Science.gov

Sample records for absolute power output

  1. Quantifying PV power Output Variability

    SciTech Connect

    Hoff, Thomas E.; Perez, Richard

    2010-10-15

    This paper presents a novel approach to rigorously quantify power Output Variability from a fleet of photovoltaic (PV) systems, ranging from a single central station to a set of distributed PV systems. The approach demonstrates that the relative power Output Variability for a fleet of identical PV systems (same size, orientation, and spacing) can be quantified by identifying the number of PV systems and their Dispersion Factor. The Dispersion Factor is a new variable that captures the relationship between PV Fleet configuration, Cloud Transit Speed, and the Time Interval over which variability is evaluated. Results indicate that Relative Output Variability: (1) equals the inverse of the square root of the number of systems for fully dispersed PV systems; and (2) could be further minimized for optimally-spaced PV systems. (author)

  2. Power output measurement during treadmill cycling.

    PubMed

    Coleman, D A; Wiles, J D; Davison, R C R; Smith, M F; Swaine, I L

    2007-06-01

    The study aim was to consider the use of a motorised treadmill as a cycling ergometry system by assessing predicted and recorded power output values during treadmill cycling. Fourteen male cyclists completed repeated cycling trials on a motorised treadmill whilst riding their own bicycle fitted with a mobile ergometer. The speed, gradient and loading via an external pulley system were recorded during 20-s constant speed trials and used to estimate power output with an assumption about the contribution of rolling resistance. These values were then compared with mobile ergometer measurements. To assess the reliability of measured power output values, four repeated trials were conducted on each cyclist. During level cycling, the recorded power output was 257.2 +/- 99.3 W compared to the predicted power output of 258.2 +/- 99.9 W (p > 0.05). For graded cycling, there was no significant difference between measured and predicted power output, 268.8 +/- 109.8 W vs. 270.1 +/- 111.7 W, p > 0.05, SEE 1.2 %. The coefficient of variation for mobile ergometer power output measurements during repeated trials ranged from 1.5 % (95 % CI 1.2 - 2.0 %) to 1.8 % (95 % CI 1.5 - 2.4 %). These results indicate that treadmill cycling can be used as an ergometry system to assess power output in cyclists with acceptable accuracy.

  3. High Power Amplifier Harmonic Output Level Measurement

    NASA Technical Reports Server (NTRS)

    Perez, R. M.; Hoppe, D. J.; Khan, A. R.

    1995-01-01

    A method is presented for the measurement of the harmonic output power of high power klystron amplifiers, involving coherent hemispherical radiation pattern measurements of the radiated klystron output. Results are discussed for the operation in saturated and unsaturated conditions, and with a waveguide harmonic filter included.

  4. Coupling output of multichannel high power microwaves

    SciTech Connect

    Li Guolin; Shu Ting; Yuan Chengwei; Zhang Jun; Yang Jianhua; Jin Zhenxing; Yin Yi; Wu Dapeng; Zhu Jun; Ren Heming; Yang Jie

    2010-12-15

    The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.

  5. Absolute calibration of photon-number-resolving detectors with an analog output using twin beams

    SciTech Connect

    Peřina, Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria

    2014-01-27

    A method for absolute calibration of a photon-number resolving detector producing analog signals as the output is developed using a twin beam. The method gives both analog-to-digital conversion parameters and quantum detection efficiency for the photon fields. Characteristics of the used twin beam are also obtained. A simplified variant of the method applicable to fields with high signal to noise ratios and suitable for more intense twin beams is suggested.

  6. Uncertainties in predicting solar panel power output

    NASA Technical Reports Server (NTRS)

    Anspaugh, B.

    1974-01-01

    The problem of calculating solar panel power output at launch and during a space mission is considered. The major sources of uncertainty and error in predicting the post launch electrical performance of the panel are considered. A general discussion of error analysis is given. Examples of uncertainty calculations are included. A general method of calculating the effect on the panel of various degrading environments is presented, with references supplied for specific methods. A technique for sizing a solar panel for a required mission power profile is developed.

  7. On source radiation. [power output computation

    NASA Technical Reports Server (NTRS)

    Levine, H.

    1980-01-01

    The power output from given sources is usually ascertained via an energy flux integral over the normal directions to a remote (farfield) surface; an alternative procedure, which utilizes an integral that specifies the direct rate of working by the source on the resultant field, is described and illustrated for both point and continuous source distributions. A comparison between the respective procedures is made in the analysis of sound radiated from a periodic dipole source whose axis rotates in a plane, on a full or partial angular range, with prescribed frequency. Thus, adopting a conventional approach, Sretenskii (1956) characterizes the rotating dipole in terms of an infinite number of stationary ones along a pair of orthogonal directions in the plane and, through the farfield representation of the latter, arrives at a series development for the instantaneous radiated power, whereas the local manner of power calculation dispenses with the equivalent infinite aggregate of sources and yields a compact analytical result.

  8. Measurements of the reactor neutron power in absolute units

    SciTech Connect

    Lebedev, G. V.

    2015-12-15

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  9. Caffeine supplementation and peak anaerobic power output.

    PubMed

    Glaister, Mark; Muniz-Pumares, Daniel; Patterson, Stephen D; Foley, Paul; McInnes, Gillian

    2015-01-01

    The aim of this study was to investigate the effects of caffeine supplementation on peak anaerobic power output (Wmax). Using a counterbalanced, randomised, double-blind, placebo-controlled design, 14 well-trained men completed three trials of a protocol consisting of a series of 6-s cycle ergometer sprints, separated by 5-min passive recovery periods. Sprints were performed at progressively increasing torque factors to determine the peak power/torque relationship and Wmax. Apart from Trial 1 (familiarisation), participants ingested a capsule containing 5 mg·kg(-1) of caffeine or placebo, one hour before each trial. The effects of caffeine on blood lactate were investigated using capillary samples taken after each sprint. The torque factor which produced Wmax was not significantly different (p ≥ 0.05) between the caffeine (1.15 ± 0.08 N·m·kg(-1)) and placebo (1.13 ± 0.10 N·m·kg(-1)) trials. There was, however, a significant effect (p < 0.05) of supplementation on Wmax, with caffeine producing a higher value (1885 ± 303 W) than placebo (1835 ± 290 W). Analysis of the blood lactate data revealed a significant (p < 0.05) torque factor × supplement interaction with values being significantly higher from the sixth sprint (torque factor 1.0 N·m·kg(-1)) onwards following caffeine supplementation. The results of this study confirm previous reports that caffeine supplementation significantly increases blood lactate and Wmax. These findings may explain why the majority of previous studies, which have used fixed-torque factors of around 0.75 N·m·kg(-1) and thereby failing to elicit Wmax, have failed to find an effect of caffeine on sprinting performance.

  10. Most Efficient Quantum Thermoelectric at Finite Power Output

    NASA Astrophysics Data System (ADS)

    Whitney, Robert S.

    2014-04-01

    Machines are only Carnot efficient if they are reversible, but then their power output is vanishingly small. Here we ask, what is the maximum efficiency of an irreversible device with finite power output? We use a nonlinear scattering theory to answer this question for thermoelectric quantum systems, heat engines or refrigerators consisting of nanostructures or molecules that exhibit a Peltier effect. We find that quantum mechanics places an upper bound on both power output and on the efficiency at any finite power. The upper bound on efficiency equals Carnot efficiency at zero power output but decays with increasing power output. It is intrinsically quantum (wavelength dependent), unlike Carnot efficiency. This maximum efficiency occurs when the system lets through all particles in a certain energy window, but none at other energies. A physical implementation of this is discussed, as is the suppression of efficiency by a phonon heat flow.

  11. The effect of aerodynamic parameters on power output of windmills

    NASA Technical Reports Server (NTRS)

    Wiesner, W.

    1973-01-01

    Aerodynamic results for a study on windpower generation are reported. Windmill power output is presented in terms that are commonly used in rotary wing analysis, namely, power output as a function of drag developed by the windmill. Effect of tip speed ratio, solidity, twist, wind angle, blade setting and airfoil characteristics are given.

  12. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  13. Multiple high voltage output DC-to-DC power converter

    NASA Technical Reports Server (NTRS)

    Cronin, Donald L. (Inventor); Farber, Bertrand F. (Inventor); Gehm, Hartmut K. (Inventor); Goldin, Daniel S. (Inventor)

    1977-01-01

    Disclosed is a multiple output DC-to-DC converter. The DC input power is filtered and passed through a chopper preregulator. The chopper output is then passed through a current source inverter controlled by a squarewave generator. The resultant AC is passed through the primary winding of a transformer, with high voltages induced in a plurality of secondary windings. The high voltage secondary outputs are each solid-state rectified for passage to individual output loads. Multiple feedback loops control the operation of the chopper preregulator, one being responsive to the current through the primary winding and another responsive to the DC voltage level at a selected output.

  14. The power output and sprinting performance of young swimmers.

    PubMed

    Barbosa, Tiago M; Morais, Jorge E; Marques, Mário C; Costa, Mário J; Marinho, Daniel A

    2015-02-01

    The aim of this article was to compare swimming power output between boys and girls and to model the relationship between swimming power output and sprinting performance in young swimmers. One hundred young swimmers (49 boys and 51 girls, aged between 11 and 13 years) underwent a test battery including anthropometrics (body mass, height, arm span [AS], and trunk transverse surface area), kinematic and efficiency (velocity, stroke frequency, stroke length, speed fluctuation, normalized speed fluctuation, stroke index, and Froude efficiency), hydrodynamics (active drag and active drag coefficient), and power output (power to overcome drag, power to transfer kinetic energy to water, and external power) assessments and sprinting performance (official 100 freestyle race). All variables but the trunk transverse surface area, stroke length normalize to AS, speed fluctuation, active drag coefficient, and Froude efficiency were significantly higher in boys than in girls with moderate-strong effects. Comparing both sexes but controlling the effect of the sprinting performance, most variables presented a no-significant variation. There was a significant and strong relationship between power output and sprinting performance: y = 24.179x (R = 0.426; standard error of estimation = 0.485; p < 0.001). As a conclusion, boys presented better performances than girls because of their higher power output. There is a cubed relationship between power output and sprinting performance in young swimmers.

  15. Maximum speed and mechanical power output in lizards.

    PubMed

    Farley, C T

    1997-08-01

    The goal of the present study was to test the hypothesis that maximum running speed is limited by how much mechanical power the muscular system can produce. To test this hypothesis, two species of lizards, Coleonyx variegatus and Eumeces skiltonianus, sprinted on hills of different slopes. According to the hypothesis, maximum speed should decrease on steeper uphill slopes but mechanical power output at maximum speed should be independent of slope. For level sprinting, the external mechanical power output was determined from force platform data. For uphill sprinting, the mechanical power output was approximated as the power required to lift the center of mass vertically. When the slope increased from level to 40 degrees uphill, maximum speed decreased by 28% in C. variegatus and by 16% in E. skiltonianus. At maximum speed on a 40 degrees uphill slope in both species, the mechanical power required to lift the body vertically was approximately 3.9 times greater than the external mechanical power output at maximum speed on the level. Because total limb mass is small in both species (6-16% of body mass) and stride frequency is similar at maximum speed on all slopes, the internal mechanical power output is likely to be small and similar in magnitude on all slopes. I conclude that the muscular system is capable of producing substantially more power during locomotion than it actually produces during level sprinting. Thus, the capacity of the muscular system to produce power does not limit maximum running speed.

  16. Complementary power output characteristics of electromagnetic generators and triboelectric generators

    NASA Astrophysics Data System (ADS)

    Fan, Feng-Ru; Tang, Wei; Yao, Yan; Luo, Jianjun; Zhang, Chi; Wang, Zhong Lin

    2014-04-01

    Recently, a triboelectric generator (TEG) has been invented to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. Compared to the traditional electromagnetic generator (EMG) that produces a high output current but low voltage, the TEG has different output characteristics of low output current but high output voltage. In this paper, we present a comparative study regarding the fundamentals of TEGs and EMGs. The power output performances of the EMG and the TEG have a special complementary relationship, with the EMG being a voltage source and the TEG a current source. Utilizing a power transformed and managed (PTM) system, the current output of a TEG can reach as high as ˜3 mA, which can be coupled with the output signal of an EMG to enhance the output power. We also demonstrate a design to integrate a TEG and an EMG into a single device for simultaneously harvesting mechanical energy. In addition, the integrated NGs can independently output a high voltage and a high current to meet special needs.

  17. Impact of Altitude on Power Output during Cycling Stage Racing

    PubMed Central

    Garvican-Lewis, Laura A; Clark, Bradley; Martin, David T.; Schumacher, Yorck Olaf; McDonald, Warren; Stephens, Brian; Ma, Fuhai; Thompson, Kevin G.; Gore, Christopher J.; Menaspà, Paolo

    2015-01-01

    Purpose The purpose of this study was to quantify the effects of moderate-high altitude on power output, cadence, speed and heart rate during a multi-day cycling tour. Methods Power output, heart rate, speed and cadence were collected from elite male road cyclists during maximal efforts of 5, 15, 30, 60, 240 and 600 s. The efforts were completed in a laboratory power-profile assessment, and spontaneously during a cycling race simulation near sea-level and an international cycling race at moderate-high altitude. Matched data from the laboratory power-profile and the highest maximal mean power output (MMP) and corresponding speed and heart rate recorded during the cycling race simulation and cycling race at moderate-high altitude were compared using paired t-tests. Additionally, all MMP and corresponding speeds and heart rates were binned per 1000m (<1000m, 1000–2000, 2000–3000 and >3000m) according to the average altitude of each ride. Mixed linear modelling was used to compare cycling performance data from each altitude bin. Results Power output was similar between the laboratory power-profile and the race simulation, however MMPs for 5–600 s and 15, 60, 240 and 600 s were lower (p ≤ 0.005) during the race at altitude compared with the laboratory power-profile and race simulation, respectively. Furthermore, peak power output and all MMPs were lower (≥ 11.7%, p ≤ 0.001) while racing >3000 m compared with rides completed near sea-level. However, speed associated with MMP 60 and 240 s was greater (p < 0.001) during racing at moderate-high altitude compared with the race simulation near sea-level. Conclusion A reduction in oxygen availability as altitude increases leads to attenuation of cycling power output during competition. Decrement in cycling power output at altitude does not seem to affect speed which tended to be greater at higher altitudes. PMID:26629912

  18. Electrochemistry in Organisms: Electron Flow and Power Output

    ERIC Educational Resources Information Center

    Chirpich, Thomas P.

    1975-01-01

    Presents a series of calculations, appropriate for the freshman level, to determine the flow of electrons to oxygen along the electron transport chain. States that living organisms resemble fuel cells and develops calculations for determining power output. (GS)

  19. Auxetic piezoelectric energy harvesters for increased electric power output

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Kuang, Yang; Zhu, Meiling

    2017-01-01

    This letter presents a piezoelectric bimorph with auxetic (negative Poisson's ratio) behaviors for increased power output in vibration energy harvesting. The piezoelectric bimorph comprises a 2D auxetic substrate sandwiched between two piezoelectric layers. The auxetic substrate is capable of introducing auxetic behaviors and thus increasing the transverse stress in the piezoelectric layers when the bimorph is subjected to a longitudinal stretching load. As a result, both 31- and 32-modes are simultaneously exploited to generate electric power, leading to an increased power output. The increasing power output principle was theoretically analyzed and verified by finite element (FE) modelling. The FE modelling results showed that the auxetic substrate can increase the transverse stress of a bimorph by 16.7 times. The average power generated by the auxetic bimorph is 2.76 times of that generated by a conventional bimorph.

  20. Power output in the jump squat in adolescent male athletes.

    PubMed

    Dayne, Andrea M; McBride, Jeffrey M; Nuzzo, James L; Triplett, N Travis; Skinner, Jared; Burr, Alan

    2011-03-01

    The load that maximizes power output in the jump squat (JS) in college-aged athletic males has been reported to be 0% of 1 repetition maximum [1RM] squat strength) or in other words body mass. No data exist concerning adolescent athletic males. In addition, strength levels have been theorized to possibly affect the load that maximizes power output in the JS. The purpose of this investigation was to identify the load that maximizes power output in the JS in adolescent athletic men, and concurrently describe their strength level and its effect on the load that maximizes power output. Eleven high-school male athletes were tested on 2 occasions, first determining their 1RM in the squat (1RM = 141.14 ± 28.08 kg; squat 1RM-to-body mass ratio = 1.76 ± 0.15) and then performing JS testing at loads equal to 0% (body mass), 20, 40, 60, and 80% of squat 1RM. Peak power (PP), peak force, peak velocity (PV), and peak displacement were measured at each load. Jump squat at the 0% load produced significantly (p ≤ 0.05) higher PP, PV, and peak displacement in comparison with the 40, 60, and 80% loading conditions. It was concluded that the load that maximizes power output in the JS is 0% of 1RM in adolescent athletic men, the same as found in college-aged athletic men. In addition, strength level relative to body mass did not affect the load that maximized power output. Practically, when devising a training program to increase PP, it is important to include JSs at body mass along with traditional strength training at heavier loads to increase power output across the entire loading spectrum.

  1. Reproducibility of cardiac power output and other cardiopulmonary exercise indices in patients with chronic heart failure.

    PubMed

    Jakovljevic, Djordje G; Seferovic, Petar M; Nunan, David; Donovan, Gay; Trenell, Michael I; Grocott-Mason, Richard; Brodie, David A

    2012-02-01

    Cardiac power output is a direct measure of overall cardiac function that integrates both flow- and pressure-generating capacities of the heart. The present study assessed the reproducibility of cardiac power output and other more commonly reported cardiopulmonary exercise variables in patients with chronic heart failure. Metabolic, ventilatory and non-invasive (inert gas re-breathing) central haemodynamic measurements were undertaken at rest and near-maximal exercise of the modified Bruce protocol in 19 patients with stable chronic heart failure. The same procedure was repeated 7 days later to assess reproducibility. Cardiac power output was calculated as the product of cardiac output and mean arterial pressure. Resting central haemodynamic variables demonstrate low CV (coefficient of variation) (ranging from 3.4% for cardiac output and 5.6% for heart rate). The CV for resting metabolic and ventilatory measurements ranged from 8.2% for respiratory exchange ratio and 14.2% for absolute values of oxygen consumption. The CV of anaerobic threshold, peak oxygen consumption, carbon dioxide production and respiratory exchange ratio ranged from 3.8% (for anaerobic threshold) to 6.4% (for relative peak oxygen consumption), with minute ventilation having a CV of 11.1%. Near-maximal exercise cardiac power output and cardiac output had CVs of 4.1 and 2.2%, respectively. Cardiac power output demonstrates good reproducibility suggesting that there is no need for performing more than one cardiopulmonary exercise test. As a direct measure of cardiac function (dysfunction) and an excellent prognostic marker, it is strongly advised in the assessment of patients with chronic heart failure undergoing cardiopulmonary exercise testing.

  2. Optimization of output power in a fiber optical parametric oscillator.

    PubMed

    Jin, Lei; Martinez, Amos; Yamashita, Shinji

    2013-09-23

    Fiber optical parametric oscillators (FOPOs) are coherent sources that can provide ultra-broadband tunability and high output power levels and are been considered for applications such as medical imaging and sensing. While most recent literature has focused on advancing the performance of these devices experimentally, theoretical studies are still scarce. In contrast, ordinary laser theory is very mature, has been thoroughly studied and is now well understood from the point of view of fundamental physics. In this work, we present a theoretical study of OPOs and in particular we theoretically discuss the process of gain saturation in optical parametric amplifiers. In order to emphasize the significant difference between the two coherent sources, we compare the optimized coupling ratios for maximum output powers of the ordinary laser and the optical parametric oscillator and demonstrate that in contrast to ordinary lasers, highest output powers in optical parametric oscillators are achieved with output coupling ratios close to 1. We confirm experimentally our theoretical studies by building a narrowband fiber optical parametric oscillator at 1450nm with multi-watt output power. We show that the device is robust to intracavity losses and achieve peak power as high as 2.4W.

  3. Maximal power output by solar cells with angular confinement.

    PubMed

    Höhn, Oliver; Kraus, Tobias; Bauhuis, Gerard; Schwarz, Ulrich T; Bläsi, Benedikt

    2014-05-05

    Angularly selective filters can increase the efficiency of radiatively limited solar cells. A restriction of the acceptance angle is linked to the kind of utilizable solar spectrum (global or direct radiation). This has to be considered when calculating the potential enhancement of both the efficiency and the power output. In this paper, different concepts to realize angularly selective filters are compared regarding their limits for efficiency and power output per unit area. First experimental results of a promising system based on a thin-film filter as the angularly selective element are given to demonstrate the practical relevance of such systems.

  4. Muscle power output limits fast-start performance in fish.

    PubMed

    Wakeling, J M; Johnston, I A

    1998-05-01

    Fast-starts associated with escape responses were filmed at the median habitat temperatures of six teleost fish: Notothenia coriiceps and Notothenia rossii (Antarctica), Myoxocephalus scorpius (North Sea), Scorpaena notata and Serranus cabrilla (Mediterranean) and Paracirrhites forsteri (Indo-West-Pacific Ocean). Methods are presented for estimating the spine positions for silhouettes of swimming fish. These methods were used to validate techniques for calculating kinematics and muscle dynamics during fast-starts. The starts from all species show common patterns, with waves of body curvature travelling from head to tail and increasing in amplitude. Cross-validation with sonomicrometry studies allowed gearing ratios between the red and white muscle to be calculated. Gearing ratios must decrease towards the tail with a corresponding change in muscle geometry, resulting in similar white muscle fibre strains in all the myotomes during the start. A work-loop technique was used to measure mean muscle power output at similar strain and shortening durations to those found in vivo. The fast Sc. notata myotomal fibres produced a mean muscle-mass-specific power of 142.7 W kg-1 at 20 degrees C. Velocity, acceleration and hydrodynamic power output increased both with the travelling rate of the wave of body curvature and with the habitat temperature. At all temperatures, the predicted mean muscle-mass-specific power outputs, as calculated from swimming sequences, were similar to the muscle power outputs measured from work-loop experiments.

  5. Measurement of the total acoustic output power of HITU transducers

    NASA Astrophysics Data System (ADS)

    Jenderka, Klaus-V.; Beissner, Klaus

    2010-03-01

    The majority of High Intensity Therapeutic Ultrasound (HITU) applications use strongly focused ultrasound fields generating very high local intensities in the focal region. The metrology of these high-power ultrasound fields is a challenge for the established measurement procedures and devices. This paper describes the results of measurements by means of the radiation force for a total acoustic output power up to 400 W at 1.5 MHz and up to 200 W at 2.45 MHz. For this purpose, a radiation force balance set-up was adapted for the determination of large acoustic output powers. For two types of HITU transducers, the relationship between the total acoustic output power and the applied net electrical power was determined at close transducer-target distance. Further, dependence of the measured electro-acoustic radiation conductance on the transducer-target distance was investigated at reduced power levels, considering the appearance of focal anomalies. Concluding, a list of the main uncertainty contributions, and an estimate of the uncertainty for the used radiation force balance set-up is given for measurements at high power levels.

  6. Transmitter switch for high-power microwave output

    NASA Technical Reports Server (NTRS)

    Wiggins, C. P.; Leu, R. K.

    1975-01-01

    Combiner system can be used for combining output powers of two transmitters or for switching from one to the other. This can be done when pair of transmitters operate on same frequency and carriers are phase coherent as by excitation from single exciter.

  7. Progress in Increasing Gyrotron Output Power Beyond 1 MW

    NASA Astrophysics Data System (ADS)

    Felch, K.; Blank, M.; Borchard, P.; Cahalan, P.; Cauffman, S.; Jory, H.

    2009-04-01

    A 95 GHz, multi-megawatt continuous-wave (CW) gyrotron oscillator is currently under development at CPI. The gyrotron consists of a single-anode magnetron injection gun designed to operate at 75 A and 90 kV, a TE22,6 mode cylindrical interaction cavity, an internal mode converter to transform the TE22,6 mode to a Gausssian beam, an edge-cooled CVD diamond output window, and a single-stage depressed collector fabricated from a strengthened copper alloy. During the initial experimental campaign, carried out in the Summer of 2007, peak output power levels up to 1 MW at 40 A beam current were demonstrated at pulse lengths up to 5 ms. In addition, pulses up to 15 s in duration at 25 A beam current, the long-pulse limit of the CPI test stand, and 630 kW peak output power were achieved. In the Fall of 2007, modifications to the CPI test stand were made to allow for short-pulse operation up to 75 A. A second test campaign, aimed at demonstrating peak output power in excess of 1 MW, is planned for early in 2008.

  8. Mechanical power output during running accelerations in wild turkeys.

    PubMed

    Roberts, Thomas J; Scales, Jeffrey A

    2002-05-01

    We tested the hypothesis that the hindlimb muscles of wild turkeys (Meleagris gallopavo) can produce maximal power during running accelerations. The mechanical power developed during single running steps was calculated from force-plate and high-speed video measurements as turkeys accelerated over a trackway. Steady-speed running steps and accelerations were compared to determine how turkeys alter their running mechanics from a low-power to a high-power gait. During maximal accelerations, turkeys eliminated two features of running mechanics that are characteristic of steady-speed running: (i) they produced purely propulsive horizontal ground reaction forces, with no braking forces, and (ii) they produced purely positive work during stance, with no decrease in the mechanical energy of the body during the step. The braking and propulsive forces ordinarily developed during steady-speed running are important for balance because they align the ground reaction force vector with the center of mass. Increases in acceleration in turkeys correlated with decreases in the angle of limb protraction at toe-down and increases in the angle of limb retraction at toe-off. These kinematic changes allow turkeys to maintain the alignment of the center of mass and ground reaction force vector during accelerations when large propulsive forces result in a forward-directed ground reaction force. During the highest accelerations, turkeys produced exclusively positive mechanical power. The measured power output during acceleration divided by the total hindlimb muscle mass yielded estimates of peak instantaneous power output in excess of 400 W kg(-1) hindlimb muscle mass. This value exceeds estimates of peak instantaneous power output of turkey muscle fibers. The mean power developed during the entire stance phase increased from approximately zero during steady-speed runs to more than 150 W kg(-1) muscle during the highest accelerations. The high power outputs observed during accelerations

  9. Nationwide assessment of potential output from wind-powered generators

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Hargraves, W. R.; Yalcin, A.

    1976-01-01

    A method for computing the actual expected power for a wind-powered generator from a given observed speed distribution is described and applied to estimate the potential output for different locations in the continental U.S. A contour map of generator capacity factor values (fraction of the rated output realizable) is obtained for wind-powered generator systems with a cut-in speed of 3.6 m/sec and a rated speed of 8.0 m/sec, and for a unit with hypothetical values for the 1 MW class (cut-in speed, 6.7 m/sec; rated speed, 13.4 m/sec). Results indicate that in the central U.S. and in certain areas of the New England coast at a height of 61 m, over 60% of the rated output power could be obtained on an annual average. In these areas capacity factors of over 20% could be obtained with the 1MW system.

  10. High output power electric motors with bulk HTS elements

    NASA Astrophysics Data System (ADS)

    Kovalev, L. K.; Ilushin, K. V.; Kovalev, K. L.; Penkin, V. T.; Poltavets, V. N.; Koneev, S. M.-A.; Akimov, I. I.; Gawalek, W.; Oswald, B.; Krabbes, G.

    2003-04-01

    New types of electric machines with the rotors containing bulk HTS (YBCO and Bi-Ag) elements are presented. Different schematics of hysteresis, reluctance, “trapped field” and composed synchronous HTS machines are discussed. The two-dimensional mathematical models describing the processes in such types of HTS machines were developed on the basis of the theoretical analysis of the electrodynamic and hysteresis processes in the single-domain and polycrystal YBCO ceramic samples and plate shape Bi-Ag elements. The test results of the series of hysteresis, reluctance, “trapped field” and composed with permanent magnets HTS motors with output power rating 0.1-18 kW and current frequency 50 and 400 Hz are given. These results show that in the media of liquid nitrogen the specific output power per one weight unit of HTS motors is 4-7 times better than for conventional electric machines. Comparison of the theoretical and experimental characteristics of the developed HTS motors show that they are in good agreement. The test results for liquid nitrogen cryogenic pump system with hysteresis 500 W HTS motor are discussed. The designs and first test results of HTS motor operating in the media of liquid nitrogen with output power 100 kW and power factor more than 0.8 are given. Future development and applications of new types of HTS motors for aerospace technology, on-land industry and transport systems are discussed.

  11. Power-output regularization in global sound equalization.

    PubMed

    Stefanakis, Nick; Sarris, John; Cambourakis, George; Jacobsen, Finn

    2008-01-01

    The purpose of equalization in room acoustics is to compensate for the undesired modification that an enclosure introduces to signals such as audio or speech. In this work, equalization in a large part of the volume of a room is addressed. The multiple point method is employed with an acoustic power-output penalty term instead of the traditional quadratic source effort penalty term. Simulation results demonstrate that this technique gives a smoother decline of the reproduction performance away from the control points.

  12. Halbach array generator/motor having mechanically regulated output voltage and mechanical power output

    SciTech Connect

    Post, Richard F.

    2005-06-14

    A motor/generator has its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along the axis of rotation of the rotor. The rotor includes a Halbach array of magnets. The voltage and power outputs are regulated by varying the radial gap in between the stator windings and the rotating Halbach array. The gap is varied by extensible and retractable supports attached to the stator windings that can move the windings in a radial direction.

  13. Call-related factors influencing output power from mobile phones.

    PubMed

    Hillert, Lena; Ahlbom, Anders; Neasham, David; Feychting, Maria; Järup, Lars; Navin, Roshan; Elliott, Paul

    2006-11-01

    Mobile phone use is increasing but there is also concern for adverse health effects. Well-designed prospective studies to assess several health outcomes are required. In designing a study of mobile phone use, it is important to assess which factors need to be considered in classifying the exposure to radiofrequency fields (RF). A pilot study was performed in Sweden and in the UK 2002 to 2003 to test the feasibility of recruiting a cohort of mobile phone users from a random population sample and from mobile phone subscription lists for a prospective study. As one part of this pilot study, different factors were evaluated regarding possible influence on the output power of the phones. By local switch logging, information on calls made from predefined subscriptions or dedicated handsets were obtained and the output power of phones during calls made indoors and outdoors, in moving and stationary mode, and in rural as well in urban areas were compared. In this experiment, calls were either 1, 1.5 or 5 min long. The results showed that high mobile phone output power is more frequent in rural areas whereas the other factors (length of call, moving/stationary, indoor/outdoor) were of less importance. Urban and rural area should be considered in an exposure index for classification of the exposure to RF from mobile phones and may be assessed by first base station during mobile phone calls or, if this information is not available, possibly by using home address as a proxy.

  14. Multi-decadal Variability of the Wind Power Output

    NASA Astrophysics Data System (ADS)

    Kirchner Bossi, Nicolas; García-Herrera, Ricardo; Prieto, Luis; Trigo, Ricardo M.

    2014-05-01

    The knowledge of the long-term wind power variability is essential to provide a realistic outlook on the power output during the lifetime of a planned wind power project. In this work, the Power Output (Po) of a market wind turbine is simulated with a daily resolution for the period 1871-2009 at two different locations in Spain, one at the Central Iberian Plateau and another at the Gibraltar Strait Area. This is attained through a statistical downscaling of the daily wind conditions. It implements a Greedy Algorithm as classificator of a geostrophic-based wind predictor, which is derived by considering the SLP daily field from the 56 ensemble members of the longest homogeneous reanalysis available (20CR, 1871-2009). For calibration and validation purposes we use 10 years of wind observations (the predictand) at both sites. As a result, a series of 139 annual wind speed Probability Density Functions (PDF) are obtained, with a good performance in terms of wind speed uncertainty reduction (average daily wind speed MAE=1.48 m/s). The obtained centennial series allow to investigate the multi-decadal variability of wind power from different points of view. Significant periodicities around the 25-yr frequency band, as well as long-term linear trends are detected at both locations. In addition, a negative correlation is found between annual Po at both locations, evidencing the differences in the dynamical mechanisms ruling them (and possible complementary behavior). Furthermore, the impact that the three leading large-scale circulation patterns over Iberia (NAO, EA and SCAND) exert over wind power output is evaluated. Results show distinct (and non-stationary) couplings to these forcings depending on the geographical position and season or month. Moreover, significant non-stationary correlations are observed with the slow varying Atlantic Multidecadal Oscillation (AMO) index for both case studies. Finally, an empirical relationship is explored between the annual Po and the

  15. Compact electret energy harvester with high power output

    NASA Astrophysics Data System (ADS)

    Pondrom, P.; Sessler, G. M.; Bös, J.; Melz, T.

    2016-08-01

    Compact electret energy harvesters, based on a design recently introduced, are presented. Using electret surface potentials in the 400 V regime and a seismic mass of 10 g, it was possible to generate output power up to 0.6 mW at 36 Hz for an input acceleration of 1 g. Following the presentation of an analytical model allowing for the calculation of the power generated in a load resistance at the resonance frequency of the harvesters, experimental results are shown and compared to theoretical predictions. Finally, the performance of the electret harvesters is assessed using a figure of merit.

  16. Power output uniformity and power output capabilities of a guidewire-compatible cylindrical light-diffusing catheter

    NASA Astrophysics Data System (ADS)

    Anderson, Steven C.; Narciso, Hugh L., Jr.; Mai, David; Doiron, Daniel R.

    1994-07-01

    Cardiovascular Photodynamic Therapy requires the uniform application of laser energy over the length of an atherosclerotic lesion, thus ensuring equal treatment to all parts of the lesion. The total amount of laser energy delivered to the lesion also affects the results of the treatment. Uniform light distribution both radially and axially of a cylindrical diffuser during Photodynamic Therapy prevents miscalculated dosimetry and uneven treatment. Maximizing the amount of laser power delivered to the cylindrical diffuser tip (without inducing temperature elevation) minimizes the exposure time thus reducing the overall treatment time. Power output uniformity and power output capabilities are thus crucial factors in the design of a cardiovascular cylindrical diffuser. This paper will discuss the output characteristics and performance of six guidewire compatible cylindrical diffusers. Each diffuser consists of an array of fiber optics surrounding an inner guidewire lumen. This assembly is covered by an outer sheath. The fibers launch into an elastomer which contains a scattering medium. In this way a light diffusing tip is created. The total length of the fiber system is 3.0 meters. The total length of the difffuser tip is 2.0 cm.

  17. Listening to music affects diurnal variation in muscle power output.

    PubMed

    Chtourou, H; Chaouachi, A; Hammouda, O; Chamari, K; Souissi, N

    2012-01-01

    The purpose of this investigation was to assess the effects of listening to music while warming-up on the diurnal variations of power output during the Wingate test. 12 physical education students underwent four Wingate tests at 07:00 and 17:00 h, after 10 min of warm-up with and without listening to music. The warm-up consisted of 10 min of pedalling at a constant pace of 60 rpm against a light load of 1 kg. During the Wingate test, peak and mean power were measured. The main finding was that peak and mean power improved from morning to afternoon after no music warm-up (p<0.001 and p<0.01, respectively). These diurnal variations disappeared for mean power and persisted with an attenuated morning-evening difference (p<0.05) for peak power after music warm-up. Moreover, peak and mean power were significantly higher after music than no music warm-up during the two times of testing. Thus, as it is a legal method and an additional aid, music should be used during warm-up before performing activities requiring powerful lower limbs' muscles contractions, especially in the morning competitive events.

  18. Maximal power outputs during the Wingate anaerobic test.

    PubMed

    Patton, J F; Murphy, M M; Frederick, F A

    1985-04-01

    The purpose of this study was to determine the resistance loads which elicit maximal values of power output (PO) during performance of the Wingate test (WT). Nineteen male subjects (mean age, 25.1 yrs; mean VO2 max, 3.52 l/min) performed multiple WTs in a random order at resistances ranging from 3.23 to 6.76 joules/pedal rev/kg BW. Tests were carried out on a Monark cycle ergometer modified to permit instantaneous application of resistance. Revolutions were determined by a computer interfaced frequency counter. The mean resistances eliciting the highest peak power (PP) and mean power (MP) outputs were 5.65 and 5.53 joules/pedal rev/kg BW, respectively (average of 5.59 joules/pedal rev/kg BW). Both PP and MP were significantly higher (15.5% and 13.0%, respectively) using a resistance load of 5.59 compared to the Wingate setting of 4.41 joules/pedal rev/kg BW. The test-retest reliability for PP and MP ranged between 0.91 and 0.93 at both resistance loads. Body weight and thigh volume did not significantly estimate the individual resistances eliciting maximal POs. The data suggest that resistance be assigned according to the subjects BW but consideration be given to increasing the resistance from that presently used in various laboratories.

  19. A model to predict the power output from wind farms

    SciTech Connect

    Landberg, L.

    1997-12-31

    This paper will describe a model that can predict the power output from wind farms. To give examples of input the model is applied to a wind farm in Texas. The predictions are generated from forecasts from the NGM model of NCEP. These predictions are made valid at individual sites (wind farms) by applying a matrix calculated by the sub-models of WASP (Wind Atlas Application and Analysis Program). The actual wind farm production is calculated using the Riso PARK model. Because of the preliminary nature of the results, they will not be given. However, similar results from Europe will be given.

  20. Changes in muscle coordination and power output during sprint cycling.

    PubMed

    O'Bryan, Steven J; Brown, Nicholas A T; Billaut, François; Rouffet, David M

    2014-07-25

    This study investigated the changes in muscle coordination associated to power output decrease during a 30-s isokinetic (120rpm) cycling sprint. Modifications in EMG amplitude and onset/offset were investigated from eight muscles [gluteus maximus (EMGGMAX), vastus lateralis and medialis obliquus (EMGVAS), medial and lateral gastrocnemius (EMGGAS), rectus femoris (EMGRF), biceps femoris and semitendinosus (EMGHAM)]. Changes in co-activation of four muscle pairs (CAIGMAX/GAS, CAIVAS/GAS, CAIVAS/HAM and CAIGMAX/RF) were also calculated. Substantial power reduction (60±6%) was accompanied by a decrease in EMG amplitude for all muscles other than HAM, with the greatest deficit identified for EMGRF (31±16%) and EMGGAS (20±14%). GASonset, HAMonset and GMAXonset shifted later in the pedalling cycle and the EMG offsets of all muscles (except GASoffset) shifted earlier as the sprint progressed (P<0.05). At the end of the sprint, CAIVAS/GAS and CAIGMAX/GAS were reduced by 48±10% and 43±12%, respectively. Our results show that substantial power reduction during fatiguing sprint cycling is accompanied by marked reductions in the EMG activity of bi-articular GAS and RF and co-activation level between GAS and main power producer muscles (GMAX and VAS). The observed changes in RF and GAS EMG activity are likely to result in a redistribution of the joint powers and alterations in the orientation of the pedal forces.

  1. Ultrasonic Power Output Measurement by Pulsed Radiation Pressure.

    PubMed

    Fick, Steven E; Breckenridge, Franklin R

    1996-01-01

    Direct measurements of time-averaged spatially integrated output power radiated into reflectionless water loads can be made with high accuracy using techniques which exploit the radiation pressure exerted by sound on all objects in its path. With an absorptive target arranged to intercept the entirety of an ultrasound beam, total beam power can be determined as accurately as the radiation force induced on the target can be measured in isolation from confounding forces due to buoyancy, streaming, surface tension, and vibration. Pulse modulation of the incident ultrasound at a frequency well above those characteristics of confounding phenomena provides the desired isolation and other significant advantages in the operation of the radiation force balance (RFB) constructed in 1974. Equipped with purpose-built transducers and electronics, the RFB is adjusted to equate the radiation force and a counterforce generated by an actuator calibrated against reference masses using direct current as the transfer variable. Improvements made during its one overhaul in 1988 have nearly halved its overall measurement uncertainty and extended the capabilities of the RFB to include measuring the output of ultrasonic systems with arbitrary pulse waveforms.

  2. Ultrasonic Power Output Measurement by Pulsed Radiation Pressure

    PubMed Central

    Fick, Steven E.; Breckenridge, Franklin R.

    1996-01-01

    Direct measurements of time-averaged spatially integrated output power radiated into reflectionless water loads can be made with high accuracy using techniques which exploit the radiation pressure exerted by sound on all objects in its path. With an absorptive target arranged to intercept the entirety of an ultrasound beam, total beam power can be determined as accurately as the radiation force induced on the target can be measured in isolation from confounding forces due to buoyancy, streaming, surface tension, and vibration. Pulse modulation of the incident ultrasound at a frequency well above those characteristics of confounding phenomena provides the desired isolation and other significant advantages in the operation of the radiation force balance (RFB) constructed in 1974. Equipped with purpose-built transducers and electronics, the RFB is adjusted to equate the radiation force and a counterforce generated by an actuator calibrated against reference masses using direct current as the transfer variable. Improvements made during its one overhaul in 1988 have nearly halved its overall measurement uncertainty and extended the capabilities of the RFB to include measuring the output of ultrasonic systems with arbitrary pulse waveforms. PMID:27805084

  3. Increased photovoltaic power output via diffractive spectrum separation.

    PubMed

    Kim, Ganghun; Dominguez-Caballero, Jose A; Lee, Howard; Friedman, Daniel J; Menon, Rajesh

    2013-03-22

    In this Letter, we report the preliminary demonstration of a new paradigm for photovoltaic power generation that utilizes a broadband diffractive-optical element (BDOE) to efficiently separate sunlight into laterally spaced spectral bands. These bands are then absorbed by single-junction photovoltaic cells, whose band gaps correspond to the incident spectral bands. We designed such BDOEs by utilizing a modified version of the direct-binary-search algorithm. Gray scale lithography was used to fabricate these multilevel optics. They were experimentally characterized with an overall optical efficiency of 70% over a wavelength range of 350-1100 nm, which was in excellent agreement with simulation predictions. Finally, two prototype devices were assembled: one with a pair of copper indium gallium selenide based photovoltaic devices, and another with GaAs and c-Si photovoltaic devices. These devices demonstrated an increase in output peak electrical power of ∼ 42% and ∼ 22%, respectively, under white-light illumination. Because of the optical versatility and manufacturability of the proposed BDOEs, the reported spectrum-splitting approach provides a new approach toward low-cost solar power.

  4. The functional significance of absolute power with respect to event-related desynchronization.

    PubMed

    Doppelmayr, M M; Klimesch, W; Pachinger, T; Ripper, B

    1998-01-01

    The question is examined whether the extent of changes in relative band power as measured by event-related desynchronization (ERD) depends on absolute band power. The results for target stimuli of a simple oddball task indicate that the prestimulus (reference) level of absolute band power has indeed a strong influence on ERD. Whereas for the alpha band large band power in the reference interval is related to a strong degree of alpha suppression as measured by ERD, the opposite holds true for the theta band. Here, a low level of band power during the reference interval is related to a pronounced increase in band power during the processing of the target stimulus. In contrast to alpha and theta, ERD in the delta band is not influenced by the magnitude of band power in the reference interval.

  5. Spin-on-doping for output power improvement of silicon nanowire array based thermoelectric power generators

    SciTech Connect

    Xu, B. Fobelets, K.

    2014-06-07

    The output power of a silicon nanowire array (NWA)-bulk thermoelectric power generator (TEG) with Cu contacts is improved by spin-on-doping (SOD). The Si NWAs used in this work are fabricated via metal assisted chemical etching (MACE) of 0.01–0.02 Ω cm resistivity n- and p-type bulk, converting ~4% of the bulk thickness into NWs. The MACE process is adapted to ensure crystalline NWs. Current-voltage and Seebeck voltage-temperature measurements show that while SOD mainly influences the contact resistance in bulk, it influences both contact resistance and power factor in NWA-bulk based TEGs. According to our experiments, using Si NWAs in combination with SOD increases the output power by an order of 3 under the same heating power due to an increased power factor, decreased thermal conductivity of the NWA and reduced Si-Cu contact resistance.

  6. Warm-up affects diurnal variation in power output.

    PubMed

    Taylor, K; Cronin, J B; Gill, N; Chapman, D W; Sheppard, J M

    2011-03-01

    The purpose of this study was to examine whether time of day variations in power output can be accounted for by the diurnal fluctuations existent in body temperature. 8 recreationally trained males (29.8±5.2 yrs; 178.3±5.2 cm; 80.3±6.5 kg) were assessed on 4 occasions following a: (a) control warm-up at 8.00 am; (b) control warm-up at 4.00 pm; (c) extended warm-up at 8.00 am; and, (d) extended warm-up at 4.00 pm. The control warm-up consisted of dynamic exercises and practice jumps. The extended warm-up incorporated a 20 min general warm-up on a stationary bike prior to completion of the control warm-up, resulting in a whole body temperature increase of 0.3±0.2°C. Kinetic and kinematic variables were measured using a linear optical encoder attached to a barbell during 6 loaded counter-movement jumps. Results were 2-6% higher in the afternoon control condition than morning control condition. No substantial performance differences were observed between the extended morning condition and afternoon control condition where body temperatures were similar. Results indicate that diurnal variation in whole body temperature may explain diurnal performance differences in explosive power output and associated variables. It is suggested that warm-up protocols designed to increase body temperature are beneficial in reducing diurnal differences in jump performance.

  7. Lower limb alactic anaerobic power output assessed with different techniques in morbid obesity.

    PubMed

    Lafortuna, C L; Fumagalli, E; Vangeli, V; Sartorio, A

    2002-02-01

    Short-term alactic anaerobic performance in jumping (5 consecutive jumps with maximal effort), sprint running (8 m) and stair climbing (modified Margaria test) were measured in 75 obese subjects (BMI: 40.3+/-5.0 kg/m2) and in 36 lean control subjects (BMI: 22.4+/-3.2 kg/m2) of the same age and gender distribution. The results show that obese subjects attained a significantly lower specific (per unit body mass) power output both in jumping (W(spec,j); p<0.001) and stair climbing (W(spec,s); p<0.001) and run at a significantly lower average velocity (v; p<0.001) during sprinting. In spite of the different motor skillfulness required to accomplish the jumping and climbing tests, W(spec,s) (and hence the vertical velocity in climbing, v(v)) was closely correlated with W(spec,j) (R2=0.427, p<0.001). In jumping, although the average force during the positive work phase was significantly higher in obese subjects (p<0.001), no difference between the 2 groups was detected in absolute power. In stair climbing the absolute power output of obese resulted significantly higher (18%) than that of lean controls (p<0.001). In sprint running, the lower average horizontal velocity attained by obese subjects also entailed a different locomotion pattern with shorter step length (L(s); p<0.001), lower frequency (p<0.001) and longer foot contact time with ground (T(c,r); p<0.001). W(spec,j) seems to be a determinant of the poorer motor performance of obese, being significantly correlated with: I) the vertical displacement of the centre of gravity (R2=0.853, p<0.001) in jumping; II) with v(v) in stair climbing; and III) with T(c,r) (R2=0.492, p<0.001), L(s) (R2=0.266, p<0.001) and v (R2=0.454, p<0.001) in sprinting. The results suggest that obese individuals, although partially hampered in kinetic movements, largely rely on their effective specific power output to perform complex anaerobic tasks, and they suffer from the disproportionate excess of inert mass of fat. Furthermore, in view

  8. Compact, robust, and spectrally pure diode-laser system with a filtered output and a tunable copy for absolute referencing

    NASA Astrophysics Data System (ADS)

    Kirilov, E.; Mark, M. J.; Segl, M.; Nägerl, H.-C.

    2015-05-01

    We report on a design of a compact laser system composed of an extended-cavity diode laser with high passive stability and a pre-filter Fabry-Perot cavity. The laser is frequency-stabilized relative to the cavity using a serrodyne technique with a correction bandwidth of ≥6 MHz and a dynamic range of ≥700 MHz. The free-running laser system has a power spectral density (PSD) ≤100 Hz2/Hz centered mainly in the acoustic frequency range. A highly tunable, 0.5-1.3 GHz copy of the spectrally pure output beam is provided, which can be used for further stabilization of the laser system to an ultra-stable reference. We demonstrate a simple one-channel lock to such a reference that brings down the PSD to the sub-Hz level. The tuning, frequency stabilization, and sideband imprinting are achieved by a minimum number of key elements comprising a fibered electro-optic modulator, acousto-optic modulator, and a nonlinear transmission line. The system is easy to operate, scalable, and highly applicable to atomic/molecular experiments demanding high spectral purity, long-term stability, and robustness.

  9. Logarithmic and Power Law Input-Output Relations in Sensory Systems with Fold-Change Detection

    PubMed Central

    Adler, Miri; Mayo, Avi; Alon, Uri

    2014-01-01

    Two central biophysical laws describe sensory responses to input signals. One is a logarithmic relationship between input and output, and the other is a power law relationship. These laws are sometimes called the Weber-Fechner law and the Stevens power law, respectively. The two laws are found in a wide variety of human sensory systems including hearing, vision, taste, and weight perception; they also occur in the responses of cells to stimuli. However the mechanistic origin of these laws is not fully understood. To address this, we consider a class of biological circuits exhibiting a property called fold-change detection (FCD). In these circuits the response dynamics depend only on the relative change in input signal and not its absolute level, a property which applies to many physiological and cellular sensory systems. We show analytically that by changing a single parameter in the FCD circuits, both logarithmic and power-law relationships emerge; these laws are modified versions of the Weber-Fechner and Stevens laws. The parameter that determines which law is found is the steepness (effective Hill coefficient) of the effect of the internal variable on the output. This finding applies to major circuit architectures found in biological systems, including the incoherent feed-forward loop and nonlinear integral feedback loops. Therefore, if one measures the response to different fold changes in input signal and observes a logarithmic or power law, the present theory can be used to rule out certain FCD mechanisms, and to predict their cooperativity parameter. We demonstrate this approach using data from eukaryotic chemotaxis signaling. PMID:25121598

  10. Submicron gate InP power MISFET's with improved output power density at 18 and 20 GHz

    NASA Technical Reports Server (NTRS)

    Biedenbender, Michael D.; Kapoor, Vik J.; Shalkhauser, Kurt A.; Messick, Louis J.; Nguyen, Richard; Schmitz, Dietmar; Jurgensen, Holger

    1991-01-01

    The microwave characteristics are presented at 18 and 20 GHz of submicron gate indium phosphide (InP) metal-insulator-semiconductor field-effect transistors (MISFETs) for high output power density applications. InP power MISFET's were fabricated and the output power density was investigated as a function of drain-source spacing. The best output power density and gain were obtained for drain-source spacing of 3 micron. The output power density is 2.7 times greater than was previously measured for InP MISFET's at 18 and 20 GHz, and the power-added efficiency also increased.

  11. Submicron gate InP power MISFET's with improved output power density at 18 and 20 GHz

    NASA Technical Reports Server (NTRS)

    Biedenbender, M. D.; Kapoor, Vik J.; Shalkhauser, K. A.; Messick, L. J.; Nguyen, R.; Schmitz, D.; Juergensen, H.

    1991-01-01

    The microwave characteristics are presented at 18 and 20 GHz of submicron gate indium phosphide (InP) metal-insulator-semiconductor field-effect transistors (MISFET's) for high output power density applications. InP power MISFET's were fabricated and the output power density was investigated as a function of drain-source spacing. The best output power density and gain were obtained for drain-source spacing of 3 microns. The output power density is 2.7 times greater than was previously measured for InP MISFET's at 18 and 20 GHz, and the power-added efficiency also increased.

  12. Non-invasive prediction of blood lactate response to constant power outputs from incremental exercise tests.

    PubMed

    Sullivan, C S; Casaburi, R; Storer, T W; Wasserman, K

    1995-01-01

    We determined the ability of gas exchange analyses during incremental exercise tests (IXT) to predict blood lactate levels associated with a range of constant power output cycle ergometer tests. Twenty-seven healthy young men performed duplicate IXT and four 15-min constant power output tests at intensities ranging from moderate to very severe, before and after a training program. End-exercise blood lactate levels were approximated from superficial venous samples obtained 60 s after each constant power output test. From IXT, the power outputs corresponding to peak oxygen uptake (Wmax) and lactic acidosis threshold (WLAT), were determined. We examined the ability of four measures of exercise intensity to predict blood lactate levels for power outputs above the LAT: (1) power output (W), (2) power difference (W-WLAT), (3) power fraction (W/Wmax) and (4) power difference to delta ratio [(W-WLAT)/(Wmax-WLAT)]. Correlation coefficients were r = 0.38, 0.69, 0.75, and 0.81, respectively. The best linear regression prediction equation was: lactate (mmol.l-1) = 12.2[(W-WLAT)/(Wmax-WLAT)] + 0.7 mmol.l-1. This relationship was not significantly affected by training, despite increased values of LAT and peak oxygen uptake. Normalizing exercise intensity to the range of power outputs between WLAT and Wmax provided an estimate of blood lactate response to constant power outputs with a standard error of the estimate of 1.66 mmol.l-1.

  13. Anchors weigh more than power: why absolute powerlessness liberates negotiators to achieve better outcomes.

    PubMed

    Schaerer, Michael; Swaab, Roderick I; Galinsky, Adam D

    2015-02-01

    The current research shows that having no power can be better than having a little power. Negotiators prefer having some power (weak negotiation alternatives) to having no power (no alternatives). We challenge this belief that having any alternative is beneficial by demonstrating that weak alternatives create low anchors that reduce the value of first offers. In contrast, having no alternatives is liberating because there is no anchor to weigh down first offers. In our experiments, negotiators with no alternatives felt less powerful but made higher first offers and secured superior outcomes compared with negotiators who had weak alternatives. We established the role of anchoring through mediation by first offers and through moderation by showing that weak alternatives no longer led to worse outcomes when negotiators focused on a countervailing anchor or when negotiators faced an opponent with a strong alternative. These results demonstrate that anchors can have larger effects than feelings of power. Absolute powerlessness can be psychologically liberating.

  14. Absolute terahertz power measurement of a time-domain spectroscopy system.

    PubMed

    Globisch, Björn; Dietz, Roman J B; Göbel, Thorsten; Schell, Martin; Bohmeyer, Werner; Müller, Ralf; Steiger, Andreas

    2015-08-01

    We report on, to the best of our knowledge, the first absolute terahertz (THz) power measurement of a photoconductive emitter developed for time-domain spectroscopy (TDS). The broadband THz radiation emitted by a photoconductor optimized for the excitation with 1550-nm femtosecond pulses was measured by an ultrathin pyroelectric thin-film (UPTF) detector. We show that this detector has a spectrally flat transmission between 100 GHz and 5 THz due to special conductive electrodes on both sides of the UPTF. Its flat responsivity allows the calibration with a standard detector that is traceable to the International System of Units (SI) at the THz detector calibration facility of PTB. Absolute THz power in the range from below 1 μW to above 0.1 mW was measured.

  15. Examining the Variability of Wind Power Output in the Regulation Time Frame: Preprint

    SciTech Connect

    Hodge, B. M.; Shedd, S.; Florita, A.

    2012-08-01

    This work examines the distribution of changes in wind power for different time scales in the regulation time frame as well as the correlation of changes in power output for individual wind turbines in a wind plant.

  16. 47 CFR 2.1046 - Measurements required: RF power output.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 2.1046 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization Procedures Certification § 2.1046... frequency load attached to the output terminals when this test is made shall be stated. (b) For...

  17. 47 CFR 2.1046 - Measurements required: RF power output.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 2.1046 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization Procedures Certification § 2.1046... frequency load attached to the output terminals when this test is made shall be stated. (b) For...

  18. 47 CFR 2.1046 - Measurements required: RF power output.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 2.1046 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization Procedures Certification § 2.1046... frequency load attached to the output terminals when this test is made shall be stated. (b) For...

  19. 47 CFR 2.1046 - Measurements required: RF power output.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 2.1046 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization Procedures Certification § 2.1046... frequency load attached to the output terminals when this test is made shall be stated. (b) For...

  20. Transmission Power Control using Small-Capacity UPFC under Output Voltage Saturation

    NASA Astrophysics Data System (ADS)

    Kuroda, Takeshi; Takeshita, Takaharu; Fujita, Hideki

    This paper presents a fast transmission power control scheme using a UPFC (Unified Power Flow Controller) under the output voltage saturation. For practical use of the UPFC, the fast and stable power response and the reduced power converter capacity are desired. The authors propose the fast and stable control scheme under the output voltage saturation of the reduced capacity UPFC. The effectiveness of the proposed control algorithm of the UPFC has been verified by experiments.

  1. Power outputs of a machine squat-jump across a spectrum of loads.

    PubMed

    Harris, Nigel K; Cronin, John B; Hopkins, Will G

    2007-11-01

    The load that maximizes mechanical power output (Pmax) has received considerable research attention owing to its perceived importance to training prescription. However, it may be that identifying Pmax is of little importance if the difference in power output about Pmax is insubstantial. Additionally, comparing the effect of load on power output between studies is problematic due to various methodological differences. The purpose of this study therefore was to quantify the concentric power output for a machine squat-jump across a spectrum of loads (10-100% of 1 repetition maximum [1RM]). To estimate Pmax load and proximate loads a quadratic was fitted to the power output (Watts) and load (% of 1RM) of 18 well-trained rugby athletes. Pmax for peak and mean power output occurred at 21.6 +/- 7.1% of 1RM (mean +/- SD) and 39.0 +/- 8.6% of 1RM, respectively. A 20% change in load either side of the maximum resulted in a mean decrease of only 9.9% (90% confidence limits +/-2.4%) and 5.4% (+/-0.9%) in peak and mean power respectively; standard deviations about these means (representing individual differences in the decrease) were 6.0% and 2.1%, respectively (90% confidence limits x//1.34). It appears that most athletes have a broad peak in their power profile for peak or mean power. The preoccupation of identifying one load for maximizing power output would seem less meaningful than many practitioners and scientists believe.

  2. 75 FR 3985 - Trade Regulation Rule Relating to Power Output Claims for Amplifiers Utilized in Home...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... CFR Part 432 Trade Regulation Rule Relating to Power Output Claims for Amplifiers Utilized in Home... Rule Relating to Power Output Claims for Amplifiers Utilized in Home Entertainment Products (``Amplifier Rule'' or ``Rule''), as part of the Commission's systematic review of all current...

  3. Output power distributions of terminals in a 3G mobile communication network.

    PubMed

    Persson, Tomas; Törnevik, Christer; Larsson, Lars-Eric; Lovén, Jan

    2012-05-01

    The objective of this study was to examine the distribution of the output power of mobile phones and other terminals connected to a 3G network in Sweden. It is well known that 3G terminals can operate with very low output power, particularly for voice calls. Measurements of terminal output power were conducted in the Swedish TeliaSonera 3G network in November 2008 by recording network statistics. In the analysis, discrimination was made between rural, suburban, urban, and dedicated indoor networks. In addition, information about terminal output power was possible to collect separately for voice and data traffic. Information from six different Radio Network Controllers (RNCs) was collected during at least 1 week. In total, more than 800000 h of voice calls were collected and in addition to that a substantial amount of data traffic. The average terminal output power for 3G voice calls was below 1 mW for any environment including rural, urban, and dedicated indoor networks. This is <1% of the maximum available output power. For data applications the average output power was about 6-8 dB higher than for voice calls. For rural areas the output power was about 2 dB higher, on average, than in urban areas.

  4. Method for leveling the power output of an electromechanical battery as a function of speed

    DOEpatents

    Post, R.F.

    1999-03-16

    The invention is a method of leveling the power output of an electromechanical battery during its discharge, while at the same time maximizing its power output into a given load. The method employs the concept of series resonance, employing a capacitor the parameters of which are chosen optimally to achieve the desired near-flatness of power output over any chosen charged-discharged speed ratio. Capacitors are inserted in series with each phase of the windings to introduce capacitative reactances that act to compensate the inductive reactance of these windings. This compensating effect both increases the power that can be drawn from the generator before inductive voltage drops in the windings become dominant and acts to flatten the power output over a chosen speed range. The values of the capacitors are chosen so as to optimally flatten the output of the generator over the chosen speed range. 3 figs.

  5. Method for leveling the power output of an electromechanical battery as a function of speed

    DOEpatents

    Post, Richard F.

    1999-01-01

    The invention is a method of leveling the power output of an electromechanical battery during its discharge, while at the same time maximizing its power output into a given load. The method employs the concept of series resonance, employing a capacitor the parameters of which are chosen optimally to achieve the desired near-flatness of power output over any chosen charged-discharged speed ratio. Capacitors are inserted in series with each phase of the windings to introduce capacitative reactances that act to compensate the inductive reactance of these windings. This compensating effect both increases the power that can be drawn from the generator before inductive voltage drops in the windings become dominant and acts to flatten the power output over a chosen speed range. The values of the capacitors are chosen so as to optimally flatten the output of the generator over the chosen speed range.

  6. Magnetic Bearing Amplifier Output Power Filters for Flywheel Systems

    NASA Technical Reports Server (NTRS)

    Lebron-Velilla, Ramon C.; Jansen, Ralph H.; Palazzolo, Alan; Thomas, Erwin; Kascak, Peter E.; Birchenough, Arthur G.; Dever, Timothy P.

    2003-01-01

    Five power filters and two types of power amplifiers were tested for use with active magnetic bearings for flywheel applications. Filter topologies included low pass filters and low pass filters combined with trap filters at the PWM switching frequency. Two state and three state PWM amplifiers were compared. Each system was evaluated based on current magnitude at the switching frequency, voltage magnitude at 500 kHz, and power consumption. The base line system was a two state amplifier without a power filter. The recommended system is a three state power amplifier with a 50 kHz low pass filter and a 27 kHz trap filter. This system uses 5.57 W. It reduces the switching current by an order of magnitude and the 500 kHz voltage by two orders of magnitude. The relative power consumption varied depending on the test condition between 60 to 130 percent of the baseline.

  7. Power Converters Maximize Outputs Of Solar Cell Strings

    NASA Technical Reports Server (NTRS)

    Frederick, Martin E.; Jermakian, Joel B.

    1993-01-01

    Microprocessor-controlled dc-to-dc power converters devised to maximize power transferred from solar photovoltaic strings to storage batteries and other electrical loads. Converters help in utilizing large solar photovoltaic arrays most effectively with respect to cost, size, and weight. Main points of invention are: single controller used to control and optimize any number of "dumb" tracker units and strings independently; power maximized out of converters; and controller in system is microprocessor.

  8. Particle visualization in high-power impulse magnetron sputtering. II. Absolute density dynamics

    SciTech Connect

    Britun, Nikolay Palmucci, Maria; Konstantinidis, Stephanos; Snyders, Rony

    2015-04-28

    Time-resolved characterization of an Ar-Ti high-power impulse magnetron sputtering discharge has been performed. The present, second, paper of the study is related to the discharge characterization in terms of the absolute density of species using resonant absorption spectroscopy. The results on the time-resolved density evolution of the neutral and singly-ionized Ti ground state atoms as well as the metastable Ti and Ar atoms during the discharge on- and off-time are presented. Among the others, the questions related to the inversion of population of the Ti energy sublevels, as well as to re-normalization of the two-dimensional density maps in terms of the absolute density of species, are stressed.

  9. Halbach array generator/motor having an automatically regulated output voltage and mechanical power output

    DOEpatents

    Post, Richard F.

    2005-02-22

    A motor/generator having its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along its axis of rotation. The rotor includes a Halbach array. The stator windings are switched or commutated to provide a DC motor/generator much the same as in a conventional DC motor/generator. The voltage and power are automatically regulated by using centrifugal force to change the diameter of the rotor, and thereby vary the radial gap in between the stator and the rotating Halbach array, as a function of the angular velocity of the rotor.

  10. Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output

    NASA Astrophysics Data System (ADS)

    Whitney, Robert S.

    2015-03-01

    We investigate the nonlinear scattering theory for quantum systems with strong Seebeck and Peltier effects, and consider their use as heat engines and refrigerators with finite power outputs. This paper gives detailed derivations of the results summarized in a previous paper [R. S. Whitney, Phys. Rev. Lett. 112, 130601 (2014), 10.1103/PhysRevLett.112.130601]. It shows how to use the scattering theory to find (i) the quantum thermoelectric with maximum possible power output, and (ii) the quantum thermoelectric with maximum efficiency at given power output. The latter corresponds to a minimal entropy production at that power output. These quantities are of quantum origin since they depend on system size over electronic wavelength, and so have no analog in classical thermodynamics. The maximal efficiency coincides with Carnot efficiency at zero power output, but decreases with increasing power output. This gives a fundamental lower bound on entropy production, which means that reversibility (in the thermodynamic sense) is impossible for finite power output. The suppression of efficiency by (nonlinear) phonon and photon effects is addressed in detail; when these effects are strong, maximum efficiency coincides with maximum power. Finally, we show in particular limits (typically without magnetic fields) that relaxation within the quantum system does not allow the system to exceed the bounds derived for relaxation-free systems, however, a general proof of this remains elusive.

  11. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    DOEpatents

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  12. Flow lasers. [fluid mechanics of high power continuous output operations

    NASA Technical Reports Server (NTRS)

    Christiansen, W. H.; Russell, D. A.; Hertzberg, A.

    1975-01-01

    The present work reviews the fluid-mechanical aspects of high-power continuous-wave (CW) lasers. The flow characteristics of these devices appear as classical fluid-mechanical phenomena recast in a complicated interactive environment. The fundamentals of high-power lasers are reviewed, followed by a discussion of the N2-CO2 gas dynamic laser. Next, the HF/DF supersonic diffusion laser is described, and finally the CO electrical-discharge laser is discussed.

  13. Factors affecting anaerobic power output in the Margaria-Kalamen test.

    PubMed

    Huskey, T; Mayhew, J L; Ball, T E; Arnold, M D

    1989-08-01

    The purpose of this study was to determine the effect of three approach distances and two vertical ascent methods on approach velocity, vertical velocity and power output of the Margaria-Kalamen test. Male (n = 43) and female (n = 53) university students were tested using a traditional and a modified (ramp) Margaria-Kalamen test with approaches of 2, 6 and 10m. The average of five trials for each approach distance was used to calculate anaerobic power. Males averaged 14.0% greater approach velocity, 28.8% greater vertical velocity and 41.1% greater power output than females, regardless of approach distance or vertical ascent method. Anaerobic power output was not significantly different between the sexes for any method when the effects of the percentage of fat and lean body mass were removed by the covariance technique. The 2m approach produced significantly slower approach velocity, vertical velocity and power output than the other approaches. The ramp method resulted in significantly greater approach velocity (11.5%), vertical velocity (9.6%) and anaerobic power output (9.4%) than the stair method. Males averaged 8.4% higher power output using the ramp, while females averaged 11.0% higher than the conventional stair method. Females appeared to benefit more than males from using a ramp in the anaerobic power test. Anaerobic power measurement from the Margaria-Kalamen method can be maximized using a ramp method.

  14. Power output for wheelchair driving on a treadmill compared with arm crank ergometry.

    PubMed Central

    Tropp, H; Samuelsson, K; Jorfeldt, L

    1997-01-01

    OBJECTIVES: The limiting factors with regard to power output available for wheelchair ambulation have not been identified. The aim of the present study was to correlate power output during wheelchair driving with (i) power output and oxygen uptake during arm crank ergometry and (ii) arm muscle strength. METHODS: Eleven disabled men were examined for maximal power output (POmax) during wheelchair driving on a treadmill and during arm crank ergometry. Oxygen uptake (VO2) was recorded at submaximal and maximal arm crank ergometry in all men and during submaximal wheelchair driving on a treadmill in four men. Power output during wheelchair driving on a treadmill was measured. Static and dynamic elbow muscle strength was measured isokinetically. RESULTS: POmax was significantly lower (P < 0.001) for wheelchair driving (109 (31) W; mean (SD)) than for arm ergometry (163 (49) W). There was a significant correlation between POmax for arm crank ergometry and wheelchair driving (r = 0.73). There was no correlation between POmax and elbow strength. The mechanical efficiency was constant for the different levels on the arm crank ergometry test. The submaximal testing showed a consistently lower mechanical efficiency for wheelchair driving than for arm crank ergometry. CONCLUSIONS: It is suggested that the lower level of power output for wheelchair driving is fully explained by the lower mechanical efficiency. Any improvement in power output available for ambulation must be based on wheelchair ergonomics. PMID:9132210

  15. Intercomparison of the LBIR Absolute Cryogenic Radiometers to the NIST Optical Power Measurement Standard

    PubMed Central

    Fedchak, James A.; Carter, Adriaan C.; Datla, Raju

    2006-01-01

    The Low Background Infrared calibration (LBIR) facility at the National Institute of Standards and Technology (NIST) presently maintains four absolute cryogenic radiometers (ACRs) which serve as standard reference detectors for infrared calibrations performed by the facility. The primary standard for optical power measurements at NIST-Gaithersburg has been the High Accuracy Cryogenic Radiometer (HACR). Recently, an improved radiometer, the Primary Optical Watt Radiometer (POWR), has replaced the HACR as the primary standard. In this paper, we present the results of comparisons between the radiometric powers measured by the four ACRs presently maintained by the LBIR facility to that measured by the HACR and POWR. This was done by using a Si photodiode light-trapping detector as a secondary transfer standard to compare the primary national standards to the ACRs maintained by the LBIR facility. The technique used to compare an ACR to the trap detector is described in detail. The absolute optical power measurements are found to be within 0.1 % of the primary standard for all the ACRs examined in this study. PMID:27274936

  16. Limitation of the output power of cw electric-discharge CO{sub 2} lasers

    SciTech Connect

    Nevdakh, Vladimir V

    1999-04-30

    The output power of a sealed-off tunable cw CO{sub 2} laser was optimised. The dependences of the small-signal gain for the 10P(20) line and of the output powers for different transmittances of the cavity on the discharge current were determined. The distributed loss coefficient and the saturation parameter were measured. The saturation parameter increased continuously with increase in the discharge current, leading to a mismatch between the output power and gain maxima. It was established that the principal factor limiting the output power of cw electric-discharge CO{sub 2} lasers is not an increase in the temperature of the active medium but the dissociation of CO{sub 2} molecules. When the latter is minimised in order to achieve the maximum laser power, low gas temperatures are not required. (lasers)

  17. Absolute Power Spectral Density Changes in the Magnetoencephalographic Activity During the Transition from Childhood to Adulthood.

    PubMed

    Gómez, Carlos M; Rodríguez-Martínez, Elena I; Fernández, Alberto; Maestú, Fernando; Poza, Jesús; Gómez, Carlos

    2017-01-01

    The aim of this study was to define the pattern of reduction in absolute power spectral density (PSD) of magnetoencephalography (MEG) signals throughout development. Specifically, we wanted to explore whether the human skull's high permeability for electromagnetic fields would allow us to question whether the pattern of absolute PSD reduction observed in the human electroencephalogram is due to an increase in the skull's resistive properties with age. Furthermore, the topography of the MEG signals during maturation was explored, providing additional insights about the areas and brain rhythms related to late maturation in the human brain. To attain these goals, spontaneous MEG activity was recorded from 148 sensors in a sample of 59 subjects divided into three age groups: children/adolescents (7-14 years), young adults (17-20 years) and adults (21-26 years). Statistical testing was carried out by means of an analysis of variance (ANOVA), with "age group" as between-subject factor and "sensor group" as within-subject factor. Additionally, correlations of absolute PSD with age were computed to assess the influence of age on the spectral content of MEG signals. Results showed a broadband PSD decrease in frontal areas, which suggests the late maturation of this region, but also a mild increase in high frequency PSD with age in posterior areas. These findings suggest that the intensity of the neural sources during spontaneous brain activity decreases with age, which may be related to synaptic pruning.

  18. Validation of Power Output for the WIND Toolkit

    SciTech Connect

    King, J.; Clifton, A.; Hodge, B. M.

    2014-09-01

    Renewable energy integration studies require wind data sets of high quality with realistic representations of the variability, ramping characteristics, and forecast performance for current wind power plants. The Wind Integration National Data Set (WIND) Toolkit is meant to be an update for and expansion of the original data sets created for the weather years from 2004 through 2006 during the Western Wind and Solar Integration Study and the Eastern Wind Integration Study. The WIND Toolkit expands these data sets to include the entire continental United States, increasing the total number of sites represented, and it includes the weather years from 2007 through 2012. In addition, the WIND Toolkit has a finer resolution for both the temporal and geographic dimensions. Three separate data sets will be created: a meteorological data set, a wind power data set, and a forecast data set. This report describes the validation of the wind power data set.

  19. Changes in quantitative EEG absolute power during the task of catching an object in free fall.

    PubMed

    Machado, Sergio; Portella, Cláudio Elidio; Silva, Julio Guilherme; Velasques, Bruna; Terra, Patrícia; Vorkapic, Camila Ferreira; Silva, Vernon Furtado da; Miana, Luis; Basile, Luis; Cagy, Mauricio; Piedade, Roberto; Ribeiro, Pedro

    2007-09-01

    The aim of this study was to verify changes in absolute power (qEEG), in theta, during the catch of a free falling object. The sample consisted of 10 healthy individuals, of both genders, with ages between 25 and 40 years. A three-way ANOVA followed by Post-Hoc analysis was applied. The results demonstrated main effects for time and position. In conclusion, a motor task that involves expectation produces deactivation of non-relevant areas in the ipsilateral hemisphere of the active limb. On the other hand, the patterns of results showed activation in areas responsible for planning and selection of motor repertoires in the contralateral hemisphere.

  20. Electrical power converter method and system employing multiple output converters

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2007-05-01

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  1. Optimal loading range for the development of peak power output in the hexagonal barbell jump squat.

    PubMed

    Turner, Thomas S; Tobin, Daniel P; Delahunt, Eamonn

    2015-06-01

    Recent studies indicate that the utilization of the hexagonal barbell jump squat (HBJS) compared with the traditional barbell jump squat may offer a superior method of developing peak power. The notion that a single optimal load may be prescribed in training programs aiming to develop peak power is subject to debate. The purpose of this study was to identify the optimal load corresponding with peak power output during the HBJS in professional rugby union players. Seventeen professional rugby union players participated in this study. Participants performed 3 unloaded countermovement jumps on a force plate and 3 HBJS at each of the following randomized loads: 10, 20, 30, and 40% of box squat 1 repetition maximum (1RM). Peak power output was the dependent variable of interest. A one-way repeated measures analysis of variance was conducted to compare peak power output across each load. Peak power output was the dependent variable of interest. A significant main effect for load was observed (Wilk's Lambda = 0.11, F(4,13) = 18.07, p < 0.01, partial η2 = 0.88). Results of the Bonferroni-adjusted pairwise comparisons indicated that peak power output in the HBJS is optimized at a load range between 10 and 20% of box squat 1RM. The results of this study indicate that the use of the HBJS with a training load between 10 and 20% of box squat 1RM optimizes peak power output in professional rugby union players.

  2. Power Amplifier Module with 734-mW Continuous Wave Output Power

    NASA Technical Reports Server (NTRS)

    Fung, King Man; Samoska, Lorene A.; Kangaslahti, Pekka P.; Lamgrigtsen, Bjorn H.; Goldsmith, Paul F.; Lin, Robert H.; Soria, Mary M.; Cooperrider, Joelle T.; Micovic, Moroslav; Kurdoghlian, Ara

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers-to generate higher frequency signals in nonlinear Schottky diode-based LO sources. By advancing PA technology, the LO system performance can be increased with possible cost reductions compared to current GaAs PAs. High-power, high-efficiency GaN PAs are cross-cutting and can enable more efficient local oscillator distribution systems for new astrophysics and planetary receivers and heterodyne array instruments. It can also allow for a new, electronically scannable solid-state array technology for future Earth science radar instruments and communications platforms.

  3. Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications

    SciTech Connect

    Ueno, Toshiyuki

    2015-05-07

    Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet types in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm{sup 3} under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm{sup 3}. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.

  4. Effects of caffeine on mouse skeletal muscle power output during recovery from fatigue.

    PubMed

    James, Rob S; Wilson, Robbie S; Askew, Graham N

    2004-02-01

    The effects of 10 mM (high) and 70 microM (physiologically relevant) caffeine on force, work output, and power output of isolated mouse extensor digitorum longus (EDL) and soleus muscles were investigated in vitro during recovery from fatigue at 35 degrees C. To monitor muscle performance during recovery from fatigue, we regularly subjected the muscle to a series of cyclical work loops. Force, work, and power output during shortening were significantly higher after treatment with 10 mM caffeine, probably as a result of increased Ca2+ release from the sarcoplasmic reticulum. However, the work required to relengthen the muscle also increased in the presence of 10 mM caffeine. This was due to a slowing of relaxation and an increase in muscle stiffness. The combination of increased work output during shortening and increased work input during lengthening had different effects on the two muscles. Net power output of mouse soleus muscle decreased as a result of 10 mM caffeine exposure, whereas net power output of the EDL muscle showed a transient, significant increase. Treatment with 70 microM caffeine had no significant effect on force, work, or power output of EDL or soleus muscles, suggesting that the plasma concentrations found when caffeine is used to enhance performance in human athletes might not directly affect the contractile performance of fatigued skeletal muscle.

  5. Electrical resistivity and absolute thermoelectric power of liquid copper-lead alloys

    NASA Astrophysics Data System (ADS)

    Chaı̈b, C.; Gasser, J. G.; Hugel, J.; Roubi, L.

    1998-07-01

    The absolute thermoelectric power S has been measured for the system Cu-Pb from the liquidus to 1100°C. The whole phase diagram has been explored. The thermoelectric power of these alloys has, to our knowledge, never been measured before. These experimental results as well as those of the electrical resistivity (C. Chaı̈b, J.G. Gasser, Z. Phys. Chem. Neue Folge 156 (1988) S483-S487) are interpreted and discussed in terms of the extended Ziman formula using the t-matrix formalism with hard-sphere structure factors. The concentration and energy dependence of the phase shifts have been taken into account for a complete resistivity and thermopower calculation.

  6. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    SciTech Connect

    Mark D. McKay

    2011-02-01

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratory’s Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  7. Effect of individual time to peak power output on the expression of peak power output in the 30-s Wingate Anaerobic Test.

    PubMed

    Bell, W; Cobner, D M

    2007-02-01

    The objective of the present investigation was to examine a proposal which stated that individual power values should be aligned according to peak power output (PPO) before calculating the mean value of PPO. This procedure removes the variation in time it takes for individuals to reach PPO. Participants were forty-one University Rugby Union Football players of mean age 21.7 +/- 2.6 years, height 181.4 +/- 6.9 cm and body mass 88.9 +/- 12.7 kg. Data were collected using a friction-belt cycle ergometer (Monark 864, Varberg, Sweden). A significantly larger mean value for PPO was found when results were calculated from time-aligned rather than cross-sectional data (1154 +/- 246 vs. 1121 +/- 254 W, p < 0.0001); the mean difference was approximately 3 %. Additionally, the average profile of the power output curve was more reflective of individual power curves. The negative correlation between PPO and the time taken to reach PPO was - 0.32 (p < 0.05), confirming the view that the earlier the time taken to reach PPO the larger the PPO. It was concluded that the mean value of PPO and the corresponding profile for power output curves are best represented by the analysis of time-aligned rather than cross-sectional data.

  8. Temperature dependence of optically dumped far-infrared (FIR) laser output power

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.

    1978-01-01

    The temperature dependence of the small signal gain and saturation power are derived using temperature-dependent rates in a four-level model. An expression is developed for the output power of a far-infrared oscillator as a function of temperature for both fixed pressure and fixed density. The results are valid in the regime of homogeneous broadening of the rotational transition and Doppler broadening of the pump transition. It is shown that, for most lasers, both the small signal gain and the saturation power decrease with increasing temperature. These effects have the overall result of increasing output power with decreasing temperatures.

  9. Gyrotron Output Power Stabilization by PID Feedback Control of Heater Current and Anode Voltage

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Ueda, K.

    2014-12-01

    To provide stable output power of a gyrotron during long operation time the power stabilization was achieved by two schemes with PID feedback control of heater current and anode voltage. It was based on the dependence of the output power on both the anode voltage and the beam current and also on the dependence of the beam current on the gun heater current. Both schemes provided decrease of the power standard deviation to 0.3-0.5%. The comparison between parameters of both schemes is discussed in the paper.

  10. Correlation of symptom clusters of schizophrenia with absolute powers of main frequency bands in quantitative EEG

    PubMed Central

    Gross, Andres; Joutsiniemi, Sirkka-Liisa; Rimon, Ranan; Appelberg, Björn

    2006-01-01

    Background Research of QEEG activity power spectra has shown intriguing results in patients with schizophrenia. Different symptom clusters have been correlated to QEEG frequency bands. The findings have been to some extent inconsistent. Replication of the findings of previous research is thus an important task. In the current study we investigated the correlations between the absolute powers of delta, theta, alpha, and beta frequency bands over the fronto-central scalp area (FC) with the PANSS subscales and the Liddle's factors in 16 patients with schizophrenia. The authors hypothesised a priori the correlations reported by Harris et al (1999) of PANSS negative subscale with delta power, Liddle's psychomotor poverty with delta and beta powers, disorganisation with delta power and reality distortion with alpha power on the midline FC. Methods The sample consisted of 16 patients with chronic schizophrenia considered as having insufficient clinical response to conventional antipsychotic treatment and evidencing a relapse. The correlations between quantitative electroencephalography (QEEG) absolute powers of delta (1.5–3.0 Hz), theta (3.0–7.5 Hz), alpha (7.5–12.5 Hz), and beta (12.5–20.0 Hz) frequency bands over the fronto-central scalp area (FC) with PANSS subscales and Liddle's factors (reality distortion, disorganisation, psychomotor poverty) were investigated. Results Significant positive correlations were found between the beta and psychomotor poverty (p < 0.05). Trends towards positive correlations (p < 0.1) were observed between delta and PANSS negative subscale and psychomotor poverty. Alpha did not correlate with reality distortion and delta did not correlate with disorganisation. Post hoc analysis revealed correlations of the same magnitude between beta and psychopathology generally over FC. Conclusion The a priori hypothesis was partly supported by the correlation of the beta and psychomotor poverty. Liddle's factors showed correlations of the same

  11. Power output of offshore wind farms in relation to atmospheric stability

    NASA Astrophysics Data System (ADS)

    Alblas, Laurens; Bierbooms, Wim; Veldkamp, Dick

    2014-12-01

    Atmospheric stability is known to influence wind farm power output, by affecting power losses due to wakes. This research tries to answer what atmospheric stability does to the power production and how conventional simulations using the Jensen wake model compare and can be improved. Data is used from two offshore wind farms, Egmond aan Zee (OWEZ) and North Hoyle. Stability distributions are determined using metmast data. By combining this data with the production data, the influence of stability on the power output is studied. It is found that very unstable conditions result in higher power output (i.e. smaller wake losses) than near-neutral conditions, and these again show higher power output than during very stable conditions. Differences in normalized power output of 10-20% exist between the very unstable and very stable conditions. Simulations can be improved by adapting the wake decay constant (WDC). Observed WDC values are k >= TI, as opposed to the conventional k ≈ 0.5TI. A hypothesis for further research is proposed regarding the influence of vertical turbulence.

  12. Influence of output power of a spin torque oscillator on phase locked loop operation

    NASA Astrophysics Data System (ADS)

    Tamaru, Shingo; Kubota, Hitoshi; Yakushiji, Kay; Fukushima, Akio; Yuasa, Shinji

    2016-09-01

    This work investigates the influence of the output power of a spin torque oscillator (STO) on the operation of a phase locked loop (PLL) circuit. Timing jitter and minimum output power for stable PLL operation determined by Johnson noise and shot noise are first theoretically calculated, and compared with experimental results. The theory and experiment show a reasonably good agreement, indicating that smaller than -50 dBm (10 nW), or -60 dBm (1 nW) when a low pass filter is used, of output power is sufficient for stable PLL operation if a large timing jitter is acceptable. However, it is also shown that a large output power is needed to suppress timing jitter down to the level comparable to state-of-the-art commercial PLL circuits. The estimate of minimum output power for stable PLL operation is verified by intentionally attenuating the STO output signal down to -55 dBm (3.2 nW) and demonstrating a stable phase locked oscillation.

  13. Fiber laser pumped high power mid-infrared laser with picosecond pulse bunch output.

    PubMed

    Wei, Kaihua; Chen, Tao; Jiang, Peipei; Yang, Dingzhong; Wu, Bo; Shen, Yonghang

    2013-10-21

    We report a novel quasi-synchronously pumped PPMgLN-based high power mid-infrared (MIR) laser with picosecond pulse bunch output. The pump laser is a linearly polarized MOPA structured all fiberized Yb fiber laser with picosecond pulse bunch output. The output from a mode-locked seed fiber laser was directed to pass through a FBG reflector via a circulator to narrow the pulse duration from 800 ps to less than 50 ps and the spectral FWHM from 9 nm to 0.15 nm. The narrowed pulses were further directed to pass through a novel pulse multiplier through which each pulse was made to become a pulse bunch composing of 13 sub-pulses with pulse to pulse time interval of 1.26 ns. The pulses were then amplified via two stage Yb fiber amplifiers to obtain a linearly polarized high average power output up to 85 W, which were then directed to pass through an isolator and to pump a PPMgLN-based optical parametric oscillator via quasi-synchronization pump scheme for ps pulse bunch MIR output. High MIR output with average power up to 4 W was obtained at 3.45 micron showing the feasibility of such pump scheme for ps pulse bunch MIR output.

  14. Optimal cycling time trial position models: aerodynamics versus power output and metabolic energy.

    PubMed

    Fintelman, D M; Sterling, M; Hemida, H; Li, F-X

    2014-06-03

    The aerodynamic drag of a cyclist in time trial (TT) position is strongly influenced by the torso angle. While decreasing the torso angle reduces the drag, it limits the physiological functioning of the cyclist. Therefore the aims of this study were to predict the optimal TT cycling position as function of the cycling speed and to determine at which speed the aerodynamic power losses start to dominate. Two models were developed to determine the optimal torso angle: a 'Metabolic Energy Model' and a 'Power Output Model'. The Metabolic Energy Model minimised the required cycling energy expenditure, while the Power Output Model maximised the cyclists׳ power output. The input parameters were experimentally collected from 19 TT cyclists at different torso angle positions (0-24°). The results showed that for both models, the optimal torso angle depends strongly on the cycling speed, with decreasing torso angles at increasing speeds. The aerodynamic losses outweigh the power losses at cycling speeds above 46km/h. However, a fully horizontal torso is not optimal. For speeds below 30km/h, it is beneficial to ride in a more upright TT position. The two model outputs were not completely similar, due to the different model approaches. The Metabolic Energy Model could be applied for endurance events, while the Power Output Model is more suitable in sprinting or in variable conditions (wind, undulating course, etc.). It is suggested that despite some limitations, the models give valuable information about improving the cycling performance by optimising the TT cycling position.

  15. Stretch-induced enhancement of mechanical power output in human multijoint exercise with countermovement.

    PubMed

    Takarada, Y; Hirano, Y; Ishige, Y; Ishii, N

    1997-11-01

    The relation between the eccentric force developed during a countermovement and the mechanical power output was studied in squatting exercises under nominally isotonic load (50% of 1-repetition maximum). The subjects (n = 5) performed squatting exercises with a countermovement at varied deceleration rates before lifting the load. The ground reaction force and video images were recorded to obtain the power output of the body. Net muscle moments acting at hip, knee, and ankle joints were calculated from video recordings by using inverse dynamics. When an intense deceleration was taken at the end of downward movement, large eccentric force was developed, and the mechanical power subsequently produced during the lifting movement was consistently larger than that produced without the countermovement. Both maximal and mean power outputs during concentric actions increased initially with the eccentric force, whereas they began to decline when the eccentric force exceeded approximately 1.4 times the sum of load and body weight. Video-image analysis showed that this characteristic relation was predominantly determined by the torque around the knee joint. Electromyographic analyses showed no consistent increase in time-averaged integrated electromyograph from vastus lateralis with the power output, suggesting that the enhancement of power output is primarily caused by the prestretch-induced improvement of an intrinsic force-generating capability of the agonist muscle.

  16. Continuous-wave 193.4 nm laser with 120 mW output power.

    PubMed

    Sakuma, Jun; Kaneda, Yushi; Oka, Naoya; Ishida, Takayuki; Moriizumi, Koichi; Kusunose, Haruhiko; Furukawa, Yasunori

    2015-12-01

    This Letter describes an all-solid-state continuous-wave, deep-ultraviolet coherent source that generates more than 100 mW of output power at 193.4 nm. The source is based on nonlinear frequency conversion of three single-frequency infrared fiber laser master-oscillator power-amplifier (MOPA) light sources.

  17. Investigating temperature degradation in THz quantum cascade lasers by examination of temperature dependence of output power

    SciTech Connect

    Albo, Asaf Hu, Qing

    2015-03-30

    In this paper, we demonstrate a method to investigate the temperature degradation of THz quantum cascade lasers (QCLs) based on analyzing the dependence of lasing output power on temperature. The output power is suggested to decrease exponentially with some characteristic activation energy indicative of the degradation mechanism. As a proof of concept, Arrhenius plots of power versus temperature are used to extract the activation energy in vertical transition THz QCLs. The extracted energies are consistent with thermally activated longitudinal optical-phonon scattering being the dominant degradation mechanism, as is generally accepted. The extracted activation energy values are shown to be in good agreement with the values predicted from laser spectra.

  18. Improving power output of inertial energy harvesters by employing principal component analysis of input acceleration

    NASA Astrophysics Data System (ADS)

    Smilek, Jan; Hadas, Zdenek

    2017-02-01

    In this paper we propose the use of principal component analysis to process the measured acceleration data in order to determine the direction of acceleration with the highest variance on given frequency of interest. This method can be used for improving the power generated by inertial energy harvesters. Their power output is highly dependent on the excitation acceleration magnitude and frequency, but the axes of acceleration measurements might not always be perfectly aligned with the directions of movement, and therefore the generated power output might be severely underestimated in simulations, possibly leading to false conclusions about the feasibility of using the inertial energy harvester for the examined application.

  19. Recent advances in power efficient output stage for high density implantable stimulators.

    PubMed

    Sooksood, Kriangkrai; Noorsal, Emilia; Bihr, Ulrich; Ortmanns, Maurits

    2012-01-01

    A major drawback of a current-controlled stimulation is its power efficiency. However, it is commonly used in implantable stimulators due to its safety. The power efficiency of a current-controlled stimulation can be improved by reducing the headroom voltage needed in the current driver. A promising technique is to bias the transistor in triode region whereas improving output impedance through the regulated cascode structure. This comes with a feature of implicit compliance monitor which is used for the supply voltage adaptation. This paper presents an overview on recent power efficient high voltage-compliance output drivers.

  20. Power output in vertical jumps: does optimum loading depend on activity profiles?

    PubMed

    Pazin, Nemanja; Berjan, Bobana; Nedeljkovic, Aleksandar; Markovic, Goran; Jaric, Slobodan

    2013-03-01

    The previously proposed maximum dynamic output hypothesis (MDO: i.e. the optimum load for maximizing the power output during jumping is one's own body) was tested on individuals of various activity profiles. Forty males (10 strength-trained athletes, 10 speed-trained athletes, 10 physically active non-athletes, and 10 sedentary individuals) performed different vertical jumps on a force plate while a pulley system was used to either reduce or increase the subject's body weight by 10-30 %. As expected, an increase in external loading resulted in a significant increase (p < 0.001) in force output and a concomitant decrease of peak jumping velocity in all groups of participants. The main finding, however, was that all groups revealed the maximum peak and mean power output at approximately the subjects' own body weight although their weight represented prominently different percentage of their maximum dynamic strength. While a significant (p < 0.05), albeit moderate, 'group × load' interaction in one jump was observed for the peak power output, the individual optimum load for maximizing the power output number did not differ among the groups. Although apparently further research on various types of movements is needed, the present results provide, so far, the strongest support of the MDO hypothesis.

  1. Peak Power Output Test on a Rowing Ergometer: A Methodological Study.

    PubMed

    Metikos, Boris; Mikulic, Pavle; Sarabon, Nejc; Markovic, Goran

    2015-10-01

    We aimed to examine the reliability and validity of the peak power output test on a rowing ergometer (Concept II Model D Inc.) and to establish the "optimal resistance" at which this peak power output was observed in 87 participants with varying levels of physical activity and rowing expertise: 15 male and 12 female physically inactive students (age: 21 ± 2 years), 16 male and 20 female physically active students (age: 23 ± 2 years), and 15 male and 9 female trained rowers (age: 19 ± 2 years). The participants performed countermovement jump (CMJ) test on a force plate, followed by 3 maximal-effort rowing trials using the lowest, medium, and the highest adjustable resistance settings (i.e., "1", "5," and "10" on the resistance control dial on the ergometer) in randomized order. The test proved to be reliable (coefficients of variation: 2.6-6.5%; intraclass correlation coefficients: 0.87-0.98). The correlation coefficients between CMJ peak power and rowing peak power (both in watts per kilogram) were fairly consistent across all 3 groups of participants and resistance levels, ranging between r = 0.70 and r = 0.78. Finally, the highest power output was observed at the highest resistance setting in 2 nonathletic groups (p < 0.01), whereas rowers seem to produce the highest power output at the moderate-resistance setting. We conclude that the power output test on a Concept II rowing ergometer may serve as a reliable and valid tool for assessing whole-body peak power output in untrained individuals and rowing athletes.

  2. A combined compensation method for the output voltage of an insulated core transformer power supply

    SciTech Connect

    Yang, L.; Yang, J. Liu, K. F.; Qin, B.; Chen, D. Z.

    2014-06-15

    An insulated core transformer (ICT) power supply is an ideal high-voltage generator for irradiation accelerators with energy lower than 3 MeV. However, there is a significant problem that the structure of the segmented cores leads to an increase in the leakage flux and voltage differences between rectifier disks. A high level of consistency in the output of the disks helps to achieve a compact structure by improving the utilization of both the rectifier components and the insulation distances, and consequently increase the output voltage of the power supply. The output voltages of the disks which are far away from the primary coils need to be improved to reduce their inhomogeneity. In this study, by investigating and comparing the existing compensation methods, a new combined compensation method is proposed, which increases the turns on the secondary coils and employs parallel capacitors to improve the consistency of the disks, while covering the entire operating range of the power supply. This method turns out to be both feasible and effective during the development of an ICT power supply. The non-uniformity of the output voltages of the disks is less than 3.5% from no-load to full-load, and the power supply reaches an output specification of 350 kV/60 mA.

  3. Reproducibility of limb power outputs and cardiopulmonary responses to exercise using a novel swimming training machine.

    PubMed

    Swaine, I L; Hunter, A M; Carlton, K J; Wiles, J D; Coleman, D

    2010-12-01

    The purpose of this study was to determine the reproducibility of limb power outputs and cardiopulmonary responses, to incremental whole-body exercise using a novel swimming training machine. 8 swimmers with a mean age of 23.7 ± 4.6 (yrs), stature 1.77 ± 0.13 (m) and body mass of 74.7 ± 2.8 (kg) gave informed consent and participated in repeat exercise testing on the machine. All subjects performed 2 incremental exercise tests to exhaustion using front crawl movements. From these tests peak oxygen consumption (VO(₂peak)), peak heart rate (HR(peak)), peak power output (W (peak)) and individual limb power outputs were determined. Results showed there were no significant differences between test 1 and 2 for any variable at exhaustion, and the CV% ranged from 2.8 to 3.4%. The pooled mean values were; VO(₂peak) 3.7 ± 0.65 L.min⁻¹, HR (peak) 178.7 ± 6.6 b.min⁻¹ and W (peak) 349.7 ± 16.5 W. The mean contributions to the total power output from the legs and arms were (37.3 ± 4.1% and 62.7 ± 5.1% respectively). These results show that it is possible to measure individual limb power outputs and cardiopulmonary parameters reproducibly during whole-body exercise using this training machine, at a range of exercise intensities.

  4. A new approach to controlling the ytterbium fibre laser output power

    SciTech Connect

    Voronin, V G; Nanii, Oleg E; Sus'yan, A A; Khlystov, V I

    2010-02-28

    A new approach has been proposed for controlling the linearly polarised output of an ytterbium-doped double-clad fibre laser: inverted-population modulation via loss modulation in a competing channel. The steady-state output power of the working channel has been determined as a function of loss in the competing channel. The results are qualitatively interpreted in terms of standard models of a dual-channel laser.

  5. Increasing output power of an 850 MHz tetrode with a floating-deck modulator

    SciTech Connect

    Rees, D.; Friedrichs, C.

    1990-01-01

    Designers of high-power amplifiers generally regard the region above 300 MHz as a domain dominated by velocity-modulated (klystron/TWT) devices. However, as the power requirements diminish, there are attractive alternatives. The high-power 850-MHz requirements of the ground test accelerator (GTA) program can be filled by 1-MW klystrons, but it would be more efficient to use a lower-power device for a 50-kW requirement. To meet the 850-MHz medium-power requirements, Los Alamos National Laboratory is developing an 850-MHz tetrode amplifier. These amplifiers will provide rf power to the momentum compactor and bunch rotator cavities of the GTA. Available tubes provide only a limited safety margin for a low-risk design at the power levels and duty factor required for GTA cavities. At 850 MHz, the output power capability of available tubes is reduced because of transit time effects and limited anode voltage holdoff. Pulsing the anode of the output tetrode amplifier will allow higher output power with minimum design risk. A floating-deck modulator acts as a high-voltage/high-current switch, so voltage is applied to the anode of the gridded tube only during the rf pulse. The anode voltage holdoff capability of the tube is substantially enhanced by operating in this mode. This paper will describe the design of the floating deck modulator and its impact on the design risk of the 850-MHz tetrode amplifier.

  6. High-power Er:YAG laser with quasi-top-hat output beam.

    PubMed

    Kim, J W; Mackenzie, J I; Hayes, J R; Clarkson, W A

    2012-05-01

    A simple method for simultaneously exciting the fundamental (TEM00) transverse mode and first order Laguerre-Gaussian (LG01) donut mode in an end-pumped solid-state laser to yield a quasi-top-hat output beam is reported. This approach has been applied to an Er:YAG laser, in-band pumped by an Er,Yb fiber laser, yielding 9.6 W of continuous-wave output at 1645 nm in a top-hat-like beam with beam propagation factor (M2)<2.1 for 24 W of incident pump power at 1532 nm. The corresponding slope efficiency with respect to incident pump power was 49%. The prospects of further scaling of output power and improved overall efficiency are considered.

  7. Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity.

    PubMed

    Yu, Hao; Huang, Tao; Lu, Mingxia; Mao, Mengye; Zhang, Qinghong; Wang, Hongzhi

    2013-10-11

    PVDF nanofibre-based piezoelectric nanogenerators are directly prepared via electrospinning without any post-poling treatment. The effect of the addition of multi-walled carbon nanotubes (MWCNTs) on the fibre diameter, mechanical properties, β-phase composition, surface and volume conductivities, output voltage and output power are investigated. Increased surface conductivity of the poly-vinylidene fluoride (PVDF) nanofibre mats, which plays an important role in the enhancement of output power, is first found by the addition of an appropriate amount of MWCNTs. The maximum generated piezo-voltage exhibited by PVDF nanofibre mats in the presence of 5 wt% MWCNTs is as high as 6 V, while the average capacitor charging power is 81.8 nW, increases of 200% and 44.8%, respectively, compared with bare PVDF nanofibre mats.

  8. Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Huang, Tao; Lu, Mingxia; Mao, Mengye; Zhang, Qinghong; Wang, Hongzhi

    2013-10-01

    PVDF nanofibre-based piezoelectric nanogenerators are directly prepared via electrospinning without any post-poling treatment. The effect of the addition of multi-walled carbon nanotubes (MWCNTs) on the fibre diameter, mechanical properties, β-phase composition, surface and volume conductivities, output voltage and output power are investigated. Increased surface conductivity of the poly-vinylidene fluoride (PVDF) nanofibre mats, which plays an important role in the enhancement of output power, is first found by the addition of an appropriate amount of MWCNTs. The maximum generated piezo-voltage exhibited by PVDF nanofibre mats in the presence of 5 wt% MWCNTs is as high as 6 V, while the average capacitor charging power is 81.8 nW, increases of 200% and 44.8%, respectively, compared with bare PVDF nanofibre mats.

  9. Effects of heat exposure in the absence of hyperthermia on power output during repeated cycling sprints

    PubMed Central

    Arimitsu, T; Yunoki, T; Kimura, T; Yamanaka, R; Yano, T

    2014-01-01

    The aim of this study was to investigate the effects of heat exposure in the absence of hyperthermia on power output during repeated cycling sprints. Seven males performed four 10-s cycling sprints interspersed by 30 s of active recovery on a cycle ergometer in hot-dry and thermoneutral environments. Changes in rectal temperature were similar under the two ambient conditions. The mean 2-s power output over the 1st–4th sprints was significantly lower under the hot-dry condition than under the thermoneutral condition. The amplitude of the electromyogram was lower under the hot-dry condition than under the thermoneutral condition during the early phase (0–3 s) of each cycling sprint. No significant difference was observed for blood lactate concentration between the two ambient conditions. Power output at the onset of a cycling sprint during repeated cycling sprints is decreased due to heat exposure in the absence of hyperthermia. PMID:25729145

  10. Anomalous TWTA output power spikes and their effect on a digital satellite communications system

    NASA Technical Reports Server (NTRS)

    May, Brian D.; Kerczewski, Robert J.; Svoboda, James S.

    1992-01-01

    Several 30 GHz, 60 W traveling wave tube amplifiers (TWTA) were manufactured for the NASA Lewis Research Center's High Burst Rate Link Evaluation Terminal Project. An unusual operating problem characterized by anomalous nonperiodic output power spikes, common to all of the TWTAs proved during testing to significantly affect the performance of a digitally-modulated data transmission test system. Modifications made to the TWTAs significantly curtailed the problem and allowed acceptable system performance to be obtained. This paper presents a discussion of the TWTA output power spike problem, possible causes of the problem, and the solutions implemented by the manufacturer which improved the TWTA performance to an acceptable level. The results of the testing done at NASA Lewis on the TWTAs both before and after the improvement made by Hughes are presented, and the effects of the output power spikes on the performance of the test system are discussed.

  11. Development of Compact Ozonizer with High Ozone Output by Pulsed Power

    NASA Astrophysics Data System (ADS)

    Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei

    Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.

  12. Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid

    NASA Astrophysics Data System (ADS)

    Kuwayama, Akira

    The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.

  13. Output power characteristics and performance of TOPAZ II Thermionic Fuel Element No. 24

    SciTech Connect

    Luchau, D.W.; Bruns, D.R.; Izhvanov, O.; Androsov, V.

    1996-03-01

    A final report on the output power characteristics and capabilities of single cell TOPAZ II Thermionic Fuel Element (TFE) No. 24 is presented. Thermal power tests were conducted for over 3000 hours to investigate converter performance under normal and adverse operating conditions. Experiments conducted include low power testing, high power testing, air introduction to the interelectrode gap, collector temperature optimization, thermal modeling, and output power characteristic measurements. During testing, no unexpected degradation in converter performance was observed. The TFE has been removed from the test stand and returned to Scientific Industrial Association {open_quote}{open_quote}LUCH{close_quote}{close_quote} for materials analysis and report. This research was conducted at the Thermionic System Evaluation Test (TSET) Facility at the New Mexico Engineering Research Institute (NMERI) as a part of the Topaz International Program (TIP) by the Air Force Phillips Laboratory (PL). {copyright} {ital 1996 American Institute of Physics.}

  14. Acoustic Power Suppression of a Panel Structure Using H∞OUTPUT Feedback Control

    NASA Astrophysics Data System (ADS)

    SIVRIOGLU, S.; TANAKA, N.; YUKSEK, I.

    2002-01-01

    This paper presents a robust control system design for suppressing the radiated acoustic power emitted from a vibrating planar structure, and spillover effect caused by neglected high-frequency modes. A state-space model of a simply supported panel structure is derived and an output equation is formed based on the one-dimensional PVDF film sensors. An output feedback H∞control is designed by introducing a multiplicative perturbation which represents unmodelled high-frequency dynamics in the control system. The simulation and experimental results demonstrated significant decrease in sound radiation for the considered structural power modes in control.

  15. Estimation of Human Power Output from Maximal Vertical Jump and Body Mass

    DTIC Science & Technology

    1988-01-01

    football blocking, weight lifting). An individual’s power output during a test is dependent on the joint range of motion, muscle groups involved, and...interest to the evaluator, such as one similar to a physical activity the subject must perform in work or sport (6). Jump testing is potentially very...researchers to estimate power output during the vertical jump -and-reach test (1,8). According to the formula, POWERkg.. = 44.9 .WEIGHTkg.4JUMP-REACH SCORE, (1

  16. Universal efficiency bounds of weak-dissipative thermodynamic cycles at the maximum power output

    NASA Astrophysics Data System (ADS)

    Guo, Juncheng; Wang, Junyi; Wang, Yuan; Chen, Jincan

    2013-01-01

    Based on the assumption of weak dissipation introduced by Esposito [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.150603 105, 150603 (2010)], analytic expressions for the efficiency bounds of several classes of typical thermodynamic cycles at the maximum power output are derived. The results obtained are of universal significance. They can be used to conveniently reveal the general characteristics of not only Carnot heat engines, but also isothermal chemical engines, non-Carnot heat engines, flux flow engines, gravitational engines, quantum Carnot heat engines, and two-level quantum Carnot engines at the maximum power output and to directly draw many important conclusions in the literature.

  17. Muscle function and power output during suction feeding in largemouth bass, Micropterus salmoides.

    PubMed

    Carroll, Andrew M; Wainwright, Peter C

    2006-03-01

    Muscle power output is thought to limit suction feeding performance, yet muscle power output during suction feeding has never been directly measured. In this study, epaxial activation and strain, hyoid depression, and intra-oral pressure were simultaneously measured during suction feeding in the largemouth bass (Micropterus salmoides). A mechanical model of muscle force transmission between the neurocranium and oral cavity was used to estimate muscle stress, work, and power. The epaxials shortened from rest an average of 9% of their length, with the highest efforts producing greater than 20% strain. Onset of shortening was simultaneous with or shortly after (< 10 ms) onset of activation. Maximal net power for individual fish ranged from 17 to 137 W kg(-1). Muscle power was significantly correlated with rectified EMG area (r = 0.80; p < 0.0001). The power required for cranial expansion was significantly correlated with epaxial power (r = 0.81; p < 0.0001), and the power exponent of this relationship ( approximately 1 for 3 of the 4 fish) implies that epaxial power accounts for most of the power of cranial expansion. The limitations imposed by the kinematic requirements and loading environment of suction feeding (short delay between activation and strain, maximal stress occurring after shortening, operation at lengths shorter than resting length) may prevent maximal muscular power production.

  18. Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites

    SciTech Connect

    Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.; Carlson, Rowland D.; Carroll, David L.

    2014-05-14

    By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4 μVK{sup −1}, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW per thermocouple at the maximum temperature difference of 50 K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.

  19. Scalable and enhanced triboelectric output power generation by surface functionalized nanoimprint patterns.

    PubMed

    Kwon, Yang Hyeog; Shin, Sung-Ho; Jung, Joo-Yun; Nah, Junghyo

    2016-05-20

    We report nanoimprint lithographic submicron surface patterning for scalable output power generation and performance enhancement in triboelectric nanogenerators (TENGs). Specifically, one contact surface of a TENG is nanoimprinted with polyurethane acrylate (PUA) lines in different pitches and the counter contact surface is coated with perfluoropolyether (PFPE). The results show that a TENG with 200 nm pitch PUA lines exhibits voltage and current up to ∼430 V and ∼55 μA cm(-2), generating about a sixfold higher output power than that with a flat PUA surface at an applied force of 0.3 MPa. In addition, scalable output power was obtained by adjusting line pitches. Further enhancement in output power was also demonstrated by chemically functionalizing the PUA line patterns with poly (diallyldimethylammonium chloride) (PDDA). The PDDA functionalization boosted voltage and current up to ∼500 V and ∼100 μA cm(-2), respectively, which corresponds to ∼50% power density enhancement. The approach introduced here is a simple, effective, scalable and reproducible way to fabricate TENGs.

  20. Scalable and enhanced triboelectric output power generation by surface functionalized nanoimprint patterns

    NASA Astrophysics Data System (ADS)

    Hyeog Kwon, Yang; Shin, Sung-Ho; Jung, Joo-Yun; Nah, Junghyo

    2016-05-01

    We report nanoimprint lithographic submicron surface patterning for scalable output power generation and performance enhancement in triboelectric nanogenerators (TENGs). Specifically, one contact surface of a TENG is nanoimprinted with polyurethane acrylate (PUA) lines in different pitches and the counter contact surface is coated with perfluoropolyether (PFPE). The results show that a TENG with 200 nm pitch PUA lines exhibits voltage and current up to ˜430 V and ˜55 μA cm-2, generating about a sixfold higher output power than that with a flat PUA surface at an applied force of 0.3 MPa. In addition, scalable output power was obtained by adjusting line pitches. Further enhancement in output power was also demonstrated by chemically functionalizing the PUA line patterns with poly (diallyldimethylammonium chloride) (PDDA). The PDDA functionalization boosted voltage and current up to ˜500 V and ˜100 μA cm-2, respectively, which corresponds to ˜50% power density enhancement. The approach introduced here is a simple, effective, scalable and reproducible way to fabricate TENGs.

  1. Somatotype-variables related to muscle torque and power output in female volleyball players.

    PubMed

    Buśko, Krzysztof; Lewandowska, Joanna; Lipińska, Monika; Michalski, Radosław; Pastuszak, Anna

    2013-01-01

    The purpose of this study was to investigate the relationship between somatotype, muscle torque, maximal power output and height of rise of the body mass centre measured in akimbo counter movement jump (ACMJ), counter movement jump (CMJ) and spike jump (SPJ), and power output measured in maximal cycle ergometer exercise bouts in female volleyball players. Fourteen players participated in the study. Somatotype was determined using the Heath-Carter method. Maximal muscle torque was measured under static conditions. Power output was measured in 5 maximal cycle ergometer exercise bouts, 10 s each, at increasing external loads equal to 2.5, 5.0, 7.5, 10.0 and 12.5% of body weight (BW). All jump trials (ACMJ, SPJ and CMJ) were performed on a force plate. The mean somatotype of volleyball players was: 4.9-3.5-2.5. The value of the sum of muscle torque of the left upper extremities was significantly correlated only with mesomorphic component. Mesomorphic and ectomorphic components correlated significantly with values of maximal power measured during ACMJ and CMJ. Power output measured in maximal cycle ergometer exercise bouts at increasing external loads equal to 2.5, 5.0 and 7.5% of BW was significantly correlated with endomorphy, mesomorphy and ectomorphy.

  2. Factors that influence the radiofrequency power output of GSM mobile phones.

    PubMed

    Erdreich, Linda S; Van Kerkhove, Maria D; Scrafford, Carolyn G; Barraj, Leila; McNeely, Mark; Shum, Mona; Sheppard, Asher R; Kelsh, Michael

    2007-08-01

    Epidemiological studies of mobile phone use and risk of brain cancer have relied on self-reported use, years as a subscriber, and billing records as exposure surrogates without addressing the level of radiofrequency (RF) power output. The objective of this study was to measure environmental, behavioral and engineering factors affecting the RF power output of GSM mobile phones during operation. We estimated the RF-field exposure of volunteer subjects who made mobile phone calls using software-modified phones (SMPs) that recorded output power settings. Subjects recruited from three geographic areas in the U.S. were instructed to log information (place, time, etc.) for each call made and received during a 5-day period. The largest factor affecting energy output was study area, followed by user movement and location (inside or outside), use of a hands-free device, and urbanicity, although the two latter factors accounted for trivial parts of overall variance. Although some highly statistically significant differences were identified, the effects on average energy output rate were usually less than 50% and were generally comparable to the standard deviation. These results provide information applicable to improving the precision of exposure metrics for epidemiological studies of GSM mobile phones and may have broader application for other mobile phone systems and geographic locations.

  3. Power Quality Improvement in Bridgeless Ac-Dc Converter Based Multi-output Switched Mode Power Supply

    NASA Astrophysics Data System (ADS)

    Singh, Shihka; Singh, Bhim; Bhuvaneswari, G.; Bist, Vashist

    2014-12-01

    Computer power supplies are required to have multiple isolated regulated dc voltages with low ripple content and high input power factor at the utility interface. A dc-dc converter is used for obtaining these isolated multi-output dc voltages with excellent regulation. In this paper, a non-isolated ac-dc converter is proposed as the first stage converter to obtain a regulated dc output rather than using a simple uncontrolled diode bridge rectifier at the front end. A dc-dc converter is used at the second stage that has a high frequency transformer with multiple secondary windings to obtain different dc voltage levels at the output. The proposed bridgeless converter based power supply is designed using fundamental design equations, and different component values are calculated. Extensive simulations are carried out to demonstrate the improved performance of the proposed bridgeless converter based multi-output computer power supply at varying source voltages and load conditions. Experimental validation of the power supply is carried on a developed hardware prototype, and the test results are compared with the simulated performance for design verification.

  4. Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power.

    PubMed

    Shen, D Y; Pearson, L; Wang, P; Sahu, J K; Clarkson, W A

    2008-07-21

    High-power operation of a cladding-pumped Tm-doped broadband superfluorescent fiber source in the two-micron wavelength regime is described. Predominately single-ended operation was achieved using a simple all-fiber geometry without the use of a high reflectivity mirror or fiber Bragg gratings. The source produced >11 W of single-ended amplified spontaneous emission output spanning the wavelength range from approximately 1930 nm to 1988 nm for a launched diode pump power of approximately 40 W at approximately 790 nm, corresponding to a slope efficiency of 38% with respect to launched pump power. The wavelength spectrum of the superfluorescent source spanned the range from approximately 1650 to 2100 nm with a bandwidth (FWHM) of > 100 nm for output power levels of < 20 mW.

  5. Variable gas spring for matching power output from FPSE to load of refrigerant compressor

    DOEpatents

    Chen, Gong; Beale, William T.

    1990-01-01

    The power output of a free piston Stirling engine is matched to a gas compressor which it drives and its stroke amplitude is made relatively constant as a function of power by connecting a gas spring to the drive linkage from the engine to the compressor. The gas spring is connected to the compressor through a passageway in which a valve is interposed. The valve is linked to the drive linkage so it is opened when the stroke amplitude exceeds a selected limit. This allows compressed gas to enter the spring, increase its spring constant, thus opposing stroke increase and reducing the phase lead of the displacer ahead of the piston to reduce power output and match it to a reduced load power demand.

  6. Variable gas spring for matching power output from FPSE to load of refrigerant compressor

    DOEpatents

    Chen, G.; Beale, W.T.

    1990-04-03

    The power output of a free piston Stirling engine is matched to a gas compressor which it drives and its stroke amplitude is made relatively constant as a function of power by connecting a gas spring to the drive linkage from the engine to the compressor. The gas spring is connected to the compressor through a passageway in which a valve is interposed. The valve is linked to the drive linkage so it is opened when the stroke amplitude exceeds a selected limit. This allows compressed gas to enter the spring, increase its spring constant, thus opposing stroke increase and reducing the phase lead of the displacer ahead of the piston to reduce power output and match it to a reduced load power demand. 6 figs.

  7. Output power stability of a HCN laser using a stepping motor for the EAST interferometer system

    NASA Astrophysics Data System (ADS)

    Zhang, J. B.; Wei, X. C.; Liu, H. Q.; Shen, J. J.; Zeng, L.; Jie, Y. X.

    2015-11-01

    The HCN laser on EAST is a continuous wave glow discharge laser with 3.4 m cavity length and 120 mW power output at 337 μ m wavelength. Without a temperature-controlled system, the cavity length of the laser is very sensitive to the environmental temperature. An external power feedback control system is applied on the HCN laser to stabilize the laser output power. The feedback system is composed of a stepping motor, a PLC, a supervisory computer, and the corresponding control program. One step distance of the stepping motor is 1 μ m and the time response is 0.5 s. Based on the power feedback control system, a stable discharge for the HCN laser is obtained more than eight hours, which satisfies the EAST experiment.

  8. Power Output and Air Requirements of a Two-stroke Cycle Engine for Aeronautical Use

    NASA Technical Reports Server (NTRS)

    Paton, C R; Kemper, Carlton

    1927-01-01

    This investigation was undertaken to determine the pressure and amount of air necessary for satisfactory high-speed, two-stroke cycle operation and thus permit the power requirements of the air pump or blower to be determined. Based on power output and air requirement here obtained the two-stroke cycle engine would seem to be favorable for aeronautical use. No attempts were made to secure satisfactory operation at idling speeds.

  9. Optimization of power output in planar thermoelectric microgenerators based on Si nanowires

    NASA Astrophysics Data System (ADS)

    Calaza, C.; Donmez, I.; Salleras, M.; Gadea, G.; Santos, J. D.; Morata, A.; Tarancón, A.; Fonseca, L.

    2016-11-01

    This work reports the efforts to optimize the output power achieved with all-silicon thermoelectric microgenerators based on MEMS fabrication technology and silicon nanowires as active material. Recent improvements introduced in both the fabrication process and the device design are described, and a set of experimental results obtained with both device types (new vs. old design/process) are provided to assess the impact of the different modifications on thermal and electrical performance, as well as in the overall harvested power.

  10. Changes in absolute theta power in bipolar patients during a saccadic attention task.

    PubMed

    Cartier, Consuelo; Diniz, Claudia; Di Girogio, Luiza; Bittencourt, Juliana; Gongora, Mariana; Ken Tanaka, Guaraci; Teixeira, Silmar; Basile, Luis F; Novis, Fernanda; Angélica Silveira, Luciana; da Silva, Rafael de Assis; Cagy, Mauricio; Cheniaux, Elie; Ribeiro, Pedro; Velasques, Bruna

    2015-08-30

    The present study analyzed absolute theta power (ATP) in brain areas involved with attention in the three phase of BD while the patients performing a saccadic attention task. We hypothesized that patients in depression and mania states show a higher ATP compared to euthymic patients, since a higher ATP is indicative of attention deficit. We analyzed the frontal (F7, F3, Fz, F4 and F8) and central (C3, Cz and C4) areas. Thirty bipolar patients were enrolled in this study. The subjects performed a saccadic attention task while their brain activity pattern was recorded using quantitative electroencephalography (20 channels). Our results showed a main effect for group over C3, C4, Cz, F7, F4, F8 electrodes, and a main effect for moment over Cz, F7, F8 electrodes. These results indicate that both task and groups produce changes in theta activity in distinct cortical areas that participate in the organization of attention. Our results therefore demonstrate that, although it is well established in the literature that theta has a relevant role in the attention process, it is necessary to deepen the investigations to better understand the specifics of theta during visual processing tasks that have a demand for attention.

  11. Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents.

    PubMed

    Würth, C; Kaiser, M; Wilhelm, S; Grauel, B; Hirsch, T; Resch-Genger, U

    2017-03-23

    The rational design of brighter upconversion nanoparticles (UCNPs) requires a better understanding of the radiationless deactivation pathways in these materials. Here, we demonstrate the potential of excitation power density (P)-dependent studies of upconversion (UC) luminescence intensities, slope factors, and absolute quantum yields (ΦUC) of popular β-NaYF4:20% Yb(3+),2% Er(3+) UCNPs of different surface chemistries in organic solvents, D2O, and water as a tool to gain deeper insight into the UC mechanism including population and deactivation pathways particularly of the red emission. Our measurements, covering a P regime of three orders of magnitude, reveal a strong difference of the P-dependence of the ratio of the green and red luminescence bands (Ig/r) in water and organic solvents and P-dependent population pathways of the different emissive energy levels of Er(3+). In summary, we provide experimental evidence for three photon processes in UCNPs, particularly for the red emission. Moreover, we demonstrate changes in the excited population dynamics via bi- and triphotonic processes dependent on the environment, surface chemistry, and P, and validate our findings theoretically.

  12. Optimization of a solar-driven irreversible Carnot heat engine at maximum power output

    SciTech Connect

    Goektun, S.

    1997-08-01

    By employing the energetic optimization technique, the optimum performance of an irreversible Carnot heat engine system driven by a corrugated sheet collector is investigated at maximum power output. The maximum overall efficiency of the system is expressed in terms of the operating parameter of the collector and the cycle-irreversibility parameter of the heat engine.

  13. A new system architecture improves output power regulation in electrosurgical generators.

    PubMed

    Friedrichs, Daniel A; Erickson, Robert W; Gilbert, James

    2011-01-01

    A new system architecture for electrosurgical generators inherently produces the ideal electrosurgical output characteristic with near-deadbeat control. Compared to existing technology, this converter significantly improves power regulation, leading to improved surgical outcomes by minimizing thermal spread and tissue charring.

  14. Optimal loading for the development of peak power output in professional rugby players.

    PubMed

    Bevan, Huw R; Bunce, Paul J; Owen, Nick J; Bennett, Mark A; Cook, Christian J; Cunningham, Dan J; Newton, Robert U; Kilduff, Liam P

    2010-01-01

    The ability to develop high levels of muscular power is considered an essential component of success in many sporting activities; however, the optimal load for the development of peak power during training remains controversial. Our aim in the present study was to determine the optimal load required to observe peak power output during the ballistic bench throw (BBT) and squat jump (SJ) in professional rugby players. Forty-seven, professional, male, rugby players of (mean +/- SD) mass 101.3 +/- 12.8 kg and height 1.82 +/- 0.08 m volunteered and gave informed consent for this study, which was approved by a university ethics committee. Players performed BBT at loads of 20, 30, 40, 50, and 60% of their predetermined 1 repetition maximum (1RM) and SJ at loads of 0, (body mass only), 20, 30, 40, 50, and 60% of their predetermined 1RM in a randomized and balanced order. Power output (PO) was determined by measurement of barbell displacement with subsequent calculation of velocity, force, and power. Relative load had a significant effect on PO for both the BBT (effect size eta(2): 0.297, p < 0.001) and SJ (Effect Size eta(2): 0.709, p < 0.001). Peak power output was produced when the athletes worked against an external load equal to 30% 1RM for the upper body and 0% 1RM for the lower body.

  15. Power-Combined GaN Amplifier with 2.28-W Output Power at 87 GHz

    NASA Technical Reports Server (NTRS)

    Fung, King Man; Ward, John; Chattopadhyay, Goutam; Lin, Robert H.; Samoska, Lorene A.; Kangaslahti, Pekka P.; Mehdi, Imran; Lambrigtsen, Bjorn H.; Goldsmith, Paul F.; Soria, Mary M.; Cooperrider, Joelle T.; Bruneau, Peter J.; Kurdoghlian, Ara; Micovic, Miroslav

    2011-01-01

    Future remote sensing instruments will require focal plane spectrometer arrays with higher resolution at high frequencies. One of the major components of spectrometers are the local oscillator (LO) signal sources that are used to drive mixers to down-convert received radio-frequency (RF) signals to intermediate frequencies (IFs) for analysis. By advancing LO technology through increasing output power and efficiency, and reducing component size, these advances will improve performance and simplify architecture of spectrometer array systems. W-band power amplifiers (PAs) are an essential element of current frequency-multiplied submillimeter-wave LO signal sources. This work utilizes GaN monolithic millimeter-wave integrated circuit (MMIC) PAs developed from a new HRL Laboratories LLC 0.15- m gate length GaN semiconductor transistor. By additionally waveguide power combining PA MMIC modules, the researchers here target the highest output power performance and efficiency in the smallest volume achievable for W-band.

  16. Evaluating Inuence of Power Output Fluctuation of Photovoltaic Power Generation Systems on LFC based on Multiple Observation of Insolation

    NASA Astrophysics Data System (ADS)

    Yanagawa, Shigeyuki; Kato, Takeyoshi; Tabata, Akimori; Suzuoki, Yasuo

    A large-scale installation of a photovoltaic power generation system (PV system) may cause some diculties in the operation of electric power systems. Taking into account a smoothing effect of power outputs of PV systems by dispersed installation, this paper discusses the LFC (Load Frequency Control) capacity for power output fluctuation of PV systems based on the insolation data simultaneously observed at 5 points around Nagoya, Japan. The main results are (1) the frequency deviation might not exceed the tolerance (0.05Hz)when the installed PV system is 2% of system capacity, which is Japan’s target value toward 2010, (2) when the larger capacity of PV system is installed, the frequency deviation would be larger than 0.05Hz, and the capacity of LFC generator must be increased, (3) the frequency deviation due to the installation of PV system might be larger in holiday with smaller electricity demand than in weekday.

  17. Design and Construction Multi Output Power Transmition with Single Prime Mover on Agricultural Products Machine

    NASA Astrophysics Data System (ADS)

    Koten, V. K.; Tanamal, C. E.

    2017-03-01

    Manufacturing agricultural products by the farmers, people or person who involve in medium industry, small industry, and households industry still be done in separately. Although the power on primemover is enough, in operations, primemover was only to move one of several agricultural products machine. This study attempts to design and construct power transmition multi output with single primemover; a single construction that allows primemover move some agricultur products machine in the same or not. This study begins with the determination of production capacity and the power to destroy products, the determination of resources and rotation, normalization of resources and rotation, the determination of the type material used, the size determination of each machine elements, construction machine elements, and assemble machine elements into a construction multi output power transmition with single primemover on agricultural products machine. The results show that with a input normalization 4 PK (2984 Watt), rotation 2000 rpm, the strength of material 60 kg/mm2, and several operating consideration, thus obtained size of machine elements through calculation. Based on the size, the machine elements is made through the use of some machine tools and assembled to form a multi output power transmition with single primemover.

  18. Comparison of Solar and Wind Power Output and Correlation with Real-Time Pricing

    NASA Astrophysics Data System (ADS)

    Hoepfl, Kathryn E.; Compaan, Alvin D.; Solocha, Andrew

    2011-03-01

    This study presents a method that can be used to determine the least volatile power output of a wind and solar hybrid energy system in which wind and solar systems have the same peak power. Hourly data for wind and PV systems in Northwest Ohio are used to show that a combination of both types of sustainable energy sources produces a more stable power output and would be more valuable to the grid than either individually. This method could be used to determine the ideal ratio in any part of the country and should help convince electric utility companies to bring more renewable generation online. This study also looks at real-time market pricing and how each system (solar, wind, and hybrid) correlates with 2009 hourly pricing from the Midwest Interconnect. KEH acknowledges support from the NSF-REU grant PHY-1004649 to the Univ. of Toledo and Garland Energy Systems/Ohio Department of Development.

  19. Wind tunnel study of the power output spectrum in a micro wind farm

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Howland, Michael F.; Meneveau, Charles; Meyers, Johan

    2016-09-01

    Instrumented small-scale porous disk models are used to study the spectrum of a surrogate for the power output in a micro wind farm with 100 models of wind turbines. The power spectra of individual porous disk models in the first row of the wind farm show the expected -5/3 power law at higher frequencies. Downstream models measure an increased variance due to wake effects. Conversely, the power spectrum of the sum of the power over the entire wind farm shows a peak at the turbine-to-turbine travel frequency between the model turbines, and a near -5/3 power law region at a much wider range of lower frequencies, confirming previous LES results. Comparison with the spectrum that would result when assuming that the signals are uncorrelated, highlights the strong effects of correlations and anti-correlations in the fluctuations at various frequencies.

  20. High-speed and high-output-power unitraveling-carrier photodiodes

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Nagatsuma, Tadao

    2003-08-01

    The uni-traveling-carrier photodiode (UTC-PD) is a novel photodiode that utilizes only electrons as the active carriers. This unique feature is the key to achieving excellent high-speed and high-output characteristics simultaneously. A record 3-dB bandwidth of 310 GHz and a millimeter-wave output power of over 20 mW at 100 GHz have already been achieved. The superior capability of the UTC-PD for generating very-large high-bit-rate electrical signals as well as a very-high output power in millimeter/sub-millimeter ranges can innovate various systems, such as broadband optical communications systems, wireless communications systems, and high-frequency measurement systems. Achievements include photoreceivers of up to 80 Gbit/s, DEMUX operations using an integrated optical gate of up to 320 Gbit/s, and a 10-Gbit/s millimeter-wave wireless link at 120 GHz. Also achieved has been high-power millimeter generation of 17 mW at 120 GHz with a waveguide-output UTC-PD module, considered for use in the photonic-local system of radio telescopes.

  1. Ka-Band Waveguide Hybrid Combiner for MMIC Amplifiers With Unequal and Arbitrary Power Output Ratio

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chevalier, Christine T.; Wintucky, Edwin G.; Freeman, Jon C.

    2009-01-01

    The design, simulation and characterization of a novel Ka-band (32.05 +/- 0.25 GHz) rectangular waveguide branch-line hybrid unequal power combiner is presented. The manufactured combiner was designed to combine input signals, which are in phase and with an amplitude ratio of two. The measured return loss and isolation of the branch-line hybrid are better than 22 and 27 dB, respectively. The application of the branch-line hybrid for combining two MMIC power amplifiers with output power ratio of two is demonstrated. The measured combining efficiency is approximately 93 percent over the above frequency band.

  2. Ka-Band Waveguide Hybrid Combiner for MMIC Amplifiers with Unequal and Arbitrary Power Output Ratio

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chevalier, Christine T.; Wintucky, Edwin G.; Freeman, Jon C.

    2009-01-01

    The design, simulation and characterization of a novel Ka-band (32.05 +/- 0.25 GHz) rectangular waveguide branchline hybrid unequal power combiner is presented. The manufactured combiner was designed to combine input signals, which are nearly in phase and with an amplitude ratio of two. The measured return loss and isolation of the branch-line hybrid are better than 22 and 27 dB, respectively. The application of the branch-line hybrid for combining two monolithic microwave integrated circuit (MMIC) power amplifiers with output power ratio of two is demonstrated. The measured combining efficiency is 92.9% at the center frequency of 32.05 GHz.

  3. Analysis on Possible Introduction of PV System Considering Output Power Fluctuation and Battery Technology Employing Optimal Power Generation Mix Model

    NASA Astrophysics Data System (ADS)

    Komiyama, Ryoichi; Shibata, Saeko; Nakamura, Yosuke; Fujii, Yasumasa

    This paper presents the evaluation on the impact of an extensive introduction of photovoltaic (PV) system and stationary battery technology into optimal power generation mix in Kanto and Kinki region. The introduction of solar PV system is expected to be extensively deployed in Japanese household sector and utility company in order to address the concerns of energy security and climate change. Considering this expected large-scale deployment of PV system in electric power system, it is necessary to investigate the optimal power generation mix which is technologically capable of controlling and accommodating the intermittent output-power fluctuation inherently derived from PV system. On these backgrounds, we develop both solar photovoltaic power generation model and optimal power generation mix model, including stationary battery technology, which are able to explicitly analyze the impact of PV output fluctuation in detailed resolution of time interval like 10 minutes at consecutive 365 days. Simulation results reveal that PV introduction does not necessarily increase battery technology due to the cost competitiveness of thermal power plants in load following requirement caused by PV system. Additionally, on the basis of sensitivity analysis on PV system cost, dramatic cost reduction proves to be indispensable enough for PV to supply a bulk of electricity similarly as thermal and nuclear power plant.

  4. Incorrect calculation of power outputs masks the ergogenic capacity of creatine supplementation.

    PubMed

    Havenetidis, Konstadinos; Cooke, Carlton B; Butterly, Ron; King, Roderick F G J

    2006-10-01

    This study assessed the effect of incorrect calculation of power output measurement on the ergogenic properties of creatine. Fifteen males performed repeated Wingate anaerobic tests, under baseline, placebo, and creatine conditions. Statistics showed significant differences (p < 0.05) following creatine-supplemented conditions compared with placebo conditions, whereas no significant differences existed between the baseline and placebo conditions. However, the performance enhancement effect of creatine became significant only when the corrected (for the inertia of the flywheel) method was employed for measuring peak and minimum power. Mean (+/- SD) values across all cycle sprints for placebo versus creatine were 1033 +/- 100 W versus 1130 +/- 95 W for peak power and 385 +/- 78 W versus 427 +/- 70 W for minimum power. No significant differences were shown using the uncorrected method for peak power (756 +/- 97 W versus 786 +/- 88 W) and minimum power 440 +/- 64 W pre versus 452 +/- 65 W post). In conclusion, the present study suggests that the potentiating effect of creatine might be underestimated if the inertial effects of the flywheel are not considered in power output determination.

  5. Low power, highly linear output buffer. [for infrared focal plane arrays

    NASA Technical Reports Server (NTRS)

    Foley, D.; Butler, N.; Stobie, J.

    1992-01-01

    A class AB CMOS output buffer has been designed for use on an IR focal plane array. Given the requirements for power dissipation and load capacitance a class A output, such as a source follower, would be unsuitable. The approach taken uses a class AB amplifier configured as a charge integrator. Thus it converts a charge packet in the focal plane multiplexer to a voltage which is then the output of the focal plane. With a quiescent current of 18 micro-a and a load capacitance of 100 pf, the amplifier has an open loop unity gain bandwidth of 900 khz. Integral nonlinearity is better than .03 percent over 5.5 volts when run with VDD-VSS = 6v.

  6. Output power of a quantum dot laser: Effects of excited states

    SciTech Connect

    Wu, Yuchang; Jiang, Li Asryan, Levon V.

    2015-11-14

    A theory of operating characteristics of quantum dot (QD) lasers is discussed in the presence of excited states in QDs. We consider three possible situations for lasing: (i) ground-state lasing only; (ii) ground-state lasing at first and then the onset of also excited-state lasing with increasing injection current; (iii) excited-state lasing only. The following characteristics are studied: occupancies of the ground-state and excited-state in QDs, free carrier density in the optical confinement layer, threshold currents for ground- and excited-state lasing, densities of photons emitted via ground- and excited-state stimulated transitions, output power, internal and external differential quantum efficiencies. Under the conditions of ground-state lasing only, the output power saturates with injection current. Under the conditions of both ground- and excited-state lasing, the output power of ground-state lasing remains pinned above the excited-state lasing threshold while the power of excited-state lasing increases. There is a kink in the light-current curve at the excited-state lasing threshold. The case of excited-state lasing only is qualitatively similar to that for single-state QDs—the role of ground-state transitions is simply reduced to increasing the threshold current.

  7. Triple transit region photodiodes (TTR-PDs) providing high millimeter wave output power.

    PubMed

    Rymanov, Vitaly; Stöhr, Andreas; Dülme, Sebastian; Tekin, Tolga

    2014-04-07

    We report on a novel triple transit region (TTR) layer structure for 1.55 μm waveguide photodiodes (PDs) providing high output power in the millimeter wave (mmW) regime. Basically, the TTR-PD layer structure consists of three transit layers, in which electrons drift at saturation velocity or even at overshoot velocity. Sufficiently strong electric fields (>3000 V/cm) are achieved in all three transit layers even in the undepleted absorber layer and even at very high optical input power levels. This is achieved by incorporating three 10 nm thick p-doped electric field clamp layers. Numerical simulations using the drift-diffusion model (DDM) indicate that for optical intensities up to ~500 kW/cm(2), no saturation effects occur, i.e. the electric field exceeds the critical electric field in all three transit layers. This fact in conjunction with a high-frequency double-mushroom cross-section of the waveguide TTR-PD ensures high output power levels at mmW frequencies. Fabricated 1.55 µm InGaAs(P)/InP waveguide TTR-PDs exhibit output power levels exceeding 0 dBm (1 mW) and a return loss (RL) up to ~24 dB. Broadband operation with a 3 dB bandwidth beyond 110 GHz is achieved.

  8. High output power reluctance electric motors with bulk high-temperature superconductor elements

    NASA Astrophysics Data System (ADS)

    Kovalev, L. K.; Ilushin, K. V.; Penkin, V. T.; Kovalev, K. L.; Larionoff, A. E.; M-A Koneev, S.; Modestov, K. A.; Larionoff, S. A.; Poltavets, V. N.; Akimov, I. I.; Alexandrov, V. V.; Gawalek, W.; Oswald, B.; Krabbes, G.

    2002-05-01

    We present new types of electric machines with the rotors containing bulk high-temperature superconductor (HTS) - YBCO and Bi-Ag - elements. We discuss different schematics of hysteresis, reluctance, 'trapped field' and composed synchronous HTS machines. The two-dimensional mathematical models describing the processes in such types of HTS machines were developed on the basis of the theoretical analysis of the electrodynamic and hysteresis processes in the single-domain and polycrystal YBCO ceramic samples and plate shape Bi-Ag elements. We give the test results of the series of hysteresis, reluctance, 'trapped field' and composed with permanent magnets HTS motors with an output power rating of 0.1-18 kW and current frequencies 50 Hz and 400 Hz. These results show that in the media of liquid nitrogen the specific output power per one unit weight of the HTS motor is four to seven times better than for conventional electric machines. A comparison of the theoretical and experimental characteristics of the developed HTS motors show that they are in good agreement. We discuss the test results for a liquid nitrogen cryogenic pump system with a hysteresis 500 W HTS motor. We describe several designs of new HTS motors operating in the media of liquid nitrogen with an output power 125 kW (and more) and a power factor of more than 0.8. We discuss future applications of new types of HTS motors for aerospace technology, on-land industry and transport systems.

  9. Simulation of one-minute power output from utility-scale photovoltaic generation systems.

    SciTech Connect

    Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

    2011-08-01

    We present an approach to simulate time-synchronized, one-minute power output from large photovoltaic (PV) generation plants in locations where only hourly irradiance estimates are available from satellite sources. The approach uses one-minute irradiance measurements from ground sensors in a climatically and geographically similar area. Irradiance is translated to power using the Sandia Array Performance Model. Power output is generated for 2007 in southern Nevada are being used for a Solar PV Grid Integration Study to estimate the integration costs associated with various utility-scale PV generation levels. Plant designs considered include both fixed-tilt thin-film, and single-axis-tracked polycrystalline Si systems ranging in size from 5 to 300 MW{sub AC}. Simulated power output profiles at one-minute intervals were generated for five scenarios defined by total PV capacity (149.5 MW, 222 WM, 292 MW, 492 MW, and 892 MW) each comprising as many as 10 geographically separated PV plants.

  10. Measurement of output power density from mobile phone as a function of input sound frequency.

    PubMed

    Calabrò, Emanuele; Magazù, Salvatore

    2013-01-01

    Measurements of power density emitted by a mobile phone were carried out as a function of the sound frequency transmitted by a sound generator, ranging from 250 to 14000 Hz. Output power density was monitored by means of the selective radiation meter Narda SRM 3000 in spectrum analysis mode, and the octave frequency analysis of each tone used for the experimental design was acquired by the sound level meter Larson Davis LxT Wind. Vodafone providers were used for mobile phone calls with respect to various local base station in Southern-Italy. A relationship between the mobile phone microwaves power density and the sound frequencies transmitted by the sound generator was observed. In particular, microwaves power density level decreases significantly at sound frequency values larger than 4500 Hz. This result can be explained assuming that discontinuous transmission mode of global system for mobile communications is powered not only in silence-mode, but also at frequencies larger than 4500 Hz.

  11. Exploring the Power Output of Small Wind Turbines in Urban San Antonio, Texas

    NASA Astrophysics Data System (ADS)

    Casillas, Jose; Sperduti, Stephanie; Cardenas, Rosa

    2015-03-01

    The means of transporting power from a centralized power plant by transmission lines has several disadvantages. Electricity transmission and distribution networks are costly, require long planning processes and are unsightly to residents. These networks are also susceptible to natural disasters creating massive disruptions to consumers. For these reasons distributed power sources such as solar panels and small wind turbines are becoming a more desirable and viable means of energy production. We report on the status of a study to determine the maximum output power of small wind turbines in urban San Antonio, Texas. Wind speed data along with power measurements from small wind turbines in urban San Antonio will be reported. U.S. Department of Education Title V HSI-STEM and Articulation Award No. P031C110145.

  12. Suppression of beam induced pulse shortening modes in high power RF generator TW output structures

    SciTech Connect

    Haimson, J.; Mecklenburg, B.

    1992-12-31

    Several different style 11.4 GHz relativistic klystrons, operating with beam pulse widths of 50 ns and using large aperture, tapered phase-velocity TW structures,` have recently demonstrated output RF power levels in the range of 100 to 300 MW without breakdown or pulse shortening. To extend this performance into the long pulse regime (1 {mu}s) or to demonstrate a threefold increase in output power by using higher currents, the existing TW circuit designs must be modified (a) to reduce the cavity maximum surface E-fields by a factor of 2 to 3, and (b) to elevate the current threshold values of the beam induced higher order modes (HOM) to ensure avoidance of RF pulse shortening and associated instabilities. A technique for substantially elevating this threshold current is described, and microwave data and photographs are presented showing the degree of HOM damping achieved in a recently constructed 11.4 GHz TW structure.

  13. Maximizing power output from continuous-wave single-frequency fiber amplifiers.

    PubMed

    Ward, Benjamin G

    2015-02-15

    This Letter reports on a method of maximizing the power output from highly saturated cladding-pumped continuous-wave single-frequency fiber amplifiers simultaneously, taking into account the stimulated Brillouin scattering and transverse modal instability thresholds. This results in a design figure of merit depending on the fundamental mode overlap with the doping profile, the peak Brillouin gain coefficient, and the peak mode coupling gain coefficient. This figure of merit is then numerically analyzed for three candidate fiber designs including standard, segmented acoustically tailored, and micro-segmented acoustically tailored photonic-crystal fibers. It is found that each of the latter two fibers should enable a 50% higher output power than standard photonic crystal fiber.

  14. Super short term forecasting of photovoltaic power generation output in micro grid

    NASA Astrophysics Data System (ADS)

    Gong, Cheng; Ma, Longfei; Chi, Zhongjun; Zhang, Baoqun; Jiao, Ran; Yang, Bing; Chen, Jianshu; Zeng, Shuang

    2017-01-01

    The prediction model combining data mining and support vector machine (SVM) was built. Which provide information of photovoltaic (PV) power generation output for economic operation and optimal control of micro gird, and which reduce influence of power system from PV fluctuation. Because of the characteristic which output of PV rely on radiation intensity, ambient temperature, cloudiness, etc., so data mining was brought in. This technology can deal with large amounts of historical data and eliminate superfluous data, by using fuzzy classifier of daily type and grey related degree. The model of SVM was built, which can dock with information from data mining. Based on measured data from a small PV station, the prediction model was tested. The numerical example shows that the prediction model is fast and accurate.

  15. Constraints on muscular performance: trade-offs between power output and fatigue resistance.

    PubMed Central

    Wilson, Robbie S; James, Rob S

    2004-01-01

    An important functional and evolutionary constraint on the physical performance of vertebrates is believed to be the trade-off between speed and endurance capacity. However, despite the pervasiveness of physiological arguments, most studies have found no evidence of the trade-off when tested at the whole-animal level. We investigated the existence of this trade-off at the whole-muscle level, the presumed site of this physiological conflict, by examining inter-individual variation in both maximum power output and fatigue resistance for mouse extensor digitorum longus (EDL) muscle using the work-loop technique. We found negative correlations between several measures of in vitro maximum power output and force production with fatigue resistance for individual mouse EDL muscles, indicating functional trade-offs between these performance parameters. We suggest that this trade-off detected at the whole-muscle level has imposed an important constraint on the evolution of vertebrate physical performance. PMID:15252990

  16. Simulation of the output power of copper bromide lasers by the MARS method

    SciTech Connect

    Iliev, I P; Voynikova, D S; Gocheva-Ilieva, S G

    2012-04-30

    The dependence of the output power of CuBr lasers (operating at wavelengths of 510.6 and 578.2 nm) on ten input physical parameters has been statistically analysed based on a large amount of experimental data accumulated for these lasers. Regression models have been built using the flexible nonparametric method of multivariate adaptive regression splines (MARS) to describe both linear and nonlinear local dependences. These models cover more than 97% initial data with an error comparable with the experimental error; they are applied to estimate and predict the output powers of both existing and future lasers. The advantage of the models constructed for estimating laser parameters over the standard parametric methods of multivariate factor and regression analysis is demonstrated.

  17. A New Method for Increasing Output Power of a Three-Cavity Transit-Time Oscillator

    NASA Astrophysics Data System (ADS)

    He, Jun-Tao; Zhong, Hui-Huang; Qian, Bao-Liang; Liu, Yong-Gui

    2004-07-01

    We propose a new method to increase the output power of a three-cavity transit-time oscillator (TC-TTO). Conventional transit-time effect oscillators, such as the split-cavity oscillator (SCO), super-Reltron, and TC-TTO (or double-foil SCO), etc., have a common feature that the span of any modulating cavity is uniform. The new method is to vary the three-cavity spans from uniform to nonuniform. Its configuration is called the nonuniform three-cavity transit-time oscillator (NTC-TTO). Numerical simulations show that the electron-beam is modulated more deeply in certain NTC-TTOs than that in the TC-TTO with the same whole modulating length, and the output microwave power in certain NTC-TTOs is higher than that in the TC-TTO. The experimental results are in agreement with those of the numerical simulations. The results show that the new method can increase the output power of a microwave tube based on the TC-TTO.

  18. Transverse amplified spontaneous emission: The limiting factor for output energy of ultra-high power lasers

    NASA Astrophysics Data System (ADS)

    Chvykov, Vladimir; Nees, John; Krushelnick, Karl

    2014-02-01

    For the new generation of the ultra-high power lasers with tens of PW of output power, kJ-level energies have to be reached. Our modeling, applied to Ti:sapphire amplifiers, demonstrates for the first time, according our knowledge, that Transverse Amplified Spontaneous Emission (TASE) places an additional restriction on storing and extracting energy in larger gain apertures, even stronger than transverse parasitic generation (TPG). Nevertheless, we demonstrate that extracting during pumping (EDP) can significantly reduce parasitic losses due to both TASE and TPG.

  19. Smoothing of wind farm output power using prediction based flywheel energy storage system

    NASA Astrophysics Data System (ADS)

    Islam, Farzana

    Being socially beneficial, economically competitive and environment friendly, wind energy is now considered to be the world's fastest growing renewable energy source. However, the stochastic nature of wind imposes a considerable challenge in the optimal management and operation of wind power system. Wind speed prediction is critical for wind energy conversion system since it greatly influences the issues related to effective energy management, dynamic control of wind turbine, and improvement of the overall efficiency of the power generation system. This thesis focuses on integration of energy storage system with wind farm, considering wind speed prediction in the control scheme to overcome the problems associated with wind power fluctuations. In this thesis, flywheel energy storage system (FESS) with adjustable speed rotary machine has been considered for smoothing of output power in a wind farm composed of a fixed speed wind turbine generator (FSWTG). Since FESS has both active and reactive power compensation ability, it enhances the stability of the system effectively. An efficient energy management system combined with supervisory control unit (SCU) for FESS and wind speed prediction has been developed to improve the smoothing of the wind farm output effectively. Wind speed prediction model is developed by artificial neural network (ANN) which has advantages over the conventional prediction scheme including data error tolerance and ease in adaptability. The model for prediction with ANN is developed in MATLAB/Simulink and interfaced with PSCAD/EMTDC. Effectiveness of the proposed control system is illustrated using real wind speed data in various operating conditions.

  20. Picosecond fiber MOPA pumped supercontinuum source with 39 W output power.

    PubMed

    Chen, Kang Kang; Alam, Shaif-Ul; Price, Jonathan H V; Hayes, John R; Lin, Dejiao; Malinowski, Andrew; Codemard, Christophe; Ghosh, Debashri; Pal, Mrinmay; Bhadra, Shyamal K; Richardson, David J

    2010-03-15

    We report a picosecond fiber MOPA pumped supercontinuum source with 39 W output, spanning at least 0.4-2.25 microm at a repetition rate of 114.8 MHz. The 2m long PCF had a large, 4.4 microm diameter core and a high-delta design which led to an 80% coupling efficiency, high damage threshold and rapid generation of visible continuum generation from the picosecond input pulses. The high and relatively uniform power density across the visible spectral region was approximately 31.7 mW/nm corresponding to peak power density of approximately 12.5 W/nm for the 21 ps input pulses. The peak power density was increased to 26.9 W/nm by reducing the repetition rate to 28 MHz. This represents an increase in both average and peak power compared to previously reported visible supercontinuum sources from either CW pumped or pulsed-systems.

  1. Enhanced Output Power of PZT Nanogenerator by Controlling Surface Morphology of Electrode.

    PubMed

    Jung, Woo-Suk; Lee, Won-Hee; Ju, Byeong-Kwon; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-11-01

    Piezoelectric power generation using Pb(Zr,Ti)O3(PZT) nanowires grown on Nb-doped SrTiO3(nb:STO) substrate has been demonstrated. The epitaxial PZT nanowires prepared by a hydrothermal method, with a diameter and length of approximately 300 nm and 7 μm, respecively, were vertically aligned on the substrate. An embossed Au top electrode was applied to maximize the effective power generation area for non-uniform PZT nanowires. The PZT nanogenerator produced output power density of 0.56 μW/cm2 with a voltage of 0.9 V and current of 75 nA. This research suggests that the morphology control of top electrode can be useful to improve the efficiency of piezoelectric power generation.

  2. Maximum Output Power Control Using Short-Circuit Current and Open-Circuit Voltage of a Solar Panel

    NASA Astrophysics Data System (ADS)

    Kato, Takahiro; Miyake, Takuma; Tashima, Daisuke; Sakoda, Tatsuya; Otsubo, Masahisa; Hombu, Mitsuyuki

    2012-10-01

    A control method to optimize the output power of a solar cell is necessary because the output of a solar cell strongly depends on solar radiation. We here proposed two output power control methods using the short-circuit current and open-circuit voltage of a solar panel. One of them used a current ratio and a voltage ratio (αβ control), and the other used a current ratio and a short-circuit current-electric power characteristic coefficient (αγ control). The usefulness of the αβ and the αγ control methods was evaluated. The results showed that the output power controlled by our proposed methods was close to the maximum output power of a solar panel.

  3. The Influence of Serial Carbohydrate Mouth Rinsing on Power Output during a Cycle Sprint

    PubMed Central

    Phillips, Shaun M.; Findlay, Scott; Kavaliauskas, Mykolas; Grant, Marie Clare

    2014-01-01

    The objective of the study was to investigate the influence of serial administration of a carbohydrate (CHO) mouth rinse on performance, metabolic and perceptual responses during a cycle sprint. Twelve physically active males (mean (± SD) age: 23.1 (3.0) years, height: 1.83 (0.07) m, body mass (BM): 86.3 (13.5) kg) completed the following mouth rinse trials in a randomized, counterbalanced, double-blind fashion; 1. 8 x 5 second rinses with a 25 ml CHO (6% w/v maltodextrin) solution, 2. 8 x 5 second rinses with a 25 ml placebo (PLA) solution. Following mouth rinse administration, participants completed a 30 second sprint on a cycle ergometer against a 0.075 g·kg-1 BM resistance. Eight participants achieved a greater peak power output (PPO) in the CHO trial, resulting in a significantly greater PPO compared with PLA (13.51 ± 2.19 vs. 13.20 ± 2.14 W·kg-1, p < 0.05). Magnitude inference analysis reported a likely benefit (81% likelihood) of the CHO mouth rinse on PPO. In the CHO trial, mean power output (MPO) showed a trend for being greater in the first 5 seconds of the sprint and lower for the remainder of the sprint compared with the PLA trial (p > 0.05). No significant between-trials difference was reported for fatigue index, perceived exertion, arousal and nausea levels, or blood lactate and glucose concentrations. Serial administration of a CHO mouth rinse may significantly improve PPO during a cycle sprint. This improvement appears confined to the first 5 seconds of the sprint, and may come at a greater relative cost for the remainder of the sprint. Key points The paper demonstrates that repeated administration of a carbohydrate mouth rinse can significantly improve peak power output during a single 30 second cycle sprint. The ergogenic effect of the carbohydrate mouth rinse may relate to the duration of exposure of the oral cavity to the mouth rinse, and associated greater stimulation of oral carbohydrate receptors. The significant increase in peak power

  4. Peak power tunable mid-infrared oscillator pumped by a high power picosecond pulsed fiber amplifier with bunch output

    NASA Astrophysics Data System (ADS)

    Wei, Kaihua; Guo, Yan; Lai, Xiaomin; Fan, Shanhui

    2016-07-01

    A high power mid-infrared optical parametric oscillator (OPO) with picosecond pulse bunch output is experimentally demonstrated. The pump source was a high power master oscillation power amplifier (MOPA) picosecond pulsed fiber amplifier. The seed of the MOPA was a gain-switched distributed Bragg reflector (DBR) laser diode (LD) with picosecond pulse operation at a high repetition rate. The seed laser was amplified to 50 W by two-stage pre-amplifiers and a large mode area (LMA) Yb fiber based power-amplifier. A fiber-pigtailed acousto-optic modulator with the first order diffraction transmission was inserted into the second pre-amplifier to form a picosecond pulse bunch train and to change the peak power simultaneously. The power-amplified pulse bunches were focused to pump a wavelength-tunable OPO for emitting high power mid-infrared laser. By adjusting the OPO cavity length, the maximum average idler powers obtained at 3.1, 3.3 and 3.5 μm were 7, 6.6 and 6.4 W respectively.

  5. Cardiac power output and its response to exercise in athletes and non-athletes.

    PubMed

    Klasnja, Aleksandar V; Jakovljevic, Djordje G; Barak, Otto F; Popadic Gacesa, Jelena Z; Lukac, Damir D; Grujic, Nikola G

    2013-05-01

    Cardiac power output (CPO) is an integrative measure of overall cardiac function as it accounts for both, flow- and pressure-generating capacities of the heart. The purpose of the present study was twofold: (i) to assess cardiac power output and its response to exercise in athletes and non-athletes and (ii) to determine the relationship between cardiac power output and reserve and selected measures of cardiac function and structure. Twenty male athletes and 32 age- and gender-matched healthy sedentary controls participated in this study. CPO was calculated as the product of cardiac output and mean arterial pressure, expressed in watts. Measures of hemodynamic status, cardiac structure and pumping capability were assessed by echocardiography. CPO was assessed at rest and after peak bicycle exercise. At rest, the two groups had similar values of cardiac power output (1·08 ± 0·2 W versus 1·1 ± 0·24 W, P>0·05), but the athletes demonstrated lower systolic blood pressure (109·5 ± 6·2 mmHg versus 117·2 ± 8·2 mmHg, P<0·05) and thicker posterior wall of the left ventricle (9·8 ± 1 mm versus 9 ± 1·1 mm, P<0·05). Peak CPO was higher in athletes (5·87 ± 0·75 W versus 5·4 ± 0·69 W, P<0·05) as was cardiac reserve (4·92 ± 0·66 W versus 4·26 ± 0·61 W, P<0·05), respectively. Peak exercise CPO and reserve were only moderately correlated with end-diastolic volume (r = 0·54; r = 0·46, P<0·05) and end-diastolic left ventricular internal diameter (r = 0·48; r = 0·42, P<0·05), respectively. Athletes demonstrated greater maximal cardiac pumping capability and reserve than non-athletes. The study provides new evidence that resting measures of cardiac structure and function need to be considered with caution in interpretation of maximal cardiac performance.

  6. The effect of preignition on cylinder temperatures, pressures, power output, and piston failures

    NASA Technical Reports Server (NTRS)

    Corrington, Lester C; Fisher, William F

    1947-01-01

    An investigation was conducted using a cylinder of a V-type liquid-cooled engine to observe the behavior of the cylinder when operated under preignition conditions. Data were recorded that showed cylinder-head temperatures, time of ignition, engine speed, power output, and change in maximum cylinder pressure as a function of time as the engine entered preignition and was allowed to operate under preignition conditions for a short time. The effects of the following variables on the engine behavior during preignition were investigated: fuel-air ratio, power level, aromatic content of fuel, engine speed, mixture temperature, and preignition source. The power levels at which preignition would cause complete piston failure for the selected engine operating conditions and the types of failure encountered when using various values of clearance between the piston and cylinder barrel were determined. The fuels used had performance numbers high enough to preclude any possibility of knock throughout the test program.

  7. Adaptive robust maximum power point tracking control for perturbed photovoltaic systems with output voltage estimation.

    PubMed

    Koofigar, Hamid Reza

    2016-01-01

    The problem of maximum power point tracking (MPPT) in photovoltaic (PV) systems, despite the model uncertainties and the variations in environmental circumstances, is addressed. Introducing a mathematical description, an adaptive sliding mode control (ASMC) algorithm is first developed. Unlike many previous investigations, the output voltage is not required to be sensed and the upper bound of system uncertainties and the variations of irradiance and temperature are not required to be known. Estimating the output voltage by an update law, an adaptive-based H∞ tracking algorithm is then developed for the case the perturbations are energy-bounded. The stability analysis is presented for the proposed tracking control schemes, based on the Lyapunov stability theorem. From a comparison viewpoint, some numerical and experimental studies are also presented and discussed.

  8. Short-term power output and local muscular endurance of young male soccer players according to playing position.

    PubMed

    Nikolaïdis, Pantelis Theodoros

    2014-06-01

    Although the contribution of anaerobic power in soccer performance is recognized and there is evidence that many anthropometric and physiological characteristics vary according to playing position, the association between playing position and short-term power output, and local muscular endurance is not well studied, especially in young players. Therefore, the aim of the present study is to examine whether this component of sport-related physical fitness of young soccer players varies according to playing position. Young male (N = 296; aged 10.94-21.00 y), classified in five two-year age-groups, and adults (N = 30; aged 21.12-31.59 y), all members of competitive soccer clubs, performed the 30-s Wingate anaerobic test against braking force 0.075 kg x kg(-1) of body mass. One-way analysis of variance (ANOVA) revealed significant differences between age groups with regard to peak power in absolute, P(peak) (F5,320 = 86.7, p < 0.001), and in relative to body mass values, rP(peak) (F5,320 = 43.27, p < 0.001), mean power in absolute, P(mean) (F5,313 = 108.97, p < 0.001), and in relative values, rP(mean) (F5,313 = 41.64, p < 0.001), while there was no difference with respect to fatigue index, FI (F5,312 = 1.09, p = 0.370). One-way analysis of covariance, considering age as covariate, did not reveal any significant differences among playing position groups with regard to P(peak) (F3,289 = 1.46, p = 0.226), rP(peak) (F3,289 = 0.87, p = 0.457) and P(mean) (F3,283 = 0.31, p = 0.817), while goalkeepers had lower rP(mean) than defenders, midfielders and forwards (F3,283 = 6.32, p < 0.001). One-way ANOVA revealed differences with regard to FI (F3,283 = 5.97, p < 0.001), according to which goalkeepers had higher values than defenders and midfielders. Compared with data from previous studies in general population, participants had superior short-term power output and local muscular endurance. Both these anaerobic parameters were in direct relationship with age (r = 0.64, p < 0

  9. A new absolute extreme ultraviolet image system designed for studying the radiated power of the Joint Texas Experimental Tokamak discharges

    SciTech Connect

    Zhang, J.; Zhuang, G.; Wang, Z. J.; Ding, Y. H.; Zhang, X. Q.; Tang, Y. J.

    2010-07-15

    A bolometer imaging system mounted on different toroidal and poloidal locations used for radiation observation has been developed in the Joint Texas Experimental Tokamak (J-TEXT tokamak). Three miniature pinhole AXUV16ELG (16 elements absolute extreme ultraviolet silicon photodiodes) array cameras, which are settled down in the same toroidal position but in three different poloidal places, can provide a broad viewing angle that covers the whole plasma cross-section, and hence can measure the total radiated power and provide the radiated emissive profile, while nine AXUV10EL (10 elements absolute extreme ultraviolet silicon photodiodes) array cameras are divided into three groups and will be mounted on different toroidal locations to observe the toroidal radiated power distribution. Among these detectors, one element of the AXUV16ELG array is absolutely calibrated by the synchrotron radiation source to verify the system reliability. Although there are some discrepancies between the typical responsivity given by IRD Co. and the calibrated results, it is confirmed that the discrepancies have no major effect on the final result after the simulation. The details of the system as well as observations are presented in the paper.

  10. A new absolute extreme ultraviolet image system designed for studying the radiated power of the Joint Texas Experimental Tokamak discharges.

    PubMed

    Zhang, J; Zhuang, G; Wang, Z J; Ding, Y H; Zhang, X Q; Tang, Y J

    2010-07-01

    A bolometer imaging system mounted on different toroidal and poloidal locations used for radiation observation has been developed in the Joint Texas Experimental Tokamak (J-TEXT tokamak). Three miniature pinhole AXUV16ELG (16 elements absolute extreme ultraviolet silicon photodiodes) array cameras, which are settled down in the same toroidal position but in three different poloidal places, can provide a broad viewing angle that covers the whole plasma cross-section, and hence can measure the total radiated power and provide the radiated emissive profile, while nine AXUV10EL (10 elements absolute extreme ultraviolet silicon photodiodes) array cameras are divided into three groups and will be mounted on different toroidal locations to observe the toroidal radiated power distribution. Among these detectors, one element of the AXUV16ELG array is absolutely calibrated by the synchrotron radiation source to verify the system reliability. Although there are some discrepancies between the typical responsivity given by IRD Co. and the calibrated results, it is confirmed that the discrepancies have no major effect on the final result after the simulation. The details of the system as well as observations are presented in the paper.

  11. Techniques for increasing output power from mode-locked semiconductor lasers

    SciTech Connect

    Mar, A.; Vawter, G.A.

    1996-02-01

    Mode-locked semiconductor lasers have drawn considerable attention as compact, reliable, and relatively inexpensive sources of short optical pulses. Advances in the design of such lasers have resulted in vast improvements in pulsewidth and noise performance, at a very wide range of repetition rates. An attractive application for these lasers would be to serve as alternatives for large benchtop laser systems such as dye lasers and solid-state lasers. However, mode-locked semiconductor lasers have not yet approached the performance of such systems in terms of output power. Different techniques for overcoming the problem of low output power from mode-locked semiconductor lasers will be discussed. Flared and arrayed lasers have been used successfully to increase the pulse saturation energy limit by increasing the gain cross section. Further improvements have been achieved by use of the MOPA configuration, which utilizes a flared semiconductor amplifier s amplify pulses to energies of 120 pJ and peak powers of nearly 30W.

  12. Control Strategies for Smoothing of Output Power of Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Pratap, Alok; Urasaki, Naomitsu; Senju, Tomonobu

    2013-10-01

    This article presents a control method for output power smoothing of a wind energy conversion system (WECS) with a permanent magnet synchronous generator (PMSG) using the inertia of wind turbine and the pitch control. The WECS used in this article adopts an AC-DC-AC converter system. The generator-side converter controls the torque of the PMSG, while the grid-side inverter controls the DC-link and grid voltages. For the generator-side converter, the torque command is determined by using the fuzzy logic. The inputs of the fuzzy logic are the operating point of the rotational speed of the PMSG and the difference between the wind turbine torque and the generator torque. By means of the proposed method, the generator torque is smoothed, and the kinetic energy stored by the inertia of the wind turbine can be utilized to smooth the output power fluctuations of the PMSG. In addition, the wind turbines shaft stress is mitigated compared to a conventional maximum power point tracking control. Effectiveness of the proposed method is verified by the numerical simulations.

  13. Performance characteristics and output power stability of a multichannel fibre laser

    NASA Astrophysics Data System (ADS)

    Kuzmenkov, A. I.; Lukinykh, S. N.; Nanii, O. E.; Odintsov, A. I.; Smirnov, A. P.; Fedoseev, A. I.; Treshchikov, V. N.

    2016-09-01

    The effect of the density and number of spectral channels on the output power stability in a multichannel cw laser has been studied theoretically and experimentally. In our calculations, we used a model in which the interaction between channels due to gain medium saturation was determined by channel frequency spacingdependent cross-saturation coefficients. The key features of lasing have been analysed and illustrated by the examples of three-, fiveand nine-channel lasers. It has been shown that, at a given excess of the pump power over threshold, the channel powers can be equalised by introducing additional losses into the highest power channels. At a sufficiently high channel density, raising the pump power then leads to termination of lasing in the even channels. As the number of channels increases, the laser system retains its stability, but the time needed for the transition to a steady state increases sharply. In our experiments, we used an erbium-doped fibre laser whose design ensured independent control over the powers of up to 40 spectral channels anchored on the telecommunication frequency grid. Our experimental data are in qualitative agreement with the calculation results. In particular, a long-term relative instability less than 3 dB was only observed at a number of channels less than seven and channel frequency spacings above 400 GHz. Instability was shown to increase with an increase in the number and density of channels.

  14. Effects of antenna length and material on output power and detection of miniature radio transmitters

    USGS Publications Warehouse

    Beeman, J.W.; Bower, N.; Juhnke, S.; Dingmon, L.; Van Den, Tillaart; Thomas, T.

    2007-01-01

    The optimal antenna of transmitters used in small aquatic animals is often a compromise between efficient radio wave propagation and effects on animal behavior. Radio transmission efficiency generally increases with diameter and length of the conductor, but increased antenna length or weight can adversely affect animal behavior. We evaluated the effects of changing antenna length and material on the subsequent tag output power, reception, and detection of tagged fish. In a laboratory, we compared the relative signal strengths in water of 150 MHz transmitters over a range of antenna lengths (from 6 to 30 cm) and materials (one weighing about half of the other). The peak relative signal strengths were at 20 and 22 cm, which are approximately one wavelength underwater at the test frequency. The peak relative signal strengths at these lengths were approximately 50% greater than those of 30 cm antennas, a length commonly used in fisheries research. Few significant differences were present in distances for the operator to hear or the telemetry receiver to decode transmitters from a boat-mounted receiving system based on antenna length, but the percent of tagged fish detected passing a hydroelectric dam fitted with an array of receiving systems was significantly greater at the antenna length with peak output power in laboratory tests. This study indicates careful choice of antenna length and material of small transmitters can be used to reduce weight and possible antenna effects on animal behavior, to maximize tag output power and detection, or to balance these factors based on the needs of the application. ?? 2007 Springer Science+Business Media B.V.

  15. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  16. Enhanced Power Output of a Triboelectric Nanogenerator Composed of Electrospun Nanofiber Mats Doped with Graphene Oxide

    PubMed Central

    Huang, Tao; Lu, Mingxia; Yu, Hao; Zhang, Qinghong; Wang, Hongzhi; Zhu, Meifang

    2015-01-01

    We developed a book-shaped triboelectric nanogenerator (TENG) that consists of electrospun polyvinylidene fluoride (PVDF) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers to effectively harvest mechanical energy. The dispersed graphene oxide in the PVDF nanofibers acts as charge trapping sites, which increased the interface for charge storage as well as the output performance of the TENG. The book-shaped TENG was used as a direct power source to drive small electronics such as LED bulbs. This study proved that it is possible to improve the performance of TENGs using composite materials. PMID:26387825

  17. Enhanced Power Output of a Triboelectric Nanogenerator Composed of Electrospun Nanofiber Mats Doped with Graphene Oxide.

    PubMed

    Huang, Tao; Lu, Mingxia; Yu, Hao; Zhang, Qinghong; Wang, Hongzhi; Zhu, Meifang

    2015-09-21

    We developed a book-shaped triboelectric nanogenerator (TENG) that consists of electrospun polyvinylidene fluoride (PVDF) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers to effectively harvest mechanical energy. The dispersed graphene oxide in the PVDF nanofibers acts as charge trapping sites, which increased the interface for charge storage as well as the output performance of the TENG. The book-shaped TENG was used as a direct power source to drive small electronics such as LED bulbs. This study proved that it is possible to improve the performance of TENGs using composite materials.

  18. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    SciTech Connect

    Hanna, A. N.; Ghoneim, M. T.; Bahabry, R. R.; Hussain, A. M.; Hussain, M. M.

    2013-11-25

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.

  19. Microprocessor control system for output power optimization of a wind turbine

    SciTech Connect

    Eriksson, M.; Ottosson, J.; Wolpert, T.

    1983-10-01

    The wind turbine used in ERICSSON SUNWIND is a combined Darrieus-Savonius type, in which the Darrieus turbine produces most of the energy, whereas Savonius rotor supplies a starting torque. The particular requirements and difficulties connected with the output power control of a Darrieus turbine are presented and analysed. In order to meet these requirements an adaptive control system based on microcomputer techniques has been developed. This paper describes the principle of operation, the hardware and the software of the control system. An illustration of the practical operation in a test plant is also given.

  20. Enhanced Power Output of a Triboelectric Nanogenerator Composed of Electrospun Nanofiber Mats Doped with Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Lu, Mingxia; Yu, Hao; Zhang, Qinghong; Wang, Hongzhi; Zhu, Meifang

    2015-09-01

    We developed a book-shaped triboelectric nanogenerator (TENG) that consists of electrospun polyvinylidene fluoride (PVDF) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers to effectively harvest mechanical energy. The dispersed graphene oxide in the PVDF nanofibers acts as charge trapping sites, which increased the interface for charge storage as well as the output performance of the TENG. The book-shaped TENG was used as a direct power source to drive small electronics such as LED bulbs. This study proved that it is possible to improve the performance of TENGs using composite materials.

  1. Efficiency at maximum power output of linear irreversible Carnot-like heat engines

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Tu, Z. C.

    2012-01-01

    The efficiency at maximum power output of linear irreversible Carnot-like heat engines is investigated based on the assumption that the rate of irreversible entropy production of the working substance in each “isothermal” process is a quadratic form of the heat exchange rate between the working substance and the reservoir. It is found that the maximum power output corresponds to minimizing the irreversible entropy production in two isothermal processes of the Carnot-like cycle, and that the efficiency at maximum power output has the form ηmP=ηC/(2-γηC), where ηC is the Carnot efficiency, while γ depends on the heat transfer coefficients between the working substance and two reservoirs. The value of ηmP is bounded between η-≡ηC/2 and η+≡ηC/(2-ηC). These results are consistent with those obtained by Chen and Yan [J. Chem. Phys.JCPSA60021-960610.1063/1.455832 90, 3740 (1989)] based on the endoreversible assumption, those obtained by Esposito [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.150603 105, 150603 (2010)] based on the low-dissipation assumption, and those obtained by Schmiedl and Seifert [Europhys. Lett.EULEEJ0295-507510.1209/0295-5075/81/20003 81, 20003 (2008)] for stochastic heat engines which in fact also satisfy the low-dissipation assumption. Additionally, we find that the endoreversible assumption happens to hold for Carnot-like heat engines operating at the maximum power output based on our fundamental assumption, and that the Carnot-like heat engines that we focused on do not strictly satisfy the low-dissipation assumption, which implies that the low-dissipation assumption or our fundamental assumption is a sufficient but non-necessary condition for the validity of ηmP=ηC/(2-γηC) as well as the existence of two bounds, η-≡ηC/2 and η+≡ηC/(2-ηC).

  2. Cycling power output produced during flat and mountain stages in the Giro d'Italia: a case study.

    PubMed

    Vogt, Stefan; Schumacher, Yorck Olaf; Blum, Andreas; Roecker, Kai; Dickhuth, Hans-Hermann; Schmid, Andreas; Heinrich, Lothar

    2007-10-01

    Until recently, the physiological demands of cycling competitions were mostly reflected by the measurement of heart rate and the indirect estimation of exercise intensity. The purpose of this case study was to illustrate the varying power output of a professional cyclist during flat and mountain stages of a Grand Tour (Giro d'Italia). Nine stage recordings of a cyclist of the 2005 Giro d'Italia were monitored using a mobile power measurement device (SRM Trainingssystem, Julich, Germany), which recorded direct power output and heart rate. Stages were categorized into flat (n = 5) and mountain stages (n = 4). Data were processed electronically, and the overall mean power in flat and mountain stages and maximal mean power for various durations were calculated. Mean power output was 132 W +/- 26 (2.0 W x kg(-1) +/- 0.4) for the flat and 235 W +/- 10 (3.5 W x kg(-1) +/- 0.1) for the mountain stages. Mountain stages showed higher maximal mean power (367 W) for longer durations (1800 s) than flat stages (239 W). Flat stages are characterized by a large variability of power output with short bursts of high power and long periods with reduced intensity of exercise, whereas mountain stages mostly require submaximal, constant power output over longer periods.

  3. Semi-fuel cell studies for powering underwater devices: integrated design for maximized net power output

    NASA Astrophysics Data System (ADS)

    Cardenas-Valencia, Andres M.; Short, R. Timothy; Adornato, Lori; Langebrake, Larry

    2010-04-01

    Use of sensor systems in water bodies has applications that range from environmental and oceanographic research to port and homeland security. Power sources are often the limiting component for further reduction of sensor system size and weight. We present recent investigations of metal-anode water-activated galvanic cells, specifically water-activated Alcells using inorganic alkali peroxides and solid organic oxidizers (heterocyclic halamines), in a semi-fuel cell configuration (i.e., with cathode species generated in situ and flow-through cells). The oxidizers utilized are inexpensive solid materials that are generally (1) safer to handle than liquid solutions or gases, (2) have inherently higher current and energy capacity (as they are not dissolved), and, (3) if appropriately packaged, will not degrade over time. The specific energy (S.E.) of Al-alkali peroxide was found to be 230 Wh/kg (460 Wh/kg, considering only active materials) in a seven-gram cell. Interestingly, when the cell size was increased (making more area of the catalytic cathode electrode available), the results from a single addition of water in an Al-organic oxidizer cell (weighing ~18 grams) showed an S.E. of about 200 Wh/kg. This scalability characteristic suggests that values in excess of 400 Wh/kg could be obtained in a semi-fuel-cell-like system. In this paper, we also present design considerations that take into account the energy requirements of the pumping devices and show that the proposed oxidizers, and the possible control of the chemical equilibrium of these cathodes in solution, may help reduce this power requirement and hence enhance the overall energetic balance.

  4. Updated Eastern Interconnect Wind Power Output and Forecasts for ERGIS: July 2012

    SciTech Connect

    Pennock, K.

    2012-10-01

    AWS Truepower, LLC (AWST) was retained by the National Renewable Energy Laboratory (NREL) to update wind resource, plant output, and wind power forecasts originally produced by the Eastern Wind Integration and Transmission Study (EWITS). The new data set was to incorporate AWST's updated 200-m wind speed map, additional tall towers that were not included in the original study, and new turbine power curves. Additionally, a primary objective of this new study was to employ new data synthesis techniques developed for the PJM Renewable Integration Study (PRIS) to eliminate diurnal discontinuities resulting from the assimilation of observations into mesoscale model runs. The updated data set covers the same geographic area, 10-minute time resolution, and 2004?2006 study period for the same onshore and offshore (Great Lakes and Atlantic coast) sites as the original EWITS data set.

  5. Mode control in a high gain relativistic klystron amplifier with 3 GW output power

    NASA Astrophysics Data System (ADS)

    Wu, Yang; Xie, Hong-Quan; Xu, Zhou

    2014-01-01

    Higher mode excitation is very serious in the relativistic klystron amplifier, especially for the high gain relativistic amplifier working at tens of kilo-amperes. The mechanism of higher mode excitation is explored in the PIC simulation and it is shown that insufficient separation of adjacent cavities is the main cause of higher mode excitation. So RF lossy material mounted on the drift tube wall is adopted to suppress higher mode excitation. A high gain S-band relativistic klystron amplifier is designed for the beam current of 13 kA and the voltage of 1 MV. PIC simulation shows that the output power is 3.2 GW when the input power is only 2.8 kW.

  6. Efficiency at maximum power output of quantum heat engines under finite-time operation

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; He, Jizhou; Wu, Zhaoqi

    2012-03-01

    We study the efficiency at maximum power, ηm, of irreversible quantum Carnot engines (QCEs) that perform finite-time cycles between a hot and a cold reservoir at temperatures Th and Tc, respectively. For QCEs in the reversible limit (long cycle period, zero dissipation), ηm becomes identical to the Carnot efficiency ηC=1-Tc/Th. For QCE cycles in which nonadiabatic dissipation and the time spent on two adiabats are included, the efficiency ηm at maximum power output is bounded from above by ηC/(2-ηC) and from below by ηC/2. In the case of symmetric dissipation, the Curzon-Ahlborn efficiency ηCA=1-Tc/Th is recovered under the condition that the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation.

  7. Quantum Coherent Three-Terminal Thermoelectrics: Maximum Efficiency at Given Power Output

    NASA Astrophysics Data System (ADS)

    Whitney, Robert

    2016-05-01

    We consider the nonlinear scattering theory for three-terminal thermoelectric devices, used for power generation or refrigeration. Such a system is a quantum phase-coherent version of a thermocouple, and the theory applies to systems in which interactions can be treated at a mean-field level. We consider an arbitrary three-terminal system in any external magnetic field, including systems with broken time-reversal symmetry, such as chiral thermoelectrics, as well as systems in which the magnetic field plays no role. We show that the upper bound on efficiency at given power output is of quantum origin and is stricter than Carnot's bound. The bound is exactly the same as previously found for two-terminal devices, and can be achieved by three-terminal systems with or without broken time-reversal symmetry. Thus the bound appears to be universal for two-terminal and three-terminal (chiral and non-chiral) thermoelectrics.

  8. Aerobic capacity and peak power output of elite quadriplegic games players

    PubMed Central

    Goosey‐Tolfrey, V; Castle, P; Webborn, N

    2006-01-01

    Background Participation in wheelchair sports such as tennis and rugby enables people with quadriplegia to compete both individually and as a team at the highest level. Both sports are dominated by frequent, intermittent, short term power demands superimposed on a background of aerobic activity. Objective To gain physiological profiles of highly trained British quadriplegic athletes, and to examine the relation between aerobic and sprint capacity. Methods Eight male quadriplegic athletes performed an arm crank exercise using an ergometer fitted with a Schoberer Rad Messtechnik (SRM) powermeter. The sprint test consisted of three maximum‐effort sprints of five seconds duration against a resistance of 2%, 3%, and 4% of body mass. The highest power output obtained was recorded (PPO). Peak oxygen consumption (V̇o2peak), peak heart rate (HRpeak), and maximal power output (POaer) were determined. Results Mean POaer was 67.7 (16.2) W, mean V̇o2peak was 0.96 (0.17) litres/min, and HRpeak was 134 (19) beats/min for the group. There was high variability among subjects. Peak power over the five second sprint for the group was 220 (62) W. There was a significant correlation between V̇o2peak (litres/min) and POaer (W) (r  =  0.74, p<0.05). Conclusions These British quadriplegic athletes have relatively high aerobic fitness when compared with the available literature. Moreover, the anaerobic capacity of these athletes appeared to be relatively high compared with paraplegic participants. PMID:16611721

  9. Power output of skinned skeletal muscle fibres from the cheetah (Acinonyx jubatus)

    PubMed Central

    West, T.G.; Toepfer, Christopher N.; Woledge, Roger C.; Curtin, N.A.; Rowlerson, Anthea; Kalakoutis, Michaeljohn; Hudson, Penny; Wilson, Alan M.

    2015-01-01

    SUMMARY Muscle samples were taken from the gluteus, semitendinosus and longissimus muscles of a captive cheetah immediately after euthanasia. Fibres were “skinned” to remove all membranes leaving the contractile filament array intact and functional. Segments of skinned fibres from these cheetah muscles and from rabbit psoas muscle were activated at 20°C by a temperature jump protocol. Step and ramp length changes were imposed after active stress had developed. The stiffness of the non-contractile ends of the fibres (series elastic component) was measured at two different stress values in each fibre; stiffness was strongly dependent on stress. Using these stiffness values, the speed of shortening of the contractile component was evaluated, and hence the power it was producing. Fibres were analysed for myosin heavy chain content using gel electrophoresis, and identified as either slow (Type I) or fast (Type II). The power output of cheetah Type II fibre segments was 92.5 ± 4.3 W kg−1 (mean ±s.e., 14 fibres) during shortening at relative stress 0.15 (=stress during shortening/isometric stress). For rabbit psoas fibre segments (presumably Type IIX) the corresponding value was significantly higher (P<0.001), 119.7 ± 6.2 W kg−1 (mean ±s.e.,7 fibres). These values are our best estimates of the maximum power output under the conditions used here. Thus the contractile filament power from cheetah was less than that of rabbit when maximally activated at 20°C, and does not account for the superior locomotor performance of the cheetah. PMID:23580727

  10. A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data

    NASA Astrophysics Data System (ADS)

    Beeby, Stephen P.; Wang, Leran; Zhu, Dibin; Weddell, Alex S.; Merrett, Geoff V.; Stark, Bernard; Szarka, Gyorgy; Al-Hashimi, Bashir M.

    2013-07-01

    The design of vibration energy harvesters (VEHs) is highly dependent upon the characteristics of the environmental vibrations present in the intended application. VEHs can be linear resonant systems tuned to particular frequencies or nonlinear systems with either bistable operation or a Duffing-type response. This paper provides detailed vibration data from a range of applications, which has been made freely available for download through the Energy Harvesting Network’s online data repository. In particular, this research shows that simulation is essential in designing and selecting the most suitable vibration energy harvester for particular applications. This is illustrated through C-based simulations of different types of VEHs, using real vibration data from a diesel ferry engine, a combined heat and power pump, a petrol car engine and a helicopter. The analysis shows that a bistable energy harvester only has a higher output power than a linear or Duffing-type nonlinear energy harvester with the same Q-factor when it is subjected to white noise vibration. The analysis also indicates that piezoelectric transduction mechanisms are more suitable for bistable energy harvesters than electromagnetic transduction. Furthermore, the linear energy harvester has a higher output power compared to the Duffing-type nonlinear energy harvester with the same Q factor in most cases. The Duffing-type nonlinear energy harvester can generate more power than the linear energy harvester only when it is excited at vibrations with multiple peaks and the frequencies of these peaks are within its bandwidth. Through these new observations, this paper illustrates the importance of simulation in the design of energy harvesting systems, with particular emphasis on the need to incorporate real vibration data.

  11. The impact of wakes on power output at large offshore wind farms

    NASA Astrophysics Data System (ADS)

    Barthelmie, R. J.; Frandsen, S.; Hansen, K.; Schepers, G.; Rados, K.; Schlez, W.; Cabezon, D.; Jensen, L.; Neckelmann, S.

    2010-12-01

    The size of planned offshore wind farms is in the range 100 MW to 1 GW requiring tens to hundreds of wind turbines typically arranged in a large array. As wind farms offshore increase in size, one of the research challenges is to model interactions between the individual turbines, the atmosphere and neighbouring turbines to accurately predict power output before wind farm construction in addition to evaluation during the operation phase. The aim of the research described (part of the UpWind project) is to improve wind farm modelling and address the issue of providing more accurate power output predictions accounting for wind turbine wakes. DONG Energy and Vattenfall have allowed data from a number of cases studies to be used in this project. Detailed case studies of power losses due to wakes at the large wind farms at Nysted and Horns Rev have been analysed and are presented. A focus of the data analysis has been to understand the importance of turbulence and atmospheric stability at these offshore sites. It is evident that the magnitude of wake losses is primarily driven by wind speed but that signals from turbine spacing, turbulence and atmospheric stability can be determined. The case studies are simulated with a range of wind farm and computational fluid dynamics (CFD) models. The UpWind project presents a unique platform for model evaluation because the co-operation of a number of groups means that more models can be evaluated on standardised cases. Results shown indicate power losses due to wakes can be modelled, provided that the standard models are subject to some modifications. We also present some of the first full simulations of large offshore wind farms using CFD. Despite this progress, wake modelling of large wind farms is still subject to an unacceptably high degree of uncertainty requiring further work to understand the physical flow processes within and downwind of large wind farms.

  12. Power output of skinned skeletal muscle fibres from the cheetah (Acinonyx jubatus).

    PubMed

    West, Timothy G; Toepfer, Christopher N; Woledge, Roger C; Curtin, Nancy A; Rowlerson, Anthea; Kalakoutis, Michaeljohn; Hudson, Penny; Wilson, Alan M

    2013-08-01

    Muscle samples were taken from the gluteus, semitendinosus and longissimus muscles of a captive cheetah immediately after euthanasia. Fibres were 'skinned' to remove all membranes, leaving the contractile filament array intact and functional. Segments of skinned fibres from these cheetah muscles and from rabbit psoas muscle were activated at 20°C by a temperature-jump protocol. Step and ramp length changes were imposed after active stress had developed. The stiffness of the non-contractile ends of the fibres (series elastic component) was measured at two different stress values in each fibre; stiffness was strongly dependent on stress. Using these stiffness values, the speed of shortening of the contractile component was evaluated, and hence the power it was producing. Fibres were analysed for myosin heavy chain content using gel electrophoresis, and identified as either slow (type I) or fast (type II). The power output of cheetah type II fibre segments was 92.5±4.3 W kg(-1) (mean ± s.e., 14 fibres) during shortening at relative stress 0.15 (the stress during shortening/isometric stress). For rabbit psoas fibre segments (presumably type IIX) the corresponding value was significantly higher (P<0.001), 119.7±6.2 W kg(-1) (mean ± s.e., 7 fibres). These values are our best estimates of the maximum power output under the conditions used here. Thus, the contractile filament power from cheetah was less than that of rabbit when maximally activated at 20°C, and does not account for the superior locomotor performance of the cheetah.

  13. A biomechanical model for analysis of muscle force, power output and lower jaw motion in fishes.

    PubMed

    Westneat, Mark W

    2003-08-07

    Fish skulls are complex kinetic systems with movable components that are powered by muscles. Cranial muscles for jaw closing pull the mandible around a point of rotation at the jaw joint using a third-order lever mechanism. The present study develops a lever model for the jaw of fishes that uses muscle design and the Hill equation for nonlinear length-tension properties of muscle to calculate dynamic power output. The model uses morphometric data on skeletal dimensions and muscle proportions in order to predict behavior and force transmission mediated by lever action. The computer model calculates a range of dynamic parameters of jaw function including muscle force, torque, effective mechanical advantage, jaw velocity, bite duration, bite force, work and power. A complete list of required morphometrics is presented and a software program (MandibLever 2.0) is available for implementing lever analysis. Results show that simulations yield kinematics and timing profiles similar to actual fish feeding events. Simulation of muscle properties shows that mandibles reach their peak velocity near the start of jaw closing, peak force at the end of jaw closing, and peak power output at about 25% of the closing cycle time. Adductor jaw muscles with different mechanical designs must have different contractile properties and/or different muscle activity patterns to coordinate jaw closing. The effective mechanical advantage calculated by the model is considerably lower than the mechanical advantage estimated from morphological lever ratios, suggesting that previous studies of morphological lever ratios have overestimated force and underestimated velocity transmission to the mandible. A biomechanical model of jaw closing can be used to interpret the mechanics of a wide range of jaw mechanisms and will enable studies of the functional results of developmental and evolutionary changes in skull morphology and physiology.

  14. Efficiency and output power of thermoelectric module by taking into account corrected Joule and Thomson heat

    NASA Astrophysics Data System (ADS)

    Kim, Hee Seok; Liu, Weishu; Ren, Zhifeng

    2015-09-01

    The maximum conversion efficiency of a thermoelectric module composed of p- and n-type materials has been widely calculated using a constant property model since the 1950s, but this conventional model is only valid in limited conditions and no Thomson heat is accounted for. Since Thomson heat causes the efficiency under- or over-rated depending on the temperature dependence of Seebeck coefficient, it cannot be ignored especially in large temperature difference between the hot and cold sides. In addition, incorrect Joule heat is taken into consideration for heat flux evaluation of a thermoelectric module at thermal boundaries due to the assumption of constant properties in the conventional model. For this reason, more practical predictions for efficiency and output power and its corresponding optimum conditions of p- and n-type materials need to be revisited. In this study, generic formulae are derived based on a cumulative temperature dependence model including Thomson effect. The formulae reliably predict the maximum efficiency and output power of a thermoelectric module at a large temperature.

  15. Enhanced optical output power of blue light-emitting diodes with quasi-aligned gold nanoparticles

    PubMed Central

    2014-01-01

    The output power of the light from GaN-based light-emitting diodes (LEDs) was enhanced by fabricating gold (Au) nanoparticles on the surface of p-GaN. Quasi-aligned Au nanoparticle arrays were prepared by depositing Au thin film on an aligned suspended carbon nanotube thin film surface and then putting the Au-CNT system on the surface of p-GaN and thermally annealing the sample. The size and position of the Au nanoparticles were confined by the carbon nanotube framework, and no other additional residual Au was distributed on the surface of the p-GaN substrate. The output power of the light from the LEDs with Au nanoparticles was enhanced by 55.3% for an injected current of 100 mA with the electrical property unchanged compared with the conventional planar LEDs. The enhancement may originate from the surface plasmon effect and scattering effect of the Au nanoparticles. PMID:24393473

  16. Amalgam Surface Treatment by Different Output Powers of Er:YAG Laser:SEM Evaluation

    PubMed Central

    Hosseini, Mohammad Hashem; Hassanpour, Mehdi; Etemadi, Ardavan; Ranjbar Omrani, Ladan; Darvishpour, Hojat; Chiniforush, Nasim

    2015-01-01

    Introduction: The purpose of this study was to evaluate amalgam surfaces treated by different output powers of erbium-doped yttrium aluminum garnet (Er:YAG) laser by scanning electron microscope (SEM). Methods: Twenty-one amalgam blocks (8 mm × 8 mm, 3 mm thickness) were prepared by condensing silver amalgam (into putty impression material. After keeping them for 24 hours in distilled water, they were divided into 7 groups as follow: G1: Er:YAG laser (1 W, 50 mJ), G2: Er:YAG laser (2 W, 100 mJ), G3: Er:YAG laser (3 W, 150 mJ), G4: Sandblast, G5: Sandblast + Er:YAG laser (1 W, 50 mJ), G6: Sandblast +Er:YAG laser (2 W, 100 mJ) and G7: Sandblast +Er:YAG laser (3 W, 150 mJ). Then after preparation of all samples, they were examined by SEM. Results: The SEM results of amalgam surfaces treated by different output powers of Er:YAG laser showed some pitting areas with non-homogenous irregularities Conclusion: It seems that the application of sandblasting accompanied by Er:YAG laser irradiation can provide proper surface for bonding of orthodontic brackets. PMID:26705463

  17. Progress in increasing the maximum achievable output power of broad area diode lasers

    NASA Astrophysics Data System (ADS)

    Crump, P.; Wenzel, H.; Erbert, G.; Tränkle, G.

    2012-03-01

    High power broad area diode lasers provide the optical energy for all high performance laser systems, either directly or as pump sources for solid-state lasers. Continuous improvement is required in the peak achievable output power of these diode laser devices in order to enable performance improvements in full laser systems. In recent years, device technology has advanced to the point where the main limit to optical power is no longer device failure, but is instead power saturation due to various physical effects within the semiconductor device itself. For example, the combination of large optical cavity designs with advanced facet passivation means that facet failure is no longer the dominant limiting factor. Increases in the optical power therefore require firstly a clear identification of the limiting mechanisms, followed by design changes and material improvements to address these. Recent theoretical and experimental diagnostic studies at the Ferdinand-Braun-Institut have helped trace the saturation effects to three main effects: gain saturation, longitudinal-holeburning and current driven carrier leakage. Design changes based on these studies have enabled increases in the achievable emitted power density from broad area lasers. Recent experimental examples include ~100W from 100μm stripes under short-pulsed conditions, > 30W from 100μm stripes under quasi-continuous wave conditions and > 10W from 30μm stripes under continuous wave conditions. An overview of the results of the diagnostic studies performed at the FBH will be presented, and the design changes necessary to address the observed power saturation will be discussed.

  18. Output power fluctuations due to different weights of macro particles used in particle-in-cell simulations of Cerenkov devices

    NASA Astrophysics Data System (ADS)

    Bao, Rong; Wang, Hongguang; Li, Yongdong; Liu, Chunliang

    2016-07-01

    The output power fluctuations caused by weights of macro particles used in particle-in-cell (PIC) simulations of a backward wave oscillator and a travelling wave tube are statistically analyzed. It is found that the velocities of electrons passed a specific slow-wave structure form a specific electron velocity distribution. The electron velocity distribution obtained in PIC simulation with a relative small weight of macro particles is considered as an initial distribution. By analyzing this initial distribution with a statistical method, the estimations of the output power fluctuations caused by different weights of macro particles are obtained. The statistical method is verified by comparing the estimations with the simulation results. The fluctuations become stronger with increasing weight of macro particles, which can also be determined reversely from estimations of the output power fluctuations. With the weights of macro particles optimized by the statistical method, the output power fluctuations in PIC simulations are relatively small and acceptable.

  19. Probabilistic Physics-Based Risk Tools Used to Analyze the International Space Station Electrical Power System Output

    NASA Technical Reports Server (NTRS)

    Patel, Bhogila M.; Hoge, Peter A.; Nagpal, Vinod K.; Hojnicki, Jeffrey S.; Rusick, Jeffrey J.

    2004-01-01

    This paper describes the methods employed to apply probabilistic modeling techniques to the International Space Station (ISS) power system. These techniques were used to quantify the probabilistic variation in the power output, also called the response variable, due to variations (uncertainties) associated with knowledge of the influencing factors called the random variables. These uncertainties can be due to unknown environmental conditions, variation in the performance of electrical power system components or sensor tolerances. Uncertainties in these variables, cause corresponding variations in the power output, but the magnitude of that effect varies with the ISS operating conditions, e.g. whether or not the solar panels are actively tracking the sun. Therefore, it is important to quantify the influence of these uncertainties on the power output for optimizing the power available for experiments.

  20. The dynamics of distance, velocity and acceleration of power output in the 30-s Wingate Anaerobic Test.

    PubMed

    Bell, W; Cobner, D

    2011-02-01

    The purpose of the present study was to analyse the dynamics of distance, velocity and acceleration of the 30-s Wingate Anaerobic Test. Participants were 53 young adult Rugby Union football players of mean age 21.6±2.5 yr, 180.5±7.2 cm height and 89.3±12.7 kg body mass. Measurements of power were obtained using a friction-belt cycle ergometer (Monark 864, Varberg, Sweden). Individual data were aligned according to peak power output, which resulted in a mean value of 1 216±256 W, compared with one of 1 180±256 W when calculated cross-sectionally (p<0.0001). The derivatives of velocity and acceleration were obtained using the mathematical software Mathcad. Distance, velocity and acceleration curves were plotted simultaneously at 1 s intervals before and after peak power output (-4 s to +28 s). The initial rise of the distance curve was the result of a general trend in decreasing positive velocities as far as peak power output, followed thereafter by a gradual deterioration of power, the result of negative velocities from peak power output to +28 s peak power output. The initial values of the acceleration curve showed a fluctuating decelerating trend of negative values to peak power output; subsequently all values remained positive running along the zero acceleration time axis. Coefficients of correlation between peak power output and power values at -1 s to -3 s were 0.80, 0.65 and 0.63 respectively (p<0.001). The relationship between velocity and acceleration was - 0.968 (p<0.01).

  1. Optimization of the output and efficiency of a high power cascaded arc hydrogen plasma source

    SciTech Connect

    Vijvers, W. A. J.; Gils, C. A. J. van; Goedheer, W. J.; Meiden, H. J. van der; Veremiyenko, V. P.; Westerhout, J.; Lopes Cardozo, N. J.; Rooij, G. J. van; Schram, D. C.

    2008-09-15

    The operation of a cascaded arc hydrogen plasma source was experimentally investigated to provide an empirical basis for the scaling of this source to higher plasma fluxes and efficiencies. The flux and efficiency were determined as a function of the input power, discharge channel diameter, and hydrogen gas flow rate. Measurements of the pressure in the arc channel show that the flow is well described by Poiseuille flow and that the effective heavy particle temperature is approximately 0.8 eV. Interpretation of the measured I-V data in terms of a one-parameter model shows that the plasma production is proportional to the input power, to the square root of the hydrogen flow rate, and is independent of the channel diameter. The observed scaling shows that the dominant power loss mechanism inside the arc channel is one that scales with the effective volume of the plasma in the discharge channel. Measurements on the plasma output with Thomson scattering confirm the linear dependence of the plasma production on the input power. Extrapolation of these results shows that (without a magnetic field) an improvement in the plasma production by a factor of 10 over where it was in van Rooij et al. [Appl. Phys. Lett. 90, 121501 (2007)] should be possible.

  2. Enhancement of the output power of terahertz folded waveguide oscillator by two parallel electron beams

    SciTech Connect

    Li, Ke Cao, Miaomiao; Liu, Wenxin Wang, Yong; Liao, Suying

    2015-11-15

    A novel two-beam folded waveguide (FW) oscillator is presented for the purpose of gaining higher power with a small-size circuit compared with the normal FW oscillator. The high-frequency characteristics of the two-beam FW, including dispersion and interaction impedance, were investigated by the numerical simulation and compared with the one-beam FW. The radio-frequency loss of the two-beam FW was also analyzed. A 3-D particle-in-cell code CHIPIC was applied to analyze and optimize the performance of a G-band two-beam FW oscillator. The influences of the distance between the two beam tunnels, beam voltage, the number of periods, magnetic field, radius of beam tunnel, and the packing ratio on the circuit performance are investigated in detail. Compared with a one-beam circuit, a larger output power of the two-beam circuit with the same beam power was observed by the simulation. Moreover, the start-oscillation current of two-beam circuit is much lower than the one-beam circuit with better performance. It will favor the miniaturized design of the high-power terahertz oscillator.

  3. Why do tuna maintain elevated slow muscle temperatures? Power output of muscle isolated from endothermic and ectothermic fish.

    PubMed

    Altringham, J D; Block, B A

    1997-10-01

    It has been hypothesised that regional endothermy has evolved in the muscle of some tunas to enhance the locomotory performance of the fish by increasing muscle power output. Using the work loop technique, we have determined the relationship between cycle frequency and power output, over a range of temperatures, in isolated bundles of slow muscle fibres from the endothermic yellowfin tuna (Thunnus albacares) and its ectothermic relative the bonito (Sarda chiliensis). Power output in all preparations was highly temperature-dependent. A counter-current heat exchanger which could maintain a 10 degrees C temperature differential would typically double maximum muscle power output and the frequency at which maximum power is generated (fopt). The deep slow muscle of the tuna was able to operate at higher temperatures than slow muscle from the bonito, but was more sensitive to temperature change than more superficially located slow fibres from both tuna and bonito. This suggests that it has undergone some evolutionary specialisation for operation at higher, but relatively stable, temperatures. fopt of slow muscle was higher than the tailbeat frequency of undisturbed cruising tuna and, together with the high intrinsic power output of the slow muscle mass, suggests that cruising fish have a substantial slow muscle power reserve. This reserve should be sufficient to power significantly higher sustainable swimming speeds, presumably at lower energetic cost than if intrinsically less efficient fast fibres were recruited.

  4. Anaerobic power output of young obese men: comparison with non-obese men and the role of excess fat.

    PubMed

    Kitagawa, K; Suzuki, M; Miyashita, M

    1980-01-01

    Anaerobic power output was measured by the staircase climb test in 14 obese, 16 lean, and 21 ordinary men aged from 18--22 years. Fat storage rate (%fat) was estimated by densitometry. The obese group ranked highest with an average power output of 1,012 W. This value was significantly higher than those of the other two groups, 890 W for lean subjects and 855 W for ordinary subjects. The power output per kilogram of lean body mass of the obese group was the highest also. However, the vertical velocity was the lowest although the difference among the three average values was not statistically significant. To investigate the effect of excess fat, eight non-obese subjects engaged in an added-weight experiment. The value obtained was almost the same as for the obese group. The added weights made the vertical velocity decrease but the power output increase. Consequently, it was obvious that the excess fat of an obese man played a role only as an inert mass in the power output measurement. A significantly higher power output of the obese group might be due to more excess fat, and obesity itself was an advantage in the staircase climb test.

  5. Determination of the peak power output during maximal brief pedalling bouts.

    PubMed

    Nakamura, Y; Mutoh, Y; Miyashita, M

    1985-01-01

    The purpose of this study was to propose an optimization procedure for determining power output during very brief maximal pedalling exercise. Twenty-six healthy male students (21-28 years) performed anaerobic tests on a Monark bicycle ergometer with maximal effort for less than 10 s at eight different loads ranging from 28.1 to 84.2 Nm in pedalling moment. The maximal pedalling rate was determined from the minimal time required for one rotation of the cycle wheel. Pedalling rate decreased linearly with the load. The relationship between load and pedalling rate was represented by two linear regression equations for each subject; one regression equation was determined from eight pairs of pedalling rates and loads (r less than -0.976) and the other from three pairs (at 28.1, 46.8, 65.5 Nm; r less than -0.969). The two regression coefficients of the respective regression equations were almost identical. Mean +/- S.D. of maximal power output (Pmax) which was determined for each subject based on the two linear regression equations for eight pairs and three pairs of pedalling rates and loads was 930 +/- 187 W (13.4 +/- 1.6 W kgBW-1) and 927 +/- 187 W (13.4 +/- 1.6 W kgBW-1), respectively. There was no statistically significant difference between the values of Pmax which were obtained from each equation. It was concluded that maximal anaerobic power could be simply determined by performing maximal cycling exercise at three different loads.

  6. Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes

    NASA Astrophysics Data System (ADS)

    van Ngoc, Huynh; Kang, Dae Joon

    2016-02-01

    Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible devices, implantable telemetric energy receivers, electronic emergency equipment, and other self-powered nano/micro devices.Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible

  7. Loss of power output and laser fibre degradation during 120 watt lithium-triborate HPS laser vaporisation of the prostate

    NASA Astrophysics Data System (ADS)

    Hermanns, Thomas; Sulser, Tullio; Hefermehl, Lukas J.; Strebel, Daniel; Michel, Maurice-Stephan; Müntener, Michael; Meier, Alexander H.; Seifert, Hans-Helge

    2009-02-01

    It has recently been shown that laser fibre deterioration leads to a significant decrease of power output during 80 W potassium titanyl phosphate (KTP) laser vaporisation (LV) of the prostate. This decrease results in inefficient vaporisation especially towards the end of the procedure. For the new 120 W lithium-triborate (LBO) High Performance System (HPS) laser not only higher power but also changes in beam characteristics and improved fibre quality have been advertised. However, high laser power has been identified as a risk factor for laser fibre degradation. Between July and September 2008 25 laser fibres were investigated during routine 120 W LBO-LV in 20 consecutive patients. Laser beam power was measured at baseline and after the application of every 25 kJ during the LV procedure. Postoperatively, the surgeon subjectively rated the performance of the respective fibre on a scale from 1 to 4 (1 indicating perfect and 4 insufficient performance). Additionally, microscopic examination of the fibre tip was performed. Median energy applied was 212 kJ. Changes of power output were similar for all fibres. Typically, a steep decrease of power output within the first 50 kJ was followed by a continuous mild decrease until the end of the procedure. After the application of 50 kJ the median power output was 63% (58-73% interquartile range) of the baseline value. The median power output at the end of the 275 kJ-lifespan of the fibres was 42% (40-47%). The median surgeons' rating of the overall performance of the laser fibres was 2 and the median estimated final decrease of power output 60%. Some degree of degradation at the emission window was microscopically detectable in all cases after the procedure. However, even after the application of 275 kJ, these structural changes were only moderate. Minor degradation of the laser fibre was associated with a significant decrease of power output during 120 W LBO-LV. However, following an early, steep decrease, power output

  8. The effects of albuterol on power output in non-asthmatic athletes.

    PubMed

    Lemmer, J T; Fleck, S J; Wallach, J M; Fox, S; Burke, E R; Kearney, J T; Storms, W W

    1995-05-01

    The purpose of this study was to evaluate the effect of the beta 2-agonist albuterol (salbutamol) at twice the normal dosage (360 micrograms) on power output during a 30-second Wingate test and pulmonary function in highly trained cyclists (4 category 1 and 10 category II U.S.C.F. track cyclists). The cyclists did not have a history of exercise induced bronchial spasms, and a 5 step methacholine challenge confirmed all subjects to be non-asthmatic. The project was performed in a random block, double blind design. Twenty minutes before the 30-second Wingate cycle ergometer exercise, albuterol (90 micrograms per dose) or a saline placebo was administered by inhaler in 4 metered doses. Pulmonary function tests were performed at rest, 20 minutes post-inhalation, and 5, 10, 15 minutes post-exercise. After a standard warm-up, a 30-second Wingate anaerobic power test was performed on a cycle ergometer at a resistance of 0.10 kg (kg body mass)-1. Multi-variate ANOVA revealed no significant difference between the albuterol and placebo treatment for the anaerobic power measures: peak power (1,136.7 +/- 40.9 vs 1,124.8 +/- 39.8 W, mean +/- s.e.), total work (27,213.6 +/- 653.1 vs 27,093.3 +/- 677.4j), time to peak power (4.5 +/- 0.2 vs 4.8 +/- 0.5 s), and fatigue index (16.5 +/- 1.8 vs 16.6 +/- 1.8 W.s-1). Peak heart rate (181.6 +/- 3.7 vs 181.4 +/- 3.8 bpm), or blood lactate (14.0 +/- 0.9 vs 13.8 +/- 0.8 mmol.l-1) 3 min after the exercise bout were not significantly different between treatments.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. The Measurement of Maximal (Anaerobic) Power Output on a Cycle Ergometer: A Critical Review

    PubMed Central

    Driss, Tarak; Vandewalle, Henry

    2013-01-01

    The interests and limits of the different methods and protocols of maximal (anaerobic) power (Pmax) assessment are reviewed: single all-out tests versus force-velocity tests, isokinetic ergometers versus friction-loaded ergometers, measure of Pmax during the acceleration phase or at peak velocity. The effects of training, athletic practice, diet and pharmacological substances upon the production of maximal mechanical power are not discussed in this review mainly focused on the technical (ergometer, crank length, toe clips), methodological (protocols) and biological factors (muscle volume, muscle fiber type, age, gender, growth, temperature, chronobiology and fatigue) limiting Pmax in cycling. Although the validity of the Wingate test is questionable, a large part of the review is dedicated to this test which is currently the all-out cycling test the most often used. The biomechanical characteristics specific of maximal and high speed cycling, the bioenergetics of the all-out cycling exercises and the influence of biochemical factors (acidosis and alkalosis, phosphate ions…) are recalled at the beginning of the paper. The basic knowledge concerning the consequences of the force-velocity relationship upon power output, the biomechanics of sub-maximal cycling exercises and the study on the force-velocity relationship in cycling by Dickinson in 1928 are presented in Appendices. PMID:24073413

  10. Functional Capacity, Muscle Fat Infiltration, Power Output, and Cognitive Impairment in Institutionalized Frail Oldest Old

    PubMed Central

    Casas-Herrero, Alvaro; Cadore, Eduardo L.; Zambom-Ferraresi, Fabricio; Idoate, Fernando; Millor, Nora; Martínez-Ramirez, Alicia; Gómez, Marisol; Rodriguez-Mañas, Leocadio; Marcellán, Teresa; de Gordoa, Ana Ruiz; Marques, Mário C.

    2013-01-01

    Abstract This study examined the neuromuscular and functional performance differences between frail oldest old with and without mild cognitive impairment (MCI). In addition, the associations between functional capacities, muscle mass, strength, and power output of the leg muscles were also examined. Forty-three elderly men and women (91.9±4.1 years) were classified into three groups—the frail group, the frail with MCI group (frail+MCI), and the non-frail group. Strength tests were performed for upper and lower limbs. Functional tests included 5-meter habitual gait, timed up-and-go (TUG), dual task performance, balance, and rise from a chair ability. Incidence of falls was assessed using questionnaires. The thigh muscle mass and attenuation were assessed using computed tomography. There were no differences between the frail and frail+MCI groups for all the functional variables analyzed, except in the cognitive score of the TUG with verbal task, which frail showed greater performance than the frail+MCI group. Significant associations were observed between the functional performance, incidence of falls, muscle mass, strength, and power in the frail and frail+MCI groups (r=−0.73 to r=0.83, p<0.01 to p<0.05). These results suggest that the frail oldest old with and without MCI have similar functional and neuromuscular outcomes. Furthermore, the functional outcomes and incidences of falls are associated with muscle mass, strength, and power in the frail elderly population. PMID:23822577

  11. The measurement of maximal (anaerobic) power output on a cycle ergometer: a critical review.

    PubMed

    Driss, Tarak; Vandewalle, Henry

    2013-01-01

    The interests and limits of the different methods and protocols of maximal (anaerobic) power (Pmax) assessment are reviewed: single all-out tests versus force-velocity tests, isokinetic ergometers versus friction-loaded ergometers, measure of Pmax during the acceleration phase or at peak velocity. The effects of training, athletic practice, diet and pharmacological substances upon the production of maximal mechanical power are not discussed in this review mainly focused on the technical (ergometer, crank length, toe clips), methodological (protocols) and biological factors (muscle volume, muscle fiber type, age, gender, growth, temperature, chronobiology and fatigue) limiting Pmax in cycling. Although the validity of the Wingate test is questionable, a large part of the review is dedicated to this test which is currently the all-out cycling test the most often used. The biomechanical characteristics specific of maximal and high speed cycling, the bioenergetics of the all-out cycling exercises and the influence of biochemical factors (acidosis and alkalosis, phosphate ions…) are recalled at the beginning of the paper. The basic knowledge concerning the consequences of the force-velocity relationship upon power output, the biomechanics of sub-maximal cycling exercises and the study on the force-velocity relationship in cycling by Dickinson in 1928 are presented in Appendices.

  12. Study on electrical power output of floating photovoltaic and conventional photovoltaic

    NASA Astrophysics Data System (ADS)

    Azmi, Mohd Syahriman Mohd; Othman, Mohd Yusof Hj.; Ruslan, Mohd Hafidz Hj.; Sopian, Kamaruzzaman; Majid, Zafri Azran Abdul

    2013-11-01

    In this paper, several attempt were made to investigate the best electrical performance of a floating photovoltaic (FPV). In photovoltaic (PV) system, the electrical efficiency of the system decreases rapidly as the PV module temperature increases. Therefore, in order to achieve higher electrical efficiency, the PV module have to be cooled by removing the heat in some way. This paper presents study on a conventional photovoltaic (PV) module and floating photovoltaic (FPV) system. The objective of the study is to compare the performance of conventional PV module and FPV. At FPV, an absorber comprises of aluminum flat-box housing was attached to the back of the PV module to absorb heat. Water is used to cool the PV module by passing it under the bottom surface of the module. The system was tested under simulated solar intensity of 417 W/m2, 667 W/m2 and 834 W/m2. Current (I) - voltage (V) curves and power (P) - voltage (V) curves of the results were analyzed. The study found that the FPV has higher efficiency and total power gain than the conventional PV module. The average PV temperature in a FPV might be lower than that for a conventional PV module, thereby increasing its electrical power output. The simplicity of the system structure and aluminum as the chosen material enabled it to reduce the installation costs for a larger scale. Applicable as heat sink, this FPV system is convenient to place on lakes, ponds or rivers.

  13. Connection Configurations to Increase Operational Range and Output Power of Piezoelectric MEMS Vibration Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Du, Sijun; Chen, Shao-Tuan; Jia, Yu; Arroyo, Emmanuelle; Seshia, Ashwin

    2016-11-01

    Among the various methods of extracting energy harvested by a piezoelectric vibration energy harvester, full-bridge rectifiers (FBR) are widely employed due to its simplicity and stability. However, its efficiency and operational range are limited due to a threshold voltage that the open-circuit voltage generated from the piezoelectric transducer (PT) must attain prior to any energy extraction. This voltage linearly depends on the output voltage of the FBR and the forward voltage drop of diodes and the nature of the interface can significantly limit the amount of extracted energy under low excitation levels. In this paper, a passive scheme is proposed to split the electrode of a micromachined PT into multiple (n) equal regions, which are electrically connected in series. The power output from such a series connected MEMS PT allows for the generated voltage to readily overcome the threshold set by the FBR. Theoretical calculations have been performed in this paper to assess the performance for different series stages (n values) and the theory has been experimentally validated. The results show that a PT with more series stages (high n values) improves the efficiency of energy extraction relative to the case with fewer series-connected stages under weak excitation levels.

  14. Agreement between the force platform method and the combined method measurements of power output during the loaded countermovement jump.

    PubMed

    Mundy, Peter D; Lake, Jason P; Carden, Patrick J C; Smith, Neal A; Lauder, Mike A

    2016-01-01

    There are two perceived criterion methods for measuring power output during the loaded countermovement jump (CMJ): the force platform method and the combined method (force platform + optoelectronic motion capture system). Therefore, the primary aim of the present study was to assess agreement between the force platform method and the combined method measurements of peak power and mean power output during the CMJ across a spectrum of loads. Forty resistance-trained team sport athletes performed maximal effort CMJ with additional loads of 0 (body mass only), 25, 50, 75 and 100% of body mass (BM). Bias was present for peak velocity, mean velocity, peak power and mean power at all loads investigated, and present for mean force up to 75% of BM. Peak velocity, mean velocity, peak power and mean power 95% ratio limits of agreement were clinically unacceptable at all loads investigated. The 95% ratio limits of agreement were widest at 0% of BM and decreased linearly as load increased. Therefore, the force platform method and the combined method cannot be used interchangeably for measuring power output during the loaded CMJ. As such, if power output is to be meaningfully investigated, a standardised method must be adopted.

  15. Power output and load following in a fuel cell fueled by membrane reactor hydrogen

    NASA Astrophysics Data System (ADS)

    Buxbaum, Robert; Lei, Hanwei

    Hydrogen for current polymer electrolyte membrane (PEM) and alkaline fuel cells must be supplied with not more than a few tens of ppm of CO or CO 2, respectively. If the hydrogen is generated, as it is used, it must be produced efficiently over a broad fuel cell demand range, and follow load changes on the order of seconds. We generated hydrogen for a broad variety of demands from a 1.09/1 molar mix of methanol/water using a commercial water-gas shift catalyst and a membrane reactor. The reactor output hydrogen was fed directly into a PEM fuel cell. Demand was varied between 0 and 0.9 A/cm 2, both in flow through operation and in dead-end operation. We found power densities virtually identical to those with bottled gas. We also demonstrated inherent load following on a time scale ≤2000 μs.

  16. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    NASA Astrophysics Data System (ADS)

    Kaushik, Meenu; Joshi, L. M.

    2016-03-01

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.

  17. Efficiency at maximum power output of an irreversible Carnot-like cycle with internally dissipative friction

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; He, Jizhou

    2012-11-01

    We investigate the efficiency at the maximum power output (EMP) of an irreversible Carnot engine performing finite-time cycles between two reservoirs at constant temperatures Th and Tc (

  18. Synchronous Generator with HTS-2G field coils for Windmills with output power 1 MW

    NASA Astrophysics Data System (ADS)

    Kovalev, K.; Kovalev, L.; Poltavets, V.; Samsonovich, S.; Ilyasov, R.; Levin, A.; Surin, M.

    2014-05-01

    Nowadays synchronous generators for wind-mills are developed worldwide. The cost of the generator is determined by its size and weight. In this deal the implementation of HTS-2G generators is very perspective. The application of HTS 2G field coils in the rotor allows to reduce the size of the generator is 1.75 times. In this work the design 1 MW HTS-2G generator is considered. The designed 1 MW HTS-2G generator has the following parameters: rotor diameter 800 mm, active length 400 mm, phase voltage 690V, rotor speed 600 min-1 rotor field coils with HTS-2G tapes. HTS-2G field coils located in the rotating cryostat and cooled by liquid nitrogen. The simulation and optimization of HTS-2G field coils geometry allowed to increase feed DC current up to 50A. Copper stator windings are water cooled. Magnetic and electrical losses in 1 MW HTS-2G generator do not exceed 1.6% of the nominal output power. In the construction of HTS-2G generator the wave multiplier with ratio 1:40 is used. The latter allows to reduce the total mass of HTS-2G generator down to 1.5 tons. The small-scale model of HTS-2G generator with output power 50 kW was designed, manufactured and tested. The test results showed good agreement with calculation results. The manufacturing of 1 MW HTS-2G generator is planned in 2014. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry".

  19. The role of sense of effort on self-selected cycling power output

    PubMed Central

    Christian, Ryan J.; Bishop, David J.; Billaut, François; Girard, Olivier

    2014-01-01

    Purpose: We explored the effects of the sense of effort and accompanying perceptions of peripheral discomfort on self-selected cycle power output under two different inspired O2 fractions. Methods: On separate days, eight trained males cycled for 5 min at a constant subjective effort (sense of effort of ‘3’ on a modified Borg CR10 scale), immediately followed by five 4-s progressive submaximal (sense of effort of “4, 5, 6, 7, and 8”; 40 s between bouts) and two 4-s maximal (sense of effort of “10”; 3 min between bouts) bouts under normoxia (NM: fraction of inspired O2 [FiO2] 0.21) and hypoxia (HY: [FiO2] 0.13). Physiological (Heart Rate, arterial oxygen saturation (SpO2) and quadriceps Root Mean Square (RMS) electromyographical activity) and perceptual responses (overall peripheral discomfort, difficulty breathing and limb discomfort) were recorded. Results: Power output and normalized quadriceps RMS activity were not different between conditions during any exercise bout (p > 0.05) and remained unchanged across time during the constant-effort cycling. SpO2 was lower, while heart rate and ratings of perceived difficulty breathing were higher under HY, compared to NM, at all time points (p < 0.05). During the constant-effort cycling, heart rate, overall perceived discomfort, difficulty breathing and limb discomfort increased with time (all p < 0.05). All variables (except SpO2) increased along with sense of effort during the brief progressive cycling bouts (all p < 0.05). During the two maximal cycling bouts, ratings of overall peripheral discomfort displayed an interaction between time and condition with ratings higher in the second bout under HY vs. NM conditions. Conclusion: During self-selected, constant-effort and brief progressive, sub-maximal, and maximal cycling bouts, mechanical work is regulated in parallel to the sense of effort, independently from peripheral sensations of discomfort. PMID:24744734

  20. Warm-up Practices in Elite Boxing Athletes: Impact on Power Output.

    PubMed

    Cunniffe, Brian; Ellison, Mark; Loosemore, Mike; Cardinale, Marco

    2017-01-01

    Cunniffe, B, Ellison, M, Loosemore, M, and Cardinale, M. Warm-up practices in elite boxing athletes: Iimpact on power output. J Strength Cond Res 31(1): 95-105, 2017-This study evaluated the performance impact of routine warm-up strategies in elite Olympic amateur boxing athletes and physiological implications of the time gap (GAP) between warm-up and boxing activity. Six male boxers were assessed while performing standardized prefight warm-up routines. Core and skin temperature measurements (Tcore and Tskin), heart rate, and upper- and lower-body power output (PO) were assessed before and after warm-up, during a 25-minutes GAP and after 3 × 2 minutes rounds of sparring. Reflected temperature (Tc) was also determined using high-resolution thermal images at fixed time-points to explore avenues for heat loss. Despite individual differences in warm-up duration (range 7.4-18.5 minutes), increases in Tcore and Tskin occurred (p ≤ 0.05). Corresponding increases (4.8%; p ≤ 0.05) in countermovement jump (CMJ) height and upward-rightward shifts in upper-body force-velocity and power-velocity curves were observed. Athletes remained inactive during the 25-minutes GAP with a gradual and significant increase in Tc occurring by the end of GAP suggesting the likelihood of heat loss. Decreases in CMJ height and upper-body PO were observed after 15 minutes and 25 minutes GAP (p ≤ 0.05). By the end of GAP period, all performance variables had returned to pre-warm-up values. Results suggest routine warm-ups undertaken by elite boxers have acute effects on power-generating capacity. Gradual decreases in performance variables are evident with inactivity and seem related to alterations in body temperature. Considering the constraints of major competitions and time spent in air conditioned holding areas before fights, practitioners should be aware of the potential of nullifying the warm-up effects.

  1. Muscle coordination limits efficiency and power output of human limb movement under a wide range of mechanical demands

    PubMed Central

    Wakeling, James M.

    2015-01-01

    This study investigated the influence of cycle frequency and workload on muscle coordination and the ensuing relationship with mechanical efficiency and power output of human limb movement. Eleven trained cyclists completed an array of cycle frequency (cadence)-power output conditions while excitation from 10 leg muscles and power output were recorded. Mechanical efficiency was maximized at increasing cadences for increasing power outputs and corresponded to muscle coordination and muscle fiber type recruitment that minimized both the total muscle excitation across all muscles and the ineffective pedal forces. Also, maximum efficiency was characterized by muscle coordination at the top and bottom of the pedal cycle and progressive excitation through the uniarticulate knee, hip, and ankle muscles. Inefficiencies were characterized by excessive excitation of biarticulate muscles and larger duty cycles. Power output and efficiency were limited by the duration of muscle excitation beyond a critical cadence (120–140 rpm), with larger duty cycles and disproportionate increases in muscle excitation suggesting deteriorating muscle coordination and limitations of the activation-deactivation capabilities. Most muscles displayed systematic phase shifts of the muscle excitation relative to the pedal cycle that were dependent on cadence and, to a lesser extent, power output. Phase shifts were different for each muscle, thereby altering their mechanical contribution to the pedaling action. This study shows that muscle coordination is a key determinant of mechanical efficiency and power output of limb movement across a wide range of mechanical demands and that the excitation and coordination of the muscles is limited at very high cycle frequencies. PMID:26445873

  2. Vibration exercise as a warm-up modality for deadlift power output.

    PubMed

    Cochrane, Darryl J; Coley, Karl W; Pritchard, Hayden J; Barnes, Matthew J

    2015-04-01

    Vibration exercise (VbX) has gained popularity as a warm-up modality to enhance performance in golf, baseball, and sprint cycling, but little is known about the efficacy of using VbX as a warm-up before resistance exercise, such as deadlifting. The aim of this study was to compare the effects of a deadlift (DL)-specific warm-up, VbX warm-up, and Control on DL power output (PO). The DL warm-up (DL-WU) included 10, 8, and 5 repetitions performed at 30, 40, and 50% 1-repetition maximum (1RM), respectively, where the number of repetitions was matched by body-weight squats performed with vibration and without vibration (Control). The warm-up conditions were randomized and performed at least 2 days apart. Peak power (PP), mean power, rate of force development (RFD), and electromyography (EMG) were measured during the concentric phase of 2 consecutive DLs (75% 1RM) at 30 seconds and 2:30 minutes after the warm-up conditions. There was no significant (p > 0.05) main effect or interaction effect between the DL-WU, VbX warm-up, and Control for PP, mean power, RFD, and EMG. Vibration exercise warm-up did not exhibit an ergogenic effect to potentiate muscle activity more than the specific DL-WU and Control. Therefore, DL PO is affected to a similar extent, irrespective of the type of stimuli, when the warm-up is not focused on raising muscle temperature.

  3. Study of laser output power stabilization for a deuterium cyanide laser interferometer on the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Shi, N.; Gao, X.; Jie, Y. X.; Wang, E. H.

    2011-02-01

    A control system which can improve stabilization of laser power in long-term operation automatically is designed for a deuterium cyanide (DCN) far-infrared laser interferometer on the Experimental Advanced Superconducting Tokamak. It stabilizes the output power of the laser by a closed-loop control system aided by a programmable logic controller. The system has been applied to the DCN laser and it has been proven that it is effective in stabilizing the laser near the highest scope of the output power.

  4. Absolute Theta Power in the Frontal Cortex During a Visuomotor Task: The Effect of Bromazepam on Attention.

    PubMed

    Gongora, Mariana; Peressuti, Caroline; Velasques, Bruna; Bittencourt, Juliana; Teixeira, Silmar; Arias-Carrión, Oscar; Cagy, Mauricio; Ribeiro, Pedro

    2015-10-01

    Bromazepam is a benzodiazepine, which has been widely employed in the treatment of anxiety. We investigated the electrophysiological changes in absolute theta power within the frontal cortex when individuals performed a visuomotor task under bromazepam. The sample of 17 healthy individuals was randomized into 2 experimental conditions, under which bromazepam 6 mg and placebo were administered on different days. All subjects were right -handed, with no mental or physical illness and were not using any psychoactive or psychotropic substance during the entire period of the study. We found an increase in reaction time under bromazepam compared with placebo . With regard to the electrophysiological variable, we found a lower theta power value in the prefrontal cortex prior to task execution, compared with after. We therefore suggested that this could be an increase of neural activity in this region, because of the subjects' readiness to perform the task, that is, because of their higher alertness. The right lateral frontal region showed lower theta power under bromazepam for pre- and post-finger movement. This could have occurred because of more effort to execute the task. In the left frontal region: premovement did not demonstrate any difference between conditions, possibly because the proposed task was simple to execute. In conclusion, theta power plays an important role in the analysis of visuomotor performance, assuming that bromazepam causes impairment on sustained attention and sensory perception.

  5. Bifacial dye-sensitized solar cells with enhanced rear efficiency and power output.

    PubMed

    Cai, Hongyuan; Tang, Qunwei; He, Benlin; Li, Ru; Yu, Liangmin

    2014-12-21

    Pursuing a high power conversion efficiency with no sacrifice of cost-effectiveness has been a persistent objective for dye-sensitized solar cells (DSSCs). One promising solution to this impasse is increased light harvesting. Previous efforts in light harvesting have been made on setting blocking layers or reflecting layers, or adding a light harvester, resulting in tedious procedures without reducing the expenses. We present a mild solution strategy for synthesizing transparent Ru-Se alloy counter electrodes (CEs) for bifacial DSSC applications, displaying optimal front and rear efficiencies of 8.76% and 5.90%, respectively. In comparison with pristine Pt-based solar cells, the maximum power output has also been markedly enhanced. Moreover, fast start-up, high multiple start capability, and good stability are observed in the bifacial DSSCs with transparent Ru-Se binary alloy electrodes. The impressive efficiencies along with simple preparation of the cost-effective Ru-Se alloy CEs demonstrates their potential application in robust DSSCs.

  6. Multicomponent exercises including muscle power training enhance muscle mass, power output, and functional outcomes in institutionalized frail nonagenarians.

    PubMed

    Cadore, Eduardo L; Casas-Herrero, Alvaro; Zambom-Ferraresi, Fabricio; Idoate, Fernando; Millor, Nora; Gómez, Marisol; Rodriguez-Mañas, Leocadio; Izquierdo, Mikel

    2014-04-01

    This randomized controlled trial examined the effects of multicomponent training on muscle power output, muscle mass, and muscle tissue attenuation; the risk of falls; and functional outcomes in frail nonagenarians. Twenty-four elderly (91.9 ± 4.1 years old) were randomized into intervention or control group. The intervention group performed a twice-weekly, 12-week multicomponent exercise program composed of muscle power training (8-10 repetitions, 40-60 % of the one-repetition maximum) combined with balance and gait retraining. Strength and power tests were performed on the upper and lower limbs. Gait velocity was assessed using the 5-m habitual gait and the time-up-and-go (TUG) tests with and without dual-task performance. Balance was assessed using the FICSIT-4 tests. The ability to rise from a chair test was assessed, and data on the incidence and risk of falls were assessed using questionnaires. Functional status was assessed before measurements with the Barthel Index. Midthigh lower extremity muscle mass and muscle fat infiltration were assessed using computed tomography. The intervention group showed significantly improved TUG with single and dual tasks, rise from a chair and balance performance (P < 0.01), and a reduced incidence of falls. In addition, the intervention group showed enhanced muscle power and strength (P < 0.01). Moreover, there were significant increases in the total and high-density muscle cross-sectional area in the intervention group. The control group significantly reduced strength and functional outcomes. Routine multicomponent exercise intervention should be prescribed to nonagenarians because overall physical outcomes are improved in this population.

  7. Wind tunnel measurements of the power output variability and unsteady loading in a micro wind farm model

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan

    2015-11-01

    To optimize wind farm layouts for a maximum power output and wind turbine lifetime, mean power output measurements in wind tunnel studies are not sufficient. Instead, detailed temporal information about the power output and unsteady loading from every single wind turbine in the wind farm is needed. A very small porous disc model with a realistic thrust coefficient of 0.75 - 0.85, was designed. The model is instrumented with a strain gage, allowing measurements of the thrust force, incoming velocity and power output with a frequency response up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow. Thanks to its small size and compact instrumentation, the model allows wind tunnel studies of large wind turbine arrays with detailed temporal information from every wind turbine. Translating to field conditions with a length-scale ratio of 1:3,000 the frequencies studied from the data reach from 10-4 Hz up to about 6 .10-2 Hz. The model's capabilities are demonstrated with a large wind farm measurement consisting of close to 100 instrumented models. A high correlation is found between the power outputs of stream wise aligned wind turbines, which is in good agreement with results from prior LES simulations. Work supported by ERC (ActiveWindFarms, grant no. 306471) and by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project).

  8. Towards high power output of scaled-up benthic microbial fuel cells (BMFCs) using multiple electron collectors.

    PubMed

    Liu, Bingchuan; Williams, Isaiah; Li, Yan; Wang, Lei; Bagtzoglou, Amvrossios; McCutcheon, Jeffrey; Li, Baikun

    2016-05-15

    This study aimed at achieving high power output of benthic microbial fuel cells (BMFCs) with novel geometric anode setups (inverted tube granular activated charcoal (IT-GAC) and carbon cloth roll (CCR)) and multiple anodes/electron collectors. The lab-scale tests showed the power density of IT-GAC and CCR anodes achieved at 2.92 and 2.55 W m(-2), the highest value ever reported in BMFCs. The power density of BMFCs substantially increased with electron collector number (titanium rods) in anodes. The connection of multiple electron collectors with multiple cathodes had much higher total voltage/current output than that with single cathode. The possibility of maintaining high power density at scaled-up BMFCs was explored by arranging multiple anodes in sediment. The compact configuration of multiple CCR anodes contacting each other did not deteriorate the performance of individual anodes, showing the feasibility of maximizing anode numbers per sediment footprint and achieving high power output. Multiple IT-GAC and CCR anodes with multiple collectors effectively utilized sediment at both horizontal and vertical directions and enhanced electron collection efficiency. This study demonstrated that bacterial adhesion and electron collection should be optimized on small anodes in order to maintain high power density and achieve high power output in the scaled-up BMFCs.

  9. Catastrophic optical degradation of the output facet of high-power single-transverse-mode diode lasers. 1. Physical model

    SciTech Connect

    Miftakhutdinov, D R; Bogatov, Alexandr P; Drakin, A E

    2010-09-10

    The physical model of catastrophic optical degradation (COD) of the output facet of high-power single- transverse-mode diode lasers is developed. The model excels other models both in completeness of the physical analysis of the processes leading to COD and in allowance for design feature of lasers used to increase the COD threshold - protective coating of the output facet and current limitations near it. (lasers)

  10. Lowest of AC-DC power output for electrostrictive polymers energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Meddad, Mounir; Eddiai, Adil; Hajjaji, Abdelowahed; Guyomar, Daniel; Belkhiat, Saad; Boughaleb, Yahia; Chérif, Aida

    2013-11-01

    Advances in technology led to the development of electronic circuits and sensors with extremely low electricity consumption. At the same time, structural health monitoring, technology and intelligent integrated systems created a need for wireless sensors in hard to reach places in aerospace vehicles and large civil engineering structures. Powering sensors with energy harvesters eliminates the need to replace batteries on a regular basis. Scientists have been forced to search for new power source that are able to harvested energy from their surrounding environment (sunlight, temperature gradients etc.). Electrostrictive polymer belonging to the family of electro-active polymers, offer unique properties for the electromechanical transducer technology has been of particular interest over the last few years in order to replace conventional techniques such as those based on piezoelectric or electromagnetic, these materials are highly attractive for their low-density, with large strain capability that can be as high as two orders of magnitude greater than the striction-limited, rigid and fragile electroactive ceramics. Electrostrictive polymers sensors respond to vibration with an ac output signal, one of the most important objectives of the electronic interface is to realize the required AC-DC conversion. The goal of this paper is to design an active, high efficiency power doubler converter for electrostrictive polymers exclusively uses a fraction of the harvested energy to supply its active devices. The simulation results show that it is possible to obtain a maximum efficiency of the AC-DC converter equal to 80%. Premiliminary experimental measurements were performed and the results obtained are in good agreement with simulations.

  11. Systematic Observation of Time-Dependent Phenomena in the RF Output Spectrum of High Power Gyrotrons

    NASA Astrophysics Data System (ADS)

    Schlaich, Andreas; Gantenbein, Gerd; Kern, Stefan; Thumm, Manfred

    2012-09-01

    At IHM/KIT, high power gyrotrons with conventional cavity (e.g. 1 MW CW at 140 GHz for the stellarator Wendelstein 7-X) and coaxial cavity (2 MW shortpulse at 170 GHz for ITER) for fusion applications are being developed and verified experimentally. Especially with respect to the problem of parasitic RF oscillations in the beam tunnel of some W7-X tubes, investigations of the gyrotron RF output spectrum have proved to be a valuable source of diagnostic information. Signs of transient effects in millisecond pulses, like frequency switching or intermittent low-frequency modulation, have indicated that truly time-dependent measurements with high frequency resolution and dynamic range could give deeper insight into these phenomena. In this paper, an improved measurement system is presented, which employs a fast oscilloscope as receiver. Shorttime Fourier transform (STFT) is applied to the time-domain signal, yielding time-variant spectra with frequency resolutions only limited by acquisition length and STFT segmentation choice. Typical reasonable resolutions are in the range of 100 kHz to 10 MHz with a currently memory-limited maximum acquisition length of 4 ms. A key feature of the system consists in the unambiguity of frequency measurement: The system receives through two parallel channels, each using a harmonic mixer (h = 9 - 12) to convert the signal from RF millimeter wave frequencies (full D-Band, 110 - 170 GHz) to IF (0 - 3 GHz). For each IF output signal of each individual mixer, injection side and receiving harmonic are initially not known. Using accordingly determined LO frequencies, this information is retrieved from the redundancy of the channels, yielding unambiguously reconstructed RF spectra with a total span of twice the usable receiver IF bandwidth, up to ≈ 6 GHz in our case. Using the system, which is still being improved continuously, various transient effects like cavity mode switching, parasitic oscillation frequency variation, and lowfrequency

  12. Analysis of dynamic, modulation, and output power properties of self-assembled quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Ghodsi Nahri, D.

    2012-09-01

    Dynamic, modulation, and output power (OP) characteristics of In(Ga)As/GaAs self-assembled quantum-dot lasers (SAQDLs) using multi-mode and multi-population rate equations analysis considering nonlinear material gain and thermal carrier escape pathways to both wetting layer and barriers are presented. I show that despite of significant effect of nonlinear material gain on time evolution of photon population, it does not affect 3-dB modulation bandwidth (MB). Thermal carrier escape processes have minor declining effects on modulation properties at around room-temperature (RT) operation and higher. Although turn-on delay increases with enhancement of temperature, in some bias currents, there is a reverse jump which is due to thermal carrier escape to barriers. In addition, it is indicated that optimum bias current to maximize MB increases as temperature enhances and that more disk-like SAQDs may provide higher MBs. Variations of some key parameters, bias current or mean quantum-dot (QD) radius, provide similar changing patterns for both MB and OP. While altering most of key parameters, average QD height, QD coverage, stripe width of the laser cavity, and temperature, leads to a tradeoff between MB and OP for a specific interval of those parameters. I show that considering our purpose, which is the highest OP or MB, we can achieve maximum possible output designing key parameters. For the present device, optimizing structural parameters, MB about 14 GHz is achieved at around RT operation under the moderate bias current 10 mA, which can be improved up to 30 GHz with decreasing carrier capture time. The results presented here may be used for designing QD lasers suitable for optical telecommunication.

  13. High brightness direct diode laser with kW output power

    NASA Astrophysics Data System (ADS)

    Fritsche, Haro; Kruschke, Bastian; Koch, Ralf; Ferrario, Fabio; Kern, Holger; Pahl, Ulrich; Pflueger, Silke; Gries, Wolfgang

    2014-03-01

    High power, high brightness diode lasers are beginning to challenge solid state lasers, i.e. disk and fiber lasers. The core technologies for brightness scaling of diode lasers are optical stacking and dense spectral combining (DSC), as well as improvements of the diode material. Diode lasers will have the lowest cost of ownership, highest efficiency and most compact design among all lasers. In our modular product design tens of single emitters are combined in a compact package and launched into a 200 μm fiber with 0.08 NA. Dense spectral combining enables power scaling from 80 W to kilowatts. Volume Bragg Gratings and dichroic filters yield high optical efficiencies of more than 80% at low cost. Each module emits up to 500 W with a beam quality of 5.5 mm*mrad and less than 20 nm linewidth. High speed switching power supplies are integrated into the module and rise times as short as 6 μs have been demonstrated. Fast control algorithms based on FPGA and embedded microcontroller ensure high wall plug efficiency with a unique control loop time of only 30 μs. Individual modules are spectrally combined to result in direct diode laser systems with kilowatts of output power at identical beam quality. For low loss fiber coupling a 200 μm fiber is used and the NA is limited to 0.08 corresponding to a beam quality of 7.5 mm*mrad. The controller architecture is fully scalable without sacrificing loop time. We leverage automated manufacturing for cost effective, high yield production. A precision robotic system handles and aligns the individual fast axis lenses and tracks all quality relevant data. Similar technologies are also deployed for dense spectral combining aligning the VBG and dichroic filters. Operating at wavelengths between 900 nm and 1100 nm, these systems are mainly used in cutting and welding, but the technology can also be adapted to other wavelength ranges, such as 793 nm and 1530 nm. Around 1.5 μm the diodes are already successfully used for resonant

  14. 16 W output power by high-efficient spectral beam combining of DBR-tapered diode lasers.

    PubMed

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-01-17

    Up to 16 W output power has been obtained using spectral beam combining of two 1063 nm DBR-tapered diode lasers. Using a reflecting volume Bragg grating, a combining efficiency as high as 93.7% is achieved, resulting in a single beam with high spatial coherence. The result represents the highest output power achieved by spectral beam combining of two single element tapered diode lasers. Since spectral beam combining does not affect beam propagation parameters, M2-values of 1.8 (fast axis) and 3.3 (slow axis) match the M2-values of the laser with lowest spatial coherence. The principle of spectral beam combining used in our experiments can be expanded to combine more than two tapered diode lasers and hence it is expected that the output power may be increased even further in the future.

  15. The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Chen, Jincan; Yan, Zijun; Wu, Liqing

    1996-06-01

    Considering a thermoelectric generator as a heat engine cycle, the general differential equations of the temperature field inside thermoelectric elements are established by means of nonequilibrium thermodynamics. These equations are used to study the influence of heat leak, Joule's heat, and Thomson heat on the performance of the thermoelectric generator. New expressions are derived for the power output and the efficiency of the thermoelectric generator. The maximum power output is calculated and the optimal matching condition of load is determined. The maximum efficiency is discussed by a representative numerical example. The aim of this research is to provide some novel conclusions and redress some errors existing in a related investigation.

  16. A Study on Estimation of Average Power Output Fluctuation of Clustered Photovoltaic Power Generation Systems in Urban District of a Few km2

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Suzuoki, Yasuo

    The fluctuation of the total power output of clustered PV systems would be smaller than that of single PV system because of the time difference in the power output fluctuation among PV systems at different locations. This effect, so called smoothing-effect, must be taken into account properly when the impact of clustered PV systems on electric power system is assessed. If the average power output of clustered PV systems can be estimated from the power output of single PV system, it is very useful and helpful for the impact assessment. In this study, we propose a simple method to estimate the total power output fluctuation of clustered PV systems. In the proposed method, a smoothing effect is assumed to be caused as a result of two factors, i.e. time difference of overhead clouds passing among PV systems and the random change in the size and/or shape of clouds. The first one is formulated as a low-pass filter, assuming that output fluctuation is transmitted to the same direction as the wind direction at the constant speed. The second one is taken into account by using a Fourier transform surrogate data. The parameters in the proposed method were selected, so that the estimated fluctuation can be similar with that of ensemble average fluctuation of data observed at 5 points used as a training data set. Then, by using the selected parameters, the fluctuation property was estimated for other data set. The results show that the proposed method is useful for estimating the total power output fluctuation of clustered PV systems.

  17. Impact of heavy soiling on the power output of PV modules

    NASA Astrophysics Data System (ADS)

    Schill, Christian; Brachmann, Stefan; Heck, Markus; Weiss, Karl-Anders; Koehl, Michael

    2011-09-01

    Fraunhofer ISE is running a PV-module outdoor testing set-up on the Gran Canaria island, one of the Canary Island located west of Morroco in the Atlantic Ocean. The performance of the modules is assessed by IV-curve monitoring every 10 minutes. The electronic set-up of the monitoring system - consisting of individual electronic loads for each module which go into an MPP-tracking mode between the IV-measurements - will be described in detail. Soiling of the exposed modules happened because of building constructions nearby. We decided not to clean the modules, but the radiation sensors and recorded the decrease of the power output and the efficiency over time. The efficiency dropped to 20 % within 5 months before a heavy rain and subsequently the service personnel on site cleaned the modules. A smaller rain-fall in between washed the dust partly away and accumulated it at the lower part of the module, what could be concluded from the shape of the IV-curves, which were similar to partial shading by hot-spot-tests and by partial snow cover.

  18. Biological maturity-associated variance in peak power output and momentum in academy rugby union players.

    PubMed

    Howard, Sean M A; Cumming, Sean P; Atkinson, Mark; Malina, Robert M

    2016-11-01

    The study aimed to evaluate the mediating effect of biological maturation on anthropometrical measurements, performance indicators and subsequent selection in a group of academy rugby union players. Fifty-one male players 14-17 years of age were assessed for height, weight and BMI, and percentage of predicted mature status attained at the time of observation was used as an indicator of maturity status. Following this, initial sprint velocity (ISV), Wattbike peak power output (PPO) and initial sprint momentum (ISM) were assessed. A bias towards on-time (n = 44) and early (n = 7) maturers was evident in the total sample and magnified with age cohort. Relative to UK reference values, weight and height were above the 90th and 75th centiles, respectively. Significant (p ≤ .01) correlations were observed between maturity status and BMI (r = .48), weight (r = .63) and height (r = .48). Regression analysis (controlling for age) revealed that maturity status and height explained 68% of ISM variance; however, including BMI in the model attenuated the influence of maturity status below statistical significance (p = .72). Height and BMI explained 51% of PPO variance, while no initial significant predictors were identified for ISV. The sample consisted of players who were on-time and early in maturation with no late maturers represented. This was attributable, in part, to the mediating effect of maturation on body size, which, in turn, predicted performance variables.

  19. High output power of differently cut Nd:MgO:LiTaO3 CW lasers

    NASA Astrophysics Data System (ADS)

    Sun, D. H.; Liu, S. D.; Wang, D. Z.; Sang, Y. H.; Kang, X. L.; Liu, H.; Bi, Y.; Yan, B. X.; He, J. L.; Wang, J. Y.

    2013-04-01

    A high-quality Nd3+ and Mg2+ co-doped LiTaO3 (Nd:MgO:LT) crystal was grown by the Czochralski method. The polarized absorption spectra and fluorescence spectra were studied, and the absorption cross section was calculated by Judd-Ofelt (J-O) theory. The laser performance with different sample cuts of the crystal was investigated for the first time, and it was found that Nd:MgO:LT crystal with different cutting directions (a and c) exhibits different laser properties. By optimizing a partial reflectivity mirror in the laser experimental setting, a high continuous wave output power of 3.58 W was obtained at 1092 and 1076 nm with an optical-to-optical conversion efficiency of 22.78% and slope efficiency of 26.06%. The results indicate that Nd:MgO:LT crystal is a promising candidate for the manufacture of Nd3+ doped periodically poled MgO:LiTaO3 crystal (Nd:PPMgOLT), which should have considerable applications in self-frequency doubling and optical parametric oscillation laser devices.

  20. Work and power outputs determined from pedalling and flywheel friction forces during brief maximal exertion on a cycle ergometer.

    PubMed

    Hibi, N; Fujinaga, H; Ishii, K

    1996-01-01

    Work and power outputs during short-term, maximal exertion on a friction loaded cycle ergometer are usually calculated from the friction force applied to the flywheel. The inertia of the flywheel is sometimes taken into consideration, but the effects of internal resistances and other factors have been ignored. The purpose of this study was to estimate their effects by comparing work or power output determined from the force exerted on the pedals (pedalling force) with work or power output determined from the friction force and the moment of inertia of the rotational parts. A group of 22 male college students accelerated a cycle ergometer as rapidly as possible for 3 s. The total work output determined from the pedalling force (TWp) was significantly greater than that calculated from the friction force and the moment of inertia (TWf). Power output determined from the pedalling force during each pedal stroke (SPp) was also significantly greater than that calculated from the friction force and the moment of inertia. Percentage difference (% diff), defined by % diff = ¿(TWp - TWf)/TWf¿ x 100, ranged from 16.8% to 49.3% with a mean value of 30.8 (SD 9.1)%. It was observed that % diff values were higher in subjects with greater TWp or greater maximal SPp. These results would indicate that internal resistances and other factors, such as the deformation of the chain and the vibrations of the entire system, may have significant effects on the measurements of work and power outputs. The effects appear to depend on the magnitudes of pedalling force and pedal velocity.

  1. Comparison of a field-based test to estimate functional threshold power and power output at lactate threshold.

    PubMed

    Gavin, Timothy P; Van Meter, Jessica B; Brophy, Patricia M; Dubis, Gabriel S; Potts, Katlin N; Hickner, Robert C

    2012-02-01

    It has been proposed that field-based tests (FT) used to estimate functional threshold power (FTP) result in power output (PO) equivalent to PO at lactate threshold (LT). However, anecdotal evidence from regional cycling teams tested for LT in our laboratory suggested that PO at LT underestimated FTP. It was hypothesized that estimated FTP is not equivalent to PO at LT. The LT and estimated FTP were measured in 7 trained male competitive cyclists (VO2max = 65.3 ± 1.6 ml O2·kg(-1)·min(-1)). The FTP was estimated from an 8-minute FT and compared with PO at LT using 2 methods; LT(Δ1), a 1 mmol·L(-1) or greater rise in blood lactate in response to an increase in workload and LT(4.0), blood lactate of 4.0 mmol·L(-1). The estimated FTP was equivalent to PO at LT(4.0) and greater than PO at LT(Δ1). VO2max explained 93% of the variance in individual PO during the 8-minute FT. When the 8-minute FT PO was expressed relative to maximal PO from the VO2max test (individual exercise performance), VO2max explained 64% of the variance in individual exercise performance. The PO at LT was not related to 8-minute FT PO. In conclusion, FTP estimated from an 8-minute FT is equivalent to PO at LT if LT(4.0) is used but is not equivalent for all methods of LT determination including LT(Δ1).

  2. Transmural heterogeneity of cellular level power output is reduced in human heart failure

    PubMed Central

    Haynes, Premi; Nava, Kristofer E.; Lawson, Benjamin A.; Chung, Charles S.; Mitov, Mihail I.; Campbell, Stuart G.; Stromberg, Arnold J.; Sadayappan, Sakthivel; Bonnell, Mark R.; Hoopes, Charles W.; Campbell, Kenneth S.

    2014-01-01

    Heart failure is associated with pump dysfunction and remodeling but it is not yet known if the condition affects different transmural regions of the heart in the same way. We tested the hypotheses that the left ventricles of non-failing human hearts exhibit transmural heterogeneity of cellular level contractile properties, and that heart failure produces transmural region-specific changes in contractile function. Permeabilized samples were prepared from the sub-epicardial, mid-myocardial, and sub-endocardial regions of the left ventricular free wall of non-failing (n=6) and failing (n=10) human hearts. Power, an in vitro index of systolic function, was higher in non-failing mid-myocardial samples (0.59±0.06 μW mg−1) than in samples from the sub-epicardium (p=0.021) and the sub-endocardium (p=0.015). Non-failing mid-myocardial samples also produced more isometric force (14.3±1.33 kN m−2) than samples from the sub-epicardium (p=0.008) and the sub-endocardium (p=0.026). Heart failure reduced power (p=0.009) and force (p=0.042) but affected the mid-myocardium more than the other transmural regions. Fibrosis increased with heart failure (p=0.021) and mid-myocardial tissue from failing hearts contained more collagen than matched sub-epicardial (p<0.001) and sub-endocardial (p=0.043) samples. Power output was correlated with the relative content of actin and troponin I, and was also statistically linked to the relative content and phosphorylation of desmin and myosin light chain- 1. Non-failing human hearts exhibit transmural heterogeneity of contractile properties. In failing organs, region-specific fibrosis produces the greatest contractile deficits in the mid-myocardium. Targeting fibrosis and sarcomeric proteins in the mid-myocardium may be particularly effective therapies for heart failure. PMID:24560668

  3. Single-frequency hybrid laser with an output power up to 3 W at a wavelength of 1064 nm

    SciTech Connect

    Trikshev, A I; Kurkov, Andrei S; Tsvetkov, V B

    2012-05-31

    A high-power single-frequency laser with an output power of 2.5 W in the cw regime at a wavelength of 1064 nm has been developed using a hybrid scheme based on a master singlefrequency semiconductor laser (wavelength 1064 nm, lasing linewidth less than 3 MHz) and a two-cascade fibre amplifier pumped by high-power laser diodes. At pump powers of 4.8 W in the first cascade and 6.8 W in the second cascade the total gain is about 100.

  4. Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb.

    PubMed

    He, Ran; Kraemer, Daniel; Mao, Jun; Zeng, Lingping; Jie, Qing; Lan, Yucheng; Li, Chunhua; Shuai, Jing; Kim, Hee Seok; Liu, Yuan; Broido, David; Chu, Ching-Wu; Chen, Gang; Ren, Zhifeng

    2016-11-29

    Improvements in thermoelectric material performance over the past two decades have largely been based on decreasing the phonon thermal conductivity. Enhancing the power factor has been less successful in comparison. In this work, a peak power factor of ∼106 μW⋅cm(-1)⋅K(-2) is achieved by increasing the hot pressing temperature up to 1,373 K in the p-type half-Heusler Nb0.95Ti0.05FeSb. The high power factor subsequently yields a record output power density of ∼22 W⋅cm(-2) based on a single-leg device operating at between 293 K and 868 K. Such a high-output power density can be beneficial for large-scale power generation applications.

  5. Single frequency 1560nm Er:Yb fiber amplifier with 207W output power and 50.5% slope efficiency

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Pretorius, Herman; Limongelli, Julia; Setzler, Scott D.

    2016-03-01

    High power fiber lasers/amplifiers in the 1550nm spectral region have not scaled as rapidly as Yb-, Tm-, or Ho-doped fibers. This is primarily due to the low gain of the erbium ion. To overcome the low pump absorption, Yb is typically added as a sensitizer. Although this helps the pump absorption, it also creates a problem with parasitic lasing of the Yb ions under strong pumping conditions, which generally limits output power. Other pump schemes have shown high efficiency through resonant pumping of erbium only without the need for Yb as a sensitizer [1-2]. Although this can enable higher power scaling due to a decrease in the thermal loading, resonant pumping methods require long fiber lengths due to pump bleaching, which may limit the power scaling which can be achieved for single frequency output. By using an Er:Yb fiber and pumping in the minima of the Yb pump absorption at 940nm, we have been able to simultaneously generate high power, single frequency output at 1560nm while suppressing the 1-micron ASE and enabling higher efficiency compared to pumping at the absorption peak at 976nm. We have demonstrated single frequency amplification (540Hz linewidth) to 207W average output power with 49.3% optical efficiency (50.5% slope efficiency) in an LMA Er:Yb fiber. We believe this is the highest reported efficiency from a high power 9XXnm pumped Er:Yb-doped fiber amplifier. This is significantly more efficient that the best-reported efficiency for high power Er:Yb doped fibers, which, to-date, has been limited to ~41% slope efficiency [3].

  6. Single-transverse-mode near-IR superluminescent diodes with cw output power up to 100 mW

    SciTech Connect

    Andreeva, E V; Il'chenko, S N; Kostin, Yu O; Yakubovich, S D

    2014-10-29

    A series of light-emitting modules based on single-mode quantum-well superluminescent diodes with centre emission wavelengths of about 790, 840, 960 and 1060 nm and a cw output power up to 100 mW in free space is developed. A sufficiently long service life of these devices is demonstrated. (lasers)

  7. Effects of different warm-up modalities on power output during the high pull.

    PubMed

    Barnes, Matthew John; Petterson, Ashley; Cochrane, Darryl J

    2017-05-01

    This study compared the effects of six warm-up modalities on peak power output (PPO) during the high-pull exercise. Nine resistance-trained males completed six trials using different warm-ups: high-pull specific (HPS), cycle, whole body vibration (WBV), cycle+HPS, WBV+HPS and a control. Intramuscular temperature (Tm) was increased by 2°C using WBV or cycling. PPO, Tm and electromyography (EMG) were recorded during each trial. Two high-pulls were performed prior to and 3 min after participants completed the warm-up. The greatest increase in PPO occurred with HPS (232.8 ± 89.7 W, P < 0.001); however, this was not different to combined warm-ups (cycle+HPS 158.6 ± 121.1 W; WBV+HPS 177.3 ± 93.3 W, P = 1.00). These modalities increased PPO to a greater extent than those that did not involve HPS (all P < 0.05). HPS took the shortest time to complete, compared to the other conditions (P < 0.05). EMG did not differ from pre to post warm-up or between modalities in any of the muscles investigated. No change in Tm occurred in warm-ups that did not include cycling or WBV. These results suggest that a movement-specific warm-up improves performance more than temperature-related warm-ups. Therefore, mechanisms other than increased muscle temperature and activation may be important for improving short-term PPO.

  8. Diaphragm efficiency estimated as power output relative to activation in chronic obstructive pulmonary disease.

    PubMed

    Finucane, Kevin E; Singh, Bhajan

    2012-11-01

    Muscle efficiency increases with fiber length and decreases with load. Diaphragm efficiency (Eff(di)) in healthy humans, measured as power output (Wdi) relative to the root mean square of diaphragm electromyogram (RMS(di)), increases with hyperpnea due to phasic activity of abdominal muscles acting to increase diaphragm length at end expiration (L(di ee)) and decrease inspiratory load. In chronic obstructive pulmonary disease (COPD), hyperpnea may decrease Eff(di) if L(di ee) decreases and load increases due to airflow obstruction and dynamic hyperinflation. To examine this hypothesis, we measured Eff(di) in six COPD subjects (mean forced expiratory volume in 1 s: 54% predicted) when breathing air and at intervals during progressive hypercapnic hyperpnea. Wdi was measured as the product of mean inspiratory transdiaphragmatic pressure (ΔPdi(mean)), diaphragm tidal volume measured fluoroscopically, and 1/inspiratory duration. Results were compared with those of six healthy subjects reported previously. In COPD, L(di ee) was normal when breathing air. ΔPdi(mean) and Wdi increased normally, and RMS(di) increased disproportionately (P = 0.01) with hyperpnea, and, unlike health, inspiratory capacity (IC), L(di ee), and Eff(di) did not increase. IC and L(di ee) were constant with hyperpnea because mean expiratory flow increased as expiratory duration decreased (r(2) = 0.65), and because expiratory flow was terminated actively by the balance between expiratory and inspiratory muscle forces near end expiration, and these forces increased proportionately with hyperpnea (r(2) = 0.49). At maximum ventilation, diaphragm radius of curvature at end inspiration increased in COPD (P = 0.04) but not controls; diaphragm radius of curvature at end inspiration and ln(Eff(di)) were negatively correlated (P = 0.01). Thus in COPD with modest airflow obstruction, Eff(di) did not increase normally with hyperpnea due to a constant L(di ee) and inspiratory flattening of the diaphragm.

  9. Thermal Considerations of Space Solar Power Concepts with 3.5 GW RF Output

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2000-01-01

    This paper presents the thermal challenge of the Space Solar Power (SSP) design concepts with a 3.5 GW radio-frequency (RF) output. High efficiency klystrons are thermally more favored than solid state (butterstick) to convert direct current (DC) electricity to radio-frequency (RF) energy at the transmitters in these concepts. Using klystrons, the heat dissipation is 0.72 GW. Using solid state, the heat dissipation is 2.33 GW. The heat dissipation of the klystrons is 85% at 500C, 10% at 300C, and 5% at 125C. All the heat dissipation of the solid state is at 100C. Using klystrons, the radiator area is 74,500 square m Using solid state, the radiator area is 2,362,200 square m Space constructable heat pipe radiators are assumed in the thermal analysis. Also, to make the SSP concepts feasible, the mass of the heat transport system must be minimized. The heat transport distance from the transmitters to the radiators must be minimized. It can be accomplished by dividing the radiator into a cluster of small radiators, so that the heat transport distances between the klystrons and radiators can be minimized. The area of each small radiator is on the order of 1 square m. Two concepts for accommodating a cluster of small radiators are presented. If the distance between the transmitters and radiators is 1.5 m or less, constant conductance heat pipes (CCHPs) are acceptable for heat transport. If the distance exceeds 1.5 m, loop heat pipes (LHPs) are needed.

  10. Leg joint power output during progressive resistance FES-LCE cycling in SCI subjects: developing an index of fatigue

    PubMed Central

    Haapala, Stephenie A; Faghri, Pouran D; Adams, Douglas J

    2008-01-01

    Background The purpose of this study was to investigate the biomechanics of the hip, knee and ankle during a progressive resistance cycling protocol in an effort to detect and measure the presence of muscle fatigue. It was hypothesized that knee power output can be used as an indicator of fatigue in order to assess the cycling performance of SCI subjects. Methods Six spinal cord injured subjects (2 incomplete, 4 complete) between the ages of twenty and fifty years old and possessing either a complete or incomplete spinal cord injury at or below the fourth cervical vertebra participated in this study. Kinematic data and pedal forces were recorded during cycling at increasing levels of resistance. Ankle, knee and hip power outputs and resultant pedal force were calculated. Ergometer cadence and muscle stimulation intensity were also recorded. Results The main findings of this study were: (a) ankle and knee power outputs decreased, whereas hip power output increased with increasing resistance, (b) cadence, stimulation intensity and resultant pedal force in that combined order were significant predictors of knee power output and (c) knowing the value of these combined predictors at 10 rpm, an index of fatigue can be developed, quantitatively expressing the power capacity of the knee joint with respect to a baseline power level defined as fatigue. Conclusion An index of fatigue was successfully developed, proportionalizing knee power capacity during cycling to a predetermined value of fatigue. The fatigue index value at 0/8th kp, measured 90 seconds into active, unassisted pedaling was 1.6. This indicates initial power capacity at the knee to be 1.6 times greater than fatigue. The fatigue index decreased to 1.1 at 2/8th kp, representing approximately a 30% decrease in the knee's power capacity within a 4 minute timespan. These findings suggest that the present cycling protocol is not sufficient for a rider to gain the benefits of FES and thus raises speculation as to

  11. Output Power Limitations and Improvements in Passively Mode Locked GaAs/AlGaAs Quantum Well Lasers.

    PubMed

    Tandoi, Giuseppe; Ironside, Charles N; Marsh, John H; Bryce, A Catrina

    2012-03-01

    We report a novel approach for increasing the output power in passively mode locked semiconductor lasers. Our approach uses epitaxial structures with an optical trap in the bottom cladding that enlarges the vertical mode size to scale the pulse saturation energy. With this approach we demonstrate a very high peak power of 9.8 W per facet, at a repetition rate of 6.8 GHz and with pulse duration of 0.71 ps. In particular, we compare two GaAs/AlGaAs epilayer designs, a double quantum well design operating at 830 nm and a single quantum well design operating at 795 nm, with vertical mode sizes of 0.5 and 0.75 μm, respectively. We show that a larger mode size not only shifts the mode locking regime of operation towards higher powers, but also produces other improvements in respect of two main failure mechanisms that limit the output power: the catastrophic optical mirror damage and the catastrophic optical saturable absorber damage. For the 830 nm material structure, we also investigate the effect of non-absorbing mirrors on output power and mode locked operation of colliding pulse mode locked lasers.

  12. Output Power Limitations and Improvements in Passively Mode Locked GaAs/AlGaAs Quantum Well Lasers

    PubMed Central

    Tandoi, Giuseppe; Ironside, Charles N.; Marsh, John H.; Bryce, A. Catrina

    2013-01-01

    We report a novel approach for increasing the output power in passively mode locked semiconductor lasers. Our approach uses epitaxial structures with an optical trap in the bottom cladding that enlarges the vertical mode size to scale the pulse saturation energy. With this approach we demonstrate a very high peak power of 9.8 W per facet, at a repetition rate of 6.8 GHz and with pulse duration of 0.71 ps. In particular, we compare two GaAs/AlGaAs epilayer designs, a double quantum well design operating at 830 nm and a single quantum well design operating at 795 nm, with vertical mode sizes of 0.5 and 0.75 μm, respectively. We show that a larger mode size not only shifts the mode locking regime of operation towards higher powers, but also produces other improvements in respect of two main failure mechanisms that limit the output power: the catastrophic optical mirror damage and the catastrophic optical saturable absorber damage. For the 830 nm material structure, we also investigate the effect of non-absorbing mirrors on output power and mode locked operation of colliding pulse mode locked lasers. PMID:23843678

  13. Final report on testing of TOPAZ II unit Ya-21u: Output power characteristics and system capabilities

    SciTech Connect

    Luchau, D.W.; Sinkevich, V.G.; Wernsman, B.; Mulder, D.M.

    1996-03-01

    A final report on the output power characteristics and capabilities of the TOPAZ II Space Nuclear Power Unit Ya-21u is presented. Results showed that after a total of almost 8,000 hours of system testing in the U.S. and Russia, several emergency cooldowns, and three inadvertent air introductions to the interelectrode gap (IEG) that the TOPAZ II demonstrates the potential for providing reliable power in a space environment. Output power optimizations and system characteristics following a shock and vibration test are shown. These tests were performed using electrical heaters that simulate nuclear fuel heating. This paper will focus primarily on the changes in output power characteristics over the lifetime of Ya-21u. All U.S. testing was conducted at the Thermionic System Evaluation Test (TSET) Facility of the New Mexico Engineering Research Institute (NMERI) as a part of the TOPAZ International Program (TIP). TIP is managed by the Air Force Phillips Laboratory (PL) for the Ballistic Missile Defense Organization (BMDO). {copyright} {ital 1996 American Institute of Physics.}

  14. Derivation of continuous wave mode output power from burst mode measurements in high-intensity ultrasound applications.

    PubMed

    Haller, Julian; Wilkens, Volker

    2014-03-01

    Measurement of the acoustic output power of transducers in burst mode and derivation of the results to the continuous wave (CW) case reduces heating problems during power measurements with radiation force balances and absorbing targets at high power levels, but requires the knowledge of an "effective duty factor," DReff. In this work, an alternative method for determining DReff is presented that allows the determination at any input voltage amplitude as it can be calculated from the input voltage rf signal in burst mode. Thus with this method, it is not necessary to apply CW signals at all.

  15. Acute effects of dynamic stretching exercise on power output during concentric dynamic constant external resistance leg extension.

    PubMed

    Yamaguchi, Taichi; Ishii, Kojiro; Yamanaka, Masanori; Yasuda, Kazunori

    2007-11-01

    The purpose of the present study was to clarify the acute effect of dynamic stretching exercise on muscular performance during concentric dynamic constant external resistance (DCER, formally called isotonic) muscle actions under various loads. Concentric DCER leg extension power outputs were measured in 12 healthy male students after 2 types of pretreatment. The pretreatments were: (a) dynamic stretching treatment including 2 types of dynamic stretching exercises of leg extensors and the other 2 types of dynamic stretching exercises simulating the leg extension motion (2 sets of 15 times each with 30-second rest periods between sets; total duration: about 8 minutes), and (b) nonstretching treatment by resting for 8 minutes in a sitting position. Loads during measurement of the power output were set to 5, 30, and 60% of the maximum voluntary contractile (MVC) torque with isometric leg extension in each subject. The power output after the dynamic stretching treatment was significantly (p < 0.05) greater than that after the nonstretching treatment under each load (5% MVC: 468.4 +/- 102.6 W vs. 430.1 +/- 73.0 W; 30% MVC: 520.4 +/- 108.5 W vs. 491.0 +/- 93.0 W; 60% MVC: 487.1 +/- 100.6 W vs. 450.8 +/- 83.7 W). The present study demonstrated that dynamic stretching routines, such as dynamic stretching exercise of target muscle groups and dynamic stretching exercise simulating the actual motion pattern, significantly improve power output with concentric DCER muscle actions under various loads. These results suggested that dynamic stretching routines in warm-up protocols enhance power performance because common power activities are carried out by DCER muscle actions under various loads.

  16. Drug Treated Schizophrenia, Schizoaffective and Bipolar Disorder Patients Evaluated by qEEG Absolute Spectral Power and Mean Frequency Analysis

    PubMed Central

    Wix-Ramos, Richard; Moreno, Xiomara; Capote, Eduardo; González, Gilbert; Uribe, Ezequiel

    2014-01-01

    Objective Research of electroencephalograph (EEG) power spectrum and mean frequency has shown inconsistent results in patients with schizophrenic, schizoaffective and bipolar disorders during medication when compared to normal subjects thus; the characterization of these parameters is an important task. Methods We applied quantitative EEG (qEEG) to investigate 38 control, 15 schizophrenic, 7 schizoaffective and 11 bipolar disorder subjects which remaine under the administration of psychotropic drugs (except control group). Absolute spectral power (ASP), mean frequency and hemispheric electrical asymmetry were measured by 19 derivation qEEG. Group mean values were compared with non parametrical Mann-Whitney test and spectral EEG maps with z-score method at p < 0.05. Results Most frequent drug treatments for schizophrenic patients were neuroleptic+antiepileptic (40% of cases) or 2 neuroleptics (33.3%). Schizoaffective patients received neuroleptic+benzodiazepine (71.4%) and for bipolar disorder patients neuroleptic+antiepileptic (81.8%). Schizophrenic (at all derivations except for Fp1, Fp2, F8 and T6) and schizoaffective (only at C3) show higher values of ASP (+57.7% and +86.1% respectively) compared to control group. ASP of bipolar disorder patients did not show differences against control group. The mean frequency was higher at Fp1 (+14.2%) and Fp2 (+17.4%) in bipolar disorder patients than control group, but no differences were found in frequencies between schizophrenic or schizoaffective patients against the control group. Majority of spectral differences were found at the left hemisphere in schizophrenic and schizoaffective but not in bipolar disorder subjects. Conclusion The present report contributes to characterize quantitatively the qEEG in drug treated schizophrenic, schizoaffective or bipolar disorder patients. PMID:24851121

  17. The theoretical limits to the power output of a muscle-tendon complex with inertial and gravitational loads.

    PubMed Central

    Galantis, Apostolos; Woledge, Roger C

    2003-01-01

    When a muscle delivers power to an inertial load through a spring, the peak power can exceed the maximum that the muscle alone could produce. Using normalized differential equations relating dimensionless quantities we show, by solving the equations either analytically or numerically, that one dimensionless constant (Xi), representing the inertial load, is sufficient to specify the behaviour during shortening of a muscle-tendon complex with linear force-velocity and force-extension properties. In the presence of gravity, an additional constant (Gamma), representing the gravitational acceleration, is required. Nonlinear force-velocity and force-extension relationships each introduce an additional constant, representing their curvature. In the absence of gravity the power output delivered to an inertial load is limited to approximately 1.4 times the maximum power of the muscle alone, and when gravity is present the power delivered is limited to approximately twice the power of muscle alone. These limits are found for the purely inertial load at Xi ca. 1 and with gravity acting at XiGamma = 0.5 with Xi arbitrarily small. The effects of nonlinear muscle and tendon properties tend to cancel each other out and do not produce large deviations from these optima. A lever system of constant ratio between muscle and load does not alter these limits. Cams and catches are required to exceed these limits and attain the high power outputs sometimes observed during explosive animal movement. PMID:12965015

  18. A Comparative in Vitro Study of Power Output Deterioration over Time Between Ho:YAG Laser Fibers from Different Manufacturers as a Function of Deflection and Power Input

    PubMed Central

    Bourdoumis, Andreas; Christopoulos, Panagiotis; Raj, Nirmal; Fedder, Artemis; Buchholz, Noor

    2016-01-01

    Objectives To investigate the performance of laser fibers from 6 major manufacturers in vitro and to identify the effect of time and angulations (180° and 0°) on fiber power output. Materials and Methods Overall, 36 single-use fibers were used. Each was tested with an energy input of 0.8, 1.4 and 2.0 Joules. A power detector measured power output after 1, 5, 10 and 15 minutes for three 15-minute cycles of continuous use. For the first 2 cycles, the fiber was bent to 180° with the use of a pre fabricated mould. Analysis of the data was performed by ANOVA and Tukey's test when the results were significant amongst groups. Statistical significance was deemed p < 0.05. Results No fiber fracture occurred. There was no significant difference in output at 15 minutes of continuous use at 0° and 180°. The reduction in energy output at the 15th minute of continuous use at 180° was not significant for any fiber type or initial input. Only output differences between the fibers proved to be significant (p = 0.001). Conclusion Fiber fracture and decline in performance is not due to deflection and continuous use. Frictional forces that occur between the fiber tip and the stone fragments may be responsible. PMID:26989365

  19. Relationship between optimal lactate removal power output and Olympic triathlon performance.

    PubMed

    Baldari, Carlo; Di Luigi, Luigi; Silva, Sergio G Da; Gallotta, Maria C; Emerenziani, Gian P; Pesce, Caterina; Guidetti, Laura

    2007-11-01

    To investigate the relationships between race performance and parameters at the optimal power output for lactate removal, 10 male triathletes were examined. Exercise intensities for lactate removal were defined by calculating 50% of difference (DeltaT) between running velocity (V(r)) at individual anaerobic threshold (IAT) and at individual ventilatory threshold (IVT), then choosing 3 V(r): at IVT plus 50% DeltaT (IVT(+50%DeltaT)), at IVT, and at IVT minus 50% DeltaT (IVT(-50%DeltaT)). After a 6-minute treadmill run at 75% of difference between IAT and V(.-)O2max, all triathletes performed a 30-minute active recovery run at IVT(+50%DeltaT), IVT, and IVT(-50%DeltaT). Capillary blood lactate was determined at 1, 3, 6, 9, 12, 15, 20, 25, and 30 minutes of recovery. The IVT(-50%DeltaT) recovery was the most efficient V(r) for lactate removal. Running velocities at IVT and IVT(-50%DeltaT) were highly (p < 0.01) related to cycle, run, and overall race time. V(.-)O2max values at IAT, IVT(+50%DeltaT), and IVT were less (p < 0.05) related to split and overall race time. The variable most related to overall race time, as determined by stepwise multiple linear regression analysis, was the V(r) at IVT(-50%DeltaT) (r = 0.87, p = 0.001). The R(2) value of 0.76 indicated that V(r) at IVT(-50%DeltaT) could account for 76% of the variance in triathlon race time. This study shows that the race performances of triathletes are highly related to the V(r) at which the most efficient lactate removal (IVT(-50%DeltaT)) occurs. These findings suggest that the assessment of V(r) at IVT and IAT (from which V(r) at IVT(-50%DeltaT) are calculated) may be a useful method for monitoring training-induced adaptations and performance improvements in athletes who participate in Olympic triathlons.

  20. Enhancing photovoltaic output power by 3-band spectrum-splitting and concentration using a diffractive micro-optic

    SciTech Connect

    Mohammad, Nabil; Wang, Peng; Friedman, Daniel J.; Menon, Rajesh

    2014-09-17

    We report the enhancement of photovoltaic output power by separating the incident spectrum into 3 bands, and concentrating these bands onto 3 different photovoltaic cells. The spectrum-splitting and concentration is achieved via a thin, planar micro-optical element that demonstrates high optical efficiency over the entire spectrum of interest. The optic (which we call a polychromat) was designed using a modified version of the direct-binary-search algorithm. The polychromat was fabricated using grayscale lithography. Rigorous optical characterization demonstrates excellent agreement with simulation results. Electrical characterization of the solar cells made from GaInP, GaAs and Si indicate increase in the peak output power density of 43.63%, 30.84% and 30.86%, respectively when compared to normal operation without the polychromat. This represents an overall increase of 35.52% in output power density. As a result, the potential for cost-effective large-area manufacturing and for high system efficiencies makes our approach a strong candidate for low cost solar power.

  1. Enhancing photovoltaic output power by 3-band spectrum-splitting and concentration using a diffractive micro-optic.

    PubMed

    Mohammad, Nabil; Wang, Peng; Friedman, Daniel J; Menon, Rajesh

    2014-10-20

    We report the enhancement of photovoltaic output power by separating the incident spectrum into 3 bands, and concentrating these bands onto 3 different photovoltaic cells. The spectrum-splitting and concentration is achieved via a thin, planar micro-optical element that demonstrates high optical efficiency over the entire spectrum of interest. The optic (which we call a polychromat) was designed using a modified version of the direct-binary-search algorithm. The polychromat was fabricated using grayscale lithography. Rigorous optical characterization demonstrates excellent agreement with simulation results. Electrical characterization of the solar cells made from GaInP, GaAs and Si indicate increase in the peak output power density of 43.63%, 30.84% and 30.86%, respectively when compared to normal operation without the polychromat. This represents an overall increase of 35.52% in output power density. The potential for cost-effective large-area manufacturing and for high system efficiencies makes our approach a strong candidate for low cost solar power.

  2. The left ventricle as a mechanical engine: from Leonardo da Vinci to the echocardiographic assessment of peak power output-to-left ventricular mass.

    PubMed

    Dini, Frank L; Guarini, Giacinta; Ballo, Piercarlo; Carluccio, Erberto; Maiello, Maria; Capozza, Paola; Innelli, Pasquale; Rosa, Gian M; Palmiero, Pasquale; Galderisi, Maurizio; Razzolini, Renato; Nodari, Savina

    2013-03-01

    The interpretation of the heart as a mechanical engine dates back to the teachings of Leonardo da Vinci, who was the first to apply the laws of mechanics to the function of the heart. Similar to any mechanical engine, whose performance is proportional to the power generated with respect to weight, the left ventricle can be viewed as a power generator whose performance can be related to left ventricular mass. Stress echocardiography may provide valuable information on the relationship between cardiac performance and recruited left ventricular mass that may be used in distinguishing between adaptive and maladaptive left ventricular remodeling. Peak power output-to-mass, obtained during exercise or pharmacological stress echocardiography, is a measure that reflects the number of watts that are developed by 100 g of left ventricular mass under maximal stimulation. Power output-to-mass may be calculated as left ventricular power output per 100 g of left ventricular mass: 100× left ventricular power output divided by left ventricular mass (W/100 g). A simplified formula to calculate power output-to-mass is as follows: 0.222 × cardiac output (l/min) × mean blood pressure (mmHg)/left ventricular mass (g). When the integrity of myocardial structure is compromised, a mismatch becomes apparent between maximal cardiac power output and left ventricular mass; when this occurs, a reduction of the peak power output-to-mass index is observed.

  3. High-Power fiber amplifier with widely tunable repetition rate, fixed pulse duration, and multiple output wavelengths.

    PubMed

    Schrader, Paul E; Farrow, Roger L; Kliner, Dahv A V; Fève, Jean-Philippe; Landru, Nicolas

    2006-11-27

    We report a pulsed, fiber-amplified microchip laser providing widely tunable repetition rate (7.1 - 27 kHz) with constant pulse duration (1.0 ns), pulse energy up to 0.41 mJ, linear output polarization, diffraction-limited beam quality (M(2) < 1.2), and < 1% pulse-energy fluctuations. The pulse duration was shown to minimize nonlinear effects that cause temporal and spectral distortion of the amplified pulses. This source employs passive Q-switching, single-stage single-pass amplification, and cw pumping, thus offering high efficiency, simplicity, and compact, rugged packaging for use in practical applications. The high peak power and high beam quality make this system an ideal pump source for nonlinear frequency conversion, and we demonstrated efficient harmonic generation and optical parametric generation of wavelengths from 213 nm to 4.4 mum with Watt-level output powers.

  4. Maximum equivalent power output and performance optimization analysis of an alkaline fuel cell/heat-driven cycle hybrid system

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuqin; Chen, Jincan

    A generic model of the hybrid system consisting of an alkaline fuel cell (AFC) and a heat-driven cycle, which may work as either a refrigerator or a heat pump, is originally established. On the basis of the models of AFCs and three-heat-reservoir cycles, the equivalent power output and efficiency of the hybrid system are obtained. The performance characteristic curves of the hybrid system are represented through numerical calculation. The maximum equivalent power output and efficiency of the hybrid system are determined. Problems concerning the optimal operation of the hybrid system are discussed. The effects of the main irreversible losses on the performance of the hybrid system are investigated in detail. It is important to note that the waste heat produced in the AFC can be readily used in such a hybrid cycle.

  5. Edge-facet pumped, multi-aperture, thin-disk laser geometry for very high average power output scaling

    DOEpatents

    Zapata, Luis E.

    2004-12-21

    The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.

  6. Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power

    SciTech Connect

    Wang, Longfei; He, Dongbing; Yu, Chunlei; Hu, Lili; Chen, Danping; Liu, Hui; Qiu, Jianrong

    2014-03-31

    An index-depressed active core, single-mode phosphate all-solid large-mode-area photonic crystal fiber (PCF) is theoretically investigated using full-vectorial finite difference approach and experimentally realized. The PCF has a maximum output power of 5.4 W and 31% slope efficiency. Single-mode operation is realized through PCFs with core diameters of 30, 35, and 40 μm, respectively. The beam quality is not degraded even at maximum output power. Our simulations and experiments reveal that the laser performance is significantly affected by the center-to-center distance between the two nearest rods Λ, the rod diameter d, and their ratio d/Λ, implying that much attention should be given in employing optimal parameters to achieve excellent laser performance.

  7. Enhanced output power of GaN-based LEDs with embedded AlGaN pyramidal shells.

    PubMed

    Tu, Shang-Ju; Sheu, Jinn-Kong; Lee, Ming-Lun; Yang, Chih-Ciao; Chang, Kuo-Hua; Yeh, Yu-Hsiang; Huang, Feng-Wen; Lai, Wei-Chih

    2011-06-20

    In this article, the characteristics of GaN-based LEDs grown on Ar-implanted GaN templates to form inverted Al0.27Ga0.83N pyramidal shells beneath an active layer were investigated. GaN-based epitaxial layers grown on the selective Ar-implanted regions had lower growth rates compared with those grown on the implantation-free regions. This resulted in selective growth, and formation of V-shaped concaves in the epitaxial layers. Accordingly, the inverted Al0.27Ga0.83N pyramidal shells were formed after the Al0.27Ga0.83N and GaN layers were subsequently grown on the V-shaped concaves. The experimental results indicate that the light-output power of LEDs with inverted AlGaN pyramidal shells was higher than those of conventional LEDs. With a 20 mA current injection, the output power was enhanced by 10% when the LEDs were embedded with inverted Al0.27Ga0.83N pyramidal shells. The enhancement in output power was primarily due to the light scattering at the Al0.27Ga0.83N/GaN interface, which leads to a higher escape probability for the photons, that is, light-extraction efficiency. Based on the ray tracing simulation, the output power of LEDs grown on Ar-implanted GaN templates can be enhanced by over 20% compared with the LEDs without the embedded AlGaN pyramidal shells, if the AlGaN layers were replaced by Al0.5Ga0.5N layers.

  8. Numerical predictions versus experimental findings on the power-harvesting output of a NiMnGa alloy

    NASA Astrophysics Data System (ADS)

    Nelson, Isaac; Dikes, Jason; Feigenbaum, Heidi; Ciocanel, Constantin

    2014-03-01

    Magnetic shape memory alloys (MSMAs) can display up to 10% recoverable strain in response to the application of a magnetic field or compressive mechanical stress. The amount of recoverable strain depends on the amount and direction of the applied stress and magnetic field as well as manufacturing, chemical composition, and training of the material. Due to their relatively large strains and fast response, MSMAs are suitable for a wide range of applications, including power harvesting, sensing, and actuation. The response of MSMAs is primarily driven by the reorientation of martensite variants. Power harvesting is possible due to this reorientation process and the accompanying change in material's magnetization, which can be changed into an electric potential/voltage using a pick-up coil placed around (or on the side of) the specimen. The magnitude of the output voltage depends on the number of turns of the pick-up coil, the amplitude of the reorientation strain, the magnitude and direction of the biased magnetic field, and the frequency at which the reorientation occurs. This paper focuses on the ability of a two dimensional constitutive model, developed by the group to capture the magnetomechanical response of MSMAs under general two dimensional loading conditions, to predict the power harvesting output of a Ni2MnGa specimen. Comparison between model predictions of voltage output and experimental measurements of the same indicate that, while the model is able to replicate the stress-strain response of the material during power harvesting, it is unable to accurately predict the magnitude of the experimentally measured voltage output. This indicates that additional features still need to be included in the model to better capture the change in magnetization that occurs during variant reorientation.

  9. Simulation of traveling-wave output structures for high power rf tubes

    SciTech Connect

    Eppley, K.R.

    1993-04-01

    Travelling wave output structures can in principle provide higher efficiency and lower surface gradients than a single output cavity. We discuss simulations of TW structures designed for X-band klystrons to be used in the SLAC NLC. The PIC Code CONDOR calculated efficiency over 50 percent for one such circuit. When the circuit was built in the SLAC XC7 klystron, the match was so poor that it had to be modified. When tested, the tube produced less than half the efficiency calculated. We subsequently found significant differences between the field distribution calculated by CONDOR versus that from the 3-D code MAFIA. We have now developed a procedure which gives much better agreement between the 2D and 3-D models. We use a {pi}/2 disk-loaded structure, with the waveguide coupling to an output cavity through an iris, rather than directly to the drift tube as in the XC7. The disk radii are tapered to produce an approximately constant gradient. The output coupling is adjusted to match to a uniform structure replicating the cell before the waveguide. The simulations predict 75 MW, 49 percent efficiency, with peak surface fields of 73 MV/m. from a 440 kV, 350 amp beam at 11.424 GHz.

  10. Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect

    Not Available

    2010-12-01

    When power production at The Geysers geothermal power complex began to falter, the National Renewable Energy Laboratory (NREL) stepped in, developing advanced condensing technology that dramatically boosted production efficiency - and making a major contribution to the effective use of geothermal power. NREL developed advanced direct-contact condenser (ADCC) technology to condense spent steam more effectively, improving power production efficiency in Unit 11 by 5%.

  11. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    NASA Astrophysics Data System (ADS)

    Saxena, Samveg

    Homogeneous Charge Compression Ignition (HCCI) engines are one of the most promising engine technologies for the future of energy conversion from clean, efficient combustion. HCCI engines allow high efficiency and lower CO2 emission through the use of high compression ratios and the removal of intake throttle valves (like Diesel), and allow very low levels of urban pollutants like nitric oxide and soot (like Otto). These engines, however, are not without their challenges, such as low power density compared with other engine technologies, and a difficulty in controlling combustion timing. This dissertation first addresses the power output limits. The particular strategies for enabling high power output investigated in this dissertation focus on avoiding five critical limits that either damage an engine, drastically reduce efficiency, or drastically increase emissions: (1) ringing limits, (2) peak in-cylinder pressure limits, (3) misfire limits, (4) low intake temperature limits, and (5) excessive emissions limits. The research shows that the key factors that enable high power output, sufficient for passenger vehicles, while simultaneously avoiding the five limits defined above are the use of: (1) high intake air pressures allowing improved power output, (2) highly delayed combustion timing to avoid ringing limits, and (3) using the highest possible equivalence ratio before encountering ringing limits. These results are revealed by conducting extensive experiments spanning a wide range of operating conditions on a multi-cylinder HCCI engine. Second, this dissertation discusses strategies for effectively sensing combustion characteristics on a HCCI engine. For effective feedback control of HCCI combustion timing, a sensor is required to quantify when combustion occurs. Many laboratory engines use in-cylinder pressure sensors but these sensors are currently prohibitively expensive for wide-scale commercialization. Instead, ion sensors made from inexpensive sparkplugs

  12. Enhancing photovoltaic output power by 3-band spectrum-splitting and concentration using a diffractive micro-optic

    DOE PAGES

    Mohammad, Nabil; Wang, Peng; Friedman, Daniel J.; ...

    2014-09-17

    We report the enhancement of photovoltaic output power by separating the incident spectrum into 3 bands, and concentrating these bands onto 3 different photovoltaic cells. The spectrum-splitting and concentration is achieved via a thin, planar micro-optical element that demonstrates high optical efficiency over the entire spectrum of interest. The optic (which we call a polychromat) was designed using a modified version of the direct-binary-search algorithm. The polychromat was fabricated using grayscale lithography. Rigorous optical characterization demonstrates excellent agreement with simulation results. Electrical characterization of the solar cells made from GaInP, GaAs and Si indicate increase in the peak output powermore » density of 43.63%, 30.84% and 30.86%, respectively when compared to normal operation without the polychromat. This represents an overall increase of 35.52% in output power density. As a result, the potential for cost-effective large-area manufacturing and for high system efficiencies makes our approach a strong candidate for low cost solar power.« less

  13. Is acute static stretching able to reduce the time to exhaustion at power output corresponding to maximal oxygen uptake?

    PubMed

    Samogin Lopes, Felipe A; Menegon, Elton M; Franchini, Emerson; Tricoli, Valmor; de M Bertuzzi, Rômulo C

    2010-06-01

    This study analyzed the effect of an acute static stretching bout on the time to exhaustion (Tlim) at power output corresponding to VO2max. Eleven physically active male subjects (age 22.3+/-2.8 years, VO2max 2.7+/-0.5 L.min) completed an incremental cycle ergometer test, 2 muscle strength tests, and 2 maximal tests to exhaustion at power output corresponding to VO2max with and without a previous static stretching bout. The Tlim was not significantly affected by the static stretching (164+/-28 vs. 150+/-26 seconds with and without stretching, respectively, p=0.09), but the time to reach VO2max (118+/-22 vs. 102+/-25 seconds), blood-lactate accumulation immediately after exercise (10.7+/-2.9 vs. 8.0+/-1.7 mmol.L), and oxygen deficit (2.4+/-0.9 vs. 2.1+/-0.7 L) were significantly reduced (ppower output corresponding to VO2max possibly by accelerating aerobic metabolism activation at the beginning of exercise. These results suggest that coaches and practitioners involved with aerobic dependent activities may use static stretching as part of their warm-up routines without fear of diminishing high-intensity aerobic exercise performance.

  14. Improved output power of GaN-based ultraviolet light-emitting diodes with sputtered AlN nucleation layer

    NASA Astrophysics Data System (ADS)

    Chiu, C. H.; Lin, Y. W.; Tsai, M. T.; Lin, B. C.; Li, Z. Y.; Tu, P. M.; Huang, S. C.; Hsu, Earl; Uen, W. Y.; Lee, W. I.; Kuo, H. C.

    2015-03-01

    In this work, the ultraviolet light-emitting diodes (UV-LEDs) at 380 nm were grown on patterned sapphire substrate (PSS) by atmospheric pressure metal organic chemical vapor deposition (AP-MOCVD). A sputtered AlN nucleation layer was utilized on the PSS to enhance the quality of the epitaxial layer. By using high-resolution X-ray diffraction, the full-width at half-maximum of the rocking curve shows that the UV-LEDs with sputtered AlN nucleation layer had better crystalline quality when compared to conventional GaN nucleation samples. From the scanning electron microscope (SEM) and transmission electron microscopy (TEM) images, it can be observed that the tip and sidewall portion of the pattern was smooth using the sputtered AlN nucleation layer. The threading dislocation densities (TDDs) are reduced from 6×107 cm-2 to 2.5×107 cm-2 at the interface between the u-GaN layers for conventional and AlN PSS devices, respectively. As a result, a much higher light output power was achieved. The light output power at an injection current of 20 mA was enhanced by 30%. Further photoluminescence (PL) measurement and numerical simulation confirm that this increase of output power can be attributed to the improvement of material quality and light extraction.

  15. A sub-100 fs self-starting Cr:forsterite laser generating 1.4 W output power.

    PubMed

    Chia, Shih-Hsuan; Liu, Tzu-Ming; Ivanov, Anatoly A; Fedotov, Andrey B; Zheltikov, Aleksey M; Tsai, Ming-Rung; Chan, Ming-Che; Yu, Che-Hang; Sun, Chi-Kuang

    2010-11-08

    Without cavity dumping or external amplification, we report a femtosecond Cr:forsterite laser with a 1.4 W output power and 2 W in continuous wave (CW) operated with a crystal temperature of 267 K. In the femtosecond regime, the oscillator generates Kerr-lens-mode-locked 84 fs pulses with a repetition rate of 85 MHz, corresponding to a high 16.5 nJ pulse energy directly from a single Cr:forsterite resonator. This intense femtosecond Cr:forsterite laser is ideal to pump varieties of high power fiber light sources and could be thus ideal for many biological and spectroscopy applications.

  16. Evaluation of a ducted-fan power plant designed for high output and good cruise fuel economy

    NASA Technical Reports Server (NTRS)

    Behun, M; Rom, F E; Hensley, R V

    1950-01-01

    Theoretical analysis of performance of a ducted-fan power plant designed both for high-output, high-altitude operation at low supersonic Mach numbers and for good fuel economy at lower fight speeds is presented. Performance of ducted fan is compared with performance (with and without tail-pipe burner) of two hypothetical turbojet engines. At maximum power, the ducted fan has propulsive thrust per unit of frontal area between thrusts obtained by turbojet engines with and without tail-pipe burners. At cruise, the ducted fan obtains lowest thrust specific fuel consumption. For equal maximum thrusts, the ducted fan obtains cruising flight duration and range appreciably greater than turbojet engines.

  17. The relative power output and relative lean body mass of World and Olympic male and female champions with implications for gender equity.

    PubMed

    Stefani, Raymond T

    2006-12-01

    A uniform measure of the gender-related differential performance of female and male Olympic and World champions is proposed: relative power output applied to the environment. Laws of physics are employed to derive equations for estimating relative power output. In previous controlled laboratory studies, equally trained male and female athletes were shown to have a relative power output not significantly different from relative lean body mass. As to the estimated power output for 32 Olympic and World championship events contested between 1976 and 2004, eight in running, four in speed skating, three in jumping, twelve in swimming and five in rowing: 100% of the 32 event mean percentage differences in power output and 96% of the 411 event percentage differences in power output are within one standard deviation of the appropriate lean body mass percentage difference, consistent with equality of training. For 1952-1972, significantly higher percentage differences in power output are estimated in running and swimming compared with 1976-2004, consistent with women being less well trained than men during that earlier period. It is noted that efforts in recent years to provide equality of opportunity for female athletes coincide with equalization of estimated relative power output in competition with the relative lean body mass.

  18. Electrical output of bryophyte microbial fuel cell systems is sufficient to power a radio or an environmental sensor

    PubMed Central

    Dennis, Ross J.; Felder, Fabienne; Cooper, Matt B.; Royles, Jessica; Harrison, Susan T. L.; Smith, Alison G.; Howe, Christopher J.

    2016-01-01

    Plant microbial fuel cells are a recently developed technology that exploits photosynthesis in vascular plants by harnessing solar energy and generating electrical power. In this study, the model moss species Physcomitrella patens, and other environmental samples of mosses, have been used to develop a non-vascular bryophyte microbial fuel cell (bryoMFC). A novel three-dimensional anodic matrix was successfully created and characterized and was further tested in a bryoMFC to determine the capacity of mosses to generate electrical power. The importance of anodophilic microorganisms in the bryoMFC was also determined. It was found that the non-sterile bryoMFCs operated with P. patens delivered over an order of magnitude higher peak power output (2.6 ± 0.6 µW m−2) than bryoMFCs kept in near-sterile conditions (0.2 ± 0.1 µW m−2). These results confirm the importance of the microbial populations for delivering electrons to the anode in a bryoMFC. When the bryoMFCs were operated with environmental samples of moss (non-sterile) the peak power output reached 6.7 ± 0.6 mW m−2. The bryoMFCs operated with environmental samples of moss were able to power a commercial radio receiver or an environmental sensor (LCD desktop weather station). PMID:27853542

  19. Electrical output of bryophyte microbial fuel cell systems is sufficient to power a radio or an environmental sensor.

    PubMed

    Bombelli, Paolo; Dennis, Ross J; Felder, Fabienne; Cooper, Matt B; Madras Rajaraman Iyer, Durgaprasad; Royles, Jessica; Harrison, Susan T L; Smith, Alison G; Harrison, C Jill; Howe, Christopher J

    2016-10-01

    Plant microbial fuel cells are a recently developed technology that exploits photosynthesis in vascular plants by harnessing solar energy and generating electrical power. In this study, the model moss species Physcomitrella patens, and other environmental samples of mosses, have been used to develop a non-vascular bryophyte microbial fuel cell (bryoMFC). A novel three-dimensional anodic matrix was successfully created and characterized and was further tested in a bryoMFC to determine the capacity of mosses to generate electrical power. The importance of anodophilic microorganisms in the bryoMFC was also determined. It was found that the non-sterile bryoMFCs operated with P. patens delivered over an order of magnitude higher peak power output (2.6 ± 0.6 µW m(-2)) than bryoMFCs kept in near-sterile conditions (0.2 ± 0.1 µW m(-2)). These results confirm the importance of the microbial populations for delivering electrons to the anode in a bryoMFC. When the bryoMFCs were operated with environmental samples of moss (non-sterile) the peak power output reached 6.7 ± 0.6 mW m(-2). The bryoMFCs operated with environmental samples of moss were able to power a commercial radio receiver or an environmental sensor (LCD desktop weather station).

  20. Resistance Training Priming Activity Improves Upper-Body Power Output in Rugby Players: Implications for Game Day Performance.

    PubMed

    Mason, Billy R J; Argus, Christos K; Norcott, Ben; Ball, Nick B

    2017-04-01

    Mason, BRJ, Argus, CK, Norcott, B, and Ball, NB. Resistance training priming activity improves upper-body power output in rugby players: implications for game day performance. J Strength Cond Res 31(4): 913-920, 2017-"Priming" or preactivation strategies performed in the hours leading into competition have been suggested to improve game day performance. Therefore, this study assessed the effectiveness of a resistance training priming activity on eliciting changes in lower- and upper-body power output, along with perceptual measures. To assess these changes, 13 state-level rugby players (aged 18.5 ± 0.5 years) completed a test-retest protocol using a counterbalanced crossover design. Perceptual (readiness to perform questionnaire) and performance measures (20-kg countermovement jump [CMJ], 20-kg bench throw) were completed before either a control (rest) or priming activity (4 sets of 3 banded back squats and banded bench press). After a 1-hour and 45-minute recovery period, perceptual and performance measures were repeated. Readiness to perform showed no meaningful differences pre- and postintervention. Bench throw peak power (8.5 ± 5.8%, 90% confidence limit; p ≤ 0.05) improved after the priming activity when compared with the control trial. Countermovement jump peak power (3.4 ± 4.9%; p > 0.05) had a small decrease after the priming activity when compared with the control trial. Therefore, completing a priming activity 1 hour and 45 minutes before competition is recommended to improve upper-body power output. However, further research into lower-body priming protocols should be conducted before implementing a lower-body priming activity before competition.

  1. Tuning beam power-splitting characteristics through modulating a photonic crystal slab’s output surface

    NASA Astrophysics Data System (ADS)

    Feng, Shuai; Xiao, Ting-Hui; Gan, Lin; Wang, Yi-Quan

    2017-01-01

    Light-beam-splitting characteristics are theoretically and experimentally studied in 2D square-lattice photonic crystals (PhCs) with delicately designed and modulated output surfaces. Compared with the traditional branch-waveguide and self-collimation-type PhC splitters, our proposed structure can not only split the input light beam into different numbers of branches but also realize the adjustment of their relative light intensities in each branch. Moreover, the influence of a light beam’s incident angle on both the output branch beams’ relative intensity and propagation direction is investigated. This proposed light beam splitter is able to work within a broad frequency range, and the propagation directions of the output split beams can be modified with the incident beam’s frequency. In addition, when the PhC device becomes thicker, a kind of light-beam-focusing phenomenon is observed. Advantageously, our light-beam-splitting device has no restriction as to the incident light beam’s location and width, so it is much more convenient and practical for achieving optical connection with other functional devices in complicated, large-scale, all-optical integrated circuits.

  2. The effect of disposable infection control barriers and physical damage on the power output of light curing units and light curing tips.

    PubMed

    McAndrew, R; Lynch, C D; Pavli, M; Bannon, A; Milward, P

    2011-04-23

    This study investigated the effects that disposable infection control barriers and physical damage through use had on the power output from dental light curing units (LCUs) and light curing tips (LCTs). Five disposable infection control barriers were tested on a number of LCUs and LCTs. Testing involved the repeated measurement of power output of LCUs and LCTs on a radiometer. Two of the barriers tested caused statistically significant reductions in the mean light output intensity when compared to the no barrier control groups. One barrier type reduced the power output by 30 to 40%. It was also noted that physical damage to the LCTs affected power output by between 20 and 30%, which was then further reduced by the disposable barrier. This study showed that three of the five disposable infection control barriers had little effect on the overall efficiency of the power output of the LCUs. It also showed that physical damage to LCUs and LCTs can affect power output significantly. Infection control measures should be carefully considered before use to avoid undue effects on power output delivered from the LCUs/LCTs to ensure that the degree of polymerisation within the resin-based composite and curing efficiency are not affected unduly.

  3. Downscaling Solar Power Output to 4-Seconds for Use in Integration Studies: Preprint

    SciTech Connect

    Hummon, M.; Weekley, A.; Searight, K.; Clark, K.

    2013-10-01

    High penetration renewable integration studies require solar power data with high spatial and temporal accuracy to quantify the impact of high frequency solar power ramps on the operation of the system. Our previous work concentrated on downscaling solar power from one hour to one minute by simulation. This method used clearness classifications to categorize temporal and spatial variability, and iterative methods to simulate intra-hour clearness variability. We determined that solar power ramp correlations between sites decrease with distance and the duration of the ramp, starting at around 0.6 for 30-minute ramps between sites that are less than 20 km apart. The sub-hour irradiance algorithm we developed has a noise floor that causes the correlations to approach ~0.005. Below one minute, the majority of the correlations of solar power ramps between sites less than 20 km apart are zero, and thus a new method to simulate intra-minute variability is needed. These intra-minute solar power ramps can be simulated using several methods, three of which we evaluate: a cubic spline fit to the one-minute solar power data; projection of the power spectral density toward the higher frequency domain; and average high frequency power spectral density from measured data. Each of these methods either under- or over-estimates the variability of intra-minute solar power ramps. We show that an optimized weighted linear sum of methods, dependent on the classification of temporal variability of the segment of one-minute solar power data, yields time series and ramp distributions similar to measured high-resolution solar irradiance data.

  4. Downscaling Solar Power Output to 4-Seconds for Use in Integration Studies (Presentation)

    SciTech Connect

    Hummon, M.; Weekley, A.; Searight, K.; Clark, K.

    2013-10-01

    High penetration renewable integration studies require solar power data with high spatial and temporal accuracy to quantify the impact of high frequency solar power ramps on the operation of the system. Our previous work concentrated on downscaling solar power from one hour to one minute by simulation. This method used clearness classifications to categorize temporal and spatial variability, and iterative methods to simulate intra-hour clearness variability. We determined that solar power ramp correlations between sites decrease with distance and the duration of the ramp, starting at around 0.6 for 30-minute ramps between sites that are less than 20 km apart. The sub-hour irradiance algorithm we developed has a noise floor that causes the correlations to approach ~0.005. Below one minute, the majority of the correlations of solar power ramps between sites less than 20 km apart are zero, and thus a new method to simulate intra-minute variability is needed. These intra-minute solar power ramps can be simulated using several methods, three of which we evaluate: a cubic spline fit to the one-minute solar power data; projection of the power spectral density toward the higher frequency domain; and average high frequency power spectral density from measured data. Each of these methods either under- or over-estimates the variability of intra-minute solar power ramps. We show that an optimized weighted linear sum of methods, dependent on the classification of temporal variability of the segment of one-minute solar power data, yields time series and ramp distributions similar to measured high-resolution solar irradiance data.

  5. High efficiency, diode pumped Nd:YAG ceramics slab laser with 230 W continuous-wave output power.

    PubMed

    Lapucci, Antonio; Ciofini, Marco; Vannoni, Maurizo; Sordini, Andrea

    2012-06-20

    Diode pumped zig-zag slab lasers are widely adopted for continuous-wave high power or pulsed high energy applications. Recently [J. Eur. Opt. Soc.-Rapid 6, 11041 (2011)] we started to investigate a new thin slab format in which pumping radiation input is obtained through the thin lateral faces (edge pumping) and the beam propagation takes place bouncing on these same lateral faces ("edge zig-zag"). We report on the optimized operation of a ceramic Nd:YAG laser, based on this geometry, extracting 230 W at a 43% output power to diode power conversion efficiency. Thorough investigation of the thermal lens effect allows us to analyze the optical cavity and thus to define the main aspects limiting the present laser configuration.

  6. Influence of nonlinearities on the power output of the Self-Oscillating Fluidic Heat Engine (SOFHE)

    NASA Astrophysics Data System (ADS)

    Tessier-Poirier, A.; Monin, T.; Léveillé, E.; Formosa, F.; Monfray, S.; Fréchette, L. G.

    2016-11-01

    In this paper, it is shown that two non-linearities drive the oscillations amplitude and the potential power density of the Self-Oscillating Fluidic Heat Engine (SOFHE). This new type of engine converts thermal energy into mechanical energy by producing self-sustained oscillations of a liquid column from a continuous heat source to power wireless sensors from waste heat. The underlying theoretical modeling shows that the pressure and the temperature nonlinearities limit the final oscillations amplitude, hence its achievable power density.

  7. Multiple output power supply circuit for an ion engine with shared upper inverter

    NASA Technical Reports Server (NTRS)

    Cardwell, Jr., Gilbert I. (Inventor); Phelps, Thomas K. (Inventor)

    2001-01-01

    A power supply circuit for an ion engine suitable for a spacecraft is coupled to a bus having a bus input and a bus return. The power supply circuit has a first primary winding of a first transformer. An upper inverter circuit is coupled to the bus input and the first primary winding. The power supply circuit further includes a first lower inverter circuit coupled to the bus return and the first primary winding. The second primary winding of a second transformer is coupled to the upper inverter circuit. A second lower inverter circuit is coupled to the bus return and the second primary winding.

  8. Local and regional effects of large scale atmospheric circulation patterns on winter wind power output in Western Europe

    NASA Astrophysics Data System (ADS)

    Zubiate, Laura; McDermott, Frank; Sweeney, Conor; O'Malley, Mark

    2014-05-01

    Recent studies (Brayshaw, 2009, Garcia-Bustamante, 2010, Garcia-Bustamante, 2013) have drawn attention to the sensitivity of wind speed distributions and likely wind energy power output in Western Europe to changes in low-frequency, large scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). Wind speed variations and directional shifts as a function of the NAO state can be larger or smaller depending on the North Atlantic region that is considered. Wind speeds in Ireland and the UK for example are approximately 20 % higher during NAO + phases, and up to 30 % lower during NAO - phases relative to the long-term (30 year) climatological means. By contrast, in southern Europe, wind speeds are 15 % lower than average during NAO + phases and 15 % higher than average during NAO - phases. Crucially however, some regions such as Brittany in N.W. France have been identified in which there is negligible variability in wind speeds as a function of the NAO phase, as observed in the ERA-Interim 0.5 degree gridded reanalysis database. However, the magnitude of these effects on wind conditions is temporally and spatially non-stationary. As described by Comas-Bru and McDermott (2013) for temperature and precipitation, such non-stationarity is caused by the influence of two other patterns, the East Atlantic pattern, (EA), and the Scandinavian pattern, (SCA), which modulate the position of the NAO dipole. This phenomenon has also implications for wind speeds and directions, which has been assessed using the ERA-Interim reanalysis dataset and the indices obtained from the PC analysis of sea level pressure over the Atlantic region. In order to study the implications for power production, the interaction of the NAO and the other teleconnection patterns with local topography was also analysed, as well as how these interactions ultimately translate into wind power output. The objective is to have a better defined relationship between wind speed and power

  9. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOEpatents

    Bates, John B.

    1997-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphous lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  10. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOEpatents

    Bates, John B.

    1996-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphorus lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  11. High Average Power Raman Conversion in Diamond: ’Eyesafe’ Output and Fiber Laser Conversion

    DTIC Science & Technology

    2015-06-19

    optical effects (namely stress fracture , birefringence and end-facet distortion). Future work will need to involve these processes as DRL powers move...SBS can be obtained in a bulk crystal, in contrast to other crystalline media for which SBS has only been achieved in nano -structured devices, so...providing a new tool for creating diamond nano - and micro-devices. The project raises several questions for further research. As power scaling is

  12. Effects of changes in stopping-power ratios with field size on electron beam relative output factors.

    PubMed

    Zhang, G G; Rogers, D W; Cygler, J E; Mackie, T R

    1998-09-01

    Stopping-power ratios are a function of field size and vary with accelerators. To investigate how these variations affect relative output factor measurements made using ion chambers for electron beams, especially for small fields, (L/rho)air(water) is calculated using the Monte Carlo technique for different field sizes, beam energies, and accelerators and is compared to the data in TG-21 or TG-25, which are for mono-energetic broad beams. For very small field sizes defined by cutouts, if the change in (L/rho)air(water) with dmax is ignored (i.e., TG-25 is not carefully followed), there is an overestimate of relative output factors by up to 3%. Ignoring the field-size effect on stopping-power ratio adds an additional overestimate of up to one-half percent, and using mono-energetic stopping-power ratio data instead of realistic beam data gives another error, but in the opposite direction, of up to 0.7%. Due to the cancellation of these latter two errors, following TG-25 with (L/rho)air(water) data for broad mono-energetic beams will give the correct answer for the ROF measurement within 0.4% compared to using (L/rho)air(water) data for which the field-size effect is considered for realistic electron beams.

  13. High power, compact, picosecond MOPA based on single trench fiber with single polarized diffraction-limited output.

    PubMed

    Jain, D; Alam, S; Codemard, C; Jung, Y; Zervas, M N; Sahu, J K

    2015-09-01

    We experimentally demonstrate an all-solid Yb-doped 30 μm core diameter single trench fiber. Measurements ensure a robust effective single-mode operation without the need of tight coiling as required for conventional fibers thanks to the ultralow NA (∼0.038) and resonant ring surrounding the core. All-solid and cylindrical design ensures the suitability for mass scale production with the added benefit of all-fiberized device structure. A compact master oscillator power amplifier (MOPA) has been built using this fiber delivering ∼23.5  ps pulses at 13.5 MHz repetition rate delivering up to ∼52  W of average output power corresponding to a pulse energy of ∼3.8  μJ and peak power of >160  kW, while maintaining ∼76% slope efficiency. The output beam exhibits a polarization extinction ratio of more than 15 dB and a M2 less than 1.15.

  14. Multi-Purpose Low Voltage Dual Output DC-DC Converter For 100V Power Bus Telecom Platform

    NASA Astrophysics Data System (ADS)

    Galiana, D.; Mollard, J. M.

    2011-10-01

    The decreasing supply voltages of digital electronic and high speed ADC (Analog to Digital Converter) and DAC (Digital to Analog Converter) require flexible and high current secondary power distribution system. In the frame of the Inmarsat I-XL program, a 12 kW geomobile SatCom satellite, with 100 V regulated power bus, a multi purpose dual output converter was developed for the payload processor as a building block. After a short introduction on the main performance requirements, the baseline architecture is presented. The main drivers of the architecture are reliability, adjustability, radiation tolerant and single event free, volume and mass. The combination of all these constraints highlights the need of significant breakthrough in various domains. Many research results related to packaging and power electronic topics are brought up. These results directly drive the adopted solution presented in the next step followed by a description of the integration of the defined building block in the Inmarsat I-XL payload IP (Integrated Processor). Finally, the main electrical performances such as output ripple and spikes, load step transient and stability are summarized.

  15. Muscle contractile properties as an explanation of the higher mean power output in marmosets than humans during jumping.

    PubMed

    Plas, Rogier L C; Degens, Hans; Meijer, J Peter; de Wit, Gerard M J; Philippens, Ingrid H C H M; Bobbert, Maarten F; Jaspers, Richard T

    2015-07-01

    The muscle mass-specific mean power output (PMMS,mean) during push-off in jumping in marmosets (Callithrix jacchus) is more than twice that in humans. In the present study it was tested whether this is attributable to differences in muscle contractile properties. In biopsies of marmoset m. vastus lateralis (VL) and m. gastrocnemius medialis (GM) (N=4), fibre-type distribution was assessed using fluorescent immunohistochemistry. In single fibres from four marmoset and nine human VL biopsies, the force-velocity characteristics were determined. Marmoset VL contained almost exclusively fast muscle fibres (>99.0%), of which 63% were type IIB and 37% were hybrid fibres, fibres containing multiple myosin heavy chains. GM contained 9% type I fibres, 44% type IIB and 47% hybrid muscle fibres. The proportions of fast muscle fibres in marmoset VL and GM were substantially larger than those reported in the corresponding human muscles. The curvature of the force-velocity relationships of marmoset type IIB and hybrid fibres was substantially flatter than that of human type I, IIA, IIX and hybrid fibres, resulting in substantially higher muscle fibre mass-specific peak power (PFMS,peak). Muscle mass-specific peak power output (PMMS,peak) values of marmoset whole VL and GM, estimated from their fibre-type distributions and force-velocity characteristics, were more than twice the estimates for the corresponding human muscles. As the relative difference in estimated PMMS,peak between marmosets and humans is similar to that of PMMS,mean during push-off in jumping, it is likely that the difference in in vivo mechanical output between humans and marmosets is attributable to differences in muscle contractile properties.

  16. Anodic microbial community diversity as a predictor of the power output of microbial fuel cells.

    PubMed

    Stratford, James P; Beecroft, Nelli J; Slade, Robert C T; Grüning, André; Avignone-Rossa, Claudio

    2014-03-01

    The relationship between the diversity of mixed-species microbial consortia and their electrogenic potential in the anodes of microbial fuel cells was examined using different diversity measures as predictors. Identical microbial fuel cells were sampled at multiple time-points. Biofilm and suspension communities were analysed by denaturing gradient gel electrophoresis to calculate the number and relative abundance of species. Shannon and Simpson indices and richness were examined for association with power using bivariate and multiple linear regression, with biofilm DNA as an additional variable. In simple bivariate regressions, the correlation of Shannon diversity of the biofilm and power is stronger (r=0.65, p=0.001) than between power and richness (r=0.39, p=0.076), or between power and the Simpson index (r=0.5, p=0.018). Using Shannon diversity and biofilm DNA as predictors of power, a regression model can be constructed (r=0.73, p<0.001). Ecological parameters such as the Shannon index are predictive of the electrogenic potential of microbial communities.

  17. Terrestrial applications of FEP-encapsulated solar cell modules. [systems design and power output characteristics

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Ratajczak, A. F.

    1974-01-01

    FEP-encapsulated solar cell modules and arrays have been designed and built expressly for terrestrial applications. System design including solar cell array mechanical design and the approach to system sizing is outlined. Such solar cell systems have been installed at six sites. Individual modules have undergone marine environment tests. Results from seven months of operation indicate that system is meeting its electrical design requirements. No mechanical degradation has been reported. The array on Mammoth Mountain, California has been damaged by rime ice but shows no loss in electrical output. Marine environment tests on single modules have shown that elements of the module must be completely sealed by the FEP. Based on the limited test data available, the FEP-encapsulated solar cell module appears well suited to terrestrial applications.

  18. Electrical power converter method and system employing multiple-output converters

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2006-03-21

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  19. High-efficiency, high-output-power antiguide laser diode arrays

    NASA Technical Reports Server (NTRS)

    Mehuys, D.; Major, J. S., Jr.; Welch, D.; Scifres, D. R.

    1992-01-01

    Antiguide laser arrays have been fabricated and operated up to peak pulsed powers of 7.7 W in a beam with a full-width at half-maximum in the main lobe of 0.7 deg. Up to 0.7 W of continuous wave power is emitted into a radiation pattern 2.5 times the diffraction limit. By varying the temperature of the array to vary the operating wavelength of the device, the threshold gain condition of the array modes is altered, allowing thermal tuning of the far field of the device.

  20. Composite Thin-Disk Laser Scaleable to 100 kW Average Power Output and Beyond

    SciTech Connect

    Zapata, L.; Beach, R.; Payne, S.

    2000-06-01

    By combining newly developed technologies to engineer composite laser components with state of the art diode laser pump delivery technologies, we are in a position to demonstrate high beam quality, continuous wave, laser radiation at scaleable high average powers. The crucial issues of our composite thin disk laser technology were demonstrated during a successful first light effort. The high continuous wave power levels that are now within reach make this system of high interest to future DoD initiatives in solid-state laser technology for the laser weapon arena.

  1. Characteristics and reliability of high power multi-mode InGaAs strained quantum well single emitters with CW output powers of over 5W

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Presser, Nathan; Mason, Maribeth; Moss, Steven C.

    2006-02-01

    High-power multi-mode broad area InGaAs strained quantum well (QW) single emitters (λ ~ 920-980nm) have been mainly used for industrial applications. Recently, these broad area lasers with CW output powers >5W have also found applications in communications as pump lasers for Er-Yb co-doped fiber amplifiers. This application requires very demanding characteristics including higher reliability than industrial applications. In contrast to 980nm single mode InGaAs strained QW lasers that are widely employed in both terrestrial and submarine applications, the fact that multimode lasers have never been used in optical communications necessitates careful study of these lasers. We report investigations of performance characteristics, reliability, and failure modes of high-power multi-mode single emitters. The lasers studied were broad area strained InGaAs-GaAs single QW lasers grown either by MOCVD or MBE. Typical apertures were around 100μm wide and cavity lengths were <=4.2mm. AR-HR coated laser diode chips were mounted on carriers with junction down configuration to reduce thermal impedance. Laser thresholds were <=453mA at RT. At 6A injection current typical CW output powers were over 5W at 25°C with wall-plug efficiency of ~60%. Characteristics measured included thermal impedance and optical beam profiles that are critical in understanding performance and reliability. Automatic current control burn-in tests with different stress conditions were performed and log (I)-V characteristics were measured at RT to correlate degradation in optical output power and an increase in trap density estimated from the 2κ•T term in bulk recombination current. We also report initial analysis of lifetest results and failure modes from these lasers.

  2. Method for reducing fuel cell output voltage to permit low power operation

    DOEpatents

    Reiser, Carl A.; Landau, Michael B.

    1980-01-01

    Fuel cell performance is degraded by recycling a portion of the cathode exhaust through the cells and, if necessary, also reducing the total air flow to the cells for the purpose of permitting operation below a power level which would otherwise result in excessive voltage.

  3. Macro-channel cooled high power fiber coupled diode lasers exceeding 1.2kW of output power

    NASA Astrophysics Data System (ADS)

    Koenning, Tobias; Alegria, Kim; Wang, Zuolan; Segref, Armin; Stapleton, Dean; Faßbender, Wilhelm; Flament, Marco; Rotter, Karsten; Noeske, Axel; Biesenbach, Jens

    2011-03-01

    We report on a new series of fiber coupled diode laser modules exceeding 1.2kW of single wavelength optical power from a 400um / 0.2NA fiber. The units are constructed from passively cooled laser bars as opposed to other comparably powered, commercially available modules that use micro-channel heat-sinks. Micro-channel heat sinks require cooling water to meet demanding specifications and are therefore prone to failures due to contamination and increase the overall cost to operate and maintain the laser. Dilas' new series of high power fiber coupled diode lasers are designed to eliminate micro channel coolers and their associated failure mechanisms. Low-smile soldering processes were developed to maximize the brightness available from each diode laser bar. The diode laser brightness is optimally conserved using Dilas' recently developed propriety laser bar stacking geometry and optics. A total of 24 bars are coupled into a single fiber core using a polarization multiplexing scheme. The modular design permits further power scaling through wavelength multiplexing. Other customer critical features such as industrial grade fibers, pilot beams, fiber interlocks and power monitoring are standard features on these modules. The optical design and the beam parameter calculations will be presented to explain the inherit design trade offs. Results for single and dual wavelengths modules will be presented.

  4. Comparison of treadmill and cycle ergometer measurements of force-velocity relationships and power output.

    PubMed

    Jaskólska, A; Goossens, P; Veenstra, B; Jaskólski, A; Skinner, J S

    1999-04-01

    Since body balance and weight-bearing factors present while running on the treadmill might cause additional muscle recruitment and thus could influence the force-velocity relationship and power, the present study was undertaken to find out whether the F-V and F-P relationships measured while running on the treadmill are different from the respective indices measured during cycling. On two separate occasions, 32 male subjects were tested using a series of 5 sec, all-out sprints against different braking forces on the Gymrol Sprint treadmill and on the Monark ergometer. The maximal peak power (PPmax) and maximal mean power (MPmax) were measured. The equation: EP = 0.5 maximal force (Fo) x0.5 maximal velocity (Vo) was used to calculate the estimated values of peak power (EPP) and mean power (EMP). The F-V relationship was linear in both cycle ergometer and treadmill measurements. PPmax, MPmax, EPP, and EMP values on the treadmill were lower than the respective values on the ergometer. EPP on the ergometer and on the treadmill, as well as EMP values on the ergometer, were slightly higher than the corresponding measured values of PPmax and MPmax. The levels of braking force at which PP, MP, PPmax, and MPmax were obtained were lower on the ergometer than on the treadmill. High correlation coefficients were found between PPmax, MPmax, EPP, and EMP measured on the ergometer and on the treadmill (r = 0.86, r = 0.84, r = 0.71, r = 0.78, respectively, P<0.01). In both tests, significant relationships between PPmax, MPmax, EPP, and EMP were observed. It is concluded that independent of the type of ergometry the force-velocity relationship is similar in the measured range of velocities which suggests that the number of muscle groups and joints engaged in movement are more important than body balance and weight-bearing factors present while running on a treadmill.

  5. Analysis of Upper Bound Power Output for a Wrist-Worn Rotational Energy Harvester from Real-World Measured Inputs

    NASA Astrophysics Data System (ADS)

    Xue, T.; Ma, X.; Rahn, C.; Roundy, S.

    2014-11-01

    Energy harvesting from human motion addresses the growing need for battery-free health and wellness sensors in wearable applications. The major obstacles to harvesting energy in such applications are low and random frequencies due to the nature of human motion. This paper presents a generalized rotational harvester model in 3 dimensions to determine the upper bound of power output from real world measured data. Simulation results indicate much space for improvement on power generation comparing to existing devices. We have developed a rotational energy harvester for human motion that attempts to close the gap between theoretical possibility and demonstrated devices. Like previous work, it makes use of magnetically plucked piezoelectric beams. However, it more fully utilizes the space available and has many degrees of freedom available for optimization. Finally we present a prototype harvester based on the coupled harvester model with preliminary experimental validation.

  6. The influence of non-logarithmic wind speed profiles on potential power output at Danish offshore sites

    NASA Astrophysics Data System (ADS)

    Motta, M.; Barthelmie, R. J.; Vølund, P.

    2005-04-01

    Detailed knowledge of mean wind speed profiles is essential for properly assessing the power output of a potential wind farm. Since atmospheric stratification plays a crucial role in affecting wind speed profiles, obtaining a detailed picture of the climatology of stability conditions at a given site is very important. In the present study, long time series from offshore measurement sites around Denmark are analysed, with the aim of quantifying the role of atmospheric stability in wind speed profiles and in our ability to model them. A simple method for evaluating stability is applied, and the resulting statistics of the atmospheric stratification is thoroughly studied. A significant improvement in the mean wind speed profile prediction is obtained by applying a stability correction to the logarithmic profiles suitable for neutral conditions. These results are finally used to estimate power densities at different heights. Copyright

  7. Torque and power outputs on different subjects during manual wheelchair propulsion under different conditions

    NASA Astrophysics Data System (ADS)

    Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Kim, Youngho

    2012-02-01

    Manual wheelchair users are at a high risk of pain and injuries to the upper extremities due to mechanical inefficiency of wheelchair propulsion motion. The kinetic analysis of the upper extremities during manual wheelchair propulsion in various conditions needed to be investigated. We developed and calibrated a wheelchair dynamometer for measuring kinetic parameters during propulsion. We utilized the dynamometer to investigate and compare the propulsion torque and power values of experienced and novice users under four different conditions. Experienced wheelchair users generated lower torques with more power than novice users and reacted alertly and sensitively to changing conditions. We expect that these basic methods and results may help to quantitatively evaluate the mechanical efficiency of manual wheelchair propulsion.

  8. Yaw-Misalignment and its Impact on Wind Turbine Loads and Wind Farm Power Output

    NASA Astrophysics Data System (ADS)

    van Dijk, Mike T.; van Wingerden, Jan-Willem; Ashuri, Turaj; Li, Yaoyu; Rotea, Mario A.

    2016-09-01

    To make wind energy cost competitive with traditional resources, wind turbines are commonly placed in groups. Aerodynamic interaction between the turbines causes sub-optimal energy production. A control strategy to mitigate these losses is by redirecting the wake by yaw misalignment. This paper aims to assess the influence of load variations of the rotor due to partial wake overlap and presents a combined optimization of the power and loads using wake redirection. For this purpose, we design a computational framework which computes the wind farm power production and the wind turbine rotor loads based on the yaw settings. The simulation results show that partial wake overlap can significantly increase asymmetric loading of the rotor disk and that yaw misalignment is beneficial in situations where the wake can be sufficiently directed away from the downstream turbine.

  9. Measurement of Trailing Edge Noise Using Directional Array and Coherent Output Power Methods

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.

    2002-01-01

    The use of a directional (or phased) array of microphones for the measurement of trailing edge (TE) noise is described and tested. The capabilities of this method arc evaluated via measurements of TE noise from a NACA 63-215 airfoil model and from a cylindrical rod. This TE noise measurement approach is compared to one that is based on thc cross spectral analysis of output signals from a pair of microphones placed on opposite sides of an airframe model (COP method). Advantages and limitations of both methods arc examined. It is shown that the microphone array can accurately measures TE noise and captures its two-dimensional characteristic over a large frequency range for any TE configuration as long as noise contamination from extraneous sources is within bounds. The COP method is shown to also accurately measure TE noise but over a more limited frequency range that narrows for increased TE thickness. Finally, the applicability and generality of an airfoil self-noise prediction method was evaluated via comparison to the experimental data obtained using the COP and array measurement methods. The predicted and experimental results are shown to agree over large frequency ranges.

  10. High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology.

    PubMed

    Tanaka, Shinsuke; Jeong, Seok-Hwan; Sekiguchi, Shigeaki; Kurahashi, Teruo; Tanaka, Yu; Morito, Ken

    2012-12-17

    An Si/III-V hybrid laser oscillating at a single wavelength was developed for use in a large-scale Si optical I/O chip. The laser had an InP-based reflective semiconductor optical amplifier (SOA) chip integrated with an Si wavelength-selection-mirror chip in a flip-chip configuration. A low coupling loss of 1.55 dB at the Si-SOA interface was accomplished by both mode-field-matching between Si-SOA waveguides and accurately controlling the bonding position. The fabricated Si hybrid laser exhibited a very low threshold current of 9.4 mA, a high output power of 15.0 mW, and a high wall-plug efficiency of 7.6% at 20 °C. Moreover, the device maintained a high output power of >10 mW up to 60°C due to the high thermal conductance between the SOA chip and Si substrate. The short cavity length of the flip-chip bonded laser expanded the longitudinal mode spacing. This resulted in temperature-stable single longitudinal mode lasing and a low RIN level of <-130 dB/Hz.

  11. Inverted tetrahedron-pyramidal micropatterned polymer films for boosting light output power in flip-chip light-emitting diodes.

    PubMed

    Leem, Jung Woo; Lee, Soo Hyun; Guan, Xiang-Yu; Yu, Jae Su

    2015-04-20

    We report the improved light output power in gallium nitride-based green flip-chip light-emitting diodes (FCLEDs) employed with inverted tetrahedron-pyramidal micropatterned polydimethylsiloxane (ITPM PDMS) films as an encapsulation and protection layer. The micropatterns are transferred into the surface of PDMS films from the sapphire substrate master molds with two-dimensional periodic hexagonal TPM arrays by a soft imprint lithography method. The ITPM PDMS film laminated on the sapphire dramatically enhances the diffuse transmittance (T(D)) in a wavelength (λ) range of 400-650 nm, exhibiting the larger T(D) value of ~53% at λ = 525 nm, (cf., T(D) ~1% for planar sapphire). By introducing the ITPM PDMS film on the outer surface of sapphire in FCLEDs, the light output power is enhanced, indicating the increment percentage of ~11.1% at 500 mA of injection current compared to the reference FCLED without the ITPM PDMS film, together with better electroluminescence intensity and far-field radiation pattern.

  12. Oxygen saturation in the triceps brachii muscle during an arm Wingate test: the role of training and power output.

    PubMed

    Kounalakis, Stylianos N; Koskolou, Maria D; Geladas, Nickos D

    2009-01-01

    The purpose of this study was to investigate the role of training and power output on muscle oxygen desaturation during and resaturation after an arm Wingate test (WAnT). Two groups of subjects were studied; the first group consisted of nine athletes participating in upper arm anaerobic sports and the second group of 11 university students. As a consequence, the group of athletes (HP) produced higher peak and mean power output (p < 0.01) than the group of university students (LP). Muscle oxygenation status was evaluated by using near infrared spectroscopy at the triceps brachii. The HP group exhibited 17.6 +/- 8.0% less muscle oxygen desaturation than the LP group (p < 0.05) but similar muscle total hemoglobin during exercise and faster (p < 0.05) muscle oxygen resaturation during recovery (tau = 12.4 +/- 5.2 sec in HP vs. tau = 24.2 +/- 11.0 sec in LP). These results indicate that the HP group exhibits less muscle desaturation during an arm WAnT and has a faster resaturation rate, probably attributed to differences in muscle mass, muscle fiber recruitment capability, and ATP production through anaerobic pathways.

  13. Measurement of unsteady loading and power output variability in a micro wind farm model in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Howland, Michael F.; Meneveau, Charles; Meyers, Johan

    2017-01-01

    Unsteady loading and spatiotemporal characteristics of power output are measured in a wind tunnel experiment of a microscale wind farm model with 100 porous disk models. The model wind farm is placed in a scaled turbulent boundary layer, and six different layouts, varied from aligned to staggered, are considered. The measurements are done by making use of a specially designed small-scale porous disk model, instrumented with strain gages. The frequency response of the measurements goes up to the natural frequency of the model, which corresponds to a reduced frequency of 0.6 when normalized by the diameter and the mean hub height velocity. The equivalent range of timescales, scaled to field-scale values, is 15 s and longer. The accuracy and limitations of the acquisition technique are documented and verified with hot-wire measurements. The spatiotemporal measurement capabilities of the experimental setup are used to study the cross-correlation in the power output of various porous disk models of wind turbines. A significant correlation is confirmed between streamwise aligned models, while staggered models show an anti-correlation.

  14. Quantitative EEG in Children and Adults With Attention Deficit Hyperactivity Disorder: Comparison of Absolute and Relative Power Spectra and Theta/Beta Ratio.

    PubMed

    Markovska-Simoska, Silvana; Pop-Jordanova, Nada

    2017-01-01

    In recent decades, resting state electroencephalographic (EEG) measures have been widely used to document underlying neurophysiological dysfunction in attention deficit hyperactivity disorder (ADHD). Although most EEG studies focus on children, there is a growing interest in adults with ADHD too. The aim of this study was to objectively assess and compare the absolute and relative EEG power as well as the theta/beta ratio in children and adults with ADHD. The evaluated sample comprised 30 male children and 30 male adults with ADHD diagnosed according to DSM-IV criteria. They were compared with 30 boys and 30 male adults matched by age. The mean age (±SD) of the children's group was 9 (±2.44) years and the adult group 35.8 (±8.65) years. EEG was recorded during an eyes-open condition. Spectral analysis of absolute (μV(2)) and relative power (%) was carried out for 4 frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-21 Hz). The findings obtained for ADHD children are increased absolute power of slow waves (theta and delta), whereas adults exhibited no differences compared with normal subjects. For the relative power spectra there were no differences between the ADHD and control groups. Across groups, the children showed greater relative power than the adults in the delta and theta bands, but for the higher frequency bands (alpha and beta) the adults showed more relative power than children. Only ADHD children showed greater theta/beta ratio compared to the normal group. Classification analysis showed that ADHD children could be differentiated from the control group by the absolute theta values and theta/beta ratio at Cz, but this was not the case with ADHD adults. The question that should be further explored is if these differences are mainly due to maturation processes or if there is a core difference in cortical arousal between ADHD children and adults.

  15. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  16. Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method.

    PubMed

    Daniels, Alice; Zhu, Meiling; Tiwari, Ashutosh

    2013-12-01

    Piezoelectric material properties have substantial influence on electrical power output from piezoelectric energy harvesters (PEHs). Understanding their influences is the first step in designing effective PEHs to generate higher power outputs. This paper uses a coupled piezoelectric-circuit-finite element method to study the power outputs of different types of piezoelectric materials, including single crystal, polyvinylidene fluoride (PVDF), and soft and hard lead zirconate titanate (PZT) materials. The purpose of this study is to try to gain an understanding of which piezoelectric material property--the elastic compliance s11, the piezoelectric strain constant d31, the piezoelectric stress constant g31, and the relative dielectric constant ϵ(T)r33, and the associated material properties of the d31 × g31, called the figure of merit (FOM), and the coupling coefficient k31--dominates the power output. A rectangular piezoelectric plate under a low-frequency excitation is used to evaluate piezoelectric material properties for a higher power output. It was found that 1) d31 is a more dominant material property over other material properties for higher power output; 2) FOM was more linearly related to the power output than either the k31 or the d31; and 3) ϵ(T)r33 had some role; when the materials have an identical d31; a lower ϵ(T)r33 was preferred. Because of unexplained outliers, no single material parameter was able to be recommended as selection criteria, but combined FOM with d31 parameters is recommended for selection of piezoelectric material for a higher power output from PEHs.

  17. Doubling Power Output of Starch Biobattery Treated by the Most Thermostable Isoamylase from an Archaeon Sulfolobus tokodaii

    PubMed Central

    Cheng, Kun; Zhang, Fei; Sun, Fangfang; Chen, Hongge; Percival Zhang, Y-H

    2015-01-01

    Biobattery, a kind of enzymatic fuel cells, can convert organic compounds (e.g., glucose, starch) to electricity in a closed system without moving parts. Inspired by natural starch metabolism catalyzed by starch phosphorylase, isoamylase is essential to debranch alpha-1,6-glycosidic bonds of starch, yielding linear amylodextrin – the best fuel for sugar-powered biobattery. However, there is no thermostable isoamylase stable enough for simultaneous starch gelatinization and enzymatic hydrolysis, different from the case of thermostable alpha-amylase. A putative isoamylase gene was mined from megagenomic database. The open reading frame ST0928 from a hyperthermophilic archaeron Sulfolobus tokodaii was cloned and expressed in E. coli. The recombinant protein was easily purified by heat precipitation at 80 oC for 30 min. This enzyme was characterized and required Mg2+ as an activator. This enzyme was the most stable isoamylase reported with a half lifetime of 200 min at 90 oC in the presence of 0.5 mM MgCl2, suitable for simultaneous starch gelatinization and isoamylase hydrolysis. The cuvett-based air-breathing biobattery powered by isoamylase-treated starch exhibited nearly doubled power outputs than that powered by the same concentration starch solution, suggesting more glucose 1-phosphate generated. PMID:26289411

  18. Relationships Between Vertical Jump and Full Squat Power Outputs With Sprint Times in U21 Soccer Players

    PubMed Central

    López-Segovia, Manuel; Marques, Mário C.; van den Tillaar, Roland; González-Badillo, Juan J

    2011-01-01

    The aim of this study was to assess the relationship between power variables in the vertical jump and full squat with the sprint performance in soccer players. Fourteen under-21 soccer players were evaluated in two testing sessions separated by 7 days. In the first testing session, vertical jump height in countermovement was assessed, and power output for both loaded countermovement jump (CMJL) and full squat (FS) exercises in two progressive load tests. The second testing session included sprinting at 10, 20, and 30m (T10, T20, T30, T10–20, T10–30, T20–30). Power variables obtained in the loaded vertical jump with 20kg and full squat exercise with 70kg showed significant relationships with all split times (r=−0.56/–0.79; p≤ 0.01/0.01). The results suggest that power produced either with vertical jump or full squat exercises is an important factor to explain short sprint performance in soccer players. These findings might suggest that certain levels of neuromuscular activation are more related with sprint performance reflecting the greater suitability of loads against others for the improvement of short sprint ability in under-21 soccer players. PMID:23487438

  19. Relationships between vertical jump and full squat power outputs with sprint times in u21 soccer players.

    PubMed

    López-Segovia, Manuel; Marques, Mário C; van den Tillaar, Roland; González-Badillo, Juan J

    2011-12-01

    The aim of this study was to assess the relationship between power variables in the vertical jump and full squat with the sprint performance in soccer players. Fourteen under-21 soccer players were evaluated in two testing sessions separated by 7 days. In the first testing session, vertical jump height in countermovement was assessed, and power output for both loaded countermovement jump (CMJL) and full squat (FS) exercises in two progressive load tests. The second testing session included sprinting at 10, 20, and 30m (T10, T20, T30, T10-20, T10-30, T20-30). Power variables obtained in the loaded vertical jump with 20kg and full squat exercise with 70kg showed significant relationships with all split times (r=-0.56/-0.79; p≤ 0.01/0.01). The results suggest that power produced either with vertical jump or full squat exercises is an important factor to explain short sprint performance in soccer players. These findings might suggest that certain levels of neuromuscular activation are more related with sprint performance reflecting the greater suitability of loads against others for the improvement of short sprint ability in under-21 soccer players.

  20. Boundary-layer flow and power output in large wind farms during transition from neutral to stable conditions

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2016-11-01

    In wind farms, power deficits are directly related to ambient turbulence levels. Power deficits will therefore increase during the transition from a daytime, conventionally neutral boundary layer (CNBL) to the stable boundary layer (SBL) at night. Besides turbulent decay, a multitude of effects occurs during this transition. For instance, low-level jets may cause strong winds at high elevations, while the velocity near the surface generally decreases. Consequently, Coriolis forces induce a change in wind direction, which alters the apparent wind-farm layout in streamwise direction. In this study, we perform LES of a large onshore wind farm in the late-afternoon transition from an equilibrium CNBL to a surface-cooled SBL. The results of two different cooling rates are compared with the wind-farm performance in the CNBL. The power output decrease during the transition, with faster decrease for stronger surface cooling. However, the initial decrease is dominated by the reduction in wind speed, and the relative power deficits do not increase. Further, considerable wake deflection occurs, and a spatially heterogeneous distribution of temperature and heat flux is observed. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  1. Doubling Power Output of Starch Biobattery Treated by the Most Thermostable Isoamylase from an Archaeon Sulfolobus tokodaii.

    PubMed

    Cheng, Kun; Zhang, Fei; Sun, Fangfang; Chen, Hongge; Percival Zhang, Y-H

    2015-08-20

    Biobattery, a kind of enzymatic fuel cells, can convert organic compounds (e.g., glucose, starch) to electricity in a closed system without moving parts. Inspired by natural starch metabolism catalyzed by starch phosphorylase, isoamylase is essential to debranch alpha-1,6-glycosidic bonds of starch, yielding linear amylodextrin - the best fuel for sugar-powered biobattery. However, there is no thermostable isoamylase stable enough for simultaneous starch gelatinization and enzymatic hydrolysis, different from the case of thermostable alpha-amylase. A putative isoamylase gene was mined from megagenomic database. The open reading frame ST0928 from a hyperthermophilic archaeron Sulfolobus tokodaii was cloned and expressed in E. coli. The recombinant protein was easily purified by heat precipitation at 80 (o)C for 30 min. This enzyme was characterized and required Mg(2+) as an activator. This enzyme was the most stable isoamylase reported with a half lifetime of 200 min at 90 (o)C in the presence of 0.5 mM MgCl2, suitable for simultaneous starch gelatinization and isoamylase hydrolysis. The cuvett-based air-breathing biobattery powered by isoamylase-treated starch exhibited nearly doubled power outputs than that powered by the same concentration starch solution, suggesting more glucose 1-phosphate generated.

  2. Can we estimate the cellular phone RF peak output power with a simple experiment?

    NASA Astrophysics Data System (ADS)

    Fioreze, Maycon; dos Santos Junior, Sauli; Goncalves Hönnicke, Marcelo

    2016-07-01

    Cellular phones are becoming increasingly useful tools for students. Since cell phones operate in the microwave bandwidth, they can be used to motivate students to demonstrate and better understand the properties of electromagnetic waves. However, since these waves operate at higher frequencies (L-band, from 800 MHz to 2 GHz) it is not simple to detect them. Usually, expensive real-time high frequency oscilloscopes are required. Indirect measurements are also possible through heat-based and diode-detector-based radio-frequency (RF) power sensors. Another didactic and intuitive way is to explore a simple and inexpensive detection system, based on the interference effect caused in the electronic circuit of TV and PC soundspeakers, and to try to investigate different properties of the cell phones’ RF electromagnetic waves, such as its power and modulated frequency. This manuscript proposes a trial to quantify these measurements, based on a simple Friis equation model and the time constant of the circuit used in the detection system, in order to show it didactically to the students and even allow them also to explore such a simple detection system at home.

  3. X-ray Power and Energy output of Z-Machine Dynamic Hohlraums

    NASA Astrophysics Data System (ADS)

    Idzorek, G.; Tierney, T.; Watt, R.

    2006-10-01

    Los Alamos performs radiation flow experiments at the Z-machine in order to verify their modelling codes. Critical input to these codes is the actual radiation power profile which flows into the experiment. Our standard diagnostic suite consists of X-ray Diodes (XRD), silicon photodiodes, and nickel thin film bolometers. Custom written computer software examines the raw data to determine the data quality, folds in detector spectral response, calculates a multi-detector spectral unfold, and yields an equivalent Planckian temperature profile. Sets of diagnostics view the dynamic hohlraum from the side, top axial anode side, and bottom axial cathode side. Results to date yield some interesting conclusions: Correlation between the various diagnostic views seems tenuous at best. Identical nickel foil bolometers usually agree within 10%. At low bolometer-foil temperature increases the bolometers agree with integrated XRD power unfolds but diverge at higher temperature increases. For identically filtered X-ray diodes the integrated response of photocathodes may vary an factor of two. XRD's usually unfold to yield a Planckian-like spectrum. Top axial measurements consistently yield higher temperatures than bottom axial diagnostics. In our presentation we will compare the diagnostic techniques, analysis, and results to establish drive conditions for our experiments.

  4. Effects of temperature and force requirements on muscle work and power output.

    PubMed

    Olberding, Jeffrey P; Deban, Stephen M

    2017-03-17

    Performance of muscle-powered movements depends on temperature through its effects on muscle contractile properties. In vitro stimulation of Cuban treefrog (Osteopilus septentrionalis) plantaris muscles reveals that interactions between force and temperature affect the mechanical work of muscle. At low temperatures (9 - 17°C), muscle work depends on temperature when shortening at any force, and temperature effects are greater at higher forces. At warmer temperatures (13 - 21°C), muscle work depends on temperature when shortening with intermediate and high forces (≥ 30% P0). Shortening velocity is most strongly affected by temperature at low temperature intervals and high forces. Power is also most strongly affected at low temperature intervals but this effect is minimized at intermediate forces. Effects of temperature on muscle force explain these interactions; force production decreases at lower temperatures, increasing the challenge of moving a constant force relative to the muscle's capacity. These results suggest that animal performance that requires muscles to do work with low forces relative to a muscle's maximum force production will be robust to temperature changes, and this effect should be true whether muscle acts directly or through elastic-recoil mechanisms and whether force is prescribed (i.e. internal) or variable (i.e. external). Conversely, performance requiring muscles to shorten with relatively large forces is expected to be more sensitive to temperature changes.

  5. Integrating engineering design improvements with exoelectrogen enrichmentprocess to increase power output from microbial fuel cells

    SciTech Connect

    Borole, Abhijeet P; Hamilton, Choo Yieng; Vishnivetskaya, Tatiana A; Leak, David; Andras, Calin; Morrell-Falvey, Jennifer L; Keller, Martin; Davison, Brian H

    2009-01-01

    Microbial fuel cells (MFC) hold promise as a green technology for bioenergy production. The challenge is to improve the engineering design while exploiting the ability of microbes to generate and transfer electrons directly to electrodes. A strategy using a combination of improved anode design and an enrichment processwas formulated to improve power densities. The designwas based on a flow-through anode with minimal dead volume and a high electrode surface area per unit volume. The strategy focused on promoting biofilm formation via a combination of forced flow through the anode, carbon limitation, and step-wise reduction of external resistance. The enrichment process resulted in development of exoelectrogenic biofilm communities dominated by Anaeromusa spp. This is the first report identifying organisms fromthe Veillonellaceae family in MFCs. The power density of the resulting MFC using a ferricyanide cathode reached 300Wm−3 net anode volume (3220mWm−2), which is about a third of what is estimated to be necessary for commercial consideration. The operational stability of the MFC using high specific surface area electrodes was demonstrated by operating the MFC for a period of over four months.

  6. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.

    PubMed

    Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric

    2011-10-15

    Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for

  7. Influence of musculo-tendinous stiffness of the plantar ankle flexor muscles upon maximal power output on a cycle ergometre.

    PubMed

    Driss, Tarak; Lambertz, Daniel; Rouis, Majdi; Vandewalle, Henry

    2012-11-01

    The importance of maximal voluntary torque (T (MVC)), maximal rate of torque development (MRTD) and musculo-tendinous stiffness of the triceps surae for maximal power output on a cycle ergometre (Pmax) was studied in 21 healthy subjects by studying the relationships between maximal cycling power related to body mass (Pmax BM(-1)) with T (MVC), MRTD and different indices of musculo-tendinous stiffness of the ankle flexor. Pmax BM(-1) was calculated from the data of an all-out force-velocity test on a Monark cycle ergometre. T (MVC) and MRTD were measured on a specific ankle ergometre. Musculo-tendinous stiffness was estimated by means of quick releases at 20, 40, 60 and 80% T (MVC) on the same ankle ergometre. Pmax BM(-1) was significantly and positively correlated with MRTD related to body mass but the positive correlation between Pmax BM(-1) and T (MVC) did not reach the significance level (0.05). Pmax BM(-1) was significantly and positively correlated with the estimation of stiffness at 40% T (MVC) (S(0.4)), but not with stiffness at 20, 60 and 80% T (MVC). The results of the present study suggest that maximal power output during cycling is significantly correlated with the level of musculo-tendinous stiffness which corresponds to torque range around peak torque at optimal pedal rate. However, the low coefficient of determination (r2 = 0.203) between Pmax BM(-1) and S (0.4) BM(-1) suggested that Pmax BM(-1) largely depended on other factors than the musculo-tendinous stiffness of the only plantar flexors.

  8. Uncalibrated pulse power analysis fails to reliably measure cardiac output in patients undergoing coronary artery bypass surgery

    PubMed Central

    2011-01-01

    Introduction Uncalibrated arterial pulse power analysis has been recently introduced for continuous monitoring of cardiac index (CI). The aim of the present study was to compare the accuracy of arterial pulse power analysis with intermittent transpulmonary thermodilution (TPTD) before and after cardiopulmonary bypass (CPB). Methods Forty-two patients scheduled for elective coronary surgery were studied after induction of anaesthesia, before and after CPB respectively. Each patient was monitored with the pulse contour cardiac output (PiCCO) system, a central venous line and the recently introduced LiDCO monitoring system. Haemodynamic variables included measurement of CI derived by transpulmonary thermodilution (CITPTD) or CI derived by pulse power analysis (CIPP), before and after calibration (CIPPnon-cal., CIPPcal.). Percentage changes of CI (ΔCITPTD, ΔCIPPnon-cal./PPcal.) were calculated to analyse directional changes. Results Before CPB there was no significant correlation between CIPPnon-cal. and CITPTD (r2 = 0.04, P = 0.08) with a percentage error (PE) of 86%. Higher mean arterial pressure (MAP) values were significantly correlated with higher CIPPnon-cal. (r2 = 0.26, P < 0.0001). After CPB, CIPPcal. revealed a significant correlation compared with CITPTD (r2 = 0.77, P < 0.0001) with PE of 28%. Changes in CIPPcal. (ΔCIPPcal.) showed a correlation with changes in CITPTD (ΔCITPTD) only after CPB (r2 = 0.52, P = 0.005). Conclusions Uncalibrated pulse power analysis was significantly influenced by MAP and was not able to reliably measure CI compared with TPTD. Calibration improved accuracy, but pulse power analysis was still not consistently interchangeable with TPTD. Only calibrated pulse power analysis was able to reliably track haemodynamic changes and trends. PMID:21356060

  9. CONTROL OF LASER RADIATION PARAMETERS: Application of deformable mirrors in industrial CO2 lasers. II. Intracavity power control and repetitively pulsed modulation of output radiation

    NASA Astrophysics Data System (ADS)

    Vinevich, B. S.; Evdokimovich, L. N.; Safronov, A. G.; Smirnov, S. N.

    2004-04-01

    Industrial CO2 lasers of various types with stable cavities, which contain deformable mirrors with a controllable curvature of the reflecting surface, are studied experimentally. Stable and reproducible control of the output power of industrial CO2 lasers is achieved in both single-mode and multimode regimes until the complete lasing quenching. Stable repetitively pulsed lasing regimes with a pulse repetition rate varied from a few to several hundred hertz are obtained in cw CO2 lasers. The shapes of the output laser pulses and the dependence of the mean output power on the frequency — time parameters of the control voltage applied to the intracavity deformable mirror are studied.

  10. Magma differentiation rates from ( 226Ra / 230Th) and the size and power output of magma chambers

    NASA Astrophysics Data System (ADS)

    Blake, Stephen; Rogers, Nick

    2005-08-01

    We present a mathematical model for the evolution of the ( 226Ra / 230Th) activity ratio during simultaneous fractional crystallization and ageing of magma. The model is applied to published data for four volcanic suites that are independently known to have evolved by fractional crystallization. These are tholeiitic basalt from Ardoukoba, Djibouti, MORB from the East Pacific Rise, alkali basalt to mugearite from Vestmannaeyjar, Iceland, and basaltic andesites from Miyakejima, Izu-Bonin arc. In all cases ( 226Ra / 230Th) correlates with indices of fractional crystallization, such as Th, and the data fall close to model curves of constant fractional crystallization rate. The best fit rates vary from 2 to 6 × 10 - 4 yr - 1 . Consequently, the time required to generate moderately evolved magmas ( F ≤ 0.7) is of the order of 500 to 1500 yrs and closed magma chambers will have lifetimes of 1700 to 5000 yrs. These rates and timescales are argued to depend principally on the specific power output (i.e., power output per unit volume) of the magma chambers that are the sites of fractional crystallization. Equating the heat flux at the EPR to the heat flux from the sub-axial magma chamber that evolves at a rate of ca. 3 × 10 - 4 yr - 1 implies that the magma body is a sill of ca. 100 m thickness, a value which coincides with independent estimates from seismology. The similarity of the four inferred differentiation rates suggests that the specific power output of shallow magma chambers in a range of tectonic settings covers a similarly narrow range of ca. 10 to 50 MW km - 3 . Their differentiation rates are some two orders of magnitude slower than that of the basaltic Makaopuhi lava lake, Hawaii, that cooled to the atmosphere. This is consistent with the two orders of magnitude difference in heat flux between Makaopuhi and the East Pacific Rise. ( 226Ra / 230Th) data for magma suites related by fractional crystallization allow the magma differentiation rate to be estimated

  11. Effects of hypertrophic and dilated cardiomyopathy mutations on power output by human β-cardiac myosin.

    PubMed

    Spudich, James A; Aksel, Tural; Bartholomew, Sadie R; Nag, Suman; Kawana, Masataka; Yu, Elizabeth Choe; Sarkar, Saswata S; Sung, Jongmin; Sommese, Ruth F; Sutton, Shirley; Cho, Carol; Adhikari, Arjun S; Taylor, Rebecca; Liu, Chao; Trivedi, Darshan; Ruppel, Kathleen M

    2016-01-01

    Hypertrophic cardiomyopathy is the most frequently occurring inherited cardiovascular disease, with a prevalence of more than one in 500 individuals worldwide. Genetically acquired dilated cardiomyopathy is a related disease that is less prevalent. Both are caused by mutations in the genes encoding the fundamental force-generating protein machinery of the cardiac muscle sarcomere, including human β-cardiac myosin, the motor protein that powers ventricular contraction. Despite numerous studies, most performed with non-human or non-cardiac myosin, there is no clear consensus about the mechanism of action of these mutations on the function of human β-cardiac myosin. We are using a recombinantly expressed human β-cardiac myosin motor domain along with conventional and new methodologies to characterize the forces and velocities of the mutant myosins compared with wild type. Our studies are extending beyond myosin interactions with pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin, the roles of regulatory light chain phosphorylation on the functions of the system, and the possible roles of myosin binding protein-C and titin, important regulatory components of both cardiac and skeletal muscles.

  12. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  13. Validity and reliability of an alternative method for measuring power output during six-second all-out cycling.

    PubMed

    Watson, Martin; Bibbo, Daniele; Duffy, Charles R; Riches, Philip E; Conforto, Silvia; Macaluso, Andrea

    2014-08-01

    In a laboratory setting where both a mechanically-braked cycling ergometer and a motion analysis (MA) system are available, flywheel angular displacement can be estimated by using MA. The purpose of this investigation was to assess the validity and reliability of a MA method for measuring maximal power output (Pmax) in comparison with a force transducer (FT) method. Eight males and eight females undertook three identical sessions, separated by 4 to 6 days; the first being a familiarization session. Individuals performed three 6-second sprints against 50% of the maximal resistance to complete two pedal revolutions with a 3-minute rest between trials. Power was determined independently using both MA and FT analyses. Validity: MA recorded significantly higher Pmax than FT (P < .05). Bland-Altman plots showed that there was a systematic bias in the difference between the measures of the two systems. This difference increased as power increased. Repeatability: Intraclass correlation coefficients were on average 0.90 ± 0.05 in males and 0.85 ± 0.08 in females. Measuring Pmax by MA, therefore, is as appropriate for use in exercise physiology research as Pmax measured by FT, provided that a bias between these measurements methods is allowed for.

  14. Vibration shape effects on the power output in piezoelectric vibro-impact energy harvesters

    NASA Astrophysics Data System (ADS)

    Twiefel, Jens

    2013-04-01

    strain distribution as well as the generated electrical power is analyzed with respect to the proper operation range.

  15. Influence of patterned sapphire substrates with different symmetry on the light output power of InGaN-based LEDs

    PubMed Central

    2014-01-01

    This paper aims to investigate the light output power (LOP) of InGaN-based light-emitting diodes (LEDs) grown on patterned sapphire substrates (PSSs) with different symmetry. The GaN epitaxial layers grown on the hexagonal lattice arrangement PSS (HLAPSS) have a lower compressive strain than the ones grown on the square lattice arrangement PSS (SLAPSS). The quantum-confined Stark effect (QCSE) is also affected by the residual compressive strain. Based on the experimentally measured data and the ray tracing simulation results, the InGaN-based LED with the HLAPSS has a higher LOP than the one with the SLAPSS due to the weaker QCSE within multiple-quantum wells (MQWs). PMID:25392706

  16. Human diaphragm efficiency estimated as power output relative to activation increases with hypercapnic hyperpnea.

    PubMed

    Finucane, Kevin E; Singh, Bhajan

    2009-11-01

    Hyperpnea with exercise or hypercapnia causes phasic contraction of abdominal muscles, potentially lengthening the diaphragm at end expiration and unloading it during inspiration. Muscle efficiency in vitro varies with load, fiber length, and precontraction stretch. To examine whether these properties of muscle contractility determine diaphragm efficiency (Eff(di)) in vivo, we measured Eff(di) in six healthy adults breathing air and during progressive hypercapnia at three levels of end-tidal Pco(2) with mean values of 48 (SD 2), 55 (SD 2), and 61 (SD 1) Torr. Eff(di) was estimated as the ratio of diaphragm power (Wdi) [the product of mean inspiratory transdiaphragmatic pressure, diaphragm volume change (DeltaVdi) measured fluoroscopically, and 1/inspiratory duration (Ti(-1))] to activation [root mean square values of inspiratory diaphragm electromyogram (RMS(di)) measured from esophageal electrodes]. At maximum hypercapnea relative to breathing air, 1) gastric pressure and diaphragm length at end expiration (Pg(ee) and Ldi(ee), respectively) increased 1.4 (SD 0.2) and 1.13 (SD 0.08) times, (P < 0.01 for both); 2) inspiratory change (Delta) in Pg decreased from 4.5 (SD 2.2) to -7.7 (SD 3.8) cmH(2)O (P < 0.001); 3) DeltaVdi.Ti(-1), Wdi, RMS(di), and Eff(di) increased 2.7 (SD 0.6), 4.9 (SD 1.8), 2.6 (SD 0.9), and 1.8 (SD 0.3) times, respectively (P < 0.01 for all); and 4) net and inspiratory Wdi were not different (P = 0.4). Eff(di) was predicted from Ldi(ee) (P < 0.001), Pg(ee) (P < 0.001), DeltaPg.Ti(-1) (P = 0.03), and DeltaPg (P = 0.04) (r(2) = 0.52) (multivariate regression analysis). We conclude that, with hypercapnic hyperpnea, 1) approximately 47% of the maximum increase of Wdi was attributable to increased Eff(di); 2) Eff(di) increased due to preinspiratory lengthening and inspiratory unloading of the diaphragm, consistent with muscle behavior in vitro; 3) passive recoil of the diaphragm did not contribute to inspiratory Wdi or Eff(di); and 4) phasic

  17. Increasing the recovery of heavy metal ions using two microbial fuel cells operating in parallel with no power output.

    PubMed

    Wang, Xiaohui; Li, Jing; Wang, Zhao; Tursun, Hairti; Liu, Rui; Gao, Yanmei; Li, Yuan

    2016-10-01

    The present study aimed to improve the performance of microbial fuel cells (MFCs) by using an intermittent connection period without power output. Connecting two MFCs in parallel improved the voltage output of both MFCs until the voltage stabilized. Electric energy was accumulated in two MFCs containing heavy metal ions copper, zinc, and cadmium as electron acceptors by connection in parallel for several hours. The system was then switched to discharge mode with single MFCs with a 1000-Ω resistor connected between anode and cathode. This method successfully achieved highly efficient removal of heavy metal ions. Even when the anolyte was run in sequencing batch mode, the insufficient voltage and power needed to recover heavy metals from the cathode of MFCs can be complemented by the developed method. The average removal ratio of heavy metal ions in sequencing batch mode was 67 % after 10 h. When the discharge time was 20 h, the removal ratios of zinc, copper, and cadmium were 91.5, 86.7, and 83.57 %, respectively; the average removal ratio of these ions after 20 h was only 52.1 % for the control group. Therefore, the average removal efficiency of heavy metal ions increased by 1.75 times using the electrons stored from the bacteria under the open-circuit conditions in parallel mode. Electrochemical impedance data showed that the anode had lower solution resistance and polarization resistance in the parallel stage than as a single MFC, and capacitance increased with the length of time in parallel.

  18. Absolute Photometry

    NASA Astrophysics Data System (ADS)

    Hartig, George

    1990-12-01

    The absolute sensitivity of the FOS will be determined in SV by observing 2 stars at 3 epochs, first in 3 apertures (1.0", 0.5", and 0.3" circular) and then in 1 aperture (1.0" circular). In cycle 1, one star, BD+28D4211 will be observed in the 1.0" aperture to establish the stability of the sensitivity and flat field characteristics and improve the accuracy obtained in SV. This star will also be observed through the paired apertures since these are not calibrated in SV. The stars will be observed in most detector/grating combinations. The data will be averaged to form the inverse sensitivity functions required by RSDP.

  19. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells.

    PubMed

    Nevin, K P; Richter, H; Covalla, S F; Johnson, J P; Woodard, T L; Orloff, A L; Jia, H; Zhang, M; Lovley, D R

    2008-10-01

    It has been previously noted that mixed communities typically produce more power in microbial fuel cells than pure cultures. If true, this has important implications for the design of microbial fuel cells and for studying the process of electron transfer on anode biofilms. To further evaluate this, Geobacter sulfurreducens was grown with acetate as fuel in a continuous flow 'ministack' system in which the carbon cloth anode and cathode were positioned in close proximity, and the cation-selective membrane surface area was maximized in order to overcome some of the electrochemical limitations that were inherent in fuel cells previously employed for the study of pure cultures. Reducing the size of the anode in order to eliminate cathode limitation resulted in maximum current and power densities per m(2) of anode surface of 4.56 A m(-2) and 1.88 W m(-2) respectively. Electron recovery as current from acetate oxidation was c. 100% when oxygen diffusion into the system was minimized. This performance is comparable to the highest levels previously reported for mixed communities in similar microbial fuel cells and slightly higher than the power output of an anaerobic sludge inoculum in the same ministack system. Minimizing the volume of the anode chamber yielded a volumetric power density of 2.15 kW m(-3), which is the highest power density per volume yet reported for a microbial fuel cell. Geobacter sulfurreducens formed relatively uniform biofilms 3-18 mum thick on the carbon cloth anodes. When graphite sticks served as the anode, the current density (3.10 A m(-2)) was somewhat less than with the carbon cloth anodes, but the biofilms were thicker (c. 50 mum) with a more complex pillar and channel structure. These results suggest that the previously observed disparity in power production in pure and mixed culture microbial fuel cell systems can be attributed more to differences in the fuel cell designs than to any inherent superior capability of mixed cultures to produce

  20. Low-frequency rTMS over the Parieto-frontal network during a sensorimotor task: The role of absolute beta power in the sensorimotor integration.

    PubMed

    Gongora, Mariana; Bittencourt, Juliana; Teixeira, Silmar; Basile, Luis F; Pompeu, Fernando; Droguett, Enrique López; Arias-Carrion, Oscar; Budde, Henning; Cagy, Mauricio; Velasques, Bruna; Nardi, Antonio Egídio; Ribeiro, Pedro

    2016-01-12

    Several studies have demonstrated that Repetitive Transcranial Magnetic Stimulation (rTMS) promotes alterations in the Central Nervous System circuits and networks. The focus of the present study is to examine the absolute beta power patterns in the Parieto-frontal network. We hypothesize that rTMS alters the mechanisms of the sensorimotor integration process during a visuomotor task. Twelve young healthy volunteers performed a visuomotor task involving decision making recorded (Catch a ball in a free fall) by Electroencephalography. rTMS was applied on the Superior Parietal Cortex (SPC; Brodmann area [BA] 7) with low-frequency (1 Hz - 15 min - 80% Resting Motor Threshold). For each Frontal and Parietal region, a two-way ANOVA was used to compare the absolute beta power before and after TMS for each condition of the study (Rest 1, Task and Rest 2). The results demonstrated interactions (TMS vs. Condition) for the Frontal electrodes: Fp1, Fp2 and F7 and an effect of TMS (before and after) for F4.The results for the Parietal region showed a main effect of Condition for the P3, PZ and P4 electrodes. Thus, our paradigm was useful to better understand the reorganization and neural plasticity mechanisms in the parieto-frontal network during the sensorimotor integration process.

  1. Resonantly pumped monolithic nonplanar Ho:YAG ring laser with high-power single-frequency laser output at 2122 nm.

    PubMed

    Wang, Lei; Gao, Chunqing; Gao, Mingwei; Li, Yan

    2013-04-22

    We demonstrated a stable single-frequency laser operating at 2122 nm from a monolithic nonplanar Ho:YAG ring oscillator (NPRO). The Ho:YAG NPRO was resonantly pumped by a 1907 nm Tm:YLF laser built up by ourselves. The maximum multimode output power from the Ho:YAG NPRO was 9.66 W and the slope efficiency was 71.7%. With accurate adjustment of the pump position to make the laser oscillate in single frequency condition, an output power of 8.0 W was obtained with a slope efficiency of 61.4% and an optical-optical efficiency of 50.0%. The power stability of the Ho:YAG NPRO laser was 0.29% at maximum single frequency output power. The beam quality M(2) factors were measured to be less than 1.1 in x- and y- directions.

  2. High-resolution tangential absolute extreme ultraviolet arrays for radiated power density measurements on NSTX-U

    SciTech Connect

    Delgado-Aparicio, L.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; Kozub, T. A.; LeBlanc, B. P.; Stratton, B. C.; Faust, I.; Tritz, K.

    2014-11-15

    The radiated-power-density diagnostic on the equatorial midplane for the NSTX-U tokamak will be upgraded to measure the radial structure of the photon emissivity profile with an improved radial resolution. This diagnostic will enhance the characterization and studies of power balance, impurity transport, and MHD. The layout and response expected of the new system is shown for different plasma conditions and impurity concentrations. The effect of toroidal rotation driving poloidal asymmetries in the core radiation from high-Z impurities is also addressed.

  3. Influence of Affective Stimuli on Leg Power Output and Associated Neuromuscular Parameters during Repeated High Intensity Cycling Exercises

    PubMed Central

    Jaafar, Hamdi; Rouis, Majdi; Coudrat, Laure; Gélat, Thierry; Noakes, Timothy David; Driss, Tarak

    2015-01-01

    The aim of this study was to examine the impact of emotional eliciting pictures on neuromuscular performance during repetitive supramaximal cycling exercises (RSE). In a randomized order, twelve male participants were asked to perform five 6-s cycle sprints (interspaced by 24 s of recovery) on a cycle ergometer in front of neutral, pleasant or unpleasant pictures. During each RSE, mean power output (MPO) and electromyographic activity [root mean square (RMS) and median frequency (MF)] of the vastus lateralis and vastus medialis muscles were analyzed. Neuromuscular efficiency (NME) was calculated as the ratio of MPO to RMS. Higher RMS (232.17 ± 1.17 vs. 201.90 ± 0.47 μV) and MF (68.56 ± 1.78 vs. 64.18 ± 2.17 Hz) were obtained in pleasant compared to unpleasant conditions (p < 0.05). This emotional effect persisted from the first to the last sprint. Higher MPO was obtained in pleasant than in unpleasant conditions (690.65 ± 38.23 vs. 656.73 ± 35.95 W, p < 0.05). However, this emotional effect on MPO was observed only for the two first sprints. NME decreased from the third sprint (p < 0.05), which indicated the occurrence of peripheral fatigue after the two first sprints. These results suggested that, compared with unpleasant pictures, pleasant ones increased the neuromuscular performance during RSE. Moreover, the disappearance of the beneficial effect of pleasant emotion on mechanical output from the third sprint appears to be due to peripheral fatigue. PMID:26305334

  4. Design of a high voltage input - output ratio dc-dc converter dedicated to small power fuel cell systems

    NASA Astrophysics Data System (ADS)

    Béthoux, O.; Cathelin, J.

    2010-12-01

    Consuming chemical energy, fuel cells produce simultaneously heat, water and useful electrical power [J.M. Andújar, F. Segura, Renew. Sust. Energy Rev. 13, 2309 (2009)], [J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. (John Wiley & Sons, 2003)]. As a matter of fact, the voltage generated by a fuel cell strongly depends on both the load power demand and the operating conditions. Besides, as a result of many design aspects, fuel cells are low voltage and high current electric generators. On the contrary, electric loads are commonly designed for small voltage swing and a high V/I ratio in order to minimize Joule losses. Therefore, electric loads supplied by fuel cells are typically fed by means of an intermediate power voltage regulator. The specifications of such a power converter are to be able to step up the input voltage with a high ratio (a ratio of 10 is a classic situation) and also to work with an excellent efficiency (in order to minimize its size, its weight and its losses) [A. Shahin, B. Huang, J.P. Martin, S. Pierfederici, B. Davat, Energy Conv. Manag. 51, 56 (2010)]. This paper deals with the design of this essential ancillary device. It intends to bring out the best structure for fulfilling this function. Several dc-dc converters with large voltage step-up ratios are introduced. A topology based on a coupled inductor or tapped inductor is closely studied. A detailed modelling is performed with the purpose of providing designing rules. This model is validated with both simulation and implementation. The experimental prototype is based on the following specifications: the fuel cell output voltage ranges from a 50 V open-voltage to a 25 V rated voltage while the load requires a constant 250 V voltage. The studied coupled inductor converter is compared with a classic boost converter commonly used in this voltage elevating application. Even though the voltage regulator faces severe FC specifications, the measured efficiency reaches 96% at the

  5. All-solid-state continuous-wave frequency doubling Nd:LuVO4/LBO laser with 2.17 W output power at 543 nm

    NASA Astrophysics Data System (ADS)

    Li, B.; Zhao, L.; Zhang, Y. B.; Zheng, Q.; Zhao, Y.; Yao, Y.

    2013-03-01

    Efficient and compact green-yellow laser output at 543 nm is generated by intracavity frequency doubling of a CW diode-pumped Nd:LuVO4 laser at 1086 nm under the condition of suppressing the higher gain transition near 1064 nm. With 16 W of diode pump power and the frequency-doubling crystal LBO, as high as 2.17 W of CW output power at 543 nm is achieved, corresponding to an optical-to-optical conversion efficiency of 13.6% and the output power stability over 8 hours is better than 2.86%. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by intracavity frequency doubling of a diode pumped Nd:LuVO4 laser at 1086 nm.

  6. Tuning range and output power optimization of an external-cavity GaN diode laser at 455  nm.

    PubMed

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-03-20

    In this paper we discuss how different feedback gratings affect the tuning range and the output power of external feedback diode laser systems. A tunable high-power narrow-spectrum external-cavity diode laser system around 455 nm is investigated. The laser system is based on a high-power GaN diode laser in a Littrow external-cavity. Both a holographic diffraction grating and a ruled diffraction grating are used as feedback elements in the external cavity. The output power, spectral bandwidth, and tunable range of the external cavity diode laser system are measured and compared with the two gratings at different injected currents. When the holographic grating is used, the laser system can be tuned over a range of 1.4 nm with an output power around 530 mW. When the ruled grating is used, the laser system can be tuned over a range of 6.0 nm with an output power around 80 mW. The results can be used as a guide for selecting gratings for external-cavity diode lasers for different requirements.

  7. Picosecond laser with 11 W output power at 1342 nm based on composite multiple doping level Nd:YVO4 crystal

    NASA Astrophysics Data System (ADS)

    Rodin, Aleksej M.; Grishin, Mikhail; Michailovas, Andrejus

    2016-01-01

    We report results of design and optimization of high average output power picosecond and nanosecond laser operating at 1342 nm wavelength. Developed for selective micromachining, this DPSS laser is comprised of master oscillator, regenerative amplifier and output pulse control module. Passively mode-locked by means of semiconductor saturable absorber mirror and pumped with 808 nm wavelength Nd:YVO4 master oscillator emits 12.5 ps pulses at repetition rate of 55 MHz with average output power of ∼100 mW. The four-pass confocal delay line forms a longest part of the oscillator cavity in order to suppress thermo-mechanical misalignment. Picked from the train seed pulses were injected to the cavity of regenerative amplifier based on composite Nd:YVO4 crystal with diffusion-bonded segments of multiple Nd doping concentration end-pumped at 880 nm wavelength. Laser produces pulses of ∼13 ps duration at 300 kHz repetition rate with average output power of 11 W and nearly diffraction limited beam quality of M2∼1.03. Attained high peak power ∼2.8 MW facilitates conversion to the 2nd, 3rd and 6th harmonics at 671 nm, 447 nm and 224 nm wavelengths with 80%, 50% and 15% efficiency respectively. Without seeding the regenerative amplifier transforms to electro-optically cavity-dumped Q-switched laser providing 10 ns output pulses at high repetition rates with beam propagation factor of M2∼1.06.

  8. DBR tapered diode laser with 12.7 W output power and nearly diffraction-limited, narrowband emission at 1030 nm

    NASA Astrophysics Data System (ADS)

    Müller, André; Fricke, Jörg; Bugge, Frank; Brox, Olaf; Erbert, Götz; Sumpf, Bernd

    2016-04-01

    A 1030 nm distributed Bragg reflector (DBR) tapered diode laser with nearly diffraction-limited emission is presented. The laser provides an optical output power of 12.7 W with an electro-optical efficiency >40 %. At 10.5 W of optical output power, a central lobe power content of 8.1 W and a nearly diffraction-limited beam propagation ratio of M 2 = 1.1 (1/ e 2) are obtained. The corresponding brightness is 700 MW cm-2 sr-1. Compared to previous approaches, intrinsic wavelength stabilization is obtained by a third-order DBR grating manufactured using more reproducible electron-beam lithography. A narrowband emission is measured over the whole power range with a spectral bandwidth of about 17 pm at 12.5 W. Based on the measured electro-optical, spectral and spatial properties, the laser is suitable for applications requiring narrowband, high-power emission with high spatial quality.

  9. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: Application to pure copper, platinum, tungsten, and nickel at very high temperatures

    NASA Astrophysics Data System (ADS)

    Abadlia, L.; Gasser, F.; Khalouk, K.; Mayoufi, M.; Gasser, J. G.

    2014-09-01

    In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in this paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature.

  10. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: application to pure copper, platinum, tungsten, and nickel at very high temperatures.

    PubMed

    Abadlia, L; Gasser, F; Khalouk, K; Mayoufi, M; Gasser, J G

    2014-09-01

    In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in this paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature.

  11. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: Application to pure copper, platinum, tungsten, and nickel at very high temperatures

    SciTech Connect

    Abadlia, L.; Mayoufi, M.; Gasser, F.; Khalouk, K.; Gasser, J. G.

    2014-09-15

    In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in this paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature.

  12. Hybrid Solid Oxide Fuel Cell and Thermoelectric Generator for Maximum Power Output in Micro-CHP Systems

    NASA Astrophysics Data System (ADS)

    Rosendahl, L. A.; Mortensen, Paw V.; Enkeshafi, Ali A.

    2011-05-01

    One of the most obvious early market applications for thermoelectric generators (TEG) is decentralized micro combined heat and power (CHP) installations of 0.5 kWe to 5 kWe based on fuel cell technology. Through the use of TEG technology for waste heat recovery it is possible to increase the electricity production in micro-CHP systems by more than 15%, corresponding to system electrical efficiency increases of some 4 to 5 percentage points. This will make fuel cell-based micro-CHP systems very competitive and profitable and will also open opportunities in a number of other potential business and market segments which are not yet quantified. This paper quantifies a micro-CHP system based on a solid oxide fuel cell (SOFC) and a high-performance TE generator. Based on a 3 kW fuel input, the hybrid SOFC implementation boosts electrical output from 945 W to 1085 W, with 1794 W available for heating purposes.

  13. Analysis of power output time series in response to supramaximal exercise: an approach through dynamic factor analysis.

    PubMed

    Bruno, Paula Marta; Pereira, Fernando Duarte; Fernandes, Renato; de Mendonça, Goncalo Vilhena

    2011-02-01

    The responses to supramaximal exercise testing have been traditionally analyzed by means of standard parametric and nonparametric statistics. Unfortunately, these statistical approaches do not allow insight into the pattern of variation of a given parameter over time. The purpose of this study was to determine if the application of dynamic factor analysis (DFA) allowed discriminating different patterns of power output (PO), during supramaximal exercise, in two groups of children engaged in competitive sports: swimmers and soccer players. Data derived from Wingate testing were used in this study. Analyses were performed on epochs (30 s) of upper and lower body PO obtained from twenty two healthy boys (11 swimmers and 11 soccer players) age 11-12 years old. DFA revealed two distinct patterns of PO during Wingate. Swimmers tended to attain their peak PO (upper and lower body) earlier than soccer players. As importantly, DFA showed that children with a given pattern of upper body PO tend to perform similarly during lower body exercise.

  14. Above 2-μm emitting GaSb-based semiconductor disk laser with <100-kHz linewidth at 1000-mW output power

    NASA Astrophysics Data System (ADS)

    Kaspar, Sebastian; Rattunde, Marcel; Töpper, Tino; Rösener, Benno; Manz, Christian; Köhler, Klaus; Wagner, Joachim

    2012-03-01

    In this paper we report on the development of narrow-linewidth vertical-external-cavity surface-emitting laser (VECSEL) at a wavelength of >2 μm. Starting from a laboratory setup, we designed a highly stable VECSEL module machined from a solid block of aluminum. For linewidth precise measurements, heterodyne beatnote measurements were employed. For this firstgeneration module a linewidth of 9 kHz was achieved when actively stabilizing the laser wavelength, whereas without stabilization the linewidth amounted to 45 kHz at an output power of 100 mW, both data referring to a 100-μs sampling time. To further increase the output power, a second-generation module was fabricated, for which the on-chip mode diameter was increased. This allowed operation at a larger pump-spot diameter and still maintaining TEM00 operation, while increasing the maximum pump power and hence the output power. This module yielded an output power above 1 W in single-mode operation at a linewidth of 60 kHz (100 μs sampling time) without active wavelength stabilization. Modehop-free single-mode operation could be maintained for more than 18 hours. This new multiple-Watt, narrow-linewidth VECSEL module is apt for plane-to-ground communications without the necessity of amplifiers.

  15. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response.

    PubMed

    Troussel, Ph; Villette, B; Emprin, B; Oudot, G; Tassin, V; Bridou, F; Delmotte, F; Krumrey, M

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  16. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response

    SciTech Connect

    Troussel, Ph.; Villette, B.; Oudot, G.; Tassin, V.; Bridou, F.; Delmotte, F.; Krumrey, M.

    2014-01-15

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  17. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response

    NASA Astrophysics Data System (ADS)

    Troussel, Ph.; Villette, B.; Emprin, B.; Oudot, G.; Tassin, V.; Bridou, F.; Delmotte, F.; Krumrey, M.

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  18. Linear ultrasonic motor for absolute gravimeter.

    PubMed

    Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V

    2017-02-01

    Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters.

  19. Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system.

    PubMed

    Bombelli, Paolo; Zarrouati, Marie; Thorne, Rebecca J; Schneider, Kenneth; Rowden, Stephen J L; Ali, Akin; Yunus, Kamran; Cameron, Petra J; Fisher, Adrian C; Ian Wilson, D; Howe, Christopher J; McCormick, Alistair J

    2012-09-21

    Bio-photovoltaic cells (BPVs) are a new photo-bio-electrochemical technology for harnessing solar energy using the photosynthetic activity of autotrophic organisms. Currently power outputs from BPVs are generally low and suffer from low efficiencies. However, a better understanding of the electrochemical interactions between the microbes and conductive materials will be likely to lead to increased power yields. In the current study, the fresh-water, filamentous cyanobacterium Pseudanabaena limnetica (also known as Oscillatoria limnetica) was investigated for exoelectrogenic activity. Biofilms of P. limnetica showed a significant photo response during light-dark cycling in BPVs under mediatorless conditions. A multi-channel BPV device was developed to compare quantitatively the performance of photosynthetic biofilms of this species using a variety of different anodic conductive materials: indium tin oxide-coated polyethylene terephthalate (ITO), stainless steel (SS), glass coated with a conductive polymer (PANI), and carbon paper (CP). Although biofilm growth rates were generally comparable on all materials tested, the amplitude of the photo response and achievable maximum power outputs were significantly different. ITO and SS demonstrated the largest photo responses, whereas CP showed the lowest power outputs under both light and dark conditions. Furthermore, differences in the ratios of light : dark power outputs indicated that the electrochemical interactions between photosynthetic microbes and the anode may differ under light and dark conditions depending on the anodic material used. Comparisons between BPV performances and material characteristics revealed that surface roughness and surface energy, particularly the ratio of non-polar to polar interactions (the CQ ratio), may be more important than available surface area in determining biocompatibility and maximum power outputs in microbial electrochemical systems. Notably, CP was readily outperformed by all

  20. The Acute Effect of Upper-Body Complex Training on Power Output of Martial Art Athletes as Measured by the Bench Press Throw Exercise

    PubMed Central

    Liossis, Loudovikos Dimitrios; Forsyth, Jacky; Liossis, Ceorge; Tsolakis, Charilaos

    2013-01-01

    The purpose of this study was to examine the acute effect of upper body complex training on power output, as well as to determine the requisite preload intensity and intra-complex recovery interval needed to induce power output increases. Nine amateur-level combat/martial art athletes completed four distinct experimental protocols, which consisted of 5 bench press repetitions at either: 65% of one-repetition maximum (1RM) with a 4 min rest interval; 65% of 1RM with an 8 min rest; 85% of 1RM with a 4 min rest; or 85% of 1RM with an 8 min rest interval, performed on different days. Before (pre-conditioning) and after (post-conditioning) each experimental protocol, three bench press throws at 30% of 1RM were performed. Significant differences in power output pre-post conditioning were observed across all experimental protocols (F=26.489, partial eta2=0.768, p=0.001). Mean power output significantly increased when the preload stimulus of 65% 1RM was matched with 4 min of rest (p=0.001), and when the 85% 1RM preload stimulus was matched with 8 min of rest (p=0.001). Moreover, a statistically significant difference in power output was observed between the four conditioning protocols (F= 21.101, partial eta2=0.913, p=0.001). It was concluded that, in complex training, matching a heavy preload stimulus with a longer rest interval, and a lighter preload stimulus with a shorter rest interval is important for athletes wishing to increase their power production before training or competition. PMID:24511352

  1. Novel approach for chirp and output power compensation applied to a 40-Gbit/s EADFB laser integrated with a short SOA.

    PubMed

    Kobayashi, Wataru; Arai, Masakazu; Fujisawa, Takeshi; Sato, Tomonari; Ito, Toshio; Hasebe, Koichi; Kanazawa, Shigeru; Ueda, Yuta; Yamanaka, Takayuki; Sanjoh, Hiroaki

    2015-04-06

    We propose a novel approach for simultaneously controlling the chirp and increasing the output power of an EADFB laser by monolithically integrating a short-cavity SOA. We achieved a 40-Gbit/s 5-km SMF transmission at a wavelength of 1.55 μm by using an EADFB SOA with a lower power consumption than a stand-alone EADFB laser.

  2. Bipartite output consensus in networked multi-agent systems of high-order power integrators with signed digraph and input noises

    NASA Astrophysics Data System (ADS)

    Ma, Hongwen; Liu, Derong; Wang, Ding; Luo, Biao

    2016-10-01

    In this paper, we concentrate on investigating bipartite output consensus in networked multi-agent systems of high-order power integrators. Systems with power integrator are ubiquitous among weakly coupled, unstable and underactuated mechanical systems. In the presence of input noises, an adaptive disturbance compensator and a technique of adding power integrator are introduced to the complex nonlinear multi-agent systems to reduce the deterioration of system performance. Additionally, due to the existence of negative communication weights among agents, whether bipartite output consensus of high-order power integrators can be achieved remains unknown. Therefore, it is of great importance to study this issue. The underlying idea of designing the distributed controller is to combine the output information of each agent itself and its neighbours, the state feedback within its internal system and input adaptive noise compensator all together. When the signed digraph is structurally balanced, bipartite output consensus can be reached. Finally, numerical simulations are provided to verify the validity of the developed criteria.

  3. Circulating pro-inflammatory cytokines are elevated and peak power output correlates with 25-hydroxyvitamin D in vitamin D insufficient adults.

    PubMed

    Barker, Tyler; Martins, Thomas B; Hill, Harry R; Kjeldsberg, Carl R; Dixon, Brian M; Schneider, Erik D; Henriksen, Vanessa T; Weaver, Lindell K

    2013-06-01

    The purpose of this study was to identify circulating cytokines, skeletal muscle strength, and peak power output in young adults with contrasting serum 25-hydroxyvitamin D (25(OH)D) concentrations. Serum 25(OH)D, inflammatory cytokines, muscle strength, and peak power output were, therefore, measured in young adults (25-42 years). Data were collected during the winter to avoid the seasonal influence on serum 25(OH)D. After serum 25(OH)D concentration measurements, subjects were separated into one of two groups: (1) vitamin D insufficient [serum 25(OH)D ≤32 ng/mL, n = 14], or (2) vitamin D sufficient [serum 25(OH)D >32 ng/mL, n = 14]. Following group allocation, serum 25(OH)D concentrations were significantly (p < 0.05) lower and pro-inflammatory cytokines [interleukin (IL)-2, IL-1β, tumor necrosis factor-α, and interferon-γ] were significantly (all p < 0.05) greater in vitamin D insufficient adults. An anti-inflammatory cytokine (i.e., IL-10; p > 0.05), peak isometric forces (p > 0.05), and peak power outputs (p > 0.05) were not significantly different between vitamin D groups. However, peak power outputs correlated with serum 25(OH)D concentrations in vitamin D insufficient (r = 0.55, p < 0.05) but not in vitamin D sufficient adults (r = -0.27, p = 0.36). Based on these data, we conclude that vitamin D insufficiency, in part, could result in pro-inflammatory stress without altering muscular strength or function in young adults. Future research investigating the causality of the correlation between low-serum 25(OH)D and peak power output in young adults is required.

  4. Comparison of power output by rice (Oryza sativa) and an associated weed (Echinochloa glabrescens) in vascular plant bio-photovoltaic (VP-BPV) systems.

    PubMed

    Bombelli, Paolo; Iyer, Durgaprasad Madras Rajaraman; Covshoff, Sarah; McCormick, Alistair J; Yunus, Kamran; Hibberd, Julian M; Fisher, Adrian C; Howe, Christopher J

    2013-01-01

    Vascular plant bio-photovoltaics (VP-BPV) is a recently developed technology that uses higher plants to harvest solar energy and the metabolic activity of heterotrophic microorganisms in the plant rhizosphere to generate electrical power. In the present study, electrical output and maximum power output variations were investigated in a novel VP-BPV configuration using the crop plant rice (Oryza sativa L.) or an associated weed, Echinochloa glabrescens (Munro ex Hook. f.). In order to compare directly the physiological performances of these two species in VP-BPV systems, plants were grown in the same soil and glasshouse conditions, while the bio-electrochemical systems were operated in the absence of additional energy inputs (e.g. bias potential, injection of organic substrate and/or bacterial pre-inoculum). Diurnal oscillations were clearly observed in the electrical outputs of VP-BPV systems containing the two species over an 8-day growth period. During this 8-day period, O. sativa generated charge ∼6 times faster than E. glabrescens. This greater electrogenic activity generated a total charge accumulation of 6.75 ± 0.87 Coulombs for O. sativa compared to 1.12 ± 0.16 for E. glabrescens. The average power output observed over a period of about 30 days for O. sativa was significantly higher (0.980 ± 0.059 GJ ha(-1) year(-1)) than for E. glabrescens (0.088 ± 0.008 GJ ha(-1) year(-1)). This work indicates that electrical power can be generated in both VP-BPV systems (O. sativa and E. glabrescens) when bacterial populations are self-forming. Possible reasons for the differences in power outputs between the two plant species are discussed.

  5. Exploring the performance reserve: Effect of different magnitudes of power output deception on 4,000 m cycling time-trial performance

    PubMed Central

    Stone, Mark R.; Thomas, Kevin; Wilkinson, Michael; Stevenson, Emma; St. Clair Gibson, Alan; Jones, Andrew M.; Thompson, Kevin G.

    2017-01-01

    Purpose The aim of the present study was to investigate whether a magnitude of deception of 5% in power output would lead to a greater reduction in the amount of time taken for participants to complete a 4000 m cycling TT than a magnitude of deception of 2% in power output, which we have previously shown can lead to a small change in 4000 m cycling TT performance. Methods Ten trained male cyclists completed four, 4000 m cycling TTs. The first served as a habituation and the second as a baseline for future trials. During trials three and four participants raced against a pacer which was set, in a randomized order, at a mean power output equal to 2% (+2% TT) or 5% (+5% TT) higher than their baseline performance. However participants were misled into believing that the power output of the pacer was an accurate representation of their baseline performance on both occasions. Cardiorespiratory responses were recorded throughout each TT, and used to estimate energy contribution from aerobic and anaerobic metabolism. Results Participants were able to finish the +2% TT in a significantly shorter duration than at baseline (p = 0.01), with the difference in performance likely attributable to a greater anaerobic contribution to total power output (p = 0.06). There was no difference in performance between the +5% TT and +2% TT or baseline trials. Conclusions Results suggest that a performance reserve is conserved, involving anaerobic energy contribution, which can be utilised given a belief that the exercise will be sustainable however there is an upper limit to how much deception can be tolerated. These findings have implications for performance enhancement in athletes and for our understanding of the nature of fatigue during high-intensity exercise. PMID:28278174

  6. Temporal Aspects of the V[o.sub.2] Response at the Power Output Associated with V[o.sub.2]peak in Well Trained Cyclists-Implications for Interval Training Prescription

    ERIC Educational Resources Information Center

    Laursen, Paul B.; Shing, Cecilia M.; Jenkins, David G.

    2004-01-01

    The power output achieved at peak oxygen consumption (V[O.sub.2]peak) and the time this power can be maintained (i.e., Tmax) have been used in prescribing high-intensity interval training. In this context, the present study examined temporal aspects of the V[O.sub.2] response to exercise at the cycling power that output well trained cyclists…

  7. Ka-Band Waveguide 2-Way Hybrid Combiner for MMIC Amplifiers with Unequal and Arbitrary Power Output Ratio

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N (Inventor); Chevalier, Christine T (Inventor); Wintucky, Edwin G (Inventor); Freeman, Jon C (Inventor)

    2016-01-01

    One or more embodiments of the present invention describe an apparatus and method to combine unequal powers. The apparatus includes a first input port, a second input port, and a combiner. The first input port is operably connected to a first power amplifier and is configured to receive a first power from the first power amplifier. The second input port is operably connected to a second power amplifier and is configured to receive a second power from the second power amplifier. The combiner is configured to simultaneously receive the first power from the first input port and the second power from the second input port. The combiner is also configured to combine the first power and second power to produce a maximized power. The first power and second power are unequal.

  8. Biomolecule-adsorption-dependent piezoelectric output of ZnO nanowire nanogenerator and its application as self-powered active biosensor.

    PubMed

    Zhao, Yayu; Deng, Ping; Nie, Yuxin; Wang, Penglei; Zhang, Yan; Xing, Lili; Xue, Xinyu

    2014-07-15

    Self-powered active biosensor has been realized from ZnO nanowire (NW) nanogenerator (NG). The piezoelectric output generated by ZnO NW NG can act not only as a power source for driving the device, but also as a biosensing signal. After immersing in 10(-3) g ml(-1) human immunoglobulin G (IgG), the piezoelectric output voltage of the device under compressive deformation decreases from 0.203±0.0176 V (without IgG) to 0.038±0.0035 V. Such a self-powered biosensor has higher response than transistor-type biosensor (I-V behavior). The response of self-powered biosensor is in a linear relationship with IgG concentration (logarithm, 10(-7)-10(-3) g ml(-1)) and the limit of detection (LOD) on IgG of the device is about 6.9 ng ml(-1). The adsorption of biomolecules on the surface of ZnO NWs can modify the free-carrier density, which vary the screening effect of free-carriers on the piezoelectric output. The present results demonstrate a feasible approach for actively detecting biomolecules by coupling the piezotronic and biosensing characteristics of ZnO NWs.

  9. Input and output budgets of radiocesium concerning the forest floor in the mountain forest of Fukushima released from the TEPCO's Fukushima Dai-ichi nuclear power plant accident.

    PubMed

    Niizato, Tadafumi; Abe, Hironobu; Mitachi, Katsuaki; Sasaki, Yoshito; Ishii, Yasuo; Watanabe, Takayoshi

    2016-09-01

    Estimations of radiocesium input and output concerning the forest floor within a mountain forest region have been conducted in the north and central part of the Abukuma Mountains of Fukushima, northeast Japan, after a 2-3 year period following the TEPCO Fukushima Dai-ichi nuclear power plant accident. The radiocesium input and output associated with surface washoff, throughfall, stemflow, and litterfall processes at experimental plots installed on the forest floor of evergreen Japanese cedars and deciduous Konara oaks have been monitored. Despite the high output potential in the mountainous forest of Fukushima, the results at both monitoring locations show the radiocesium input to be 4-50 times higher than the output during the summer monsoon in Fukushima. These results indicate that the radiocesium tends to be preserved in the forest ecosystem due to extremely low output ratios (0.05%-0.19%). Thus, the associated fluxes throughout the circulation process are key issues for the projecting the environmental fate of the radiocesium levels, along with the subsequent reconstruction of life emphasized within the setting.

  10. Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W

    PubMed Central

    Wang, Longfei; He, Dongbing; Feng, Suya; Yu, Chunlei; Hu, Lili; Qiu, Jianrong; Chen, Danping

    2015-01-01

    Single-mode ytterbium-doped phosphate all-solid photonic crystal fiber (AS-PCF) with 13.8 W output power and 32% slope efficiency was reported. By altering the diameter of the rods around the doped core and thus breaking the symmetry of the fiber, a polarization-maintaining AS-PCF with degree of polarization of >85% was also achieved, for the first time to knowledge, in a phosphate PCF. PMID:25684731

  11. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  12. Efficient light output power for InGaP/GaAs heterojunction bipolar transistors incorporated with InGaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Huang, Tzu-Hsuan; Wu, Meng-Chyi

    2016-07-01

    In this work, the current gain and optical frequency response of the heterojunction bipolar transistor (HBT) and heterojunction bipolar light-emitting transistor (HBLET) are investigated. Compared to the conventional HBT, two-pair quantum wells are embedded in the base region of the HBLET. The current gain of HBLET increases with temperature, which shows dissimilar electrical properties to the HBT. Although the current gain of HBLET is much smaller than that of HBT, the decrement of current gain is converted to enhance the light output power. The light output power of HBLET can reach 0.96 mW at 90 mA. The HBLET exhibits the 3-dB bandwidths (f3dB) of 554 and 559 MHz at 30 and 50 mA, respectively. It is found that the 3-dB frequency is proportional to the square root of base current density, while the minority carrier lifetime is inversely proportional to the square root of base current density. Therefore, our results suggest that HBLET with the high light output power shows a great potential in the short range optical data communications.

  13. A laser-based method to measure thermal nociception in dairy cows: short-term repeatability and effects of power output and skin condition.

    PubMed

    Herskin, M S; Müller, R; Schrader, L; Ladewig, J

    2003-04-01

    To validate a laser-based method to measure thermal nociception in dairy cows (e.g., for the use in studies on stress-induced analgesia), we performed three experiments to observe the behavioral responses to a computer-controlled CO2 laser beam applied to the skin on the caudal aspect of the metatarsus. In Exp. 1, effects of power output (0, 1.3, 1.8, 2.2, 2.4 and 2.6 W) on nociceptive responses were examined using 18 dairy cows kept and tested in tie stalls. Increasing the power output affected the latencies to respond (decreasing latencies, P < or = 0.01), types of response (less nonresponding and more kicking, P < 0.0001), and behavior during (increasing frequency of tail flicking, P = 0.003) and between single laser exposures (increasing frequency of kicking, P = 0.02). Therefore, behavioral responses to a laser stimulus seem to be a valid measure of nociception in dairy cows. Repeatability within 15 min was investigated in Exp. 2 using n = 36 dairy cows kept and tested in tie stalls and a power output of 1.8 W. The variables' latency to move the exposed leg and frequency of tail flicking during laser exposure showed the highest level of repeatability (0.50 and 0.38, respectively). However, retesting at t = 15 min led to increased responses in terms of shorter latencies to respond (P < 0.05), increased kicking (P = 0.05), and tail flicking (P = 0.02), which probably can be explained by sensitization. Effects of power output (1.0 vs. 1.8 W) and skin condition (naked vs. intact) were examined in Exp. 3 on 11 group-housed dairy cows, tested just outside their home pen. Increasing the power output and shaving off hair led to increased responses as seen by shorter latencies to respond (P < 0.0001), less nonresponding (P < 0.0001), and increased kicking (P = 0.0003), as well as reduced intra- and interindividual variability (P < or = 0.04). In conclusion, the results of these experiments suggest that behavioral responses to laser stimulation are a valid and reliable

  14. COOH-terminal truncation of flightin decreases myofilament lattice organization, cross-bridge binding, and power output in Drosophila indirect flight muscle

    SciTech Connect

    Tanner, Bertrand C.W.; Miller, Mark S.; Miller, Becky M.; Lekkas, Panagiotis; Irving, Thomas C.; Maughan, David W.; Vigoreaux, Jim O.

    2011-08-26

    The indirect flight muscle (IFM) of insects is characterized by a near crystalline myofilament lattice structure that likely evolved to achieve high power output. In Drosophila IFM, the myosin rod binding protein flightin plays a crucial role in thick filament organization and sarcomere integrity. Here we investigate the extent to which the COOH terminus of flightin contributes to IFM structure and mechanical performance using transgenic Drosophila expressing a truncated flightin lacking the 44 COOH-terminal amino acids (fln{sup {Delta}C44}). Electron microscopy and X-ray diffraction measurements show decreased myofilament lattice order in the fln{sup {Delta}C44} line compared with control, a transgenic flightin-null rescued line (fln{sup +}). fln{sup {Delta}C44} fibers produced roughly 1/3 the oscillatory work and power of fln{sup +}, with reduced frequencies of maximum work (123 Hz vs. 154 Hz) and power (139 Hz vs. 187 Hz) output, indicating slower myosin cycling kinetics. These reductions in work and power stem from a slower rate of cross-bridge recruitment and decreased cross-bridge binding in fln{sup {Delta}C44} fibers, although the mean duration of cross-bridge attachment was not different between both lines. The decreases in lattice order and myosin kinetics resulted in fln{sup {Delta}C44} flies being unable to beat their wings. These results indicate that the COOH terminus of flightin is necessary for normal myofilament lattice organization, thereby facilitating the cross-bridge binding required to achieve high power output for flight.

  15. Effects of Creatine and Sodium Bicarbonate Coingestion on Multiple Indices of Mechanical Power Output During Repeated Wingate Tests in Trained Men.

    PubMed

    Griffen, Corbin; Rogerson, David; Ranchordas, Mayur; Ruddock, Alan

    2015-06-01

    This study investigated the effects of creatine and sodium bicarbonate coingestion on mechanical power during repeated sprints. Nine well-trained men (age = 21.6 ± 0.9 yr, stature = 1.82 ± 0.05 m, body mass = 80.1 ±12.8 kg) participated in a double-blind, placebo-controlled, counterbalanced, crossover study using six 10-s repeated Wingate tests. Participants ingested either a placebo (0.5 g·kg(-1) of maltodextrin), 20 g·d(-1) of creatine monohydrate + placebo, 0.3 g·kg(-1) of sodium bicarbonate + placebo, or coingestion + placebo for 7 days, with a 7-day washout between conditions. Participants were randomized into two groups with a differential counterbalanced order. Creatine conditions were ordered first and last. Indices of mechanical power output (W), total work (J) and fatigue index (W·s(-1)) were measured during each test and analyzed using the magnitude of differences between groups in relation to the smallest worthwhile change in performance. Compared with placebo, both creatine (effect size (ES) = 0.37-0.83) and sodium bicarbonate (ES = 0.22-0.46) reported meaningful improvements on indices of mechanical power output. Coingestion provided small meaningful improvements on indices of mechanical power output (W) compared with sodium bicarbonate (ES = 0.28-0.41), but not when compared with creatine (ES = -0.21-0.14). Coingestion provided a small meaningful improvement in total work (J; ES = 0.24) compared with creatine. Fatigue index (W·s(-1)) was impaired in all conditions compared with placebo. In conclusion, there was no meaningful additive effect of creatine and sodium bicarbonate coingestion on mechanical power during repeated sprints.

  16. Long-term microwave power drift of a cesium frequency standard and its effect on output frequency

    NASA Technical Reports Server (NTRS)

    Johnson, W. A.; Karuza, Sarunas K.; Voit, Frank J.

    1990-01-01

    It has been shown that the long-term frequency stability of a cesium (Cs) frequency standard is affected by variations in the standard's internal microwave power source. Studies were performed on a commercial Cs frequency standard for a period of 20 days, to determine the stability of its microwave power source. The results were then analyzed statistically, and the effects of microwave power drift on the standard's frequency stability were calculated.

  17. The influence of cadence and power output on force application and in-shoe pressure distribution during cycling by competitive and recreational cyclists.

    PubMed

    Sanderson, D J; Hennig, E M; Black, A H

    2000-03-01

    The aim of this study was to determine the response of cyclists to manipulations of cadence and power output in terms of force application and plantar pressure distribution. Two groups of cyclists, 17 recreational and 12 competitive, rode at three nominal cadences (60, 80, 100 rev x min(-1)) and four power outputs (100, 200, 300, 400 W) while simultaneous force and in-shoe pressure data were collected. Two piezoelectric triaxial force transducers mounted in the right pedal measured components of the pedal force and orientation, and a discrete transducer system with 12 transducers recorded the in-shoe pressures. Force application was characterized by calculating peak resultant and peak effective pedal forces and positive and negative impulses. In-shoe pressures were analysed as peak pressures and as the percent relative load. The force data showed no significant group effect but there was a cadence and power main effect. The impulse data showed a significant three-way interaction. Increased cadence resulted in a decreased positive impulse, while increased power output resulted in an increased impulse. The competitive group produced less positive impulse but the difference became less at higher cadences. Few between-group differences were found in pressure, notable only in the pressure under the first metatarsal region. This showed a consistent pattern of in-shoe pressure distribution, where the primary loading structures were the first metatarsal and hallux. There was no indication that pressure at specific sites influenced the pedal force application. The absence of group differences indicated that pressure distribution was not the result of training, but reflected the intrinsic relationship between the foot, the shoe and the pedal.

  18. Two and three dimensional simulation of disk-loaded travelling-wave output structures for high-power klystrons

    SciTech Connect

    Eppley, K.R.

    1994-12-31

    The authors have developed algorithms for designing disk-loaded travelling-wave output structures for X-band klystrons to be used in the SLAC NLC. They use either a four or five cell structure in a {pi}/2 mode. The disk radii are tapered to produce an approximately constant gradient. The matching calculation is not performed on the tapered structure, but rather on a coupler whose input and output cells are the same as the final cell of the tapered structure, and whose interior cells are the same as the penultimate cell in the tapered structure. 2-D calculations using CONDOR model the waveguide as a radial transmission line of adjustable impedance. 3-D calculations with MAFIA model the actual rectangular waveguide and coupling slot. A good match is obtained by adjusting the impedance of the final cell. In 3-D, this requires varying both the radius of the cell and the width of the aperture. When the output cell with the best match is inserted in the tapered structure, they obtain excellent cold-test agreement between the 2-D and 3-D models. They use hot-test simulations with CONDOR to design the structure with maximum efficiency and minimum surface fields. The azimuthal asymmetry due to the coupling iris can increase the peak fields by 20 to 30 percent. They can reduce this problem by making the final cavity with a non-circular cross section. With proper dimensions, they can keep a good match while reducing the azimuthal asymmetry to 6 percent. They have designed circuits at 11.424 Ghz for several different perveances. At 440 kV, microperveance 1.2, they calculate 83 MW, 54 percent efficiency, peak surface field 76 MV/m. At microperveance 0.8, they calculate 60 MW, 58 percent efficiency, peak field 67 MV/m. At 465 kV, microperveance 0.6, they calculate 55 MW, 62 percent efficiency, peak field 63 MV/m.

  19. Low-power output-capacitorless low-dropout regulator with adjustable charge injection technique for on-off-keying transmitters

    NASA Astrophysics Data System (ADS)

    Akita, Ippei; Asai, Shochi; Ishida, Makoto

    2014-01-01

    In this paper a low-power low-dropout (LDO) regulator for p power amplifier (PA) in on-off-keying (OOK) transmitters is proposed. The proposed technique needs no external output capacitors, enabling small-area and low-cost implementation. The response of a rapid load change in an OOK transmitter is improved by the proposed adjustable charge injection (ACI) technique that uses timing information of a transmitted data signal. The designed regulator with the ACI technique has been fabricated in a standard 180 nm CMOS process and achieves 100 mVpp dropout voltage ripple. The measured current dissipation is 65 µA at a power supply of 1.8 V.

  20. Automated Microwave Complex on the Basis of a Continuous-Wave Gyrotron with an Operating Frequency of 263 GHz and an Output Power of 1 kW

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Morozkin, M. V.; Tsvetkov, A. I.; Lubyako, L. V.; Golubiatnikov, G. Yu.; Kuftin, A. N.; Zapevalov, V. E.; V. Kholoptsev, V.; Eremeev, A. G.; Sedov, A. S.; Malygin, V. I.; Chirkov, A. V.; Fokin, A. P.; Sokolov, E. V.; Denisov, G. G.

    2016-02-01

    We study experimentally the automated microwave complex for microwave spectroscopy and diagnostics of various media, which was developed at the Institute of Applied Physics of the Russian Academy of Sciences in cooperation with GYCOM Ltd. on the basis of a gyrotron with a frequency of 263 GHz and operated at the first gyrofrequency harmonic. In the process of the experiments, a controllable output power of 0 .1 -1 kW was achieved with an efficiency of up to 17 % in the continuous-wave generation regime. The measured radiation spectrum with a relative width of about 10 -6 and the frequency values measured at various parameters of the device are presented. The results of measuring the parameters of the wave beam, which was formed by a built-in quasioptical converter, as well as the data obtained by measuring the heat loss in the cavity and the vacuum output window are analyzed.

  1. Inverter communications using output signal

    DOEpatents

    Chapman, Patrick L.

    2017-02-07

    Technologies for communicating information from an inverter configured for the conversion of direct current (DC) power generated from an alternative source to alternating current (AC) power are disclosed. The technologies include determining information to be transmitted from the inverter over a power line cable connected to the inverter and controlling the operation of an output converter of the inverter as a function of the information to be transmitted to cause the output converter to generate an output waveform having the information modulated thereon.

  2. IR-images of PV-modules with potential induced degradation (PID) correlated to monitored string power output

    NASA Astrophysics Data System (ADS)

    Buerhop, Claudia; Pickel, Tobias; Blumberg, Tiberius; Adams, Jens; Wrana, Simon; Dalsass, Manuel; Zetzmann, Cornelia; Camus, Christian; Hauch, Jens; Brabec, Christoph J.

    2016-09-01

    Many PV-plants suffer from potential induced degradation (PID) which causes severe power reduction of installed PVmodules. Fast and reliable methods to detect PID and evaluate the impact on the module performance are gaining importance. Drone-assisted IR-inspection is a suitable method. PID affected modules are detected by their characteristic IR-fingerprint, modules with differing number of slightly heated cells occur more frequently at the negative string end. These modules show a degraded IV-curve, lowered Voc and Isc, and electroluminescence (EL)-images with suspicious, dark cells. Also, the measured string power is reduced. For a first quantitative data evaluation the suspicious cell are counted in the IR-images and correlated with the module power. A linear decrease of the module power with increasing number of suspicious cells results. A correlation function for estimating the module power was deduced, which has a mean deviation of less than 7%. This correlation function allows an acceptable approximation of the string power.

  3. Output power and intracavity intensity profiles of a quasi-continuous end-pumped Nd:YVO4 self-Raman mini laser

    NASA Astrophysics Data System (ADS)

    Kananovich, A. A.; Voitikov, S. V.; Demidovich, A. A.; Danailov, M. B.; Orlovich, V. A.

    2012-01-01

    The paper presents experimental investigation and modeling of an end-pumped quasi-continuous-wave YVO4/Nd:YVO4 mini self-Raman laser. The dependence of the Stokes output power on the pump power in the range from 3 to 17.5 W has been measured. As much as 1.76 W of an average Stokes power, corresponding to a total optical-to-optical conversion efficiency of about 10%, has been obtained. The transverse profiles of the laser (at the fundamental wavelength) and the Stokes beam intensity have been recorded at the output mirror and in the vicinity of the boundary between the pure and Nd-doped parts of the Raman crystal. These distributions have been approximated by the sum of Gaussian and super-Gaussian distributions with corresponding weights. We propose a model of such lasers that takes into account the features of intracavity self-frequency Raman conversion in lasers with highly inhomogeneous non-Gaussian spatial distributions of the pump, laser, and Stokes beam intensity in the cavity. The results of modeling are in good agreement with the experimental data.

  4. 70 microM caffeine treatment enhances in vitro force and power output during cyclic activities in mouse extensor digitorum longus muscle.

    PubMed

    James, Rob S; Kohlsdorf, Tiana; Cox, Val M; Navas, Carlos A

    2005-09-01

    Caffeine ingestion by human athletes has been found to improve endurance performance primarily acting via the central nervous system as an adenosine receptor antagonist. However, a few studies have implied that the resultant micromolar levels of caffeine in blood plasma (70 microM maximum for humans) may directly affect skeletal muscle causing enhanced force production. In the present study, the effects of 70 microM caffeine on force and power output in isolated mouse extensor digitorum longus muscle were investigated in vitro at 35 degrees C. Muscle preparations were subjected to cyclical sinusoidal length changes with electrical stimulation conditions optimised to produce maximal work. 70 microM caffeine caused a small but significant increase (2-3%) in peak force and net work produced during work loops (where net work represents the work input required to lengthen the muscle subtracted from the work produced during shortening). However, these micromolar caffeine levels did not affect the overall pattern of fatigue or the pattern of recovery from fatigue. Our results suggest that the plasma concentrations found when caffeine is used to enhance athletic performance in human athletes might directly enhance force and power during brief but not prolonged activities. These findings potentially confirm previous in vivo studies, using humans, which implied caffeine ingestion may cause acute improvements in muscle force and power output but would not enhance endurance.

  5. Effects of load type (pollen or nectar) and load mass on hovering metabolic rate and mechanical power output in the honey bee Apis mellifera.

    PubMed

    Feuerbacher, Erica; Fewell, Jennifer H; Roberts, Stephen P; Smith, Elizabeth F; Harrison, Jon F

    2003-06-01

    In this study we tested the effect of pollen and nectar loading on metabolic rate (in mW) and wingbeat frequency during hovering, and also examined the effect of pollen loading on wing kinematics and mechanical power output. Pollen foragers had hovering metabolic rates approximately 10% higher than nectar foragers, regardless of the amount of load carried. Pollen foragers also had a more horizontal body position and higher inclination of stroke plane than measured previously for honey bees (probably nectar foragers). Thorax temperatures ranked pollen > nectar > water foragers, and higher flight metabolic rate could explain the higher thorax temperature of pollen foragers. Load mass did not affect hovering metabolic rate or wingbeat frequency in a regression-model experiment. However, using an analysis of variance (ANOVA) design, loaded pollen and nectar foragers (mean loads 27% and 40% of body mass, respectively) significantly increased metabolic rate by 6%. Mean pollen loads of 18% of body mass had no effect on wingbeat frequency, stroke amplitude, body angle or inclination of stroke plane, but increased the calculated mechanical power output by 16-18% (depending on the method of estimating drag). A rise in lift coefficient as bees carry loads without increasing wingbeat frequency or stroke amplitude (and only minimal increases in metabolic rate) suggests an increased use of unsteady power-generating mechanisms.

  6. The effect of fiber-type heterogeneity on optimized work and power output of hindlimb muscles of the salamander Ambystoma tigrinum.

    PubMed

    Ashley-Ross, M A; Barker, J U

    2002-09-01

    Most vertebrate muscles are composed of a mixture of fiber types. However, studies of muscle mechanics have concentrated on homogeneous bundles of fibers. Hindlimb muscles of the tiger salamander, Ambystoma tigrinum, present an excellent system to explore the consequences of fiber heterogeneity. Isometric twitches and work loops were obtained in vitro from two muscles, the m. iliotibialis pars posterior (heterogeneous, containing types I, IIa and IIb fibers) and the m. iliofibularis (nearly homogeneous for type IIa fibers). Maximal isometric twitch and tetanic stresses in m. iliotibialis posterior were significantly greater than in iliofibularis. Work loops were obtained over a range of frequencies (0.5-3.0 Hz) and strains (2-6% muscle length) that encompassed the observed ranges in vivo. Work per cycle from the homogeneous iliofibularis declined from 1.5-3.0 Hz, while that from the heterogeneous m. iliotibialis posterior increased from 0.5 Hz to 2.5 Hz and declined at 3.0 Hz. Power output from the iliofibularis rose with frequency to at least 3 Hz; power from the iliotibialis posterior rose with frequency to 2.5 Hz and declined thereafter. Mass-specific work per cycle and power output were higher in iliofibularis than iliotibialis posterior over most frequencies and strains tested.

  7. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  8. High-Output-Power Densities from MBE-grown n- and p-Type PbTeSe-based Thermoelectrics via Improved Contact Metallization

    DTIC Science & Technology

    2011-10-19

    7 - Au, Sn, Zn, Pb, In, Ag , Ti, Cr, Sb, W, Ni, Fe, Cu, Al, and Ge [5-15]. In most cases the contact resistivity values were worse (higher) than...probe, thermoelement, and Cu heat sink were connected electrically in series to a load resistance (length of Ag coated Cu wire), and the power output·was...cleaning on: (a) adsorbed oxygen,. (b) adsorbed carbon, (c) Sn and SnO , and (d) Te and Te{h. Atomic hydrogen cleaned at a substrate temperature of

  9. Absolutely classical spin states

    NASA Astrophysics Data System (ADS)

    Bohnet-Waldraff, F.; Giraud, O.; Braun, D.

    2017-01-01

    We introduce the concept of "absolutely classical" spin states, in analogy to absolutely separable states of bipartite quantum systems. Absolutely classical states are states that remain classical (i.e., a convex sum of projectors on coherent states of a spin j ) under any unitary transformation applied to them. We investigate the maximal size of the ball of absolutely classical states centered on the maximally mixed state and derive a lower bound for its radius as a function of the total spin quantum number. We also obtain a numerical estimate of this maximal radius and compare it to the case of absolutely separable states.

  10. Ratings of Perceived Exertion, Heart Rate, and Power Output in Predicting Maximal Oxygen Uptake During Submaximal Cycle Ergometry.

    ERIC Educational Resources Information Center

    Wilmore, Jack H.; And Others

    1986-01-01

    Sixty-two subjects completed a four-stage submaximal cycle ergometer test to determine if estimates of maximal oxygen uptake could be improved by using ratings of perceived exertion singly or in combination with easily obtainable physiological measures. These procedures could be used to estimate the aerobic power of patients and athletes. (MT)

  11. Effects of 4-Week Training Intervention with Unknown Loads on Power Output Performance and Throwing Velocity in Junior Team Handball Players

    PubMed Central

    Sabido, Rafael; Hernández-Davó, Jose Luis; Botella, Javier; Moya, Manuel

    2016-01-01

    Purpose To compare the effect of 4-week unknown vs known loads strength training intervention on power output performance and throwing velocity in junior team handball players. Methods Twenty-eight junior team-handball players (17.2 ± 0.6 years, 1.79 ± 0.07 m, 75.6 ± 9.4 kg)were divided into two groups (unknown loads: UL; known loads: KL). Both groups performed two sessions weekly consisting of four sets of six repetitions of the bench press throw exercise, using the 30%, 50% and 70% of subjects’ individual 1 repetition maximum (1RM). In each set, two repetitions with each load were performed, but the order of the loads was randomised. In the KL group, researchers told the subjects the load to mobilise prior each repetition, while in the UL group, researchers did not provide any information. Maximal dynamic strength (1RM bench press), power output (with 30, 50 and 70% of 1RM) and throwing velocity (7 m standing throw and 9 m jumping throw) were assessed pre- and post-training intervention. Results Both UL and KL group improved similarly their 1RM bench press as well as mean and peak power with all loads. There were significant improvements in power developed in all the early time intervals measured (150 ms) with the three loads (30, 50, 70% 1RM) in the UL group, while KL only improved with 30% 1RM (all the time intervals) and with 70% 1RM (at certain time intervals). Only the UL group improved throwing velocity in both standing (4.7%) and jumping (5.3%) throw (p > 0.05). Conclusions The use of unknown loads has led to greater gains in power output in the early time intervals as well as to increases in throwing velocity compared with known loads. Therefore unknown loads are of significant practical use to increase both strength and in-field performance in a short period of training. PMID:27310598

  12. The relationship of leg volume (muscle plus bone) to maximal aerobic power output on a bicycle ergometer: the effects of anaemia, malnutrition and physical activity.

    PubMed

    Davies, C T

    1974-01-01

    The relationship of maximal power output (VO2 max) to leg muscle plus bone) volume (LV) has been analysed in African children suffering from malnutrition and severe anaemia and in a group of rural adult Africans engaged in prolonged, active daily work. The results are examined in relation to 'normal' healthy active (but not in training) African ? s and ? s aged 7-35 years. The analysis clearly demonstrates that the association between VO2 max and LV is not causal; the effects of increased habitual activity and anaemia show that the two parameters can be varied independently. The effect of habitual activity on the VO2 max : LV relationship is essentially additive, whereas the effect of anaemia is multiplicative. However in malnutrition, the relationship remains unchanged; VO2 max decreases paripassu with the reduced leg (muscle plus bone) volume. Iron therapy produces an increase in VO2 max) towards normal values without a concomitant change in LV. The results give a clearer understanding of the relationship between 'active' muscle mass and aerobic power output on the bicycle ergometer and could be used as a basis for clinical diagnosis in the industrial and medical fields, particularly for cases of debilitating disease which have an effect on physiological performance and effort intolerance. The data at present cannot be applied to men and women over 35 years of age.

  13. Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes.

    PubMed

    Zang, Zhigang; Zeng, Xiaofeng; Du, Jihe; Wang, Ming; Tang, Xiaosheng

    2016-08-01

    A significant enhancement of light extraction efficiency from InGaN light-emitting diodes (LEDs) with microhole arrays and roughened ZnO was experimentally demonstrated. The roughened ZnO was fabricated using an Ar and H2 plasma treatment of ZnO films pre-coated on a p-GaN layer. When followed by a femtosecond laser direct writing technique, a periodic array of microholes could be added to the surface. The diameter of the microhole was varied by changing the output power of the femtosecond laser. Compared to conventional LEDs on the same wafer, the output power of LEDs with roughened ZnOs and a microhole (diameter of 2 μm) array was increased by 58.4% when operated with an injection current of 220 mA. Moreover, it was found that LEDs fabricated with roughened ZnO and the microhole array had similar current-voltage (I-V) characteristics to those of conventional LEDs and no degrading effect was observed.

  14. Regional thermal specialisation in a mammal: temperature affects power output of core muscle more than that of peripheral muscle in adult mice (Mus musculus).

    PubMed

    James, Rob S; Tallis, Jason; Angilletta, Michael J

    2015-01-01

    In endotherms, such as mammals and birds, internal organs can specialise to function within a narrow thermal range. Consequently, these organs should become more sensitive to changes in body temperature. Yet, organs at the periphery of the body still experience considerable fluctuations in temperature, which could select for lower thermal sensitivity. We hypothesised that the performance of soleus muscle taken from the leg would depend less on temperature than would the performance of diaphragm muscle taken from the body core. Soleus and diaphragm muscles were isolated from mice and subjected to isometric and work-loop studies to analyse mechanical performance at temperatures between 15 and 40 °C. Across this thermal range, soleus muscle took longer to generate isometric force and longer to relax, and tended to produce greater normalised maximal force (stress) than did diaphragm muscle. The time required to produce half of maximal force during isometric tetanus and the time required to relax half of maximal force were both more sensitive to temperature in soleus than they were in diaphragm. However, thermal sensitivities of maximal force during isometric tetani were similar for both muscles. Consistent with our hypothesis, power output (the product of speed and force) was greater in magnitude and more thermally sensitive in diaphragm than it was in soleus. Our findings, when combined with previous observations of muscles from regionally endothermic fish, suggest that endothermy influences the thermal sensitivities of power output in core and peripheral muscles.

  15. 670 nm nearly diffraction limited tapered lasers with more than 30% conversion efficiency and 1 W cw and 3 W pulsed output power

    NASA Astrophysics Data System (ADS)

    Sumpf, B.; Adamiec, P.; Zorn, M.; Wenzel, H.; Erbert, G.; Tränkle, G.

    2011-02-01

    Highly efficient 670 nm-tapered lasers with a vertical divergence of 31° (FWHM) will be presented. The devices are based on a GaInP single quantum well embedded in AlGaInP waveguide layers. Compared to previously reported material, the structure has an improved material quality with a transparency current density jtr = 165 A/cm2, an internal efficiency ηi = 0.75, small internal losses αi = 1.2 cm-1, and a good temperature stability with T0 = 120 K. 2 mm long tapered lasers were fabricated in a standard process, using reactive ion etching for the index-guided structures and ion implantation for the definition of the contact window in the tapered section. The properties of devices with 500 μm or 750 μm long ridge waveguide (RW) section and a flared section with 3° or 4° taper angle will be compared. In CW-operation an output power up to P = 1 W with a conversion efficiency of 30% and a beam propagation ratio M2 (2nd moments) smaller than 2.3 were obtained. In pulsed mode up to 3.3 W output power was measured.

  16. Interday Reliability of Peak Muscular Power Outputs on an Isotonic Dynamometer and Assessment of Active Trunk Control Using the Chop and Lift Tests

    PubMed Central

    Palmer, Thomas G.; Uhl, Timothy L.

    2011-01-01

    Abstract Context: Assessment techniques used to measure functional tasks involving active trunk control are restricted to linear movements that lack the explosive movements and dynamic tasks associated with activities of daily living and sport. Reliable clinical methods used to assess the diagonal and ballistic movements about the trunk are lacking. Objective: To assess the interday reliability of peak muscular power outputs while participants performed diagonal chop and lift tests and maintained a stable trunk. Design: Controlled laboratory study. Setting: University research laboratory. Patients or Other Participants: Eighteen healthy individuals (10 men and 8 women; age  =  32 ± 11 years, height  =  168 ± 12 cm, mass  =  80 ± 19 kg) from the general population participated. Intervention(s): Participants performed 2 power tests (chop, lift) using an isotonic dynamometer and 3 endurance tests (Biering-Sørensen, side-plank left, side-plank right) to assess active trunk control. Testing was performed on 3 different days separated by at least 1 week. Reliability was compared between days 1 and 2 and between days 2 and 3. Correlations between the power and endurance tests were evaluated to determine the degree of similarity. Main Outcome Measure(s): Peak muscular power outputs (watts) derived from a 1-repetition maximum protocol for the chop and lift tests were collected for both the right and left sides. Results: Intraclass correlation coefficients for peak muscular power were highly reliable for the chop (range, 0.87–0.98), lift (range, 0.83–0.96), and endurance (range, 0.80–0.98) tests between test sessions. The correlations between the power assessments and the Biering-Sørensen test (r range, −0.008 to 0.017) were low. The side-plank tests were moderately correlated with the chop (r range, 0.528–0.590) and the lift (r range, 0.359–0.467) tests. Conclusions: The diagonal chop and lift power protocol generated reliable data and

  17. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  18. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  19. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  20. Mechanisms underlying enhancements in muscle force and power output during maximal cycle ergometer exercise induced by chronic β2-adrenergic stimulation in men.

    PubMed

    Hostrup, Morten; Kalsen, Anders; Onslev, Johan; Jessen, Søren; Haase, Christoffer; Habib, Sajad; Ørtenblad, Niels; Backer, Vibeke; Bangsbo, Jens

    2015-09-01

    The study was a randomized placebo-controlled trial investigating mechanisms by which chronic β2-adrenergic stimulation enhances muscle force and power output during maximal cycle ergometer exercise in young men. Eighteen trained men were assigned to an experimental group [oral terbutaline 5 mg/30 kg body weight (bw) twice daily (TER); n = 9] or a control group [placebo (PLA); n = 9] for a 4-wk intervention. No changes were observed with the intervention in PLA. Isometric muscle force of the quadriceps increased (P ≤ 0.01) by 97 ± 29 N (means ± SE) with the intervention in TER compared with PLA. Peak and mean power output during 30 s of maximal cycling increased (P ≤ 0.01) by 32 ± 8 and 25 ± 9 W, respectively, with the intervention in TER compared with PLA. Maximal oxygen consumption (V̇o2max) and time to fatigue during incremental cycling did not change with the intervention. Lean body mass increased by 1.95 ± 0.8 kg (P ≤ 0.05) with the intervention in TER compared with PLA. Change in single fiber cross-sectional area of myosin heavy chain (MHC) I (1,205 ± 558 μm(2); P ≤ 0.01) and MHC II fibers (1,277 ± 595 μm(2); P ≤ 0.05) of the vastus lateralis muscle was higher for TER than PLA with the intervention, whereas no changes were observed in MHC isoform distribution. Expression of muscle proteins involved in growth, ion handling, lactate production, and clearance increased (P ≤ 0.05) with the intervention in TER compared with PLA, with no change in oxidative enzymes. Our observations suggest that muscle hypertrophy is the primary mechanism underlying enhancements in muscle force and peak power during maximal cycling induced by chronic β2-adrenergic stimulation in humans.

  1. Barbell kinematics should not be used to estimate power output applied to the Barbell-and-body system center of mass during lower-body resistance exercise.

    PubMed

    Lake, Jason P; Lauder, Mike A; Smith, Neal A

    2012-05-01

    The aim of this study was to compare measures of power output applied to the center of mass of the barbell and body system (CM) obtained by multiplying ground reaction force (GRF) by (a) the velocity of the barbell; (b) the velocity of the CM derived from three-dimensional (3D) whole-body motion analysis, and (c) the velocity of the CM derived from GRF during lower-body resistance exercise. Ten resistance-trained men performed 3 maximal-effort single back squats with 60% 1 repetition maximum while GRF and whole-body motion were captured using synchronized Kistler force platforms and a Vicon Motus motion analysis system. Repeated measures analysis of variance of time-normalized kinematic and kinetic data obtained using the different methods showed that the barbell was displaced 13.4% (p < 0.05) more than the CM, the velocity of the barbell was 16.1% (p < 0.05) greater than the velocity of the CM, and power applied to the CM obtained by multiplying GRF by the velocity of the barbell was 18.7% (p < 0.05) greater than power applied to the CM obtained by multiplying the force applied to the CM by its resultant velocity. Further, the velocity of the barbell was significantly greater than the velocity of the trunk, upper leg, lower leg, and foot (p < 0.05), indicating that a failure to consider the kinematics of body segments during lower-body resistance exercise can lead to a significant overestimation of power applied to the CM. Strength and conditioning coaches and investigators are urged to obtain measures of power from the force applied to and the velocity of either the barbell (using inverse dynamics) or CM (GRF or 3D motion analysis). Failure to apply these suggestions could result in continued overestimation of CM power, compromising methodological integrity.

  2. High-output-power 255/280/310 nm deep ultraviolet light-emitting diodes and their lifetime characteristics

    NASA Astrophysics Data System (ADS)

    Fujioka, A.; Asada, K.; Yamada, H.; Ohtsuka, T.; Ogawa, T.; Kosugi, T.; Kishikawa, D.; Mukai, T.

    2014-06-01

    255/280/310 nm deep ultraviolet light-emitting diodes (DUV LEDs) suitable for high-current operation are reported. Newly developed 1 mm sized chips are installed in a commercial package with a two-series configuration. At a forward current of 350 mA, we measured powers of 45.2, 93.3, and 65.8 mW for the 255, 280, and 310 nm LEDs, respectively. The corresponding external quantum efficiencies per serial circuit were 1.3, 3.0, and 2.4%, and successful chip scalability was demonstrated. The 50% lifetime of the 280 nm LED die was estimated to be 3000 h at a junction temperature of 30 °C.

  3. The effect of a complex agonist and antagonist resistance training protocol on volume load, power output, electromyographic responses, and efficiency.

    PubMed

    Robbins, Daniel W; Young, Warren B; Behm, David G; Payne, Warren R

    2010-07-01

    The objective of this study was to investigate the acute effects of performing traditional set (TS) vs. complex set (CS) agonist-antagonist training over 3 consecutive sets, on bench press throw (BPT) throw height (TH), peak velocity (PV), peak power (PP), bench pull volume load (VL), and electromyographic (EMG) activity. Eighteen trained men performed 2 testing protocols: TS comprising 3 sets of Bpull followed by 3 sets of BPT performed in approximately 20 minutes or CS comprising 3 sets of both Bpull and BPT performed in an alternating manner in approximately 10 minutes. Throw height, PV, PP, and EMG activity were not different within, or between, the 2 conditions. Bench pull VL decreased significantly from set 1 to sets 2 and 3, under both conditions. Decreases from set 1 to set 2 were 14.55 +/- 26.11 and 9.07 +/- 13.89% and from set 1 to set 3 were 16.87 +/- 29.90 and 14.17 +/- 18.37% under CS and TS, respectively. There was no difference in VL per set, or session, between the conditions. Although there was no augmentation of the power measures, CS was determined to have approximately twice the efficiency (ouput/time) as compared to TS. Efficiency calculations for VL, TH, PV, and PP are 103.47 kg.min, 26.25 cm.min, 1.98 m.s.min, 890.39 W.min under CS and 54.71 kg.min, 13.02 cm.min, 0.99 m.s.min, 459.28 W.min under TS. Comparison of EMG activity between the protocols suggests the level of neuromuscular fatigue did not differ under the 2 conditions. Complex set training would appear to be an effective method of exercise with respect to efficiency and the maintenance of TH, PV, PP, and VL.

  4. Adaptations in upper-body maximal strength and power output resulting from long-term resistance training in experienced strength-power athletes.

    PubMed

    Baker, Daniel G; Newton, Robert U

    2006-08-01

    The purpose of this investigation was to observe changes in maximal upper-body strength and power and shifts in the load-power curve across a multiyear period in experienced resistance trainers. Twelve professional rugby league players who regularly performed combined maximal strength and power training were observed across a 4-year period with test data reported every 2 years (years 1998, 2000, and 2002). Upper-body strength was assessed by the 1 repetition maximum bench press and maximum power during bench press throws (BT Pmax) with various barbell resistances of 40-80 kg. During the initial testing, players also were identified as elite (n = 6) or subelite (n = 6), depending upon whether they participated in the elite first-division national league or second-division league. This subgrouping allowed for a comparison of the scope of changes dependent upon initial strength and training experience. The subelite group was significantly younger, less strong, and less powerful than the elite group, but no other difference existed in height or body mass in 1998. Across the 4-year period, significant increases in strength occurred for the group as a whole and larger increases were observed for the subelite than the elite group, verifying the limited scope that exists for strength gain in more experienced, elite resistance-trained athletes. A similar trend occurred for changes in BT Pmax. This long-term observation confirms that the rate of progress in strength and power development diminishes with increased strength levels and resistance training experience. Furthermore, it also indicates that strength and power can still be increased despite a high volume of concurrent resistance and endurance training.

  5. Effect of formoterol, a long-acting β2-adrenergic agonist, on muscle strength and power output, metabolism, and fatigue during maximal sprinting in men.

    PubMed

    Kalsen, Anders; Hostrup, Morten; Backer, Vibeke; Bangsbo, Jens

    2016-06-01

    The aim was to investigate the effect of the long-acting β2-adrenergic agonist formoterol on muscle strength and power output, muscle metabolism, and phosphorylation of CaMKII Thr(287) and FXYD1 during maximal sprinting. In a double-blind crossover study, 13 males [V̇o2 max: 45.0 ± 0.2 (means ± SE) ml·min(-1)·kg(-1)] performed a 30-s cycle ergometer sprint after inhalation of either 54 μg of formoterol (FOR) or placebo (PLA). Before and after the sprint, muscle biopsies were collected from vastus lateralis and maximal voluntary contraction (MVC), and contractile properties of quadriceps were measured. Oxygen uptake was measured during the sprint. During the sprint, peak power, mean power, and end power were 4.6 ± 0.8, 3.9 ± 1.1, and 9.5 ± 3.2% higher (P < 0.05) in FOR than in PLA, respectively. Net rates of glycogenolysis and glycolysis were 45.7 ± 21.0 and 28.5 ± 13.4% higher (P < 0.05) in FOR than in PLA, respectively, and the decrease in ATP content was lower (P < 0.05) in FOR than in PLA (3.7 ± 1.5 vs. 8.0 ± 1.6 mmol/kg dry weight). There was no difference in breakdown of phosphocreatine and oxygen uptake between treatments. Before and after the sprint, MVC and peak twitch force were higher (P < 0.05) in FOR than in PLA. No differences were observed in phosphorylation of CaMKII Thr(287) and FXYD1 between treatments before the sprint, whereas phosphorylation of CaMKII Thr(287) and FXYD1 was greater (P < 0.05) in FOR than in PLA after the sprint. In conclusion, formoterol-induced enhancement in power output during maximal sprinting is associated with increased rates of glycogenolysis and glycolysis that may counteract development of fatigue.

  6. System providing limit switch function with simultaneous absolute position output

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2006-01-01

    A limit and position sensing system includes a sensor assembly and an emitter. The sensor assembly includes first and second electrical conductors arranged in opposing parallel planes. The first electrical conductor is coiled outwardly from either end thereof in a clockwise fashion to form a first coil region and a second coil region. The second electrical conductor forms a single coil with portions of the single coil's rings lying between the first end and second end of the first electrical conductor being parallel to an axis of the first electrical conductor's plane. Ferromagnetic material is aligned with the first and second electrical conductors and spans beyond (a) the first and second ends of the first electrical conductor, and (b) the portions of the rings of the second electrical conductor's single coil that lie between the first end and second end of the first electrical conductor. The emitter is spaced apart from the sensor assembly and transmits a periodic electromagnetic wave towards the sensor assembly.

  7. Design Modifications for Increasing the BOm and EOM Power Output and Reducing the Size and Mass of RTG for the Pluto Mission

    SciTech Connect

    Schock, Alfred; Or, Chuen T; Kumar, Vasanth

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. A companion paper analyzed the effect on source modules for three specific fuel options, and compared the predicted power output with JPL's latest goals for the Pluto Fast Flyby (PFF) mission. The results showed that a 5-module RTG cannot fully meet JPL's goals with any of the available fuels; and that a 6-module RTG more than meets those goals with Russian fuel, almost meets them with U.S. (Cassini-type) fuel, but still falls far short of meeting them with the depleted fuel from the aged (1982) Galileo spare RTG. The inadequacy of the aged fuel was disappointing,because heat source modules made from it already exist, and their use in PFF could result in substantial cost savings. The present paper describes additional analyses which showed that a six-module RTG with the aged fuel can meet JPL's stipulated power margin with a relatively simple design modification, that a second design modification makes it possible to recover all of the mass and size penalty for going from five to six heat source modules, and that a third modification could raise the EOM power margin to 16%.

  8. Design Modifications for Increasing the BOM and EOM Power Output and Reducing the Size and Mass of RTG for the Pluto Mission

    SciTech Connect

    Schock, Alfred; Or, Chuen T; Kumar, Vasanth

    1994-06-01

    A companion paper analyzed the effect on source modules for three specific fuel options, and compared the predicted power output with JPL's latest goals for the Pluto Fast Flyby (PFF) mission. The results showed that a 5-module RTG cannot fully meet JPL's goals with any of the available fuels; and that a 6-module RTG more than meets those goals with Russian fuel, almost meets them with U.S. (Cassini-type) fuel, but still falls far short of meeting them with the depleted fuel from the aged (1982) Galileo spare RTG. The inadequacy of the aged fuel was disappointing,because heat source modules made from it already exist, and their use in PFF could result in substantial cost savings. The present paper describes additional analyses which showed that a six-module RTG with the aged fuel can meet JPL's stipulated power margin with a relatively simple design modification, that a second design modification makes it possible to recover all of the mass and size penalty for going from five to six heat source modules, and that a third modification could raise the EOM power margin to 16%. There are four copies in the file. Cross Reference ESD Files FSC-ESD-217-94-531 (CID #8572)

  9. From Cycling Between Coupled Reactions to the Cross-Bridge Cycle: Mechanical Power Output as an Integral Part of Energy Metabolism

    PubMed Central

    Diederichs, Frank

    2012-01-01

    ATP delivery and its usage are achieved by cycling of respective intermediates through interconnected coupled reactions. At steady state, cycling between coupled reactions always occurs at zero resistance of the whole cycle without dissipation of free energy. The cross-bridge cycle can also be described by a system of coupled reactions: one energising reaction, which energises myosin heads by coupled ATP splitting, and one de-energising reaction, which transduces free energy from myosin heads to coupled actin movement. The whole cycle of myosin heads via cross-bridge formation and dissociation proceeds at zero resistance. Dissipation of free energy from coupled reactions occurs whenever the input potential overcomes the counteracting output potential. In addition, dissipation is produced by uncoupling. This is brought about by a load dependent shortening of the cross-bridge stroke to zero, which allows isometric force generation without mechanical power output. The occurrence of maximal efficiency is caused by uncoupling. Under coupled conditions, Hill’s equation (velocity as a function of load) is fulfilled. In addition, force and shortening velocity both depend on [Ca2+]. Muscular fatigue is triggered when ATP consumption overcomes ATP delivery. As a result, the substrate of the cycle, [MgATP2−], is reduced. This leads to a switch off of cycling and ATP consumption, so that a recovery of [ATP] is possible. In this way a potentially harmful, persistent low energy state of the cell can be avoided. PMID:24957757

  10. Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers

    NASA Astrophysics Data System (ADS)

    Iida, Daisuke; Lu, Shen; Hirahara, Sota; Niwa, Kazumasa; Kamiyama, Satoshi; Ohkawa, Kazuhiro

    2016-08-01

    We investigated the effect of a combined AlN/Al0.03Ga0.97N barrier on InGaN-based amber light-emitting diodes (LEDs) grown by metalorganic vapor-phase epitaxy. InGaN-based multiple quantum wells with a combined AlN/Al0.03Ga0.97N barrier showed intense photoluminescence with a narrow full-width at half-maximum. The amber LEDs with a combined AlN/Al0.03Ga0.97N barrier achieved a light output power enhanced approximately 2.5-fold at 20 mA compared to that of the LED with a combined AlN/GaN barrier, owing to the reduction of defects in InGaN active layers. Thus, the efficiency of high-In-content InGaN-based LEDs can be improved in the spectrum range of amber.

  11. Effect of Er,Cr:YSGG Laser at Different Output Powers on the Micromorphology and the Bond Property of Non-Carious Sclerotic Dentin to Resin Composites

    PubMed Central

    Wang, Weiguo; Jiao, Yang; Wang, Wanshan; Yang, Yanwei; Wei, Jingjing; Shen, Lijuan; Chen, Jihua

    2015-01-01

    Background The objective of this study was to investigate the influence of Er,Cr:YSGG laser irradiated at different powers on the micromorphology and the bonding property of non-carious sclerotic dentin to resin composites. Methods Two hundred bovine incisors characterized by non-carious sclerotic dentin were selected, and the seventy-two teeth of which for surface morphological analysis were divided into nine groups according to various treatments (A: the control group, B: only treated with the adhesive Adper Easy One, C: diamond bur polishing followed by Adper Easy One, D-I: Er,Cr:YSGG laser irradiating at 1W, 2W, 3W, 4W, 5W, 6W output power, respectively, followed by Adper Easy One). The surface roughness values were measured by the non-contact three-dimensional morphology scanner, then the surface micromorphologies of surfaces in all groups were assessed by scanning electron microscopy (SEM); meanwhile, Image Pro-Plus 6.0 software was used to measure the relative percentage of open tubules on SEM images. The rest, one hundred twenty-eight teeth for bond strength test, were divided into eight groups according to the different treatments (A: only treated with the adhesive Adper Easy One, B: diamond bur polishing followed by the above adhesive, C-H: Er,Cr:YSGG laser irradiating at 1 W, 2 W, 3 W, 4 W, 5 W, 6 W output power, respectively, followed by the above adhesive), and each group was subsequently divided into two subgroups according to whether aging is performed (immediately tested and after thermocycling). Micro-shear bond strength test was used to evaluate the bond strength. Results The 4W laser group showed the highest roughness value (30.84±1.93μm), which was statistically higher than the control group and the diamond bur groups (p<0.05). The mean percentages ((27.8±1.8)%, (28.0±2.2)%, (30.0±1.9)%) of open tubules area in the 4W, 5W, 6W group were higher than other groups (p<0.05). The 4W laser group showed the highest micro-shear bond strength not

  12. 940nm QCW diode laser bars with 70% efficiency at 1 kW output power at 203K: analysis of remaining limits and path to higher efficiency and power at 200K and 300K

    NASA Astrophysics Data System (ADS)

    Frevert, C.; Bugge, F.; Knigge, S.; Ginolas, A.; Erbert, G.; Crump, P.

    2016-03-01

    Both high-energy-class laser facilities and commercial high-energy pulsed laser sources require reliable optical pumps with the highest pulse power and electro-optical efficiency. Although commercial quasi-continuous wave (QCW) diode laser bars reach output powers of 300…500 W further improvements are urgently sought to lower the cost per Watt, improve system performance and reduce overall system complexity. Diode laser bars operating at temperatures of around 200 K show significant advances in performance, and are particularly attractive in systems that use cryogenically cooled solid state lasers. We present the latest results on 940 nm, passively cooled, 4 mm long QCW diode bars which operate under pulse conditions of 1.2 ms, 10 Hz at an output power of 1 kW with efficiency of 70% at 203 K: a two-fold increase in power compared to 300 K, without compromising efficiency. We discuss how custom low-temperature design of the vertical layers can mitigate the limiting factors such as series resistance while sustaining high power levels. We then focus on the remaining obstacles to higher efficiency and power, and use a detailed study of multiple vertical structures to demonstrate that the properties of the active region are a major performance limit. Specifically, one key limit to series resistance is transport in the layers around the active region and the differential internal efficiency is closely correlated to the threshold current. Tailoring the barriers around the active region and reducing transparency current density thus promise bars with increased performance at temperatures of 200 K as well as 300 K.

  13. Differential-output B-dot and D-dot monitors for current and voltage measurements on a 20-MA, 3-MV pulsed-power accelerator

    NASA Astrophysics Data System (ADS)

    Wagoner, T. C.; Stygar, W. A.; Ives, H. C.; Gilliland, T. L.; Spielman, R. B.; Johnson, M. F.; Reynolds, P. G.; Moore, J. K.; Mourning, R. L.; Fehl, D. L.; Androlewicz, K. E.; Bailey, J. E.; Broyles, R. S.; Dinwoodie, T. A.; Donovan, G. L.; Dudley, M. E.; Hahn, K. D.; Kim, A. A.; Lee, J. R.; Leeper, R. J.; Leifeste, G. T.; Melville, J. A.; Mills, J. A.; Mix, L. P.; Moore, W. B. S.; Peyton, B. P.; Porter, J. L.; Rochau, G. A.; Rochau, G. E.; Savage, M. E.; Seamen, J. F.; Serrano, J. D.; Sharpe, A. W.; Shoup, R. W.; Slopek, J. S.; Speas, C. S.; Struve, K. W.; van de Valde, D. M.; Woodring, R. M.

    2008-10-01

    We have developed a system of differential-output monitors that diagnose current and voltage in the vacuum section of a 20-MA 3-MV pulsed-power accelerator. The system includes 62 gauges: 3 current and 6 voltage monitors that are fielded on each of the accelerator’s 4 vacuum-insulator stacks, 6 current monitors on each of the accelerator’s 4 outer magnetically insulated transmission lines (MITLs), and 2 current monitors on the accelerator’s inner MITL. The inner-MITL monitors are located 6 cm from the axis of the load. Each of the stack and outer-MITL current monitors comprises two separate B-dot sensors, each of which consists of four 3-mm-diameter wire loops wound in series. The two sensors are separately located within adjacent cavities machined out of a single piece of copper. The high electrical conductivity of copper minimizes penetration of magnetic flux into the cavity walls, which minimizes changes in the sensitivity of the sensors on the 100-ns time scale of the accelerator’s power pulse. A model of flux penetration has been developed and is used to correct (to first order) the B-dot signals for the penetration that does occur. The two sensors are designed to produce signals with opposite polarities; hence, each current monitor may be regarded as a single detector with differential outputs. Common-mode-noise rejection is achieved by combining these signals in a 50-Ω balun. The signal cables that connect the B-dot monitors to the balun are chosen to provide reasonable bandwidth and acceptable levels of Compton drive in the bremsstrahlung field of the accelerator. A single 50-Ω cable transmits the output signal of each balun to a double-wall screen room, where the signals are attenuated, digitized (0.5-ns/sample), numerically compensated for cable losses, and numerically integrated. By contrast, each inner-MITL current monitor contains only a single B-dot sensor. These monitors are fielded in opposite-polarity pairs. The two signals from a pair

  14. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland - microbial fuel cell systems.

    PubMed

    Liu, Shentan; Song, Hailiang; Wei, Size; Yang, Fei; Li, Xianning

    2014-08-01

    To optimize the performance of a vertical subsurface flow constructed wetland-microbial fuel cell (CW-MFC), studies of bio-cathode materials and reactor configurations were carried out. Three commonly used bio-cathode materials including stainless steel mesh (SSM), carbon cloth (CC) and granular activated carbon (GAC) were compared and evaluated. GAC-SSM bio-cathode achieved the highest maximum power density of 55.05 mWm(-2), and it was most suitable for CW-MFCs application because of its large surface area and helpful capillary water absorption. Two types of CW-MFCs with roots were constructed, one was placed in the anode and the other was placed in the cathode. Both planted CW-MFCs obtained higher power output than non-planted CW-MFC. Periodic voltage fluctuations of planted CW-MFCs were caused by light/dark cycles, and the influent substrate concentration significantly affected the amplitude of oscillation. The coulombic efficiencies of CW-MFCs decreased greatly with the increase of the influent substrate concentration.

  15. Comparison of cardiac power output and exercise performance in patients with left ventricular assist devices, explanted (recovered) patients, and those with moderate to severe heart failure.

    PubMed

    Jakovljevic, Djordje G; George, Robert S; Donovan, Gay; Nunan, David; Henderson, Keiran; Bougard, Robert S; Yacoub, Magdi H; Birks, Emma J; Brodie, David A

    2010-06-15

    Peak cardiac power output (CPO), as a direct measurement of overall cardiac function, has been shown to be a most powerful predictor of prognosis for patients with chronic heart failure. The present study assessed CPO and exercise performance in patients implanted with a left ventricular assist device (LVAD), those explanted due to myocardial recovery, and those with moderate to severe heart failure. Hemodynamic and respiratory gas exchange measurements were undertaken at rest and at peak graded exercise. These were performed in 54 patients-20 with moderate to severe heart failure, 18 with implanted LVADs, and 16 with explanted LVADs. At rest there was a nonsignificant difference in CPO among groups (p >0.05). Peak CPO was significantly higher in the explanted LVAD than in the heart failure and implanted LVAD groups (heart failure 1.90 +/- 0.45 W, implanted LVAD 2.37 +/- 0.55 W, explanted LVAD 3.39 +/- 0.61 W, p <0.01) as was peak cardiac output (heart failure 9.1 +/- 2.1 L/min, implanted LVAD 12.4 +/- 2.2 L/min, explanted LVD 14.6 +/- 2.9 L/min, p <0.01). Peak oxygen consumption was higher in the explanted LVAD than in the heart failure and implanted LVAD groups (heart failure 15.8 +/- 4.1 ml/kg/min, implanted LVAD 19.8 +/- 5.8 ml/kg/min, explanted LVAD 28.2 +/- 5.0 ml/kg/min, p <0.05) as was anaerobic threshold (heart failure 11.2 +/- 1.9 ml/kg/min, implanted LVAD 14.7 +/- 4.9 ml/kg/min, explanted LVAD 21.4 +/- 5.0 ml/kg/min, p <0.05). In conclusion, peak CPO differentiates well during cardiac restoration using LVADs and emphasizes the benefits of this therapy. CPO has the potential to be a key physiologic marker of heart failure severity and can guide management of patients with LVAD.

  16. Room temperature single longitudinal mode laser output at 1645 nm from a laser-diode pumped Er:YAG nonplanar ring oscillator.

    PubMed

    Yao, B Q; Yu, X; Liu, X L; Duan, X M; Ju, Y L; Wang, Y Z

    2013-04-08

    We report on a monolithic 1645 nm Er:YAG nonplanar ring oscillator (NPRO) resonantly pumped by a fiber-coupled laser diode. In the experiment, an up to 550 mW single frequency laser output at 1645.2 nm was obtained, corresponding to a slope efficiency of 19.1% and an absolute efficiency of 6.0%. The beam quality M2 was measured to be 2.1 at the highest output power.

  17. Comparison of various hours living fission products for absolute power density determination in VVER-1000 mock up in LR-0 reactor.

    PubMed

    Košťál, Michal; Švadlenková, Marie; Koleška, Michal; Rypar, Vojtěch; Milčák, Ján

    2015-11-01

    Measuring power level of zero power reactor is a quite difficult task. Due to the absence of measurable cooling media heating, it is necessary to employ a different method. The gamma-ray spectroscopy of fission products induced within reactor operation is one of possible ways of power determination. The method is based on the proportionality between fission product buildup and released power. The (92)Sr fission product was previously preferred as nuclide for LR-0 power determination for short-time irradiation experiments. This work aims to find more appropriate candidates, because the (92)Sr, however suitable, has a short half-life, which limits the maximal measurable amount of fuel pins within a single irradiation batch. The comparison of various isotopes is realized for (92)Sr, (97)Zr, (135)I, (91)Sr, and (88)Kr. The comparison between calculated and experimentally determined (C/E-1 values) net peak areas is assessed for these fission products. Experimental results show that studied fission products, except (88)Kr, are in comparable agreement with (92)Sr results. Since (91)Sr has notably higher half-life than (92)Sr, (91)Sr seems to be more appropriate marker in experiments with a large number of measured fuel pins.

  18. Absolute and relative blindsight.

    PubMed

    Balsdon, Tarryn; Azzopardi, Paul

    2015-03-01

    The concept of relative blindsight, referring to a difference in conscious awareness between conditions otherwise matched for performance, was introduced by Lau and Passingham (2006) as a way of identifying the neural correlates of consciousness (NCC) in fMRI experiments. By analogy, absolute blindsight refers to a difference between performance and awareness regardless of whether it is possible to match performance across conditions. Here, we address the question of whether relative and absolute blindsight in normal observers can be accounted for by response bias. In our replication of Lau and Passingham's experiment, the relative blindsight effect was abolished when performance was assessed by means of a bias-free 2AFC task or when the criterion for awareness was varied. Furthermore, there was no evidence of either relative or absolute blindsight when both performance and awareness were assessed with bias-free measures derived from confidence ratings using signal detection theory. This suggests that both relative and absolute blindsight in normal observers amount to no more than variations in response bias in the assessment of performance and awareness. Consideration of the properties of psychometric functions reveals a number of ways in which relative and absolute blindsight could arise trivially and elucidates a basis for the distinction between Type 1 and Type 2 blindsight.

  19. Catastrophic optical degradation of the output facet of high-power single-transverse-mode diode lasers. 2. Calculation of the spatial temperature distribution and threshold of the catastrophic optical degradation

    SciTech Connect

    Miftakhutdinov, D R; Bogatov, Alexandr P; Drakin, A E

    2010-09-10

    The temperature distribution and the power threshold during the catastrophic optical degradation are calculated within the framework of the developed model of the COD of the output facet in high-power single-transverse-mode diode lasers. Comparison of the calculation results and the experiment show the model adequacy. The contribution of different physical mechanisms into the heating of the laser output facet is analysed. It is shown that the model under study can help to develop the method for predicting the laser lifetime by the accelerated ageing tests. (lasers)

  20. 100,000 h estimated lifetime of 100-μm-stripe width 650 nm broad area lasers at an output power of 1.2 W

    NASA Astrophysics Data System (ADS)

    Sumpf, B.; Fricke, J.; Ressel, P.; Zorn, M.; Erbert, G.; Tränkle, G.

    2012-03-01

    Compared to longer wavelength devices, the development of reliable red-emitting diode lasers is more challenging due to the applicable semiconductors and the limited stability of the laser facets. Reliable operation over 1,000 h is sufficient for the pumping of fs-Cr:LiSAF lasers or in photodynamic therapy, but laser display technology requires material with the potential to operate failure free over more than 10,000 h. Reliability tests for 650 nm broad area (BA) lasers based on a GaInP single quantum well embedded in AlGaInP waveguide layers will be presented. 100 μm stripe width BA lasers with a length of 1.5 mm were fabricated as low mesa structures. The facets were optically coated including a facet passivation procedure. Mounted on diamond heat spreader and standard C-mounts at 15°C the devices had threshold currents of 550 mA, slope efficiencies of 1.2 W/A, and conversion efficiencies up to 0.33. Aging tests of four BA lasers were performed at output powers of 1.1 W and 1.2 W over a total test time of 20,000 h at a heat sink temperature of 15°C. No failure occurred during the lifetime test. The degradation rates for all devices were smaller than 3x10-6 h-1. A lifetime of 100,000 h at an operational power of 1.2 W can be estimated. These data proof that the material is well suited for the fabrication of high-brightness diode lasers for laser display technology.

  1. Direct observation of 0.57 eV trap-related RF output power reduction in AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Arehart, A. R.; Sasikumar, A.; Rajan, S.; Via, G. D.; Poling, B.; Winningham, B.; Heller, E. R.; Brown, D.; Pei, Y.; Recht, F.; Mishra, U. K.; Ringel, S. A.

    2013-02-01

    This paper reports direct evidence for trap-related RF output power loss in GaN high electron mobility transistors (HEMTs) grown by metal organic chemical vapor deposition (MOCVD) through increased concentration of a specific electron trap at EC-0.57 eV that is located in the drain access region, as a function of accelerated life testing (ALT). The trap is detected by constant drain current deep level transient spectroscopy (CID-DLTS) and the CID-DLTS thermal emission time constant precisely matches the measured drain lag. Both drain lag and CID-DLTS measurements show this state to already exist in pre-stressed devices, which coupled with its strong increase in concentration as a function of stress in the absence of significant increases in concentrations of other detected traps, imply its role in causing degradation, in particular knee walkout. This study reveals EC-0.57 eV trap concentration tracks degradation induced by ALT for MOCVD-grown HEMTs supplied by several commercial and university sources. The results suggest this defect has a common source and may be a key degradation pathway in AlGaN/GaN HEMTs and/or an indicator to predict device lifetime.

  2. Absolute neutrino mass scale

    NASA Astrophysics Data System (ADS)

    Capelli, Silvia; Di Bari, Pasquale

    2013-04-01

    Neutrino oscillation experiments firmly established non-vanishing neutrino masses, a result that can be regarded as a strong motivation to extend the Standard Model. In spite of being the lightest massive particles, neutrinos likely represent an important bridge to new physics at very high energies and offer new opportunities to address some of the current cosmological puzzles, such as the matter-antimatter asymmetry of the Universe and Dark Matter. In this context, the determination of the absolute neutrino mass scale is a key issue within modern High Energy Physics. The talks in this parallel session well describe the current exciting experimental activity aiming to determining the absolute neutrino mass scale and offer an overview of a few models beyond the Standard Model that have been proposed in order to explain the neutrino masses giving a prediction for the absolute neutrino mass scale and solving the cosmological puzzles.

  3. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  4. Overload protection circuit for output driver

    DOEpatents

    Stewart, Roger G.

    1982-05-11

    A protection circuit for preventing excessive power dissipation in an output transistor whose conduction path is connected between a power terminal and an output terminal. The protection circuit includes means for sensing the application of a turn on signal to the output transistor and the voltage at the output terminal. When the turn on signal is maintained for a period of time greater than a given period without the voltage at the output terminal reaching a predetermined value, the protection circuit decreases the turn on signal to, and the current conduction through, the output transistor.

  5. Effect of recovery intensity on peak power output and the development of heat strain during intermittent sprint exercise while under heat stress.

    PubMed

    Maxwell, Neil S; Castle, Paul C; Spencer, Matt

    2008-09-01

    This study compared two intensities of active recovery on intermittent sprint exercise performance and the development of heat strain in hot, humid conditions. Eight male game players completed four Cycling Intermittent Sprint Protocols (CISP) consisting of twenty 2-min periods, each including 10-s passive rest, 5-s maximal sprint against a resistance of 7.5% body mass and 105-s active recovery. The CISP was performed in mean (S.D.) temperate conditions with active recovery intensities of 50% V(O)(2peak) (TEMP50) and 35% V(O)(2peak)(TEMP35) and in hot, humid [35.2 (0.4) degrees C, 80.4 (2.1)% RH] conditions with the same intensities (HOT50 and HOT35, respectively) in a randomised, counterbalanced order. Heat strain (physiological strain index (PSI)) was calculated from rectal temperature and heart rate. All subjects completed the CISP (20 sprints) in TEMP50 and TEMP35. The mean number of sprints completed for HOT50 and HOT35 was 13 (3) and 17 (2), respectively; both of which were lower than TEMP50 and TEMP35 (P<0.01) and different between hot conditions. Reductions in peak power output (PPO) occurred in the TEMP50 and HOT50 by sprint 8 (P<0.05), but in HOT35 a reduction was delayed until sprint 13 (P<0.05). The rate of PSI increase was faster in HOT50 than TEMP50 and HOT35, but peak PSI was not different. By lowering the recovery intensity, one component of the PSI (heart rate) was reduced and intermittent sprint exercise performance was maintained for longer in the heat.

  6. Compressive power spectrum sensing for vibration-based output-only system identification of structural systems in the presence of noise

    NASA Astrophysics Data System (ADS)

    Tau Siesakul, Bamrung; Gkoktsi, Kyriaki; Giaralis, Agathoklis

    2015-05-01

    Motivated by the need to reduce monetary and energy consumption costs of wireless sensor networks in undertaking output-only/operational modal analysis of engineering structures, this paper considers a multi-coset analog-toinformation converter for structural system identification from acceleration response signals of white noise excited linear damped structures sampled at sub-Nyquist rates. The underlying natural frequencies, peak gains in the frequency domain, and critical damping ratios of the vibrating structures are estimated directly from the sub-Nyquist measurements and, therefore, the computationally demanding signal reconstruction step is by-passed. This is accomplished by first employing a power spectrum blind sampling (PSBS) technique for multi-band wide sense stationary stochastic processes in conjunction with deterministic non-uniform multi-coset sampling patterns derived from solving a weighted least square optimization problem. Next, modal properties are derived by the standard frequency domain peak picking algorithm. Special attention is focused on assessing the potential of the adopted PSBS technique, which poses no sparsity requirements to the sensed signals, to derive accurate estimates of modal structural system properties from noisy sub- Nyquist measurements. To this aim, sub-Nyquist sampled acceleration response signals corrupted by various levels of additive white noise pertaining to a benchmark space truss structure with closely spaced natural frequencies are obtained within an efficient Monte Carlo simulation-based framework. Accurate estimates of natural frequencies and reasonable estimates of local peak spectral ordinates and critical damping ratios are derived from measurements sampled at about 70% below the Nyquist rate and for SNR as low as 0db demonstrating that the adopted approach enjoys noise immunity.

  7. Radiotherapy With 8-MHz Radiofrequency-Capacitive Regional Hyperthermia for Stage III Non-Small-Cell Lung Cancer: The Radiofrequency-Output Power Correlates With the Intraesophageal Temperature and Clinical Outcomes

    SciTech Connect

    Ohguri, Takayuki Imada, Hajime; Yahara, Katsuya; Morioka, Tomoaki; Nakano, Keita; Terashima, Hiromi; Korogi, Yukunori

    2009-01-01

    Purpose: To assess the efficacy of radiotherapy (RT) combined with regional hyperthermia (HT) guided by radiofrequency (RF)-output power and intraesophageal temperature and evaluate the potential contribution of HT to clinical outcomes in patients with Stage III non-small-cell lung cancer (NSCLC). Methods and Materials: Thirty-five patients with Stage III NSCLC treated with RT plus regional HT were retrospectively analyzed. Twenty-two of the 35 patients underwent intraesophageal temperature measurements. Patients with subcutaneous fat of 2.5 cm or greater, older age, or other serious complications did not undergo this therapy. The 8-MHz RF-capacitive heating device was applied, and in all patients, both the upper and lower electrodes were 30 cm in diameter, placed on opposite sides of the whole thoracic region, and treatment posture was the prone position. The HT was applied within 15 minutes after RT once or twice a week. Results: All thermal parameters, minimum, maximum, and mean of the four intraesophageal temperature measurements at the end of each session and the proportion of the time during which at least one of the four intraesophageal measurements was 41{sup o}C or higher in the total period of each session of HT, of the intraesophageal temperature significantly correlated with median RF-output power. Median RF-output power ({>=}1,200 W) was a statistically significant prognostic factor for overall, local recurrence-free, and distant metastasis-free survival. Conclusions: The RT combined with regional HT using a higher RF-output power could contribute to better clinical outcomes in patients with Stage III NSCLC. The RF-output power thus may be used as a promising parameter to assess the treatment of deep regional HT if deep heating using this device is performed with the same size electrodes and in the same body posture.

  8. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  9. Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90 mW output power via an AlN hybrid nanostructure

    SciTech Connect

    Inoue, Shin-ichiro; Naoki, Tamari; Kinoshita, Toru; Obata, Toshiyuki; Yanagi, Hiroyuki

    2015-03-30

    Deep-ultraviolet (DUV) aluminum gallium nitride-based light-emitting diodes (LEDs) on transparent aluminum nitride (AlN) substrates with high light extraction efficiency and high power are proposed and demonstrated. The AlN bottom side surface configuration, which is composed of a hybrid structure of photonic crystals and subwavelength nanostructures, has been designed using finite-difference time-domain calculations to enhance light extraction. We have experimentally demonstrated an output power improvement of up to 196% as a result of the use of the embedded high-light-extraction hybrid nanophotonic structure. The DUV-LEDs produced have demonstrated output power as high as 90 mW in DC operation at a peak emission wavelength of 265 nm.

  10. CONTROL OF LASER RADIATION PARAMETERS: Optimisation of waveguide parameters of laser InGaAs/AlGaAs/GaAs heterostructures for obtaining the maximum beam width in the resonator and the maximum output power

    NASA Astrophysics Data System (ADS)

    Bogatov, A. P.; Gushchik, T. I.; Drakin, A. E.; Nekrasov, A. P.; Popovichev, V. V.

    2008-10-01

    The waveguide design of a laser heterostructure is optimised to expand the laser beam in the vertical direction at the output mirror of a laser diode (up to 1.5 μm at the half intensity for the zero mode). Experimental samples of such diodes operated in the cw transverse single-mode lasing regime up to the output power of 0.5 W. The radiation divergence was 11°—12° and 4°—7° in the vertical and horizontal directions, respectively.

  11. A Passive Heat Maintenance Strategy Implemented during a Simulated Half-Time Improves Lower Body Power Output and Repeated Sprint Ability in Professional Rugby Union Players

    PubMed Central

    Russell, Mark; West, Daniel J.; Briggs, Marc A.; Bracken, Richard M.; Cook, Christian J.; Giroud, Thibault; Gill, Nicholas; Kilduff, Liam P.

    2015-01-01

    Reduced physical performance has been observed following the half-time period in team sports players, likely due to a decrease in muscle temperature during this period. We examined the effects of a passive heat maintenance strategy employed between successive exercise bouts on core temperature (Tcore) and subsequent exercise performance. Eighteen professional Rugby Union players completed this randomised and counter-balanced study. After a standardised warm-up (WU) and 15 min of rest, players completed a repeated sprint test (RSSA 1) and countermovement jumps (CMJ). Thereafter, in normal training attire (Control) or a survival jacket (Passive), players rested for a further 15 min (simulating a typical half-time) before performing a second RSSA (RSSA 2) and CMJ’s. Measurements of Tcore were taken at baseline, post-WU, pre-RSSA 1, post-RSSA 1 and pre-RSSA 2. Peak power output (PPO) and repeated sprint ability was assessed before and after the simulated half-time. Similar Tcore responses were observed between conditions at baseline (Control: 37.06±0.05°C; Passive: 37.03±0.05°C) and for all other Tcore measurements taken before half-time. After the simulated half-time, the decline in Tcore was lower (-0.74±0.08% vs. -1.54±0.06%, p<0.001) and PPO was higher (5610±105 W vs. 5440±105 W, p<0.001) in the Passive versus Control condition. The decline in PPO over half-time was related to the decline in Tcore (r = 0.632, p = 0.005). In RSSA 2, best, mean and total sprint times were 1.39±0.17% (p<0.001), 0.55±0.06% (p<0.001) and 0.55±0.06% (p<0.001) faster for Passive versus Control. Passive heat maintenance reduced declines in Tcore that were observed during a simulated half-time period and improved subsequent PPO and repeated sprint ability in professional Rugby Union players. PMID:25785393

  12. Heart mass and the maximum cardiac output of birds and mammals: implications for estimating the maximum aerobic power input of flying animals

    PubMed Central

    Bishop, C. M.

    1997-01-01

    Empirical studies of cardiovascular variables suggest that relative heart muscle mass (relative Mh) is a good indicator of the degree of adaptive specialization for prolonged locomotor activities, for both birds and mammals. Reasonable predictions for the maximum oxygen consumption of birds during flight can be obtained by assuming that avian heart muscle has the same maximum physiological and biomechanical performance as that of terrestrial mammals. Thus, data on Mh can be used to provide quantitative estimates for the maximum aerobic power input (aerobic Pi,max) available to animals during intense levels of locomotor activity. The maximum cardiac output of birds and mammals is calculated to scale with respect to Mh (g) as 213 Mh0.88+-0.04 (ml min-1), while aerobic Pi,max is estimated to scale approximately as 11 Mh0.88+-0.09 (W). In general, estimated inter-species aerobic Pi,max, based on Mh for all bird species (excluding hummingbirds), is calculated to scale with respect to body mass (Mb in kg) as 81 Mb0.82+-0.11 (W). Comparison of family means for Mh indicate that there is considerable diversity in aerobic capacity among birds and mammals, for example, among the medium to large species of birds the Tinamidae have the smallest relative Mh (0.25 per cent) while the Otidae have unusually large relative Mh (1.6 per cent). Hummingbirds have extremely large relative Mh (2.28 per cent), but exhibit significant sexual dimorphism in their scaling of Mh and flight muscle mass, so that when considering hummingbird flight performance it may be useful to control for sexual differences in morphology. The estimated scaling of aerobic Pi,max (based on Mh and Mb in g) for male and female hummingbirds is 0.51 Mb0.83 +/-0.07 and 0.44 Mb0.85+- 0.11 (W), respectively. Locomotory muscles are dynamic structures and it might be anticipated that where additional energetic 'costs' occur seasonally (e.g. due to migratory fattening or the development of large secondary sexual

  13. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  14. Absolute airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  15. A simple, compact, and efficient diode-side-pumped linear intracavity frequency doubled Nd:YAG rod laser with 50 ns pulse width and 124 W green output power

    NASA Astrophysics Data System (ADS)

    Sharma, Sunil K.; Mukhopadhyay, Pranab K.; Singh, Amarjeet; Kandasamy, Ranganathan; Oak, Shrikant M.

    2010-07-01

    We have developed an efficient and high power repetitively Q-switched diode-pumped intracavity frequency doubled Nd:YAG/LiB3O5 based green laser capable of generating 124 W of average green power with 50 ns pulse duration in a highly compact and robust linear cavity configuration. The pump to green beam conversion efficiency is 16.8% and the overall wall-plug efficiency is 8.3%. The long term power stability is excellent with ±0.4 W variation at the maximum output power and ±2% amplitude fluctuation with ±2.9 ns timing jitter. The M2 parameter of the green beam was measured to be ˜27. This, combined with the short pulse duration and the high average power, makes this laser ideal for pumping ultrafast Ti:sapphire laser amplifier systems and for micromachining applications.

  16. Absolute-structure reports.

    PubMed

    Flack, Howard D

    2013-08-01

    All the 139 noncentrosymmetric crystal structures published in Acta Crystallographica Section C between January 2011 and November 2012 inclusive have been used as the basis of a detailed study of the reporting of absolute structure. These structure determinations cover a wide range of space groups, chemical composition and resonant-scattering contribution. Defining A and D as the average and difference of the intensities of Friedel opposites, their level of fit has been examined using 2AD and selected-D plots. It was found, regardless of the expected resonant-scattering contribution to Friedel opposites, that the Friedel-difference intensities are often dominated by random uncertainty and systematic error. An analysis of data collection strategy is provided. It is found that crystal-structure determinations resulting in a Flack parameter close to 0.5 may not necessarily be from crystals twinned by inversion. Friedifstat is shown to be a robust estimator of the resonant-scattering contribution to Friedel opposites, very little affected by the particular space group of a structure nor by the occupation of special positions. There is considerable confusion in the text of papers presenting achiral noncentrosymmetric crystal structures. Recommendations are provided for the optimal way of treating noncentrosymmetric crystal structures for which the experimenter has no interest in determining the absolute structure.

  17. 1.3-μm, 4 × 25-Gbit/s, EADFB laser array module with large-output-power and low-driving-voltage for energy-efficient 100GbE transmitter.

    PubMed

    Fujisawa, Takeshi; Kanazawa, Shigeru; Takahata, Kiyoto; Kobayashi, Wataru; Tadokoro, Takashi; Ishii, Hiroyuki; Kano, Fumiyoshi

    2012-01-02

    A 1.3-μm, 4 × 25-Gbit/s, EADFB laser array module with large output power and low driving voltage is developed for 100GbE. A novel rear grating DFB laser is introduced to increase the output power of the laser while keeping the single mode lasing, which is desirable for a monolithic integration. Also, InGaAlAs-based electroabsorption modulators make very-low-driving-voltage operation possible due to their steep extinction curves. With the module, very clear 25-Gbit/s eye openings are obtained for four wavelengths with the driving voltage of only 0.5 V while securing the dynamic extinction ratio required by the system. These results indicate that the presented module is a promising candidate for energy-efficient future 100GbE transmitter.

  18. Measuring the absolute magnetic field using high-Tc SQUID

    NASA Astrophysics Data System (ADS)

    He, D. F.; Itozaki, H.

    2006-06-01

    SQUID normally can only measure the change of magnetic field instead of the absolute value of magnetic field. Using a compensation method, a mobile SQUID, which could keep locked when moving in the earth's magnetic field, was developed. Using the mobile SQUID, it was possible to measure the absolute magnetic field. The absolute value of magnetic field could be calculated from the change of the compensation output when changing the direction of the SQUID in a magnetic field. Using this method and the mobile SQUID, we successfully measured the earth's magnetic field in our laboratory.

  19. Determination of optimal whole body vibration amplitude and frequency parameters with plyometric exercise and its influence on closed-chain lower extremity acute power output and EMG activity in resistance trained males

    NASA Astrophysics Data System (ADS)

    Hughes, Nikki J.

    The optimal combination of Whole body vibration (WBV) amplitude and frequency has not been established. Purpose. To determine optimal combination of WBV amplitude and frequency that will enhance acute mean and peak power (MP and PP) output EMG activity in the lower extremity muscles. Methods. Resistance trained males (n = 13) completed the following testing sessions: On day 1, power spectrum testing of bilateral leg press (BLP) movement was performed on the OMNI. Days 2 and 3 consisted of WBV testing with either average (5.8 mm) or high (9.8 mm) amplitude combined with either 0 (sham control), 10, 20, 30, 40 and 50 Hz frequency. Bipolar surface electrodes were placed on the rectus femoris (RF), vastus lateralis (VL), bicep femoris (BF) and gastrocnemius (GA) muscles for EMG analysis. MP and PP output and EMG activity of the lower extremity were assessed pre-, post-WBV treatments and after sham-controls on the OMNI while participants performed one set of five repetitions of BLP at the optimal resistance determined on Day 1. Results. No significant differences were found between pre- and sham-control on MP and PP output and on EMG activity in RF, VL, BF and GA. Completely randomized one-way ANOVA with repeated measures demonstrated no significant interaction of WBV amplitude and frequency on MP and PP output and peak and mean EMGrms amplitude and EMG rms area under the curve. RF and VL EMGrms area under the curve significantly decreased (p < 0.05) with high WBV amplitude, whereas low amplitude significantly decreased GA mean and peak EMGrms amplitude and EMGrms area under the curve. VL mean EMGrms amplitude and BF mean and peak EMGrms amplitudes were significantly decreased (p < 0.05) with high WBV amplitude when compared to sham-control. WBV frequency significantly decreased (p < 0.05) VL mean and peak EMGrms amplitude. WBV frequency at 30 and 40 Hz significantly decreased (p < 0.05) GA mean EMGrms amplitude and 20 and 30 Hz significantly decreased GA peak EMGrms

  20. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  1. Absolute multilateration between spheres

    NASA Astrophysics Data System (ADS)

    Muelaner, Jody; Wadsworth, William; Azini, Maria; Mullineux, Glen; Hughes, Ben; Reichold, Armin

    2017-04-01

    Environmental effects typically limit the accuracy of large scale coordinate measurements in applications such as aircraft production and particle accelerator alignment. This paper presents an initial design for a novel measurement technique with analysis and simulation showing that that it could overcome the environmental limitations to provide a step change in large scale coordinate measurement accuracy. Referred to as absolute multilateration between spheres (AMS), it involves using absolute distance interferometry to directly measure the distances between pairs of plain steel spheres. A large portion of each sphere remains accessible as a reference datum, while the laser path can be shielded from environmental disturbances. As a single scale bar this can provide accurate scale information to be used for instrument verification or network measurement scaling. Since spheres can be simultaneously measured from multiple directions, it also allows highly accurate multilateration-based coordinate measurements to act as a large scale datum structure for localized measurements, or to be integrated within assembly tooling, coordinate measurement machines or robotic machinery. Analysis and simulation show that AMS can be self-aligned to achieve a theoretical combined standard uncertainty for the independent uncertainties of an individual 1 m scale bar of approximately 0.49 µm. It is also shown that combined with a 1 µm m‑1 standard uncertainty in the central reference system this could result in coordinate standard uncertainty magnitudes of 42 µm over a slender 1 m by 20 m network. This would be a sufficient step change in accuracy to enable next generation aerospace structures with natural laminar flow and part-to-part interchangeability.

  2. Multi-output differential technologies

    NASA Astrophysics Data System (ADS)

    Bidare, Srinivas R.

    1997-01-01

    A differential is a very old and proven mechanical device that allows a single input to be split into two outputs having equal torque irrespective of the output speeds. A standard differential is capable of providing only two outputs from a single input. A recently patented multi-output differential technology known as `Plural-Output Differential' allows a single input to be split into many outputs. This new technology is the outcome of a systematic study of complex gear trains (Bidare 1992). The unique feature of a differential (equal torque at different speeds) can be applied to simplify the construction and operation of many complex mechanical devices that require equal torque's or forces at multiple outputs. It is now possible to design a mechanical hand with three or more fingers with equal torque. Since these finger are powered via a differential they are `mechanically intelligent'. A prototype device is operational and has been used to demonstrate the utility and flexibility of the design. In this paper we shall review two devices that utilize the new technology resulting in increased performance, robustness with reduced complexity and cost.

  3. Absolute nonlocality via distributed computing without communication

    NASA Astrophysics Data System (ADS)

    Czekaj, Ł.; Pawłowski, M.; Vértesi, T.; Grudka, A.; Horodecki, M.; Horodecki, R.

    2015-09-01

    Understanding the role that quantum entanglement plays as a resource in various information processing tasks is one of the crucial goals of quantum information theory. Here we propose an alternative perspective for studying quantum entanglement: distributed computation of functions without communication between nodes. To formalize this approach, we propose identity games. Surprisingly, despite no signaling, we obtain that nonlocal quantum strategies beat classical ones in terms of winning probability for identity games originating from certain bipartite and multipartite functions. Moreover we show that, for a majority of functions, access to general nonsignaling resources boosts success probability two times in comparison to classical ones for a number of large enough outputs. Because there are no constraints on the inputs and no processing of the outputs in the identity games, they detect very strong types of correlations: absolute nonlocality.

  4. One joule output from a diode-array-pumped Nd:YAG laser with side-pumped rod geometry

    NASA Technical Reports Server (NTRS)

    Kasinski, Jeffrey J.; Hughes, Will; Dibiase, Don; Bournes, Patrick; Burnham, Ralph

    1992-01-01

    Output of 1.25 J per pulse (1.064 micron) with an absolute optical efficiency of 28 percent and corresponding electrical efficiency of 10 percent was demonstrated in a diode-array-pumped Nd:YAG laser using a side-pumped rod geometry in a master-oscillator/power-amplifier configuration. In Q-switched operation, an output of 0.75 J in a 17-ns pulse was obtained. The fundamental laser output was frequency doubled in KTP with 60 percent conversion efficiency to obtain 0.45 J in a 16-ns pulse at 532 nm. The output beam had high spatial quality with pointing stability better than 40 microrad and a shot-to-shot pulse energy fluctuation of less than +/-3 percent.

  5. High power TEM00 picosecond output based on a Nd:GdVO4 discrete path Innoslab amplifier.

    PubMed

    Guo, Jie; Lin, Hua; Li, Jinfeng; Gao, Peng; Liang, Xiaoyan

    2016-06-15

    We propose a technique for eliminating self-lasing and suppressing amplified spontaneous emission in a partially pumped slab amplifier with a discrete path configuration. High gain character and homogeneous gain distribution were well preserved with the proposed scheme. Based on the Nd:GdVO4 crystal, a 99 W, 12.4 ps TEM00 laser output was achieved with a 42% extraction efficiency. The diffraction limited beam quality remained undisturbed after amplification with Mx2=1.09 and My2=1.07 in the orthogonal directions.

  6. Estimating Absolute Site Effects

    SciTech Connect

    Malagnini, L; Mayeda, K M; Akinci, A; Bragato, P L

    2004-07-15

    The authors use previously determined direct-wave attenuation functions as well as stable, coda-derived source excitation spectra to isolate the absolute S-wave site effect for the horizontal and vertical components of weak ground motion. They used selected stations in the seismic network of the eastern Alps, and find the following: (1) all ''hard rock'' sites exhibited deamplification phenomena due to absorption at frequencies ranging between 0.5 and 12 Hz (the available bandwidth), on both the horizontal and vertical components; (2) ''hard rock'' site transfer functions showed large variability at high-frequency; (3) vertical-motion site transfer functions show strong frequency-dependence, and (4) H/V spectral ratios do not reproduce the characteristics of the true horizontal site transfer functions; (5) traditional, relative site terms obtained by using reference ''rock sites'' can be misleading in inferring the behaviors of true site transfer functions, since most rock sites have non-flat responses due to shallow heterogeneities resulting from varying degrees of weathering. They also use their stable source spectra to estimate total radiated seismic energy and compare against previous results. they find that the earthquakes in this region exhibit non-constant dynamic stress drop scaling which gives further support for a fundamental difference in rupture dynamics between small and large earthquakes. To correct the vertical and horizontal S-wave spectra for attenuation, they used detailed regional attenuation functions derived by Malagnini et al. (2002) who determined frequency-dependent geometrical spreading and Q for the region. These corrections account for the gross path effects (i.e., all distance-dependent effects), although the source and site effects are still present in the distance-corrected spectra. The main goal of this study is to isolate the absolute site effect (as a function of frequency) by removing the source spectrum (moment-rate spectrum) from

  7. Individually-addressable flip-chip AlInGaN micropixelated light emitting diode arrays with high continuous and nanosecond output power.

    PubMed

    Zhang, H X; Massoubre, D; McKendry, J; Gong, Z; Guilhabert, B; Griffin, C; Gu, E; Jessop, P E; Girkin, J M; Dawson, M D

    2008-06-23

    Micropixelated blue (470 nm) and ultraviolet (370 nm) AlInGaN light emitting diode ('micro-LED') arrays have been fabricated in flip-chip format with different pixel diameters (72 microm and 30 microm at, respectively, 100 and 278 pixels/mm(2)). Each micro-LED pixel can be individually-addressed and the devices possess a specially designed n-common contact incorporated to ensure uniform current injection and consequently uniform light emission across the array. The flip-chip micro-LEDs show, per pixel, high continuous output intensity of up to 0.55 microW/microm(2) (55 W/cm(2)) at an injection current density of 10 kA/cm(2) and can sustain continuous injection current densities of up to 12 kA/cm(2) before breakdown. We also demonstrate that nanosecond pulsed output operation of these devices with per pixel onaxis average peak intensity up to 2.9 microW/microm(2) (corresponding to energy of 45pJ per 22ns optical pulse) can be achieved. We investigate the pertinent performance characteristics of these arrays for micro-projection applications, including the prospect of integrated optical pumping of organic semiconductor lasers.

  8. Precision absolute value amplifier for a precision voltmeter

    DOEpatents

    Hearn, William E.; Rondeau, Donald J.

    1985-01-01

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  9. Precision absolute-value amplifier for a precision voltmeter

    DOEpatents

    Hearn, W.E.; Rondeau, D.J.

    1982-10-19

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resistor is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resistor. The output current through the load resistor is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resistor. A second gain determining resistor is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  10. Extremely low losses 14xx single mode laser diode leading to 550-mW output power module with 0-75°C case temperature and 10-W consumption

    NASA Astrophysics Data System (ADS)

    Burie, J.-R.; Garabedian, P.; Starck, C.; Pagnod-Rossiaux, P.; Bettiati, M.; Do Nascimento, M.; Reygrobellet, J.-N.; Bertreux, J.-C.; Laruelle, F.

    2012-03-01

    High power 14xx laser pumps are more and more required for eye safe industrial, medical, safety and defense applications as well as for increased telecom network capability (e.g. for 100 Gb Ethernet). However, this need of high power requires to control the overall power consumption in a range in line with systems requirements. In this respect, 3S PHOTONICS has developed a 14xx nm single mode laser diode with record internal losses of 1.5 cm-1 compared to the 2.7 cm-1 reported up to now. These lasers are based on p/nBH technology and use the asymmetric waveguide concept to reduce internal losses. The record loss value, coupled to an internal efficiency higher than 0.8, allows realization lasers of 3 mm length with external efficiency higher than 0.5 W.A-1 at 25°C in AR/HR coating configuration. Modules using direct coupling technology were realized. High coupling efficiency is obtained thanks to the 8° x 14° far field pattern of the diode. Output power of 550 mW at 1.8 A is thus obtained, with or without FBG stabilization, with maximum output power above 700mW. Thanks to the lasers' length, voltage at this current level is below 1.9 V, which gives a reduced thermal load. Thus, the overall modules electrical consumption remains lower than 10 W at case temperatures ranging from 0°C to 75°C. The 3 mm length also guaranties high reliability of these laser diodes.

  11. Absolute pulse energy measurements of soft x-rays at the Linac Coherent Light Source.

    PubMed

    Tiedtke, K; Sorokin, A A; Jastrow, U; Juranić, P; Kreis, S; Gerken, N; Richter, M; Arp, U; Feng, Y; Nordlund, D; Soufli, R; Fernández-Perea, M; Juha, L; Heimann, P; Nagler, B; Lee, H J; Mack, S; Cammarata, M; Krupin, O; Messerschmidt, M; Holmes, M; Rowen, M; Schlotter, W; Moeller, S; Turner, J J

    2014-09-08

    This paper reports novel measurements of x-ray optical radiation on an absolute scale from the intense and ultra-short radiation generated in the soft x-ray regime of a free electron laser. We give a brief description of the detection principle for radiation measurements which was specifically adapted for this photon energy range. We present data characterizing the soft x-ray instrument at the Linac Coherent Light Source (LCLS) with respect to the radiant power output and transmission by using an absolute detector temporarily placed at the downstream end of the instrument. This provides an estimation of the reflectivity of all x-ray optical elements in the beamline and provides the absolute photon number per bandwidth per pulse. This parameter is important for many experiments that need to understand the trade-offs between high energy resolution and high flux, such as experiments focused on studying materials via resonant processes. Furthermore, the results are compared with the LCLS diagnostic gas detectors to test the limits of linearity, and observations are reported on radiation contamination from spontaneous undulator radiation and higher harmonic content.

  12. Numerical investigation of an impact of a top gold metallization on output power of a p-up III-N-based blue-violet edge-emitting laser diode

    NASA Astrophysics Data System (ADS)

    Kuc, M.; Sarzała, R. P.; Stańczyk, S.; Perlin, P.

    2015-06-01

    The effect of modifications in epi-side (top) gold metallization on a thermal performance and on power roll-over of blue-vio- let III-N-based p-up edge-emitting ridge-waveguide laser diode (RW EEL) was explored in this paper. The calculations were carried out using a two-dimensional self-consistent electrical-thermal model combined with a simplified optical model tuned to a RW EEL fabricated in the Institute of High Pressure Physics (Unipress). Our results suggest that with proper modifica- tions in the III-N-based RW EEL, excluding modifications in its inner structure, it is possible to considerably improve the thermal performance and, thus, increase the maximal output power.

  13. Ca2.7Bi0.3Co4O9/La0.9Bi0.1NiO3 thermoelectric devices with high output power density

    NASA Astrophysics Data System (ADS)

    Funahashi, R.; Urata, S.; Mizuno, K.; Kouuchi, T.; Mikami, M.

    2004-08-01

    Different versions of a thermoelectric unicouple composed of p-type Ca2.7Bi0.3Co4O9 (Co-349) and n-type La0.9Bi0.1NiO3 (Ni-113) bulks were constructed using Ag paste containing p- and n-type oxide powders, prepared from the same bulks, for connection of the p and n legs, respectively. Internal resistance (RI) of the unicouple corrected using Ag paste containing 6 wt. % of the oxide powders is 26.2mΩ at 1073K in air and decreases with increasing temperature. Maximum output power (Pmax), evaluated using the formula Pmax=VO2/4RI, (VO is open-circuit voltage), is 94mW at 1073K (ΔT=500K) and increases with temperature. This value corresponds to a volume power density of 0.66W/cm3.

  14. Does a physiological concentration of taurine increase acute muscle power output, time to fatigue, and recovery in isolated mouse soleus (slow) muscle with or without the presence of caffeine?

    PubMed

    Tallis, Jason; Higgins, Matthew F; Cox, Val M; Duncan, Michael J; James, Rob S

    2014-01-01

    High concentrations of caffeine and taurine are key constituents of many ergogenic supplements ingested acutely to provide legal enhancements in athlete performance. Despite this, there is little evidence supporting the claims for the performance-enhancing effects of acute taurine supplementation. In-vitro models have demonstrated that a caffeine-induced muscle contracture can be further potentiated when combined with a high concentration of taurine. However, the high concentrations of caffeine used in previous research would be toxic for human consumption. Therefore, this study aimed to investigate whether a physiological dose of caffeine and taurine would directly potentiate skeletal muscle performance. Isolated mouse soleus muscle was used to examine the effects of physiological taurine (TAU), caffeine (CAF), and taurine-caffeine combined (TC) on (i) acute muscle power output; (ii) time to fatigue; and (iii) recovery from fatigue, compared with the untreated controls (CON). Treatment with TAU failed to elicit any significant difference in the measured parameters. Treatment with TC resulted in a significant increase in acute muscle power output and faster time to fatigue. The ergogenic benefit posed by TC was not different from the effects of caffeine alone, suggesting no acute ergogenic benefit of taurine.

  15. High Output Piezo/Triboelectric Hybrid Generator

    NASA Astrophysics Data System (ADS)

    Jung, Woo-Suk; Kang, Min-Gyu; Moon, Hi Gyu; Baek, Seung-Hyub; Yoon, Seok-Jin; Wang, Zhong-Lin; Kim, Sang-Woo; Kang, Chong-Yun

    2015-03-01

    Recently, piezoelectric and triboelectric energy harvesting devices have been developed to convert mechanical energy into electrical energy. Especially, it is well known that triboelectric nanogenerators have a simple structure and a high output voltage. However, whereas nanostructures improve the output of triboelectric generators, its fabrication process is still complicated and unfavorable in term of the large scale and long-time durability of the device. Here, we demonstrate a hybrid generator which does not use nanostructure but generates much higher output power by a small mechanical force and integrates piezoelectric generator into triboelectric generator, derived from the simultaneous use of piezoelectric and triboelectric mechanisms in one press-and-release cycle. This hybrid generator combines high piezoelectric output current and triboelectric output voltage, which produces peak output voltage of ~370 V, current density of ~12 μA.cm-2, and average power density of ~4.44 mW.cm-2. The output power successfully lit up 600 LED bulbs by the application of a 0.2 N mechanical force and it charged a 10 μF capacitor to 10 V in 25 s. Beyond energy harvesting, this work will provide new opportunities for developing a small, built-in power source in self-powered electronics such as mobile electronics.

  16. High Output Piezo/Triboelectric Hybrid Generator

    PubMed Central

    Jung, Woo-Suk; Kang, Min-Gyu; Moon, Hi Gyu; Baek, Seung-Hyub; Yoon, Seok-Jin; Wang, Zhong-Lin; Kim, Sang-Woo; Kang, Chong-Yun

    2015-01-01

    Recently, piezoelectric and triboelectric energy harvesting devices have been developed to convert mechanical energy into electrical energy. Especially, it is well known that triboelectric nanogenerators have a simple structure and a high output voltage. However, whereas nanostructures improve the output of triboelectric generators, its fabrication process is still complicated and unfavorable in term of the large scale and long-time durability of the device. Here, we demonstrate a hybrid generator which does not use nanostructure but generates much higher output power by a small mechanical force and integrates piezoelectric generator into triboelectric generator, derived from the simultaneous use of piezoelectric and triboelectric mechanisms in one press-and-release cycle. This hybrid generator combines high piezoelectric output current and triboelectric output voltage, which produces peak output voltage of ~370 V, current density of ~12 μA·cm−2, and average power density of ~4.44 mW·cm−2. The output power successfully lit up 600 LED bulbs by the application of a 0.2 N mechanical force and it charged a 10 μF capacitor to 10 V in 25 s. Beyond energy harvesting, this work will provide new opportunities for developing a small, built-in power source in self-powered electronics such as mobile electronics. PMID:25791299

  17. High output piezo/triboelectric hybrid generator.

    PubMed

    Jung, Woo-Suk; Kang, Min-Gyu; Moon, Hi Gyu; Baek, Seung-Hyub; Yoon, Seok-Jin; Wang, Zhong-Lin; Kim, Sang-Woo; Kang, Chong-Yun

    2015-03-20

    Recently, piezoelectric and triboelectric energy harvesting devices have been developed to convert mechanical energy into electrical energy. Especially, it is well known that triboelectric nanogenerators have a simple structure and a high output voltage. However, whereas nanostructures improve the output of triboelectric generators, its fabrication process is still complicated and unfavorable in term of the large scale and long-time durability of the device. Here, we demonstrate a hybrid generator which does not use nanostructure but generates much higher output power by a small mechanical force and integrates piezoelectric generator into triboelectric generator, derived from the simultaneous use of piezoelectric and triboelectric mechanisms in one press-and-release cycle. This hybrid generator combines high piezoelectric output current and triboelectric output voltage, which produces peak output voltage of ~370 V, current density of ~12 μA · cm(-2), and average power density of ~4.44 mW · cm(-2). The output power successfully lit up 600 LED bulbs by the application of a 0.2 N mechanical force and it charged a 10 μF capacitor to 10 V in 25 s. Beyond energy harvesting, this work will provide new opportunities for developing a small, built-in power source in self-powered electronics such as mobile electronics.

  18. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  19. High-output-power densities from molecular beam epitaxy grown n- and p-type PbTeSe-based thermoelectrics via improved contact metallization

    NASA Astrophysics Data System (ADS)

    Goodhue, W. G.; Reeder, R. E.; Vineis, C. J.; Calawa, S. D.; Dauplaise, H. M.; Vangala, S.; Walsh, M. P.; Harman, T. C.

    2012-05-01

    Electrical power densities of up to 33 W/cm2 and up to 12 W/cm2 were obtained for n-type and p-type PbTeSe-based stand-alone thermoelectric devices, respectively, at modest temperature gradients of ˜200 °C (Tcold = 25 °C). These large power densities were enabled by greatly improving electrical contact resistivities in the thermoelectric devices. Electrical contacts with contact resistivities as low as 3.9 × 10-6 Ω cm2 and 4.0 × 10-6 Ω cm2 for n- and p-type telluride-based- materials, respectively, were developed by investigating several metallization schemes and contact layer doping/alloy combinations, in conjunction with a novel contact application process. This process exposes heated semiconductor surfaces to an atomic hydrogen flux under high vacuum for surface cleaning (oxide and carbon removal), followed immediately by an in-situ electron-beam evaporation of the metal layers.

  20. High-output-power densities from molecular beam epitaxy grown n- and p-type PbTeSe-based thermoelectrics via improved contact metallization

    SciTech Connect

    Goodhue, W. G.; Reeder, R. E.; Vineis, C. J.; Calawa, S. D.; Walsh, M. P.; Harman, T. C.; Dauplaise, H. M.; Vangala, S.

    2012-05-15

    Electrical power densities of up to 33 W/cm{sup 2} and up to 12 W/cm{sup 2} were obtained for n-type and p-type PbTeSe-based stand-alone thermoelectric devices, respectively, at modest temperature gradients of {approx}200 deg. C (T{sub cold}= 25 deg. C). These large power densities were enabled by greatly improving electrical contact resistivities in the thermoelectric devices. Electrical contacts with contact resistivities as low as 3.9 x 10{sup -6}{Omega} cm{sup 2} and 4.0 x 10{sup -6}{Omega} cm{sup 2} for n- and p-type telluride-based- materials, respectively, were developed by investigating several metallization schemes and contact layer doping/alloy combinations, in conjunction with a novel contact application process. This process exposes heated semiconductor surfaces to an atomic hydrogen flux under high vacuum for surface cleaning (oxide and carbon removal), followed immediately by an in-situ electron-beam evaporation of the metal layers.

  1. Examples of the Influence of Turbine Wakes on Downwind Power Output, Surface Wind Speed, Turbulence and Flow Convergence in Large Wind Farms

    NASA Astrophysics Data System (ADS)

    Takle, E. S.; Rajewski, D. A.; Lundquist, J. K.; Doorenbos, R. K.

    2014-12-01

    We have analyzed turbine power and concurrent wind speed, direction and turbulence data from surface 10-m flux towers in a large wind farm for experiments during four summer periods as part of the Crop Wind Energy Experiment (CWEX). We use these data to analyze surface differences for a near-wake (within 2.5 D of the turbine line), far wake (17 D downwind of the turbine line), and double wake (impacted by two lines of turbines about 34 D downwind of the first turbine line) locations. Composites are categorized by10 degree directional intervals and three ambient stability categories as defined by Rajewski et al. (2013): neutral (|z/L|<0.05), stable (z/L>0.05) and unstable (z/L<-0.05), where z is the height of the measurement and L is the Monin-Obhukov length. The dominant influence of the turbines is under stably stratified conditions (i. e., mostly at night). A 25% to 40% increase in mean wind speed occurs when turbine wakes are moving over the downwind station at a distance of 2.8 D and 5.4 D (D = fan diameter). For the double wake condition (flux station leeward of two lines of turbines) we find a daytime (unstable conditions) speed reduction of 20% for southerly wind, but for nighttime (stable conditions) the surface speeds are enhancedby 40-60% for SSW-SW winds. The speedup is reduced as wind directions shift to the west. We interpret these speed variations as due to the rotation of the wake and interaction (or not) with higher speed air above the rotor layer in highly sheared nocturnal low-level jet conditions. From a cluster of flux stations and three profiling lidars deployed within and around a cluster of turbines in 2013 (CWEX-13) we found evidence of mesoscale influences. In particular, surface convergence (wind direction deflection of 10-20 degrees) was observed during periods of low nighttime winds (hub-height winds of 4-6 m/s) with power reduction of 50-75%. This is consistent with a similar range of deflection observed from a line of turbines in CWEX

  2. 20 000 h reliable operation of 100 µm stripe width 650 nm broad area lasers at more than 1.1 W output power

    NASA Astrophysics Data System (ADS)

    Sumpf, Bernd; Fricke, Jörg; Ressel, Peter; Zorn, Martin; Erbert, Götz; Tränkle, Günther

    2011-10-01

    Reliability tests for highly efficient high-power 650 nm broad area diode lasers will be presented. The devices have a 5 nm thick single GaInP quantum well as an active layer, which is embedded in AlGaInP waveguide layers and n-AlInP and p-AlGaAs cladding layers. The devices with a stripe width of 100 µm and a cavity length of 1.5 mm were soldered on diamond submounts and mounted on standard C-mounts for an efficient heat removal. The test was performed at a temperature of 15 °C over a first period of 10 000 h at 1.1 W followed by a second period of 10 000 h at 1.2 W. Based on the aging test and assuming a 60% confidence level, the lower limit of the mean time to failure of 87 000 h was determined for the devices.

  3. A comparison of redox polymer and enzyme co-immobilization on carbon electrodes to provide membrane-less glucose/O2 enzymatic fuel cells with improved power output and stability.

    PubMed

    Rengaraj, Saravanan; Kavanagh, Paul; Leech, Dónal

    2011-12-15

    Glassy carbon and graphite electrodes modified with films of enzyme and osmium redox polymer, cross linked with poly (ethylene glycol) diglycidyl ether, were used for elaboration of a glucose/O(2) enzymatic fuel cell. The redox polymers [Os(4,4'-dimethoxy-2,2'-bipyridine)(2)(polyvinylimidazole)(10)Cl](+) and [Os(4,4'-dichloro-2,2'-bipyridine)(2)(polyvinylimidazole)(10)Cl](+) were selected to facilitate transfer of electrons from the glucose oxidase (GOx) active site to the T1 Cu site of multicopper oxygenases of Trametes hirsuta laccase (ThLacc) and Myrothecium verrucaria bilirubin oxidase (MvBOD). Maximum power density at pH 5.5 of 3.5 μW cm(-2) at a cell voltage of 0.35 V was obtained for an assembled membrane-less fuel cell based on ThLacc on glassy carbon as cathode, in the presence of 0.1 M glucose, 37 °C, with lower power observed at pH 7.4 and 4.5. Replacement of the ThLacc cathode with that of MvBOD produced 10 μW cm(-2) at 0.25 V under pseudo-physiological conditions. Replacement of glassy carbon with graphite as base electrode material resulted in increased redox polymer loading, leading to an increase in power output to 43 μW cm(-2) at 0.25 V under similar conditions. Improved stabilization of biofilms was achieved through covalent anchoring of enzyme and redox polymer on graphite electrodes, derivatized via electrochemical reduction of the diazonium cation generated in situ from p-phenylenediamine. Enzymatic fuel cells using this approach retained 70% power at 24 h, whereas fuel cells prepared without chemical anchoring to graphite retained only 10% of power over the same interval.

  4. Database applicaton for absolute spectrophotometry

    NASA Astrophysics Data System (ADS)

    Bochkov, Valery V.; Shumko, Sergiy

    2002-12-01

    32-bit database application with multidocument interface for Windows has been developed to calculate absolute energy distributions of observed spectra. The original database contains wavelength calibrated observed spectra which had been already passed through apparatus reductions such as flatfielding, background and apparatus noise subtracting. Absolute energy distributions of observed spectra are defined in unique scale by means of registering them simultaneously with artificial intensity standard. Observations of sequence of spectrophotometric standards are used to define absolute energy of the artificial standard. Observations of spectrophotometric standards are used to define optical extinction in selected moments. FFT algorithm implemented in the application allows performing convolution (deconvolution) spectra with user-defined PSF. The object-oriented interface has been created using facilities of C++ libraries. Client/server model with Windows Socket functionality based on TCP/IP protocol is used to develop the application. It supports Dynamic Data Exchange conversation in server mode and uses Microsoft Exchange communication facilities.

  5. Estimating Energy Expenditure using Individualized, Power-Specific Gross Efficiencies.

    PubMed

    Homestead, E P; Peterman, J E; Kane, L A; Contini, E J; Byrnes, W C

    2016-12-01

    Our purpose was to determine if using an individual's power-specific gross efficiency improves the accuracy of estimating energy expenditure from cycling power. 30 subjects performed a graded cycling test to develop 4 gross efficiencies: individual power-specific gross efficiencies, a group mean power-specific gross efficiency, individual fixed gross efficiencies, and a group mean fixed gross efficiency. Energy expenditure was estimated from power using these different gross efficiencies and compared to measured energy expenditure during moderate- and hard-intensity constant-power and 2 variable-power cycling bouts. Estimated energy expenditures using individual or group mean power-specific gross efficiencies were not different from measured energy expenditure across all cycling bouts (p>0.05). To examine the intra-individual variability of the estimates, absolute difference scores (absolute value of estimated minus measured energy expenditure) were compared, where values closer to zero represent more accurate individual estimates. The absolute difference score using individual power-specific gross efficiencies was significantly lower compared to the other gross efficiencies across all cycling bouts (p<0.01). Significant and strong correlations (r≥0.97, p<0.001) were found across all cycling bouts between estimated and measured energy expenditures using individual power-specific gross efficiencies. In conclusion, using an individual's power-specific gross efficiency significantly improves their energy expenditure estimate across different power outputs.

  6. Method and apparatus for two-dimensional absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2004-01-01

    This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.

  7. Absolute classification with unsupervised clustering

    NASA Technical Reports Server (NTRS)

    Jeon, Byeungwoo; Landgrebe, D. A.

    1992-01-01

    An absolute classification algorithm is proposed in which the class definition through training samples or otherwise is required only for a particular class of interest. The absolute classification is considered as a problem of unsupervised clustering when one cluster is known initially. The definitions and statistics of the other classes are automatically developed through the weighted unsupervised clustering procedure, which is developed to keep the cluster corresponding to the class of interest from losing its identity as the class of interest. Once all the classes are developed, a conventional relative classifier such as the maximum-likelihood classifier is used in the classification.

  8. Solar cell system having alternating current output

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1980-01-01

    A monolithic multijunction solar cell was modified by fabricating an integrated circuit inverter on the back of the cell to produce a device capable of generating an alternating current output. In another embodiment, integrated curcuit power conditioning electronics was incorporated in a module containing a solar cell power supply.

  9. On the output of acoustical sources

    NASA Technical Reports Server (NTRS)

    Levine, H.

    1979-01-01

    Contents: (1) a theoretical basis for local power calculation; (2) source radiation in the presence of a half-plane; (3) radiation from a line source near an edge at which a Kutta condition holds; (4) radiation by a point source above a plane independence boundary; and (5) power output of a point source in a uniform flow.

  10. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  11. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  12. Absolute Standards for Climate Measurements

    NASA Astrophysics Data System (ADS)

    Leckey, J.

    2016-10-01

    In a world of changing climate, political uncertainty, and ever-changing budgets, the benefit of measurements traceable to SI standards increases by the day. To truly resolve climate change trends on a decadal time scale, on-orbit measurements need to be referenced to something that is both absolute and unchanging. One such mission is the Climate Absolute Radiance and Refractivity Observatory (CLARREO) that will measure a variety of climate variables with an unprecedented accuracy to definitively quantify climate change. In the CLARREO mission, we will utilize phase change cells in which a material is melted to calibrate the temperature of a blackbody that can then be observed by a spectrometer. A material's melting point is an unchanging physical constant that, through a series of transfers, can ultimately calibrate a spectrometer on an absolute scale. CLARREO consists of two primary instruments: an infrared (IR) spectrometer and a reflected solar (RS) spectrometer. The mission will contain orbiting radiometers with sufficient accuracy to calibrate other space-based instrumentation and thus transferring the absolute traceability. The status of various mission options will be presented.

  13. Governmentally amplified output volatility

    NASA Astrophysics Data System (ADS)

    Funashima, Yoshito

    2016-11-01

    Predominant government behavior is decomposed by frequency into several periodic components: updating cycles of infrastructure, Kuznets cycles, fiscal policy over business cycles, and election cycles. Little is known, however, about the theoretical impact of such cyclical behavior in public finance on output fluctuations. Based on a standard neoclassical growth model, this study intends to examine the frequency at which public investment cycles are relevant to output fluctuations. We find an inverted U-shaped relationship between output volatility and length of cycle in public investment. This implies that periodic behavior in public investment at a certain frequency range can cause aggravated output resonance. Moreover, we present an empirical analysis to test the theoretical implication, using the U.S. data in the period from 1968 to 2015. The empirical results suggest that such resonance phenomena change from low to high frequency.

  14. Statin myalgia is not associated with reduced muscle strength, mass or protein turnover in older male volunteers, but is allied with a slowing of time to peak power output, insulin resistance and differential muscle mRNA expression

    PubMed Central

    Mallinson, Joanne E.; Marimuthu, Kanagaraj; Murton, Andrew; Selby, Anna; Smith, Kenneth; Constantin‐Teodosiu, Dumitru; Rennie, Michael J.

    2015-01-01

    Key points Statins cause muscle‐specific side effects, most commonly muscle aches/weakness (myalgia), particularly in older people. Furthermore, evidence has linked statin use to increased risk of type 2 diabetes. However, the mechanisms involved are unknown.This is the first study to measure muscle protein turnover rates and insulin sensitivity in statin myalgic volunteers and age‐matched, non‐statin users under controlled fasting and fed conditions using gold standard methods.We demonstrate in older people that chronic statin myalgia is not associated with deficits in muscle strength and lean mass or the dysregulation of muscle protein turnover compared to non‐statin users. Furthermore, there were no between‐group differences in blood or muscle inflammatory markers.Statin users did, however, show blunting of muscle power output at the onset of dynamic exercise, increased abdominal adiposity, whole body and leg insulin resistance, and clear differential expression of muscle genes linked to mitochondrial dysfunction and apoptosis, which warrant further investigation. Abstract Statins are associated with muscle myalgia and myopathy, which probably reduce habitual physical activity. This is particularly relevant to older people who are less active, sarcopaenic and at increased risk of statin myalgia. We hypothesised that statin myalgia would be allied to impaired strength and work capacity in older people, and determined whether differences aligned with divergences in lean mass, protein turnover, insulin sensitivity and the molecular regulation of these processes. Knee extensor strength and work output during 30 maximal isokinetic contractions were assessed in healthy male volunteers, nine with no statin use (control 70.4 ± 0.7 years) and nine with statin myalgia (71.5 ± 0.9 years). Whole body and leg glucose disposal, muscle myofibrillar protein synthesis (MPS) and leg protein breakdown (LPB) were measured during fasting (≈5 mU l−1 insulin

  15. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  16. Physics of negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Abraham, Eitan; Penrose, Oliver

    2017-01-01

    Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.

  17. PV output smoothing with energy storage.

    SciTech Connect

    Ellis, Abraham; Schoenwald, David Alan

    2012-03-01

    This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

  18. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems

    NASA Astrophysics Data System (ADS)

    Johnston, Mark D.; Oliver, Bryan V.; Droemer, Darryl W.; Frogget, Brent; Crain, Marlon D.; Maron, Yitzhak

    2012-08-01

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 μm) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ("hotspot") was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm2/steradian/nm). Error analysis shows this method to be accurate to within +/- 20%, which represents a high level of accuracy for this type of measurement.

  19. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems.

    PubMed

    Johnston, Mark D; Oliver, Bryan V; Droemer, Darryl W; Frogget, Brent; Crain, Marlon D; Maron, Yitzhak

    2012-08-01

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 μm) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ("hotspot") was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm(2)/steradian/nm). Error analysis shows this method to be accurate to within +∕- 20%, which represents a high level of accuracy for this type of measurement.

  20. A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source

    NASA Astrophysics Data System (ADS)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S.

    2013-09-01

    An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k = 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k = 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody.

  1. A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source

    SciTech Connect

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S.

    2013-09-11

    An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k= 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k= 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody.

  2. Diodes stabilize LED output

    NASA Technical Reports Server (NTRS)

    Deters, R. A.

    1977-01-01

    Small-signal diodes are placed in series with light-emitting diodes (LED's) to stabilize LED output against temperature fluctuations. Simple inexpensive method compensates for thermal fluctuations over a broad temperature range. Requiring few components, technique is particularly useful where circuit-board space is limited.

  3. Absolute calibration of optical tweezers

    SciTech Connect

    Viana, N.B.; Mazolli, A.; Maia Neto, P.A.; Nussenzveig, H.M.; Rocha, M.S.; Mesquita, O.N.

    2006-03-27

    As a step toward absolute calibration of optical tweezers, a first-principles theory of trapping forces with no adjustable parameters, corrected for spherical aberration, is experimentally tested. Employing two very different setups, we find generally very good agreement for the transverse trap stiffness as a function of microsphere radius for a broad range of radii, including the values employed in practice, and at different sample chamber depths. The domain of validity of the WKB ('geometrical optics') approximation to the theory is verified. Theoretical predictions for the trapping threshold, peak position, depth variation, multiple equilibria, and 'jump' effects are also confirmed.

  4. Climate Model Output Rewriter

    SciTech Connect

    Taylor, K. E.; Doutriaux, C.

    2004-06-21

    CMOR comprises a set of FORTRAN 90 dunctions that can be used to produce CF-compliant netCDF files. The structure of the files created by CMOR and the metadata they contain fulfill the requirements of many of the climate community’s standard model experiments (which are referred to here as "MIPS", which stands for "model intercomparison project", including, for example, AMIP, CMIP, CFMIP, PMIP, APE, and IPCC scenario runs), CMOR was not designed to serve as an all-purpose wfiter of CF-compliant netCDF files, but simply to reduce the effort required to prepare and manage MIP data. Although MIPs encourage systematic analysis of results across models, this is only easy to do if the model output is written in a common format with files structured similarly and with sufficient metadata uniformly stored according to a common standard. Individual modeling groups store their data in different ways. but if a group can read its own data with FORTRAN, then it should easily be able to transform the data, using CMOR, into the common format required by the MIPs, The adoption of CMOR as a standard code for exchanging climate data will facilitate participation in MIPs because after learning how to satisfy the output requirements of one MIP, it will be easy to prepare output for the other MIPs.

  5. High-peak-power single-oscillator actively Q-switched mode-locked Tm3+-doped fiber laser and its application for high-average output power mid-IR supercontinuum generation in a ZBLAN fiber.

    PubMed

    Kneis, Christian; Donelan, Brenda; Manek-Hönninger, Inka; Robin, Thierry; Cadier, Benoît; Eichhorn, Marc; Kieleck, Christelle

    2016-06-01

    A single-oscillator actively Q-switched mode-locked (QML) thulium-doped silica fiber laser is presented and used to pump a ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fiber for mid-infrared (mid-IR) supercontinuum (SC) generation. The fiber laser provided high-peak-power levels directly from the oscillator delivering single mode-locked pulse energies up to 48 μJ, being 2-4 orders of magnitude higher than conventional continuous wave mode-locked lasers. By pumping a ZBLAN fiber specially designed for high-output-power SC generation, 7.8 W have been achieved in all spectral bands with a spectrum extending to 4.2 μm.

  6. Characterization of high power flashlamps and application to Nd:glass laser pumping

    SciTech Connect

    Powell, H.T.; Erlandson, A.C.; Jancaitis, K.S.

    1986-01-17

    Detailed spectral and temporal measurements of the output radiation from Xe flashlamps are reported together with their use in predicting the pumping efficiency of Nd-doped laser glass. We have made absolute spectral-intensity measurements for 0.5, 1.5, and 4.2-cm-bore flashlamps for input powers ranging from 5 to 90 kW/cm/sup 2/ and pulselengths of 600 ..mu..s. Under quasi-stationary conditions these flashlamps emit essentially identical spectra when excited at equal input power per unit-area of the bore. This behavior is characteristic of an optically-thick radiator although it is not completely clear why flashlamps should behave this way. A simple model is also described which accounts for the transient response of flashlamps by characterizing the output spectra and radiation efficiencies in terms of the radiant output power rather than the electrical input power. 23 refs., 16 figs.

  7. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < -1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  8. Compact Relativistic Magnetron with Output Mode Converter

    NASA Astrophysics Data System (ADS)

    Andreev, Andrey; Fuks, Mikhail; Schamiloglu, Edl

    2003-10-01

    We consider a relativistic magnetron in which all of the resonators of the anode block are smoothly continued onto a conical antenna up to the radius corresponding to the cutoff frequency of the radiated wave in a cylindrical waveguide. Such a magnetron is capable of high output power, is compact, has a high resistance to microwave breakdown, is able to work with extremely high currents, and has the possibility of forming desirable output radiation patterns. The magnetic field can be provided by a small solenoid over the resonant system, which is a much smaller volume than is required for the Helmholtz coils used in traditional relativistic magnetrons. The maximum size of this magnetron is the aperture of the horn antenna. The unique aspect of such a design is the possibility of using the horn antenna for conversion of the operating mode to lower order modes, including the TE_11 mode, which is radiated as a narrow wave beam. For a magnetron operating in π-mode, the mode converter comprises a continuation of the resonantor blocks onto the horn for those resonators that correspond to the symmetry of the output mode. For example, in order to provide Gaussian mode output only two diametrically opposite resonators of even-numbered resonators must be continued onto the horn. In this case the aperture of the horn antenna can be close to the cut-off diameter for the TE_11 mode, and the output power is limited only by breakdown of the output window. In this presentation results of preliminary calculations of the magnetron with output mode converters are presented.

  9. A caloric output meter

    NASA Astrophysics Data System (ADS)

    Vanas, R.

    Calorimeter for a klystron test facility was developed. The klystron high frequency power is dumped in a water cooled dummy load. Rise of water temperature and quantity of flowed water are converted into frequencies by a 2 Gyr measuring instrument. A microcomputer controls input and readout, on which the processed data are digitally displayed every 10 sec.

  10. Least absolute value state estimation with equality and inequality constraints

    SciTech Connect

    Abur, A. ); Celik, M.K. )

    1993-05-01

    A least absolute value (LAV) state estimator, which can handle both equality and inequality constraints on measurements, is developed. It is shown that, the use of equality constraints will actually reduce the number of Simplex iterations and thus the overall cpu time. The constraints can be used to enhance the reliability of the state estimator without affecting the computational efficiency of the estimator. The developed estimation program is tested using 14 through 1,000 bus power systems.

  11. Quantum Cloning for Absolute Radiometry

    SciTech Connect

    Sanguinetti, Bruno; Pomarico, Enrico; Sekatski, Pavel; Zbinden, Hugo; Gisin, Nicolas

    2010-08-20

    In the quantum regime information can be copied with only a finite fidelity. This fidelity gradually increases to 1 as the system becomes classical. In this Letter we show how this fact can be used to directly measure the amount of radiated power. We demonstrate how these principles can be used to build a practical primary standard.

  12. A Technique to Measure Energy Partitioning and Absolute Gas Pressures of Strombolian Explosions Using Doppler Radar at Erebus Volcano

    NASA Astrophysics Data System (ADS)

    Gerst, A.; Hort, M.; Kyle, P. R.; Voege, M.

    2008-12-01

    In 2005/06 we deployed three 24GHz (K-Band) continuous wave Doppler radar instruments at the crater rim of Erebus volcano in Antarctica. At the time there was a ~40 m wide, ~1000°C hot convecting phonolite lava lake, which was the source of ~0-6 Strombolian gas bubble explosions per day. We measured the velocities of ~50 explosions using a sample rate of 1-15 Hz. Data were downloaded in real-time through a wireless network. The measurements provide new insights into the still largely unknown mechanism of Strombolian eruptions, and help improve existing eruption models. We present a technique for a quasi in-situ measurement of the absolute pressure inside an eruption gas bubble. Pressures were derived using a simple eruption model and measured high resolution bubble surface velocities during explosions. Additionally, this technique allows us to present a comprehensive energy budget of a volcanic explosion as a time series of all important energy terms (i.e. potential, kinetic, dissipative, infrasonic, surface, seismic and thermal energy output). The absolute gas pressure inside rising expanding gas bubbles rapidly drops from ~3-10 atm (at the time when the lake starts to bulge) to ~1 atm before the bubble bursts, which usually occurs at radii of ~15-20m. These pressures are significantly lower than previously assumed for such explosions. The according internal energy of the gas agrees well with the observed total energy output. The results show that large explosions released about 109 to 1010 J each (equivalent to about 200-2000 kg of TNT), at a peak discharge rate frequently exceeding 109 W (the power output of a typical nuclear power plant). This dynamic output is mainly controlled by the kinetic and potential energy of the exploding magma shell, while other energy types were found to be much smaller (with the exception of thermal energy). Remarkably, most explosions at Erebus show two distinct surface acceleration peaks separated by ~0.3 seconds. This suggests

  13. Mammalian clock output mechanisms.

    PubMed

    Kalsbeek, Andries; Yi, Chun-Xia; Cailotto, Cathy; la Fleur, Susanne E; Fliers, Eric; Buijs, Ruud M

    2011-06-30

    In mammals many behaviours (e.g. sleep-wake, feeding) as well as physiological (e.g. body temperature, blood pressure) and endocrine (e.g. plasma corticosterone concentration) events display a 24 h rhythmicity. These 24 h rhythms are induced by a timing system that is composed of central and peripheral clocks. The highly co-ordinated output of the hypothalamic biological clock not only controls the daily rhythm in sleep-wake (or feeding-fasting) behaviour, but also exerts a direct control over many aspects of hormone release and energy metabolism. First, we present the anatomical connections used by the mammalian biological clock to enforce its endogenous rhythmicity on the rest of the body, especially the neuro-endocrine and energy homoeostatic systems. Subsequently, we review a number of physiological experiments investigating the functional significance of this neuro-anatomical substrate. Together, this overview of experimental data reveals a highly specialized organization of connections between the hypothalamic pacemaker and neuro-endocrine system as well as the pre-sympathetic and pre-parasympathetic branches of the autonomic nervous system.

  14. Power supply

    DOEpatents

    Hart, Edward J.; Leeman, James E.; MacDougall, Hugh R.; Marron, John J.; Smith, Calvin C.

    1976-01-01

    An electric power supply employs a striking means to initiate ferroelectric elements which provide electrical energy output which subsequently initiates an explosive charge which initiates a second ferroelectric current generator to deliver current to the coil of a magnetic field current generator, creating a magnetic field around the coil. Continued detonation effects compression of the magnetic field and subsequent generation and delivery of a large output current to appropriate output loads.

  15. MESAFace, a graphical interface to analyze the MESA output.

    PubMed

    Giannotti, M; Wise, M; Mohammed, A

    2013-04-01

    MESA (Modules for Experiments in Stellar Astrophysics) has become very popular among astrophysicists as a powerful and reliable code to simulate stellar evolution. Analyzing the output data thoroughly may, however, present some challenges and be rather time-consuming. Here we describe MESAFace, a graphical and dynamical interface which provides an intuitive, efficient and quick way to analyze the MESA output.

  16. Methods and apparatus for determining cardiac output

    NASA Technical Reports Server (NTRS)

    Cohen, Richard J. (Inventor); Mukkamala, Ramakrishna (Inventor); Sherman, Derin A. (Inventor)

    2010-01-01

    The present invention provides methods and apparatus for determining a dynamical property of the systemic or pulmonary arterial tree using long time scale information, i.e., information obtained from measurements over time scales greater than a single cardiac cycle. In one aspect, the invention provides a method and apparatus for monitoring cardiac output (CO) from a single blood pressure signal measurement obtained at any site in the systemic or pulmonary arterial tree or from any related measurement including, for example, fingertip photoplethysmography.According to the method the time constant of the arterial tree, defined to be the product of the total peripheral resistance (TPR) and the nearly constant arterial compliance, is determined by analyzing the long time scale variations (greater than a single cardiac cycle) in any of these blood pressure signals. Then, according to Ohm's law, a value proportional to CO may be determined from the ratio of the blood pressure signal to the estimated time constant. The proportional CO values derived from this method may be calibrated to absolute CO, if desired, with a single, absolute measure of CO (e.g., thermodilution). The present invention may be applied to invasive radial arterial blood pressure or pulmonary arterial blood pressure signals which are routinely measured in intensive care units and surgical suites or to noninvasively measured peripheral arterial blood pressure signals or related noninvasively measured signals in order to facilitate the clinical monitoring of CO as well as TPR.

  17. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  18. ON A SUFFICIENT CONDITION FOR ABSOLUTE CONTINUITY.

    DTIC Science & Technology

    The formulation of a condition which yields absolute continuity when combined with continuity and bounded variation is the problem considered in the...Briefly, the formulation is achieved through a discussion which develops a proof by contradiction of a sufficiently theorem for absolute continuity which uses in its hypothesis the condition of continuity and bounded variation .

  19. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  20. Monolithically integrated absolute frequency comb laser system

    SciTech Connect

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.