techniques for tracking the physical location of a radioactive source within a room based on radiation measurements obtained from a series of detectors at fixed locations. Specifically, the extended Kalman filter, algebraic observer, and nonlinear least squares techniques are investigated. The results of this study indicate that recursive least squares estimation significantly outperforms the other techniques due to the severe model nonlinearity.

  7. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  8. Estimating the position of simulated phosphenes using a tactile guide.

    PubMed

    Lu, Yanyu; Fan, Jin; Zhou, Chunaqing; Zhao, Ying; Wang, Jing; Tao, Chen; Ren, Qiushi; Chai, Xinyu

    2011-01-01

    A visual prosthesis provides usable visual information to the patient in the form of phosphenes, that is, punctate photic sensations seen after electrical stimulation. Stimulation via different electrodes results in phosphenes in different positions within the visual field. Simulation studies can provide data on the possible limitations of prosthetic stimulation. We used a head mounted screen to monocularly present constant or flickering light spots of different sizes, or luminance to normally sighted subjects. Subjects were asked to judge the location of the spots using a polar coordinate tactile guide; positioning average error and dispersion were analyzed. With the increase of eccentricity, the positioning average error and dispersion were also increased. The performances under large, stable and high luminance conditions were better than that under small, flickering and low luminance conditions, respectively. Repeated training sessions were shown to significantly improve the positioning performance.

  9. Distributed estimation of sensors position in underwater wireless sensor network

    NASA Astrophysics Data System (ADS)

    Zandi, Rahman; Kamarei, Mahmoud; Amiri, Hadi

    2016-05-01

    In this paper, a localisation method for determining the position of fixed sensor nodes in an underwater wireless sensor network (UWSN) is introduced. In this simple and range-free scheme, the node localisation is achieved by utilising an autonomous underwater vehicle (AUV) that transverses through the network deployment area, and that periodically emits a message block via four directional acoustic beams. A message block contains the actual known AUV position as well as a directional dependent marker that allows a node to identify the respective transmit beam. The beams form a fixed angle with the AUV body. If a node passively receives message blocks, it could calculate the arithmetic mean of the coordinates existing in each messages sequence, to find coordinates at two different time instants via two different successive beams. The node position can be derived from the two computed positions of the AUV. The major advantage of the proposed localisation algorithm is that it is silent, which leads to energy efficiency for sensor nodes. The proposed method does not require any synchronisation among the nodes owing to being silent. Simulation results, using MATLAB, demonstrated that the proposed method had better performance than other similar AUV-based localisation methods in terms of the rates of well-localised sensor nodes and positional root mean square error.

  10. Combined Use of Absolute and Differential Seismic Arrival Time Data to Improve Absolute Event Location

    NASA Astrophysics Data System (ADS)

    Myers, S.; Johannesson, G.

    2012-12-01

    Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement

  11. Bayesian Estimation of the Logistic Positive Exponent IRT Model

    ERIC Educational Resources Information Center

    Bolfarine, Heleno; Bazan, Jorge Luis

    2010-01-01

    A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric…

  12. Noise estimation of beam position monitors at RHIC

    SciTech Connect

    Shen, X.; Bai, M.; Lee, S. Y.

    2014-02-10

    Beam position monitors (BPM) are used to record the average orbits and transverse turn-by-turn displacements of the beam centroid motion. The Relativistic Hadron Ion Collider (RHIC) has 160 BPMs for each plane in each of the Blue and Yellow rings: 72 dual-plane BPMs in the insertion regions (IR) and 176 single-plane modules in the arcs. Each BPM is able to acquire 1024 or 4096 consecutive turn-by-turn beam positions. Inevitably, there are broadband noisy signals in the turn-by-turn data due to BPM electronics as well as other sources. A detailed study of the BPM noise performance is critical for reliable optics measurement and beam dynamics analysis based on turn-by-turn data.

  13. Single Particle-Photon Imaging Detector With 4-Dimensional Output: Absolute Time-of-hit, X-Y Position, and PHA: Applications in Space Science Instruments

    NASA Astrophysics Data System (ADS)

    Paschalidis, N. P.; Mitchell, D. G.; Brandt, P. C.

    2006-12-01

    A detector that can simultaneously measure time, position, and pulse high analysis (PHA) of single particle/photons with high resolutions and speeds, is a strong enabling technology for many space science instruments such as: energetic neutral atom imagers, low energy neutrals, energetic particle spectrometers, ion/electron plasma analyzers, UV spectrographs, mass spectrometers, laser range finding imagers, X-ray imagers. This presentation describes one such 4-dimentional detector based on micro-channel plates (MCPs), delay line anodes, and precise time of flight, and charge integration electronics for PHA. More specifically the detector includes: a) An MCP in 2-stack or Z-stack configuration for the particle/photon detection. b) Option for a thin foil or photo-cathode in front of the MCP to increase the detection efficiency of particles or photons respectively. c) Novel 1D or 2D delay line anode adaptable to almost any geometry and physical size of common instruments mentioned above. d) Fast time of flight (TOF) electronics for the absolute time of hit and the X-Y position determination. e) Fast charge integration electronics for PHA of the total charge released by the MCP. Under certain circumstances the PHA gives information about the particle mass such as for protons, He and Oxygen, cross calibrated against UV light which typically gives a single electron distribution. f) FPGA electronics for digital data acquisition and handling. e) Standard mat lab SW for data analysis and visualization in a stand alone application. The detector achieves time of hit accuracy <50ps, X-Y position resolution <20um in a field of 2048 x 2048 pixels (2048 for 1D) and adjustable speeds of: 10MHz at 256 x 256 pixels to 1MHz at 2048 x 2048 pixels. The total-charge analysis is at 10-bits. The detector can be used in its full 4D configuration such as in TOF imaging particle analyzer (i.e ENA), or in a reduced configuration such as in a UV spectrograph with X-Y position only. Typical

  14. Estimation of Subdaily Polar Motion with the Global Positioning System During the Spoch '92 Campaign

    NASA Technical Reports Server (NTRS)

    Ibanez-Meier, R.; Freedman, A. P.; Herring, T. A.; Gross, R. S.; Lichten, S. M.; Lindqwister, U. J.

    1994-01-01

    Data collected over six days from a worldwide Global Positioning System (GPS) tracking network during the Epoch '92 campaign are used to estimate variations of the Earth's pole position every 30 minutes.

  15. Model-based vision system for mobile robot position estimation

    NASA Astrophysics Data System (ADS)

    D'Orazio, Tiziana; Capozzo, Liborio; Ianigro, Massimo; Distante, Arcangelo

    1994-02-01

    The development of an autonomous mobile robot is a central problem in artificial intelligence and robotics. A vision system can be used to recognize naturally occurring landmarks located in known positions. The problem considered here is that of finding the location and orientation of a mobile robot using a 3-D image taken by a CCD camera located on the robot. The naturally occurring landmarks that we use are the corners of the room extracted by an edge detection algorithm from a 2-D image of the indoor scene. Then, the location and orientation of the vehicle are calculated by perspective information of the landmarks in the scene of the room where the robot moves.

  16. Reliable estimation of shock position in shock-capturing compressible hydrodynamics codes

    SciTech Connect

    Nelson, Eric M

    2008-01-01

    The displacement method for estimating shock position in a shock-capturing compressible hydrodynamics code is introduced. Common estimates use simulation data within the captured shock, but the displacement method uses data behind the shock, making the estimate consistent with and as reliable as estimates of material parameters obtained from averages or fits behind the shock. The displacement method is described in the context of a steady shock in a one-dimensional lagrangian hydrodynamics code, and demonstrated on a piston problem and a spherical blast wave.The displacement method's estimates of shock position are much better than common estimates in such applications.

  17. Using Mean Absolute Relative Phase, Deviation Phase and Point-Estimation Relative Phase to Measure Postural Coordination in a Serial Reaching Task.

    PubMed

    Galgon, Anne K; Shewokis, Patricia A

    2016-03-01

    The objectives of this communication are to present the methods used to calculate mean absolute relative phase (MARP), deviation phase (DP) and point estimate relative phase (PRP) and compare their utility in measuring postural coordination during the performance of a serial reaching task. MARP and DP are derived from continuous relative phase time series representing the relationship between two body segments or joints during movements. MARP is a single measure used to quantify the coordination pattern and DP measures the stability of the coordination pattern. PRP also quantifies coordination patterns by measuring the relationship between the timing of maximal or minimal angular displacements of two segments within cycles of movement. Seven young adults practiced a bilateral serial reaching task 300 times over 3 days. Relative phase measures were used to evaluate inter-joint relationships for shoulder-hip (proximal) and hip-ankle (distal) postural coordination at early and late learning. MARP, PRP and DP distinguished between proximal and distal postural coordination. There was no effect of practice on any of the relative phase measures for the group, but individual differences were seen over practice. Combined, MARP and DP estimated stability of in-phase and anti-phase postural coordination patterns, however additional qualitative movement analyses may be needed to interpret findings in a serial task. We discuss the strengths and limitations of using MARP and DP and compare MARP and DP to PRP measures in assessing coordination patterns in the context of various types of skillful tasks. Key pointsMARP, DP and PRP measures coordination between segments or joint anglesAdvantages and disadvantages of each measure should be considered in relationship to the performance taskMARP and DP may capture coordination patterns and stability of the patterns during discrete tasks or phases of movements within a taskPRP and SD or PRP may capture coordination patterns and

  18. Estimated results analysis and application of the precise point positioning based high-accuracy ionosphere delay

    NASA Astrophysics Data System (ADS)

    Wang, Shi-tai; Peng, Jun-huan

    2015-12-01

    The characterization of ionosphere delay estimated with precise point positioning is analyzed in this paper. The estimation, interpolation and application of the ionosphere delay are studied based on the processing of 24-h data from 5 observation stations. The results show that the estimated ionosphere delay is affected by the hardware delay bias from receiver so that there is a difference between the estimated and interpolated results. The results also show that the RMSs (root mean squares) are bigger, while the STDs (standard deviations) are better than 0.11 m. When the satellite difference is used, the hardware delay bias can be canceled. The interpolated satellite-differenced ionosphere delay is better than 0.11 m. Although there is a difference between the between the estimated and interpolated ionosphere delay results it cannot affect its application in single-frequency positioning and the positioning accuracy can reach cm level.

  19. In-Flight Estimation of Center of Gravity Position Using All-Accelerometers

    PubMed Central

    Al-Rawashdeh, Yazan Mohammad; Elshafei, Moustafa; Al-Malki, Mohammad Fahad

    2014-01-01

    Changing the position of the Center of Gravity (CoG) for an aerial vehicle is a challenging part in navigation, and control of such vehicles. In this paper, an all-accelerometers-based inertial measurement unit is presented, with a proposed method for on-line estimation of the position of the CoG. The accelerometers' readings are used to find and correct the vehicle's angular velocity and acceleration using an Extended Kalman Filter. Next, the accelerometers' readings along with the estimated angular velocity and acceleration are used in an identification scheme to estimate the position of the CoG and the vehicle's linear acceleration. The estimated position of the CoG and motion measurements can then be used to update the control rules to achieve better trim conditions for the air vehicle. PMID:25244585

  20. In-flight estimation of center of gravity position using all-accelerometers.

    PubMed

    Al-Rawashdeh, Yazan Mohammad; Elshafei, Moustafa; Al-Malki, Mohammad Fahad

    2014-09-19

    Changing the position of the Center of Gravity (CoG) for an aerial vehicle is a challenging part in navigation, and control of such vehicles. In this paper, an all-accelerometers-based inertial measurement unit is presented, with a proposed method for on-line estimation of the position of the CoG. The accelerometers' readings are used to find and correct the vehicle's angular velocity and acceleration using an Extended Kalman Filter. Next, the accelerometers' readings along with the estimated angular velocity and acceleration are used in an identification scheme to estimate the position of the CoG and the vehicle's linear acceleration. The estimated position of the CoG and motion measurements can then be used to update the control rules to achieve better trim conditions for the air vehicle.

  1. Carrying Position Independent User Heading Estimation for Indoor Pedestrian Navigation with Smartphones.

    PubMed

    Deng, Zhi-An; Wang, Guofeng; Hu, Ying; Cui, Yang

    2016-01-01

    This paper proposes a novel heading estimation approach for indoor pedestrian navigation using the built-in inertial sensors on a smartphone. Unlike previous approaches constraining the carrying position of a smartphone on the user's body, our approach gives the user a larger freedom by implementing automatic recognition of the device carrying position and subsequent selection of an optimal strategy for heading estimation. We firstly predetermine the motion state by a decision tree using an accelerometer and a barometer. Then, to enable accurate and computational lightweight carrying position recognition, we combine a position classifier with a novel position transition detection algorithm, which may also be used to avoid the confusion between position transition and user turn during pedestrian walking. For a device placed in the trouser pockets or held in a swinging hand, the heading estimation is achieved by deploying a principal component analysis (PCA)-based approach. For a device held in the hand or against the ear during a phone call, user heading is directly estimated by adding the yaw angle of the device to the related heading offset. Experimental results show that our approach can automatically detect carrying positions with high accuracy, and outperforms previous heading estimation approaches in terms of accuracy and applicability. PMID:27187391

  2. Carrying Position Independent User Heading Estimation for Indoor Pedestrian Navigation with Smartphones

    PubMed Central

    Deng, Zhi-An; Wang, Guofeng; Hu, Ying; Cui, Yang

    2016-01-01

    This paper proposes a novel heading estimation approach for indoor pedestrian navigation using the built-in inertial sensors on a smartphone. Unlike previous approaches constraining the carrying position of a smartphone on the user’s body, our approach gives the user a larger freedom by implementing automatic recognition of the device carrying position and subsequent selection of an optimal strategy for heading estimation. We firstly predetermine the motion state by a decision tree using an accelerometer and a barometer. Then, to enable accurate and computational lightweight carrying position recognition, we combine a position classifier with a novel position transition detection algorithm, which may also be used to avoid the confusion between position transition and user turn during pedestrian walking. For a device placed in the trouser pockets or held in a swinging hand, the heading estimation is achieved by deploying a principal component analysis (PCA)-based approach. For a device held in the hand or against the ear during a phone call, user heading is directly estimated by adding the yaw angle of the device to the related heading offset. Experimental results show that our approach can automatically detect carrying positions with high accuracy, and outperforms previous heading estimation approaches in terms of accuracy and applicability. PMID:27187391

  3. A Novel Position Estimation Method Based on Displacement Correction in AIS

    PubMed Central

    Jiang, Yi; Zhang, Shufang; Yang, Dongkai

    2014-01-01

    A new position estimation method by using the signals from two automatic identification system (AIS) stations is proposed in this paper. The time of arrival (TOA) method is enhanced with the displacement correction, so that the vessel's position can be determined even for the situation where it can receive the signals from only two AIS base stations. Its implementation scheme based on the mathematical model is presented. Furthermore, performance analysis is carried out to illustrate the relation between the positioning errors and the displacement vector provided by auxiliary sensors. Finally, the positioning method is verified and its performance is evaluated by simulation. The results show that the positioning accuracy is acceptable. PMID:25232913

  4. Research on the position estimation of human movement based on camera projection

    NASA Astrophysics Data System (ADS)

    Yi, Zhang; Yuan, Luo; Hu, Huosheng

    2005-06-01

    During the rehabilitation process of the post-stroke patients is conducted, their movements need to be localized and learned so that incorrect movement can be instantly modified or tuned. Therefore, tracking these movement becomes vital and necessary for the rehabilitative course. During human movement tracking, the position estimation of human movement is very important. In this paper, the character of the human movement system is first analyzed. Next, camera and inertial sensor are used to respectively measure the position of human movement, and the Kalman filter algorithm is proposed to fuse the two measurement to get a optimization estimation of the position. In the end, the performance of the method is analyzed.

  5. Upper bounds on position error of a single location estimate in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Gholami, Mohammad Reza; Ström, Erik G.; Wymeersch, Henk; Gezici, Sinan

    2014-12-01

    This paper studies upper bounds on the position error for a single estimate of an unknown target node position based on distance estimates in wireless sensor networks. In this study, we investigate a number of approaches to confine the target node position to bounded sets for different scenarios. Firstly, if at least one distance estimate error is positive, we derive a simple, but potentially loose upper bound, which is always valid. In addition assuming that the probability density of measurement noise is nonzero for positive values and a sufficiently large number of distance estimates are available, we propose an upper bound, which is valid with high probability. Secondly, if a reasonable lower bound on negative measurement errors is known a priori, we manipulate the distance estimates to obtain a new set with positive measurement errors. In general, we formulate bounds as nonconvex optimization problems. To solve the problems, we employ a relaxation technique and obtain semidefinite programs. We also propose a simple approach to find the bounds in closed forms. Simulation results show reasonable tightness for different bounds in various situations.

  6. Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.

    PubMed

    Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu

    2015-08-01

    This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm. PMID:25265622

  7. Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.

    PubMed

    Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu

    2015-08-01

    This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm.

  8. Experimental verification of an interpolation algorithm for improved estimates of animal position

    NASA Astrophysics Data System (ADS)

    Schell, Chad; Jaffe, Jules S.

    2004-07-01

    This article presents experimental verification of an interpolation algorithm that was previously proposed in Jaffe [J. Acoust. Soc. Am. 105, 3168-3175 (1999)]. The goal of the algorithm is to improve estimates of both target position and target strength by minimizing a least-squares residual between noise-corrupted target measurement data and the output of a model of the sonar's amplitude response to a target at a set of known locations. Although this positional estimator was shown to be a maximum likelihood estimator, in principle, experimental verification was desired because of interest in understanding its true performance. Here, the accuracy of the algorithm is investigated by analyzing the correspondence between a target's true position and the algorithm's estimate. True target position was measured by precise translation of a small test target (bead) or from the analysis of images of fish from a coregistered optical imaging system. Results with the stationary spherical test bead in a high signal-to-noise environment indicate that a large increase in resolution is possible, while results with commercial aquarium fish indicate a smaller increase is obtainable. However, in both experiments the algorithm provides improved estimates of target position over those obtained by simply accepting the angular positions of the sonar beam with maximum output as target position. In addition, increased accuracy in target strength estimation is possible by considering the effects of the sonar beam patterns relative to the interpolated position. A benefit of the algorithm is that it can be applied ``ex post facto'' to existing data sets from commercial multibeam sonar systems when only the beam intensities have been stored after suitable calibration.

  9. Experimental verification of an interpolation algorithm for improved estimates of animal position.

    PubMed

    Schell, Chad; Jaffe, Jules S

    2004-07-01

    This article presents experimental verification of an interpolation algorithm that was previously proposed in Jaffe [J. Acoust. Soc. Am. 105, 3168-3175 (1999)]. The goal of the algorithm is to improve estimates of both target position and target strength by minimizing a least-squares residual between noise-corrupted target measurement data and the output of a model of the sonar's amplitude response to a target at a set of known locations. Although this positional estimator was shown to be a maximum likelihood estimator, in principle, experimental verification was desired because of interest in understanding its true performance. Here, the accuracy of the algorithm is investigated by analyzing the correspondence between a target's true position and the algorithm's estimate. True target position was measured by precise translation of a small test target (bead) or from the analysis of images of fish from a coregistered optical imaging system. Results with the stationary spherical test bead in a high signal-to-noise environment indicate that a large increase in resolution is possible, while results with commercial aquarium fish indicate a smaller increase is obtainable. However, in both experiments the algorithm provides improved estimates of target position over those obtained by simply accepting the angular positions of the sonar beam with maximum output as target position. In addition, increased accuracy in target strength estimation is possible by considering the effects of the sonar beam patterns relative to the interpolated position. A benefit of the algorithm is that it can be applied "ex post facto" to existing data sets from commercial multibeam sonar systems when only the beam intensities have been stored after suitable calibration.

  10. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  11. Underwater terrain positioning method based on least squares estimation for AUV

    NASA Astrophysics Data System (ADS)

    Chen, Peng-yun; Li, Ye; Su, Yu-min; Chen, Xiao-long; Jiang, Yan-qing

    2015-12-01

    To achieve accurate positioning of autonomous underwater vehicles, an appropriate underwater terrain database storage format for underwater terrain-matching positioning is established using multi-beam data as underwater terrainmatching data. An underwater terrain interpolation error compensation method based on fractional Brownian motion is proposed for defects of normal terrain interpolation, and an underwater terrain-matching positioning method based on least squares estimation (LSE) is proposed for correlation analysis of topographic features. The Fisher method is introduced as a secondary criterion for pseudo localization appearing in a topographic features flat area, effectively reducing the impact of pseudo positioning points on matching accuracy and improving the positioning accuracy of terrain flat areas. Simulation experiments based on electronic chart and multi-beam sea trial data show that drift errors of an inertial navigation system can be corrected effectively using the proposed method. The positioning accuracy and practicality are high, satisfying the requirement of underwater accurate positioning.

  12. Position estimation and local mapping using omnidirectional images and global appearance descriptors.

    PubMed

    Berenguer, Yerai; Payá, Luis; Ballesta, Mónica; Reinoso, Oscar

    2015-01-01

    This work presents some methods to create local maps and to estimate the position of a mobile robot, using the global appearance of omnidirectional images. We use a robot that carries an omnidirectional vision system on it. Every omnidirectional image acquired by the robot is described only with one global appearance descriptor, based on the Radon transform. In the work presented in this paper, two different possibilities have been considered. In the first one, we assume the existence of a map previously built composed of omnidirectional images that have been captured from previously-known positions. The purpose in this case consists of estimating the nearest position of the map to the current position of the robot, making use of the visual information acquired by the robot from its current (unknown) position. In the second one, we assume that we have a model of the environment composed of omnidirectional images, but with no information about the location of where the images were acquired. The purpose in this case consists of building a local map and estimating the position of the robot within this map. Both methods are tested with different databases (including virtual and real images) taking into consideration the changes of the position of different objects in the environment, different lighting conditions and occlusions. The results show the effectiveness and the robustness of both methods. PMID:26501289

  13. Position Estimation and Local Mapping Using Omnidirectional Images and Global Appearance Descriptors

    PubMed Central

    Berenguer, Yerai; Payá, Luis; Ballesta, Mónica; Reinoso, Oscar

    2015-01-01

    This work presents some methods to create local maps and to estimate the position of a mobile robot, using the global appearance of omnidirectional images. We use a robot that carries an omnidirectional vision system on it. Every omnidirectional image acquired by the robot is described only with one global appearance descriptor, based on the Radon transform. In the work presented in this paper, two different possibilities have been considered. In the first one, we assume the existence of a map previously built composed of omnidirectional images that have been captured from previously-known positions. The purpose in this case consists of estimating the nearest position of the map to the current position of the robot, making use of the visual information acquired by the robot from its current (unknown) position. In the second one, we assume that we have a model of the environment composed of omnidirectional images, but with no information about the location of where the images were acquired. The purpose in this case consists of building a local map and estimating the position of the robot within this map. Both methods are tested with different databases (including virtual and real images) taking into consideration the changes of the position of different objects in the environment, different lighting conditions and occlusions. The results show the effectiveness and the robustness of both methods. PMID:26501289

  14. Recovering missing data: estimating position and size of caudal vertebrae in Staurikosaurus pricei Colbert, 1970.

    PubMed

    Grillo, Orlando N; Azevedo, Sergio A K

    2011-03-01

    Missing data is a common problem in paleontology. It makes it difficult to reconstruct extinct taxa accurately and restrains the inclusion of some taxa on comparative and biomechanical studies. Particularly, estimating the position of vertebrae on incomplete series is often non-empirical and does not allow precise estimation of missing parts. In this work we present a method for calculating the position of preserved middle sequences of caudal vertebrae in the saurischian dinosaur Staurikosaurus pricei, based on the length and height of preserved anterior and posterior caudal vertebral centra. Regression equations were used to estimate these dimensions for middle vertebrae and, consequently, to assess the position of the preserved middle sequences. It also allowed estimating these dimensions for non-preserved vertebrae. Results indicate that the preserved caudal vertebrae of Staurikosaurus may correspond to positions 1-3, 5, 7, 14-19/15-20, 24-25/25-26, and 29-47, and that at least 25 vertebrae had transverse processes. Total length of the tail was estimated in 134 cm and total body length was 220-225 cm.

  15. Finite-time position and velocity estimation adapted to noisy biased acceleration measurements from periodic motion

    NASA Astrophysics Data System (ADS)

    Estrada, Antonio; Efimov, Denis; Perruquetti, Wilfrid

    2016-09-01

    The present work focuses on the problem of velocity and position estimation. A solution is presented for a class of oscillating systems in which position, velocity and acceleration are zero mean signals. The proposed scheme considers that the dynamic model of the system is unknown. Only noisy acceleration measurements, that may be contaminated by zero mean noise and constant bias, are considered to be available. The proposal uses the periodic nature of the signals obtaining finite-time estimations while tackling integration drift accumulation.

  16. A demonstration of position angle-only weak lensing shear estimators on the GREAT3 simulations

    NASA Astrophysics Data System (ADS)

    Whittaker, Lee; Brown, Michael L.; Battye, Richard A.

    2015-12-01

    We develop and apply the position angle-only shear estimator of Whittaker, Brown & Battye to realistic galaxy images. This is done by demonstrating the method on the simulations of the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, which include contributions from anisotropic point spread functions (PSFs). We measure the position angles of the galaxies using three distinct methods - the integrated light method, quadrupole moments of surface brightness, and using model-based ellipticity measurements provided by IM3SHAPE. A weighting scheme is adopted to address biases in the position angle measurements which arise in the presence of an anisotropic PSF. Biases on the shear estimates, due to measurement errors on the position angles and correlations between the measurement errors and the true position angles, are corrected for using simulated galaxy images and an iterative procedure. The properties of the simulations are estimated using the deep field images provided as part of the challenge. A method is developed to match the distributions of galaxy fluxes and half-light radii from the deep fields to the corresponding distributions in the field of interest. We recover angle-only shear estimates with a performance close to current well-established model and moments-based methods for all three angle measurement techniques. The Q-values for all three methods are found to be Q ˜ 400. The code is freely available online at http://www.jb.man.ac.uk/mbrown/angle_only_shear/.

  17. 3D position estimation using an artificial neural network for a continuous scintillator PET detector

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhu, W.; Cheng, X.; Li, D.

    2013-03-01

    Continuous crystal based PET detectors have features of simple design, low cost, good energy resolution and high detection efficiency. Through single-end readout of scintillation light, direct three-dimensional (3D) position estimation could be another advantage that the continuous crystal detector would have. In this paper, we propose to use artificial neural networks to simultaneously estimate the plane coordinate and DOI coordinate of incident γ photons with detected scintillation light. Using our experimental setup with an ‘8 + 8’ simplified signal readout scheme, the training data of perpendicular irradiation on the front surface and one side surface are obtained, and the plane (x, y) networks and DOI networks are trained and evaluated. The test results show that the artificial neural network for DOI estimation is as effective as for plane estimation. The performance of both estimators is presented by resolution and bias. Without bias correction, the resolution of the plane estimator is on average better than 2 mm and that of the DOI estimator is about 2 mm over the whole area of the detector. With bias correction, the resolution at the edge area for plane estimation or at the end of the block away from the readout PMT for DOI estimation becomes worse, as we expect. The comprehensive performance of the 3D positioning by a neural network is accessed by the experimental test data of oblique irradiations. To show the combined effect of the 3D positioning over the whole area of the detector, the 2D flood images of oblique irradiation are presented with and without bias correction.

  18. Formation control and collision avoidance for multi-agent systems based on position estimation.

    PubMed

    Xia, Yuanqing; Na, Xitai; Sun, Zhongqi; Chen, Jing

    2016-03-01

    In this paper, formation control strategies based on position estimation for double-integrator systems are investigated. Firstly, an optimal control formation control strategy is derived based on the estimator. It is proven that the control inputs are able to drive the agents to the predefined formation and the controller is optimal even based on the estimation law if the estimator has converged to stable. Secondly, a consensus law based on the estimator is presented, which enables the agents converge to the formation in a cooperative manner. The stability can be guaranteed by proper parameters. Thirdly, extra control input for inter collision avoidance is added into the derived consensus control strategy, and efficacy analysis are provided in detail. Finally, the effectiveness of the strategies proposed are shown by simulation and experiment results. PMID:26786907

  19. Estimation of shoreline position and change using airborne topographic lidar data

    USGS Publications Warehouse

    Stockdon, H.F.; Sallenger, A.H.; List, J.H.; Holman, R.A.

    2002-01-01

    A method has been developed for estimating shoreline position from airborne scanning laser data. This technique allows rapid estimation of objective, GPS-based shoreline positions over hundreds of kilometers of coast, essential for the assessment of large-scale coastal behavior. Shoreline position, defined as the cross-shore position of a vertical shoreline datum, is found by fitting a function to cross-shore profiles of laser altimetry data located in a vertical range around the datum and then evaluating the function at the specified datum. Error bars on horizontal position are directly calculated as the 95% confidence interval on the mean value based on the Student's t distribution of the errors of the regression. The technique was tested using lidar data collected with NASA's Airborne Topographic Mapper (ATM) in September 1997 on the Outer Banks of North Carolina. Estimated lidar-based shoreline position was compared to shoreline position as measured by a ground-based GPS vehicle survey system. The two methods agreed closely with a root mean square difference of 2.9 m. The mean 95% confidence interval for shoreline position was ?? 1.4 m. The technique has been applied to a study of shoreline change on Assateague Island, Maryland/Virginia, where three ATM data sets were used to assess the statistics of large-scale shoreline change caused by a major 'northeaster' winter storm. The accuracy of both the lidar system and the technique described provides measures of shoreline position and change that are ideal for studying storm-scale variability over large spatial scales.

  20. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  1. Three-dimensional indoor light positioning algorithm based on nonlinear estimation

    NASA Astrophysics Data System (ADS)

    Gu, Wenjun; Kavehrad, Mohsen; Aminikashani, Mohammadreza

    2016-02-01

    With the development of location based services (LBS), indoor positioning has been a popular research topic in recent years. Since global positioning system (GPS) signal suffers from severe attenuation when penetrating through solid walls, other alternatives are proposed to realize indoor positioning. Visible light communication (VLC) systems offer a practical solution. Light emitting diode (LED) is able to be modulated in high speed as a transmitter, and a photodiode (PD) is commonly a receiver to detect the optical signal strength. In VLC based indoor positioning system, LEDs are applied for both positioning and illumination purposes so that infrastructure cost and power consumption are decreased. In addition, light positioning system provides other advantages such as no electromagnetic interference and better immunity against multipath reflections. Several methods are proposed to realize indoor positioning, such as triangulation, scene analysis and proximity, which are also applicable for a VLC based system. In prior works, the height of receiver is known so that the coordinates on the horizontal plane can be calculated. In this paper, the proposed method includes two stages: the height is presumed in the prediction stage and nonlinear estimation is applied in the correction stage to realize three dimensional coordinate estimation.

  2. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  3. Super-resolved position and orientation estimation of fluorescent dipoles using 3-D steerable filters

    NASA Astrophysics Data System (ADS)

    Geissbuehler, S.; Aguet, F.; Maerki, I.; Lasser, T.

    2010-02-01

    The diffraction patterns of fixed fluorophores are characteristic of the orientation of the molecules' underlying dipole. Fluorescence localization microscopy techniques such as PALM and STORM achieve super-resolution by sequentially imaging sparse subsets of fluorophores, which are localized by means of Gaussian-based localization. This approach is based on the assumption of isotropic emitters, where the diffraction pattern corresponds to a section of the point spread function. Applied to fixed fluorophores, it can lead to an estimation bias in the range of 5-20nm. We introduce a method for the joint estimation of position and orientation of single fluorophores, based on an accurate image formation model expressed as a 3-D steerable filter. We demonstrate experimental estimation accuracies of 5 nm for position and 2 degrees for orientation.

  4. Off-axis digital holographic particle positioning based on polarization-sensitive wavefront curvature estimation.

    PubMed

    Öhman, Johan; Sjödahl, Mikael

    2016-09-20

    Poor axial resolution in holographic particle imaging applications makes particle positioning in 3D space more complex since the positions are not directly obtained. In this paper we estimate the axial position of micrometer particles by finding the location where the wavefront curvature from the scattered light becomes zero. By recording scattered light at 90° using off-axis holography, the complex amplitude of the light is obtained. By reconstruction of the imaged scene, a complex valued volume is produced. From this volume, phase gradients are calculated for each particle and used to estimate the wavefront curvature. From simulations it is found that the wavefront curvature became zero at the true axial position of the particle. We applied this metric to track an axial translation experimentally using a telecentric off-axis holographic imaging system with a lateral magnification of M=1.33. A silicon cube with molded particles inside was used as sample. Holographic recordings are performed both before and after a 100 μm axial translation. From the estimated positions, it was found that the mean displacement of particles between recordings was 105.0 μm with a standard deviation of 25.3 μm. PMID:27661575

  5. Effects of linear trends on estimation of noise in GNSS position time series

    NASA Astrophysics Data System (ADS)

    Dmitrieva, K.; Segall, P.; Bradley, A. M.

    2016-10-01

    A thorough understanding of time dependent noise in Global Navigation Satellite System (GNSS) position time series is necessary for computing uncertainties in any signals found in the data. However, estimation of time-correlated noise is a challenging task and is complicated by the difficulty in separating noise from signal, the features of greatest interest in the time series. In this paper we investigate how linear trends affect the estimation of noise in daily GNSS position time series. We use synthetic time series to study the relationship between linear trends and estimates of time-correlated noise for the six most commonly cited noise models. We find that the effects of added linear trends, or conversely de-trending, vary depending on the noise model. The commonly adopted model of random walk (RW), flicker noise (FN), and white noise (WN) is the most severely affected by de-trending, with estimates of low amplitude RW most severely biased. Flicker noise plus white noise is least affected by adding or removing trends. Non-integer power-law noise estimates are also less affected by de-trending, but are very sensitive to the addition of trend when the spectral index is less than one. We derive an analytical relationship between linear trends and the estimated random walk variance for the special case of pure random walk noise. Overall, we find that to ascertain the correct noise model for GNSS position time series and to estimate the correct noise parameters, it is important to have independent constraints on the actual trends in the data.

  6. Demonstration of precise estimation of polar motion parameters with the global positioning system: Initial results

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.

    1991-01-01

    Data from the Global Positioning System (GPS) were used to determine precise polar motion estimates. Conservatively calculated formal errors of the GPS least squares solution are approx. 10 cm. The GPS estimates agree with independently determined polar motion values from very long baseline interferometry (VLBI) at the 5 cm level. The data were obtained from a partial constellation of GPS satellites and from a sparse worldwide distribution of ground stations. The accuracy of the GPS estimates should continue to improve as more satellites and ground receivers become operational, and eventually a near real time GPS capability should be available. Because the GPS data are obtained and processed independently from the large radio antennas at the Deep Space Network (DSN), GPS estimation could provide very precise measurements of Earth orientation for calibration of deep space tracking data and could significantly relieve the ever growing burden on the DSN radio telescopes to provide Earth platform calibrations.

  7. A maximum likelihood approach to estimating articulator positions from speech acoustics

    SciTech Connect

    Hogden, J.

    1996-09-23

    This proposal presents an algorithm called maximum likelihood continuity mapping (MALCOM) which recovers the positions of the tongue, jaw, lips, and other speech articulators from measurements of the sound-pressure waveform of speech. MALCOM differs from other techniques for recovering articulator positions from speech in three critical respects: it does not require training on measured or modeled articulator positions, it does not rely on any particular model of sound propagation through the vocal tract, and it recovers a mapping from acoustics to articulator positions that is linearly, not topographically, related to the actual mapping from acoustics to articulation. The approach categorizes short-time windows of speech into a finite number of sound types, and assumes the probability of using any articulator position to produce a given sound type can be described by a parameterized probability density function. MALCOM then uses maximum likelihood estimation techniques to: (1) find the most likely smooth articulator path given a speech sample and a set of distribution functions (one distribution function for each sound type), and (2) change the parameters of the distribution functions to better account for the data. Using this technique improves the accuracy of articulator position estimates compared to continuity mapping -- the only other technique that learns the relationship between acoustics and articulation solely from acoustics. The technique has potential application to computer speech recognition, speech synthesis and coding, teaching the hearing impaired to speak, improving foreign language instruction, and teaching dyslexics to read. 34 refs., 7 figs.

  8. Towards rapid uncertainty estimation in linear finite fault inversion with positivity constraints

    NASA Astrophysics Data System (ADS)

    Benavente, R. F.; Cummins, P. R.; Sambridge, M.; Dettmer, J.

    2015-12-01

    Rapid estimation of the slip distribution for large earthquakes can assist greatly during the early phases of emergency response. These estimates can be used for rapid impact assessment and tsunami early warning. While model parameter uncertainties can be crucial for meaningful interpretation of such slip models, they are often ignored. Since the finite fault problem can be posed as a linear inverse problem (via the multiple time window method), an analytic expression for the posterior covariance matrix can be obtained, in principle. However, positivity constraints are often employed in practice, which breaks the assumption of a Gaussian posterior probability density function (PDF). To our knowledge, two solutions to this issue exist in the literature: 1) Not using positivity constraints (may lead to exotic slip patterns) or 2) to use positivity constraints but apply Bayesian sampling for the posterior. The latter is computationally expensive and currently unsuitable for rapid inversion. In this work, we explore an alternative approach in which we realize positivity by imposing a prior such that the log of each subfault scalar moment are smoothly distributed on the fault surface. This results in each scalar moment to be intrinsically non-negative while the posterior PDF can still be approximated as Gaussian. While the inversion is not linear anymore, we show that the most probable solution can be found by iterative methods which are less computationally expensive than numerical sampling of the posterior. In addition, the posterior covariance matrix (which provides uncertainties) can be estimated from the most probable solution, using an analytic expression for the Hessian of the cost function. We study this approach for both synthetic and observed W-phase data and the results suggest that a first order estimation of the uncertainty in the slip model can be obtained, therefore aiding in the interpretation of the slip distribution estimate.

  9. Impact of the Fano Factor on Position and Energy Estimation in Scintillation Detectors

    PubMed Central

    Bora, Vaibhav; Barrett, Harrison H.; Jha, Abhinav K.; Clarkson, Eric

    2015-01-01

    The Fano factor for an integer-valued random variable is defined as the ratio of its variance to its mean. Light from various scintillation crystals have been reported to have Fano factors from sub-Poisson (Fano factor < 1) to super-Poisson (Fano factor > 1). For a given mean, a smaller Fano factor implies a smaller variance and thus less noise. We investigated if lower noise in the scintillation light will result in better spatial and energy resolutions. The impact of Fano factor on the estimation of position of interaction and energy deposited in simple gamma-camera geometries is estimated by two methods - calculating the Cramér-Rao bound and estimating the variance of a maximum likelihood estimator. The methods are consistent with each other and indicate that when estimating the position of interaction and energy deposited by a gamma-ray photon, the Fano factor of a scintillator does not affect the spatial resolution. A smaller Fano factor results in a better energy resolution. PMID:26523069

  10. Precise Point Positioning with Ionosphere Estimation and application of Regional Ionospheric Maps

    NASA Astrophysics Data System (ADS)

    Galera Monico, J. F.; Marques, H. A.; Rocha, G. D. D. C.

    2015-12-01

    The ionosphere is one of most difficult source of errors to be modelled in the GPS positioning, mainly when applying data collected by single frequency receivers. Considering Precise Point Positioning (PPP) with single frequency data the options available include, for example, the use of Klobuchar model or applying Global Ionosphere Maps (GIM). The GIM contains Vertical Electron Content (VTEC) values that are commonly estimated considering a global network with poor covering in certain regions. For this reason Regional Ionosphere Maps (RIM) have been developed considering local GNSS network, for instance, the La Plata Ionospheric Model (LPIM) developed inside the context of SIRGAS (Geocentric Reference System for Americas). The South American RIM are produced with data from nearly 50 GPS ground receivers and considering these maps are generated for each hour with spatial resolution of one degree it is expected to provide better accuracy in GPS positioning for such region. Another possibility to correct for ionosphere effects in the PPP is to apply the ionosphere estimation technique based on Kalman filter. In this case, the ionosphere can be treated as a stochastic process and a good initial guess is necessary what can be obtained from an ionospheric map. In this paper we present the methodology involved with ionosphere estimation by using Kalman filter and also the application of global and regional ionospheric maps in the PPP as first guess. The ionosphere estimation strategy was implemented in the house software called RT_PPP that is capable of accomplishing PPP either for single or dual frequency data. GPS data from Brazilian station near equatorial region were processed and results with regional maps were compared with those by using global maps. Improvements of the order 15% were observed. In case of ionosphere estimation, the estimated coordinates were compared with ionosphere free solution and after PPP convergence the results reached centimeter accuracy.

  11. Estimating the spatial position of marine mammals based on digital camera recordings.

    PubMed

    Hoekendijk, Jeroen P A; de Vries, Jurre; van der Bolt, Krissy; Greinert, Jens; Brasseur, Sophie; Camphuysen, Kees C J; Aarts, Geert

    2015-02-01

    Estimating the spatial position of organisms is essential to quantify interactions between the organism and the characteristics of its surroundings, for example, predator-prey interactions, habitat selection, and social associations. Because marine mammals spend most of their time under water and may appear at the surface only briefly, determining their exact geographic location can be challenging. Here, we developed a photogrammetric method to accurately estimate the spatial position of marine mammals or birds at the sea surface. Digital recordings containing landscape features with known geographic coordinates can be used to estimate the distance and bearing of each sighting relative to the observation point. The method can correct for frame rotation, estimates pixel size based on the reference points, and can be applied to scenarios with and without a visible horizon. A set of R functions was written to process the images and obtain accurate geographic coordinates for each sighting. The method is applied to estimate the spatiotemporal fine-scale distribution of harbour porpoises in a tidal inlet. Video recordings of harbour porpoises were made from land, using a standard digital single-lens reflex (DSLR) camera, positioned at a height of 9.59 m above mean sea level. Porpoises were detected up to a distance of ∽3136 m (mean 596 m), with a mean location error of 12 m. The method presented here allows for multiple detections of different individuals within a single video frame and for tracking movements of individuals based on repeated sightings. In comparison with traditional methods, this method only requires a digital camera to provide accurate location estimates. It especially has great potential in regions with ample data on local (a)biotic conditions, to help resolve functional mechanisms underlying habitat selection and other behaviors in marine mammals in coastal areas. PMID:25691982

  12. Estimating the spatial position of marine mammals based on digital camera recordings

    PubMed Central

    Hoekendijk, Jeroen P A; de Vries, Jurre; van der Bolt, Krissy; Greinert, Jens; Brasseur, Sophie; Camphuysen, Kees C J; Aarts, Geert

    2015-01-01

    Estimating the spatial position of organisms is essential to quantify interactions between the organism and the characteristics of its surroundings, for example, predator–prey interactions, habitat selection, and social associations. Because marine mammals spend most of their time under water and may appear at the surface only briefly, determining their exact geographic location can be challenging. Here, we developed a photogrammetric method to accurately estimate the spatial position of marine mammals or birds at the sea surface. Digital recordings containing landscape features with known geographic coordinates can be used to estimate the distance and bearing of each sighting relative to the observation point. The method can correct for frame rotation, estimates pixel size based on the reference points, and can be applied to scenarios with and without a visible horizon. A set of R functions was written to process the images and obtain accurate geographic coordinates for each sighting. The method is applied to estimate the spatiotemporal fine-scale distribution of harbour porpoises in a tidal inlet. Video recordings of harbour porpoises were made from land, using a standard digital single-lens reflex (DSLR) camera, positioned at a height of 9.59 m above mean sea level. Porpoises were detected up to a distance of ∽3136 m (mean 596 m), with a mean location error of 12 m. The method presented here allows for multiple detections of different individuals within a single video frame and for tracking movements of individuals based on repeated sightings. In comparison with traditional methods, this method only requires a digital camera to provide accurate location estimates. It especially has great potential in regions with ample data on local (a)biotic conditions, to help resolve functional mechanisms underlying habitat selection and other behaviors in marine mammals in coastal areas. PMID:25691982

  13. Vector Observation-Aided/Attitude-Rate Estimation Using Global Positioning System Signals

    NASA Technical Reports Server (NTRS)

    Oshman, Yaakov; Markley, F. Landis

    1997-01-01

    A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.

  14. NEW ESTIMATES OF THE INCLINATION, POSITION ANGLE, PITCH ANGLE, AND SCALE HEIGHT OF THE WHIRLPOOL GALAXY

    SciTech Connect

    Hu Tao; Shao Zhengyi; Peng Qiuhe E-mail: taohu.nju@gmail.com

    2013-01-10

    The inclination (i) and position angle (PA) of the Whirlpool galaxy (M51) are critical to modeling and interpreting observations. Here we make improved estimates of these parameters by fitting logarithmic spirals to the main arms. From separate fits to each major arm, we obtain i = 20. Degree-Sign 3 {+-} 2. Degree-Sign 8 and PA = 12. Degree-Sign 0 {+-} 2. Degree-Sign 5. We then use Poisson's equation for the logarithmic perturbation of the density to estimate the mean vertical scale height (H) of M51 to be 95-178 pc.

  15. Optimal Position Estimation for the Automatic Alignment of a High Energy Laser

    SciTech Connect

    Candy, J V; Mcclay, W A; Awwal, A S; Ferguson, S W

    2004-07-20

    The alignment of high energy laser beams for potential fusion experiments demand high precision and accuracy by the underlying positioning algorithms whether it be for actuator control or monitoring the beam line for potential anomalies. This paper discusses the feasibility of employing on-line optimal position estimators in the form of model-based processors to achieve the desired results. Here we discuss the modeling, development, implementation and processing of model-based processors applied to both simulated and actual beam line data.

  16. Regularized estimation of vertical total electron content from Global Positioning System data

    NASA Astrophysics Data System (ADS)

    Arikan, F.; Erol, C. B.; Arikan, O.

    2003-12-01

    A novel regularization technique which can combine signals from all Global Positioning System (GPS) satellites for a given instant and a given receiver is developed to estimate the vertical total electron content (VTEC) values for the 24-hour period without missing any important features in the temporal domain. The algorithm is based on the minimization of a cost function which also includes a high pass penalty filter. Optional weighting function and sliding window median filter are added to enrich the processing and smoothing of the data. The developed regularized estimation algorithm is applied to GPS data for various locations for the solar maximum week of 23-28 April 2001. The parameter set that is required by the estimation algorithm is chosen optimally using appropriate error functions. This robust and optimum parameter set can be used for all latitudes and for both quiet and disturbed days. It is observed that the estimated TEC values are in general accordance with the TEC estimates from other global ionospheric maps, especially for quiet days and midlatitudes. Owing to its 30 s time resolution, the regularized VTEC estimates from the developed algorithm are very successful in representation and tracking of sudden temporal variations of the ionosphere, especially for high latitudes and during ionospheric disturbances.

  17. Indoor positioning system using WLAN channel estimates as fingerprints for mobile devices

    NASA Astrophysics Data System (ADS)

    Schmidt, Erick; Akopian, David

    2015-03-01

    With the growing integration of location based services (LBS) such as GPS in mobile devices, indoor position systems (IPS) have become an important role for research. There are several IPS methods such as AOA, TOA, TDOA, which use trilateration for indoor location estimation but are generally based on line-of-sight. Other methods rely on classification such as fingerprinting which uses WLAN indoor signals. This paper re-examines the classical WLAN fingerprinting accuracy which uses received signal strength (RSS) measurements by introducing channel estimates for improvements in the classification of indoor locations. The purpose of this paper is to improve existing classification algorithms used in fingerprinting by introducing channel estimates when there are a low number of APs available. The channel impulse response, or in this case the channel estimation from the receiver, should characterize a complex indoor area which usually has multipath, thus providing a unique signature for each location which proves useful for better pattern recognition. In this experiment, channel estimates are extracted from a Software-Defined Radio (SDR) environment, thus exploiting the benefits of SDR from a NI-USRP model and LabVIEW software. Measurements are taken from a known building, and several scenarios with one and two access points (APs) are used in this experiment. Also, three granularities in distance between locations are analyzed. A Support Vector Machine (SVM) is used as the algorithm for pattern recognition of different locations based on the samples taken from RSS and channel estimation coefficients.

  18. What Can We Learn From The Shape Of A Correlation Peak For Position Estimation?

    SciTech Connect

    Awwal, A S

    2009-08-25

    Matched filtering is a robust technique to identify and locate objects in the presence of noise. Traditionally, the amplitude of the correlation peak is used for detection of a match. However, when distinguishing objects that are not significantly different or detecting objects under high noise imaging conditions, the normalized peak amplitude alone may not provide sufficient discrimination. In this paper, we demonstrate that measurements derived from the shape of the correlation peak offer not only higher levels of discrimination but also accurate position estimation. To our knowledge, this is the first time such features have been used in a real-time system, like the National Ignition Facility, where such techniques enable real-time, accurate position estimation and alignment under challenging imaging conditions. It is envisioned that systems utilizing matched filtering will greatly benefit from incorporating additional shape based information.

  19. Fast Kalman Filtering for Relative Spacecraft Position and Attitude Estimation for the Raven ISS Hosted Payload

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Van Eepoel, John; D'Souza, Chris; Patrick, Bryan

    2016-01-01

    The Raven ISS Hosted Payload will feature several pose measurement sensors on a pan/tilt gimbal which will be used to autonomously track resupply vehicles as they approach and depart the International Space Station. This paper discusses the derivation of a Relative Navigation Filter (RNF) to fuse measurements from the different pose measurement sensors to produce relative position and attitude estimates. The RNF relies on relative translation and orientation kinematics and careful pose sensor modeling to eliminate dependence on orbital position information and associated orbital dynamics models. The filter state is augmented with sensor biases to provide a mechanism for the filter to estimate and mitigate the offset between the measurements from different pose sensors

  20. Fast Kalman Filtering for Relative Spacecraft Position and Attitude Estimation for the Raven ISS Hosted Payload

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Van Eepoel, John; D' Souza, Chris; Patrick, Bryan

    2016-01-01

    The Raven ISS Hosted Payload will feature several pose measurement sensors on a pan/tilt gimbal which will be used to autonomously track resupply vehicles as they approach and depart the International Space Station. This paper discusses the derivation of a Relative Navigation Filter (RNF) to fuse measurements from the different pose measurement sensors to produce relative position and attitude estimates. The RNF relies on relative translation and orientation kinematics and careful pose sensor modeling to eliminate dependence on orbital position information and associated orbital dynamics models. The filter state is augmented with sensor biases to provide a mechanism for the filter to estimate and mitigate the offset between the measurements from different pose sensors.

  1. Position Estimation of Access Points in 802.11 Wireless Networks

    SciTech Connect

    Kent, C A; Dowla, F U; Atwal, P K; Lennon, W J

    2003-12-05

    We developed a technique to locate wireless network nodes using multiple time-of-flight range measurements in a position estimate. When used with communication methods that allow propagation through walls, such as Ultra-Wideband and 802.11, we can locate network nodes in buildings and in caves where GPS is unavailable. This paper details the implementation on an 802.11a network where we demonstrated the ability to locate a network access point to within 20 feet.

  2. Visual intraoperative estimation of cup and stem position is not reliable in minimally invasive hip arthroplasty

    PubMed Central

    Woerner, Michael; Sendtner, Ernst; Springorum, Robert; Craiovan, Benjamin; Worlicek, Michael; Renkawitz, Tobias; Grifka, Joachim; Weber, Markus

    2016-01-01

    Background and purpose In hip arthroplasty, acetabular inclination and anteversion—and also femoral stem torsion—are generally assessed by eye intraoperatively. We assessed whether visual estimation of cup and stem position is reliable. Patients and methods In the course of a subgroup analysis of a prospective clinical trial, 65 patients underwent cementless hip arthroplasty using a minimally invasive anterolateral approach in lateral decubitus position. Altogether, 4 experienced surgeons assessed cup position intraoperatively according to the operative definition by Murray in the anterior pelvic plane and stem torsion in relation to the femoral condylar plane. Inclination, anteversion, and stem torsion were measured blind postoperatively on 3D-CT and compared to intraoperative results. Results The mean difference between the 3D-CT results and intraoperative estimations by eye was −4.9° (−18 to 8.7) for inclination, 9.7° (−16 to 41) for anteversion, and −7.3° (−34 to 15) for stem torsion. We found an overestimation of > 5° for cup inclination in 32 hips, an overestimation of > 5° for stem torsion in 40 hips, and an underestimation < 5° for cup anteversion in 42 hips. The level of professional experience and patient characteristics had no clinically relevant effect on the accuracy of estimation by eye. Altogether, 46 stems were located outside the native norm of 10–20° as defined by Tönnis, measured on 3D-CT. Interpretation Even an experienced surgeon’s intraoperative estimation of cup and stem position by eye is not reliable compared to 3D-CT in minimally invasive THA. The use of mechanical insertion jigs, intraoperative fluoroscopy, or imageless navigation is recommended for correct implant insertion. PMID:26848628

  3. Initial rotor position estimation and sliding preventing for elevators with surface-mounted PMSMs

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Shen, Anwen; Tang, Qipeng; Xu, Jinbang

    2016-03-01

    Improved methods of initial rotor position estimation and sliding prevention are presented in this paper for elevators with surface-mounted permanent magnet synchronous machines (SPMSMs). In contrast to most of the existing literature, in this paper, estimation errors caused by stator resistance and dead time are analysed in detail. The improved estimation method can reduce the errors greatly without dead-time compensations and knowledge of motor parameters. Besides, an observer-based feedforward compensation of load torque is introduced to elevator applications to prevent sliding during the starting process. Since the torque observer is widely used in other motor applications, we focus on the impact caused by the change in inertia. Finally, a series of experiments are performed on a testing system with two 13.4 kW SPMSMs and drivers to illustrate the effectiveness and improvement of the method.

  4. Estimating snow water equivalent from GPS vertical site-position observations in the western United States

    PubMed Central

    Ouellette, Karli J; de Linage, Caroline; Famiglietti, James S

    2013-01-01

    [1] Accurate estimation of the characteristics of the winter snowpack is crucial for prediction of available water supply, flooding, and climate feedbacks. Remote sensing of snow has been most successful for quantifying the spatial extent of the snowpack, although satellite estimation of snow water equivalent (SWE), fractional snow covered area, and snow depth is improving. Here we show that GPS observations of vertical land surface loading reveal seasonal responses of the land surface to the total weight of snow, providing information about the stored SWE. We demonstrate that the seasonal signal in Scripps Orbit and Permanent Array Center (SOPAC) GPS vertical land surface position time series at six locations in the western United States is driven by elastic loading of the crust by the snowpack. GPS observations of land surface deformation are then used to predict the water load as a function of time at each location of interest and compared for validation to nearby Snowpack Telemetry observations of SWE. Estimates of soil moisture are included in the analysis and result in considerable improvement in the prediction of SWE. Citation: Ouellette, K. J., C. de Linage, and J. S. Famiglietti (2013), Estimating snow water equivalent from GPS vertical site-position observations in the western United States, Water Resour. Res., 49, 2508–2518, doi:10.1002/wrcr.20173. PMID:24223442

  5. Estimating snow water equivalent from GPS vertical site-position observations in the western United States.

    PubMed

    Ouellette, Karli J; de Linage, Caroline; Famiglietti, James S

    2013-05-01

    [1] Accurate estimation of the characteristics of the winter snowpack is crucial for prediction of available water supply, flooding, and climate feedbacks. Remote sensing of snow has been most successful for quantifying the spatial extent of the snowpack, although satellite estimation of snow water equivalent (SWE), fractional snow covered area, and snow depth is improving. Here we show that GPS observations of vertical land surface loading reveal seasonal responses of the land surface to the total weight of snow, providing information about the stored SWE. We demonstrate that the seasonal signal in Scripps Orbit and Permanent Array Center (SOPAC) GPS vertical land surface position time series at six locations in the western United States is driven by elastic loading of the crust by the snowpack. GPS observations of land surface deformation are then used to predict the water load as a function of time at each location of interest and compared for validation to nearby Snowpack Telemetry observations of SWE. Estimates of soil moisture are included in the analysis and result in considerable improvement in the prediction of SWE. Citation: Ouellette, K. J., C. de Linage, and J. S. Famiglietti (2013), Estimating snow water equivalent from GPS vertical site-position observations in the western United States, Water Resour. Res., 49, 2508-2518, doi:10.1002/wrcr.20173. PMID:24223442

  6. A Comparison of Real-Time Precise Point Positioning Zenith Total Delay Estimates

    NASA Astrophysics Data System (ADS)

    Ahmed, F.; Vaclavovic, P.; Dousa, J.; Teferle, F. N.; Laurichesse, D.; Bingley, R.

    2013-12-01

    The use of observations from Global Navigation Satellite Systems (GNSS) in operational meteorology is increasing worldwide due to the continuous evolution of GNSS. The assimilation of near real-time (NRT) GNSS-derived zenith total delay (ZTD) estimates into local, regional and global scale numerical weather prediction (NWP) models is now in operation at a number of meteorological institutions. The development of NWP models with high update cycles for now-casting and monitoring of extreme weather events in recent years, requires the estimation of ZTD with minimal latencies, i.e. from 5 to 10 minutes, while maintaining an adequate level of accuracy for these. The availability of real-time (RT) observations and products from the IGS RT service and associated analysis centers make it possible to compute precise point positioning (PPP) solutions in RT, which provide ZTD along with position estimates. This study presents a comparison of the RT ZTD estimates from three different PPP software packages (G-Nut/Tefnut, BNC2.7 and PPP-Wizard) to the state-of-the-art IGS Final Troposphere Product employing PPP in the Bernese GPS Software. Overall, the ZTD time series obtained by the software packages agree fairly well with the estimates following the variations of the other solutions, but showing various biases with the reference. After correction of these the RMS differences are at the order of 0.01 m. The application of PPP ambiguity resolution in one solution or the use of different RT product streams shows little impact on the ZTD estimates.

  7. Drift-Free Position Estimation of Periodic or Quasi-Periodic Motion Using Inertial Sensors

    PubMed Central

    Latt, Win Tun; Veluvolu, Kalyana Chakravarthy; Ang, Wei Tech

    2011-01-01

    Position sensing with inertial sensors such as accelerometers and gyroscopes usually requires other aided sensors or prior knowledge of motion characteristics to remove position drift resulting from integration of acceleration or velocity so as to obtain accurate position estimation. A method based on analytical integration has previously been developed to obtain accurate position estimate of periodic or quasi-periodic motion from inertial sensors using prior knowledge of the motion but without using aided sensors. In this paper, a new method is proposed which employs linear filtering stage coupled with adaptive filtering stage to remove drift and attenuation. The prior knowledge of the motion the proposed method requires is only approximate band of frequencies of the motion. Existing adaptive filtering methods based on Fourier series such as weighted-frequency Fourier linear combiner (WFLC), and band-limited multiple Fourier linear combiner (BMFLC) are modified to combine with the proposed method. To validate and compare the performance of the proposed method with the method based on analytical integration, simulation study is performed using periodic signals as well as real physiological tremor data, and real-time experiments are conducted using an ADXL-203 accelerometer. Results demonstrate that the performance of the proposed method outperforms the existing analytical integration method. PMID:22163935

  8. A method of rapidly estimating the position of the laminar separation point

    NASA Technical Reports Server (NTRS)

    Von Doenhoff, Albert E

    1938-01-01

    A method is described of rapidly estimating the position of the laminar separation point from the given pressure distribution along a body; the method is applicable to a fairly wide variety of cases. The laminar separation point is found by the von Karman-Millikan method for a series of velocity distributions along a flat plate, which consist of a region of uniform velocity followed by a region of uniform decreased velocity. It is shown that such a velocity distribution can frequently replace the actual velocity distribution along a body insofar as the effects on laminar separation are concerned. An example of the application of the method is given by using it to calculate the position of the laminar separation point on the NACA 0012 airfoil section at zero lift. The agreement between the position of the separation point calculated according to the present method and that found from more elaborate computations is very good.

  9. High-precision position estimation in PET using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Mateo, F.; Aliaga, R. J.; Ferrando, N.; Martínez, J. D.; Herrero, V.; Lerche, Ch. W.; Colom, R. J.; Monzó, J. M.; Sebastiá, A.; Gadea, R.

    2009-06-01

    Traditionally, the most popular technique to predict the impact position of gamma photons on a PET detector has been Anger's logic. However, it introduces nonlinearities that compress the light distribution, reducing the useful field of view and the spatial resolution, especially at the edges of the scintillator crystal. In this work, we make use of neural networks to address a bias-corrected position estimation from real stimulus obtained from a 2D PET system setup. The preprocessing and data acquisition were performed by separate custom boards, especially designed for this application. The results show that neural networks yield a more uniform field of view while improving the systematic error and the spatial resolution. Therefore, they stand as a better performing and readily available alternative to classic positioning methods.

  10. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  11. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  12. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  13. Inter-system biases estimation in multi-GNSS relative positioning with GPS and Galileo

    NASA Astrophysics Data System (ADS)

    Deprez, Cecile; Warnant, Rene

    2016-04-01

    The recent increase in the number of Global Navigation Satellite Systems (GNSS) opens new perspectives in the field of high precision positioning. Particularly, the European Galileo program has experienced major progress in 2015 with the launch of 6 satellites belonging to the new Full Operational Capability (FOC) generation. Associated with the ongoing GPS modernization, many more frequencies and satellites are now available. Therefore, multi-GNSS relative positioning based on GPS and Galileo overlapping frequencies should entail better accuracy and reliability in position estimations. However, the differences between satellite systems induce inter-system biases (ISBs) inside the multi-GNSS equations of observation. Once these biases estimated and removed from the model, a solution involving a unique pivot satellite for the two considered constellations can be obtained. Such an approach implies that the addition of even one single Galileo satellite to the GPS-only model will strengthen it. The combined use of L1 and L5 from GPS with E1 and E5a from Galileo in zero baseline double differences (ZB DD) based on a unique pivot satellite is employed to resolve ISBs. This model removes all the satellite- and receiver-dependant error sources by differentiating and the zero baseline configuration allows atmospheric and multipath effects elimination. An analysis of the long-term stability of ISBs is conducted on various pairs of receivers over large time spans. The possible influence of temperature variations inside the receivers over ISB values is also investigated. Our study is based on the 5 multi-GNSS receivers (2 Septentrio PolaRx4, 1 Septentrio PolaRxS and 2 Trimble NetR9) installed on the roof of our building in Liege. The estimated ISBs are then used as corrections in the multi-GNSS observation model and the resulting accuracy of multi-GNSS positioning is compared to GPS and Galileo standalone solutions.

  14. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  15. Indoor Positioning in Wireless Local Area Networks with Online Path-Loss Parameter Estimation

    PubMed Central

    Bruno, Luigi

    2014-01-01

    Location based services are gathering an even wider interest also in indoor environments and urban canyons, where satellite systems like GPS are no longer accurate. A much addressed solution for estimating the user position exploits the received signal strengths (RSS) in wireless local area networks (WLANs), which are very common nowadays. However, the performances of RSS based location systems are still unsatisfactory for many applications, due to the difficult modeling of the propagation channel, whose features are affected by severe changes. In this paper we propose a localization algorithm which takes into account the nonstationarity of the working conditions by estimating and tracking the key parameters of RSS propagation. It is based on a Sequential Monte Carlo realization of the optimal Bayesian estimation scheme, whose functioning is improved by exploiting the Rao-Blackwellization rationale. Two key statistical models for RSS characterization are deeply analyzed, by presenting effective implementations of the proposed scheme and by assessing the positioning accuracy by extensive computer experiments. Many different working conditions are analyzed by simulated data and corroborated through the validation in a real world scenario. PMID:25165755

  16. Indoor positioning in wireless local area networks with online path-loss parameter estimation.

    PubMed

    Bruno, Luigi; Addesso, Paolo; Restaino, Rocco

    2014-01-01

    Location based services are gathering an even wider interest also in indoor environments and urban canyons, where satellite systems like GPS are no longer accurate. A much addressed solution for estimating the user position exploits the received signal strengths (RSS) in wireless local area networks (WLANs), which are very common nowadays. However, the performances of RSS based location systems are still unsatisfactory for many applications, due to the difficult modeling of the propagation channel, whose features are affected by severe changes. In this paper we propose a localization algorithm which takes into account the nonstationarity of the working conditions by estimating and tracking the key parameters of RSS propagation. It is based on a Sequential Monte Carlo realization of the optimal Bayesian estimation scheme, whose functioning is improved by exploiting the Rao-Blackwellization rationale. Two key statistical models for RSS characterization are deeply analyzed, by presenting effective implementations of the proposed scheme and by assessing the positioning accuracy by extensive computer experiments. Many different working conditions are analyzed by simulated data and corroborated through the validation in a real world scenario. PMID:25165755

  17. A novel unscented predictive filter for relative position and attitude estimation of satellite formation

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Chen, Xiaoqian; Misra, Arun K.

    2015-07-01

    This paper presents a novel sigma-point unscented predictive filter (UPF) for relative position and attitude estimation of satellite formation taking into account the influence of J2. A coupled relative translational dynamics model is formulated to represent orbital motion of arbitrary feature points on the deputy spacecraft, and the relative attitude motion is formulated by considering a rotational dynamics for a satellite without gyros. Based on the proposed coupled dynamic model, the UPF is developed based on unscented transformation technique, extending the capability of a traditional predictive filter (PF). The algorithm flow of the UPF is described first. Then it is demonstrated that the estimation accuracy of the model error and system state for UPF is higher than that of the traditional PF. In addition, the unscented Kalman filter (UKF) is also employed in order to compare the performance of the proposed UPF with that of the UKF. Several different scenarios are simulated to validate the effectiveness of the coupled dynamics model and the performance of the proposed UPF. Through comparisons, the proposed UPF is shown to yield highly accurate estimation of relative position and attitude during satellite formation flying.

  18. Estimation of cortical magnification from positional error in normally sighted and amblyopic subjects

    PubMed Central

    Hussain, Zahra; Svensson, Carl-Magnus; Besle, Julien; Webb, Ben S.; Barrett, Brendan T.; McGraw, Paul V.

    2015-01-01

    We describe a method for deriving the linear cortical magnification factor from positional error across the visual field. We compared magnification obtained from this method between normally sighted individuals and amblyopic individuals, who receive atypical visual input during development. The cortical magnification factor was derived for each subject from positional error at 32 locations in the visual field, using an established model of conformal mapping between retinal and cortical coordinates. Magnification of the normally sighted group matched estimates from previous physiological and neuroimaging studies in humans, confirming the validity of the approach. The estimate of magnification for the amblyopic group was significantly lower than the normal group: by 4.4 mm deg−1 at 1° eccentricity, assuming a constant scaling factor for both groups. These estimates, if correct, suggest a role for early visual experience in establishing retinotopic mapping in cortex. We discuss the implications of altered cortical magnification for cortical size, and consider other neural changes that may account for the amblyopic results. PMID:25761341

  19. Indoor positioning in wireless local area networks with online path-loss parameter estimation.

    PubMed

    Bruno, Luigi; Addesso, Paolo; Restaino, Rocco

    2014-01-01

    Location based services are gathering an even wider interest also in indoor environments and urban canyons, where satellite systems like GPS are no longer accurate. A much addressed solution for estimating the user position exploits the received signal strengths (RSS) in wireless local area networks (WLANs), which are very common nowadays. However, the performances of RSS based location systems are still unsatisfactory for many applications, due to the difficult modeling of the propagation channel, whose features are affected by severe changes. In this paper we propose a localization algorithm which takes into account the nonstationarity of the working conditions by estimating and tracking the key parameters of RSS propagation. It is based on a Sequential Monte Carlo realization of the optimal Bayesian estimation scheme, whose functioning is improved by exploiting the Rao-Blackwellization rationale. Two key statistical models for RSS characterization are deeply analyzed, by presenting effective implementations of the proposed scheme and by assessing the positioning accuracy by extensive computer experiments. Many different working conditions are analyzed by simulated data and corroborated through the validation in a real world scenario.

  20. Estimated workplace protection factors for positive-pressure self-contained breathing apparatus.

    PubMed

    Campbell, D L; Noonan, G P; Merinar, T R; Stobbe, J A

    1994-04-01

    An analytical model is presented that estimates the distribution of workplace protection factor (WPF) values for positive-pressure respirators. Input for the model is (1) the instantaneous facepiece pressure measured as a function of time and (2) the distribution of WPF values for a negative-pressure version of the respirator. As an example application, the model was applied to 57 measurements of facepiece pressure made in a previous National Institute for Occupational Safety and Health study called "Firesmoke." That study involved professional firefighters wearing positive-pressure self-contained breathing apparatus (SCBA). During Firesmoke, there were four donnings in which facepiece pressure momentarily went negative one or more times during use. The purpose of the effort described here was to assess the significance of these momentary, negative excursions in facepiece pressure. To that end, an analytical model was developed that estimates the ratio of the mass of contaminant that enters the facepiece during these negative excursions to that which would be expected to enter a negative-pressure respirator utilizing the same facepiece. Thus, the performance of a positive-pressure SCBA can be determined relative to the performance of a negative-pressure respirator with the same facepiece--either a negative-pressure SCBA or a negative pressure air-purifying respirator. The NIOSH-assigned protection factor (APF) for a negative-pressure full facepiece is 50; the APF for a positive-pressure SCBA is 10,000. The results of the application of this analytical model are consistent with the current NIOSH APF for a positive-pressure SCBA. PMID:8209837

  1. The performance of different propensity-score methods for estimating differences in proportions (risk differences or absolute risk reductions) in observational studies.

    PubMed

    Austin, Peter C

    2010-09-10

    Propensity score methods are increasingly being used to estimate the effects of treatments on health outcomes using observational data. There are four methods for using the propensity score to estimate treatment effects: covariate adjustment using the propensity score, stratification on the propensity score, propensity-score matching, and inverse probability of treatment weighting (IPTW) using the propensity score. When outcomes are binary, the effect of treatment on the outcome can be described using odds ratios, relative risks, risk differences, or the number needed to treat. Several clinical commentators suggested that risk differences and numbers needed to treat are more meaningful for clinical decision making than are odds ratios or relative risks. However, there is a paucity of information about the relative performance of the different propensity-score methods for estimating risk differences. We conducted a series of Monte Carlo simulations to examine this issue. We examined bias, variance estimation, coverage of confidence intervals, mean-squared error (MSE), and type I error rates. A doubly robust version of IPTW had superior performance compared with the other propensity-score methods. It resulted in unbiased estimation of risk differences, treatment effects with the lowest standard errors, confidence intervals with the correct coverage rates, and correct type I error rates. Stratification, matching on the propensity score, and covariate adjustment using the propensity score resulted in minor to modest bias in estimating risk differences. Estimators based on IPTW had lower MSE compared with other propensity-score methods. Differences between IPTW and propensity-score matching may reflect that these two methods estimate the average treatment effect and the average treatment effect for the treated, respectively.

  2. Using Spitzer to Estimate the Kepler False Positive Rate and to Validate Kepler Candidates.

    NASA Astrophysics Data System (ADS)

    Desert, Jean-Michel; Charbonneau, D.; Fressin, F.; Torres, G.

    2012-01-01

    I present the results from an ongoing large campaign with the Spitzer Space Telescope to gather near-infrared photometric measurements of Kepler Objects of Interest (KOI). Our goals are (1) to validate the planetary status of these Kepler candidates, (2) to estimate observationally the false positive rate, and (3) to study the atmospheres of confirmed planets through measurements of their secondary eclipses. Our target list spans of wide range of candidate sizes and periods orbiting various spectral type stars. The Spitzer observations provide constraints on the possibility of astrophysical false positives resulting from stellar blends, including eclipsing binaries and hierarchical triples. The number of possible blends per star is estimated using stellar population synthesis models and observational probes of the KOI close environments from direct imaging (e.g. Adaptive Optics, Speckle images, Kepler centroids). Combining all the above information with the shape of the transit lightcurves from the Kepler photometry, we compute odd ratios for the 34 candidates we observed in order to determine their false positive probability. Our results suggest that the Kepler false positive rate in this subset of candidates is low. I finally present a new list of Kepler candidates that we were able to validate using this method. This work is based on observations made with the Spitzer, which is operated by JPL/Caltech, under a contract with NASA. Support was provided by NASA through an award issued by JPL/Caltech. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.

  3. Position Estimation of an Epicardial Crawling Robot on the Beating Heart by Modeling of Physiological Motion

    PubMed Central

    Wood, Nathan A.; del Agua, Diego Moral; Zenati, Marco A.; Riviere, Cameron N.

    2012-01-01

    HeartLander, a small mobile robot designed to provide treatments to the surface of the beating heart, overcomes a major difficulty of minimally invasive cardiac surgery, providing a stable operating platform. This is achieved inherently in the way the robot adheres to and crawls over the surface of the heart. This mode of operation does not require physiological motion compensation to provide this stable environment; however, modeling of physiological motion is advantageous in providing more accurate position estimation as well as synchronization of motion to the physiological cycles. The work presented uses an Extended Kalman Filter framework to estimate parameters of non-stationary Fourier series models of the motion of the heart due to the respiratory and cardiac cycles as well as the position of the robot as it moves over the surface of the heart. The proposed method is demonstrated in the laboratory with HeartLander operating on a physiological motion simulator. Improved performance is demonstrated in comparison to the filtering methods previously used with HeartLander. The use of detected physiological cycle phases to synchronize locomotion of HeartLander is also described. PMID:23066511

  4. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera.

    PubMed

    Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo

    2016-01-01

    In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots. PMID:27023556

  5. Position Estimation of an Epicardial Crawling Robot on the Beating Heart by Modeling of Physiological Motion.

    PubMed

    Wood, Nathan A; Del Agua, Diego Moral; Zenati, Marco A; Riviere, Cameron N

    2011-12-01

    HeartLander, a small mobile robot designed to provide treatments to the surface of the beating heart, overcomes a major difficulty of minimally invasive cardiac surgery, providing a stable operating platform. This is achieved inherently in the way the robot adheres to and crawls over the surface of the heart. This mode of operation does not require physiological motion compensation to provide this stable environment; however, modeling of physiological motion is advantageous in providing more accurate position estimation as well as synchronization of motion to the physiological cycles. The work presented uses an Extended Kalman Filter framework to estimate parameters of non-stationary Fourier series models of the motion of the heart due to the respiratory and cardiac cycles as well as the position of the robot as it moves over the surface of the heart. The proposed method is demonstrated in the laboratory with HeartLander operating on a physiological motion simulator. Improved performance is demonstrated in comparison to the filtering methods previously used with HeartLander. The use of detected physiological cycle phases to synchronize locomotion of HeartLander is also described.

  6. New Algorithms for Estimating Spacecraft Position Using Scanning Techniques for Deep Space Network Antennas

    NASA Technical Reports Server (NTRS)

    Chen, Lingli; Fathpour, Nanaz; Mehra, Raman K.

    2005-01-01

    As more and more nonlinear estimation techniques become available, our interest is in finding out what performance improvement, if any, they can provide for practical nonlinear problems that have been traditionally solved using linear methods. In this paper we examine the problem of estimating spacecraft position using conical scan (conscan) for NASA's Deep Space Network antennas. We show that for additive disturbances on antenna power measurement, the problem can be transformed into a linear one, and we present a general solution to this problem, with the least square solution reported in literature as a special case. We also show that for additive disturbances on antenna position, the problem is a truly nonlinear one, and we present two approximate solutions based on linearization and Unscented Transformation respectively, and one 'exact' solution based on Markov Chain Monte Carlo (MCMC) method. Simulations show that, with the amount of data collected in practice, linear methods perform almost the same as MCMC methods. It is only when we artificially reduce the amount of collected data and increase the level of noise that nonlinear methods show significantly better accuracy than that achieved by linear methods, at the expense of more computation.

  7. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera.

    PubMed

    Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo

    2016-03-25

    In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots.

  8. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera

    PubMed Central

    Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo

    2016-01-01

    In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots. PMID:27023556

  9. Position estimation for fiducial marks based on high intensity retroreflective tape

    NASA Astrophysics Data System (ADS)

    Trushkina, Anna; Serikova, Mariya; Pantyushin, Anton

    2016-04-01

    3D position estimation of an object usually involve computer vision techniques, which require fiducial markers attached to the objects surface. Modern technology provides a high intensity retroreflective material in the form of a tape which is easy to mount to the object and can be used as a base for fiducial marks. But inevitable drawback of the tapes with the highest retroreflective intensity is the presence of technological pattern which affects spatial distribution of retroreflected light and deforms border of any print on tape's surface. In this work we compare various shapes of metrological pattern and examine Fourier descriptors based image processing to obtain estimation of accuracy of mark image position. To verify results we developed a setup consisting of a camera based on Sony ICX274 CCD, 25 mm lens, 800 nm LED lightning and high intensity microprismatic tape. The experiment showed that there is no significant difference between proposed mark shapes as well as between direct and indirect contrast when proposed image processing is used. The experiments confirmed that the image processing implemented without elimination of non-reflective netting pattern can only provide an accuracy of coordinates extraction close to 1 pix.

  10. Nitrogen isotopic baselines and implications for estimating foraging habitat and trophic position of yellowfin tuna in the Indian and Pacific Oceans

    NASA Astrophysics Data System (ADS)

    Lorrain, Anne; Graham, Brittany S.; Popp, Brian N.; Allain, Valérie; Olson, Robert J.; Hunt, Brian P. V.; Potier, Michel; Fry, Brian; Galván-Magaña, Felipe; Menkes, Christophe E. R.; Kaehler, Sven; Ménard, Frédéric

    2015-03-01

    Assessment of isotopic compositions at the base of food webs is a prerequisite for using stable isotope analysis to assess foraging locations and trophic positions of marine organisms. Our study represents a unique application of stable-isotope analyses across multiple trophic levels (primary producer, primary consumer and tertiary consumer) and over a large spatial scale in two pelagic marine ecosystems. We found that δ15N values of particulate organic matter (POM), barnacles and phenylalanine from the muscle tissue of yellowfin tuna all showed similar spatial patterns. This consistency suggests that isotopic analysis of any of these can provide a reasonable proxy for isotopic variability at the base of the food web. Secondly, variations in the δ15N values of yellowfin tuna bulk-muscle tissues paralleled the spatial trends observed in all of these isotopic baseline proxies. Variation in isotopic composition at the base of the food web, rather than differences in tuna diet, explained the 11‰ variability observed in the bulk-tissue δ15N values of yellowfin tuna. Evaluating the trophic position of yellowfin tuna using amino-acid isotopic compositions across the western Indian and equatorial Pacific Oceans strongly suggests these tuna occupy similar trophic positions, albeit absolute trophic positions estimated by this method were lower than expected. This study reinforces the importance of considering isotopic baseline variability for diet studies, and provides new insights into methods that can be applied to generate nitrogen isoscapes for worldwide comparisons of top predators in marine ecosystems.

  11. Needle position estimation from sub-sampled k-space data for MRI-guided interventions

    NASA Astrophysics Data System (ADS)

    Schmitt, Sebastian; Choli, Morwan; Overhoff, Heinrich M.

    2015-03-01

    MRI-guided interventions have gained much interest. They profit from intervention synchronous data acquisition and image visualization. Due to long data acquisition durations, ergonomic limitations may occur. For a trueFISP MRI-data acquisition sequence, a time sparing sub-sampling strategy has been developed that is adapted to amagnetic needle detection. A symmetrical and contrast rich susceptibility needle artifact, i.e. an approximately rectangular gray scale profile is assumed. The 1-D-Fourier transformed of a rectangular function is a sinc-function. Its periodicity is exploited by sampling only along a few orthogonal trajectories in k-space. Because a needle moves during intervention, its tip region resembles a rectangle in a time-difference image that is reconstructed from such sub-sampled k-spaces acquired at different time stamps. In different phantom experiments, a needle was pushed forward along a reference trajectory, which was determined from a needle holders geometric parameters. In addition, the trajectory of the needle tip was estimated by the method described above. Only ca. 4 to 5% of the entire k-space data was used for needle tip estimation. The misalignment of needle orientation and needle tip position, i.e. the differences between reference and estimated values, is small and even in its worst case less than 2 mm. The results show that the method is applicable under nearly real conditions. Next steps are addressed to the validation of the method for clinical data.

  12. Plate Motion and Crustal Deformation Estimated with Geodetic Data from the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.; Heflin, Michael B.

    1995-01-01

    We use geodetic data taken over four years with the Global Positioning System (GPS) to estimate: (1) motion between six major plates and (2) motion relative to these plates of ten sites in plate boundary zones. The degree of consistency between geodetic velocities and rigid plates requires the (one-dimensional) standard errors in horizontal velocities to be approx. 2 mm/yr. Each of the 15 angular velocities describing motion between plate pairs that we estimate with GPS differs insignificantly from the corresponding angular velocity in global plate motion model NUVEL-1A, which averages motion over the past 3 m.y. The motion of the Pacific plate relative to both the Eurasian and North American plates is observed to be faster than predicted by NUVEL-1A, supporting the inference from Very Long B ase- line Interferometry (VLBI) that motion of the Pacific plate has speed up over the past few m.y. The Eurasia-North America pole of rotation is estimated to be north of NUVEL-1A, consistent with the independent hypothesis that the pole has recently migrated northward across northeast Asia to near the Lena River delta. Victoria, which lies above the main thrust at the Cascadia subduction zone, moves relative to the interior of the overriding plate at 30% of the velocity of the subducting plate, reinforcing the conclusion that the thrust there is locked beneath the continental shelf and slope.

  13. Airdata sensor based position estimation and fault diagnosis in aerial refueling

    NASA Astrophysics Data System (ADS)

    Sevil, Hakki Erhan

    Aerial refueling is the process of transferring fuel from one aircraft (the tanker) to another (the receiver) during flight. In aerial refueling operations, the receiver aircraft is exposed to nonuniform wind field induced by tanker aircraft, and this nonuniform wind field leads to differences in readings of airdata sensors placed at different locations on the receiver aircraft. There are advantages and disadvantages of this phenomenon. As an advantage, it is used as a mechanism to estimate relative position of the receiver aircraft inside the nonuniform wind field behind the tanker. Using the difference in the measurements from multiple identical sensors, a model of the nonuniform wind field that is organized as maps of the airspeed, side slip angle and angle of attack as functions of the relative position is prepared. Then, using the developed algorithms, preformed maps and instant sensor readings, the relative position receiver aircraft is determined. The disadvantage of the phenomenon is that the differences in readings of airdata sensors cause false fault detections in a redundant-sensor-based Fault Detection and Isolation (FDI) system developed based on the assumption of identical sensor readings from three airdata sensors. Such FDI algorithm successfully performs detection and isolation of sensor faults when the receiver aircraft flies solo or outside the wake of the tanker aircraft. However, the FDI algorithm yields false fault detection when the receiver aircraft enters the tanker's wake. This problem can be eliminated by modifying the FDI algorithm. For the robustness, the expected values of the sensor measurements are incorporated in the FDI algorithm, instead of the assumption of identical measurements from the sensors. The expected values, which depend on the position of the receiver relative to the tanker, are obtained from the maps of the nonuniform wind field as functions of the relative position. The new robust FDI detects and isolates sensor

  14. Locating the position of objects in non-line-of-sight based on time delay estimation

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Feng; Wang, Yuan-Qing; Su, Jin-Shan; Yang, Xing-Yu

    2016-08-01

    Non-line-of-sight imaging detection is to detect hidden objects by indirect light and intermediary surface (diffuser). It has very important significance in indirect access to an object or dangerous object detection, such as medical treatment and rescue. An approach to locating the positions of hidden objects is proposed based on time delay estimation. The time delays between the received signals and the source signal can be obtained by correlation analysis, and then the positions of hidden objects will be located. Compared with earlier systems and methods, the proposed approach has some modifications and provides significant improvements, such as quick data acquisition, simple system structure and low cost, and can locate the positions of hidden objects as well: this technology lays a good foundation for developing a practical system that can be used in real applications. Project supported by the National Science and Technology Major Project of China (Grant No. AHJ2011Z001) and the Major Research Project of Yili Normal University (Grant No. 2016YSZD05).

  15. Locating the position of objects in non-line-of-sight based on time delay estimation

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Feng; Wang, Yuan-Qing; Su, Jin-Shan; Yang, Xing-Yu

    2016-08-01

    Non-line-of-sight imaging detection is to detect hidden objects by indirect light and intermediary surface (diffuser). It has very important significance in indirect access to an object or dangerous object detection, such as medical treatment and rescue. An approach to locating the positions of hidden objects is proposed based on time delay estimation. The time delays between the received signals and the source signal can be obtained by correlation analysis, and then the positions of hidden objects will be located. Compared with earlier systems and methods, the proposed approach has some modifications and provides significant improvements, such as quick data acquisition, simple system structure and low cost, and can locate the positions of hidden objects as well: this technology lays a good foundation for developing a practical system that can be used in real applications. Project supported by the National Science and Technology Major Project of China (Grant No. AHJ2011Z001) and the Major Research Project of Yili Normal University (Grant No. 2016YSZD05).

  16. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  17. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses.

  18. Multispectral imaging with optical bandpass filters: tilt angle and position estimation

    NASA Astrophysics Data System (ADS)

    Brauers, Johannes; Aach, Til

    2009-01-01

    Optical bandpass filters play a decisive role in multispectral imaging. Various multispectral cameras use this type of color filter for the sequential acquisition of different spectral bands. Practically unavoidable, small tilt angles of the filters with respect to the optical axis influence the imaging process: First, by tilting the filter, the center wavelength of the filter is shifted, causing color variations. Second, due to refractions of the filter, the image is distorted geometrically depending on the tilt angle. Third, reflections between sensor and filter glass may cause ghosting, i.e., a weak and shifted copy of the image, which also depends on the filter angle. A method to measure the filter position parameters from multispectral color components is thus highly desirable. We propose a method to determine the angle and position of an optical filter brought into the optical path in, e.g., filter-wheel multispectral cameras, with respect to the camera coordinate system. We determine the position and angle of the filter by presenting a calibration chart to the camera, which is always partly reflected by the highly reflective optical bandpass filter. The extrinsic parameters of the original and mirrored chart can then be estimated. We derive the angle and position of the filter from the coordinates of the charts. We compare the results of the angle measurements to a ground truth obtained from the settings of a high-precision rotation table and thus validate our measurement method. Furthermore, we simulate the refraction effect of the optical filter and show that the results match quite well with the reality, thus also confirming our method.

  19. Estimation of trapping position in three-dimensional off-axis trapping with optical vortices

    NASA Astrophysics Data System (ADS)

    Ando, Taro; Otsu, Tomoko; Takiguchi, Yu; Ohtake, Yoshiyuki; Toyoda, Haruyoshi; Itoh, Hiroyasu

    2014-08-01

    Dynamics of micrometer-sized dielectric objects can be controlled by optical tweezers with scanning light, however, the trapped objects fail to track the scan when drag exceeds the trapping by too quick movement. On the other hand, optical vortices (OVs), which have a property of carrying angular momenta, can directly control torque on objects rather than their position. Laguerre-Gaussian (LG) beams are the most familiar examples of OV and have been studied extensively so far. Revolution of the objects trapped by the LG beams provides typical models of nonequilibrium statistical system, but stable mid-water trapping by the LG beams becomes essential to evaluate physical properties of the system without extrinsic hydrodynamic effects,. Nevertheless, off-axis revolutions of small objects trapped in mid-water by the LG beams have not yet been established with secure evidences. Here we report stable off-axis trapping of dielectric spheres in mid-water using high-quality LG beams generated by a holographic complex-amplitude modulation method. Direct evidence of the three-dimensional off-axis LG trapping was established via estimating the trapping position by measuring the change of revolution radii upon pressing the spheres onto glass walls. Resultantly, the axial trapping position was determined as about half the wavelength behind the beam waist position. This result provides a direct scientific evidence for possibility of off-axis three-dimensional trapping with a single LG beam, moreover, suggests applications as powerful tools for studying energy-conversion mechanisms and nonequilibrium nature in biological molecules under torque.

  20. Motion estimation by integrated low cost system (vision and MEMS) for positioning of a scooter "Vespa"

    NASA Astrophysics Data System (ADS)

    Guarnieri, A.; Milan, N.; Pirotti, F.; Vettore, A.

    2011-12-01

    In the automotive sector, especially in these last decade, a growing number of investigations have taken into account electronic systems to check and correct the behavior of drivers, increasing road safety. The possibility to identify with high accuracy the vehicle position in a mapping reference frame for driving directions and best-route analysis is also another topic which attracts lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate time by time the position, orientation and velocity of the system. To this aim low cost GPS and MEMS (sensors can be used. In comparison to a four wheel vehicle, the dynamics of a two wheel vehicle (e.g. a scooter) feature a higher level of complexity. Indeed more degrees of freedom must be taken into account to describe the motion of the latter. For example a scooter can twist sideways, thus generating a roll angle. A slight pitch angle has to be considered as well, since wheel suspensions have a higher degree of motion with respect to four wheel vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a motorcycle ("Vespa" scooter), which can be used as alternative to the "classical" approach based on the integration of GPS and INS sensors. Position and orientation of the scooter are derived from MEMS data and images acquired by on-board digital camera. A Bayesian filter provides the means for integrating the data from MEMS-based orientation sensor and the GPS receiver.

  1. Sensor positioning and experimental constraints influence estimates of local dynamic stability during repetitive spine movements.

    PubMed

    Howarth, Samuel J; Graham, Ryan B

    2015-04-13

    Application of non-linear dynamics analyses to study human movement has increased recently, which necessitates an understanding of how dependent measures may be influenced by experimental design and setup. Quantifying local dynamic stability for a multi-articulated structure such as the spine presents the possibility for estimates to be influenced by positioning of kinematic sensors used to measure spine angular kinematics. Oftentimes researchers will also choose to constrain the spine's movement by physically restraining the pelvis and/or using targets to control movement endpoints. Ten healthy participants were recruited, and asked to perform separate trials of 35 consecutive cycles of spine flexion under both constrained and unconstrained conditions. Electromagnetic sensors that measure three-dimensional angular orientations were positioned over the pelvis and the spinous processes of L3, L1, and T11. Using the pelvic sensor as a reference, each sensor location on the spine was used to obtain a different representation of the three-dimensional spine angular kinematics. Local dynamic stability of each kinematic time-series was determined by calculating the maximum finite-time Lyapunov exponent (λmax). Estimates for λmax were significantly lower (i.e. dynamically more stable) for spine kinematic data obtained from the L3 sensor than those obtained from kinematic data using either the L1 or T11 sensors. Likewise, λmax was lower when the movement was constrained. These results emphasize the importance of proper placement of instrumentation for quantifying local dynamic stability of spine kinematics and are especially relevant for repeated measures designs where data are obtained from the same individual on multiple days.

  2. The power of being positive: Robust state estimation made possible by quantum mechanics

    NASA Astrophysics Data System (ADS)

    Kalev, Amir; Baldwin, Charles

    Quantum-state tomography (QST) is generally expensive to implement experimentally. Nevertheless, in state-of-the-art experiments in quantum information science the goal is not to produce arbitrary states but states that have very high purity. Including this prior information in QST results in more manageable tomography protocols. In the context of pure-state tomography, and more generally, of bounded-rank states (states with rank <= r) tomography, a natural notion of informational completeness emerges, rank- r completeness. The purpose of this contribution is two fold. First, to prove and emphasize the significance of a less intuitive, yet more powerful, notion of completeness for practical QST, rank- r strict-completeness. This notion is made possible due to the positive semidefinite property of density matrices. Strictly-complete quantum measurements ensure a robust estimation of the state of the system, regardless of the convex estimator we use. Thus, pragmatically, quantum state tomography should be done using these kind of measurements. Second, to argue, based on strong numerical indication, that it is fairly straightforward to experimentally implement such measurements by measuring only few random orthonormal bases. For example, in our numerical experi This work was supported by NSF Grants PHY-1212445, PHY-1521016, and PHY-1521431.

  3. Position estimation and driving of an autonomous vehicle by monocular vision

    NASA Astrophysics Data System (ADS)

    Hanan, Jay C.; Kayathi, Pavan; Hughlett, Casey L.

    2007-04-01

    Automatic adaptive tracking in real-time for target recognition provided autonomous control of a scale model electric truck. The two-wheel drive truck was modified as an autonomous rover test-bed for vision based guidance and navigation. Methods were implemented to monitor tracking error and ensure a safe, accurate arrival at the intended science target. Some methods are situation independent relying only on the confidence error of the target recognition algorithm. Other methods take advantage of the scenario of combined motion and tracking to filter out anomalies. In either case, only a single calibrated camera was needed for position estimation. Results from real-time autonomous driving tests on the JPL simulated Mars yard are presented. Recognition error was often situation dependent. For the rover case, the background was in motion and may be characterized to provide visual cues on rover travel such as rate, pitch, roll, and distance to objects of interest or hazards. Objects in the scene may be used as landmarks, or waypoints, for such estimations. As objects are approached, their scale increases and their orientation may change. In addition, particularly on rough terrain, these orientation and scale changes may be unpredictable. Feature extraction combined with the neural network algorithm was successful in providing visual odometry in the simulated Mars environment.

  4. A positional estimation technique for an autonomous land vehicle in an unstructured environment

    NASA Technical Reports Server (NTRS)

    Talluri, Raj; Aggarwal, J. K.

    1990-01-01

    This paper presents a solution to the positional estimation problem of an autonomous land vehicle navigating in an unstructured mountainous terrain. A Digital Elevation Map (DEM) of the area in which the robot is to navigate is assumed to be given. It is also assumed that the robot is equipped with a camera that can be panned and tilted, and a device to measure the elevation of the robot above the ground surface. No recognizable landmarks are assumed to be present in the environment in which the robot is to navigate. The solution presented makes use of the DEM information, and structures the problem as a heuristic search in the DEM for the possible robot location. The shape and position of the horizon line in the image plane and the known camera geometry of the perspective projection are used as parameters to search the DEM. Various heuristics drawn from the geometric constraints are used to prune the search space significantly. The algorithm is made robust to errors in the imaging process by accounting for the worst care errors. The approach is tested using DEM data of areas in Colorado and Texas. The method is suitable for use in outdoor mobile robots and planetary rovers.

  5. On the Choice of Access Point Selection Criterion and Other Position Estimation Characteristics for WLAN-Based Indoor Positioning.

    PubMed

    Laitinen, Elina; Lohan, Elena Simona

    2016-01-01

    The positioning based on Wireless Local Area Networks (WLAN) is one of the most promising technologies for indoor location-based services, generally using the information carried by Received Signal Strengths (RSS). One challenge, however, is the huge amount of data in the radiomap database due to the enormous number of hearable Access Points (AP) that could make the positioning system very complex. This paper concentrates on WLAN-based indoor location by comparing fingerprinting, path loss and weighted centroid based positioning approaches in terms of complexity and performance and studying the effects of grid size and AP reduction with several choices for appropriate selection criterion. All results are based on real field measurements in three multi-floor buildings. We validate our earlier findings concerning several different AP selection criteria and conclude that the best results are obtained with a maximum RSS-based criterion, which also proved to be the most consistent among the different investigated approaches. We show that the weighted centroid based low-complexity method is very sensitive to AP reduction, while the path loss-based method is also very robust to high percentage removals. Indeed, for fingerprinting, 50% of the APs can be removed safely with a properly chosen removal criterion without increasing the positioning error much. PMID:27213395

  6. On the Choice of Access Point Selection Criterion and Other Position Estimation Characteristics for WLAN-Based Indoor Positioning

    PubMed Central

    Laitinen, Elina; Lohan, Elena Simona

    2016-01-01

    The positioning based on Wireless Local Area Networks (WLAN) is one of the most promising technologies for indoor location-based services, generally using the information carried by Received Signal Strengths (RSS). One challenge, however, is the huge amount of data in the radiomap database due to the enormous number of hearable Access Points (AP) that could make the positioning system very complex. This paper concentrates on WLAN-based indoor location by comparing fingerprinting, path loss and weighted centroid based positioning approaches in terms of complexity and performance and studying the effects of grid size and AP reduction with several choices for appropriate selection criterion. All results are based on real field measurements in three multi-floor buildings. We validate our earlier findings concerning several different AP selection criteria and conclude that the best results are obtained with a maximum RSS-based criterion, which also proved to be the most consistent among the different investigated approaches. We show that the weighted centroid based low-complexity method is very sensitive to AP reduction, while the path loss-based method is also very robust to high percentage removals. Indeed, for fingerprinting, 50% of the APs can be removed safely with a properly chosen removal criterion without increasing the positioning error much. PMID:27213395

  7. On the Choice of Access Point Selection Criterion and Other Position Estimation Characteristics for WLAN-Based Indoor Positioning.

    PubMed

    Laitinen, Elina; Lohan, Elena Simona

    2016-05-20

    The positioning based on Wireless Local Area Networks (WLAN) is one of the most promising technologies for indoor location-based services, generally using the information carried by Received Signal Strengths (RSS). One challenge, however, is the huge amount of data in the radiomap database due to the enormous number of hearable Access Points (AP) that could make the positioning system very complex. This paper concentrates on WLAN-based indoor location by comparing fingerprinting, path loss and weighted centroid based positioning approaches in terms of complexity and performance and studying the effects of grid size and AP reduction with several choices for appropriate selection criterion. All results are based on real field measurements in three multi-floor buildings. We validate our earlier findings concerning several different AP selection criteria and conclude that the best results are obtained with a maximum RSS-based criterion, which also proved to be the most consistent among the different investigated approaches. We show that the weighted centroid based low-complexity method is very sensitive to AP reduction, while the path loss-based method is also very robust to high percentage removals. Indeed, for fingerprinting, 50% of the APs can be removed safely with a properly chosen removal criterion without increasing the positioning error much.

  8. Estimation of the reaction times in tasks of varying difficulty from the phase coherence of the auditory steady-state response using the least absolute shrinkage and selection operator analysis.

    PubMed

    Yokota, Yusuke; Igarashi, Yasuhiko; Okada, Masato; Naruse, Yasushi

    2015-01-01

    Quantitative estimation of the workload in the brain is an important factor for helping to predict the behavior of humans. The reaction time when performing a difficult task is longer than that when performing an easy task. Thus, the reaction time reflects the workload in the brain. In this study, we employed an N-back task in order to regulate the degree of difficulty of the tasks, and then estimated the reaction times from the brain activity. The brain activity that we used to estimate the reaction time was the auditory steady-state response (ASSR) evoked by a 40-Hz click sound. Fifteen healthy participants participated in the present study and magnetoencephalogram (MEG) responses were recorded using a 148-channel magnetometer system. The least absolute shrinkage and selection operator (LASSO), which is a type of sparse modeling, was employed to estimate the reaction times from the ASSR recorded by MEG. The LASSO showed higher estimation accuracy than the least squares method. This result indicates that LASSO overcame the over-fitting to the learning data. Furthermore, the LASSO selected channels in not only the parietal region, but also in the frontal and occipital regions. Since the ASSR is evoked by auditory stimuli, it is usually large in the parietal region. However, since LASSO also selected channels in regions outside the parietal region, this suggests that workload-related neural activity occurs in many brain regions. In the real world, it is more practical to use a wearable electroencephalography device with a limited number of channels than to use MEG. Therefore, determining which brain areas should be measured is essential. The channels selected by the sparse modeling method are informative for determining which brain areas to measure. PMID:26737821

  9. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  10. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  11. Precise determination of the absolute isotopic abundance ratio and the atomic weight of chlorine in three international reference materials by the positive thermal ionization mass spectrometer-Cs2Cl+-graphite method.

    PubMed

    Wei, Hai-Zhen; Jiang, Shao-Yong; Xiao, Ying-Kai; Wang, Jun; Lu, Hai; Wu, Bin; Wu, He-Pin; Li, Qing; Luo, Chong-Guang

    2012-12-01

    Because the variation in chlorine isotopic abundances of naturally occurring chlorine bearing substances is significant, the IUPAC Inorganic Chemistry Division, Commission on Isotopic Abundances and Atomic Weights (CIAAW-IUPAC) decided that the uncertainty of atomic weight of chlorine (A(r)(Cl)) should be increased so that the implied range was related to terrestrial variability in 1999 (Coplen, T. B. Atomic weights of the elements 1999 (IUPAC Technical Report), Pure Appl. Chem.2001, 73(4), 667-683; and then, it emphasized that the standard atomic weights of ten elements including chlorine were not constants of nature but depend upon the physical, chemical, and nuclear history of the materials in 2009 (Wieser, M. E.; Coplen, T. B. Pure Appl. Chem.2011, 83(2), 359-396). According to the agreement by CIAAW that an atomic weight could be defined for one specified sample of terrestrial origin (Wieser, M. E.; Coplen, T. B. Pure Appl. Chem.2011, 83(2), 359-396), the absolute isotope ratios and atomic weight of chlorine in standard reference materials (NIST 975, NIST 975a, ISL 354) were accurately determined using the high-precision positive thermal ionization mass spectrometer (PTIMS)-Cs(2)Cl(+)-graphite method. After eliminating the weighing error caused from evaporation by designing a special weighing container and accurately determining the chlorine contents in two highly enriched Na(37)Cl and Na(35)Cl salts by the current constant coulometric titration, one series of gravimetric synthetic mixtures prepared from two highly enriched Na(37)Cl and Na(35)Cl salts was used to calibrate two thermal ionization mass spectrometers in two individual laboratories. The correction factors (i.e., K(37/35) = R(37/35meas)/R(37/35calc)) were obtained from five cycles of iterative calculations on the basis of calculated and determined R((37)Cl/(35)Cl) values in gravimetric synthetic mixtures. The absolute R((37)Cl/(35)Cl) ratios for NIST SRM 975, NIST 975a, and ISL 354 by the precise

  12. Estimating fresh grass/herb biomass from HYMAP data using the red edge position

    NASA Astrophysics Data System (ADS)

    Cho, Moses A.; Sobhan, Istiak M.; Skidmore, Andrew K.

    2006-08-01

    Remote sensing of grass/herb quantity is essential for rangeland management of livestock and wildlife. Spectral indices such as NDVI, determined from red and near infrared bands are affected by variable soil and atmospheric conditions and saturate in dense vegetation. Alternatively, the wavelength of maximum slope in the red-NIR transition, termed the red edge position (REP) has potential to mitigate these effects. But the utility of the REP using air- and space-borne imagery is determined by the availability of narrow bands in the region of the red edge and the simplicity of the extraction method. Very recently, we proposed a simple technique for extracting the REP called the linear extrapolation method [Cho and Skidmore, Remote Sens. Environ., 101(2006)118.]. The purpose of this study was to evaluate the potential of the linear extrapolation method for estimating fresh grass/herb biomass and compare its performance with the four-point linear interpolation and three-point Lagrangian interpolation methods. The REPs were derived from atmospherically corrected HYMAP images collected over Majella National Park, Italy in July 2004. The predictive capabilities of various REP linear regression models were evaluated using leave-one-out cross validation and test set validation methods. For both validation methods, the linear extrapolation REP models produced higher correlations with grass/herb biomass and lower prediction errors compared with the linear interpolation and Lagrangian REP models. This study demonstrates the potential of REPs extracted by the linear extrapolation method using HYMAP data for estimating fresh grass/herb biomass.

  13. Robust 3D Position Estimation in Wide and Unconstrained Indoor Environments.

    PubMed

    Mossel, Annette

    2015-01-01

    In this paper, a system for 3D position estimation in wide, unconstrained indoor environments is presented that employs infrared optical outside-in tracking of rigid-body targets with a stereo camera rig. To overcome limitations of state-of-the-art optical tracking systems, a pipeline for robust target identification and 3D point reconstruction has been investigated that enables camera calibration and tracking in environments with poor illumination, static and moving ambient light sources, occlusions and harsh conditions, such as fog. For evaluation, the system has been successfully applied in three different wide and unconstrained indoor environments, (1) user tracking for virtual and augmented reality applications, (2) handheld target tracking for tunneling and (3) machine guidance for mining. The results of each use case are discussed to embed the presented approach into a larger technological and application context. The experimental results demonstrate the system's capabilities to track targets up to 100 m. Comparing the proposed approach to prior art in optical tracking in terms of range coverage and accuracy, it significantly extends the available tracking range, while only requiring two cameras and providing a relative 3D point accuracy with sub-centimeter deviation up to 30 m and low-centimeter deviation up to 100 m. PMID:26694388

  14. Robust 3D Position Estimation in Wide and Unconstrained Indoor Environments

    PubMed Central

    Mossel, Annette

    2015-01-01

    In this paper, a system for 3D position estimation in wide, unconstrained indoor environments is presented that employs infrared optical outside-in tracking of rigid-body targets with a stereo camera rig. To overcome limitations of state-of-the-art optical tracking systems, a pipeline for robust target identification and 3D point reconstruction has been investigated that enables camera calibration and tracking in environments with poor illumination, static and moving ambient light sources, occlusions and harsh conditions, such as fog. For evaluation, the system has been successfully applied in three different wide and unconstrained indoor environments, (1) user tracking for virtual and augmented reality applications, (2) handheld target tracking for tunneling and (3) machine guidance for mining. The results of each use case are discussed to embed the presented approach into a larger technological and application context. The experimental results demonstrate the system’s capabilities to track targets up to 100 m. Comparing the proposed approach to prior art in optical tracking in terms of range coverage and accuracy, it significantly extends the available tracking range, while only requiring two cameras and providing a relative 3D point accuracy with sub-centimeter deviation up to 30 m and low-centimeter deviation up to 100 m. PMID:26694388

  15. A General Simulator Using State Estimation for a Space Tug Navigation System. [computerized simulation, orbital position estimation and flight mechanics

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III

    1975-01-01

    A general simulation program is presented (GSP) involving nonlinear state estimation for space vehicle flight navigation systems. A complete explanation of the iterative guidance mode guidance law, derivation of the dynamics, coordinate frames, and state estimation routines are given so as to fully clarify the assumptions and approximations involved so that simulation results can be placed in their proper perspective. A complete set of computer acronyms and their definitions as well as explanations of the subroutines used in the GSP simulator are included. To facilitate input/output, a complete set of compatable numbers, with units, are included to aid in data development. Format specifications, output data phrase meanings and purposes, and computer card data input are clearly spelled out. A large number of simulation and analytical studies were used to determine the validity of the simulator itself as well as various data runs.

  16. Son preference in Indian families: absolute versus relative wealth effects.

    PubMed

    Gaudin, Sylvestre

    2011-02-01

    The desire for male children is prevalent in India, where son preference has been shown to affect fertility behavior and intrahousehold allocation of resources. Economic theory predicts less gender discrimination in wealthier households, but demographers and sociologists have argued that wealth can exacerbate bias in the Indian context. I argue that these apparently conflicting theories can be reconciled and simultaneously tested if one considers that they are based on two different notions of wealth: one related to resource constraints (absolute wealth), and the other to notions of local status (relative wealth). Using cross-sectional data from the 1998-1999 and 2005-2006 National Family and Health Surveys, I construct measures of absolute and relative wealth by using principal components analysis. A series of statistical models of son preference is estimated by using multilevel methods. Results consistently show that higher absolute wealth is strongly associated with lower son preference, and the effect is 20%-40% stronger when the household's community-specific wealth score is included in the regression. Coefficients on relative wealth are positive and significant although lower in magnitude. Results are robust to using different samples, alternative groupings of households in local areas, different estimation methods, and alternative dependent variables.

  17. Measuring Postglacial Rebound with GPS and Absolute Gravity

    NASA Technical Reports Server (NTRS)

    Larson, Kristine M.; vanDam, Tonie

    2000-01-01

    We compare vertical rates of deformation derived from continuous Global Positioning System (GPS) observations and episodic measurements of absolute gravity. We concentrate on four sites in a region of North America experiencing postglacial rebound. The rates of uplift from gravity and GPS agree within one standard deviation for all sites. The GPS vertical deformation rates are significantly more precise than the gravity rates, primarily because of the denser temporal spacing provided by continuous GPS tracking. We conclude that continuous GPS observations are more cost efficient and provide more precise estimates of vertical deformation rates than campaign style gravity observations where systematic errors are difficult to quantify.

  18. Estimation of the diffusion constant from intermittent trajectories with variable position uncertainties

    NASA Astrophysics Data System (ADS)

    Relich, Peter K.; Olah, Mark J.; Cutler, Patrick J.; Lidke, Keith A.

    2016-04-01

    The movement of a particle described by Brownian motion is quantified by a single parameter, D , the diffusion constant. The estimation of D from a discrete sequence of noisy observations is a fundamental problem in biological single-particle tracking experiments since it can provide information on the environment and/or the state of the particle itself via the hydrodynamic radius. Here, we present a method to estimate D that takes into account several effects that occur in practice, important for the correct estimation of D , and that have hitherto not been combined together for an estimation of D . These effects are motion blur from the finite integration time of the camera, intermittent trajectories, and time-dependent localization uncertainty. Our estimation procedure, a maximum-likelihood estimation with an information-based confidence interval, follows directly from the likelihood expression for a discretely observed Brownian trajectory that explicitly includes these effects. We begin with the formulation of the likelihood expression and then present three methods to find the exact solution. Each method has its own advantages in either computational robustness, theoretical insight, or the estimation of hidden variables. The Fisher information for this likelihood distribution is calculated and analyzed to show that localization uncertainties impose a lower bound on the estimation of D . Confidence intervals are established and then used to evaluate our estimator on simulated data with experimentally relevant camera effects to demonstrate the benefit of incorporating variable localization errors.

  19. Nonparametric Bayesian Filtering for Location Estimation, Position Tracking, and Global Localization of Mobile Terminals in Outdoor Wireless Environments

    NASA Astrophysics Data System (ADS)

    Khalaf-Allah, Mohamed

    2007-12-01

    The mobile terminal positioning problem is categorized into three different types according to the availability of (1) initial accurate location information and (2) motion measurement data. Location estimation refers to the mobile positioning problem when both the initial location and motion measurement data are not available. If both are available, the positioning problem is referred to as position tracking. When only motion measurements are available, the problem is known as global localization. These positioning problems were solved within the Bayesian filtering framework. Filter derivation and implementation algorithms are provided with emphasis on the mapping approach. The radio maps of the experimental area have been created by a 3D deterministic radio propagation tool with a grid resolution of 5 m. Real-world experimentation was conducted in a GSM network deployed in a semiurban environment in order to investigate the performance of the different positioning algorithms.

  20. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record

  1. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  2. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  3. Position and Velocity Estimation for Two-Inertia System with Nonlinear Stiffness Based on Acceleration Sensor

    PubMed Central

    Nam, Kyung-Tae; Lee, Seung-Joon; Kuc, Tae-Yong; Kim, Hyungjong

    2015-01-01

    In this paper, we consider the state estimation problem for flexible joint manipulators that involve nonlinear characteristics in their stiffness. The two key ideas of our design are that (a) an accelerometer is used in order that the estimation error dynamics do not depend on nonlinearities at the link part of the manipulators and (b) the model of the nonlinear stiffness is indeed a Lipschitz function. Based on the measured acceleration, we propose a nonlinear observer under the Lipschitz condition of the nonlinear stiffness. In addition, in order to effectively compensate for the estimation error, the gain of the proposed observer is chosen from the ARE (algebraic Riccati equations) which depend on the Lipschitz constant. Comparative experimental results verify the effectiveness of the proposed method. PMID:26729125

  4. Position and Velocity Estimation for Two-Inertia System with Nonlinear Stiffness Based on Acceleration Sensor.

    PubMed

    Nam, Kyung-Tae; Lee, Seung-Joon; Kuc, Tae-Yong; Kim, Hyungjong

    2015-01-01

    In this paper, we consider the state estimation problem for flexible joint manipulators that involve nonlinear characteristics in their stiffness. The two key ideas of our design are that (a) an accelerometer is used in order that the estimation error dynamics do not depend on nonlinearities at the link part of the manipulators and (b) the model of the nonlinear stiffness is indeed a Lipschitz function. Based on the measured acceleration, we propose a nonlinear observer under the Lipschitz condition of the nonlinear stiffness. In addition, in order to effectively compensate for the estimation error, the gain of the proposed observer is chosen from the ARE (algebraic Riccati equations) which depend on the Lipschitz constant. Comparative experimental results verify the effectiveness of the proposed method.

  5. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  6. Molecular iodine absolute frequencies. Final report

    SciTech Connect

    Sansonetti, C.J.

    1990-06-25

    Fifty specified lines of {sup 127}I{sub 2} were studied by Doppler-free frequency modulation spectroscopy. For each line the classification of the molecular transition was determined, hyperfine components were identified, and one well-resolved component was selected for precise determination of its absolute frequency. In 3 cases, a nearby alternate line was selected for measurement because no well-resolved component was found for the specified line. Absolute frequency determinations were made with an estimated uncertainty of 1.1 MHz by locking a dye laser to the selected hyperfine component and measuring its wave number with a high-precision Fabry-Perot wavemeter. For each line results of the absolute measurement, the line classification, and a Doppler-free spectrum are given.

  7. Two-dimensional velocity, optical risetime, and peak current estimates for natural positive lightning return strokes

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Rust, W. D.

    1993-01-01

    Velocities, optical risetimes, and transmission line model peak currents for seven natural positive return strokes are reported. The average 2D positive return stroke velocity for channel segments of less than 500 m in length starting near the base of the channel is 0.8 +/- 0.3 x 10 exp 8 m/s, which is slower than the present corresponding average velocity for natural negative first return strokes of 1.7 +/- 0.7 x 10 exp 8/s. It is inferred that positive stroke peak currents in the literature, which assume the same velocity as negative strokes, are low by a factor of 2. The average 2D positive return stroke velocity for channel segments of greater than 500 m starting near the base of the channel is 0.9 +/- 0.4 x 10 exp 8 m/s. The corresponding average velocity for the present natural negative first strokes is 1.2 +/- 0.6 x 10 exp 8 m/s. No significant velocity change with height is found for positive return strokes.

  8. Impact of orbit modeling on DORIS station position and Earth rotation estimates

    NASA Astrophysics Data System (ADS)

    Štěpánek, Petr; Rodriguez-Solano, Carlos Javier; Hugentobler, Urs; Filler, Vratislav

    2014-04-01

    The high precision of estimated station coordinates and Earth rotation parameters (ERP) obtained from satellite geodetic techniques is based on the precise determination of the satellite orbit. This paper focuses on the analysis of the impact of different orbit parameterizations on the accuracy of station coordinates and the ERPs derived from DORIS observations. In a series of experiments the DORIS data from the complete year 2011 were processed with different orbit model settings. First, the impact of precise modeling of the non-conservative forces on geodetic parameters was compared with results obtained with an empirical-stochastic modeling approach. Second, the temporal spacing of drag scaling parameters was tested. Third, the impact of estimating once-per-revolution harmonic accelerations in cross-track direction was analyzed. And fourth, two different approaches for solar radiation pressure (SRP) handling were compared, namely adjusting SRP scaling parameter or fixing it on pre-defined values. Our analyses confirm that the empirical-stochastic orbit modeling approach, which does not require satellite attitude information and macro models, results for most of the monitored station parameters in comparable accuracy as the dynamical model that employs precise non-conservative force modeling. However, the dynamical orbit model leads to a reduction of the RMS values for the estimated rotation pole coordinates by 17% for x-pole and 12% for y-pole. The experiments show that adjusting atmospheric drag scaling parameters each 30 min is appropriate for DORIS solutions. Moreover, it was shown that the adjustment of cross-track once-per-revolution empirical parameter increases the RMS of the estimated Earth rotation pole coordinates. With recent data it was however not possible to confirm the previously known high annual variation in the estimated geocenter z-translation series as well as its mitigation by fixing the SRP parameters on pre-defined values.

  9. Head and trunk mass and center of mass position estimations in able-bodied and scoliotic girls.

    PubMed

    Damavandi, Mohsen; Dalleau, Georges; Stylianides, Georgios; Rivard, Charles-Hilaire; Allard, Paul

    2013-11-01

    Anthropometric tables are not applicable to calculate the scoliotic trunk mass and center of mass (COM). The purposes of this study were: (1) to estimate the head and trunk mass and COM in able-bodied and scoliotic girls using a force plate method, (2) to estimate head and trunk COM offset compared to those of the body, and (3) the use of mean ratios to estimate the head and trunk COM calculated in this study and that calculated according to a conventional three-dimensional (3D) method compared to the measured values. Twenty-one scoliotic and twenty able-bodied girls participated. The subjects stood upright with arms beside the trunk on a force plate that collected data at 60 Hz for a period of 5s. The anteroposterior and mediolateral positions of the body COM were obtained from the mean center of pressure values. The height of the body COM was estimated by the reaction board method. Afterwards a body segment was displaced and changes in force plate readings were recorded and applied to estimate the head and trunk mass and COM. Trunk offset was defined as the difference between the COM of the body and head and trunk. The measured head and trunk COM was compared to values obtained by the mean ratios calculated from this study and given by the conventional 3D method. The relative head and trunk mass and the anteroposterior trunk offset were larger in scoliotic girls. The force plate method gave similar results to measured COM values for both groups underlying its capability to provide a more accurate estimation of COM related values. Thus, the use of mean ratios of 0.5538 and 0.6438 obtained in this study to estimate the head and trunk mass and COM position in scoliotic girls can overcome the main drawbacks of current anthropometric methods, if direct measurements cannot be taken. PMID:23777637

  10. Position Estimation Verification Testing for the Video Guidance Sensor and Dynamic Overhead Target Simulator

    NASA Technical Reports Server (NTRS)

    Gaines, Joseph; Johnston, Nick

    1999-01-01

    The Video Guidance Sensor, part of the Automated Rendezvous and Capture mechanism, is due to undergo formal qualification testing at Marshall Space Flight Center. Before it undergoes this qualification, a test was needed to verify repeatability of the sensor, and to allow different sensor configurations to be compared. This test was developed at the Flight Robotics Laboratory. The test uses a software script to drive the sensor target to the same position and thus allows sensor runs to be compared. The sensor target is the Dynamic Overhead Target Simulator. The simulator uses encoders as its position indicator. Distance Measuring Device's were used to independently verify the software script, the sensor reading, and the target position. The test area, sensor, and other test equipment are briefly described. The actual data is tabulated and will serve as a baseline for future tests. The software script was found to be adequate for the test. Position repeatability was acceptable for all the equipment. The system test is now ready to be used in formal qualification testing.

  11. Simultaneous estimation of strength and position of a heat source in a participating medium using DE algorithm

    NASA Astrophysics Data System (ADS)

    Parwani, Ajit K.; Talukdar, Prabal; Subbarao, P. M. V.

    2013-09-01

    An inverse heat transfer problem is discussed to estimate simultaneously the unknown position and timewise varying strength of a heat source by utilizing differential evolution approach. A two dimensional enclosure with isothermal and black boundaries containing non-scattering, absorbing and emitting gray medium is considered. Both radiation and conduction heat transfer are included. No prior information is used for the functional form of timewise varying strength of heat source. The finite volume method is used to solve the radiative transfer equation and the energy equation. In this work, instead of measured data, some temperature data required in the solution of the inverse problem are taken from the solution of the direct problem. The effect of measurement errors on the accuracy of estimation is examined by introducing errors in the temperature data of the direct problem. The prediction of source strength and its position by the differential evolution (DE) algorithm is found to be quite reasonable.

  12. Diffusion coefficients estimated from turbulence data measured by the Metrac positioning system in Minneapolis field test

    NASA Technical Reports Server (NTRS)

    Gage, K. S.; Jasperson, W. H.

    1977-01-01

    An analysis is presented of the tropospheric turbulence data obtained by the Metrac positioning system, a radio location system which employs the Doppler principle to track inexpensive expendable balloon-borne transmitters. A Minneapolis field test of the Metrac system provided one-second samples of transmitter frequency from balloons tracked by four ground stations for more than an hour. The derivation of diffusion coefficients from the turbulence data was conducted by two methods, yielding highly consistent results.

  13. High-precision positioning of radar scatterers

    NASA Astrophysics Data System (ADS)

    Dheenathayalan, Prabu; Small, David; Schubert, Adrian; Hanssen, Ramon F.

    2016-05-01

    Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy of synthetic aperture radar (SAR) scatterers in a 2D radar coordinate system, after compensating for atmosphere and tidal effects, is in the order of centimeters for TerraSAR-X (TSX) spotlight images. However, the absolute positioning in 3D and its quality description are not well known. Here, we exploit time-series interferometric SAR to enhance the positioning capability in three dimensions. The 3D positioning precision is parameterized by a variance-covariance matrix and visualized as an error ellipsoid centered at the estimated position. The intersection of the error ellipsoid with objects in the field is exploited to link radar scatterers to real-world objects. We demonstrate the estimation of scatterer position and its quality using 20 months of TSX stripmap acquisitions over Delft, the Netherlands. Using trihedral corner reflectors (CR) for validation, the accuracy of absolute positioning in 2D is about 7 cm. In 3D, an absolute accuracy of up to ˜ 66 cm is realized, with a cigar-shaped error ellipsoid having centimeter precision in azimuth and range dimensions, and elongated in cross-range dimension with a precision in the order of meters (the ratio of the ellipsoid axis lengths is 1/3/213, respectively). The CR absolute 3D position, along with the associated error ellipsoid, is found to be accurate and agree with the ground truth position at a 99 % confidence level. For other non-CR coherent scatterers, the error ellipsoid concept is validated using 3D building models. In both cases, the error ellipsoid not only serves as a quality descriptor, but can also help to associate radar scatterers to real-world objects.

  14. A Two-dimensional Position Estimate of Two Sound Sources Using Two Microphones with Reflectors

    NASA Astrophysics Data System (ADS)

    Nakashima, Hiromichi; Kawamoto, Mitsuru; Ito, Masanori; Mukai, Toshiharu

    Human beings and living things have the capability of identifying the directions of two or more sounds by a certain amount of correctness with only two ears. However it is difficult to give this capability to robots. Almost all the robots which have been proposed until now have three or more microphones in order to localize sound sources. In this paper, we propose a technique of estimating two kinds of directions, that is, vertical and horizontal directions, using a robot head consisted of two microphones, where the microphones of the robot head have reflectors working like the pinna.

  15. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  16. Updated Absolute Flux Calibration of the COS FUV Modes

    NASA Astrophysics Data System (ADS)

    Massa, D.; Ely, J.; Osten, R.; Penton, S.; Aloisi, A.; Bostroem, A.; Roman-Duval, J.; Proffitt, C.

    2014-03-01

    We present newly derived point source absolute flux calibrations for the COS FUV modes at both the original and second lifetime positions. The analysis includes observa- tions through the Primary Science Aperture (PSA) of the standard stars WD0308-565, GD71, WD1057+729 and WD0947+857 obtained as part of two calibration programs. Data were were obtained for all of the gratings at all of the original CENWAVE settings at both the original and second lifetime positions and for the G130M CENWAVE = 1222 at the second lifetime position. Data were also obtained with the FUVB segment for the G130M CENWAVE = 1055 and 1096 setting at the second lifetime position. We also present the derivation of L-flats that were used in processing the data and show that the internal consistency of the primary standards is 1%. The accuracy of the absolute flux calibrations over the UV are estimated to be 1-2% for the medium resolution gratings, and 2-3% over most of the wavelength range of the G140L grating, although the uncertainty can be as large as 5% or more at some G140L wavelengths. We note that these errors are all relative to the optical flux near the V band and small additional errors may be present due to inaccuracies in the V band calibration. In addition, these error estimates are for the time at which the flux calibration data were obtained; the accuracy of the flux calibration at other times can be affected by errors in the time dependent sensitivity (TDS) correction.

  17. Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification

    EPA Science Inventory

    Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...

  18. Sensorless position estimation and control of permanent-magnet synchronous motors using a saturation model

    NASA Astrophysics Data System (ADS)

    Kassem Jebai, Al; Malrait, François; Martin, Philippe; Rouchon, Pierre

    2016-03-01

    Sensorless control of permanent-magnet synchronous motors at low velocity remains a challenging task. A now well-established method consists of injecting a high-frequency signal and using the rotor saliency, both geometric and magnetic-saturation induced. This paper proposes a clear and original analysis based on second-order averaging of how to recover the position information from signal injection; this analysis blends well with a general model of magnetic saturation. It also proposes a simple parametric model of the saturated motor, based on an energy function which simply encompasses saturation and cross-saturation effects. Experimental results on a surface-mounted motor and an interior magnet motor illustrate the relevance of the approach.

  19. Ultra-wideband radios for time-of-flight-ranging and network position estimation

    DOEpatents

    Hertzog, Claudia A.; Dowla, Farid U.; Dallum, Gregory E.; Romero, Carlos E.

    2011-06-14

    This invention provides a novel high-accuracy indoor ranging device that uses ultra-wideband (UWB) RF pulsing with low-power and low-cost electronics. A unique of the present invention is that it exploits multiple measurements in time and space for very accurate ranging. The wideband radio signals utilized herein are particularly suited to ranging in harsh RF environments because they allow signal reconstruction in spite of multipath propagation distortion. Furthermore, the ranging and positioning techniques discussed herein directly address many of the known technical challenges encountered in UWB localization regarding synchronization and sampling. In the method developed, noisy, corrupted signals can be recovered by repeating range measurements across a channel, and the distance measurements are combined from many locations surrounding the target in a way that minimizes the range biases associated to indirect flight paths and through-wall propagation delays.

  20. Relative motions of the Australian, Pacific and Antarctic plates estimated by the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Larson, Kristine M.; Freymueller, Jeff

    1995-01-01

    Global Positioning System (GPS) measurements spanning approximately 3 years have been used to determine velocities for 7 sites on the Australian, Pacific and Antarctic plates. The site velocities agree with both plate model predictions and other space geodetic techniques. We find no evidence for internal deformation of the interior of the Australian plate. Wellington, New Zealand, located in the Australian-Pacific plate boundary zone, moves 20 +/- 5 mm/yr west-southwest relative to the Australian plate. Its velocity lies midway between the predicted velocities of the two plates. Relative Euler vectors for the Australia-Antarctica and Pacific-Antarctica plates agree within one standard deviation with the NUVEL-1A predictions.

  1. Preliminary investigation of an ultrasound method for estimating pressure changes in deep-positioned vessels

    NASA Astrophysics Data System (ADS)

    Olesen, Jacob Bjerring; Villagomez-Hoyos, Carlos Armando; Traberg, Marie Sand; Chee, Adrian J. Y.; Yiu, Billy Y. S.; Ho, Chung Kit; Yu, Alfred C. H.; Jensen, Jørgen Arendt

    2016-04-01

    This paper presents a method for measuring pressure changes in deep-tissue vessels using vector velocity ultrasound data. The large penetration depth is ensured by acquiring data using a low frequency phased array transducer. Vascular pressure changes are then calculated from 2-D angle-independent vector velocity fields using a model based on the Navier-Stokes equations. Experimental scans are performed on a fabricated flow phantom having a constriction of 36% at a depth of 100 mm. Scans are carried out using a phased array transducer connected to the experimental scanner, SARUS. 2-D fields of angle-independent vector velocities are acquired using directional synthetic aperture vector flow imaging. The obtained results are evaluated by comparison to a 3-D numerical simulation model with equivalent geometry as the designed phantom. The study showed pressure drops across the constricted phantom varying from -40 Pa to 15 Pa with a standard deviation of 32%, and a bias of 25% found relative to the peak simulated pressure drop. This preliminary study shows that pressure can be estimated non-invasively to a depth that enables cardiac scans, and thereby, the possibility of detecting the pressure drops across the mitral valve.

  2. Separating components of variation in measurement series using maximum likelihood estimation. Application to patient position data in radiotherapy

    NASA Astrophysics Data System (ADS)

    Sage, J. P.; Mayles, W. P. M.; Mayles, H. M.; Syndikus, I.

    2014-10-01

    Maximum likelihood estimation (MLE) is presented as a statistical tool to evaluate the contribution of measurement error to any measurement series where the same quantity is measured using different independent methods. The technique was tested against artificial data sets; generated for values of underlying variation in the quantity and measurement error between 0.5 mm and 3 mm. In each case the simulation parameters were determined within 0.1 mm. The technique was applied to analyzing external random positioning errors from positional audit data for 112 pelvic radiotherapy patients. Patient position offsets were measured using portal imaging analysis and external body surface measures. Using MLE to analyze all methods in parallel it was possible to ascertain the measurement error for each method and the underlying positional variation. In the (AP / Lat / SI) directions the standard deviations of the measured patient position errors from portal imaging were (3.3 mm / 2.3 mm / 1.9 mm), arising from underlying variations of (2.7 mm / 1.5 mm / 1.4 mm) and measurement uncertainties of (1.8 mm / 1.8 mm / 1.3 mm), respectively. The measurement errors agree well with published studies. MLE used in this manner could be applied to any study in which the same quantity is measured using independent methods.

  3. Estimation of effective imaging dose for kilovoltage intratreatment monitoring of the prostate position during cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Ng, J. A.; Booth, J.; Poulsen, P.; Kuncic, Z.; Keall, P. J.

    2013-09-01

    Kilovoltage intratreatment monitoring (KIM) is a novel real-time localization modality where the tumor position is continuously measured during intensity modulated radiation therapy (IMRT) or intensity modulated arc therapy (IMAT) by a kilovoltage (kV) x-ray imager. Adding kV imaging during therapy adds radiation dose. The additional effective dose is quantified for prostate radiotherapy and compared to dose from other localization modalities. The software PCXMC 2.0 was used to calculate the effective dose delivered to a phantom as a function of imager angle and field size for a Varian On-Board Imager. The average angular effective dose was calculated for a field size of 6 cm × 6 cm. The average angular effective dose was used in calculations for different treatment scenarios. Treatment scenarios considered were treatment type and fractionation. For all treatment scenarios, (i.e. conventionally fractionated and stereotactic body radiotherapy (SBRT), IMRT and IMAT), the total KIM dose at 1 Hz ranged from 2-10 mSv. This imaging dose is less than the Navotek radioactive implant dose (64 mSv) and a standard SBRT cone beam computed tomography pretreatment scan dose (22 mSv) over an entire treatment regime. KIM delivers an acceptably low effective dose for daily use as a real-time image-guidance method for prostate radiotherapy.

  4. Estimating the influence of life satisfaction and positive affect on later income using sibling fixed effects

    PubMed Central

    De Neve, Jan-Emmanuel; Oswald, Andrew J.

    2012-01-01

    The question of whether there is a connection between income and psychological well-being is a long-studied issue across the social, psychological, and behavioral sciences. Much research has found that richer people tend to be happier. However, relatively little attention has been paid to whether happier individuals perform better financially in the first place. This possibility of reverse causality is arguably understudied. Using data from a large US representative panel, we show that adolescents and young adults who report higher life satisfaction or positive affect grow up to earn significantly higher levels of income later in life. We focus on earnings approximately one decade after the person’s well-being is measured; we exploit the availability of sibling clusters to introduce family fixed effects; we account for the human capacity to imagine later socioeconomic outcomes and to anticipate the resulting feelings in current well-being. The study’s results are robust to the inclusion of controls such as education, intelligence quotient, physical health, height, self-esteem, and later happiness. We consider how psychological well-being may influence income. Sobel–Goodman mediation tests reveal direct and indirect effects that carry the influence from happiness to income. Significant mediating pathways include a higher probability of obtaining a college degree, getting hired and promoted, having higher degrees of optimism and extraversion, and less neuroticism. PMID:23169627

  5. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  6. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  7. A semi-analytical estimation of the effect of second-order ionospheric correction on the GPS positioning

    NASA Astrophysics Data System (ADS)

    Munekane, H.

    2005-10-01

    We developed a semi-analytical method to evaluate the effect of the second-order ionospheric correction on GPS positioning. This method is based on the semi-analytical positioning error simulation method developed by Geiger and Santerre in which, assuming the continuous distribution of the satellites, a normal equation is formed to estimate the positioning error taking all the contributions of the ranging error by the visible satellites into account. Our method successfully reproduced the averaged time-series of three IGS sites which is comparable to the rigorous simulation. We then evaluated the effect of the ionospheric error on the determination of the reference frame. We evaluated the additional Helmert parameters that are required for the ionospheric effect. We found that the ionospheric effect can lead to annual scale changes of 0.1 ppb, with an offset of 1.8 mm and a semi-annual oscillation of 1 mm in the z-direction. However, these values are too small to explain the current deviations between the GPS-derived reference frame and the ITRF reference frame. Next, we estimated the apparent scale changes due to the ionospheric error in the GEONET coordinate time-series in Japan. We could qualitatively reproduce the observed semi-annual scale changes peaking at the equinoxes and having asymmetrical amplitudes between the vernal and autumnal equinoxes.

  8. A consistent approach to estimate the breakdown voltage of high voltage electrodes under positive switching impulses

    NASA Astrophysics Data System (ADS)

    Arevalo, L.; Wu, D.; Jacobson, B.

    2013-08-01

    The main propose of this paper is to present a physical model of long air gap electrical discharges under positive switching impulses. The development and progression of discharges in long air gaps are attributable to two intertwined physical phenomena, namely, the leader channel and the streamer zone. Experimental studies have been used to develop empirical and physical models capable to represent the streamer zone and the leader channel. The empirical ones have led to improvements in the electrical design of high voltage apparatus and insulation distances, but they cannot take into account factors associated with fundamental physics and/or the behavior of materials. The physical models have been used to describe and understand the discharge phenomena of laboratory and lightning discharges. However, because of the complex simulations necessary to reproduce real cases, they are not in widespread use in the engineering of practical applications. Hence, the aim of the work presented here is to develop a model based on physics of the discharge capable to validate and complement the existing engineering models. The model presented here proposes a new geometrical approximation for the representation of the streamer and the calculation of the accumulated electrical charge. The model considers a variable streamer region that changes with the temporal and spatial variations of the electric field. The leader channel is modeled using the non local thermo-equilibrium equations. Furthermore, statistical delays before the inception of the first corona, and random distributions to represent the tortuous nature of the path taken by the leader channel were included based on the behavior observed in experimental tests, with the intention of ensuring the discharge behaved in a realistic manner. For comparison purposes, two different gap configurations were simulated. A reasonable agreement was found between the physical model and the experimental test results.

  9. Absolute configuration of isovouacapenol C

    PubMed Central

    Fun, Hoong-Kun; Yodsaoue, Orapun; Karalai, Chatchanok; Chantrapromma, Suchada

    2010-01-01

    The title compound, C27H34O5 {systematic name: (4aR,5R,6R,6aS,7R,11aS,11bR)-4a,6-dihy­droxy-4,4,7,11b-tetra­methyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodeca­hydro­phenanthro[3,2-b]furan-5-yl benzoate}, is a cassane furan­oditerpene, which was isolated from the roots of Caesalpinia pulcherrima. The three cyclo­hexane rings are trans fused: two of these are in chair conformations with the third in a twisted half-chair conformation, whereas the furan ring is almost planar (r.m.s. deviation = 0.003 Å). An intra­molecular C—H⋯O inter­action generates an S(6) ring. The absolute configurations of the stereogenic centres at positions 4a, 5, 6, 6a, 7, 11a and 11b are R, R, R, S, R, S and R, respectively. In the crystal, mol­ecules are linked into infinite chains along [010] by O—H⋯O hydrogen bonds. C⋯O [3.306 (2)–3.347 (2) Å] short contacts and C—H⋯π inter­actions also occur. PMID:21588364

  10. Evaluation of position-estimation methods applied to CZT-based photon-counting detectors for dedicated breast CT

    PubMed Central

    Makeev, Andrey; Clajus, Martin; Snyder, Scott; Wang, Xiaolang; Glick, Stephen J.

    2015-01-01

    Abstract. Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of 100  μm. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a 5×5 array of 200  μm pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent K-escape photons. Current experimental breast CT systems typically use detectors with a pixel size of 194

  11. Meta-analysis of amino acid stable nitrogen isotope ratios for estimating trophic position in marine organisms.

    PubMed

    Nielsen, Jens M; Popp, Brian N; Winder, Monika

    2015-07-01

    Estimating trophic structures is a common approach used to retrieve information regarding energy pathways, predation, and competition in complex ecosystems. The application of amino acid (AA) compound-specific nitrogen (N) isotope analysis (CSIA) is a relatively new method used to estimate trophic position (TP) and feeding relationships in diverse organisms. Here, we conducted the first meta-analysis of δ(15)N AA values from measurements of 359 marine species covering four trophic levels, and compared TP estimates from AA-CSIA to literature values derived from food items, gut or stomach content analysis. We tested whether the AA trophic enrichment factor (TEF), or the (15)N enrichment among different individual AAs is constant across trophic levels and whether inclusion of δ(15)N values from multiple AAs improves TP estimation. For the TEF of glutamic acid relative to phenylalanine (Phe) we found an average value of 6.6‰ across all taxa, which is significantly lower than the commonly applied 7.6‰. We found that organism feeding ecology influences TEF values of several trophic AAs relative to Phe, with significantly higher TEF values for herbivores compared to omnivores and carnivores, while TEF values were also significantly lower for animals excreting urea compared to ammonium. Based on the comparison of multiple model structures using the metadata of δ(15)N AA values we show that increasing the number of AAs in principle improves precision in TP estimation. This meta-analysis clarifies the advantages and limitations of using individual δ(15)N AA values as tools in trophic ecology and provides a guideline for the future application of AA-CSIA to food web studies. PMID:25843809

  12. Estimated amount of 24-hour urine sodium excretion is positively correlated with stomach and breast cancer prevalence in Korea.

    PubMed

    Park, Jung Hwan; Kim, Yong Chul; Koo, Ho Seok; Oh, Se Won; Kim, Suhnggwon; Chin, Ho Jun

    2014-09-01

    Stomach cancer is one of the most common cancers in Korea. The aim of this study was to identify the association between the prevalence of cancer, particularly stomach cancer, and the amount of 24-hr urine sodium excretion estimated from spot urine specimens. The study included 19,083 subjects who took part in the Korean National Health and Nutritional Examination Survey between 2009 and 2011. The total amount of urine sodium excreted in a 24-hr period was estimated by using two equations based on the values for spot urine sodium and creatinine. In subjects who had an estimated 24-hr urine sodium excretion of more than two standard deviations above the mean (group 2), the prevalence of stomach cancer was higher than in subjects with lower 24-hr sodium excretion (group 1). By using the Tanaka equation to estimate it, the prevalence of stomach cancer was 0.6% (114/18,331) in group 1, whereas it was 1.6% (9/568) in group 2 (P=0.006). By using the Korean equation, the prevalence was 0.6% (115/18,392) in group 1, and 1.6% in group 2 (8/507) (P=0.010). By using the Tanaka equation, breast cancer in women is more prevalent in group 2 (1.9%, 6/324) than group 1 (0.8%, 78/9,985, P=0.039). Higher salt intake, as defined by the estimated amount of 24-hr urine sodium excretion, is positively correlated with a higher prevalence of stomach or breast cancer in the Korean population.

  13. Meta-analysis of amino acid stable nitrogen isotope ratios for estimating trophic position in marine organisms.

    PubMed

    Nielsen, Jens M; Popp, Brian N; Winder, Monika

    2015-07-01

    Estimating trophic structures is a common approach used to retrieve information regarding energy pathways, predation, and competition in complex ecosystems. The application of amino acid (AA) compound-specific nitrogen (N) isotope analysis (CSIA) is a relatively new method used to estimate trophic position (TP) and feeding relationships in diverse organisms. Here, we conducted the first meta-analysis of δ(15)N AA values from measurements of 359 marine species covering four trophic levels, and compared TP estimates from AA-CSIA to literature values derived from food items, gut or stomach content analysis. We tested whether the AA trophic enrichment factor (TEF), or the (15)N enrichment among different individual AAs is constant across trophic levels and whether inclusion of δ(15)N values from multiple AAs improves TP estimation. For the TEF of glutamic acid relative to phenylalanine (Phe) we found an average value of 6.6‰ across all taxa, which is significantly lower than the commonly applied 7.6‰. We found that organism feeding ecology influences TEF values of several trophic AAs relative to Phe, with significantly higher TEF values for herbivores compared to omnivores and carnivores, while TEF values were also significantly lower for animals excreting urea compared to ammonium. Based on the comparison of multiple model structures using the metadata of δ(15)N AA values we show that increasing the number of AAs in principle improves precision in TP estimation. This meta-analysis clarifies the advantages and limitations of using individual δ(15)N AA values as tools in trophic ecology and provides a guideline for the future application of AA-CSIA to food web studies.

  14. Singular perturbation of absolute stability.

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.

    1972-01-01

    It was previously shown (author, 1969) that the regions of absolute stability in the parameter space can be determined when the parameters appear on the right-hand side of the system equations, i.e., the regular case. Here, the effect on absolute stability of a small parameter attached to higher derivatives in the equations (the singular case) is studied. The Lur'e-Postnikov class of nonlinear systems is considered.

  15. Real-time motion compensated patient positioning and non-rigid deformation estimation using 4-D shape priors.

    PubMed

    Wasza, Jakob; Bauer, Sebastian; Hornegger, Joachim

    2012-01-01

    Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms. PMID:23286095

  16. Real-time motion compensated patient positioning and non-rigid deformation estimation using 4-D shape priors.

    PubMed

    Wasza, Jakob; Bauer, Sebastian; Hornegger, Joachim

    2012-01-01

    Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms.

  17. CT-derived estimation of cochlear morphology and electrode array position in relation to word recognition in Nucleus-22 recipients.

    PubMed

    Skinner, Margaret W; Ketten, Darlene R; Holden, Laura K; Harding, Gary W; Smith, Peter G; Gates, George A; Neely, J Gail; Kletzker, G Robert; Brunsden, Barry; Blocker, Barbara

    2002-09-01

    This study extended the findings of Ketten et al. [Ann. Otol. Rhinol. Laryngol. Suppl. 175:1-16 (1998)] by estimating the three-dimensional (3D) cochlear lengths, electrode array intracochlear insertion depths, and characteristic frequency ranges for 13 more Nucleus-22 implant recipients based on in vivo computed tomography (CT) scans. Array insertion depths were correlated with NU-6 word scores (obtained one year after SPEAK strategy use) by these patients and the 13 who used the SPEAK strategy from the Ketten et al. study. For these 26 patients, the range of cochlear lengths was 29.1-37.4 mm. Array insertion depth range was 11.9-25.9 mm, and array insertion depth estimated from the surgeon's report was 1.14 mm longer than CT-based estimates. Given the assumption that the human hearing range is fixed (20-20,000 Hz) regardless of cochlear length, characteristic frequencies at the most apical electrode (estimated with Greenwood's equation [Greenwood DD (1990) A cochlear frequency--position function of several species--29 years later. J Acoust. Soc. Am. 33: 1344-1356] and a patient-specific constant as) ranged from 308 to 3674 Hz. Patients' NU-6 word scores were significantly correlated with insertion depth as a percentage of total cochlear length (R = 0.452; r2 = 0.204; p = 0.020), suggesting that part of the variability in word recognition across implant recipients can be accounted for by the position of the electrode array in the cochlea. However, NU-6 scores ranged from 4% to 81% correct for patients with array insertion depths between 47% and 68% of total cochlear length. Lower scores appeared related to low spiral ganglion cell survival (e.g., lues), aberrant current paths that produced facial nerve stimulation by apical electrodes (i.e., otosclerosis), central auditory processing difficulty, below-average verbal abilities, and early Alzheimer's disease. Higher scores appeared related to patients' high-average to above-average verbal abilities. Because most

  18. Estimation of Position Specific Energy as a Feature of Protein Residues from Sequence Alone for Structural Classification.

    PubMed

    Iqbal, Sumaiya; Hoque, Md Tamjidul

    2016-01-01

    A set of features computed from the primary amino acid sequence of proteins, is crucial in the process of inducing a machine learning model that is capable of accurately predicting three-dimensional protein structures. Solutions for existing protein structure prediction problems are in need of features that can capture the complexity of molecular level interactions. With a view to this, we propose a novel approach to estimate position specific estimated energy (PSEE) of a residue using contact energy and predicted relative solvent accessibility (RSA). Furthermore, we demonstrate PSEE can be reasonably estimated based on sequence information alone. PSEE is useful in identifying the structured as well as unstructured or, intrinsically disordered region of a protein by computing favorable and unfavorable energy respectively, characterized by appropriate threshold. The most intriguing finding, verified empirically, is the indication that the PSEE feature can effectively classify disorder versus ordered residues and can segregate different secondary structure type residues by computing the constituent energies. PSEE values for each amino acid strongly correlate with the hydrophobicity value of the corresponding amino acid. Further, PSEE can be used to detect the existence of critical binding regions that essentially undergo disorder-to-order transitions to perform crucial biological functions. Towards an application of disorder prediction using the PSEE feature, we have rigorously tested and found that a support vector machine model informed by a set of features including PSEE consistently outperforms a model with an identical set of features with PSEE removed. In addition, the new disorder predictor, DisPredict2, shows competitive performance in predicting protein disorder when compared with six existing disordered protein predictors. PMID:27588752

  19. Estimation of Position Specific Energy as a Feature of Protein Residues from Sequence Alone for Structural Classification

    PubMed Central

    Iqbal, Sumaiya; Hoque, Md Tamjidul

    2016-01-01

    A set of features computed from the primary amino acid sequence of proteins, is crucial in the process of inducing a machine learning model that is capable of accurately predicting three-dimensional protein structures. Solutions for existing protein structure prediction problems are in need of features that can capture the complexity of molecular level interactions. With a view to this, we propose a novel approach to estimate position specific estimated energy (PSEE) of a residue using contact energy and predicted relative solvent accessibility (RSA). Furthermore, we demonstrate PSEE can be reasonably estimated based on sequence information alone. PSEE is useful in identifying the structured as well as unstructured or, intrinsically disordered region of a protein by computing favorable and unfavorable energy respectively, characterized by appropriate threshold. The most intriguing finding, verified empirically, is the indication that the PSEE feature can effectively classify disorder versus ordered residues and can segregate different secondary structure type residues by computing the constituent energies. PSEE values for each amino acid strongly correlate with the hydrophobicity value of the corresponding amino acid. Further, PSEE can be used to detect the existence of critical binding regions that essentially undergo disorder-to-order transitions to perform crucial biological functions. Towards an application of disorder prediction using the PSEE feature, we have rigorously tested and found that a support vector machine model informed by a set of features including PSEE consistently outperforms a model with an identical set of features with PSEE removed. In addition, the new disorder predictor, DisPredict2, shows competitive performance in predicting protein disorder when compared with six existing disordered protein predictors. PMID:27588752

  20. Volume estimation of small phantoms and rat kidneys using three-dimensional ultrasonography and a position sensor.

    PubMed

    Strømmen, Kenneth; Stormark, Tor André; Iversen, Bjarne M; Matre, Knut

    2004-09-01

    To evaluate the accuracy of small volume estimation, both in vivo and in vitro, measurements with a three-dimensional (3D) ultrasound (US) system were carried out. A position sensor was used and the transmitting frequency was 10 MHz. Balloons with known volumes were scanned while rat kidneys were scanned in vivo and in vitro. The Archimedes' principle was used to estimate the true volume. For balloons, the 3D US system gave very good agreement with true volumes in the volume range 0.1 to 10.0 mL (r = 0.999, n = 45, mean difference +/- 2SD = 0.245 +/- 0.370 mL). For rat kidneys in vivo (volume range 0.6 to 2.7 mL) the method was less accurate (r = 0.800, n = 10, mean difference +/- 2SD = -0.288 +/- 0.676 mL). For rat kidneys in vitro (volume range 0.3 to 2.7 mL) the results showed good agreement (r = 0.981, n = 23, mean difference +/- 2SD = 0.039 +/- 0.254 mL). For balloons, kidneys in vivo and in vitro, the mean percentage error was 9.3 +/- 4.8%, -17.1 +/- 17.4%, and 4.6 +/- 11.5%, respectively. This method can estimate the volume of small phantoms and rat kidneys and opens new possibilities for volume measurements of small objects and the study of organ function in small animals. (E-mail ). PMID:15550315

  1. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound. PMID:20070087

  2. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound.

  3. Low False Positive Rate of Kepler Candidates Estimated From A Combination Of Spitzer And Follow-Up Observations

    NASA Astrophysics Data System (ADS)

    Désert, Jean-Michel; Charbonneau, David; Torres, Guillermo; Fressin, François; Ballard, Sarah; Bryson, Stephen T.; Knutson, Heather A.; Batalha, Natalie M.; Borucki, William J.; Brown, Timothy M.; Deming, Drake; Ford, Eric B.; Fortney, Jonathan J.; Gilliland, Ronald L.; Latham, David W.; Seager, Sara

    2015-05-01

    NASA’s Kepler mission has provided several thousand transiting planet candidates during the 4 yr of its nominal mission, yet only a small subset of these candidates have been confirmed as true planets. Therefore, the most fundamental question about these candidates is the fraction of bona fide planets. Estimating the rate of false positives of the overall Kepler sample is necessary to derive the planet occurrence rate. We present the results from two large observational campaigns that were conducted with the Spitzer Space Telescope during the the Kepler mission. These observations are dedicated to estimating the false positive rate (FPR) among the Kepler candidates. We select a sub-sample of 51 candidates, spanning wide ranges in stellar, orbital, and planetary parameter space, and we observe their transits with Spitzer at 4.5 μm. We use these observations to measures the candidate’s transit depths and infrared magnitudes. An authentic planet produces an achromatic transit depth (neglecting the modest effect of limb darkening). Conversely a bandpass-dependent depth alerts us to the potential presence of a blending star that could be the source of the observed eclipse: a false positive scenario. For most of the candidates (85%), the transit depths measured with Kepler are consistent with the transit depths measured with Spitzer as expected for planetary objects, while we find that the most discrepant measurements are due to the presence of unresolved stars that dilute the photometry. The Spitzer constraints on their own yield FPRs between 5% and depending on the Kepler Objects of Interest. By considering the population of the Kepler field stars, and by combining follow-up observations (imaging) when available, we find that the overall FPR of our sample is low. The measured upper limit on the FPR of our sample is 8.8% at a confidence level of 3σ. This observational result, which uses the achromatic property of planetary transit signals that is not investigated

  4. Absolute flux scale for radioastronomy

    SciTech Connect

    Ivanov, V.P.; Stankevich, K.S.

    1986-07-01

    The authors propose and provide support for a new absolute flux scale for radio astronomy, which is not encumbered with the inadequacies of the previous scales. In constructing it the method of relative spectra was used (a powerful tool for choosing reference spectra). A review is given of previous flux scales. The authors compare the AIS scale with the scale they propose. Both scales are based on absolute measurements by the ''artificial moon'' method, and they are practically coincident in the range from 0.96 to 6 GHz. At frequencies above 6 GHz, 0.96 GHz, the AIS scale is overestimated because of incorrect extrapolation of the spectra of the primary and secondary standards. The major results which have emerged from this review of absolute scales in radio astronomy are summarized.

  5. Investigation for improving Global Positioning System (GPS) orbits using a discrete sequential estimator and stochastic models of selected physical processes

    NASA Technical Reports Server (NTRS)

    Goad, Clyde C.; Chadwell, C. David

    1993-01-01

    GEODYNII is a conventional batch least-squares differential corrector computer program with deterministic models of the physical environment. Conventional algorithms were used to process differenced phase and pseudorange data to determine eight-day Global Positioning system (GPS) orbits with several meter accuracy. However, random physical processes drive the errors whose magnitudes prevent improving the GPS orbit accuracy. To improve the orbit accuracy, these random processes should be modeled stochastically. The conventional batch least-squares algorithm cannot accommodate stochastic models, only a stochastic estimation algorithm is suitable, such as a sequential filter/smoother. Also, GEODYNII cannot currently model the correlation among data values. Differenced pseudorange, and especially differenced phase, are precise data types that can be used to improve the GPS orbit precision. To overcome these limitations and improve the accuracy of GPS orbits computed using GEODYNII, we proposed to develop a sequential stochastic filter/smoother processor by using GEODYNII as a type of trajectory preprocessor. Our proposed processor is now completed. It contains a correlated double difference range processing capability, first order Gauss Markov models for the solar radiation pressure scale coefficient and y-bias acceleration, and a random walk model for the tropospheric refraction correction. The development approach was to interface the standard GEODYNII output files (measurement partials and variationals) with software modules containing the stochastic estimator, the stochastic models, and a double differenced phase range processing routine. Thus, no modifications to the original GEODYNII software were required. A schematic of the development is shown. The observational data are edited in the preprocessor and the data are passed to GEODYNII as one of its standard data types. A reference orbit is determined using GEODYNII as a batch least-squares processor and the

  6. The Carina Project: Absolute and Relative Calibrations

    NASA Astrophysics Data System (ADS)

    Corsi, C. E.; Bono, G.; Walker, A. R.; Brocato, E.; Buonanno, R.; Caputo, F.; Castellani, M.; Castellani, V.; Dall'Ora, M.; Marconi, M.; Monelli, M.; Nonino, M.; Pulone, L.; Ripepi, V.; Smith, H. A.

    We discuss the reduction strategy adopted to perform the relative and the absolute calibration of the Wide Field Imager (WFI) available at the 2.2m ESO/MPI telescope and of the Mosaic Camera (MC) available at the 4m CTIO Blanco telescope. To properly constrain the occurrence of deceptive systematic errors in the relative calibration we observed with each chip the same set of stars. Current photometry seems to suggest that the WFI shows a positional effect when moving from the top to the bottom of individual chips. Preliminary results based on an independent data set collected with the MC suggest that this camera is only marginally affected by the same problem. To perform the absolute calibration we observed with each chip the same set of standard stars. The sample covers a wide color range and the accuracy both in the B and in the V-band appears to be of the order of a few hundredths of magnitude. Finally, we briefly outline the observing strategy to improve both relative and absolute calibrations of mosaic CCD cameras.

  7. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  8. Estimating the position of illuminants in paintings under weak model assumptions: an application to the works of two Baroque masters

    NASA Astrophysics Data System (ADS)

    Kale, David; Stork, David G.

    2009-02-01

    The problems of estimating the position of an illuminant and the direction of illumination in realist paintings have been addressed using algorithms from computer vision. These algorithms fall into two general categories: In model-independent methods (cast-shadow analysis, occluding-contour analysis, ...), one does not need to know or assume the three-dimensional shapes of the objects in the scene. In model-dependent methods (shape-fromshading, full computer graphics synthesis, ...), one does need to know or assume the three-dimensional shapes. We explore the intermediate- or weak-model condition, where the three-dimensional object rendered is so simple one can very confidently assume its three-dimensional shape and, further, that this shape admits an analytic derivation of the appearance model. Specifically, we can assume that floors and walls are flat and that they are horizontal and vertical, respectively. We derived the maximum-likelihood estimator for the two-dimensional spatial location of a point source in an image as a function of the pattern of brightness (or grayscale value) over such a planar surface. We applied our methods to two paintings of the Baroque, paintings for which the question of the illuminant position is of interest to art historians: Georges de la Tour's Christ in the carpenter's studio (1645) and Caravaggio's The calling of St. Matthew (1599-1600). Our analyses show that a single point source (somewhat near to the depicted candle) is a slightly better explanation of the pattern of brightness on the floor in Christ than are two point sources, one in place of each of the figures. The luminance pattern on the rear wall in The calling implies the source is local, a few meters outside the picture frame-not the infinitely distant sun. Both results are consistent with previous rebuttals of the recent art historical claim that these paintings were executed by means of tracing optically projected images. Our method is the first application of such

  9. Cross-validation of δ15N and FishBase estimates of fish trophic position in a Mediterranean lagoon: The importance of the isotopic baseline

    NASA Astrophysics Data System (ADS)

    Mancinelli, Giorgio; Vizzini, Salvatrice; Mazzola, Antonio; Maci, Stefano; Basset, Alberto

    2013-12-01

    FishBase, a relational database freely available on the Internet, is to date widely used as a source of quantitative information on the trophic position of marine fish species. Here, we compared FishBase estimates for an assemblage of 30 fish species sampled in a Mediterranean lagoon (Acquatina lagoon, SE Italy) with their trophic positions calculated using nitrogen stable isotopes.

  10. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  11. Estimation of breast dose saving potential using a breast positioning technique for organ-based tube current modulated CT

    NASA Astrophysics Data System (ADS)

    Fu, Wanyi; Tian, Xiaoyu; Sturgeon, Gregory; Agasthya, Greeshma; Segars, William Paul; Goodsitt, Mitchell M.; Kazerooni, Ella A.; Samei, Ehsan

    2016-04-01

    In thoracic CT, organ-based tube current modulation (OTCM) reduces breast dose by lowering the tube current in the 120° anterior dose reduction zone of patients. However, in practice the breasts usually expand to an angle larger than the dose reduction zone. This work aims to simulate a breast positioning technique (BPT) to constrain the breast tissue to within the dose reduction zone for OTCM and to evaluate the corresponding potential reduction in breast dose. Thirteen female anthropomorphic computational phantoms were studied (age range: 27-65 y.o., weight range: 52-105.8 kg). Each phantom was modeled in the supine position with and without application of the BPT. Attenuation-based tube current (ATCM, reference mA) was generated by a ray-tracing program, taking into account the patient attenuation change in the longitudinal and angular plane (CAREDose4D, Siemens Healthcare). OTCM was generated by reducing the mA to 20% between +/- 60° anterior of the patient and increasing the mA in the remaining projections correspondingly (X-CARE, Siemens Healthcare) to maintain the mean tube current. Breast tissue dose was estimated using a validated Monte Carlo program for a commercial scanner (SOMATOM Definition Flash, Siemens Healthcare). Compared to standard tube current modulation, breast dose was significantly reduced using OTCM by 19.8+/-4.7%. With the BPT, breast dose was reduced by an additional 20.4+/-6.5% to 37.1+/-6.9%, using the same CTDIvol. BPT was more effective for phantoms simulating women with larger breasts with the average breast dose reduction of 30.2%, 39.2%, and 49.2% from OTCMBP to ATCM, using the same CTDIvol for phantoms with 0.5, 1.5, and 2.5 kg breasts, respectively. This study shows that a specially designed BPT improves the effectiveness of OTCM.

  12. Hip joint centre position estimation using a dual unscented Kalman filter for computer-assisted orthopaedic surgery.

    PubMed

    Beretta, Elisa; De Momi, Elena; Camomilla, Valentina; Cereatti, Andrea; Cappozzo, Aurelio; Ferrigno, Giancarlo

    2014-09-01

    In computer-assisted knee surgery, the accuracy of the localization of the femur centre of rotation relative to the hip-bone (hip joint centre) is affected by the unavoidable and untracked pelvic movements because only the femoral pose is acquired during passive pivoting manoeuvres. We present a dual unscented Kalman filter algorithm that allows the estimation of the hip joint centre also using as input the position of a pelvic reference point that can be acquired with a skin marker placed on the hip, without increasing the invasiveness of the surgical procedure. A comparative assessment of the algorithm was carried out using data provided by in vitro experiments mimicking in vivo surgical conditions. Soft tissue artefacts were simulated and superimposed onto the position of a pelvic landmark. Femoral pivoting made of a sequence of star-like quasi-planar movements followed by a circumduction was performed. The dual unscented Kalman filter method proved to be less sensitive to pelvic displacements, which were shown to be larger during the manoeuvres in which the femur was more adducted. Comparable accuracy between all the analysed methods resulted for hip joint centre displacements smaller than 1 mm (error: 2.2 ± [0.2; 0.3] mm, median ± [inter-quartile range 25%; inter-quartile range 75%]) and between 1 and 6 mm (error: 4.8 ± [0.5; 0.8] mm) during planar movements. When the hip joint centre displacement exceeded 6 mm, the dual unscented Kalman filter proved to be more accurate than the other methods by 30% during multi-planar movements (error: 5.2 ± [1.2; 1] mm).

  13. Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna

    2015-09-01

    Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.

  14. A Method to Estimate Mean Position, Motion Magnitude, Motion Correlation, and Trajectory of a Tumor From Cone-Beam CT Projections for Image-Guided Radiotherapy

    SciTech Connect

    Poulsen, Per Rugaard Cho, Byungchul; Keall, Paul J.

    2008-12-01

    Purpose: To develop a probability-based method for estimating the mean position, motion magnitude, and trajectory of a tumor using cone-beam CT (CBCT) projections. Method and Materials: CBCT acquisition was simulated for more than 80 hours of patient-measured trajectories for thoracic/abdominal tumors and prostate. The trajectories were divided into 60-second segments for which CBCT was simulated by projecting the tumor position onto a rotating imager. Tumor (surrogate) visibility on all projections was assumed. The mean and standard deviation of the tumor position and motion correlation along the three axes were determined with maximum likelihood estimation based on the projection data, assuming a Gaussian spatial distribution. The unknown position component along the imager axis was approximated by its expectation value, determined by the Gaussian distribution. Transformation of the resulting three-dimensional position to patient coordinates provided the estimated trajectory. Two trajectories were experimentally investigated by CBCT acquisition of a phantom. Results: The root-mean-square error of the estimated mean position was 0.05 mm. The root-mean-square error of the trajectories was <1 mm in 99.1% of the thorax/abdomen cases and in 99.7% of the prostate cases. The experimental trajectory estimation agreed with the actual phantom trajectory within 0.44 mm in any direction. Clinical applicability was demonstrated by estimating the tumor trajectory for a pancreas cancer case. Conclusions: A method for estimation of mean position, motion magnitude, and trajectory of a tumor from CBCT projections has been developed. The accuracy was typically much better than 1 mm. The method is applicable to motion-inclusive, respiratory-gated, and tumor-tracking radiotherapy.

  15. Lack of Correlation Between External Fiducial Positions and Internal Tumor Positions During Breath-Hold CT

    SciTech Connect

    Hunjan, Sandeep; Starkschall, George; Prado, Karl; Dong Lei; Balter, Peter

    2010-04-15

    Purpose: For thoracic tumors, if four-dimensional computed tomography (4DCT) is unavailable, the internal margin can be estimated by use of breath-hold (BH) CT scans acquired at end inspiration (EI) and end expiration (EE). By use of external surrogates for tumor position, BH accuracy is estimated by minimizing the difference between respiratory extrema BH and mean equivalent-phase free breathing (FB) positions. We tested the assumption that an external surrogate for BH accuracy correlates with internal tumor positional accuracy during BH CT. Methods and Materials: In 16 lung cancer patients, 4DCT images, as well as BH CT images at EI and EE, were acquired. Absolute differences between BH and mean equivalent-phase (FB) positions were calculated for both external fiducials and gross tumor volume (GTV) centroids as metrics of external and internal BH accuracy, respectively, and the results were correlated. Results: At EI, the absolute difference between mean FB and BH fiducial displacement correlated poorly with the absolute difference between FB and BH GTV centroid positions on CT images (R{sup 2} = 0.11). Similarly, at EE, the absolute difference between mean FB and BH fiducial displacements correlated poorly with the absolute difference between FB and BH GTV centroid positions on CT images (R{sup 2} = 0.18). Conclusions: External surrogates for tumor position are not an accurate metric of BH accuracy for lung cancer patients. This implies that care should be taken when using such an approach because an incorrect internal margin could be generated.

  16. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate.

  17. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate. PMID:11262641

  18. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  19. Classification images predict absolute efficiency.

    PubMed

    Murray, Richard F; Bennett, Patrick J; Sekuler, Allison B

    2005-02-24

    How well do classification images characterize human observers' strategies in perceptual tasks? We show mathematically that from the classification image of a noisy linear observer, it is possible to recover the observer's absolute efficiency. If we could similarly predict human observers' performance from their classification images, this would suggest that the linear model that underlies use of the classification image method is adequate over the small range of stimuli typically encountered in a classification image experiment, and that a classification image captures most important aspects of human observers' performance over this range. In a contrast discrimination task and in a shape discrimination task, we found that observers' absolute efficiencies were generally well predicted by their classification images, although consistently slightly (approximately 13%) higher than predicted. We consider whether a number of plausible nonlinearities can account for the slight under prediction, and of these we find that only a form of phase uncertainty can account for the discrepancy.

  20. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  1. Using absolute gravimeter data to determine vertical gravity gradients

    USGS Publications Warehouse

    Robertson, D.S.

    2001-01-01

    The position versus time data from a free-fall absolute gravimeter can be used to estimate the vertical gravity gradient in addition to the gravity value itself. Hipkin has reported success in estimating the vertical gradient value using a data set of unusually good quality. This paper explores techniques that may be applicable to a broader class of data that may be contaminated with "system response" errors of larger magnitude than were evident in the data used by Hipkin. This system response function is usually modelled as a sum of exponentially decaying sinusoidal components. The technique employed here involves combining the x0, v0 and g parameters from all the drops made during a site occupation into a single least-squares solution, and including the value of the vertical gradient and the coefficients of system response function in the same solution. The resulting non-linear equations must be solved iteratively and convergence presents some difficulties. Sparse matrix techniques are used to make the least-squares problem computationally tractable.

  2. Positive random variables with a discrete probability mass at the origin: Parameter estimation for left-censored samples with application to air quality monitoring data

    SciTech Connect

    Gogolak, C.V.

    1986-11-01

    The concentration of a contaminant measured in a particular medium might be distributed as a positive random variable when it is present, but it may not always be present. If there is a level below which the concentration cannot be distinguished from zero by the analytical apparatus, a sample from such a population will be censored on the left. The presence of both zeros and positive values in the censored portion of such samples complicates the problem of estimating the parameters of the underlying positive random variable and the probability of a zero observation. Using the method of maximum likelihood, it is shown that the solution to this estimation problem reduces largely to that of estimating the parameters of the distribution truncated at the point of censorship. The maximum likelihood estimate of the proportion of zero values follows directly. The derivation of the maximum likelihood estimates for a lognormal population with zeros is given in detail, and the asymptotic properties of the estimates are examined. The estimation method was used to fit several different distributions to a set of severely censored /sup 85/Kr monitoring data from six locations at the Savannah River Plant chemical separations facilities.

  3. Absolute Antenna Calibration at the US National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.

    2012-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO

  4. Ultrasonic position and velocity measurement for a moving object by M-sequence pulse compression using Doppler velocity estimation by spectrum-pattern analysis

    NASA Astrophysics Data System (ADS)

    Ikari, Yohei; Hirata, Shinnosuke; Hachiya, Hiroyuki

    2015-07-01

    Pulse compression using a maximum-length sequence (M-sequence) can improve the signal-to-noise ratio (SNR) of the reflected echo in the pulse-echo method. In the case of a moving object, however, the echo is modulated owing to the Doppler effect. The Doppler-shifted M-sequence-modulated signal cannot be correlated with the reference signal that corresponds to the transmitted M-sequence-modulated signal. Therefore, Doppler velocity estimation by spectrum-pattern analysis of a cyclic M-sequence-modulated signal and cross correlations with Doppler-shifted reference signals that correspond to the estimated Doppler velocities has been proposed. In this paper, measurements of the position and velocity of a moving object by the proposed method are described. First, Doppler velocities of the object are estimated using a microphone array. Secondly, the received signal from each microphone is correlated with each Doppler-shifted reference signal. Then, the position of the object is determined from the B-mode image formed from all cross-correlation functions. After that, the velocity of the object is calculated from velocity components estimated from the Doppler velocities and the position. Finally, the estimated Doppler velocities, determined positions, and calculated velocities are evaluated.

  5. Automatic estimation of detector radial position for contoured SPECT acquisition using CT images on a SPECT/CT system.

    PubMed

    Liu, Ruijie Rachel; Erwin, William D

    2006-08-01

    ) error in radial position for eight patient scans without truncation were 3.37 cm (12.9%) for PM and 1.99 cm (8.6%) for BF, indicating BF is superior to PM in the absence of truncation. For two patient scans with truncation, the rms error was 3.24 cm (12.2%) for PM and 4.10 cm (18.2%) for BF. The slightly better performance of PM in the case of truncation is anomalous, due to FOV edge truncation artifacts in the CT reconstruction, and thus is suspect. The calculated NCO contour for a patient SPECT/CT scan was used with an iterative reconstruction algorithm that incorporated compensation for system resolution. The resulting image was qualitatively superior to the image obtained by reconstructing the data using the fixed radius stored by the scanner. The result was also superior to the image reconstructed using the iterative algorithm provided with the system, which does not incorporate resolution modeling. These results suggest that, under conditions of no or only mild lateral truncation of the CT scan, the algorithm is capable of providing radius estimates suitable for iterative SPECT reconstruction collimator geometric resolution modeling. PMID:16964856

  6. Estimation of the accuracy with which the position of the center of mass of an Interkosmos series artificial earth satellite is calculated. [the effect of atmospheric density

    NASA Technical Reports Server (NTRS)

    Elyasberg, P. Y.; Kugayenko, B. V.; Voyskovskiy, M. I.

    1975-01-01

    The effects of disturbing forces on position calculation, and errors in the initial conditions of motion and in the selected assignment calculation schemes are estimated. It is shown that the main disturbing effects on the accuracy are due to density variations of the upper atmosphere. Recommendations are presented for estimating the calculation accuracy along with an example of such an estimate for the Interkosmos-7 artificial earth satellite. Other factors considered include the adopted scheme and computational algorithms used, effects of disturbing forces not taken into account earlier, and errors in the values of constants and in models of disturbing forces.

  7. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  8. Familial Aggregation of Absolute Pitch

    PubMed Central

    Baharloo, Siamak; Service, Susan K.; Risch, Neil; Gitschier, Jane; Freimer, Nelson B.

    2000-01-01

    Absolute pitch (AP) is a behavioral trait that is defined as the ability to identify the pitch of tones in the absence of a reference pitch. AP is an ideal phenotype for investigation of gene and environment interactions in the development of complex human behaviors. Individuals who score exceptionally well on formalized auditory tests of pitch perception are designated as “AP-1.” As described in this report, auditory testing of siblings of AP-1 probands and of a control sample indicates that AP-1 aggregates in families. The implications of this finding for the mapping of loci for AP-1 predisposition are discussed. PMID:10924408

  9. Subject Positioning in the BOD POD® Only Marginally Affects Measurement of Body Volume and Estimation of Percent Body Fat in Young Adult Men

    PubMed Central

    Peeters, Maarten W.

    2012-01-01

    Introduction The aim of the study was to evaluate whether subject positioning would affect the measurement of raw body volume, thoracic gas volume, corrected body volume and the resulting percent body fat as assessed by air displacement plethysmography (ADP). Methods Twenty-five young adult men (20.7±1.1y, BMI = 22.5±1.4 kg/m2) were measured using the BOD POD® system using a measured thoracic gas volume sitting in a ‘forward bent’ position and sitting up in a straight position in random order. Results Raw body volume was 58±124 ml (p<0.05) higher in the ‘straight’ position compared to the ‘bent’ position. The mean difference in measured thoracic gas volume (bent-straight = −71±211 ml) was not statistically significant. Corrected body volume and percent body fat in the bent position consequently were on average 86±122 ml (p<0.05) and 0.5±0.7% (p<0.05) lower than in the straight position respectively. Conclusion Although the differences reached statistical significance, absolute differences are rather small. Subject positioning should be viewed as a factor that may contribute to between-test variability and hence contribute to (in)precision in detecting small individual changes in body composition, rather than a potential source of systematic bias. It therefore may be advisable to pay attention to standardizing subject positioning when tracking small changes in PF are of interest.The cause of the differences is shown not to be related to changes in the volume of isothermal air in the lungs. It is hypothesized and calculated that the observed direction and magnitude of these differences may arise from the surface area artifact which does not take into account that a subject in the bent position exposes more skin to the air in the device therefore potentially creating a larger underestimation of the actual body volume due to the isothermal effect of air close to the skin. PMID:22461887

  10. Comparison of Kalman filter estimates of zenith atmospheric path delays using the global positioning system and very long baseline interferometry

    NASA Astrophysics Data System (ADS)

    Tralli, David M.; Lichten, Stephen M.; Herring, Thomas A.

    1992-12-01

    Kalman filter estimates of zenith nondispersive atmospheric path delays at Westford, Massachusetts, Fort Davis, Texas, and Mojave, California, were obtained from independent analyses of data collected during January and February 1988 using the GPS and VLBI. The apparent accuracy of the path delays is inferred by examining the estimates and covariances from both sets of data. The ability of the geodetic data to resolve zenith path delay fluctuations is determined by comparing further the GPS Kalman filter estimates with corresponding wet path delays derived from water vapor radiometric data available at Mojave over two 8-hour data spans within the comparison period. GPS and VLBI zenith path delay estimates agree well within one standard deviation formal uncertainties (from 10-20 mm for GPS and 3-15 mm for VLBI) in four out of the five possible comparisons, with maximum differences of 5 and 21 mm over 8- to 12-hour data spans.

  11. Comparison of Kalman filter estimates of zenith atmospheric path delays using the global positioning system and very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Tralli, David M.; Lichten, Stephen M.; Herring, Thomas A.

    1992-01-01

    Kalman filter estimates of zenith nondispersive atmospheric path delays at Westford, Massachusetts, Fort Davis, Texas, and Mojave, California, were obtained from independent analyses of data collected during January and February 1988 using the GPS and VLBI. The apparent accuracy of the path delays is inferred by examining the estimates and covariances from both sets of data. The ability of the geodetic data to resolve zenith path delay fluctuations is determined by comparing further the GPS Kalman filter estimates with corresponding wet path delays derived from water vapor radiometric data available at Mojave over two 8-hour data spans within the comparison period. GPS and VLBI zenith path delay estimates agree well within one standard deviation formal uncertainties (from 10-20 mm for GPS and 3-15 mm for VLBI) in four out of the five possible comparisons, with maximum differences of 5 and 21 mm over 8- to 12-hour data spans.

  12. Using linked birth, notification, hospital and mortality data to examine false-positive meningococcal disease reporting and adjust disease incidence estimates for children in New South Wales, Australia.

    PubMed

    Gibson, A; Jorm, L; McIntyre, P

    2015-09-01

    Meningococcal disease is a rare, rapidly progressing condition which may be difficult to diagnose, disproportionally affects children, and has high morbidity and mortality. Accurate incidence estimates are needed to monitor the effectiveness of vaccination and treatment. We used linked notification, hospital, mortality and birth data for all children of an Australian state (2000-2007) to estimate the incidence of meningococcal disease. A total of 595 cases were notified, 684 cases had a hospital diagnosis, and 26 cases died from meningococcal disease. All deaths were notified, but only 68% (466/684) of hospitalized cases. Of non-notified hospitalized cases with more than one clinical admission, most (90%, 103/114) did not have meningococcal disease recorded as their final diagnosis, consistent with initial 'false-positive' hospital meningococcal disease diagnosis. After adjusting for false-positive rates in hospital data, capture-recapture estimation suggested that up to four cases of meningococcal disease may not have been captured in either notification or hospital records. The estimated incidence of meningococcal disease in NSW-born and -resident children aged 0-14 years was 5·1-5·4 cases/100 000 child-years at risk, comparable to international estimates using similar methods, but lower than estimates based on hospital data. PMID:25573266

  13. Real-Time Target Position Estimation Using Stereoscopic Kilovoltage/Megavoltage Imaging and External Respiratory Monitoring for Dynamic Multileaf Collimator Tracking

    SciTech Connect

    Cho, Byungchul; Poulsen, Per Rugaard; Sawant, Amit; Ruan, Dan; Keall, Paul J.

    2011-01-01

    Purpose: To develop a real-time target position estimation method using stereoscopic kilovoltage (kV)/megavoltage (MV) imaging and external respiratory monitoring, and to investigate the performance of a dynamic multileaf collimator tracking system using this method. Methods and Materials: The real-time three-dimensional internal target position estimation was established by creating a time-varying correlation model that connected the external respiratory signals with the internal target motion measured intermittently using kV/MV imaging. The method was integrated into a dynamic multileaf collimator tracking system. Tracking experiments were performed for 10 thoracic/abdominal traces. A three-dimensional motion platform carrying a gold marker and a separate one-dimensional motion platform were used to reproduce the target and external respiratory motion, respectively. The target positions were detected by kV (1 Hz) and MV (5.2 Hz) imaging, and external respiratory motion was captured by an optical system (30 Hz). The beam-target alignment error was quantified as the positional difference between the target and circular beam center on the MV images acquired during tracking. The correlation model error was quantified by comparing a model estimate and measured target positions. Results: The root-mean-square errors in the beam-target alignment that had ranged from 3.1 to 7.6 mm without tracking were reduced to <1.5 mm with tracking, except during the model building period (6 s). The root-mean-square error in the correlation model was submillimeters in all directions. Conclusion: A novel real-time target position estimation method was developed and integrated into a dynamic multileaf collimator tracking system and demonstrated an average submillimeter geometric accuracy after initializing the internal/external correlation model. The method used hardware tools available on linear accelerators and therefore shows promise for clinical implementation.

  14. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  15. Apparatus for absolute pressure measurement

    NASA Technical Reports Server (NTRS)

    Hecht, R. (Inventor)

    1969-01-01

    An absolute pressure sensor (e.g., the diaphragm of a capacitance manometer) was subjected to a superimposed potential to effectively reduce the mechanical stiffness of the sensor. This substantially increases the sensitivity of the sensor and is particularly useful in vacuum gauges. An oscillating component of the superimposed potential induced vibrations of the sensor. The phase of these vibrations with respect to that of the oscillating component was monitored, and served to initiate an automatic adjustment of the static component of the superimposed potential, so as to bring the sensor into resonance at the frequency of the oscillating component. This establishes a selected sensitivity for the sensor, since a definite relationship exists between resonant frequency and sensitivity.

  16. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < -1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  17. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  18. On the Error Sources in Absolute Individual Antenna Calibrations

    NASA Astrophysics Data System (ADS)

    Aerts, Wim; Baire, Quentin; Bilich, Andria; Bruyninx, Carine; Legrand, Juliette

    2013-04-01

    The two main methods for antenna calibration currently in use, are anechoic chamber measurements on the one hand and outdoor robot calibration on the other hand. Both techniques differ completely in approach, setup and data processing. Consequently, the error sources for both techniques are totally different as well. Except for the (near field) multi path error, caused by the antenna positioning device, that alters results for both calibration methods. But not necessarily with the same order of magnitude. Literature states a (maximum deviation) repeatability for robot calibration of choke ring antennas of 0.5 mm on L1 and 1 mm on L2 [1]. For anechoic chamber calibration, a value of 1.5 mm on L2 for a resistive ground plane antenna can be found in [2]. Repeatability however masks systematic errors linked with the calibration technique. Hence, comparing an individual calibration obtained with a robot to a calibration of the same antenna in an anechoic chamber, may result in differences that surpass these repeatability thresholds. This was the case at least for all six choke ring antennas studied. The order of magnitude of the differences moreover corresponded well to the values given for a LEIAT504GG in [3]. For some error sources, such as the GNSS receiver measurement noise or the VNA measurement noise, estimates can be obtained from manufacturer specifications in data sheets. For other error sources, such as the finite distance between transmit and receive antenna, or the limited attenuation of reflections on wall absorber, back-of-the-envelope calculations can be made to estimate their order of magnitude. For the error due to (near field) multi path this is harder to do, if not impossible. The more because this strongly depends on the antenna type and its mount. Unfortunately it is, again, this (near field) multi path influence that might void the calibration once the antenna is installed at the station. Hence it can be concluded that at present, due to (near

  19. Estimation of organ doses from kilovoltage cone-beam CT imaging used during radiotherapy patient position verification

    SciTech Connect

    Hyer, Daniel E.; Hintenlang, David E.

    2010-09-15

    Purpose: The purpose of this study was to develop a practical method for estimating organ doses from kilovoltage cone-beam CT (CBCT) that can be performed with readily available phantoms and dosimeters. The accuracy of organ dose estimates made using the ImPACT patient dose calculator was also evaluated. Methods: A 100 mm pencil chamber and standard CT dose index (CTDI) phantoms were used to measure the cone-beam dose index (CBDI). A weighted CBDI (CBDI{sup w}) was then calculated from these measurements to represent the average volumetric dose in the CTDI phantom. By comparing CBDI{sup w} to the previously published organ doses, organ dose conversion coefficients were developed. The measured CBDI values were also used as inputs for the ImPACT calculator to estimate organ doses. All CBDI dose measurements were performed on both the Elekta XVI and Varian OBI at three clinically relevant locations: Head, chest, and pelvis. Results: The head, chest, and pelvis protocols yielded CBDI{sup w} values of 0.98, 16.62, and 24.13 mGy for the XVI system and 5.17, 6.14, and 21.57 mGy for the OBI system, respectively. Organ doses estimated with the ImPACT CT dose calculator showed a large range of variation from the previously measured organ doses, demonstrating its limitations for use with CBCT. Conclusions: The organ dose conversion coefficients developed in this work relate CBDI{sup w} values to organ doses previously measured using the same clinical protocols. Ultimately, these coefficients will allow for the quick estimation of organ doses from routine measurements performed using standard CTDI phantoms and pencil chambers.

  20. A Method to Estimate the Size and Characteristics of HIV-positive Populations Using an Individual-based Stochastic Simulation Model

    PubMed Central

    van Sighem, Ard; Thiebaut, Rodolphe; Smith, Colette; Ratmann, Oliver; Cambiano, Valentina; Albert, Jan; Amato-Gauci, Andrew; Bezemer, Daniela; Campbell, Colin; Commenges, Daniel; Donoghoe, Martin; Ford, Deborah; Kouyos, Roger; Lodwick, Rebecca; Lundgren, Jens; Pantazis, Nikos; Pharris, Anastasia; Quinten, Chantal; Thorne, Claire; Touloumi, Giota; Delpech, Valerie; Phillips, Andrew

    2016-01-01

    It is important not only to collect epidemiologic data on HIV but to also fully utilize such information to understand the epidemic over time and to help inform and monitor the impact of policies and interventions. We describe and apply a novel method to estimate the size and characteristics of HIV-positive populations. The method was applied to data on men who have sex with men living in the UK and to a pseudo dataset to assess performance for different data availability. The individual-based simulation model was calibrated using an approximate Bayesian computation-based approach. In 2013, 48,310 (90% plausibility range: 39,900–45,560) men who have sex with men were estimated to be living with HIV in the UK, of whom 10,400 (6,160–17,350) were undiagnosed. There were an estimated 3,210 (1,730–5,350) infections per year on average between 2010 and 2013. Sixty-two percent of the total HIV-positive population are thought to have viral load <500 copies/ml. In the pseudo-epidemic example, HIV estimates have narrower plausibility ranges and are closer to the true number, the greater the data availability to calibrate the model. We demonstrate that our method can be applied to settings with less data, however plausibility ranges for estimates will be wider to reflect greater uncertainty of the data used to fit the model. PMID:26605814

  1. A Method to Estimate the Size and Characteristics of HIV-positive Populations Using an Individual-based Stochastic Simulation Model.

    PubMed

    Nakagawa, Fumiyo; van Sighem, Ard; Thiebaut, Rodolphe; Smith, Colette; Ratmann, Oliver; Cambiano, Valentina; Albert, Jan; Amato-Gauci, Andrew; Bezemer, Daniela; Campbell, Colin; Commenges, Daniel; Donoghoe, Martin; Ford, Deborah; Kouyos, Roger; Lodwick, Rebecca; Lundgren, Jens; Pantazis, Nikos; Pharris, Anastasia; Quinten, Chantal; Thorne, Claire; Touloumi, Giota; Delpech, Valerie; Phillips, Andrew

    2016-03-01

    It is important not only to collect epidemiologic data on HIV but to also fully utilize such information to understand the epidemic over time and to help inform and monitor the impact of policies and interventions. We describe and apply a novel method to estimate the size and characteristics of HIV-positive populations. The method was applied to data on men who have sex with men living in the UK and to a pseudo dataset to assess performance for different data availability. The individual-based simulation model was calibrated using an approximate Bayesian computation-based approach. In 2013, 48,310 (90% plausibility range: 39,900-45,560) men who have sex with men were estimated to be living with HIV in the UK, of whom 10,400 (6,160-17,350) were undiagnosed. There were an estimated 3,210 (1,730-5,350) infections per year on average between 2010 and 2013. Sixty-two percent of the total HIV-positive population are thought to have viral load <500 copies/ml. In the pseudo-epidemic example, HIV estimates have narrower plausibility ranges and are closer to the true number, the greater the data availability to calibrate the model. We demonstrate that our method can be applied to settings with less data, however plausibility ranges for estimates will be wider to reflect greater uncertainty of the data used to fit the model.

  2. Evaluation of the Absolute Regional Temperature Potential

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.

    2012-01-01

    The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  3. False positive circumsporozoite protein ELISA: a challenge for the estimation of the entomological inoculation rate of malaria and for vector incrimination

    PubMed Central

    2011-01-01

    Background The entomological inoculation rate (EIR) is an important indicator in estimating malaria transmission and the impact of vector control. To assess the EIR, the enzyme-linked immunosorbent assay (ELISA) to detect the circumsporozoite protein (CSP) is increasingly used. However, several studies have reported false positive results in this ELISA. The false positive results could lead to an overestimation of the EIR. The aim of present study was to estimate the level of false positivity among different anopheline species in Cambodia and Vietnam and to check for the presence of other parasites that might interact with the anti-CSP monoclonal antibodies. Methods Mosquitoes collected in Cambodia and Vietnam were identified and tested for the presence of sporozoites in head and thorax by using CSP-ELISA. ELISA positive samples were confirmed by a Plasmodium specific PCR. False positive mosquitoes were checked by PCR for the presence of parasites belonging to the Haemosporidia, Trypanosomatidae, Piroplasmida, and Haemogregarines. The heat-stability and the presence of the cross-reacting antigen in the abdomen of the mosquitoes were also checked. Results Specimens (N = 16,160) of seven anopheline species were tested by CSP-ELISA for Plasmodium falciparum and Plasmodium vivax (Pv210 and Pv247). Two new vector species were identified for the region: Anopheles pampanai (P. vivax) and Anopheles barbirostris (Plasmodium malariae). In 88% (155/176) of the mosquitoes found positive with the P. falciparum CSP-ELISA, the presence of Plasmodium sporozoites could not be confirmed by PCR. This percentage was much lower (28% or 5/18) for P. vivax CSP-ELISAs. False positive CSP-ELISA results were associated with zoophilic mosquito species. None of the targeted parasites could be detected in these CSP-ELISA false positive mosquitoes. The ELISA reacting antigen of P. falciparum was heat-stable in CSP-ELISA true positive specimens, but not in the false positives. The heat

  4. Method and apparatus for two-dimensional absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2004-01-01

    This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.

  5. Estimation of gamma-hydroxybutyrate (GHB) co-consumption in serum samples of drivers positive for amphetamine or ecstasy.

    PubMed

    Lott, S; Musshoff, F; Madea, B

    2012-09-10

    There is no toxicological analysis of gamma-hydroxybutyrate (GHB) applied routinely in cases of driving under influence (DUI); therefore the extent of consumption of this drug might be underestimated. Its consumption is described as occurring often concurrently with amphetamine or ecstasy. This study examines 196 serum samples which were collected by police during road side testing for GHB. The samples subject to this study have already been found to be positive for amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA) and/or 3,4-methylenedioxyethamphetamine (MDEA). Analysis has been performed by LC/MS/MS in the multiple reaction monitoring (MRM) mode. Due to its polarity, chromatographic separation of GHB was achieved by a HILIC column. To differentiate endogenous and exogenous levels of GHB, a cut-off concentration of 4μg/ml was applied. Of the 196 samples, two have been found to be positive for GHB. Of these samples, one sample was also positive for amphetamine and one for MDMA. Whilst other amphetamine derivates were not detected in these samples, both samples were found to be positive for cannabinoids. These results suggest that co-consumption of GHB with amphetamine or ecstasy is relatively low (1%) for the collective of this study.

  6. Phylotranscriptomics: Saturated Third Codon Positions Radically Influence the Estimation of Trees Based on Next-Gen Data

    PubMed Central

    Breinholt, Jesse W.; Kawahara, Akito Y.

    2013-01-01

    Recent advancements in molecular sequencing techniques have led to a surge in the number of phylogenetic studies that incorporate large amounts of genetic data. We test the assumption that analyzing large number of genes will lead to improvements in tree resolution and branch support using moths in the superfamily Bombycoidea, a group with some interfamilial relationships that have been difficult to resolve. Specifically, we use a next-gen data set that included 19 taxa and 938 genes (∼1.2M bp) to examine how codon position and saturation might influence resolution and node support among three key families. Maximum likelihood, parsimony, and species tree analysis using gene tree parsimony, on different nucleotide and amino acid data sets, resulted in largely congruent topologies with high bootstrap support compared with prior studies that included fewer loci. However, for a few shallow nodes, nucleotide and amino acid data provided high support for conflicting relationships. The third codon position was saturated and phylogenetic analysis of this position alone supported a completely different, potentially misleading sister group relationship. We used the program RADICAL to assess the number of genes needed to fix some of these difficult nodes. One such node originally needed a total of 850 genes but only required 250 when synonymous signal was removed. Our study shows that, in order to effectively use next-gen data to correctly resolve difficult phylogenetic relationships, it is necessary to assess the effects of synonymous substitutions and third codon positions. PMID:24148944

  7. Use of oviduct-inserted acoustic transmitters and positional telemetry to estimate timing and location of spawning: a feasibility study in lake trout, Salvelinus namaycush

    USGS Publications Warehouse

    Binder, Thomas R.; Holbrook, Christopher M.; Miehls, Scott M.; Thompson, Henry T.; Krueger, Charles C.

    2014-01-01

    Our results satisfied the three assumptions of oviduct tagging and suggested that oviduct transmitters can be used with positional telemetry to estimate time and location of spawning in lake trout and other species. In situations where oviduct transmitters may be difficult to position once expelled into substrate, pairing oviduct transmitters with a normal-sized fish transmitter that remains in the fish is recommended, with spawning inferred when the two tags separate in space. Optimal transmitter delay will depend on expected degree of spawning site residency and swim speed.

  8. Population-based Estimate of the Prevalence of HER-2 Positive Breast Cancer Tumors for Early Stage Patients in the US

    PubMed Central

    Cronin, Kathleen A.; Harlan, Linda C.; Dodd, Kevin W.; Abrams, Jeffrey S.; Ballard-Barbash, Rachel

    2010-01-01

    The goal of this study was to estimate prevalence of HER-2 positive tumors in a population-based sample of 1026 women diagnosed in 2005 with early stage breast cancer. We modeled the relationship between patient and tumor characteristics and HER-2. HER-2 positive estimates were 19% for women aged ≤49 years and 15% aged ≥50 years. HER-2 varied by tumor grade and size in women aged ≤49 years but was not significant in multivariate analysis. Tumor grade and race were associated with HER-2 for women aged ≥50 years after controlling for other variables. HER-2 varies by age and by race and tumor in older women. PMID:20690807

  9. Experimental analysis and modelling of positive streamer in air: towards an estimation of O and N radical production

    NASA Astrophysics Data System (ADS)

    Eichwald, O.; Ducasse, O.; Dubois, D.; Abahazem, A.; Merbahi, N.; Benhenni, M.; Yousfi, M.

    2008-12-01

    This paper is mainly devoted to the comparison between the calculation and experimental results of primary and secondary streamer development in a point-to-plane positive corona discharge in dry air at atmospheric pressure. The qualitative agreement between experimental and calculation results based on the hydrodynamics approximation shows that the O radical is mainly produced in the secondary streamer which is in good agreement with the recent literature measurements using TALIF diagnostics. However, the O radical production yield (in terms of radicals produced per energy injected) is more efficient in the primary streamer than in the secondary one. The main positive corona discharge characteristics are revisited using fast electrical and optical ICCD and streak camera measurements. The calculation shows two streamer radii of, respectively, 10 µm (associated with the radial extension of a high electron density region) and 200 µm (corresponding to the extension of the radial space charge electric field).

  10. Frequency-domain analysis of absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Svitlov, S.

    2012-12-01

    An absolute gravimeter is analysed as a linear time-invariant system in the frequency domain. Frequency responses of absolute gravimeters are derived analytically based on the propagation of the complex exponential signal through their linear measurement functions. Depending on the model of motion and the number of time-distance coordinates, an absolute gravimeter is considered as a second-order (three-level scheme) or third-order (multiple-level scheme) low-pass filter. It is shown that the behaviour of an atom absolute gravimeter in the frequency domain corresponds to that of the three-level corner-cube absolute gravimeter. Theoretical results are applied for evaluation of random and systematic measurement errors and optimization of an experiment. The developed theory agrees with known results of an absolute gravimeter analysis in the time and frequency domains and can be used for measurement uncertainty analyses, building of vibration-isolation systems and synthesis of digital filtering algorithms.

  11. Position-dependent velocity of an effective temperature point for the estimation of the thermal diffusivity of solids

    NASA Astrophysics Data System (ADS)

    Balachandar, Settu; Shivaprakash, N. C.; Kameswara Rao, L.

    2016-01-01

    A new approach is proposed to estimate the thermal diffusivity of optically transparent solids at ambient temperature based on the velocity of an effective temperature point (ETP), and by using a two-beam interferometer the proposed concept is corroborated. 1D unsteady heat flow via step-temperature excitation is interpreted as a ‘micro-scale rectilinear translatory motion’ of an ETP. The velocity dependent function is extracted by revisiting the Fourier heat diffusion equation. The relationship between the velocity of the ETP with thermal diffusivity is modeled using a standard solution. Under optimized thermal excitation, the product of the ‘velocity of the ETP’ and the distance is a new constitutive equation for the thermal diffusivity of the solid. The experimental approach involves the establishment of a 1D unsteady heat flow inside the sample through step-temperature excitation. In the moving isothermal surfaces, the ETP is identified using a two-beam interferometer. The arrival-time of the ETP to reach a fixed distance away from heat source is measured, and its velocity is calculated. The velocity of the ETP and a given distance is sufficient to estimate the thermal diffusivity of a solid. The proposed method is experimentally verified for BK7 glass samples and the measured results are found to match closely with the reported value.

  12. Absolute and Comparative Cancer Risk Perceptions Among Smokers in Two Cities in China

    PubMed Central

    2014-01-01

    Introduction: Knowledge about health effects of smoking motivates quit attempts and sustained abstinence among smokers and also predicts greater acceptance of tobacco control efforts such as cigarette taxes and public smoking bans. We examined whether smokers in China, the world’s largest consumer of cigarettes, recognized their heightened personal risk of cancer relative to nonsmokers. Methods: A sample of Chinese people (N = 2,517; 555 current smokers) from 2 cities (Beijing and Hefei) estimated their personal risk of developing cancer, both in absolute terms (overall likelihood) and in comparative terms (relative to similarly aged people). Results: Controlling for demographics, smokers judged themselves to be at significantly lower risk of cancer than did nonsmokers on the comparative measure. No significant difference emerged between smokers and nonsmokers in absolute estimates. Conclusions: Smokers in China did not recognize their heightened personal risk of cancer, possibly reflecting ineffective warning labels on cigarette packs, a positive affective climate associated with smoking in China, and beliefs that downplay personal vulnerability among smokers (e.g., I don’t smoke enough to increase my cancer risk; I smoke high-quality cigarettes that won’t cause cancer). PMID:24668289

  13. [The usefulness of pantomographic x-ray pictures in estimating the position of the paramolar and distomolar teeth].

    PubMed

    Dojs, Michał; Roicka, Anna

    2007-01-01

    If there are more than 32 teeth in the oral cavity, they are called supernumerous teeth. Distomolars are the fourth molar teeth, in the distal position to the wisdom teeth. Though, paramolars are the supernumerous teeth situated beside the molars. Correct diagnosis of supernumerous teeth is not always easy to conduct basing on pantomographic x-ray pictures. Obtained results indicate that unerupted distomolar teeth are easily found with pantomographic x-ray pictures while the exact localization of unerupted paramolars requires additional x-ray pictures. PMID:18561616

  14. The role of segmentation in prospective and retrospective time estimation processes.

    PubMed

    Zakay, D; Tsal, Y; Moses, M; Shahar, I

    1994-05-01

    In five experiments, we investigated the effects of the segmentation level of an interval on its perceived duration. A prospective paradigm and an absolute time estimation method were used in two experiments, and in two others we used a retrospective paradigm and a comparative estimation method. A positive relationship was obtained between segmentation level of the estimated interval and its perceived duration under retrospective-comparative conditions for both auditory and tactual stimuli, but no relationship was found under prospective-absolute conditions. The paradigm, estimation method, and segmentation level were jointly manipulated in the fifth experiment. The impact of segmentation was significant under retrospective (both absolute and comparative) and close to significant under prospective-comparative conditions. These findings suggest that high-priority events are perceived and coded as contextual changes and that the impact of segmentation on time estimation is mediated by memory processes.

  15. Frequency and predictors of estimated HIV transmissions and bacterial STI acquisition among HIV-positive patients in HIV care across three continents

    PubMed Central

    Safren, Steven A; Hughes, James P; Mimiaga, Matthew J; Moore, Ayana T; Friedman, Ruth Khalili; Srithanaviboonchai, Kriengkrai; Limbada, Mohammed; Williamson, Brian D; Elharrar, Vanessa; Cummings, Vanessa; Magidson, Jessica F; Gaydos, Charlotte A; Celentano, David D; Mayer, Kenneth H

    2016-01-01

    Introduction Successful global treatment as prevention (TasP) requires identifying HIV-positive individuals at high risk for transmitting HIV, and having impact via potential infections averted. This study estimated the frequency and predictors of numbers of HIV transmissions and bacterial sexually transmitted infection (STI) acquisition among sexually active HIV-positive individuals in care from three representative global settings. Methods HIV-positive individuals (n=749), including heterosexual men, heterosexual women and men who have sex with men (MSM) in HIV care, were recruited from Chiang Mai (Thailand), Rio De Janeiro (Brazil) and Lusaka (Zambia). Participants were assessed on HIV and STI sexual transmission risk variables, psychosocial characteristics and bacterial STIs at enrolment and quarterly for 12 months (covering 15 months). Estimated numbers of HIV transmissions per person were calculated using reported numbers of partners and sex acts together with estimates of HIV transmissibility, accounting for ART treatment and condom use. Results An estimated 3.81 (standard error, (SE)=0.63) HIV transmissions occurred for every 100 participants over the 15 months, which decreased over time. The highest rate was 19.50 (SE=1.68) for every 100 MSM in Brazil. In a multivariable model, country×risk group interactions emerged: in Brazil, MSM had 2.85 (95% CI=1.45, 4.25, p<0.0001) more estimated transmissions than heterosexual men and 3.37 (95% CI=2.01, 4.74, p<0.0001) more than heterosexual women over the 15 months. For MSM and heterosexual women, the combined 12-month STI incidence rate for the sample was 22.4% (95% CI=18.1%, 27.3%; incidence deemed negligible in heterosexual men). In the multivariable model, MSM had 12.3 times greater odds (95% CI=4.44, 33.98) of acquiring an STI than women, but this was not significant in Brazil. Higher alcohol use on the Alcohol Use Disorders Identification Test (OR=1.04, 95% CI=1.01, 1.08) was also significantly associated

  16. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  17. Preschoolers' Success at Coding Absolute Size Values.

    ERIC Educational Resources Information Center

    Russell, James

    1980-01-01

    Forty-five 2-year-old and forty-five 3-year-old children coded relative and absolute sizes using 1.5-inch, 6-inch, and 18-inch cardboard squares. Results indicate that absolute coding is possible for children of this age. (Author/RH)

  18. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  19. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  20. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  1. BeiDou phase bias estimation and its application in precise point positioning with triple-frequency observable

    NASA Astrophysics Data System (ADS)

    Gu, Shengfeng; Lou, Yidong; Shi, Chuang; Liu, Jingnan

    2015-10-01

    At present, the BeiDou system (BDS) enables the practical application of triple-frequency observable in the Asia-Pacific region, of many possible benefits from the additional signal; this study focuses on exploiting the contribution of zero difference (ZD) ambiguity resolution (AR) to the precise point positioning (PPP). A general modeling strategy for multi-frequency PPP AR is presented, in which, the least squares ambiguity decorrelation adjustment (LAMBDA) method is employed in ambiguity fixing based on the full variance-covariance ambiguity matrix generated from the raw data processing model. Because of the reliable fixing of BDS L1 ambiguity faces more difficulty, the LAMBDA method with partial ambiguity fixing is proposed to enable the independent and instantaneous resolution of extra wide-lane (EWL) and wide-lane (WL). This mechanism of sequential ambiguity fixing is demonstrated for resolving ZD satellite phase bias and performing triple-frequency PPP AR with two reference station networks with a typical baseline of up to 400 and 800 km, respectively. Tests show that about of the EWL and WL phase bias of BDS has a consistency of better than 0.1 cycle, and this value decreases to 80 % for L1 phase bias for Experiment I, while all the solutions of Experiment II have a similar RMS of about 0.12 cycles. In addition, the repeatability of the daily mean phase bias agree to 0.093 cycles and 0.095 cycles for EWL and WL on average, which is much smaller than 0.20 cycles of L1. To assess the improvement of fixed PPP brought by applying the third frequency signal as well as the above phase bias, various ambiguity fixing strategy are considered in the numerical demonstration. It is shown that the impact of the additional signal is almost negligible when only float solution involved. It is also shown that by fixing EWL and WL together, as opposed to the single ambiguity fixing, will leads to an improvement in PPP accuracy by about on average. Attributed to the efficient

  2. Impact of Helminth Diagnostic Test Performance on Estimation of Risk Factors and Outcomes in HIV-Positive Adults

    PubMed Central

    Arndt, Michael B.; John-Stewart, Grace; Richardson, Barbra A.; Singa, Benson; van Lieshout, Lisette; Verweij, Jaco J.; Sangaré, Laura R.; Mbogo, Loice W.; Naulikha, Jacqueline M.; Walson, Judd L.

    2013-01-01

    Background Traditional methods using microscopy for the detection of helminth infections have limited sensitivity. Polymerase chain reaction (PCR) assays enhance detection of helminths, particularly low burden infections. However, differences in test performance may modify the ability to detect associations between helminth infection, risk factors, and sequelae. We compared these associations using microscopy and PCR. Methods This cross-sectional study was nested within a randomized clinical trial conducted at 3 sites in Kenya. We performed microscopy and real-time multiplex PCR for the stool detection and quantification of Ascaris lumbricoides, Necator americanus, Ancylostoma duodenale, Strongyloides stercoralis, and Schistosoma species. We utilized regression to evaluate associations between potential risk factors or outcomes and infection as detected by either method. Results Of 153 HIV-positive adults surveyed, 55(36.0%) and 20(13.1%) were positive for one or more helminth species by PCR and microscopy, respectively (p<0.001). PCR-detected infections were associated with farming (Prevalence Ratio 1.57, 95% CI: 1.02, 2.40), communal water source (PR 3.80, 95% CI: 1.01, 14.27), and no primary education (PR 1.54, 95% CI: 1.14, 2.33), whereas microscopy-detected infections were not associated with any risk factors under investigation. Microscopy-detected infections were associated with significantly lower hematocrit and hemoglobin (means of -3.56% and -0.77 g/dl) and a 48% higher risk of anemia (PR 1.48, 95% CI: 1.17, 1.88) compared to uninfected. Such associations were absent for PCR-detected infections unless infection intensity was considered, Infections diagnosed with either method were associated with increased risk of eosinophilia (PCR PR 2.42, 95% CI: 1.02, 5.76; microscopy PR 2.92, 95% CI: 1.29, 6.60). Conclusion Newer diagnostic methods, including PCR, improve the detection of helminth infections. This heightened sensitivity may improve the identification

  3. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  4. Estimating the prevalence of active Helicobacter pylori infection in a rural community with global positioning system technology-assisted sampling.

    PubMed

    Melius, E J; Davis, S I; Redd, J T; Lewin, M; Herlihy, R; Henderson, A; Sobel, J; Gold, B; Cheek, J E

    2013-03-01

    We investigated a possible outbreak of H. pylori in a rural Northern Plains community. In a cross-sectional survey, we randomly sampled 244 households from a geocoded emergency medical system database. We used a complex survey design and global positioning system units to locate houses and randomly selected one eligible household member to administer a questionnaire and a 13C-urea breath test for active H. pylori infection (n = 166). In weighted analyses, active H. pylori infection was detected in 55·0% of the sample. Factors associated with infection on multivariate analysis included using a public drinking-water supply [odds ratio (OR) 12·2, 95% confidence interval (CI) 2·9-50·7] and current cigarette smoking (OR 4·1, 95% CI 1·7-9·6). People who lived in houses with more rooms, a possible indicator of decreased crowding in the home, were less likely to have active H. pylori infections (OR 0·7, 95% CI 0·5-0·9 for each additional room).

  5. Using informative Multinomial-Dirichlet prior in a t-mixture with reversible jump estimation of nucleosome positions for genome-wide profiling.

    PubMed

    Samb, Rawane; Khadraoui, Khader; Belleau, Pascal; Deschênes, Astrid; Lakhal-Chaieb, Lajmi; Droit, Arnaud

    2015-12-01

    Genome-wide mapping of nucleosomes has revealed a great deal about the relationships between chromatin structure and control of gene expression. Recent next generation CHIP-chip and CHIP-Seq technologies have accelerated our understanding of basic principles of chromatin organization. These technologies have taught us that nucleosomes play a crucial role in gene regulation by allowing physical access to transcription factors. Recent methods and experimental advancements allow the determination of nucleosome positions for a given genome area. However, most of these methods estimate the number of nucleosomes either by an EM algorithm using a BIC criterion or an effective heuristic strategy. Here, we introduce a Bayesian method for identifying nucleosome positions. The proposed model is based on a Multinomial-Dirichlet classification and a hierarchical mixture distributions. The number and the positions of nucleosomes are estimated using a reversible jump Markov chain Monte Carlo simulation technique. We compare the performance of our method on simulated data and MNase-Seq data from Saccharomyces cerevisiae against PING and NOrMAL methods.

  6. Using informative Multinomial-Dirichlet prior in a t-mixture with reversible jump estimation of nucleosome positions for genome-wide profiling.

    PubMed

    Samb, Rawane; Khadraoui, Khader; Belleau, Pascal; Deschênes, Astrid; Lakhal-Chaieb, Lajmi; Droit, Arnaud

    2015-12-01

    Genome-wide mapping of nucleosomes has revealed a great deal about the relationships between chromatin structure and control of gene expression. Recent next generation CHIP-chip and CHIP-Seq technologies have accelerated our understanding of basic principles of chromatin organization. These technologies have taught us that nucleosomes play a crucial role in gene regulation by allowing physical access to transcription factors. Recent methods and experimental advancements allow the determination of nucleosome positions for a given genome area. However, most of these methods estimate the number of nucleosomes either by an EM algorithm using a BIC criterion or an effective heuristic strategy. Here, we introduce a Bayesian method for identifying nucleosome positions. The proposed model is based on a Multinomial-Dirichlet classification and a hierarchical mixture distributions. The number and the positions of nucleosomes are estimated using a reversible jump Markov chain Monte Carlo simulation technique. We compare the performance of our method on simulated data and MNase-Seq data from Saccharomyces cerevisiae against PING and NOrMAL methods. PMID:26656614

  7. Quantitative estimation of muscle shear elastic modulus of the upper trapezius with supersonic shear imaging during arm positioning.

    PubMed

    Leong, Hio-Teng; Ng, Gabriel Yin-Fat; Leung, Vivian Yee-Fong; Fu, Siu Ngor

    2013-01-01

    Pain and tenderness of the upper trapezius are the major complaints among people with chronic neck and shoulder disorders. Hyper-activation and increased muscle tension of the upper trapezius during arm elevation will cause imbalance of the scapular muscle force and contribute to neck and shoulder disorders. Assessing the elasticity of the upper trapezius in different arm positions is therefore important for identifying people at risk so as to give preventive programmes or for monitoring the effectiveness of the intervention programmes for these disorders. This study aimed to establish the reliability of supersonic shear imaging (SSI) in quantifying upper trapezius elasticity/shear elastic modulus and its ability to measure the modulation of muscle elasticity during arm elevation. Twenty-eight healthy adults (15 males, 13 females; mean age = 29.6 years) were recruited to participate in the study. In each participant, the shear elastic modulus of the upper trapezius while the arm was at rest and at 30° abduction was measured by two operators and twice by operator 1 with a time interval between the measurements. The results showed excellent within- and between-session intra-operator (ICC = 0.87-0.97) and inter-observer (ICC = 0.78-0.83) reliability for the upper trapezius elasticity with the arm at rest and at 30° abduction. An increase of 55.23% of shear elastic modulus from resting to 30° abduction was observed. Our findings demonstrate the possibilities for using SSI to quantify muscle elasticity and its potential role in delineating the modulation of upper trapezius elasticity, which is essential for future studies to compare the differences in shear elastic modulus between normal elasticity and that of individuals with neck and shoulder disorders.

  8. Muscle Activation and Estimated Relative Joint Force During Running with Weight Support on a Lower-Body Positive-Pressure Treadmill.

    PubMed

    Jensen, Bente R; Hovgaard-Hansen, Line; Cappelen, Katrine L

    2016-08-01

    Running on a lower-body positive-pressure (LBPP) treadmill allows effects of weight support on leg muscle activation to be assessed systematically, and has the potential to facilitate rehabilitation and prevent overloading. The aim was to study the effect of running with weight support on leg muscle activation and to estimate relative knee and ankle joint forces. Runners performed 6-min running sessions at 2.22 m/s and 3.33 m/s, at 100%, 80%, 60%, 40%, and 20% body weight (BW). Surface electromyography, ground reaction force, and running characteristics were measured. Relative knee and ankle joint forces were estimated. Leg muscles responded differently to unweighting during running, reflecting different relative contribution to propulsion and antigravity forces. At 20% BW, knee extensor EMGpeak decreased to 22% at 2.22 m/s and 28% at 3.33 m/s of 100% BW values. Plantar flexors decreased to 52% and 58% at 20% BW, while activity of biceps femoris muscle remained unchanged. Unweighting with LBPP reduced estimated joint force significantly although less than proportional to the degree of weight support (ankle). It was concluded that leg muscle activation adapted to the new biomechanical environment, and the effect of unweighting on estimated knee force was more pronounced than on ankle force.

  9. Mini-implants and miniplates generate sub-absolute and absolute anchorage

    PubMed Central

    Consolaro, Alberto

    2014-01-01

    The functional demand imposed on bone promotes changes in the spatial properties of osteocytes as well as in their extensions uniformly distributed throughout the mineralized surface. Once spatial deformation is established, osteocytes create the need for structural adaptations that result in bone formation and resorption that happen to meet the functional demands. The endosteum and the periosteum are the effectors responsible for stimulating adaptive osteocytes in the inner and outer surfaces.Changes in shape, volume and position of the jaws as a result of skeletal correction of the maxilla and mandible require anchorage to allow bone remodeling to redefine morphology, esthetics and function as a result of spatial deformation conducted by orthodontic appliances. Examining the degree of changes in shape, volume and structural relationship of areas where mini-implants and miniplates are placed allows us to classify mini-implants as devices of subabsolute anchorage and miniplates as devices of absolute anchorage. PMID:25162561

  10. Intensity of amnesia during hypnosis is positively correlated with estimated prevalence of sexual abuse and alien abductions: implications for the false memory syndrome.

    PubMed

    Dittburner, T L; Persinger, M A

    1993-12-01

    20 normal young women listened to an ambiguous story concerning a young boy who experienced fear, odd smells, and a smothering sensation during the night and skin lesions the next morning. After the Hypnotic Induction Profile (HIP) had been established, they were asked to estimate either the percentage prevalence of childhood sexual abuse or alien abduction in the general population. There were moderate (0.50) positive correlations between the subjects' estimates of prevalence and the amount of amnesia ("lost time") and indices of right-hemispheric anomalies (history of sensed presence and left-ear suppressions during a dichotic-listening task). Relevance of observations to formation of the False Memory Syndrome and to the development of nonpsychotic delusions is discussed.

  11. Absolute Plate Velocities from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kreemer, Corné; Zheng, Lin; Gordon, Richard

    2015-04-01

    The orientation of seismic anisotropy inferred beneath plate interiors may provide a means to estimate the motions of the plate relative to the sub-asthenospheric mantle. Here we analyze two global sets of shear-wave splitting data, that of Kreemer [2009] and an updated and expanded data set, to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. We also explore the effect of using geologically current plate velocities (i.e., the MORVEL set of angular velocities [DeMets et al. 2010]) compared with geodetically current plate velocities (i.e., the GSRM v1.2 angular velocities [Kreemer et al. 2014]). We demonstrate that the errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. The SKS-MORVEL absolute plate angular velocities (based on the Kreemer [2009] data set) are determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11° Ma-1 (95% confidence limits) right-handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2° ) differs insignificantly from that for continental lithosphere (σ=21.6° ). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4° ) than for continental

  12. Line-ratio determination of atomic oxygen and N_2(A\\,{}^3\\Sigma_u^+) metastable absolute densities in an RF nitrogen late afterglow

    NASA Astrophysics Data System (ADS)

    Ricard, André; Oh, Soo-ghee; Guerra, Vasco

    2013-06-01

    Optical emission spectroscopy line-ratio methods are developed in order to estimate the absolute densities of nitrogen and oxygen atoms and metastable N2(A) molecules in the nitrogen late afterglow of an RF discharge, operating at p = 8 Torr, Q = 1 slm and P = 100 W, in what constitutes an extension of the typical domain of application of these methods. [N] is obtained from the first positive (1+) emission with calibration by NO titration, [O] from the ratio of the NOβ to 1+ bands, and [N2(A)] from the ratios of (i) the NOγ and NOβ bands, (ii) the second positive (2+) and NOβ bands and (iii) the 1+ and 2+ bands. In addition to the determination of the N, O and N2(A) absolute densities, the present investigation gives an indication on the order of magnitude of the rate coefficient of the very important reaction N2(X, v ⩾ 13) + O → NO + N at room temperature.

  13. First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University.

    PubMed

    Hu, Zhigang; Zhao, Qile; Chen, Guo; Wang, Guangxing; Dai, Zhiqiang; Li, Tao

    2015-11-13

    GNSS receiver antenna phase center variations (PCVs), which arise from the non-spherical phase response of GNSS signals have to be well corrected for high-precision GNSS applications. Without using a precise antenna phase center correction (PCC) model, the estimated position of a station monument will lead to a bias of up to several centimeters. The Chinese large-scale research project "Crustal Movement Observation Network of China" (CMONOC), which requires high-precision positions in a comprehensive GPS observational network motived establishment of a set of absolute field calibrations of the GPS receiver antenna located at Wuhan University. In this paper the calibration facilities are firstly introduced and then the multipath elimination and PCV estimation strategies currently used are elaborated. The validation of estimated PCV values of test antenna are finally conducted, compared with the International GNSS Service (IGS) type values. Examples of TRM57971.00 NONE antenna calibrations from our calibration facility demonstrate that the derived PCVs and IGS type mean values agree at the 1 mm level.

  14. First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University

    PubMed Central

    Hu, Zhigang; Zhao, Qile; Chen, Guo; Wang, Guangxing; Dai, Zhiqiang; Li, Tao

    2015-01-01

    GNSS receiver antenna phase center variations (PCVs), which arise from the non-spherical phase response of GNSS signals have to be well corrected for high-precision GNSS applications. Without using a precise antenna phase center correction (PCC) model, the estimated position of a station monument will lead to a bias of up to several centimeters. The Chinese large-scale research project “Crustal Movement Observation Network of China” (CMONOC), which requires high-precision positions in a comprehensive GPS observational network motived establishment of a set of absolute field calibrations of the GPS receiver antenna located at Wuhan University. In this paper the calibration facilities are firstly introduced and then the multipath elimination and PCV estimation strategies currently used are elaborated. The validation of estimated PCV values of test antenna are finally conducted, compared with the International GNSS Service (IGS) type values. Examples of TRM57971.00 NONE antenna calibrations from our calibration facility demonstrate that the derived PCVs and IGS type mean values agree at the 1 mm level. PMID:26580616

  15. Toward robust deconvolution of pass-through paleomagnetic measurements: new tool to estimate magnetometer sensor response and laser interferometry of sample positioning accuracy

    NASA Astrophysics Data System (ADS)

    Oda, Hirokuni; Xuan, Chuang; Yamamoto, Yuhji

    2016-07-01

    Pass-through superconducting rock magnetometers (SRM) offer rapid and high-precision remanence measurements for continuous samples that are essential for modern paleomagnetism studies. However, continuous SRM measurements are inevitably smoothed and distorted due to the convolution effect of SRM sensor response. Deconvolution is necessary to restore accurate magnetization from pass-through SRM data, and robust deconvolution requires reliable estimate of SRM sensor response as well as understanding of uncertainties associated with the SRM measurement system. In this paper, we use the SRM at Kochi Core Center (KCC), Japan, as an example to introduce new tool and procedure for accurate and efficient estimate of SRM sensor response. To quantify uncertainties associated with the SRM measurement due to track positioning errors and test their effects on deconvolution, we employed laser interferometry for precise monitoring of track positions both with and without placing a u-channel sample on the SRM tray. The acquired KCC SRM sensor response shows significant cross-term of Z-axis magnetization on the X-axis pick-up coil and full widths of ~46-54 mm at half-maximum response for the three pick-up coils, which are significantly narrower than those (~73-80 mm) for the liquid He-free SRM at Oregon State University. Laser interferometry measurements on the KCC SRM tracking system indicate positioning uncertainties of ~0.1-0.2 and ~0.5 mm for tracking with and without u-channel sample on the tray, respectively. Positioning errors appear to have reproducible components of up to ~0.5 mm possibly due to patterns or damages on tray surface or rope used for the tracking system. Deconvolution of 50,000 simulated measurement data with realistic error introduced based on the position uncertainties indicates that although the SRM tracking system has recognizable positioning uncertainties, they do not significantly debilitate the use of deconvolution to accurately restore high

  16. Trends in absolute socioeconomic inequalities in mortality in Sweden and New Zealand. A 20-year gender perspective

    PubMed Central

    Wamala, Sarah; Blakely, Tony; Atkinson, June

    2006-01-01

    Background Both trends in socioeconomic inequalities in mortality, and cross-country comparisons, may give more information about the causes of health inequalities. We analysed trends in socioeconomic differentials by mortality from early 1980s to late 1990s, comparing Sweden with New Zealand. Methods The New Zealand Census Mortality Study (NZCMS) consisting of over 2 million individuals and the Swedish Survey of Living Conditions (ULF) comprising over 100, 000 individuals were used for analyses. Education and household income were used as measures of socioeconomic position (SEP). The slope index of inequality (SII) was calculated to estimate absolute inequalities in mortality. Analyses were based on 3–5 year follow-up and limited to individuals aged 25–77 years. Age standardised mortality rates were calculated using the European population standard. Results Absolute inequalities in mortality on average over the 1980s and 1990s for both men and women by education were similar in Sweden and New Zealand, but by income were greater in Sweden. Comparing trends in absolute inequalities over the 1980s and 1990s, men's absolute inequalities by education decreased by 66% in Sweden and by 17% in New Zealand (p for trend <0.01 in both countries). Women's absolute inequalities by education decreased by 19% in Sweden (p = 0.03) and by 8% in New Zealand (p = 0.53). Men's absolute inequalities by income decreased by 51% in Sweden (p for trend = 0.06), but increased by 16% in New Zealand (p = 0.13). Women's absolute inequalities by income increased in both countries: 12% in Sweden (p = 0.03) and 21% in New Zealand (p = 0.04). Conclusion Trends in socioeconomic inequalities in mortality were clearly most favourable for men in Sweden. Trends also seemed to be more favourable for men than women in New Zealand. Assuming the trends in male inequalities in Sweden were not a statistical chance finding, it is not clear what the substantive reason(s) was for the pronounced decrease

  17. Absolute magnitudes of trans-neptunian objects

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.

    2015-10-01

    Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.

  18. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  19. The Simplicity Argument and Absolute Morality

    ERIC Educational Resources Information Center

    Mijuskovic, Ben

    1975-01-01

    In this paper the author has maintained that there is a similarity of thought to be found in the writings of Cudworth, Emerson, and Husserl in his investigation of an absolute system of morality. (Author/RK)

  20. Analytical estimation of emission zone mean position and width in organic light-emitting diodes from emission pattern image-source interference fringes

    SciTech Connect

    Epstein, Ariel Tessler, Nir Einziger, Pinchas D.; Roberts, Matthew

    2014-06-14

    We present an analytical method for evaluating the first and second moments of the effective exciton spatial distribution in organic light-emitting diodes (OLED) from measured emission patterns. Specifically, the suggested algorithm estimates the emission zone mean position and width, respectively, from two distinct features of the pattern produced by interference between the emission sources and their images (induced by the reflective cathode): the angles in which interference extrema are observed, and the prominence of interference fringes. The relations between these parameters are derived rigorously for a general OLED structure, indicating that extrema angles are related to the mean position of the radiating excitons via Bragg's condition, and the spatial broadening is related to the attenuation of the image-source interference prominence due to an averaging effect. The method is applied successfully both on simulated emission patterns and on experimental data, exhibiting a very good agreement with the results obtained by numerical techniques. We investigate the method performance in detail, showing that it is capable of producing accurate estimations for a wide range of source-cathode separation distances, provided that the measured spectral interval is large enough; guidelines for achieving reliable evaluations are deduced from these results as well. As opposed to numerical fitting tools employed to perform similar tasks to date, our approximate method explicitly utilizes physical intuition and requires far less computational effort (no fitting is involved). Hence, applications that do not require highly resolved estimations, e.g., preliminary design and production-line verification, can benefit substantially from the analytical algorithm, when applicable. This introduces a novel set of efficient tools for OLED engineering, highly important in the view of the crucial role the exciton distribution plays in determining the device performance.

  1. GNSS Absolute Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.; Geoghegan, C.

    2011-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and compare absolute calibrations to the traditional NGS relative calibrations.

  2. Absolute determination of radiation bursts and of proportional counters space charge effect through the influence method

    NASA Astrophysics Data System (ADS)

    Rios, I. J.; Mayer, R. E.

    2016-11-01

    When proportional counters are employed in charge integration mode to determine the magnitude of a radiation pulse, so intense that individual detection events take place in a time too short to produce individual output pulses, mostly in pulsed neutron sources, the strong build-up of positive space charge reduces the electric multiplication factor of the proportional detector. Under such conditions the ensuing measurement underestimates the amount of radiation that interacted with the detector. If the geometric characteristics, the filling gas pressure and the voltage applied to that detector are known, it becomes possible to apply an analytical correction method to the measurement. In this article we present a method that allows to determine the absolute value of the detected radiation burst without the need to know the characteristics of the employed detectors. It is necessary to employ more than one detector, taking advantage of the Influence Method. The "Influence Method" is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency and without the need to register coincidences of any kind. This method exploits the influence of the presence of one detector in the count rate of another detector, when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency (Rios and Mayer, 2015 [1,2]). Its practical implementation in the measurement of a moderated neutron flux arising from an isotopic neutron source was exemplified in (Rios and Mayer, 2016 [3]) and the extension for multiple detectors in (Rios and Mayer 2016 [4]).

  3. New Method for Determining Isotopic Values of Glutamic Acid and Phenylalanine for Estimation of Precise Trophic Position in Food Web Studies

    NASA Astrophysics Data System (ADS)

    Kamath, T.; Broek, T.; McCarthy, M.

    2012-12-01

    Compound Specific Isotope Analysis of Amino Acids (CSI-AA) has emerged as a highly precise new method of determining trophic levels of both aquatic and terrestrial organisms. Multiple studies have now shown that δ15N values for glutamic acid (Glu) and phenylalanine (Phe) can be coupled to provide extremely precise estimates of trophic position in diverse food web studies. The standard gas chromatography—isotope ratio mass spectrometer (GC-IRMS) approach is presently limited to a select number of labs since necessary equipment is both expensive and not widely accessible. Furthermore, typical GC-IRMS δ15N precision (±1‰) is significantly lower than usual bulk δ15N values (±0.1‰), thus presenting a considerable setback for precise trophic level calculations. In this study, we develop a new dual-column method to purify Glu and Phe using high performance liquid chromatography (HPLC). Phe is purified using an analytical scale reverse phase column embedded with anionic ion-pairing reagents and collected using automated fraction collection. Glu is separated from the non-polar amino acids using the same column and further purified using a hydrophilic interaction liquid chromatography (HILIC) cation and anion-exchange column and collected via automated fraction collection. Isotopic analysis of the purified AAs is then conducted on an elemental analyzer—isotope ratio mass spectrometer (EA-IRMS). As a test of this method, we present and compare the trophic position of five marine organisms—cyanobacteria, deep-sea bamboo coral, juvenile and adult white sea bass, and harbor seal, calculated using Glu and Phe δ15N values produced by both GC-IRMS and our HPLC-EA-IRMS approach. The preliminary results of this study suggest that the HPLC-EA-IRMS method is a viable alternative to GC-IRMS, which should allow accurate trophic position estimates to be made by more researchers using more readily available instrumentation.

  4. Use of intensity quotients and differences in absolute structure refinement.

    PubMed

    Parsons, Simon; Flack, Howard D; Wagner, Trixie

    2013-06-01

    Several methods for absolute structure refinement were tested using single-crystal X-ray diffraction data collected using Cu Kα radiation for 23 crystals with no element heavier than oxygen: conventional refinement using an inversion twin model, estimation using intensity quotients in SHELXL2012, estimation using Bayesian methods in PLATON, estimation using restraints consisting of numerical intensity differences in CRYSTALS and estimation using differences and quotients in TOPAS-Academic where both quantities were coded in terms of other structural parameters and implemented as restraints. The conventional refinement approach yielded accurate values of the Flack parameter, but with standard uncertainties ranging from 0.15 to 0.77. The other methods also yielded accurate values of the Flack parameter, but with much higher precision. Absolute structure was established in all cases, even for a hydrocarbon. The procedures in which restraints are coded explicitly in terms of other structural parameters enable the Flack parameter to correlate with these other parameters, so that it is determined along with those parameters during refinement. PMID:23719469

  5. Orion Absolute Navigation System Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2012-01-01

    The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.

  6. Precision goniometer equipped with a 22-bit absolute rotary encoder.

    PubMed

    Xiaowei, Z; Ando, M; Jidong, W

    1998-05-01

    The calibration of a compact precision goniometer equipped with a 22-bit absolute rotary encoder is presented. The goniometer is a modified Huber 410 goniometer: the diffraction angles can be coarsely generated by a stepping-motor-driven worm gear and precisely interpolated by a piezoactuator-driven tangent arm. The angular accuracy of the precision rotary stage was evaluated with an autocollimator. It was shown that the deviation from circularity of the rolling bearing utilized in the precision rotary stage restricts the angular positioning accuracy of the goniometer, and results in an angular accuracy ten times larger than the angular resolution of 0.01 arcsec. The 22-bit encoder was calibrated by an incremental rotary encoder. It became evident that the accuracy of the absolute encoder is approximately 18 bit due to systematic errors.

  7. Estimation of adequate setup margins and threshold for position errors requiring immediate attention in head and neck cancer radiotherapy based on 2D image guidance

    PubMed Central

    2013-01-01

    Background We estimated sufficient setup margins for head-and-neck cancer (HNC) radiotherapy (RT) when 2D kV images are utilized for routine patient setup verification. As another goal we estimated a threshold for the displacements of the most important bony landmarks related to the target volumes requiring immediate attention. Methods We analyzed 1491 orthogonal x-ray images utilized in RT treatment guidance for 80 HNC patients. We estimated overall setup errors and errors for four subregions to account for patient rotation and deformation: the vertebrae C1-2, C5-7, the occiput bone and the mandible. Setup margins were estimated for two 2D image guidance protocols: i) imaging at first three fractions and weekly thereafter and ii) daily imaging. Two 2D image matching principles were investigated: i) to the vertebrae in the middle of planning target volume (PTV) (MID_PTV) and ii) minimizing maximal position error for the four subregions (MIN_MAX). The threshold for the position errors was calculated with two previously unpublished methods based on the van Herk’s formula and clinical data by retaining a margin of 5 mm sufficient for each subregion. Results Sufficient setup margins to compensate the displacements of the subregions were approximately two times larger than were needed to compensate setup errors for rigid target. Adequate margins varied from 2.7 mm to 9.6 mm depending on the subregions related to the target, applied image guidance protocol and early correction of clinically important systematic 3D displacements of the subregions exceeding 4 mm. The MIN_MAX match resulted in smaller margins but caused an overall shift of 2.5 mm for the target center. Margins ≤ 5mm were sufficient with the MID_PTV match only through application of daily 2D imaging and the threshold of 4 mm to correct systematic displacement of a subregion. Conclusions Adequate setup margins depend remarkably on the subregions related to the target volume. When the systematic 3D

  8. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed.

  9. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  10. Error induced by the estimation of the corneal power and the effective lens position with a rotationally asymmetric refractive multifocal intraocular lens

    PubMed Central

    Piñero, David P.; Camps, Vicente J.; Ramón, María L.; Mateo, Verónica; Pérez-Cambrodí, Rafael J.

    2015-01-01

    AIM To evaluate the prediction error in intraocular lens (IOL) power calculation for a rotationally asymmetric refractive multifocal IOL and the impact on this error of the optimization of the keratometric estimation of the corneal power and the prediction of the effective lens position (ELP). METHODS Retrospective study including a total of 25 eyes of 13 patients (age, 50 to 83y) with previous cataract surgery with implantation of the Lentis Mplus LS-312 IOL (Oculentis GmbH, Germany). In all cases, an adjusted IOL power (PIOLadj) was calculated based on Gaussian optics using a variable keratometric index value (nkadj) for the estimation of the corneal power (Pkadj) and on a new value for ELP (ELPadj) obtained by multiple regression analysis. This PIOLadj was compared with the IOL power implanted (PIOLReal) and the value proposed by three conventional formulas (Haigis, Hoffer Q and Holladay I). RESULTS PIOLReal was not significantly different than PIOLadj and Holladay IOL power (P>0.05). In the Bland and Altman analysis, PIOLadj showed lower mean difference (-0.07 D) and limits of agreement (of 1.47 and -1.61 D) when compared to PIOLReal than the IOL power value obtained with the Holladay formula. Furthermore, ELPadj was significantly lower than ELP calculated with other conventional formulas (P<0.01) and was found to be dependent on axial length, anterior chamber depth and Pkadj. CONCLUSION Refractive outcomes after cataract surgery with implantation of the multifocal IOL Lentis Mplus LS-312 can be optimized by minimizing the keratometric error and by estimating ELP using a mathematical expression dependent on anatomical factors. PMID:26085998

  11. Quantum theory allows for absolute maximal contextuality

    NASA Astrophysics Data System (ADS)

    Amaral, Barbara; Cunha, Marcelo Terra; Cabello, Adán

    2015-12-01

    Contextuality is a fundamental feature of quantum theory and a necessary resource for quantum computation and communication. It is therefore important to investigate how large contextuality can be in quantum theory. Linear contextuality witnesses can be expressed as a sum S of n probabilities, and the independence number α and the Tsirelson-like number ϑ of the corresponding exclusivity graph are, respectively, the maximum of S for noncontextual theories and for the theory under consideration. A theory allows for absolute maximal contextuality if it has scenarios in which ϑ /α approaches n . Here we show that quantum theory allows for absolute maximal contextuality despite what is suggested by the examination of the quantum violations of Bell and noncontextuality inequalities considered in the past. Our proof is not constructive and does not single out explicit scenarios. Nevertheless, we identify scenarios in which quantum theory allows for almost-absolute-maximal contextuality.

  12. Absolute calibration in vivo measurement systems

    SciTech Connect

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

  13. Quantitative standards for absolute linguistic universals.

    PubMed

    Piantadosi, Steven T; Gibson, Edward

    2014-01-01

    Absolute linguistic universals are often justified by cross-linguistic analysis: If all observed languages exhibit a property, the property is taken to be a likely universal, perhaps specified in the cognitive or linguistic systems of language learners and users. In many cases, these patterns are then taken to motivate linguistic theory. Here, we show that cross-linguistic analysis will very rarely be able to statistically justify absolute, inviolable patterns in language. We formalize two statistical methods--frequentist and Bayesian--and show that in both it is possible to find strict linguistic universals, but that the numbers of independent languages necessary to do so is generally unachievable. This suggests that methods other than typological statistics are necessary to establish absolute properties of human language, and thus that many of the purported universals in linguistics have not received sufficient empirical justification.

  14. Absolute photoacoustic thermometry in deep tissue.

    PubMed

    Yao, Junjie; Ke, Haixin; Tai, Stephen; Zhou, Yong; Wang, Lihong V

    2013-12-15

    Photoacoustic thermography is a promising tool for temperature measurement in deep tissue. Here we propose an absolute temperature measurement method based on the dual temperature dependences of the Grüneisen parameter and the speed of sound in tissue. By taking ratiometric measurements at two adjacent temperatures, we can eliminate the factors that are temperature irrelevant but difficult to correct for in deep tissue. To validate our method, absolute temperatures of blood-filled tubes embedded ~9 mm deep in chicken tissue were measured in a biologically relevant range from 28°C to 46°C. The temperature measurement accuracy was ~0.6°C. The results suggest that our method can be potentially used for absolute temperature monitoring in deep tissue during thermotherapy.

  15. Absolute Stability And Hyperstability In Hilbert Space

    NASA Technical Reports Server (NTRS)

    Wen, John Ting-Yung

    1989-01-01

    Theorems on stabilities of feedback control systems proved. Paper presents recent developments regarding theorems of absolute stability and hyperstability of feedforward-and-feedback control system. Theorems applied in analysis of nonlinear, adaptive, and robust control. Extended to provide sufficient conditions for stability in system including nonlinear feedback subsystem and linear time-invariant (LTI) feedforward subsystem, state space of which is Hilbert space, and input and output spaces having finite numbers of dimensions. (In case of absolute stability, feedback subsystem memoryless and possibly time varying. For hyperstability, feedback system dynamical system.)

  16. Absolute GNSS Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G.; Bilich, A.; Geoghegan, C.

    2012-04-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and outline future planned refinements to the system.

  17. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  18. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  19. Teaching Absolute Value Inequalities to Mature Students

    ERIC Educational Resources Information Center

    Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea

    2011-01-01

    This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…

  20. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  1. Increasing Capacity: Practice Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Dodds, Pennie; Donkin, Christopher; Brown, Scott D.; Heathcote, Andrew

    2011-01-01

    In most of the long history of the study of absolute identification--since Miller's (1956) seminal article--a severe limit on performance has been observed, and this limit has resisted improvement even by extensive practice. In a startling result, Rouder, Morey, Cowan, and Pfaltz (2004) found substantially improved performance with practice in the…

  2. Absolute Radiometric Calibration Of The Thematic Mapper

    NASA Astrophysics Data System (ADS)

    Slater, P. N.; Biggar, S. F.; Holm, R. G.; Jackson, R. D.; Mao, Y.; Moran, M. S.; Palmer, J. M.; Yuan, B.

    1986-11-01

    The results are presented of five in-flight absolute radiometric calibrations, made in the period July 1984 to November 1985, at White Sands, New Mexico, of the solar reflective bands of the Landsat-5 Thematic Mapper (TM) . The 23 bandcalibrations made on the five dates show a ± 2.8% RMS variation from the mean as a percentage of the mean.

  3. On Relative and Absolute Conviction in Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2015-01-01

    Conviction is a central construct in mathematics education research on justification and proof. In this paper, we claim that it is important to distinguish between absolute conviction and relative conviction. We argue that researchers in mathematics education frequently have not done so and this has lead to researchers making unwarranted claims…

  4. Communication: The absolute shielding scales of oxygen and sulfur revisited

    SciTech Connect

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Ruud, Kenneth; Gauss, Jürgen

    2015-03-07

    We present an updated semi-experimental absolute shielding scale for the {sup 17}O and {sup 33}S nuclei. These new shielding scales are based on accurate rotational microwave data for the spin–rotation constants of H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)], C{sup 17}O [Cazzoli et al., Phys. Chem. Chem. Phys. 4, 3575 (2002)], and H{sub 2}{sup 33}S [Helgaker et al., J. Chem. Phys. 139, 244308 (2013)] corrected both for vibrational and temperature effects estimated at the CCSD(T) level of theory as well as for the relativistic corrections to the relation between the spin–rotation constant and the absolute shielding constant. Our best estimate for the oxygen shielding constants of H{sub 2}{sup 17}O is 328.4(3) ppm and for C{sup 17}O −59.05(59) ppm. The relativistic correction for the sulfur shielding of H{sub 2}{sup 33}S amounts to 3.3%, and the new sulfur shielding constant for this molecule is 742.9(4.6) ppm.

  5. Facing the Sunrise: Cultural Worldview Underlying Intrinsic-Based Encoding of Absolute Frames of Reference in Aymara

    ERIC Educational Resources Information Center

    Nunez, Rafael E.; Cornejo, Carlos

    2012-01-01

    The Aymara of the Andes use absolute (cardinal) frames of reference for describing the relative position of ordinary objects. However, rather than encoding them in available absolute lexemes, they do it in lexemes that are intrinsic to the body: "nayra" ("front") and "qhipa" ("back"), denoting east and west, respectively. Why? We use different but…

  6. Deformation modes in the finite element absolute nodal coordinate formulation

    NASA Astrophysics Data System (ADS)

    Sugiyama, Hiroyuki; Gerstmayr, Johannes; Shabana, Ahmed A.

    2006-12-01

    The objective of this study is to provide interpretation of the deformation modes in the finite element absolute nodal coordinate formulation using several strain definitions. In this finite element formulation, the nodal coordinates consist of absolute position coordinates and gradients that can be used to define a unique rotation and deformation fields within the element as well as at the nodal points. The results obtained in this study clearly show cross-section deformation modes eliminated when the number of the finite element nodal coordinates is systematically and consistently reduced. Using the procedure discussed in this paper one can obtain a reduced order dynamic model, eliminate position vector gradients that introduce high frequencies to the solution of some problems, achieve the continuity of the remaining gradients at the nodal points, and obtain a formulation that automatically satisfies the principle of work and energy. Furthermore, the resulting dynamic model, unlike large rotation finite element formulations, leads to a unique rotation field, and as a consequence, the obtained formulation does not suffer from the problem of coordinate redundancy that characterizes existing large deformation finite element formulations. In order to accurately define strain components that can have easy physical interpretation, a material coordinate system is introduced to define the material element rotation and deformation. Using the material coordinate system, the Timoshenko-Reissner and Euler -Bernoulli beam models can be systematically obtained as special cases of the absolute nodal coordinate formulation beam models. While a constraint approach is used in this study to eliminate the cross-section deformation modes, it is important to point out as mentioned in this paper that lower-order finite elements, some of which already presented in previous investigations, can be efficiently used in thin and stiff structure applications.

  7. A methodological survey of the analysis, reporting and interpretation of Absolute Risk ReductiOn in systematic revieWs (ARROW): a study protocol

    PubMed Central

    2013-01-01

    Background Clinicians, providers and guideline panels use absolute effects to weigh the advantages and downsides of treatment alternatives. Relative measures have the potential to mislead readers. However, little is known about the reporting of absolute measures in systematic reviews. The objectives of our study are to determine the proportion of systematic reviews that report absolute measures of effect for the most important outcomes, and ascertain how they are analyzed, reported and interpreted. Methods/design We will conduct a methodological survey of systematic reviews published in 2010. We will conduct a 1:1 stratified random sampling of Cochrane vs. non-Cochrane systematic reviews. We will calculate the proportion of systematic reviews reporting at least one absolute estimate of effect for the most patient-important outcome for the comparison of interest. We will conduct multivariable logistic regression analyses with the reporting of an absolute estimate of effect as the dependent variable and pre-specified study characteristics as the independent variables. For systematic reviews reporting an absolute estimate of effect, we will document the methods used for the analysis, reporting and interpretation of the absolute estimate. Discussion Our methodological survey will inform current practices regarding reporting of absolute estimates in systematic reviews. Our findings may influence recommendations on reporting, conduct and interpretation of absolute estimates. Our results are likely to be of interest to systematic review authors, funding agencies, clinicians, guideline developers and journal editors. PMID:24330779

  8. Spatially Variable Creep Rate on the Bartlett Springs and Maacama Faults, Northern California, Estimated via Bayesian Inversion of Global Positioning System Data

    NASA Astrophysics Data System (ADS)

    Murray, J. R.; Svarc, J. L.; Minson, S. E.

    2012-12-01

    Fault creep, if it extends to seismogenic depths, can reduce the maximum expected magnitude of earthquakes on a fault. The San Andreas Fault System in northern California consists of three main strands in a 100 km wide zone, the San Andreas (SAF), Maacama (MF), and Bartlett Springs (BSF). Creep has been observed on the MF and BSF using alinement arrays. An early study using Global Positioning System (GPS) data suggested that the BSF creeps at ˜8 mm/yr at all seismogenic depths, but only two GPS sites were available near the BSF at that time. Our goal is to infer the rate and spatial extent of interseismic creep on the seismogenic portion (above ˜15 km) of the MF and BSF faults and the slip rates on all three faults below that depth from GPS data. Equally important, we aim to provide a realistic measure of the uncertainties on these estimated parameters while avoiding the assumption of spatial smoothing. Smoothing is often used to regularize underdetermined inversions but can lead to spurious results. We use continuous GPS data from the Bay Area Regional Deformation network and the Plate Boundary Observatory augmented by survey-mode GPS (SGPS) data collected by USGS beginning in 2005 along the BSF and since 2009 near the MF. The locations of SGPS sites provide dense spatial coverage within 10 km of the BSF and MF to better image creep in the upper several kilometers. Fault-perpendicular profiles of the fault-parallel GPS velocity component across the region show distinct steps at the BSF that are indicative of near-surface creep at rates that decrease from ˜8 mm/yr ˜10 km northwest of Lake Pillsbury to ˜4 mm/yr at Lake Pillsbury and continue to decrease southeast of there. This is generally consistent with alinement array measurements at Lake Pillsbury and at Newman Springs (˜35 km southeast). Although less well-constrained given their shorter observation history, GPS velocities near the MF suggest ˜5 mm/yr of near-surface creep, consistent with alinement

  9. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  10. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum. PMID:25423049

  11. Absolute radiometry and the solar constant

    NASA Technical Reports Server (NTRS)

    Willson, R. C.

    1974-01-01

    A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).

  12. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  13. Impact of Winko on absolute discharges.

    PubMed

    Balachandra, Krishna; Swaminath, Sam; Litman, Larry C

    2004-01-01

    In Canada, case laws have had a significant impact on the way mentally ill offenders are managed, both in the criminal justice system and in the forensic mental health system. The Supreme Court of Canada's decision with respect to Winko has set a major precedent in the application of the test of significant risk to the safety of the public in making dispositions by the Ontario Review Board and granting absolute discharges to the mentally ill offenders in the forensic health system. Our study examines the impact of the Supreme Court of Canada's decision before and after Winko. The results show that the numbers of absolute discharges have increased post-Winko, which was statistically significant, but there could be other factors influencing this increase.

  14. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  15. Absolute-magnitude distributions of supernovae

    SciTech Connect

    Richardson, Dean; Wright, John; Jenkins III, Robert L.; Maddox, Larry

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  16. Absolute and relative dosimetry for ELIMED

    SciTech Connect

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  17. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  18. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  19. Relative errors can cue absolute visuomotor mappings.

    PubMed

    van Dam, Loes C J; Ernst, Marc O

    2015-12-01

    When repeatedly switching between two visuomotor mappings, e.g. in a reaching or pointing task, adaptation tends to speed up over time. That is, when the error in the feedback corresponds to a mapping switch, fast adaptation occurs. Yet, what is learned, the relative error or the absolute mappings? When switching between mappings, errors with a size corresponding to the relative difference between the mappings will occur more often than other large errors. Thus, we could learn to correct more for errors with this familiar size (Error Learning). On the other hand, it has been shown that the human visuomotor system can store several absolute visuomotor mappings (Mapping Learning) and can use associated contextual cues to retrieve them. Thus, when contextual information is present, no error feedback is needed to switch between mappings. Using a rapid pointing task, we investigated how these two types of learning may each contribute when repeatedly switching between mappings in the absence of task-irrelevant contextual cues. After training, we examined how participants changed their behaviour when a single error probe indicated either the often-experienced error (Error Learning) or one of the previously experienced absolute mappings (Mapping Learning). Results were consistent with Mapping Learning despite the relative nature of the error information in the feedback. This shows that errors in the feedback can have a double role in visuomotor behaviour: they drive the general adaptation process by making corrections possible on subsequent movements, as well as serve as contextual cues that can signal a learned absolute mapping. PMID:26280315

  20. The absolute spectrophotometric catalog by Anita Cochran

    NASA Astrophysics Data System (ADS)

    Burnashev, V. I.; Burnasheva, B. A.; Ruban, E. V.; Hagen-Torn, E. I.

    2014-06-01

    The absolute spectrophotometric catalog by Anita Cochran is presented in a machine-readable form. The catalog systematizes observations acquired at the McDonald Observatory in 1977-1978. The data are compared with other sources, in particular, the calculated broadband stellar magnitudes are compared with photometric observations by other authors, to show that the observational data given in the catalog are reliable and suitable for a variety of applications. Observations of variable stars of different types make Cochran's catalog especially valuable.

  1. Absolute magnitudes and kinematics of barium stars.

    NASA Astrophysics Data System (ADS)

    Gomez, A. E.; Luri, X.; Grenier, S.; Prevot, L.; Mennessier, M. O.; Figueras, F.; Torra, J.

    1997-03-01

    The absolute magnitude of barium stars has been obtained from kinematical data using a new algorithm based on the maximum-likelihood principle. The method allows to separate a sample into groups characterized by different mean absolute magnitudes, kinematics and z-scale heights. It also takes into account, simultaneously, the censorship in the sample and the errors on the observables. The method has been applied to a sample of 318 barium stars. Four groups have been detected. Three of them show a kinematical behaviour corresponding to disk population stars. The fourth group contains stars with halo kinematics. The luminosities of the disk population groups spread a large range. The intrinsically brightest one (M_v_=-1.5mag, σ_M_=0.5mag) seems to be an inhomogeneous group containing barium binaries as well as AGB single stars. The most numerous group (about 150 stars) has a mean absolute magnitude corresponding to stars in the red giant branch (M_v_=0.9mag, σ_M_=0.8mag). The third group contains barium dwarfs, the obtained mean absolute magnitude is characteristic of stars on the main sequence or on the subgiant branch (M_v_=3.3mag, σ_M_=0.5mag). The obtained mean luminosities as well as the kinematical results are compatible with an evolutionary link between barium dwarfs and classical barium giants. The highly luminous group is not linked with these last two groups. More high-resolution spectroscopic data will be necessary in order to better discriminate between barium and non-barium stars.

  2. Measurement of absolute gravity acceleration in Firenze

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  3. A Methodology for Absolute Isotope Composition Measurement

    NASA Astrophysics Data System (ADS)

    Shen, J. J.; Lee, D.; Liang, W.

    2007-12-01

    Double spike technique was a well defined method for isotope composition measurement by TIMS of samples which have natural mass fractionation effect, but it is still a problem to define the isotope composition for double spike itself. In this study, we modified the old double spike technique and found that we could use the modified technique to solve the ¡§true¡¨ isotope composition of double spike itself. According the true isotope composition of double spike, we can measure the absolute isotope composition if the sample has natural fractionation effect. A new vector analytical method has been developed in order to obtain the true isotopic composition of a 42Ca-48Ca double spike, and this is achieved by using two different sample-spike mixtures combined with the double spike and the natural Ca data. Because the natural sample, the two mixtures, and the spike should all lie on a single mixing line, we are able to constrain the true isotopic composition of our double spike using this new approach. This method not only can be used in Ca system but also in Ti, Cr, Fe, Ni, Zn, Mo, Ba and Pb systems. The absolute double spike isotopic ratio is important, which can save a lot of time to check different reference standards. Especially for Pb, radiogenic isotope system, the decay systems embodied in three of four naturally occurring isotopes induce difficult to obtain true isotopic ratios for absolute dating.

  4. Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Cygan, A.; Wójtewicz, S.; Kowzan, G.; Zaborowski, M.; Wcisło, P.; Nawrocki, J.; Krehlik, P.; Śliwczyński, Ł.; Lipiński, M.; Masłowski, P.; Ciuryło, R.; Lisak, D.

    2016-06-01

    Absolute frequencies of unperturbed 12C16O transitions from the near-infrared (3-0) band were measured with uncertainties five-fold lower than previously available data. The frequency axis of spectra was linked to the primary frequency standard. Three different cavity enhanced absorption and dispersion spectroscopic methods and various approaches to data analysis were used to estimate potential systematic instrumental errors. Except for a well established frequency-stabilized cavity ring-down spectroscopy, we applied the cavity mode-width spectroscopy and the one-dimensional cavity mode-dispersion spectroscopy for measurement of absorption and dispersion spectra, respectively. We demonstrated the highest quality of the dispersion line shape measured in optical spectroscopy so far. We obtained line positions of the Doppler-broadened R24 and R28 transitions with relative uncertainties at the level of 10-10. The pressure shifting coefficients were measured and the influence of the line asymmetry on unperturbed line positions was analyzed. Our dispersion spectra are the first demonstration of molecular spectroscopy with both axes of the spectra directly linked to the primary frequency standard, which is particularly desirable for the future reference-grade measurements of molecular spectra.

  5. Absolute Measurements of Radiation Damage in Nanometer Thick Films

    PubMed Central

    Alizadeh, Elahe; Sanche, Léon

    2013-01-01

    We address the problem of absolute measurements of radiation damage in films of nanometer thicknesses. Thin films of DNA (~ 2–160nm) are deposited onto glass substrates and irradiated with varying doses of 1.5 keV X-rays under dry N2 at atmospheric pressure and room temperature. For each different thickness, the damage is assessed by measuring the loss of the supercoiled configuration as a function of incident photon fluence. From the exposure curves, the G-values are deduced, assuming that X-ray photons interacting with DNA, deposit all of their energy in the film. The results show that the G-value (i.e., damage per unit of deposited energy) increases with film thickness and reaches a plateau at 30±5 nm. This thickness dependence provides a correction factor to estimate the actual G-value for films with thicknesses below 30nm thickness. Thus, the absolute values of damage can be compared with that of films of any thickness under different experimental conditions. PMID:22562941

  6. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  7. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  8. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  9. Comparison of elicitation potential of chloroatranol and atranol--2 allergens in oak moss absolute.

    PubMed

    Johansen, Jeanne D; Bernard, Guillaume; Giménez-Arnau, Elena; Lepoittevin, Jean-Pierre; Bruze, Magnus; Andersen, Klaus E

    2006-04-01

    Chloroatranol and atranol are degradation products of chloroatranorin and atranorin, respectively, and have recently been identified as important contact allergens in the natural fragrance extract, oak moss absolute. Oak moss absolute is widely used in perfumery and is the cause of many cases of fragrance allergic contact dermatitis. Chloroatranol elicits reactions at very low levels of exposure. In oak moss absolute, chloroatranol and atranol are present together and both may contribute to the allergenicity and eliciting capacity of the natural extract. In this study, 10 eczema patients with known sensitization to chloroatranol and oak moss absolute were tested simultaneously to a serial dilution of chloroatranol and atranol in ethanol, in equimolar concentrations (0.0034-1072 microM). Dose-response curves were estimated and analysed by logistic regression. The estimated difference in elicitation potency of chloroatranol relative to atranol based on testing with equimolar concentrations was 217% (95% confidence interval 116-409%). Both substances elicited reactions at very low levels of exposure. It is concluded that the differences in elicitation capacity between the 2 substances are counterbalanced by exposure being greater to atranol than to chloroatranol and that both substances contribute to the clinical problems seen in oak moss absolute-sensitized individuals. PMID:16650093

  10. In vivo visualization method by absolute blood flow velocity based on speckle and fringe pattern using two-beam multipoint laser Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Kyoden, Tomoaki; Naruki, Shoji; Akiguchi, Shunsuke; Ishida, Hiroki; Andoh, Tsugunobu; Takada, Yogo; Momose, Noboru; Homae, Tomotaka; Hachiga, Tadashi

    2016-08-01

    Two-beam multipoint laser Doppler velocimetry (two-beam MLDV) is a non-invasive imaging technique able to provide an image of two-dimensional blood flow and has potential for observing cancer as previously demonstrated in a mouse model. In two-beam MLDV, the blood flow velocity can be estimated from red blood cells passing through a fringe pattern generated in the skin. The fringe pattern is created at the intersection of two beams in conventional LDV and two-beam MLDV. Being able to choose the depth position is an advantage of two-beam MLDV, and the position of a blood vessel can be identified in a three-dimensional space using this technique. Initially, we observed the fringe pattern in the skin, and the undeveloped or developed speckle pattern generated in a deeper position of the skin. The validity of the absolute velocity value detected by two-beam MLDV was verified while changing the number of layers of skin around a transparent flow channel. The absolute velocity value independent of direction was detected using the developed speckle pattern, which is created by the skin construct and two beams in the flow channel. Finally, we showed the relationship between the signal intensity and the fringe pattern, undeveloped speckle, or developed speckle pattern based on the skin depth. The Doppler signals were not detected at deeper positions in the skin, which qualitatively indicates the depth limit for two-beam MLDV.

  11. Absolute calibration of the Auger fluorescence detectors

    SciTech Connect

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  12. Absolute rate theories of epigenetic stability

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.; Onuchic, José N.; Wolynes, Peter G.

    2005-12-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape and the transmission factor depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic, and strictly adiabatic regimes, characterized by the relative values of those input rates. rate theory | stochastic gene expression | gene switches

  13. Characterization of the DARA solar absolute radiometer

    NASA Astrophysics Data System (ADS)

    Finsterle, W.; Suter, M.; Fehlmann, A.; Kopp, G.

    2011-12-01

    The Davos Absolute Radiometer (DARA) prototype is an Electrical Substitution Radiometer (ESR) which has been developed as a successor of the PMO6 type on future space missions and ground based TSI measurements. The DARA implements an improved thermal design of the cavity detector and heat sink assembly to minimize air-vacuum differences and to maximize thermal symmetry of measuring and compensating cavity. The DARA also employs an inverted viewing geometry to reduce internal stray light. We will report on the characterization and calibration experiments which were carried out at PMOD/WRC and LASP (TRF).

  14. Absolute Priority for a Vehicle in VANET

    NASA Astrophysics Data System (ADS)

    Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad

    In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.

  15. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  16. Measurement of absolute T cell receptor rearrangement diversity.

    PubMed

    Baum, Paul D; Young, Jennifer J; McCune, Joseph M

    2011-05-31

    T cell receptor (TCR) diversity is critical for adaptive immunity. Existing methods for measuring such diversity are qualitative, expensive, and/or of uncertain accuracy. Here, we describe a method and associated reagents for estimating the absolute number of unique TCR Vβ rearrangements present in a given number of cells or volume of blood. Compared to next generation sequencing, this method is rapid, reproducible, and affordable. Diversity of a sample is calculated based on three independent measurements of one Vβ-Jβ family of TCR rearrangements at a time. The percentage of receptors using the given Vβ gene is determined by flow cytometric analysis of T cells stained with anti-Vβ family antibodies. The percentage of receptors using the Vβ gene in combination with the chosen Jβ gene is determined by quantitative PCR. Finally, the absolute clonal diversity of the Vβ-Jβ family is determined with the AmpliCot method of DNA hybridization kinetics, by interpolation relative to PCR standards of known sequence diversity. These three component measurements are reproducible and linear. Using titrations of known numbers of input cells, we show that the TCR diversity estimates obtained by this approach approximate expected values within a two-fold error, have a coefficient of variation of 20%, and yield similar results when different Vβ-Jβ pairs are chosen. The ability to obtain accurate measurements of the total number of different TCR gene rearrangements in a cell sample should be useful for basic studies of the adaptive immune system as well as in clinical studies of conditions such as HIV disease, transplantation, aging, and congenital immunodeficiencies. PMID:21385585

  17. Sources of methane and nitrous oxide in California's Central Valley estimated through direct airborne flux and positive matrix factorization source apportionment of groundbased and regional tall tower measurements

    NASA Astrophysics Data System (ADS)

    Guha, Abhinav

    -San Joaquin River Delta in the Central Valley. Through analysis of these field measurements, this dissertation presents the apportionment of observed CH4 and N2O concentration enhancements into major source categories along with direct emissions estimates from airborne observations. We perform high-precision measurements of greenhouse gases using gas analyzers based on absorption spectroscopy, and other source marker volatile organic compounds (VOCs) using state of the art VOC measurement systems (e.g. proton transfer reaction mass spectrometry). We combine these measurements with a statistical source apportionment technique called positive matrix factorization (PMF) to evaluate and investigate the major local sources of CH4 and N2O during CalNex and Walnut Grove campaigns. In the CABERNET study, we combine measurements with an airborne approach to a well-established micrometeorological technique (eddy-covariance method) to derive CH4 fluxes over different source regions in the Central Valley. In the CalNex experiments, we demonstrate that dairy and livestock remains the largest source sector of non-CO2 greenhouse gases in the San Joaquin Valley contributing most of the CH4 and much of the measured N2O at Bakersfield. Agriculture is observed to provide another major source of N2O, while vehicle emissions are found to be an insignificant source of N2O, contrary to the current statewide greenhouse gas inventory which includes vehicles as a major source. Our PMF source apportionment also produces an evaporative/fugitive factor but its relative lack of CH4 contributions points to removal processes from vented emissions in the surrounding O&G industry and the overwhelming dominance of the dairy CH4 source. In the CABERNET experiments, we report enhancements of CH4 from a number of sources spread across the spatial domain of the Central Valley that improves our understanding of their distribution and relative strengths. We observe large enhancements of CH4 mixing ratios over the

  18. Sentinel-2/MSI absolute calibration: first results

    NASA Astrophysics Data System (ADS)

    Lonjou, V.; Lachérade, S.; Fougnie, B.; Gamet, P.; Marcq, S.; Raynaud, J.-L.; Tremas, T.

    2015-10-01

    Sentinel-2 is an optical imaging mission devoted to the operational monitoring of land and coastal areas. It is developed in partnership between the European Commission and the European Space Agency. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. It will offer a unique combination of global coverage with a wide field of view (290km), a high revisit (5 days with two satellites), a high resolution (10m, 20m and 60m) and multi-spectral imagery (13 spectral bands in visible and shortwave infra-red domains). CNES is involved in the instrument commissioning in collaboration with ESA. This paper reviews all the techniques that will be used to insure an absolute calibration of the 13 spectral bands better than 5% (target 3%), and will present the first results if available. First, the nominal calibration technique, based on an on-board sun diffuser, is detailed. Then, we show how vicarious calibration methods based on acquisitions over natural targets (oceans, deserts, and Antarctica during winter) will be used to check and improve the accuracy of the absolute calibration coefficients. Finally, the verification scheme, exploiting photometer in-situ measurements over Lacrau plain, is described. A synthesis, including spectral coherence, inter-methods agreement and temporal evolution, will conclude the paper.

  19. Experimental results for absolute cylindrical wavefront testing

    NASA Astrophysics Data System (ADS)

    Reardon, Patrick J.; Alatawi, Ayshah

    2014-09-01

    Applications for Cylindrical and near-cylindrical surfaces are ever-increasing. However, fabrication of high quality cylindrical surfaces is limited by the difficulty of accurate and affordable metrology. Absolute testing of such surfaces represents a challenge to the optical testing community as cylindrical reference wavefronts are difficult to produce. In this paper, preliminary results for a new method of absolute testing of cylindrical wavefronts are presented. The method is based on the merging of the random ball test method with the fiber optic reference test. The random ball test assumes a large number of interferograms of a good quality sphere with errors that are statistically distributed such that the average of the errors goes to zero. The fiber optic reference test utilizes a specially processed optical fiber to provide a clean high quality reference wave from an incident line focus from the cylindrical wave under test. By taking measurements at different rotation and translations of the fiber, an analogous procedure can be employed to determine the quality of the converging cylindrical wavefront with high accuracy. This paper presents and discusses the results of recent tests of this method using a null optic formed by a COTS cylindrical lens and a free-form polished corrector element.

  20. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  1. Why to compare absolute numbers of mitochondria.

    PubMed

    Schmitt, Sabine; Schulz, Sabine; Schropp, Eva-Maria; Eberhagen, Carola; Simmons, Alisha; Beisker, Wolfgang; Aichler, Michaela; Zischka, Hans

    2014-11-01

    Prompted by pronounced structural differences between rat liver and rat hepatocellular carcinoma mitochondria, we suspected these mitochondrial populations to differ massively in their molecular composition. Aiming to reveal these mitochondrial differences, we came across the issue on how to normalize such comparisons and decided to focus on the absolute number of mitochondria. To this end, fluorescently stained mitochondria were quantified by flow cytometry. For rat liver mitochondria, this approach resulted in mitochondrial protein contents comparable to earlier reports using alternative methods. We determined similar protein contents for rat liver, heart and kidney mitochondria. In contrast, however, lower protein contents were determined for rat brain mitochondria and for mitochondria from the rat hepatocellular carcinoma cell line McA 7777. This result challenges mitochondrial comparisons that rely on equal protein amounts as a typical normalization method. Exemplarily, we therefore compared the activity and susceptibility toward inhibition of complex II of rat liver and hepatocellular carcinoma mitochondria and obtained significant discrepancies by either normalizing to protein amount or to absolute mitochondrial number. Importantly, the latter normalization, in contrast to the former, demonstrated a lower complex II activity and higher susceptibility toward inhibition in hepatocellular carcinoma mitochondria compared to liver mitochondria. These findings demonstrate that solely normalizing to protein amount may obscure essential molecular differences between mitochondrial populations.

  2. Absolute Proper Motions of Southern Globular Clusters

    NASA Astrophysics Data System (ADS)

    Dinescu, D. I.; Girard, T. M.; van Altena, W. F.

    1996-05-01

    Our program involves the determination of absolute proper motions with respect to galaxies for a sample of globular clusters situated in the southern sky. The plates cover a 6(deg) x 6(deg) area and are taken with the 51-cm double astrograph at Cesco Observatory in El Leoncito, Argentina. We have developed special methods to deal with the modelling error of the plate transformation and we correct for magnitude equation using the cluster stars. This careful astrometric treatment leads to accuracies of from 0.5 to 1.0 mas/yr for the absolute proper motion of each cluster, depending primarily on the number of measurable cluster stars which in turn is related to the cluster's distance. Space velocities are then derived which, in association with metallicities, provide key information for the formation scenario of the Galaxy, i.e. accretion and/or dissipational collapse. Here we present results for NGC 1851, NGC 6752, NGC 6584, NGC 6362 and NGC 288.

  3. Relational versus absolute representation in categorization.

    PubMed

    Edwards, Darren J; Pothos, Emmanuel M; Perlman, Amotz

    2012-01-01

    This study explores relational-like and absolute-like representations in categorization. Although there is much evidence that categorization processes can involve information about both the particular physical properties of studied instances and abstract (relational) properties, there has been little work on the factors that lead to one kind of representation as opposed to the other. We tested 370 participants in 6 experiments, in which participants had to classify new items into predefined artificial categories. In 4 experiments, we observed a predominantly relational-like mode of classification, and in 2 experiments we observed a shift toward an absolute-like mode of classification. These results suggest 3 factors that promote a relational-like mode of classification: fewer items per group, more training groups, and the presence of a time delay. Overall, we propose that less information about the distributional properties of a category or weaker memory traces for the category exemplars (induced, e.g., by having smaller categories or a time delay) can encourage relational-like categorization.

  4. Transient absolute robustness in stochastic biochemical networks.

    PubMed

    Enciso, German A

    2016-08-01

    Absolute robustness allows biochemical networks to sustain a consistent steady-state output in the face of protein concentration variability from cell to cell. This property is structural and can be determined from the topology of the network alone regardless of rate parameters. An important question regarding these systems is the effect of discrete biochemical noise in the dynamical behaviour. In this paper, a variable freezing technique is developed to show that under mild hypotheses the corresponding stochastic system has a transiently robust behaviour. Specifically, after finite time the distribution of the output approximates a Poisson distribution, centred around the deterministic mean. The approximation becomes increasingly accurate, and it holds for increasingly long finite times, as the total protein concentrations grow to infinity. In particular, the stochastic system retains a transient, absolutely robust behaviour corresponding to the deterministic case. This result contrasts with the long-term dynamics of the stochastic system, which eventually must undergo an extinction event that eliminates robustness and is completely different from the deterministic dynamics. The transiently robust behaviour may be sufficient to carry out many forms of robust signal transduction and cellular decision-making in cellular organisms. PMID:27581485

  5. Weighted Wilcoxon-type Smoothly Clipped Absolute Deviation Method

    PubMed Central

    Wang, Lan; Li, Runze

    2009-01-01

    Summary Shrinkage-type variable selection procedures have recently seen increasing applications in biomedical research. However, their performance can be adversely influenced by outliers in either the response or the covariate space. This paper proposes a weighted Wilcoxon-type smoothly clipped absolute deviation (WW-SCAD) method, which deals with robust variable selection and robust estimation simultaneously. The new procedure can be conveniently implemented with the statistical software R. We establish that the WW-SCAD correctly identifies the set of zero coefficients with probability approaching one and estimates the nonzero coefficients with the rate n−1/2. Moreover, with appropriately chosen weights the WW-SCAD is robust with respect to outliers in both the x and y directions. The important special case with constant weights yields an oracle-type estimator with high efficiency at the presence of heavier-tailed random errors. The robustness of the WW-SCAD is partly justified by its asymptotic performance under local shrinking contamination. We propose a BIC-type tuning parameter selector for the WW-SCAD. The performance of the WW-SCAD is demonstrated via simulations and by an application to a study that investigates the effects of personal characteristics and dietary factors on plasma beta-carotene level. PMID:18647294

  6. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  7. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  8. Absolute UV absorption cross sections of dimethyl substituted Criegee intermediate (CH3)2COO

    NASA Astrophysics Data System (ADS)

    Chang, Yuan-Pin; Chang, Chun-Hung; Takahashi, Kaito; Lin, Jim-Min, Jr.

    2016-06-01

    The absolute absorption cross sections of (CH3)2COO under a jet-cooled condition were measured via laser depletion to be (1.32 ± 0.10) × 10-17 cm2 molecule-1 at 308 nm and (9.6 ± 0.8) × 10-18 cm2 molecule-1 at 352 nm. The peak UV cross section is estimated to be (1.75 ± 0.14) × 10-17 cm2 molecule-1 at 330 nm, according to the UV spectrum of (CH3)2COO (Huang et al., 2015) scaled to the absolute cross section at 308 nm.

  9. Choice deferral can arise from absolute evaluations or relative comparisons.

    PubMed

    White, Chris M; Hoffrage, Ulrich; Reisen, Nils

    2015-06-01

    When choosing among several options, people may defer choice for either of 2 reasons: because none of the options is good enough or because there is uncertainty regarding which is the best. These reasons form the basis of the 2-stage, 2-threshold (2S2T) framework, which posits that a different kind of processing corresponds to these 2 reasons for choice deferral: absolute evaluations and relative comparisons, respectively. Three experiments are reported in which each type of processing was triggered in different conditions either via different payoff structures or different degrees of attribute knowledge. The effects of the 3 main independent variables (the size of the choice set, the utility of the best option, and the number of competitive options) differed depending on the payoff structure or attribute knowledge conditions in ways predicted by the 2S2T framework. Implications for consumer decision making, marketing, and eyewitness identification are discussed. PMID:25938974

  10. The preference of visualization in teaching and learning absolute value

    NASA Astrophysics Data System (ADS)

    Cihan Konyalioğlu, Alper; Aksu, Zeki; Özge Şenel, Esma

    2012-07-01

    Visualization is mostly despised although it complements and - sometimes - guides the analytical process. This study mainly investigates teachers' preferences concerning the use of the visualization method and determines the extent to which they encourage their students to make use of it within the problem-solving process. This study was conducted for the ninth-grade students and their mathematics teacher in a social science intensive public school in the city of Erzurum, Turkey. Utilizing case study as the preferred method, data were collected through observations, interviews and student evaluations. This study revealed that visualization has a positive effect at the preliminary phases of teaching the absolute value concept but generates a lack of stimulation during problem solving in further phases of the instruction. This could be explained as a result of current examination system which requires a habituation of the analytical process in solving mathematical questions.

  11. Absolutism and Natural Law Argument: William O. Douglas on Freedom of Expression.

    ERIC Educational Resources Information Center

    Rodgers, Raymond S.

    Noting that United States Supreme Court Justice William O. Douglas has often been characterized as an "absolutist" in terms of First Amendment policy, this paper argues that, in fact, Douglas's policy positions provided for less than absolute freedom to communicate. The paper then reveals, through an anlaysis of 18 of Douglas's opinions, an…

  12. [Estimation of activity of pharmakopeal disinfectants and antiseptics against Gram-negative and Gram-positive bacteria isolated from clinical specimens, drugs and environment].

    PubMed

    Grzybowska, Wanda; Młynarczyk, Grazyna; Młynarczyk, Andrzej; Bocian, Ewa; Luczak, Mirosław; Tyski, Stefan

    2007-01-01

    The MIC of nine different disinfectants and antiseptics were determined for the Gram-negative and Gram-positive bacteria. Strains originated from clinical specimens, drugs and environment. A sensitivity was determined against chlorhexidinum digluconate (Gram-negative: 0,625-80 mg/L, Gram-positive: 0,3-10 mg/L), benzalconium chloride (Gram-negative: 2,5-1280 mg/L, Gram-positive: 1,25-20 mg/L), salicilic acid (Gram-negative and Gram-positive: 400-1600 mg/L), benzoic acid (Gram-negative: 800-1600 mg/L, Gram-positive: 400-1 600 mg/L), boric acid (Gram-negative: 800-12 800 mg/L, Gram-positive: 1 600-6400 mg/L), chloramine B (Gram-negative: 1600-6400 mg/L, Gram-positive:800- 6400 mg/L), jodine (Gram-negative: 200-1600 mg/L, Gram-positive: 200-1600 mg/L), etacridine lactate (Gram-negative: 40 do > 20480 mg/L, Gram-positive: 40-1280 mg/L) and resorcine (Gram-negative: 1600-6400 mg/L, Gram-positive: 800-6400 mg/L). Diversified values of MIC for different strains were obtained, especially in the case of benzalconium chloride, etacridine lactate, chlorhexidinum digluconate, boric acid and iodine. Strains isolated from environment were usually more susceptible to examined compounds than clinical strains. The biggest diversification of sensitivity was observed among strains originated from drugs where besides sensitive appeared strains characterizing by very high MIC values of some substances, eg. boric acid.

  13. On the calculation of the absolute grand potential of confined smectic-A phases

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Cheng; Baus, Marc; Ryckaert, Jean-Paul

    2015-09-01

    We determine the absolute grand potential Λ along a confined smectic-A branch of a calamitic liquid crystal system enclosed in a slit pore of transverse area A and width L, using the rod-rod Gay-Berne potential and a rod-wall potential favouring perpendicular orientation at the walls. For a confined phase with an integer number of smectic layers sandwiched between the opposite walls, we obtain the excess properties (excess grand potential Λexc, solvation force fs and adsorption Γ) with respect to the bulk phase at the same μ (chemical potential) and T (temperature) state point. While usual thermodynamic integration methods are used along the confined smectic branch to estimate the grand potential difference as μ is varied at fixed L, T, the absolute grand potential at one reference state point is obtained via the evaluation of the absolute Helmholtz free energy in the (N, L, A, T) canonical ensemble. It proceeds via a sequence of free energy difference estimations involving successively the cost of localising rods on layers and the switching on of a one-dimensional harmonic field to keep layers integrity coupled to the elimination of inter-layers and wall interactions. The absolute free energy of the resulting set of fully independent layers of interacting rods is finally estimated via the existing procedures. This work opens the way to the computer simulation study of phase transitions implying confined layered phases.

  14. The Absolute Radiometric Calibration of Space - Sensors.

    NASA Astrophysics Data System (ADS)

    Holm, Ronald Gene

    1987-09-01

    The need for absolute radiometric calibration of space-based sensors will continue to increase as new generations of space sensors are developed. A reflectance -based in-flight calibration procedure is used to determine the radiance reaching the entrance pupil of the sensor. This procedure uses ground-based measurements coupled with a radiative transfer code to characterize the effects the atmosphere has on the signal reaching the sensor. The computed radiance is compared to the digital count output of the sensor associated with the image of a test site. This provides an update to the preflight calibration of the system and a check on the on-board internal calibrator. This calibration procedure was used to perform a series of five calibrations of the Landsat-5 Thematic Mapper (TM). For the 12 measurements made in TM bands 1-3, the RMS variation from the mean as a percentage of the mean is (+OR-) 1.9%, and for measurements in the IR, TM bands 4,5, and 7, the value is (+OR-) 3.4%. The RMS variation for all 23 measurements is (+OR-) 2.8%. The absolute calibration techniques were put to another test with a series of three calibration of the SPOT-1 High Resolution Visible, (HRV), sensors. The ratio, HRV-2/HRV-1, of absolute calibration coefficients compared very well with ratios of histogrammed data obtained when the cameras simultaneously imaged the same ground site. Bands PA, B1 and B3 agreed to within 3%, while band B2 showed a 7% difference. The procedure for performing a satellite calibration was then used to demonstrate how a calibrated satellite sensor can be used to quantitatively evaluate surface reflectance over a wide range of surface features. Predicted reflectance factors were compared to values obtained from aircraft -based radiometer data. This procedure was applied on four dates with two different surface conditions per date. A strong correlation, R('2) = .996, was shown between reflectance values determined from satellite imagery and low-flying aircraft

  15. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  16. Absolute radiometric calibration of the CCRS SAR

    NASA Astrophysics Data System (ADS)

    Ulander, Lars M. H.; Hawkins, Robert K.; Livingstone, Charles E.; Lukowski, Tom I.

    1991-11-01

    Determining the radar scattering coefficients from SAR (synthetic aperture radar) image data requires absolute radiometric calibration of the SAR system. The authors describe an internal calibration methodology for the airborne Canada Centre for Remote Sensing (CCRS) SAR system, based on radar theory, a detailed model of the radar system, and measurements of system parameters. The methodology is verified by analyzing external calibration data acquired over a 6-month period in 1988 by the C-band radar using HH polarization. The results indicate that the overall error is +/- 0.8 dB (1-sigma) for incidence angles +/- 20 deg from antenna boresight. The dominant error contributions are due to the antenna radome and uncertainties in the elevation angle relative to the antenna boresight.

  17. Absolute calibration of ultraviolet filter photometry

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Fairchild, T.; Code, A. D.

    1972-01-01

    The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.

  18. Absolute measurements of fast neutrons using yttrium

    SciTech Connect

    Roshan, M. V.; Springham, S. V.; Rawat, R. S.; Lee, P.; Krishnan, M.

    2010-08-15

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f{sub n}{approx}4.1x10{sup -4} with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10{sup 8} neutrons per discharge.

  19. Absolute geostrophic currents in global tropical oceans

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Yuan, Dongliang

    2016-11-01

    A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.

  20. Absolute Measurement of Electron Cloud Density

    SciTech Connect

    Covo, M K; Molvik, A W; Cohen, R H; Friedman, A; Seidl, P A; Logan, G; Bieniosek, F; Baca, D; Vay, J; Orlando, E; Vujic, J L

    2007-06-21

    Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 {micro}s duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.

  1. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  2. Absolute calibration of remote sensing instruments

    NASA Astrophysics Data System (ADS)

    Biggar, S. F.; Bruegge, C. J.; Capron, B. A.; Castle, K. R.; Dinguirard, M. C.; Holm, R. G.; Lingg, L. J.; Mao, Y.; Palmer, J. M.; Phillips, A. L.

    1985-12-01

    Source-based and detector-based methods for the absolute radiometric calibration of a broadband field radiometer are described. Using such a radiometer, calibrated by both methods, the calibration of the integrating sphere used in the preflight calibration of the Thematic Mapper was redetermined. The results are presented. The in-flight calibration of space remote sensing instruments is discussed. A method which uses the results of ground-based reflectance and atmospheric measurements as input to a radiative transfer code to predict the radiance at the instrument is described. A calibrated, helicopter-mounted radiometer is used to determine the radiance levels at intermediate altitudes to check the code predictions. Results of such measurements for the calibration of the Thematic Mapper on Landsat 5 and an analysis that shows the value of such measurements are described.

  3. Absolute radiometric calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Biggar, S. F.; Holm, R. G.; Jackson, R. D.; Mao, Y.

    1986-01-01

    Calibration data for the solar reflective bands of the Landsat-5 TM obtained from five in-flight absolute radiometric calibrations from July 1984-November 1985 at White Sands, New Mexico are presented and analyzed. Ground reflectance and atmospheric data were utilized to predict the spectral radiance at the entrance pupil of the TM and the average number of digital counts in each TM band. The calibration of each of the TM solar reflective bands was calculated in terms of average digital counts/unit spectral radiance for each band. It is observed that for the 12 reflectance-based measurements the rms variation from the means as a percentage of the mean is + or - 1.9 percent; for the 11 measurements in the IR bands, it is + or - 3.4 percent; and the rms variation for all 23 measurements is + or - 2.8 percent.

  4. Swarm's Absolute Scalar Magnetometer metrological performances

    NASA Astrophysics Data System (ADS)

    Leger, J.; Fratter, I.; Bertrand, F.; Jager, T.; Morales, S.

    2012-12-01

    The Absolute Scalar Magnetometer (ASM) has been developed for the ESA Earth Observation Swarm mission, planned for launch in November 2012. As its Overhauser magnetometers forerunners flown on Oersted and Champ satellites, it will deliver high resolution scalar measurements for the in-flight calibration of the Vector Field Magnetometer manufactured by the Danish Technical University. Latest results of the ground tests carried out to fully characterize all parameters that may affect its accuracy, both at instrument and satellite level, will be presented. In addition to its baseline function, the ASM can be operated either at a much higher sampling rate (burst mode at 250 Hz) or in a dual mode where it also delivers vector field measurements as a by-product. The calibration procedure and the relevant vector performances will be discussed.

  5. Sounding rocket measurement of the absolute solar EUV flux utilizing a silicon photodiode

    NASA Technical Reports Server (NTRS)

    Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Canfield, L. R.

    1990-01-01

    A newly developed stable and high quantum efficiency silicon photodiode was used to obtain an accurate measurement of the integrated absolute magnitude of the solar extreme UV photon flux in the spectral region between 50 and 800 A. The adjusted daily 10.7-cm solar radio flux and sunspot number were 168.4 and 121, respectively. The unattenuated absolute value of the solar EUV flux at 1 AU in the specified wavelength region was 6.81 x 10 to the 10th photons/sq cm per s. Based on a nominal probable error of 7 percent for National Institute of Standards and Technology detector efficiency measurements in the 50- to 500-A region (5 percent on longer wavelength measurements between 500 and 1216 A), and based on experimental errors associated with the present rocket instrumentation and analysis, a conservative total error estimate of about 14 percent is assigned to the absolute integral solar flux obtained.

  6. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    SciTech Connect

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; /more authors..

    2012-09-20

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  7. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbielini, G; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B,; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E. J.

    2012-01-01

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron- plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between approx. 6 and approx. 13 GeV with an estimated uncertainty of approx. 2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  8. Orbit determination of LAGEOS and STARLETTE and the position estimation of the European laser tracking stations at Kootwijk, Wettzell, Grasse and Metsahovi

    NASA Astrophysics Data System (ADS)

    Wakker, K. F.; Ambrosius, B. A. C.

    1983-01-01

    The positions of the European laser tracking stations were determined by separately processing LAGEOS and STARLETTE five-day and two-revolution data arcs. Range residual rms's and the recovered apparent range and timing biases of the five-day arc solutions are reported. Mutual differences between LAGEOS and STARLETTE solutions for station positions are given. Discrepancies between European, NASA, and Texas University baselines and solutions are discussed.

  9. GPS and odometer data fusion for outdoor robots continuous positioning

    NASA Astrophysics Data System (ADS)

    Pozo-Ruz, Ana; Garcia-Perez, Lia; Garcia-Alegre, Maria C.; Guinea, Domingo; Ribeiro, Angela; Sandoval, Francisco

    2002-02-01

    Present work describes an approximation to obtain the best estimation of the position of the outdoor robot ROJO, a low cost lawnmower to perform unmanned precision agriculture task such are the spraying of pesticides in horticulture. For continuous location of ROJO, two redundant sensors have been installed onboard: a DGPS submetric precision model and an odometric system. DGPS system will allow an absolute positioning of the vehicle in the field, but GPS failures in the reception of the signals due to obstacles and electrical and meteorological disturbance, lead us to the integration of the odometric system. Thus, a robust odometer based upon magnetic strip sensors has been designed and integrated in the vehicle. These sensors continuosly deliver the position of the vehicle relative to its initial position, complementing the DGPS blindness periods. They give an approximated location of the vehicle in the field that can be in turn conveniently updated and corrected by the DGPS. Thus, to provided the best estimation, a fusion algorithm has been proposed and proved, wherein the best estimation is calculated as the maximum value of the join probability function obtained from both position estimation of the onboard sensors. Some results are presented to show the performance of the proposed sensor fusion technique.

  10. HIRDLS observations of global gravity wave absolute momentum fluxes: A wavelet based approach

    NASA Astrophysics Data System (ADS)

    John, Sherine Rachel; Kishore Kumar, Karanam

    2016-02-01

    Using wavelet technique for detection of height varying vertical and horizontal wavelengths of gravity waves, the absolute values of gravity wave momentum fluxes are estimated from High Resolution Dynamics Limb Sounder (HIRDLS) temperature measurements. Two years of temperature measurements (2005 December-2007 November) from HIRDLS onboard EOS-Aura satellite over the globe are used for this purpose. The least square fitting method is employed to extract the 0-6 zonal wavenumber planetary wave amplitudes, which are removed from the instantaneous temperature profiles to extract gravity wave fields. The vertical and horizontal wavelengths of the prominent waves are computed using wavelet and cross correlation techniques respectively. The absolute momentum fluxes are then estimated using prominent gravity wave perturbations and their vertical and horizontal wavelengths. The momentum fluxes obtained from HIRDLS are compared with the fluxes obtained from ground based Rayleigh LIDAR observations over a low latitude station, Gadanki (13.5°N, 79.2°E) and are found to be in good agreement. After validation, the absolute gravity wave momentum fluxes over the entire globe are estimated. It is found that the winter hemisphere has the maximum momentum flux magnitudes over the high latitudes with a secondary maximum over the summer hemispheric low-latitudes. The significance of the present study lies in introducing the wavelet technique for estimating the height varying vertical and horizontal wavelengths of gravity waves and validating space based momentum flux estimations using ground based lidar observations.

  11. Multi-Unmanned Aerial Vehicle (UAV) Cooperative Fault Detection Employing Differential Global Positioning (DGPS), Inertial and Vision Sensors.

    PubMed

    Heredia, Guillermo; Caballero, Fernando; Maza, Iván; Merino, Luis; Viguria, Antidio; Ollero, Aníbal

    2009-01-01

    This paper presents a method to increase the reliability of Unmanned Aerial Vehicle (UAV) sensor Fault Detection and Identification (FDI) in a multi-UAV context. Differential Global Positioning System (DGPS) and inertial sensors are used for sensor FDI in each UAV. The method uses additional position estimations that augment individual UAV FDI system. These additional estimations are obtained using images from the same planar scene taken from two different UAVs. Since accuracy and noise level of the estimation depends on several factors, dynamic replanning of the multi-UAV team can be used to obtain a better estimation in case of faults caused by slow growing errors of absolute position estimation that cannot be detected by using local FDI in the UAVs. Experimental results with data from two real UAVs are also presented.

  12. Multi-Unmanned Aerial Vehicle (UAV) Cooperative Fault Detection Employing Differential Global Positioning (DGPS), Inertial and Vision Sensors

    PubMed Central

    Heredia, Guillermo; Caballero, Fernando; Maza, Iván; Merino, Luis; Viguria, Antidio; Ollero, Aníbal

    2009-01-01

    This paper presents a method to increase the reliability of Unmanned Aerial Vehicle (UAV) sensor Fault Detection and Identification (FDI) in a multi-UAV context. Differential Global Positioning System (DGPS) and inertial sensors are used for sensor FDI in each UAV. The method uses additional position estimations that augment individual UAV FDI system. These additional estimations are obtained using images from the same planar scene taken from two different UAVs. Since accuracy and noise level of the estimation depends on several factors, dynamic replanning of the multi-UAV team can be used to obtain a better estimation in case of faults caused by slow growing errors of absolute position estimation that cannot be detected by using local FDI in the UAVs. Experimental results with data from two real UAVs are also presented. PMID:22400008

  13. Absolute measures of the completeness of the fossil record

    NASA Technical Reports Server (NTRS)

    Foote, M.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1999-01-01

    Measuring the completeness of the fossil record is essential to understanding evolution over long timescales, particularly when comparing evolutionary patterns among biological groups with different preservational properties. Completeness measures have been presented for various groups based on gaps in the stratigraphic ranges of fossil taxa and on hypothetical lineages implied by estimated evolutionary trees. Here we present and compare quantitative, widely applicable absolute measures of completeness at two taxonomic levels for a broader sample of higher taxa of marine animals than has previously been available. We provide an estimate of the probability of genus preservation per stratigraphic interval, and determine the proportion of living families with some fossil record. The two completeness measures use very different data and calculations. The probability of genus preservation depends almost entirely on the Palaeozoic and Mesozoic records, whereas the proportion of living families with a fossil record is influenced largely by Cenozoic data. These measurements are nonetheless highly correlated, with outliers quite explicable, and we find that completeness is rather high for many animal groups.

  14. Absolute phase image reconstruction: a stochastic nonlinear filtering approach.

    PubMed

    Leitão, J N; Figueiredo, M A

    1998-01-01

    This paper formulates and proposes solutions to the problem of estimating/reconstructing the absolute (not simply modulo-2pi) phase of a complex random field from noisy observations of its real and imaginary parts. This problem is representative of a class of important imaging techniques such as interferometric synthetic aperture radar, optical interferometry, magnetic resonance imaging, and diffraction tomography. We follow a Bayesian approach; then, not only a probabilistic model of the observation mechanism, but also prior knowledge concerning the (phase) image to be reconstructed, are needed. We take as prior a nonsymmetrical half plane autoregressive (NSHP AR) Gauss-Markov random field (GMRF). Based on a reduced order state-space formulation of the (linear) NSHP AR model and on the (nonlinear) observation mechanism, a recursive stochastic nonlinear filter is derived, The corresponding estimates are compared with those obtained by the extended Kalman-Bucy filter, a classical linearizing approach to the same problem. A set of examples illustrate the effectiveness of the proposed approach. PMID:18276299

  15. Absolute measures of the completeness of the fossil record.

    PubMed

    Foote, M; Sepkoski, J J

    1999-04-01

    Measuring the completeness of the fossil record is essential to understanding evolution over long timescales, particularly when comparing evolutionary patterns among biological groups with different preservational properties. Completeness measures have been presented for various groups based on gaps in the stratigraphic ranges of fossil taxa and on hypothetical lineages implied by estimated evolutionary trees. Here we present and compare quantitative, widely applicable absolute measures of completeness at two taxonomic levels for a broader sample of higher taxa of marine animals than has previously been available. We provide an estimate of the probability of genus preservation per stratigraphic interval, and determine the proportion of living families with some fossil record. The two completeness measures use very different data and calculations. The probability of genus preservation depends almost entirely on the Palaeozoic and Mesozoic records, whereas the proportion of living families with a fossil record is influenced largely by Cenozoic data. These measurements are nonetheless highly correlated, with outliers quite explicable, and we find that completeness is rather high for many animal groups.

  16. In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship.

    PubMed

    Parry, Christopher; Blonquist, J Mark; Bugbee, Bruce

    2014-11-01

    In situ optical meters are widely used to estimate leaf chlorophyll concentration, but non-uniform chlorophyll distribution causes optical measurements to vary widely among species for the same chlorophyll concentration. Over 30 studies have sought to quantify the in situ/in vitro (optical/absolute) relationship, but neither chlorophyll extraction nor measurement techniques for in vitro analysis have been consistent among studies. Here we: (1) review standard procedures for measurement of chlorophyll; (2) estimate the error associated with non-standard procedures; and (3) implement the most accurate methods to provide equations for conversion of optical to absolute chlorophyll for 22 species grown in multiple environments. Tests of five Minolta (model SPAD-502) and 25 Opti-Sciences (model CCM-200) meters, manufactured from 1992 to 2013, indicate that differences among replicate models are less than 5%. We thus developed equations for converting between units from these meter types. There was no significant effect of environment on the optical/absolute chlorophyll relationship. We derive the theoretical relationship between optical transmission ratios and absolute chlorophyll concentration and show how non-uniform distribution among species causes a variable, non-linear response. These results link in situ optical measurements with in vitro chlorophyll concentration and provide insight to strategies for radiation capture among diverse species.

  17. Egomotion estimation with optic flow and air velocity sensors.

    PubMed

    Rutkowski, Adam J; Miller, Mikel M; Quinn, Roger D; Willis, Mark A

    2011-06-01

    We develop a method that allows a flyer to estimate its own motion (egomotion), the wind velocity, ground slope, and flight height using only inputs from onboard optic flow and air velocity sensors. Our artificial algorithm demonstrates how it could be possible for flying insects to determine their absolute egomotion using their available sensors, namely their eyes and wind sensitive hairs and antennae. Although many behaviors can be performed by only knowing the direction of travel, behavioral experiments indicate that odor tracking insects are able to estimate the wind direction and control their absolute egomotion (i.e., groundspeed). The egomotion estimation method that we have developed, which we call the opto-aeronautic algorithm, is tested in a variety of wind and ground slope conditions using a video recorded flight of a moth tracking a pheromone plume. Over all test cases that we examined, the algorithm achieved a mean absolute error in height of 7% or less. Furthermore, our algorithm is suitable for the navigation of aerial vehicles in environments where signals from the Global Positioning System are unavailable.

  18. Estimation of optimal matching position for orthogonal kV setup images and minimal setup margins in radiotherapy of whole breast and lymph node areas

    PubMed Central

    Laaksomaa, Marko; Kapanen, Mika; Skyttä, Tanja; Peltola, Seppo; Hyödynmaa, Simo; Kellokumpu-Lehtinen, Pirkko-Liisa

    2014-01-01

    Aim The aim was to find an optimal setup image matching position and minimal setup margins to maximally spare the organs at risk in breast radiotherapy. Background Radiotherapy of breast cancer is a routine task but has many challenges. We investigated residual position errors in whole breast radiotherapy when orthogonal setup images were matched to different bony landmarks. Materials and methods A total of 1111 orthogonal setup image pairs and tangential field images were analyzed retrospectively for 50 consecutive patients. Residual errors in the treatment field images were determined by matching the orthogonal setup images to the vertebrae, sternum, ribs and their compromises. The most important region was the chest wall as it is crucial for the dose delivered to the heart and the ipsilateral lung. Inter-observer variation in online image matching was investigated. Results The best general image matching position was the compromise of the vertebrae, ribs and sternum, while the worst position was the vertebrae alone (p ≤ 0.03). The setup margins required for the chest wall varied from 4.3 mm to 5.5 mm in the lung direction while in the superior–inferior (SI) direction the margins varied from 5.1 mm to 7.6 mm. The inter-observer variation increased the minimal margins by approximately 1 mm. The margin of the lymph node areas should be at least 4.8 mm. Conclusions Setup margins can be reduced by proper selection of a matching position for the orthogonal setup images. To retain the minimal margins sufficient, systematic error of the chest wall should not exceed 4 mm in the tangential field image. PMID:25337409

  19. On the absolute alignment of GONG images

    NASA Astrophysics Data System (ADS)

    Toner, C. G.

    2001-01-01

    In order to combine data from the six instruments in the GONG network the alignment of all of the images must be known to a fairly high precision (~0°.1 for GONG Classic and ~0°.01 for GONG+). The relative orientation is obtained using the angular cross-correlation method described by (Toner & Harvey, 1998). To obtain the absolute orientation the Project periodically records a day of drift scans, where the image of the Sun is allowed to drift across the CCD repeatedly throughout the day. These data are then analyzed to deduce the direction of Terrestrial East-West as a function of hour angle (i.e., time) for that instrument. The transit of Mercury on Nov. 15, 1999, which was recorded by three of the GONG instruments, provided an independent check on the current alignment procedures. Here we present a comparison of the alignment of GONG images as deduced from both drift scans and the Mercury transit for two GONG sites: Tucson (GONG+ camera) and Mauna Loa (GONG Classic camera). The agreement is within ~0°.01 for both cameras, however, the scatter is substantially larger for GONG Classic: ~0°.03 compared to ~0°.01 for GONG+.

  20. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  1. Absolute flux measurements for swift atoms

    NASA Technical Reports Server (NTRS)

    Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.

    1987-01-01

    While a torsion balance in vacuum can easily measure the momentum transfer from a gas beam impinging on a surface attached to the balance, this measurement depends on the accommodation coefficients of the atoms with the surface and the distribution of the recoil. A torsion balance is described for making absolute flux measurements independent of recoil effects. The torsion balance is a conventional taut suspension wire design and the Young modulus of the wire determines the relationship between the displacement and the applied torque. A compensating magnetic field is applied to maintain zero displacement and provide critical damping. The unique feature is to couple the impinging gas beam to the torsion balance via a Wood's horn, i.e., a thin wall tube with a gradual 90 deg bend. Just as light is trapped in a Wood's horn by specular reflection from the curved surfaces, the gas beam diffuses through the tube. Instead of trapping the beam, the end of the tube is open so that the atoms exit the tube at 90 deg to their original direction. Therefore, all of the forward momentum of the gas beam is transferred to the torsion balance independent of the angle of reflection from the surfaces inside the tube.

  2. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    SciTech Connect

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  3. Cross-mode bioelectrical impedance analysis in a standing position for estimating fat-free mass validated against dual-energy x-ray absorptiometry.

    PubMed

    Huang, Ai-Chun; Chen, Yu-Yawn; Chuang, Chih-Lin; Chiang, Li-Ming; Lu, Hsueh-Kuan; Lin, Hung-Chi; Chen, Kuen-Tsann; Hsiao, An-Chi; Hsieh, Kuen-Chang

    2015-11-01

    Bioelectrical impedance analysis (BIA) is commonly used to assess body composition. Cross-mode (left hand to right foot, Z(CR)) BIA presumably uses the longest current path in the human body, which may generate better results when estimating fat-free mass (FFM). We compared the cross-mode with the hand-to-foot mode (right hand to right foot, Z(HF)) using dual-energy x-ray absorptiometry (DXA) as the reference. We hypothesized that when comparing anthropometric parameters using stepwise regression analysis, the impedance value from the cross-mode analysis would have better prediction accuracy than that from the hand-to-foot mode analysis. We studied 264 men and 232 women (mean ages, 32.19 ± 14.95 and 34.51 ± 14.96 years, respectively; mean body mass indexes, 24.54 ± 3.74 and 23.44 ± 4.61 kg/m2, respectively). The DXA-measured FFMs in men and women were 58.85 ± 8.15 and 40.48 ± 5.64 kg, respectively. Multiple stepwise linear regression analyses were performed to construct sex-specific FFM equations. The correlations of FFM measured by DXA vs. FFM from hand-to-foot mode and estimated FFM by cross-mode were 0.85 and 0.86 in women, with standard errors of estimate of 2.96 and 2.92 kg, respectively. In men, they were 0.91 and 0.91, with standard errors of the estimates of 3.34 and 3.48 kg, respectively. Bland-Altman plots showed limits of agreement of -6.78 to 6.78 kg for FFM from hand-to-foot mode and -7.06 to 7.06 kg for estimated FFM by cross-mode for men, and -5.91 to 5.91 and -5.84 to 5.84 kg, respectively, for women. Paired t tests showed no significant differences between the 2 modes (P > .05). Hence, cross-mode BIA appears to represent a reasonable and practical application for assessing FFM in Chinese populations.

  4. Issues in Absolute Spectral Radiometric Calibration: Intercomparison of Eight Sources

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Kindel, Bruce; Pilewskie, Peter

    1998-01-01

    The application of atmospheric models to AVIRIS and other spectral imaging data to derive surface reflectance requires that the sensor output be calibrated to absolute radiance. Uncertainties in absolute calibration are to be expected, and claims of 92% accuracy have been published. Measurements of accurate surface albedos and cloud absorption to be used in radiative balance calculations depend critically on knowing the absolute spectral-radiometric response of the sensor. The Earth Observing System project is implementing a rigorous program of absolute radiometric calibration for all optical sensors. Since a number of imaging instruments that provide output in terms of absolute radiance are calibrated at different sites, it is important to determine the errors that can be expected among calibration sites. Another question exists about the errors in the absolute knowledge of the exoatmospheric spectral solar irradiance.

  5. Absolute nuclear material assay using count distribution (LAMBDA) space

    SciTech Connect

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  6. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  7. Antifungal activity of tuberose absolute and some of its constituents.

    PubMed

    Nidiry, Eugene Sebastian J; Babu, C S Bujji

    2005-05-01

    The antifungal activity of the absolute of tuberose (Polianthes tuberosa ) and some of its constituents were evaluated against the mycelial growth of Colletotrichum gloeosporioides on potato-dextrose-agar medium. Tuberose absolute showed only mild activity at a concentration of 500 mg/L. However, three constituents present in the absolute, namely geraniol, indole and methyl anthranilate exhibited significant activity showing total inhibition of the mycelial growth at this concentration.

  8. Faster methods for estimating arc centre position during VAR and results from Ti-6Al-4V and INCONEL 718 alloys

    NASA Astrophysics Data System (ADS)

    Nair, B. G.; Winter, N.; Daniel, B.; Ward, R. M.

    2016-07-01

    Direct measurement of the flow of electric current during VAR is extremely difficult due to the aggressive environment as the arc process itself controls the distribution of current. In previous studies the technique of “magnetic source tomography” was presented; this was shown to be effective but it used a computationally intensive iterative method to analyse the distribution of arc centre position. In this paper we present faster computational methods requiring less numerical optimisation to determine the centre position of a single distributed arc both numerically and experimentally. Numerical validation of the algorithms were done on models and experimental validation on measurements based on titanium and nickel alloys (Ti6Al4V and INCONEL 718). The results are used to comment on the effects of process parameters on arc behaviour during VAR.

  9. Accuracy of the LPM tracking system considering dynamic position changes.

    PubMed

    Ogris, Georg; Leser, Roland; Horsak, Brian; Kornfeind, Philipp; Heller, Mario; Baca, Arnold

    2012-01-01

    This study investigates the accuracy of the tracking system LPM (local position measurement). The goal was to determine detailed error values of the system in the context of sports performance analyses. Six moderately trained male soccer players (amateur level) performed 276 runs on three different courses at six different speeds. Additionally, ten small-sided game plays were carried out. All runs and game plays were recorded with the LPM tracking system and the motion capture system VICON simultaneously. VICON served as the reference system. The absolute error of all LPM position estimations was on average 23.4±20.7 cm. The estimation for average velocities varied between 0.01 km h(-1) and 0.23 km h(-1), the maximum speed estimations differed by up to 2.71 km h(-1). In addition, the results showed that the accuracy of the LPM system is highly dependent on the instantaneous dynamics of the player and decreases in the margins of the observation field. These dependencies were quantified. Considering commonly used applications of position tracking systems in sports (Leser, Ogris, & Baca, 2011), the accuracy of LPM is acceptable for position and velocity estimations. The system provides valuable results for average velocities but seems to be far less reliable when dealing with high dynamic movements and measuring instantaneous velocities.

  10. The absolute disparity anomaly and the mechanism of relative disparities.

    PubMed

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1).

  11. The absolute disparity anomaly and the mechanism of relative disparities

    PubMed Central

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-01-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  12. Predicting AIDS-related events using CD4 percentage or CD4 absolute counts

    PubMed Central

    Pirzada, Yasmin; Khuder, Sadik; Donabedian, Haig

    2006-01-01

    Background The extent of immunosuppression and the probability of developing an AIDS-related complication in HIV-infected people is usually measured by the absolute number of CD4 positive T-cells. The percentage of CD4 positive cells is a more easily measured and less variable number. We analyzed sequential CD4 and CD8 numbers, percentages and ratios in 218 of our HIV infected patients to determine the most reliable predictor of an AIDS-related event. Results The CD4 percentage was an unsurpassed predictor of the occurrence of AIDS-related events when all subsets of patients are considered. The CD4 absolute count was the next most reliable, followed by the ratio of CD4/CD8 percentages. The value of CD4 percentage over the CD4 absolute count was seen even after the introduction of highly effective HIV therapy. Conclusion The CD4 percentage is unsurpassed as a parameter for predicting the onset of HIV-related diseases. The extra time and expense of measuring the CD4 absolute count may be unnecessary. PMID:16916461

  13. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  14. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  15. Using star tracks to determine the absolute pointing of the Fluorescence Detector telescopes of the Pierre Auger Observatory

    SciTech Connect

    De Donato, Cinzia; Sanchez, Federico; Santander, Marcos; Natl.Tech.U., San Rafael; Camin, Daniel; Garcia, Beatriz; Grassi, Valerio; /Milan U. /INFN, Milan

    2005-05-01

    To accurately reconstruct a shower axis from the Fluorescence Detector data it is essential to establish with high precision the absolute pointing of the telescopes. To d that they calculate the absolute pointing of a telescope using sky background data acquired during regular data taking periods. The method is based on the knowledge of bright star's coordinates that provide a reliable and stable coordinate system. it can be used to check the absolute telescope's pointing and its long-term stability during the whole life of the project, estimated in 20 years. They have analyzed background data taken from January to October 2004 to determine the absolute pointing of the 12 telescopes installed both in Los Leones and Coihueco. The method is based on the determination of the mean-time of the variance signal left by a star traversing a PMT's photocathode which is compared with the mean-time obtained by simulating the track of that star on the same pixel.

  16. The Absolute Rate of LGRB Formation

    NASA Astrophysics Data System (ADS)

    Graham, J. F.; Schady, P.

    2016-06-01

    We estimate the long-duration gamma-ray burst (LGRB) progenitor rate using our recent work on the effects of environmental metallically on LGRB formation in concert with supernovae (SNe) statistics via an approach patterned loosely off the Drake equation. Beginning with the cosmic star formation history, we consider the expected number of broad-line Type Ic events (the SNe type associated with LGRBs) that are in low-metallicity host environments adjusted by the contribution of high-metallicity host environments at a much reduced rate. We then compare this estimate to the observed LGRB rate corrected for instrumental selection effects to provide a combined estimate of the efficiency fraction of these progenitors to produce LGRBs and the fraction of which are beamed in our direction. From this we estimate that an aligned LGRB occurs for approximately every 4000 ± 2000 low-metallically broad-lined SNe Ic. Therefore, if one assumes a semi-nominal beaming factor of 100, then only about one such supernova out of 40 produce an LGRB. Finally, we propose an off-axis LGRB search strategy of targeting only broad-line Type Ic events that occur in low-metallicity hosts for radio observation.

  17. Orbital Solutions and Absolute Elements of the Eclipsing Binary MY Cygni

    NASA Astrophysics Data System (ADS)

    Tucker, Rebecca S.; Sowell, James R.; Williamon, Richard M.; Coughlin, Jeffrey L.

    2009-02-01

    Differential UBV photoelectric photometry for the eclipsing binary MY Cyg is presented. The Wilson-Devinney program is used to simultaneously solve the three light curves together with previously published radial velocities. A comparison is made with the previous solution found with the Russell-Merrill method. We examine the long-term apsidal motion of this well-detached, slightly eccentric system. We determine absolute dimensions, discuss metallicity/Am-star issues, and estimate the evolutionary status of the stars.

  18. Development of explicit diffraction corrections for absolute measurements of acoustic nonlinearity parameters in the quasilinear regime.

    PubMed

    Jeong, Hyunjo; Zhang, Shuzeng; Cho, Sungjong; Li, Xiongbing

    2016-08-01

    In absolute measurements of acoustic nonlinearity parameters, amplitudes of harmonics must be corrected for diffraction effects. In this study, we develop explicit multi-Gaussian beam (MGB) model-based diffraction corrections for the first three harmonics in weakly nonlinear, axisymmetric sound beams. The effects of making diffraction corrections on nonlinearity parameter estimation are investigated by defining "total diffraction correction (TDC)". The results demonstrate that TDC cannot be neglected even for harmonic generation experiments in the nearfield region. PMID:27186964

  19. Absolute standardization of the impurity (121)Te associated to the production of the radiopharmaceutical (123)I.

    PubMed

    Araújo, M T F; Poledna, R; Delgado, J U; Silva, R L; Iwahara, A; da Silva, C J; Tauhata, L; Oliveira, A E; de Almeida, M C M; Lopes, R T

    2016-03-01

    (123)I is widely used for radiodiagnostic procedures. It is produced by reaction of (124)Xe (p,2n) (123)Cs →(123)Xe →(123)I in cyclotrons. (121)Te and (125)I appear in a photon energy spectrum as impurities. An activity of (121)Te was calibrated absolutely by sum-peak method and its photon emitting probability was estimated, whose results were consistent with published results. PMID:26805708

  20. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%–0.68% (k  =  2).

  1. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%-0.68% (k  =  2).

  2. Point Positioning Service for Natural Hazard Monitoring

    NASA Astrophysics Data System (ADS)

    Bar-Sever, Y. E.

    2014-12-01

    In an effort to improve natural hazard monitoring, JPL has invested in updating and enlarging its global real-time GNSS tracking network, and has launched a unique service - real-time precise positioning for natural hazard monitoring, entitled GREAT Alert (GNSS Real-Time Earthquake and Tsunami Alert). GREAT Alert leverages the full technological and operational capability of the JPL's Global Differential GPS System [www.gdgps.net] to offer owners of real-time dual-frequency GNSS receivers: Sub-5 cm (3D RMS) real-time, absolute positioning in ITRF08, regardless of location Under 5 seconds turnaround time Full covariance information Estimates of ancillary parameters (such as troposphere) optionally provided This service enables GNSS networks operators to instantly have access to the most accurate and reliable real-time positioning solutions for their sites, and also to the hundreds of participating sites globally, assuring inter-consistency and uniformity across all solutions. Local authorities with limited technical and financial resources can now access to the best technology, and share environmental data to the benefit of the entire pacific region. We will describe the specialized precise point positioning techniques employed by the GREAT Alert service optimized for natural hazard monitoring, and in particular Earthquake monitoring. We address three fundamental aspects of these applications: 1) small and infrequent motion, 2) the availability of data at a central location, and 3) the need for refined solutions at several time scales

  3. Development of new free-fall absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Rothleitner, Ch; Svitlov, S.; Mérimèche, H.; Hu, H.; Wang, L. J.

    2009-06-01

    The design and first results of two free-fall absolute gravimeters are reported: a stationary gravimeter is designed and can be used as a reference system and a portable gravimeter is aimed at field measurements. The determination of the acceleration due to gravity is done interferometrically in both instruments. The whole fringe signal is digitized by a high-speed analogue-to-digital converter, which is locked to a rubidium frequency standard. This fringe recording and processing is novel as compared with commercial free-fall gravimeters, which use an electronic zero-crossing discrimination. Advantages such as the application of a zero-phase-shifting digital filter to the digitized data are depicted. The portable gravimeter's mechanics deviate from the conventional type. Springs are used to accelerate and decelerate the carriage supporting the falling object. A detailed uncertainty budget is given for both gravimeters. The combined standard uncertainty for the portable and for the stationary gravimeter is estimated at 38.8 µGal and 16.6 µGal, respectively. The corresponding statistical uncertainties are 1.6 µGal (over one day of measurement) and 0.6 µGal (over one month of measurement). The different designs and dimensions of the new free-fall gravimeters can help to reveal unknown or so far underestimated systematic effects. The assessments of the uncertainties due to seismic noise and shock vibrations, and electronic phase shifts give validity to this assumption.

  4. An absolute interval scale of order for point patterns

    PubMed Central

    Protonotarios, Emmanouil D.; Baum, Buzz; Johnston, Alan; Hunter, Ginger L.; Griffin, Lewis D.

    2014-01-01

    Human observers readily make judgements about the degree of order in planar arrangements of points (point patterns). Here, based on pairwise ranking of 20 point patterns by degree of order, we have been able to show that judgements of order are highly consistent across individuals and the dimension of order has an interval scale structure spanning roughly 10 just-notable-differences (jnd) between disorder and order. We describe a geometric algorithm that estimates order to an accuracy of half a jnd by quantifying the variability of the size and shape of spaces between points. The algorithm is 70% more accurate than the best available measures. By anchoring the output of the algorithm so that Poisson point processes score on average 0, perfect lattices score 10 and unit steps correspond closely to jnds, we construct an absolute interval scale of order. We demonstrate its utility in biology by using this scale to quantify order during the development of the pattern of bristles on the dorsal thorax of the fruit fly. PMID:25079866

  5. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  6. Absolute Pitch in Infant Auditory Learning: Evidence for Developmental Reorganization.

    ERIC Educational Resources Information Center

    Saffran, Jenny R.; Griepentrog, Gregory J.

    2001-01-01

    Two experiments examined 8-month-olds' use of absolute and relative pitch cues in a tone-sequence statistical learning task. Results suggest that, given unsegmented stimuli that do not conform to rules of musical composition, infants are more likely to track patterns of absolute pitches than of relative pitches. A third experiment found that adult…

  7. Supplementary and Enrichment Series: Absolute Value. Teachers' Commentary. SP-25.

    ERIC Educational Resources Information Center

    Bridgess, M. Philbrick, Ed.

    This is one in a series of manuals for teachers using SMSG high school supplementary materials. The pamphlet includes commentaries on the sections of the student's booklet, answers to the exercises, and sample test questions. Topics covered include addition and multiplication in terms of absolute value, graphs of absolute value in the Cartesian…

  8. Supplementary and Enrichment Series: Absolute Value. SP-24.

    ERIC Educational Resources Information Center

    Bridgess, M. Philbrick, Ed.

    This is one in a series of SMSG supplementary and enrichment pamphlets for high school students. This series is designed to make material for the study of topics of special interest to students readily accessible in classroom quantity. Topics covered include absolute value, addition and multiplication in terms of absolute value, graphs of absolute…

  9. Absolute dimensions of unevolved O type close binaries

    SciTech Connect

    Doom, C.; de Loore, C.

    1984-03-15

    A method is presented to derive the absolute dimensions of early-type detached binaries by combining the observed parameters with results of evolutionary computations. The method is used to obtain the absolute dimensions of nine close binaries. We find that most systems have an initial masss ratio near 1.

  10. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  11. Determination of Absolute Zero Using a Computer-Based Laboratory

    ERIC Educational Resources Information Center

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  12. Measuring implicit attitudes: A positive framing bias flaw in the Implicit Relational Assessment Procedure (IRAP).

    PubMed

    O'Shea, Brian; Watson, Derrick G; Brown, Gordon D A

    2016-02-01

    How can implicit attitudes best be measured? The Implicit Relational Assessment Procedure (IRAP), unlike the Implicit Association Test (IAT), claims to measure absolute, not just relative, implicit attitudes. In the IRAP, participants make congruent (Fat Person-Active: false; Fat Person-Unhealthy: true) or incongruent (Fat Person-Active: true; Fat Person-Unhealthy: false) responses in different blocks of trials. IRAP experiments have reported positive or neutral implicit attitudes (e.g., neutral attitudes toward fat people) in cases in which negative attitudes are normally found on explicit or other implicit measures. It was hypothesized that these results might reflect a positive framing bias (PFB) that occurs when participants complete the IRAP. Implicit attitudes toward categories with varying prior associations (nonwords, social systems, flowers and insects, thin and fat people) were measured. Three conditions (standard, positive framing, and negative framing) were used to measure whether framing influenced estimates of implicit attitudes. It was found that IRAP scores were influenced by how the task was framed to the participants, that the framing effect was modulated by the strength of prior stimulus associations, and that a default PFB led to an overestimation of positive implicit attitudes when measured by the IRAP. Overall, the findings question the validity of the IRAP as a tool for the measurement of absolute implicit attitudes. A new tool (Simple Implicit Procedure:SIP) for measuring absolute, not just relative, implicit attitudes is proposed. (PsycINFO Database Record

  13. Regularized estimation of Euler pole parameters

    NASA Astrophysics Data System (ADS)

    Aktuğ, Bahadir; Yildirim, Ömer

    2013-07-01

    Euler vectors provide a unified framework to quantify the relative or absolute motions of tectonic plates through various geodetic and geophysical observations. With the advent of space geodesy, Euler parameters of several relatively small plates have been determined through the velocities derived from the space geodesy observations. However, the available data are usually insufficient in number and quality to estimate both the Euler vector components and the Euler pole parameters reliably. Since Euler vectors are defined globally in an Earth-centered Cartesian frame, estimation with the limited geographic coverage of the local/regional geodetic networks usually results in highly correlated vector components. In the case of estimating the Euler pole parameters directly, the situation is even worse, and the position of the Euler pole is nearly collinear with the magnitude of the rotation rate. In this study, a new method, which consists of an analytical derivation of the covariance matrix of the Euler vector in an ideal network configuration, is introduced and a regularized estimation method specifically tailored for estimating the Euler vector is presented. The results show that the proposed method outperforms the least squares estimation in terms of the mean squared error.

  14. Absolute travel distance from optic flow.

    PubMed

    Frenz, Harald; Lappe, Markus

    2005-06-01

    Optic flow fields provide rich information about the observer's self-motion. Besides estimation of the direction of self-motion human observers are also able to discriminate the travel distances of two self-motion simulations. Recent studies have shown that observers estimate the simulated ego velocity of the self-motion simulation and integrate it over time. Thus, observers use a 3-D percept of the ego motion through the environment. In the present work we ask if human observers are able to use this 3-D percept of the motion simulation to build up an internal representation of travel distance and indicate it in a static scene. We visually simulated self-motion in different virtual environments and asked subjects to indicate the perceived distances in terms of static virtual intervals on the ground. The results show that human observers possess a static distance gauge, but that they undershoot the travel distances for short motion simulations. In further experiments we changed the modality of the distance indication but the undershoot in distance estimation remained. This suggests that the undershoot is linked to the perception of the optic flow field.

  15. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  16. Absolute size and proportionality characteristics of World Championship female basketball players.

    PubMed

    Ackland, T R; Schreiner, A B; Kerr, D A

    1997-10-01

    In total, 168 players from 14 national teams were measured using 38 anthropometric dimensions before the Women's World Basketball Championships held in Australia in 1994. Measures of segment length, breadth and girth were recorded by a team of trained anthropometrists using standard protocols. The subjects were divided according to playing position and team performance so that univariate analyses of variance could be administered using absolute size and proportionality data as dependent variables. Clear differences in absolute size were found between guards, forwards and centres, but in terms of proportionality the latter two groups exhibited some similarities, particularly for measures of relative size in upper body dimensions. With guards displaying a different proportionality profile from either forwards or centres, the various roles of each position within the team were considered to rationalize the findings.

  17. Prelaunch absolute radiometric calibration of the reflective bands on the LANDSAT-4 protoflight Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Ball, D. L.; Leung, K. C.; Walker, J. A.

    1984-01-01

    The results of the absolute radiometric calibration of the LANDSAT 4 thematic mapper, as determined during pre-launch tests with a 122 cm integrating sphere, are presented. Detailed results for the best calibration of the protoflight TM are given, as well as summaries of other tests performed on the sensor. The dynamic range of the TM is within a few per cent of that required in all bands, except bands 1 and 3. Three detectors failed to pass the minimum SNR specified for their respective bands: band 5, channel 3 (dead), band 2, and channels 2 and 4 (noisy or slow response). Estimates of the absolute calibration accuracy for the TM show that the detectors are typically calibrated to 5% absolute error for the reflective bands; 10% full-scale accuracy was specified. Ten tests performed to transfer the detector absolute calibration to the internal calibrator show a 5% range at full scale in the transfer calibration; however, in two cases band 5 showed a 10% and a 7% difference.

  18. Simultaneous absolute determination of particle size and effective density of submicron colloids by disc centrifuge photosedimentometry.

    PubMed

    Kamiti, Mungai; Boldridge, David; Ndoping, Linda M; Remsen, Edward E

    2012-12-18

    Disc centrifuge photosedimentometry (DCP) with fluids of different densities is used to simultaneously determine the particle size and effective density of spherical silica particles. Incorporation of a calibrated infrared pyrometer into a DCP instrument is shown to enhance the measurement capability of the DCP technique by correcting for the temperature dependence of the spin fluid's density and viscosity. Advantages of absolute DCP determinations for size and density analysis relative to standardized DCP measurements include the elimination of instrument standardization with a particle of known density and measurements or estimation of the effective particle density. The reliability of diameter determinations provided by absolute DCP was confirmed using silica particles with nominal diameters ranging from 250 to 700 nm by comparison of these analyses with a diameter determination by transmission electron microscopy for silica particle size standards. Effective densities determined by absolute DCP for the silica particles ranged from 2.02 to 2.34 g/cm(3). These findings indicate that the silica particles have little or no porosity. The reported characterization of colloidal silica using absolute DCP suggests applicability of the technique to a variety of particle types including colloidal materials other than silica, core-shell particles, compositionally heterogeneous mixtures of nanoparticles, and irregularly shaped, structured colloids. PMID:23157599

  19. THE ABSOLUTE MAGNITUDE OF RRc VARIABLES FROM STATISTICAL PARALLAX

    SciTech Connect

    Kollmeier, Juna A.; Burns, Christopher R.; Thompson, Ian B.; Preston, George W.; Crane, Jeffrey D.; Madore, Barry F.; Morrell, Nidia; Prieto, José L.; Shectman, Stephen; Simon, Joshua D.; Villanueva, Edward; Szczygieł, Dorota M.; Gould, Andrew; Sneden, Christopher; Dong, Subo

    2013-09-20

    We present the first definitive measurement of the absolute magnitude of RR Lyrae c-type variable stars (RRc) determined purely from statistical parallax. We use a sample of 242 RRc variables selected from the All Sky Automated Survey for which high-quality light curves, photometry, and proper motions are available. We obtain high-resolution echelle spectra for these objects to determine radial velocities and abundances as part of the Carnegie RR Lyrae Survey. We find that M{sub V,RRc} = 0.59 ± 0.10 at a mean metallicity of [Fe/H] = –1.59. This is to be compared with previous estimates for RRab stars (M{sub V,RRab} = 0.76 ± 0.12) and the only direct measurement of an RRc absolute magnitude (RZ Cephei, M{sub V,RRc} = 0.27 ± 0.17). We find the bulk velocity of the halo relative to the Sun to be (W{sub π}, W{sub θ}, W{sub z} ) = (12.0, –209.9, 3.0) km s{sup –1} in the radial, rotational, and vertical directions with dispersions (σ{sub W{sub π}},σ{sub W{sub θ}},σ{sub W{sub z}}) = (150.4, 106.1, 96.0) km s{sup -1}. For the disk, we find (W{sub π}, W{sub θ}, W{sub z} ) = (13.0, –42.0, –27.3) km s{sup –1} relative to the Sun with dispersions (σ{sub W{sub π}},σ{sub W{sub θ}},σ{sub W{sub z}}) = (67.7,59.2,54.9) km s{sup -1}. Finally, as a byproduct of our statistical framework, we are able to demonstrate that UCAC2 proper-motion errors are significantly overestimated as verified by UCAC4.

  20. Absolute and relative temporal order memory for performed activities following stroke.

    PubMed

    Schoo, Linda A; van Zandvoort, Martine J E; Reijmer, Yael D; Biessels, Geert Jan; Kappelle, L Jaap; Postma, Albert

    2014-01-01

    Reconstructing the temporal order of events is a crucial part of episodic memory. The temporal dimension, however, is often discarded in clinical settings, and measurements of true temporal aspects of episodic memory are scarce. The present study assessed temporal memory in stroke patients and in age- and education-matched healthy controls. Both groups underwent a standardized neuropsychological examination. We asked participants afterwards to reconstruct the order of tests they had performed, measured in absolute temporal order (event placed on correct moment in sequence) and relative temporal order (event placed correctly relative to directly preceding and following events). The aim of the study was to examine how serial-position curve effects (measuring absolute temporal order anchored in exact time) and how relative temporal order memory (anchored to other events) may differ in a group of cerebral stroke patients. Another aim was to link temporal order memory deficits with established neuropsychological measures of cognitive functioning. Although item identification was comparable in both groups, absolute temporal order memory was impaired in patients: A total of 43% of the patients lacked the expected primacy and recency effects (serial position effect). In addition, relative temporal order memory was affected in this group as well, F(1, 70) = 4.08, p < .05; 25% of the patients were impaired in reconstructing the relative temporal order (p = .019, Fisher's Exact Test). Both absolute and relative temporal order memory performance related to the domains of executive functioning and memory. Our results suggest that it is important to test both absolute and relative temporal order memory, especially because these types of memory depend on different anchors, either on time or on adjacent events.

  1. Absolute flux density calibrations: Receiver saturation effects

    NASA Technical Reports Server (NTRS)

    Freiley, A. J.; Ohlson, J. E.; Seidel, B. L.

    1978-01-01

    The effect of receiver saturation was examined for a total power radiometer which uses an ambient load for calibration. Extension to other calibration schemes is indicated. The analysis shows that a monotonic receiver saturation characteristic could cause either positive or negative measurement errors, with polarity depending upon operating conditions. A realistic model of the receiver was made by using a linear-cubic voltage transfer characteristic. The evaluation of measurement error for this model provided a means for correcting radio source measurements.

  2. Absolute astrometry with Pan-STARRS

    NASA Astrophysics Data System (ADS)

    Makarov, Valeri; Berghea, Ciprian; Dorland, Bryan; Hennessy, Greg; Zacharias, Norbert; Magnier, Eugene A.; Monet, David; Gaume, Ralph

    2015-08-01

    A small collaboration of USNO and IfA astronomers is working on an improved astrometric solution for the data collected by the Pan-STARRS project. The 3PI survey performed by the PS1 telescope is well suited for a global astrometric solution. The current approach used in the data reduction pipeline is strictly differential. The 2MASS positions were used as reference for field of view (FoV) and detector calibration procedures. The absence of proper motions in 2MASS results in significant sky-correlated errors up to 30 - 50 mas. Our approach is to solve a huge system of linear equations for a carefully selected set of ~1 million grid objects including the astrometric unknowns (positions, proper motions and parallaxes) and FoV calibration parameters. The grid catalog includes ~5000 extragalactic radio sources with VLBI-detected positions accurate to 1 mas or better, which are used as hard constraints to the astrometric unknowns in the global least-squares adjustment. If successful, this will be the first realization of a large optical astrometry catalog directly anchored to the ICRF. Numerical simulations indicated a 10 mas accuracy level for Pan-STARRS astrometry, but experimental solutions on real data have not yet reached this level.

  3. Hilbertian sine as an absolute measure of Bayesian inference in ISR, homeland security, medicine, and defense

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Wang, Wenjian; Hodelin, Juan; Forrester, Thomas; Romanov, Volodymyr; Kostrzewski, Andrew

    2016-05-01

    In this paper, Bayesian Binary Sensing (BBS) is discussed as an effective tool for Bayesian Inference (BI) evaluation in interdisciplinary areas such as ISR (and, C3I), Homeland Security, QC, medicine, defense, and many others. In particular, Hilbertian Sine (HS) as an absolute measure of BI, is introduced, while avoiding relativity of decision threshold identification, as in the case of traditional measures of BI, related to false positives and false negatives.

  4. Spectra of random operators with absolutely continuous integrated density of states

    SciTech Connect

    Rio, Rafael del E-mail: delriomagia@gmail.com

    2014-04-15

    The structure of the spectrum of random operators is studied. It is shown that if the density of states measure of some subsets of the spectrum is zero, then these subsets are empty. In particular follows that absolute continuity of the integrated density of states implies singular spectra of ergodic operators is either empty or of positive measure. Our results apply to Anderson and alloy type models, perturbed Landau Hamiltonians, almost periodic potentials, and models which are not ergodic.

  5. Absolute Binding Free Energy Calculations: On the Accuracy of Computational Scoring of Protein-ligand Interactions

    PubMed Central

    Singh, Nidhi; Warshel, Arieh

    2010-01-01

    Calculating the absolute binding free energies is a challenging task. Reliable estimates of binding free energies should provide a guide for rational drug design. It should also provide us with deeper understanding of the correlation between protein structure and its function. Further applications may include identifying novel molecular scaffolds and optimizing lead compounds in computer-aided drug design. Available options to evaluate the absolute binding free energies range from the rigorous but expensive free energy perturbation to the microscopic Linear Response Approximation (LRA/β version) and its variants including the Linear Interaction Energy (LIE) to the more approximated and considerably faster scaled Protein Dipoles Langevin Dipoles (PDLD/S-LRA version), as well as the less rigorous Molecular Mechanics Poisson–Boltzmann/Surface Area (MM/PBSA) and Generalized Born/Surface Area (MM/GBSA) to the less accurate scoring functions. There is a need for an assessment of the performance of different approaches in terms of computer time and reliability. We present a comparative study of the LRA/β, the LIE, the PDLD/S-LRA/β and the more widely used MM/PBSA and assess their abilities to estimate the absolute binding energies. The LRA and LIE methods perform reasonably well but require specialized parameterization for the non-electrostatic term. On the average, the PDLD/S-LRA/β performs effectively. Our assessment of the MM/PBSA is less optimistic. This approach appears to provide erroneous estimates of the absolute binding energies due to its incorrect entropies and the problematic treatment of electrostatic energies. Overall, the PDLD/S-LRA/β appears to offer an appealing option for the final stages of massive screening approaches. PMID:20186976

  6. Incidence and clearance of anal high-risk human papillomavirus in HIV-positive men who have sex with men: estimates and risk factors

    PubMed Central

    Geskus, Ronald B.; González, Cristina; Torres, Montserrat; Del Romero, Jorge; Viciana, Pompeyo; Masiá, Mar; Blanco, José R.; Iribarren, Mauricio; De Sanjosé, Silvia; Hernández-Novoa, Beatriz; Ortiz, Marta; Del Amo, Julia

    2016-01-01

    Background: To estimate incidence and clearance of high-risk human papillomavirus (HR-HPV), and their risk factors, in men who have sex with men (MSM) recently infected by HIV in Spain; 2007–2013. Methods: Multicenter cohort. HR-HPV infection was determined and genotyped with linear array. Two-state Markov models and Poisson regression were used. Results: We analysed 1570 HR-HPV measurements of 612 MSM over 13 608 person-months (p-m) of follow-up. Median (mean) number of measurements was 2 (2.6), median time interval between measurements was 1.1 years (interquartile range: 0.89–1.4). Incidence ranged from 9.0 [95% confidence interval (CI) 6.8–11.8] per 1000 p-m for HPV59 to 15.9 (11.7–21.8) per 1000 p-m for HPV51. HPV16 and HPV18 had slightly above average incidence: 11.9/1000 p-m and 12.8/1000 p-m. HPV16 showed the lowest clearance for both ‘prevalent positive’ (15.7/1000 p-m; 95% CI 12.0–20.5) and ‘incident positive’ infections (22.1/1000 p-m; 95% CI 11.8–41.1). More sexual partners increased HR-HPV incidence, although it was not statistically significant. Age had a strong effect on clearance (P-value < 0.001) due to the elevated rate in MSM under age 25; the effect of HIV-RNA viral load was more gradual, with clearance rate decreasing at higher HIV-RNA viral load (P-value 0.008). Conclusion: No large variation in incidence by HR-HPV type was seen. The most common incident types were HPV51, HPV52, HPV31, HPV18 and HPV16. No major variation in clearance by type was observed, with the exception of HPV16 which had the highest persistence and potentially, the strongest oncogenic capacity. Those aged below 25 or with low HIV-RNA- viral load had the highest clearance. PMID:26355673

  7. Simultaneous relative and absolute orientation of point clouds with "TLS radomes"

    NASA Astrophysics Data System (ADS)

    Glira, Philipp; Briese, Christian; Kamp, Nicole; Pfeifer, Norbert

    2013-04-01

    For the georeferencing of point clouds acquired by a terrestrial laser scanner (TLS) targets with known coordinates (control points) can be used. The determination of the target positions in a global coordinate frame with a total station and/or with GNSS can be very time-consuming. For multi-temporal comparison of TLS data these targets can be permanently installed on the measurement site. In permanent changing environments (e.g. high-moutain proglacial environments) this is not possible due to the movement of the targets. Furthermore, the integration of the TLS data with other data sources (e.g. airborne laser scanning data) has to be considered. For that aim the georeferencing of TLS measurements in a global coordinate frame has to be established. This work describes a new method for the simultaneous relative orientiation (registration) and absolute orientation (georeferencing) of point clouds by using spheres with a GNSS antenna inside. These spheres are thus used as GNSS antenna radomes. Consequently they are called within this work "TLS radomes". The simultaneous measurement with at least three GNSS antennas during the TLS data acquisition leads to long measurement times, i.e. high position accuracy and subsequently a very accurate realization of the datum. The presented TLS radomes consist of two hemispheres of polyethene enclosing the GNSS antenna. The GNSS antenna is mounted on an antenna rod, which can be enhanced by a prism and/or a reflective cylinder. For a modified optical reflectivity several coatings were tested. The one causing the smallest deformations, the smallest noise, and with the highest reflectivity was chosen. The whole construction can be mounted on a tripod. The TLS radomes are suitable for a wide range of different TLS sensors (i.e. independent of the ranging principle and the manufacturers). For the simultaneous relative and absolute orientation of the point clouds the centers of the radomes are used as identical points. With TLS these

  8. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    SciTech Connect

    Evans, J. Chapman, S.

    2014-08-14

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude of the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided.

  9. The Oslo Health Study: a Dietary Index estimating high intake of soft drinks and low intake of fruits and vegetables was positively associated with components of the metabolic syndrome.

    PubMed

    Høstmark, Arne Torbjørn

    2010-12-01

    A previous finding that soft drink intake is associated with increased serum triglycerides and decreased high-density-lipoprotein (HDL) cholesterol, both components of the metabolic syndrome (MetS), raises the question of whether other aspects of an unhealthy diet might be associated with MetS. Main MetS requirements are central obesity and 2 of the following: increased triglycerides, low HDL, increased systolic or diastolic blood pressure, and elevated fasting blood glucose. Of the 18 770 participants in the Oslo Health Study, there were 13 170 respondents (5997 men and 7173 women) with data on MetS factors (except fasting glucose) and on the components used to determine the Dietary Index score (calculated as the intake estimate of soft drinks divided by the sum of intake estimates of fruits and vegetables). MetSRisk was calculated as the sum of arbitrarily weighted factors positively associated with MetS divided by HDL cholesterol. Using regression analyses, the association of the Dietary Index with MetSRisk, with the number of MetS requirements present, and with the complete MetS was studied. In young, middle-aged, and senior men and women, there was, in general, a positive association (p < 0.001) between the Dietary Index and the MetS estimates, which persisted in regression models adjusted for sex, age, time since the last meal, intake of cheese, intake of fatty fish, intake of coffee, intake of alcohol, smoking, physical activity, education, and birthplace. Thus, an index reflecting a high intake of soft drinks and a low intake of fruit and vegetables was positively and independently associated with aspects of MetS.

  10. [The possibilities for determining the passenger position inside the car passenger compartment based on the injuries to the extremities estimated with the use of the sequential mathematical analysis].

    PubMed

    Smirenin, S A; Khabova, Z S; Fetisov, V A

    2015-01-01

    above morphological signs for the objective determination of the passenger position inside the car passenger compartment during traffic accidents and thereby to improve the quality of expert conclusions and the results of forensic medical examination of the injuries inflicted in car crashes. PMID:26245101

  11. [The possibilities for determining the passenger position inside the car passenger compartment based on the injuries to the extremities estimated with the use of the sequential mathematical analysis].

    PubMed

    Smirenin, S A; Khabova, Z S; Fetisov, V A

    2015-01-01

    above morphological signs for the objective determination of the passenger position inside the car passenger compartment during traffic accidents and thereby to improve the quality of expert conclusions and the results of forensic medical examination of the injuries inflicted in car crashes.

  12. An All Fiber White Light Interferometric Absolute Temperature Measurement System

    PubMed Central

    Kim, Jeonggon Harrison

    2008-01-01

    Recently the author of this article proposed a new signal processing algorithm for an all fiber white light interferometer. In this article, an all fiber white light interferometric absolute temperature measurement system is presented using the previously proposed signal processing algorithm. Stability and absolute temperature measurement were demonstrated. These two tests demonstrated the feasibility of absolute temperature measurement with an accuracy of 0.015 fringe and 0.0005 fringe, respectively. A hysteresis test from 373K to 873K was also presented. Finally, robustness of the sensor system towards laser diode temperature drift, AFMZI temperature drift and PZT non-linearity was demonstrated.

  13. Measurement of Disintegration Rates and Absolute {gamma}-ray Intensities

    SciTech Connect

    DeVries, Daniel J.; Griffin, Henry C.

    2006-03-13

    The majority of practical radioactive materials decay by modes that include {gamma}-ray emission. For questions of 'how much' or 'how pure', one must know the absolute intensities of the major radiations. We are using liquid scintillation counting (LSC) to measurements of disintegration rates, coupled with {gamma}-ray spectroscopy to measure absolute {gamma}-ray emission probabilities. Described is a study of the 227Th chain yielding absolute {gamma}-ray intensities with {approx}0.5% accuracy and information on LSC efficiencies.

  14. Verification of 235U mass content in nuclear fuel plates by an absolute method

    NASA Astrophysics Data System (ADS)

    El-Gammal, W.

    2007-01-01

    Nuclear Safeguards is referred to a verification System by which a State can control all nuclear materials (NM) and nuclear activities under its authority. An effective and efficient Safeguards System must include a system of measurements with capabilities sufficient to verify such NM. Measurements of NM using absolute methods could eliminate the dependency on NM Standards, which are necessary for other relative or semi-absolute methods. In this work, an absolute method has been investigated to verify the 235U mass content in nuclear fuel plates of Material Testing Reactor (MTR) type. The most intense gamma-ray signature at 185.7 keV emitted after α-decay of the 235U nuclei was employed in the method. The measuring system (an HPGe-spectrometer) was mathematically calibrated for efficiency using the general Monte Carlo transport code MCNP-4B. The calibration results and the measured net count rate were used to estimate the 235U mass content in fuel plates at different detector-to-fuel plate distances. Two sets of fuel plates, containing natural and low enriched uranium, were measured at the Fuel Fabrication Facility. Average accuracies for the estimated 235U masses of about 2.62% and 0.3% are obtained for the fuel plates containing natural and low enriched uranium; respectively, with a precision of about 3%.

  15. A BAYESIAN METHOD FOR CALCULATING REAL-TIME QUANTITATIVE PCR CALIBRATION CURVES USING ABSOLUTE PLASMID DNA STANDARDS

    EPA Science Inventory

    In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignore...

  16. Absolute lymphocyte count is not a suitable alternative to CD4 count for determining initiation of antiretroviral therapy in fiji.

    PubMed

    Balak, Dashika A; Bissell, Karen; Roseveare, Christine; Ram, Sharan; Devi, Rachel R; Graham, Stephen M

    2014-01-01

    Introduction. An absolute lymphocyte count is commonly used as an alternative to a CD4 count to determine initiation of antiretroviral therapy for HIV-infected individuals in Fiji when a CD4 count is unavailable. Methods. We conducted a retrospective analysis of laboratory results of HIV-infected individuals registered at all HIV clinics in Fiji. Results. Paired absolute lymphocyte and CD4 counts were available for 101 HIV-infected individuals, and 96% had a CD4 count of ≤500 cells/mm(3). Correlation between the counts in individuals was poor (Spearman rank correlation r = 0.5). No absolute lymphocyte count could be determined in this population as a suitable surrogate for a CD4 count of either 350 cells/mm(3) or 500 cells/mm(3). The currently used absolute lymphocyte count of ≤2300 cells/μL had a positive predictive value of 87% but a negative predictive value of only 17% for a CD4 of ≤350 cells/mm(3) and if used as a surrogate for a CD4 of ≤500 cells/mm(3) it would result in all HIV-infected individuals receiving ART including those not yet eligible. Weight, CD4 count, and absolute lymphocyte count increased significantly at 3 months following ART initiation. Conclusions. Our findings do not support the use of absolute lymphocyte count to determine antiretroviral therapy initiation in Fiji.

  17. Absolute pitch in infant auditory learning: evidence for developmental reorganization.

    PubMed

    Saffran, J R; Griepentrog, G J

    2001-01-01

    To what extent do infants represent the absolute pitches of complex auditory stimuli? Two experiments with 8-month-old infants examined the use of absolute and relative pitch cues in a tone-sequence statistical learning task. The results suggest that, given unsegmented stimuli that do not conform to the rules of musical composition, infants are more likely to track patterns of absolute pitches than of relative pitches. A 3rd experiment tested adults with or without musical training on the same statistical learning tasks used in the infant experiments. Unlike the infants, adult listeners relied primarily on relative pitch cues. These results suggest a shift from an initial focus on absolute pitch to the eventual dominance of relative pitch, which, it is argued, is more useful for both music and speech processing.

  18. Absolute calibration of sniffer probes on Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  19. Temporal Dynamics of Microbial Rhodopsin Fluorescence Reports Absolute Membrane Voltage

    PubMed Central

    Hou, Jennifer H.; Venkatachalam, Veena; Cohen, Adam E.

    2014-01-01

    Plasma membrane voltage is a fundamentally important property of a living cell; its value is tightly coupled to membrane transport, the dynamics of transmembrane proteins, and to intercellular communication. Accurate measurement of the membrane voltage could elucidate subtle changes in cellular physiology, but existing genetically encoded fluorescent voltage reporters are better at reporting relative changes than absolute numbers. We developed an Archaerhodopsin-based fluorescent voltage sensor whose time-domain response to a stepwise change in illumination encodes the absolute membrane voltage. We validated this sensor in human embryonic kidney cells. Measurements were robust to variation in imaging parameters and in gene expression levels, and reported voltage with an absolute accuracy of 10 mV. With further improvements in membrane trafficking and signal amplitude, time-domain encoding of absolute voltage could be applied to investigate many important and previously intractable bioelectric phenomena. PMID:24507604

  20. Absolute Value Boundedness, Operator Decomposition, and Stochastic Media and Equations

    NASA Technical Reports Server (NTRS)

    Adomian, G.; Miao, C. C.

    1973-01-01

    The research accomplished during this period is reported. Published abstracts and technical reports are listed. Articles presented include: boundedness of absolute values of generalized Fourier coefficients, propagation in stochastic media, and stationary conditions for stochastic differential equations.

  1. Absolute calibration of sniffer probes on Wendelstein 7-X.

    PubMed

    Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured. PMID:27587121

  2. Preparation of an oakmoss absolute with reduced allergenic potential.

    PubMed

    Ehret, C; Maupetit, P; Petrzilka, M; Klecak, G

    1992-06-01

    Synopsis Oakmoss absolute, an extract of the lichen Evernia prunastri, is known to cause allergenic skin reactions due to the presence of certain aromatic aldehydes such as atranorin, chloratranorin, ethyl hematommate and ethyl chlorohematommate. In this paper it is shown that treatment of Oakmoss absolute with amino acids such as lysine and/or leucine, lowers considerably the content of these allergenic constituents including atranol and chloratranol. The resulting Oakmoss absolute, which exhibits an excellent olfactive quality, was tested extensively in comparative studies on guinea pigs and on man. The results of the Guinea Pig Maximization Test (GPMT) and Human Repeated Insult Patch Test (HRIPT) indicate that, in comparison with the commercial test sample, the allergenicity of this new quality of Oakmoss absolute was considerably reduced, and consequently better skin tolerance of this fragrance for man was achieved. PMID:19272096

  3. Uranium isotopic composition and absolute ages of Allende chondrules

    NASA Astrophysics Data System (ADS)

    Brennecka, G. A.; Budde, G.; Kleine, T.

    2015-11-01

    A handful of events, such as the condensation of refractory inclusions and the formation of chondrules, represent important stages in the formation and evolution of the early solar system and thus are critical to understanding its development. Compared to the refractory inclusions, chondrules appear to have a protracted period of formation that spans millions of years. As such, understanding chondrule formation requires a catalog of reliable ages, free from as many assumptions as possible. The Pb-Pb chronometer has this potential; however, because common individual chondrules have extremely low uranium contents, obtaining U-corrected Pb-Pb ages of individual chondrules is unrealistic in the vast majority of cases at this time. Thus, in order to obtain the most accurate 238U/235U ratio possible for chondrules, we separated and pooled thousands of individual chondrules from the Allende meteorite. In this work, we demonstrate that no discernible differences exist in the 238U/235U compositions between chondrule groups when separated by size and magnetic susceptibility, suggesting that no systematic U-isotope variation exists between groups of chondrules. Consequently, chondrules are likely to have a common 238U/235U ratio for any given meteorite. A weighted average of the six groups of chondrule separates from Allende results in a 238U/235U ratio of 137.786 ± 0.004 (±0.016 including propagated uncertainty on the U standard [Richter et al. 2010]). Although it is still possible that individual chondrules have significant U isotope variation within a given meteorite, this value represents our best estimate of the 238U/235U ratio for Allende chondrules and should be used for absolute dating of these objects, unless such chondrules can be measured individually.

  4. Absolute Timing of the Crab Pulsar with RXTE

    NASA Technical Reports Server (NTRS)

    Rots, Arnold H.; Jahoda, Keith; Lyne, Andrew G.

    2004-01-01

    We have monitored the phase of the main X-ray pulse of the Crab pulsar with the Rossi X-ray Timing Explorer (RXTE) for almost eight years, since the start of the mission in January 1996. The absolute time of RXTE's clock is sufficiently accurate to allow this phase to be compared directly with the radio profile. Our monitoring observations of the pulsar took place bi-weekly (during the periods when it was at least 30 degrees from the Sun) and we correlated the data with radio timing ephemerides derived from observations made at Jodrell Bank. We have determined the phase of the X-ray main pulse for each observation with a typical error in the individual data points of 50 microseconds. The total ensemble is consistent with a phase that is constant over the monitoring period, with the X-ray pulse leading the radio pulse by 0.01025 plus or minus 0.00120 period in phase, or 344 plus or minus 40 microseconds in time. The error estimate is dominated by a systematic error of 40 microseconds, most likely constant, arising from uncertainties in the instrumental calibration of the radio data. The statistical error is 0.00015 period, or 5 microseconds. The separation of the main pulse and interpulse appears to be unchanging at time scales of a year or less, with an average value of 0.4001 plus or minus 0.0002 period. There is no apparent variation in these values with energy over the 2-30 keV range. The lag between the radio and X-ray pulses ma be constant in phase (i.e., rotational in nature) or constant in time (i.e., due to a pathlength difference). We are not (yet) able to distinguish between these two interpretations.

  5. Development of a graphite probe calorimeter for absolute clinical dosimetry.

    PubMed

    Renaud, James; Marchington, David; Seuntjens, Jan; Sarfehnia, Arman

    2013-02-01

    The aim of this work is to present the numerical design optimization, construction, and experimental proof of concept of a graphite probe calorimeter (GPC) conceived for dose measurement in the clinical environment (U.S. provisional patent 61∕652,540). A finite element method (FEM) based numerical heat transfer study was conducted using a commercial software package to explore the feasibility of the GPC and to optimize the shape, dimensions, and materials used in its design. A functioning prototype was constructed inhouse and used to perform dose to water measurements under a 6 MV photon beam at 400 and 1000 MU∕min, in a thermally insulated water phantom. Heat loss correction factors were determined using FEM analysis while the radiation field perturbation and the graphite to water absorbed dose conversion factors were calculated using Monte Carlo simulations. The difference in the average measured dose to water for the 400 and 1000 MU∕min runs using the TG-51 protocol and the GPC was 0.2% and 1.2%, respectively. Heat loss correction factors ranged from 1.001 to 1.002, while the product of the perturbation and dose conversion factors was calculated to be 1.130. The combined relative uncertainty was estimated to be 1.4%, with the largest contributors being the specific heat capacity of the graphite (type B, 0.8%) and the reproducibility, defined as the standard deviation of the mean measured dose (type A, 0.6%). By establishing the feasibility of using the GPC as a practical clinical absolute photon dosimeter, this work lays the foundation for further device enhancements, including the development of an isothermal mode of operation and an overall miniaturization, making it potentially suitable for use in small and composite radiation fields. It is anticipated that, through the incorporation of isothermal stabilization provided by temperature controllers, a subpercent overall uncertainty will be achieved.

  6. Development of a graphite probe calorimeter for absolute clinical dosimetry

    SciTech Connect

    Renaud, James; Seuntjens, Jan; Sarfehnia, Arman; Marchington, David

    2013-02-15

    The aim of this work is to present the numerical design optimization, construction, and experimental proof of concept of a graphite probe calorimeter (GPC) conceived for dose measurement in the clinical environment (U.S. provisional patent 61/652,540). A finite element method (FEM) based numerical heat transfer study was conducted using a commercial software package to explore the feasibility of the GPC and to optimize the shape, dimensions, and materials used in its design. A functioning prototype was constructed inhouse and used to perform dose to water measurements under a 6 MV photon beam at 400 and 1000 MU/min, in a thermally insulated water phantom. Heat loss correction factors were determined using FEM analysis while the radiation field perturbation and the graphite to water absorbed dose conversion factors were calculated using Monte Carlo simulations. The difference in the average measured dose to water for the 400 and 1000 MU/min runs using the TG-51 protocol and the GPC was 0.2% and 1.2%, respectively. Heat loss correction factors ranged from 1.001 to 1.002, while the product of the perturbation and dose conversion factors was calculated to be 1.130. The combined relative uncertainty was estimated to be 1.4%, with the largest contributors being the specific heat capacity of the graphite (type B, 0.8%) and the reproducibility, defined as the standard deviation of the mean measured dose (type A, 0.6%). By establishing the feasibility of using the GPC as a practical clinical absolute photon dosimeter, this work lays the foundation for further device enhancements, including the development of an isothermal mode of operation and an overall miniaturization, making it potentially suitable for use in small and composite radiation fields. It is anticipated that, through the incorporation of isothermal stabilization provided by temperature controllers, a subpercent overall uncertainty will be achieved.

  7. Absolute Free Energies for Biomolecules in Implicit or Explicit Solvent

    NASA Astrophysics Data System (ADS)

    Berryman, Joshua T.; Schilling, Tanja

    Methods for absolute free energy calculation by alchemical transformation of a quantitative model to an analytically tractable one are discussed. These absolute free energy methods are placed in the context of other methods, and an attempt is made to describe the best practice for such calculations given the current state of the art. Calculations of the equilibria between the four free energy basins of the dialanine molecule and the two right- and left-twisted basins of DNA are discussed as examples.

  8. Heat capacity and absolute entropy of iron phosphides

    SciTech Connect

    Dobrokhotova, Z.V.; Zaitsev, A.I.; Litvina, A.D.

    1994-09-01

    There is little or no data on the thermodynamic properties of iron phosphides despite their importance for several areas of science and technology. The information available is of a qualitative character and is based on assessments of the heat capacity and absolute entropy. In the present work, we measured the heat capacity over the temperature range of 113-873 K using a differential scanning calorimeter (DSC) and calculated the absolute entropy.

  9. Effective light absorption and absolute electron transport rates in the coral Pocillopora damicornis.

    PubMed

    Szabó, Milán; Wangpraseurt, Daniel; Tamburic, Bojan; Larkum, Anthony W D; Schreiber, Ulrich; Suggett, David J; Kühl, Michael; Ralph, Peter J

    2014-10-01

    Pulse Amplitude Modulation (PAM) fluorometry has been widely used to estimate the relative photosynthetic efficiency of corals. However, both the optical properties of intact corals as well as past technical constrains to PAM fluorometers have prevented calculations of the electron turnover rate of PSII. We used a new Multi-colour PAM (MC-PAM) in parallel with light microsensors to determine for the first time the wavelength-specific effective absorption cross-section of PSII photochemistry, σII(λ), and thus PAM-based absolute electron transport rates of the coral photosymbiont Symbiodinium both in culture and in hospite in the coral Pocillopora damicornis. In both cases, σII of Symbiodinium was highest in the blue spectral region and showed a progressive decrease towards red wavelengths. Absolute values for σII at 440 nm were up to 1.5-times higher in culture than in hospite. Scalar irradiance within the living coral tissue was reduced by 20% in the blue when compared to the incident downwelling irradiance. Absolute electron transport rates of P. damicornis at 440 nm revealed a maximum PSII turnover rate of ca. 250 electrons PSII(-1) s(-1), consistent with one PSII turnover for every 4 photons absorbed by PSII; this likely reflects the limiting steps in electron transfer between PSII and PSI. Our results show that optical properties of the coral host strongly affect light use efficiency of Symbiodinium. Therefore, relative electron transport rates do not reflect the productivity rates (or indeed how the photosynthesis-light response is parameterised). Here we provide a non-invasive approach to estimate absolute electron transport rates in corals.

  10. Absolute localization of ground robots by matching LiDAR and image data in dense forested environments

    NASA Astrophysics Data System (ADS)

    Hussein, Marwan; Renner, Matthew; Iagnemma, Karl

    2014-06-01

    A method for the autonomous geolocation of ground vehicles in forest environments is discussed. The method provides an estimate of the global horizontal position of a vehicle strictly based on finding a geometric match between a map of observed tree stems, scanned in 3D by Light Detection and Ranging (LiDAR) sensors onboard the vehicle, to another stem map generated from the structure of tree crowns analyzed from high resolution aerial orthoimagery of the forest canopy. Extraction of stems from 3D data is achieved by using Support Vector Machine (SVM) classifiers and height above ground filters that separate ground points from vertical stem features. Identification of stems from overhead imagery is achieved by finding the centroids of tree crowns extracted using a watershed segmentation algorithm. Matching of the two maps is achieved by using a robust Iterative Closest Point (ICP) algorithm that determines the rotation and translation vectors to align the datasets. The alignment is used to calculate the absolute horizontal location of the vehicle. The method has been tested with real-world data and has been able to estimate vehicle geoposition with an average error of less than 2 m. It is noted that the algorithm's accuracy performance is currently limited by the accuracy and resolution of aerial orthoimagery used. The method can be used in real-time as a complement to the Global Positioning System (GPS) in areas where signal coverage is inadequate due to attenuation by the forest canopy, or due to intentional denied access. The method has two key properties that are significant: i) It does not require a priori knowledge of the area surrounding the robot. ii) Uses the geometry of detected tree stems as the only input to determine horizontal geoposition.

  11. Global absolut gravity reference system as replacement of IGSN 71

    NASA Astrophysics Data System (ADS)

    Wilmes, Herbert; Wziontek, Hartmut; Falk, Reinhard

    2015-04-01

    The determination of precise gravity field parameters is of great importance in a period in which earth sciences are achieving the necessary accuracy to monitor and document global change processes. This is the reason why experts from geodesy and metrology joined in a successful cooperation to make absolute gravity observations traceable to SI quantities, to improve the metrological kilogram definition and to monitor mass movements and smallest height changes for geodetic and geophysical applications. The international gravity datum is still defined by the International Gravity Standardization Net adopted in 1971 (IGSN 71). The network is based upon pendulum and spring gravimeter observations taken in the 1950s and 60s supported by the early free fall absolute gravimeters. Its gravity values agreed in every case to better than 0.1 mGal. Today, more than 100 absolute gravimeters are in use worldwide. The series of repeated international comparisons confirms the traceability of absolute gravity measurements to SI quantities and confirm the degree of equivalence of the gravimeters in the order of a few µGal. For applications in geosciences where e.g. gravity changes over time need to be analyzed, the temporal stability of an absolute gravimeter is most important. Therefore, the proposition is made to replace the IGSN 71 by an up-to-date gravity reference system which is based upon repeated absolute gravimeter comparisons and a global network of well controlled gravity reference stations.

  12. Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer.

    PubMed

    Zhang, Xinyu; Dong, Wenyi; Dai, Xiaoqin; Schaeffer, Sean; Yang, Fengting; Radosevich, Mark; Xu, Lili; Liu, Xiyu; Sun, Xiaomin

    2015-12-01

    Long-term phosphorus (P) and nitrogen (N) applications may seriously affect soil microbial activity. A long-term field fertilizer application trial was established on reddish paddy soils in the subtropical region of southern China in 1998. We assessed the effects of swine manure and seven different rates or ratios of NPK fertilizer treatments on (1) the absolute and specific enzyme activities per unit of soil organic carbon (SOC) or microbial biomass carbon (MBC) involved in C, N, and P transformations and (2) their relationships with soil environmental factors and soil microbial community structures. The results showed that manure applications led to increases in the absolute and specific activities of soil β-1,4-glucosidase(βG), β-1,4-N-acetylglucosaminidase (NAG), and leucine aminopeptidase (LAP). The absolute and specific acid phosphatase (AP) activities decreased as mineral P fertilizer application rates and ratios increased. Redundancy analysis (RDA) showed that there were negative correlations between absolute and specific AP activities, pH, and total P contents, while there were positive correlations between soil absolute and specific βG, NAG, and LAP enzyme activities, and SOC and total N contents. RDA showed that the contents of actinomycete and Gram-positive bacterium PLFA biomarkers are more closely related to the absolute and specific enzyme activities than the other PLFA biomarkers (P<0.01). Our results suggest that both the absolute and specific enzyme activities could be used as sensitive soil quality indicators that provide useful linkages with the microbial community structures and environmental factors. To maintain microbial activity and to minimize environmental impacts, P should be applied as a combination of inorganic and organic forms, and total P fertilizer application rates to subtropical paddy soils should not exceed 44 kg P ha(-1) year(-1). PMID:26196069

  13. Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer.

    PubMed

    Zhang, Xinyu; Dong, Wenyi; Dai, Xiaoqin; Schaeffer, Sean; Yang, Fengting; Radosevich, Mark; Xu, Lili; Liu, Xiyu; Sun, Xiaomin

    2015-12-01

    Long-term phosphorus (P) and nitrogen (N) applications may seriously affect soil microbial activity. A long-term field fertilizer application trial was established on reddish paddy soils in the subtropical region of southern China in 1998. We assessed the effects of swine manure and seven different rates or ratios of NPK fertilizer treatments on (1) the absolute and specific enzyme activities per unit of soil organic carbon (SOC) or microbial biomass carbon (MBC) involved in C, N, and P transformations and (2) their relationships with soil environmental factors and soil microbial community structures. The results showed that manure applications led to increases in the absolute and specific activities of soil β-1,4-glucosidase(βG), β-1,4-N-acetylglucosaminidase (NAG), and leucine aminopeptidase (LAP). The absolute and specific acid phosphatase (AP) activities decreased as mineral P fertilizer application rates and ratios increased. Redundancy analysis (RDA) showed that there were negative correlations between absolute and specific AP activities, pH, and total P contents, while there were positive correlations between soil absolute and specific βG, NAG, and LAP enzyme activities, and SOC and total N contents. RDA showed that the contents of actinomycete and Gram-positive bacterium PLFA biomarkers are more closely related to the absolute and specific enzyme activities than the other PLFA biomarkers (P<0.01). Our results suggest that both the absolute and specific enzyme activities could be used as sensitive soil quality indicators that provide useful linkages with the microbial community structures and environmental factors. To maintain microbial activity and to minimize environmental impacts, P should be applied as a combination of inorganic and organic forms, and total P fertilizer application rates to subtropical paddy soils should not exceed 44 kg P ha(-1) year(-1).

  14. a Portable Apparatus for Absolute Measurements of the Earth's Gravity.

    NASA Astrophysics Data System (ADS)

    Zumberge, Mark Andrew

    We have developed a new, portable apparatus for making absolute measurements of the acceleration due to the earth's gravity. We use the method of interferometrically determining the acceleration of a freely falling corner -cube prism. The falling object is surrounded by a chamber which is driven vertically inside a fixed vacuum chamber. This falling chamber is servoed to track the falling corner -cube to shield it from drag due to background gas. In addition, the drag-free falling chamber removes the need for a magnetic release, shields the falling object from electrostatic forces, and provides a means of both gently arresting the falling object and quickly returning it to its start position, to allow rapid acquisition of data. A synthesized long period isolation device reduces the noise due to seismic oscillations. A new type of Zeeman laser is used as the light source in the interferometer, and is compared with the wavelength of an iodine stabilized laser. The times of occurrence of 45 interference fringes are measured to within 0.2 nsec over a 20 cm drop and are fit to a quadratic by an on-line minicomputer. 150 drops can be made in ten minutes resulting in a value of g having a precision of 3 to 6 parts in 10('9). Systematic errors have been determined to be less than 5 parts in 10('9) through extensive tests. Three months of gravity data have been obtained with a reproducibility ranging from 5 to 10 parts in 10('9). The apparatus has been designed to be easily portable. Field measurements are planned for the immediate future. An accuracy of 6 parts in 10('9) corresponds to a height sensitivity of 2 cm. Vertical motions in the earth's crust and tectonic density changes that may precede earthquakes are to be investigated using this apparatus.

  15. Strong thermal leptogenesis and the absolute neutrino mass scale

    SciTech Connect

    Bari, Pasquale Di; King, Sophie E.; Fiorentin, Michele Re E-mail: sk1806@soton.ac.uk

    2014-03-01

    We show that successful strong thermal leptogenesis, where the final asymmetry is independent of the initial conditions and in particular a large pre-existing asymmetry is efficiently washed-out, favours values of the lightest neutrino mass m{sub 1}∼>10 meV for normal ordering (NO) and m{sub 1}∼>3 meV for inverted ordering (IO) for models with orthogonal matrix entries respecting |Ω{sub ij}{sup 2}|∼<2. We show analytically why lower values of m{sub 1} require a higher level of fine tuning in the seesaw formula and/or in the flavoured decay parameters (in the electronic for NO, in the muonic for IO). We also show how this constraint exists thanks to the measured values of the neutrino mixing angles and could be tightened by a future determination of the Dirac phase. Our analysis also allows us to place a more stringent constraint for a specific model or class of models, such as SO(10)-inspired models, and shows that some models cannot realise strong thermal leptogenesis for any value of m{sub 1}. A scatter plot analysis fully supports the analytical results. We also briefly discuss the interplay with absolute neutrino mass scale experiments concluding that they will be able in the coming years to either corner strong thermal leptogenesis or find positive signals pointing to a non-vanishing m{sub 1}. Since the constraint is much stronger for NO than for IO, it is very important that new data from planned neutrino oscillation experiments will be able to solve the ambiguity.

  16. Method to obtain absolute impurity density profiles combining charge exchange and beam emission spectroscopy without absolute intensity calibrationa)

    NASA Astrophysics Data System (ADS)

    Kappatou, A.; Jaspers, R. J. E.; Delabie, E.; Marchuk, O.; Biel, W.; Jakobs, M. A.

    2012-10-01

    Investigation of impurity transport properties in tokamak plasmas is essential and a diagnostic that can provide information on the impurity content is required. Combining charge exchange recombination spectroscopy (CXRS) and beam emission spectroscopy (BES), absolute radial profiles of impurity densities can be obtained from the CXRS and BES intensities, electron density and CXRS and BES emission rates, without requiring any absolute calibration of the spectra. The technique is demonstrated here with absolute impurity density radial profiles obtained in TEXTOR plasmas, using a high efficiency charge exchange spectrometer with high etendue, that measures the CXRS and BES spectra along the same lines-of-sight, offering an additional advantage for the determination of absolute impurity densities.

  17. The possibility of constructing the hydrogen scale of the absolute atomic masses of the elements

    NASA Astrophysics Data System (ADS)

    Kuz'min, I. I.

    2009-12-01

    The paper presents a scheme for the experimental-empirical construction of the existing chemical, physical, and carbon scales of the relative nonintegral atomic masses of the elements. The quantitative interrelation between the nonintegral relative atomic masses, their minimized fractional positive and negative natural deviations from integral numbers, and their integral parts are reproduced mathematically. Nonisotopic fractional deviations are shown to be a consequence of methodological side effects of the scheme for theoretical processing of the data of thorough physical and chemical measurements performed by Stas and Aston in constructing scales of relative atomic masses. In conformity with the Prout hypothesis, the absolute atomic mass unit and the corresponding Avogadro’s number value are suggested for the construction of the hydrogen scale of absolute atomic masses of nonisotopic elements, individual isotopes, and isotope-containing elements.

  18. Experimental assessment of the speed of light perturbation in free-fall absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Baumann, H.; Pythoud, F.; Blas, D.; Sibiryakov, S.; Eichenberger, A.; Klingelé, E. E.

    2015-10-01

    Precision absolute gravity measurements are growing in importance, especially in the context of the new definition of the kilogram. For the case of free fall absolute gravimeters with a Michelson-type interferometer tracking the position of a free falling body, one of the effects that needs to be taken into account is the ‘speed of light perturbation’ due to the finite speed of propagation of light. This effect has been extensively discussed in the past, and there is at present a disagreement between different studies. In this work, we present the analysis of new data and confirm the result expected from the theoretical analysis applied nowadays in free-fall gravimeters. We also review the standard derivations of this effect (by using phase shift or Doppler effect arguments) and show their equivalence.

  19. Gender equality and women's absolute status: a test of the feminist models of rape.

    PubMed

    Martin, Kimberly; Vieraitis, Lynne M; Britto, Sarah

    2006-04-01

    Feminist theory predicts both a positive and negative relationship between gender equality and rape rates. Although liberal and radical feminist theory predicts that gender equality should ameliorate rape victimization, radical feminist theorists have argued that gender equality may increase rape in the form of male backlash. Alternatively, Marxist criminologists focus on women's absolute socioeconomic status rather than gender equality as a predictor of rape rates, whereas socialist feminists combine both radical and Marxist perspectives. This study uses factor analysis to overcome multicollinearity limitations of past studies while exploring the relationship between women's absolute and relative socioeconomic status on rape rates in major U.S. cities using 2000 census data. The findings indicate support for both the Marxist and radical feminist explanations of rape but no support for the ameliorative hypothesis. These findings support a more inclusive socialist feminist theory that takes both Marxist and radical feminist hypotheses into account. PMID:16567334

  20. Gender equality and women's absolute status: a test of the feminist models of rape.

    PubMed

    Martin, Kimberly; Vieraitis, Lynne M; Britto, Sarah

    2006-04-01

    Feminist theory predicts both a positive and negative relationship between gender equality and rape rates. Although liberal and radical feminist theory predicts that gender equality should ameliorate rape victimization, radical feminist theorists have argued that gender equality may increase rape in the form of male backlash. Alternatively, Marxist criminologists focus on women's absolute socioeconomic status rather than gender equality as a predictor of rape rates, whereas socialist feminists combine both radical and Marxist perspectives. This study uses factor analysis to overcome multicollinearity limitations of past studies while exploring the relationship between women's absolute and relative socioeconomic status on rape rates in major U.S. cities using 2000 census data. The findings indicate support for both the Marxist and radical feminist explanations of rape but no support for the ameliorative hypothesis. These findings support a more inclusive socialist feminist theory that takes both Marxist and radical feminist hypotheses into account.