Science.gov

Sample records for absolute pressure gauge

  1. Excitation Location and Seasonal Variation of Transoceanic Infragravity Waves Observed at an Absolute Pressure Gauge Array

    NASA Astrophysics Data System (ADS)

    Tonegawa, T.; Fukao, Y.; Shiobara, H.; Sugioka, H.; Ito, A.; Yamashita, M.

    2018-01-01

    An array of 10 absolute pressure gauges (APGs) deployed in deep water 50 km east of Aogashima, an island in southern Japan, observed several isolated signals in the infragravity wave (IGW) frequency band (0.002-0.03 Hz) during boreal summer, whereas relatively high IGW energy persisted during boreal winter. The isolated IGW shows dispersion with a delay time of 4-5 days as a function of frequency. Here we estimate the excitation locations of IGWs for the two seasons with estimated incoming direction of IGW, calculation of transoceanic IGW trajectories and propagation times, and spatiotemporal variations of significant wave heights from WAVEWATCH III. In boreal summer, the isolated IGWs are primarily caused by IGW energies excited at the shoreline of South America, based on the following three observations: IGWs observed at the array originated from the east: the easterly ray path from the array reaches South America: and an event-like IGWs were observed at the array when a storm approaches eastward to the shoreline of South America, in which the observed delay time of 4-5 days was also supported by the frequency-dependent calculation of IGW propagation times. In boreal winter, the incessant IGWs consist of transoceanic IGW energies leaked from the shoreline, primarily from North America, and secondly from South America and the western Aleutian Islands.

  2. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  3. Final report on EURAMET.M.P-K4.2010: Key and supplementary comparison of national pressure standards in the range 1 Pa to 15 kPa of absolute and gauge pressure

    NASA Astrophysics Data System (ADS)

    Krajíček, Zdeněk; Bergoglio, Mercede; Jousten, Karl; Otal, Pierre; Sabuga, Wladimir; Saxholm, Sari; Pražák, Dominik; Vičar, Martin

    2014-01-01

    This report describes a EURAMET comparison of five European National Metrology Institutes in low gauge and absolute pressure in gas (nitrogen), denoted as EURAMET.M.P-K4.2010. Its main intention is to state equivalence of the pressure standards, in particular those based on the technology of force-balanced piston gauges such as e.g. FRS by Furness Controls, UK and FPG8601 by DHI-Fluke, USA. It covers the range from 1 Pa to 15 kPa, both gauge and absolute. The comparison in absolute mode serves as a EURAMET Key Comparison which can be linked to CCM.P-K4 and CCM.P-K2 via PTB. The comparison in gauge mode is a supplementary comparison. The comparison was carried out from September 2008 till October 2012. The participating laboratories were the following: CMI, INRIM, LNE, MIKES, PTB-Berlin (absolute pressure 1 kPa and below) and PTB-Braunschweig (absolute pressure 1 kPa and above and gauge pressure). CMI was the pilot laboratory and provided a transfer standard for the comparison. This transfer standard was also the laboratory standard of CMI at the same time, which resulted in a unique and logistically difficult star comparison. Both in gauge and absolute pressures all the participating institutes successfully proved their equivalence with respect to the reference value and all also proved mutual bilateral equivalences in all the points. All the participating laboratories are also equivalent with the reference values of CCM.P-K4 and CCM.P-K2 in the relevant points. The comparison also proved the ability of FPG8601 to serve as a transfer standard. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  4. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  5. Convertible socket for pressure gauge

    SciTech Connect

    Bissell, R.D.

    1990-01-01

    This patent describes a pressure gauge having a case in which is disposed a Bourdon tube and a base socket connected to the Bourdon tube for placing the tube in pressure communication with a fluid pressure source. Base socket has a rearward face and a bottom face with respect to the gauge adjacent openings defined through the case and an internal passage communication with the tube. It includes means for connecting a source of fluid pressure to the socket selectively through one of the case openings to the bottom face or the rearward face.

  6. SENSITIVE PRESSURE GAUGE

    DOEpatents

    Ball, W.P.

    1961-01-01

    An electron multiplier device is described. It has a plurality of dynodes between an anode and cathode arranged to measure pressure, temperature, or other environmental physical conditions that proportionately iinfuences the quantity of gas molecules between the dynodes. The output current of the device is influenced by the reduction in electron multiplication at the dynodes due to energy reducing collisions of the electrons with the gas molecules between the dynodes. More particularly, the current is inversely proportional to the quantity of gas molecules, viz., the gas pressure. The device is, hence, extremely sensitive to low pressures.

  7. Self-modulating pressure gauge

    DOEpatents

    Edwards, D. Jr.; Lanni, C.P.

    1979-08-07

    An ion gauge is disclosed having a reduced x-ray limit and means for measuring that limit. The gauge comprises an ion gauge of the Bayard-Alpert type having a short collector and having means for varying the grid-collector voltage. The x-ray limit (i.e. the collector current resulting from x-rays striking the collector) may then be determined by the formula: I/sub x/ = ..cap alpha..I/sub l/ - I/sub h//..cap alpha.. - l where: I/sub x/ = x-ray limit, I/sub l/ and I/sub h/ = the collector current at the lower and higher grid voltage respectively; and, ..cap alpha.. = the ratio of the collector current due to positive ions at the higher voltage to that at the lower voltage.

  8. Elevation correction factor for absolute pressure measurements

    NASA Technical Reports Server (NTRS)

    Panek, Joseph W.; Sorrells, Mark R.

    1996-01-01

    With the arrival of highly accurate multi-port pressure measurement systems, conditions that previously did not affect overall system accuracy must now be scrutinized closely. Errors caused by elevation differences between pressure sensing elements and model pressure taps can be quantified and corrected. With multi-port pressure measurement systems, the sensing elements are connected to pressure taps that may be many feet away. The measurement system may be at a different elevation than the pressure taps due to laboratory space or test article constraints. This difference produces a pressure gradient that is inversely proportional to height within the interface tube. The pressure at the bottom of the tube will be higher than the pressure at the top due to the weight of the tube's column of air. Tubes with higher pressures will exhibit larger absolute errors due to the higher air density. The above effect is well documented but has generally been taken into account with large elevations only. With error analysis techniques, the loss in accuracy from elevation can be easily quantified. Correction factors can be applied to maintain the high accuracies of new pressure measurement systems.

  9. Nanoshells as a high-pressure gauge

    NASA Astrophysics Data System (ADS)

    Tempere, Jacques; van den Broeck, Nick; Putteneers, Katrijn; Silvera, Isaac

    2012-02-01

    Nanoshells, consisting of multiple spherical layers, have an extensive list of applications, usually performing the function of a probe. We add a new application to this list in the form of a high-pressure gauge in a Diamond Anvil Cell (DAC). In a DAC, where high pressures are reached by pressing two diamonds together, existing gauges fail at higher pressures because of calibration difficulties and obscuring effects in the diamonds. The nanoshell gauge does not face this issue since its optical spectrum can be engineered by altering the thickness of its layers. Furthermore their properties are measured by broad band optical transmission spectroscopy leading to a very large signal-to-noise ratio even in the multi-megabar pressure regime where ruby measurements become challenging. Theoretical calculations based on the Maxwell equations in a spherical geometry combined with the Vinet equation of state show that a three-layer geometry (SiO2-Au-SiO2) indeed has a measurable pressure-dependent optical response desirable for gauges.

  10. 21 CFR 870.4310 - Cardiopulmonary bypass coronary pressure gauge.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Cardiopulmonary bypass coronary pressure gauge. (a) Identification. A cardiopulmonary bypass coronary pressure gauge is a device used in cardiopulmonary bypass surgery to measure the pressure of the blood perfusing... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cardiopulmonary bypass coronary pressure gauge...

  11. 21 CFR 870.4310 - Cardiopulmonary bypass coronary pressure gauge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Cardiopulmonary bypass coronary pressure gauge. (a) Identification. A cardiopulmonary bypass coronary pressure gauge is a device used in cardiopulmonary bypass surgery to measure the pressure of the blood perfusing... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass coronary pressure gauge...

  12. 21 CFR 870.4310 - Cardiopulmonary bypass coronary pressure gauge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Cardiopulmonary bypass coronary pressure gauge. (a) Identification. A cardiopulmonary bypass coronary pressure gauge is a device used in cardiopulmonary bypass surgery to measure the pressure of the blood perfusing... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cardiopulmonary bypass coronary pressure gauge...

  13. 21 CFR 870.4310 - Cardiopulmonary bypass coronary pressure gauge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Cardiopulmonary bypass coronary pressure gauge. (a) Identification. A cardiopulmonary bypass coronary pressure gauge is a device used in cardiopulmonary bypass surgery to measure the pressure of the blood perfusing... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass coronary pressure gauge...

  14. 21 CFR 870.4310 - Cardiopulmonary bypass coronary pressure gauge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Cardiopulmonary bypass coronary pressure gauge. (a) Identification. A cardiopulmonary bypass coronary pressure gauge is a device used in cardiopulmonary bypass surgery to measure the pressure of the blood perfusing... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiopulmonary bypass coronary pressure gauge...

  15. 46 CFR 153.333 - Cargo pump discharge pressure gauge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pump discharge pressure gauge. 153.333 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Pumprooms § 153.333 Cargo pump discharge pressure gauge. Each cargo pump within a pump-room must...

  16. 46 CFR 153.333 - Cargo pump discharge pressure gauge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo pump discharge pressure gauge. 153.333 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Pumprooms § 153.333 Cargo pump discharge pressure gauge. Each cargo pump within a pump-room must...

  17. 46 CFR 153.333 - Cargo pump discharge pressure gauge.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo pump discharge pressure gauge. 153.333 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Pumprooms § 153.333 Cargo pump discharge pressure gauge. Each cargo pump within a pump-room must...

  18. 46 CFR 153.333 - Cargo pump discharge pressure gauge.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo pump discharge pressure gauge. 153.333 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Pumprooms § 153.333 Cargo pump discharge pressure gauge. Each cargo pump within a pump-room must...

  19. 46 CFR 153.333 - Cargo pump discharge pressure gauge.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo pump discharge pressure gauge. 153.333 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Pumprooms § 153.333 Cargo pump discharge pressure gauge. Each cargo pump within a pump-room must...

  20. Comparison in gas media (absolute and gauge mode)in the range from 25 kPa TO 200 kPa (EURAMET.M.P-K8)

    NASA Astrophysics Data System (ADS)

    Wuethrich, C.; Alisic, S.; Altintas, A.; van Andel, I.; C, In­Mook; Eltawil, A. A.; Farár, P.; Hetherington, P.; Koçaş, I.; Lefkopoulos, A.; Otal, P.; Prazak, D.; Sabuga, W.; Salustiano, R.; Sandu, I.; Sardi, M.; Saxholm, S.; Setina, J.; Spohr, I.; Steindl, D.; Testa, N.; Vámossy, C.; Grgec Bermanec, L.

    2016-01-01

    It was decided at the EURAMET TC-M meeting in Torino in 2006 to realize a comparison in gauge and absolute pressure up to 200 kPa as it would allow a link to the CCM.P-K6 and CCM.P-K2 comparisons to be established. This project interested a lot of laboratories from the beginning with 23 participants, 22 of which have submitted results. The circulation of the transfer standard began in July 2009 and lasted until January 2012. No major problems occurred during the transport. The measurand of the comparison is the effective area of a piston-cylinder determined in gauge and absolute pressure from 25 kPa to 200 kPa with pressure steps of 25 kPa. The transfer standard is a gas lubricated tungsten carbide piston-cylinder with an effective area of ~9.8 cm2, fabricated by DH Instruments and compatible with a PG-7601 pressure balance. Some participants used their own pressure balance while a pressure balance with a reference vacuum sensor has been circulated for the participants not equipped with this system. One participant (SMU, Slovakia) has never provided the measurement results and another participant (FORCE Technology, Denmark) submitted a revised set of measurement results after the pilot laboratory mentioned that the equivalence was not met. After the determination of the reference value, all the 22 participants who delivered the results in gauge pressure demonstrated equivalence respective to the reference value on most of the range. In absolute pressure the equivalence is demonstrated, for all nominal pressures, by all 17 participants who submitted results. The comparison is linked to the CCM.P-K6 for gauge pressure and to CCM.P-K2 for absolute pressure. The link does not strongly affect the equivalence of the results and an excellent degree of equivalence is achieved in gauge and absolute pressure. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb

  1. 31. DETAIL OF PRESSURE GAUGE AND ASSOCIATED VALVES AND TUBING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. DETAIL OF PRESSURE GAUGE AND ASSOCIATED VALVES AND TUBING FOR STRETCH SLING CYLINDER. GAUGE LOCATED IN SOUTHWEST CORNER OF SLC-3W MST STATION 78. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. Non-Invasive Method of Determining Absolute Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor); Hargens, Alan E. (Inventor)

    2004-01-01

    A method is presented for determining absolute intracranial pressure (ICP) in a patient. Skull expansion is monitored while changes in ICP are induced. The patient's blood pressure is measured when skull expansion is approximately zero. The measured blood pressure is indicative of a reference ICP value. Subsequently, the method causes a known change in ICP and measured the change in skull expansion associated therewith. The absolute ICP is a function of the reference ICP value, the known change in ICP and its associated change in skull expansion; and a measured change in skull expansion.

  3. Detail view of gauges that record pressure of gas coming ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of gauges that record pressure of gas coming into the engine house. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  4. Detail view of gauges that record pressure of gas leaving ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of gauges that record pressure of gas leaving the engine house. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  5. 74. LIQUID NITROGEN TANK, REGULATOR VALVES, AND PRESSURE GAUGES FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. LIQUID NITROGEN TANK, REGULATOR VALVES, AND PRESSURE GAUGES FOR LIQUID NITROGEN PUMPING STATION - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  6. 32. DETAIL OF PRESSURE GAUGE INSTALLED ON BUNKER PERISCOPE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. DETAIL OF PRESSURE GAUGE INSTALLED ON BUNKER PERISCOPE IN 1991 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. Wireless digital pressure gauge based on nanomaterials

    NASA Astrophysics Data System (ADS)

    Abay, Dilyara; Otarbay, Zhuldyz; Token, Madengul; Guseinov, Nazim; Muratov, Mukhit; Gabdullin, Maratbek; Ismailov, Daniyar

    2018-03-01

    In the article studies the efficiency of using nanostructured nickel copper films as thin films for bending sensors. Thin films of nickel-copper alloy were deposited using magnetron sputtering technology followed by the appropriate masks. Scanning electron microscopy (SEM) and energy- dispersive X-ray spectroscopy (EDS) techniques were used to examine structure and surface of the Ni Cu coatings. The results of the bending sensors result indicated that the Ni Cu thin film strain gauge showed an excellent sensitive.

  8. A Gas Pressure Scale Based on Primary Standard Piston Gauges

    PubMed Central

    Olson, Douglas A.; Driver, R. Greg; Bowers, Walter J.

    2010-01-01

    The National Institute of Standards and Technology (NIST) has redefined its gas pressure scale, up to 17 MPa, based on two primary standard piston gauges. The primary standard piston gauges are 35.8 mm in diameter and operate from 20 kPa to 1 MPa. Ten secondary standard piston gauges, two each of five series of the Ruska 2465 type, with successively smaller diameters form the scale extending up to 17 MPa. Six of the piston gauges were directly compared to the primary standards to determine their effective area and expanded (k = 2) uncertainty. Two piston gauges operating to 7 MPa were compared to the 1.4 MPa gauges, and two piston gauges operating to 17 MPa were compared to the 7 MPa gauges. Distortion in the 7 MPa piston gauges was determined by comparing those gauges to a DH Instruments PG7601 type piston gauge, whose distortion was calculated using elasticity theory. The relative standard uncertainties achieved by the primary standards range from 3.0 × 10−6 to 3.2 × 10−6. The relative standard uncertainty of the secondary standards is as low as 4.2 × 10−6 at 300 kPa. The effective areas and uncertainties were validated by comparison to standards of other National Metrology Institutes (NMIs). Results show agreement in all cases to better than the expanded (k = 2) uncertainty of the difference between NIST and the other NMIs, and in most cases to better than the standard (k = 1) uncertainty of the difference. PMID:27134793

  9. Pressure Fluctuation Characteristics of Narrow Gauge Train Running Through Tunnel

    NASA Astrophysics Data System (ADS)

    Suzuki, Masahiro; Sakuma, Yutaka

    Pressure fluctuations on the sides of narrow (1067 mm) gauge trains running in tunnels are measured for the first time to investigate the aerodynamic force acting on the trains. The present measurements are compared with earlier measurements obtained with the Shinkansen trains. The results are as follows: (1) The aerodynamic force, which stems from pressure fluctuations on the sides of cars, puts the energy into the vibration of the car body running through a tunnel. (2) While the pressure fluctuations appear only on one of the two sides of the trains running in double-track tunnels, the fluctuations in opposite phase on both sides in single-track tunnels. (3) The on-track test data of the narrow gauge trains show the same tendency as those of the Shinkansen trains, although it is suggested that the pressure fluctuations develop faster along the narrow gauge trains than the Shinkansen trains.

  10. 21 CFR 868.2610 - Gas pressure gauge.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... to measure gas pressure in a medical gas delivery system. (b) Classification. Class I (general... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gas pressure gauge. 868.2610 Section 868.2610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL...

  11. 21 CFR 868.2610 - Gas pressure gauge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to measure gas pressure in a medical gas delivery system. (b) Classification. Class I (general... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas pressure gauge. 868.2610 Section 868.2610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL...

  12. 21 CFR 868.2610 - Gas pressure gauge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... to measure gas pressure in a medical gas delivery system. (b) Classification. Class I (general... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gas pressure gauge. 868.2610 Section 868.2610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL...

  13. 21 CFR 868.2610 - Gas pressure gauge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... to measure gas pressure in a medical gas delivery system. (b) Classification. Class I (general... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gas pressure gauge. 868.2610 Section 868.2610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL...

  14. 21 CFR 868.2610 - Gas pressure gauge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... to measure gas pressure in a medical gas delivery system. (b) Classification. Class I (general... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gas pressure gauge. 868.2610 Section 868.2610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL...

  15. Bio-Inspired Stretchable Absolute Pressure Sensor Network

    PubMed Central

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X.

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  16. Behaviour of the ASDEX pressure gauge at high neutral gas pressure and applications for ITER

    SciTech Connect

    Scarabosio, A.; Haas, G.

    2008-03-12

    The ASDEX Pressure Gauge is, at present, the main candidate for in-vessel neutral pressure measurement in ITER. Although the APG output is found to saturate at around 15 Pa, below the ITER requirement of 20 Pa. We show, here, that with small modifications of the gauge geometry and potentials settings we can achieve satisfactory behaviour up to 30 Pa at 6 T.

  17. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...

  18. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...

  19. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...

  20. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...

  1. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...

  2. 73. DETAIL OF LIQUID OXYGEN STORAGE PRESSURE GAUGE IN UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. DETAIL OF LIQUID OXYGEN STORAGE PRESSURE GAUGE IN UPPER LEFT CORNER OF WEST SIDE OF CENTER SKID IN CA-133-1-C-69 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. 80. DETAIL OF TYPICAL PRESSURE GAUGE IN NITROGEN AND HELIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. DETAIL OF TYPICAL PRESSURE GAUGE IN NITROGEN AND HELIUM STORAGE AND TRANSFER CONTROL SKIDS ON NORTH END OF SLC-3W FUEL APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. 70. DETAIL OF OXYGEN TRANSFER PRESSURE GAUGE IN UPPER LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. DETAIL OF OXYGEN TRANSFER PRESSURE GAUGE IN UPPER LEFT CORNER OF SKID ON RIGHT IN CA-133-1-C-69 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. Pressure Testing of a Minimum Gauge PRSEUS Panel

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew J.; Rouse, Marshall; Linton, Kim A.; Li, Victor P.

    2011-01-01

    Advanced aircraft configurations that have been developed to increase fuel efficiency require advanced, novel structural concepts capable of handling the unique load conditions that arise. One such concept is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) developed by the Boeing Company. The PRSEUS concept is being investigated by NASA s Environmentally Responsible Aviation (ERA) Program for use in a hybrid-wing body (HWB) aircraft. This paper summarizes the analysis and test of a PRSEUS panel subjected to internal pressure, the first such pressure test for this structural concept. The pressure panel used minimum gauge skin, with stringer and frame configurations consistent with previous PRSEUS tests. Analysis indicated that for the minimum gauge skin panel, the stringer locations exhibit fairly linear response, but the skin bays between the stringers exhibit nonlinear response. Excellent agreement was seen between nonlinear analysis and test results in the critical portion at the center of the panel. The pristine panel was capable of withstanding the required 18.4 psi pressure load condition without exhibiting any damage. The impacted panel was capable of withstanding a pressure load in excess of 28 psi before initial failure occurred at the center stringer, and the panel was capable of sustaining increased pressure load after the initial failure. This successful PRSEUS panel pressure panel test was a critical step in the building block approach for enabling the use of this advanced structural concept on future aircraft, such as the HWB.

  6. Convenient optical pressure gauge for multimegabar pressures calibrated to 300 GPa

    NASA Astrophysics Data System (ADS)

    Sun, Liling; Ruoff, Arthur L.; Stupian, Gary

    2005-01-01

    The accurate measurement of pressure by a straightforward and inexpensive optical procedure has been needed in the multimegabar region since static pressures over 216GPa, 361GPa, 420GPa and 560GPa were obtained in the diamond anvil cell. Here, a simple optical pressure gauge based on the Raman shift of the diamond at the center of a diamond tip at the diamond-sample interface is calibrated against a primary gauge (Pt isotherm at 300K from shock data) to 300GPa, thus enabling researchers who do not have a synchrotron to conveniently measure pressure with an optical scale from 50to300GPa.

  7. [Influence of intermittently monitoring on endotracheal tube cuff pressure using handheld pressure gauge].

    PubMed

    Huang, Ling; Xie, Chen; Zhang, Lifeng; Meng, Liying; Li, Guizheng; Li, Yang; Huang, Bing; Pan, Linghui; Tang, Zhanhong

    2017-01-01

    To discuss the influence of intermittently monitoring on endotracheal tube cuff pressure using handheld pressure gauge, and to provide some reference for the clinical work. The experiment was carried out on the model of the glass tube, which was divided into three parts. Each part of the experiment was divided into normal pressure group and high pressure group according to the different inflation pressure target value. The endotracheal tube cuff pressure was determined intermittently by using the transparent tracheal models which had a static diameter of 2 cm. The target press value of normal pressure group was 32 cmH 2 O (1 cmH 2 O = 0.098 kPa) while that of high pressure group was 40 cmH 2 O. The handheld pressure gauge was connected with the indicated cuff through a tee joint, and the pressure in the cuff in both groups was determined. The pressure loss caused by intermittent measurement of the two groups was compared. By switching the tee joint, the pressure loss through the gauge self-structure and the pressure loss when connecting and disconnecting the indicated cuff were determined to analyze the causes of pressure loss caused by intermittent measurement of pressure gauge. The pressure loss caused by intermittent measurement of high pressure group was significantly higher than that of normal pressure group (cmH 2 O: 15.10±0.43 vs. 10.19±0.45) with statistical significance (t = -24.875, P = 0.000). The pressure loss through the gauge self-structure of high pressure group was also significantly higher than that of normal pressure group (cmH 2 O: 13.91±0.48 vs. 8.77±0.53), which showed a statistics significance (t = -22.854, P = 0.000). The pressure loss when connecting and disconnecting the indicated cuff of the normal pressure and high pressure groups were (1.33±0.49) cmH 2 O and (1.23±0.55) cmH 2 O, respectively, without statistics significance (t = 0.445, P = 0.662). It was figured that the total pressure loss caused by intermittent measurement of the

  8. Regional biases in absolute sea-level estimates from tide gauge data due to residual unmodeled vertical land movement

    NASA Astrophysics Data System (ADS)

    King, Matt A.; Keshin, Maxim; Whitehouse, Pippa L.; Thomas, Ian D.; Milne, Glenn; Riva, Riccardo E. M.

    2012-07-01

    The only vertical land movement signal routinely corrected for when estimating absolute sea-level change from tide gauge data is that due to glacial isostatic adjustment (GIA). We compare modeled GIA uplift (ICE-5G + VM2) with vertical land movement at ˜300 GPS stations located near to a global set of tide gauges, and find regionally coherent differences of commonly ±0.5-2 mm/yr. Reference frame differences and signal due to present-day mass trends cannot reconcile these differences. We examine sensitivity to the GIA Earth model by fitting to a subset of the GPS velocities and find substantial regional sensitivity, but no single Earth model is able to reduce the disagreement in all regions. We suggest errors in ice history and neglected lateral Earth structure dominate model-data differences, and urge caution in the use of modeled GIA uplift alone when interpreting regional- and global- scale absolute (geocentric) sea level from tide gauge data.

  9. Campaign-Style Measurements of Vertical Seafloor Deformation in the Cascadia Subduction Zone Using an Absolute Self-Calibrating Pressure Recorder

    NASA Astrophysics Data System (ADS)

    Cook, M. J.; Sasagawa, G. S.; Roland, E. C.; Schmidt, D. A.; Wilcock, W. S. D.; Zumberge, M. A.

    2017-12-01

    Seawater pressure can be used to measure vertical seafloor deformation since small seafloor height changes produce measurable pressure changes. However, resolving secular vertical deformation near subduction zones can be difficult due to pressure gauge drift. A typical gauge drift rate of about 10 cm/year exceeds the expected secular rate of 1 cm/year or less in Cascadia. The absolute self-calibrating pressure recorder (ASCPR) was developed to solve the issue of gauge drift by using a deadweight calibrator to make campaign-style measurements of the absolute seawater pressure. Pressure gauges alternate between observing the ambient seawater pressure and the deadweight calibrator pressure, which is an accurately known reference value, every 10-20 minutes for several hours. The difference between the known reference pressure and the observed seafloor pressure allows offsets and transients to be corrected to determine the true, absolute seafloor pressure. Absolute seafloor pressure measurements provide a great utility for geodetic deformation studies. The measurements provide instrument-independent, benchmark values that can be used far into the future as epoch points in long-term time series or as important calibration points for other continuous pressure records. The ASCPR was first deployed in Cascadia in 2014 and 2015, when seven concrete seafloor benchmarks were placed along a trench-perpendicular profile extending from 20 km to 105 km off the central Oregon coast. Two benchmarks have ASCPR measurements that span three years, one benchmark spans two years, and four benchmarks span one year. Measurement repeatability is currently 3 to 4 cm, but we anticipate accuracy on the order of 1 cm with improvements to the instrument metrology and processing tidal and non-tidal oceanographic signals.

  10. Pressure-Volume-Temperature (PVT) Gauging of an Isothermal Cryogenic Propellant Tank Pressurized with Gaseous Helium

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2014-01-01

    Results are presented for pressure-volume-temperature (PVT) gauging of a liquid oxygen/liquid nitrogen tank pressurized with gaseous helium that was supplied by a high-pressure cryogenic tank simulating a cold helium supply bottle on a spacecraft. The fluid inside the test tank was kept isothermal by frequent operation of a liquid circulation pump and spray system, and the propellant tank was suspended from load cells to obtain a high-accuracy reference standard for the gauging measurements. Liquid quantity gauging errors of less than 2 percent of the tank volume were obtained when quasi-steady-state conditions existed in the propellant and helium supply tanks. Accurate gauging required careful attention to, and corrections for, second-order effects of helium solubility in the liquid propellant plus differences in the propellant/helium composition and temperature in the various plumbing lines attached to the tanks. On the basis of results from a helium solubility test, a model was developed to predict the amount of helium dissolved in the liquid as a function of cumulative pump operation time. Use of this model allowed correction of the basic PVT gauging calculations and attainment of the reported gauging accuracy. This helium solubility model is system specific, but it may be adaptable to other hardware systems.

  11. Gas ion laser construction for electrically isolating the pressure gauge thereof

    NASA Technical Reports Server (NTRS)

    Wood, C. E.; Witte, R. S. (Inventor)

    1975-01-01

    The valve and the pressure gauge of a gas ion laser were electrically insulated from the laser discharge path by connecting them in series with the cathode of the laser. The laser cathode can be grounded and preferably is a cold cathode although a hot cathode may be used instead. The cold cathode was provided with a central aperture to which was connected both the pressure gauge and the gas pressure reservoir through the valve. This will effectively prevent electric discharges from passing either to the pressure gauge or the valve which would otherwise destroy the pressure gauge.

  12. Inexpensive Method of Testing Ambient and Thermally Elevated Resistive and Piezoresistive Thin-Film Pressure Gauges

    NASA Astrophysics Data System (ADS)

    Armstrong, Christopher; Rae, Philip; Heatwole, Eric; Tasker, Douglas; Los Alamos National Labortatory Team

    2017-06-01

    Manganin is an alloy that changes resistance when subjected to high-pressure, but is insensitive to temperature changes. Resistance curves as a function of pressure for these gauges have been established. Another commonly used piezoresistive pressure sensor are thin-film carbon gauges, which are more pressure sensitive than manganin gauges. Carbon gauge response in high temperature is not well quantified. The current research is focused on verifying these established resistance curves as well as verifying this specific experimental configuration. In this research the carbon gauges' resistance change is measured for thermally elevated gauges. In this setup a 20 mm caliber gun drove planar copper projectiles at the gauge, which was embedded in a copper anvil. The Hugoniot relationship allows for a comparison between observed and theoretical pressure over a pressure range 5 to 20 GPa for manganin gauges and 1 to 5 GPa for carbon gauges. The comparison between the data obtained in this research and that of others shows that the pressure-resistance curve of manganin does to not vary between lots of manganin. Additionally, the data shows that this setup is a relatively inexpensive quick means of testing gauge response to high-pressure shocks and is suitable for elevated temperature.

  13. 2015 Volcanic Tsunami Earthquake near Torishima Island: Array analysis of ocean bottom pressure gauge records

    NASA Astrophysics Data System (ADS)

    Fukao, Y.; Sugioka, H.; Ito, A.; Shiobara, H.; Sandanbata, O.; Watada, S.; Satake, K.

    2016-12-01

    An array of ocean bottom pressure gauges was deployed off east of Aogashima island of the Izu-Bonin arc from May 2014 to May 2015. The array consists of 10 ocean bottom pressure gauges using ParoScientific quartz resonators which can measure absolute water pressure at 7000m depth with nano-resolution. The array configures equilateral triangles with minimum and maximum lengths of 10 and 30km. This array recorded seismic and tsunami waves from the CLVD-type earthquake (M5.7) of May 02, 2015, that occurred near Torishima Island 100 km distant from the array. Comparison with records of ordinary thrust earthquakes with similar magnitudes at similar distances indicates that this event generated anomalously large tsunamis relative to seismic waves. We made an array analysis for the phase speed, propagating azimuth and travel time of tsunami wave in a frequency range 1-10 mHz, where the dispersion effect is significant. The results show excellent agreements with the frequency-dependent ray-tracing calculations. The tsunami trace apparently starts with positive onset (pressure increase) and reaches a maximum amplitude of about 200Pa (≈2cm in tsunami height). A closer inspection, however, shows a preceding negative small pulse (Fig. 1), suggesting that the seafloor deformation at the tsunami source consists of a central large uplift and a peripheral small depression. This mode of deformation is qualitatively consistent with a finite CLVD source uniformly shortened laterally and uniformly stretched vertically without volume change. The detection of weak initial motions is indebted to the array deployment of sensitive pressure gauges far away from coastal regions. The bandpass-filtered waveform is drastically different between the lower and higher frequency ranges. The waveform is single-peaked in the lower frequency range (<5 mHz) but is ringing in the higher frequency range (>5 mHz), corresponding to the tsunami spectrum that consists of the broad primary peak around 3.5 m

  14. Selection and static calibration of the Marsh J1678 pressure gauge

    NASA Technical Reports Server (NTRS)

    Oxendine, Charles R.; Smith, Howard W.

    1993-01-01

    During the experimental testing of the ultralight, it was determined that a pressure gauge would be required to monitor the simulated flight loads. After analyzing several factors, which are indicated in the discussion section of this report, the Marsh J1678 pressure gauge appeared to be the prominent candidate for the task. However, prior to the final selection, the Marsh pressure gauge was calibrated twice by two different techniques. As a result of the calibration, the Marsh gauge was selected as the appropriate measuring device during the structural testing of the ultralight. Although, there are commerical pressure gauges available on the market that would have proven to be more efficient and accurate. However, in order to obtain these characteristics in a gauge, one has to pay the price on the price tag, and this value is an exponential function of the degree of accuracy efficiency, precision, and many other features that may be designed into the gauge. After analyzing the extent of precision and accuracy that would be required, a more expensive gauge wouldn't have proven to be a financial benefit towards the outcome of the experiment.

  15. Using continuous GPS and absolute gravity to separate vertical land movements and changes in sea-level at tide-gauges in the UK.

    PubMed

    Teferle, F N; Bingley, R M; Williams, S D P; Baker, T F; Dodson, A H

    2006-04-15

    Researchers investigating climate change have used historical tide-gauge measurements from all over the world to investigate the changes in sea-level that have occurred over the last century or so. However, such estimates are a combination of any true sea-level variations and any vertical movements of the land at the specific tide-gauge. For a tide- gauge record to be used to determine the climate related component of changes in sea-level, it is therefore necessary to correct for the vertical land movement component of the observed change in sea-level.In 1990, the Institute of Engineering Surveying and Space Geodesy and Proudman Oceanographic Laboratory started developing techniques based on the Global Positioning System (GPS) for measuring vertical land movements (VLM) at tide-gauges in the UK. This paper provides brief details of these early developments and shows how they led to the establishment of continuous GPS (CGPS) stations at a number of tide-gauges. The paper then goes on to discuss the use of absolute gravity (AG), as an independent technique for measuring VLM at tide-gauges. The most recent results, from CGPS time-series dating back to 1997 and AG time-series dating back to 1995/1996, are then used to demonstrate the complementarity of these two techniques and their potential for providing site-specific estimates of VLM at tide-gauges in the UK.

  16. Optimization of pressure gauge locations for water distribution systems using entropy theory.

    PubMed

    Yoo, Do Guen; Chang, Dong Eil; Jun, Hwandon; Kim, Joong Hoon

    2012-12-01

    It is essential to select the optimal pressure gauge location for effective management and maintenance of water distribution systems. This study proposes an objective and quantified standard for selecting the optimal pressure gauge location by defining the pressure change at other nodes as a result of demand change at a specific node using entropy theory. Two cases are considered in terms of demand change: that in which demand at all nodes shows peak load by using a peak factor and that comprising the demand change of the normal distribution whose average is the base demand. The actual pressure change pattern is determined by using the emitter function of EPANET to reflect the pressure that changes practically at each node. The optimal pressure gauge location is determined by prioritizing the node that processes the largest amount of information it gives to (giving entropy) and receives from (receiving entropy) the whole system according to the entropy standard. The suggested model is applied to one virtual and one real pipe network, and the optimal pressure gauge location combination is calculated by implementing the sensitivity analysis based on the study results. These analysis results support the following two conclusions. Firstly, the installation priority of the pressure gauge in water distribution networks can be determined with a more objective standard through the entropy theory. Secondly, the model can be used as an efficient decision-making guide for gauge installation in water distribution systems.

  17. 49 CFR 192.741 - Pressure limiting and regulating stations: Telemetering or recording gauges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Pressure limiting and regulating stations... STANDARDS Maintenance § 192.741 Pressure limiting and regulating stations: Telemetering or recording gauges. (a) Each distribution system supplied by more than one district pressure regulating station must be...

  18. Seismic waves triggering slow slip event on the pressure gauge records in the Hikurangi subducting margin

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Wallace, L. M.; Henrys, S. A.; Kaneko, Y.; Webb, S. C.; Muramoto, T.; Ohta, K.; Mochizuki, K.; Suzuki, S.; Kido, M.; Hino, R.

    2017-12-01

    The two M7-class earthquakes struck in New Zealand in 2016. One is the M7.1 Te Araroa earthquake on 1st September, and the other is the M7.8 Kaikoura earthquake on 14th November. The M7.1 earthquake struck offshore, following a sequence of the Hikurangi slow slip event on the northern Hikurangi Margin. The M7.8 Kaikoura earthquake has triggered a shallow slow slip event of northern Hikurangi subduction margin. We present seismic and tsunami waves radiated from two large earthquakes of M7.8 Kaikoura and M7.1 Te Araroa earthquakes in 2016 using a network of absolute pressure gauges (APG) deployed at the Hikurangi subduction margin offshore New Zealand. We deployed 5 APG on the accretionary wedge at the northen part of the Hikurangi margnin in June 2016 at the northern part of Hikurangi subducting margin, and were recovered in June 2015. The pressure gauge recorded data continuously for one year, with a logging interval of 1 or 2 s. Our processing of the APG data to identify seismic is a band pass filter with a range of 10-100 s is applied for seismic signals. We observed seismic waves radiated from both the M7.8 Kaikoura and M7.1 Te Araroa earthquakes. The pressure fluctuation more than 20 hPa from the arrivals of seismic waves was observed on two both earthquakes. It should be noted that marine pressure records are nearly equivalent to vertical acceleration measurements [Webb, 1998]. Specifically, on the M7.8 Kaikoura earthquake, the characteristic seismic signals with large amplitude more than 20 hPa lasting more than 300 s was observed on the all of four APGs. The long duration seismic waves with relatively large amplitude observed after the 7.8 Kaikoura earthquake would dynamically trigger the Hikurangi slow slip event; the dynamic triggering and characteristic seismic waves in the accretionary wedge has been predicted from a wave-field modeling using a 3D velocity model with a low-velocity sedimentary basin [Wallace et al., 2017].

  19. Final report on EURAMET.M.P-S12 — Bilateral supplementary comparison of the national pressure standards of CMI and INRIM in the range 300 Pa to 15 kPa of negative gauge pressure

    NASA Astrophysics Data System (ADS)

    Krajícek, Zdenek; Bergoglio, Mercede; Pražák, Dominik; Pasqualin, Stefano

    2014-01-01

    This report describes a EURAMET bilateral supplementary comparison between Czech CMI and Italian INRIM in low negative gauge pressure in gas (nitrogen), denoted as EURAMET.M.P-S12. The digital non-rotating pressure balance FPG8601 manufactured by Fluke/DH-Instruments, USA is normally used for gauge and absolute pressures in the range from 1 Pa to 15 kPa, but with some modifications it can be used also for the negative gauge pressures in the same range. During the preparation of the visit of INRIM at CMI for the last comparison within the framework of EURAMET.M.P-K4.2010, it was agreed to also perform an additional comparison in the range from 300 Pa to 15 kPa of negative gauge pressure. The measurements were performed in October 2012. Both institutes successfully proved their equivalence in all the tested points in the range from 300 Pa to 15 kPa of negative gauge pressure in a comparison that had, so far, been unique. . Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  20. Bilateral key comparison CCM.P-K3.1 for absolute pressure measurements from 3 × 10-6 Pa to 9 × 10-4 Pa

    NASA Astrophysics Data System (ADS)

    Fedchak, J. A.; Bock, Th; Jousten, K.

    2014-01-01

    This report describes the bilateral key comparison CCM.P-K3.1 between the National Institute of Standards and Technology (NIST) and Physikalisch-Technische Bundesanstalt (PTB) for absolute pressure in the range from 3 × 10-6 Pa to 9 × 10-4 Pa. This comparison was a follow-up to the comparison CCM.P-K3. Two ionization gauges and two spinning rotor gauges (SRGs) were used as the transfer standards for the comparison. The SRGs were used to compare the standards at a pressure of 9 × 10-4 Pa and to normalize the ionization gauge readings. The two ionization gauges were used to compare the standards in the pressure range of from 3 × 10-6 Pa to 3 × 10-4 Pa. Both laboratories used dynamic expansion chambers as standards in the comparison. The two labs showed excellent agreement with each other and with the CCM.P-K3 key comparison reference value (KCRV) over the entire range. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  1. Laboratory Simulation and Measurement of Instrument Drift in Quartz-Resonant Pressure Gauges

    NASA Astrophysics Data System (ADS)

    Sasagawa, G. S.; Zumberge, M. A.

    2017-12-01

    Marine geodesy uses ocean bottom pressure sensors to measure vertical deformation of the sea floor, including that due to volcanic inflation and subsidence, episodic tremor and slip, plate subduction, and deformation due to hydrocarbon extraction at offshore reservoirs. Instrumental drift is inherent in existing pressure sensors and introduce uncertainties in data interpretation. Different methods have been developed to control drift, using varying techniques and instrumentation. Laboratory measurements of sensor drift, under controlled conditions that simulate seafloor pressures and temperatures, would allow for evaluating pressure gauge drift and the efficacy of new drift control methods. We have constructed and operated a laboratory system to monitor the drift of 15 quartz resonant pressure gauges over a year. The temperature and pressure are maintained and controlled at approximately 5 °C and 1900 dbar. A deadweight tester was used to provide a reference signal at frequent intervals; the time series of reference pressure signals is a direct measure of each gauge's drift. Several other tests were conducted, including a) evaluation of a custom outgassing sensor used as proxy for instrument drift, b) determination of the oscillator drift in the pressure gauge signal conditioning electronics, and c) a test of ambient air pressure calibration, also known as the A-0-A method. First results will be presented.

  2. Measuring systolic ankle and toe pressure using the strain gauge technique--a comparison study between mercury and indium-gallium strain gauges.

    PubMed

    Broholm, Rikke; Wiinberg, Niels; Simonsen, Lene

    2014-09-01

    Measurement of the ankle and toe pressures are often performed using a plethysmograph, compression cuffs and a strain gauge. Usually, the strain gauge contains mercury but other alternatives exist. From 2014, the mercury-containing strain gauge will no longer be available in the European Union. The aim of this study was to compare an indium-gallium strain gauge to the established mercury-containing strain gauge. Consecutive patients referred to the Department of Clinical Physiology and Nuclear Medicine at Bispebjerg and Frederiksberg Hospitals for measurements of systolic ankle and toe pressures volunteered for the study. Ankle and toe pressures were measured twice with the mercury and the indium-gallium strain gauge in random order. Comparison of the correlation between the mean pressure using the mercury and the indium-gallium device and the difference between the two devices was performed for both toe and ankle level. A total of 53 patients were included (36 male). Mean age was 69 (range, 45-92 years). Mean pressures at toe and ankle level with the mercury and the indium-gallium strain gauges were 77 (range, 0-180) mm Hg and 113 (range, 15-190) mm Hg, respectively. Comparison between the mercury and the indium-gallium strain gauge showed a difference in toe blood pressure values of - 0.7 mm Hg (SD: 7.0). At the ankle level, a difference of 2.0 mm Hg (SD: 8.6) was found. The two different devices agree sufficiently in the measurements of systolic ankle and toe pressure for the indium-gallium strain gauge to replace the mercury strain gauge.

  3. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Warning signals, air pressure and vacuum gauges... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.51 Warning signals, air pressure... paragraph (f), must be equipped with a signal that provides a warning to the driver when a failure occurs in...

  4. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Warning signals, air pressure and vacuum gauges... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.51 Warning signals, air pressure... paragraph (f), must be equipped with a signal that provides a warning to the driver when a failure occurs in...

  5. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Warning signals, air pressure and vacuum gauges... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.51 Warning signals, air pressure... paragraphs (b), (c), (d) or (e) of this section. (b) Hydraulic brakes. Vehicles manufactured on or after...

  6. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Warning signals, air pressure and vacuum gauges... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.51 Warning signals, air pressure... paragraphs (b), (c), (d) or (e) of this section. (b) Hydraulic brakes. Vehicles manufactured on or after...

  7. Influence of radiation damage on ruby as a pressure gauge

    SciTech Connect

    Schuster, B.; GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstr. 1, 64291 Darmstadt; Weikusat, C.

    2010-11-01

    This study tackles the question if ruby crystals, irradiated with energetic heavy ions, can still be used as reliable pressure sensors. The problem is linked to novel irradiation experiments, exposing pressurized samples to swift heavy-ion beams. In order to test and quantify a possible influence of radiation damage on the laser-induced fluorescence lines of ruby (Al{sub 2}O{sub 3}:Cr{sup 3+}), small crystals were exposed to different heavy ions (Xe, Au, and U) with kinetic energies of several giga-electron volt at ambient as well as high-pressure conditions. With increasing fluence (ions/cm{sup 2}), the R{sub 1} and R{sub 2} lines shift both tomore » lower wavelengths which leads to an underestimation of the pressure. An empirical correction term {epsilon} is proposed to include the irradiation damage effect into the commonly employed ruby calibration scale.« less

  8. Experimental strain analysis of the high pressure strain gauge pressure transducer and verification by using a finite element method

    NASA Astrophysics Data System (ADS)

    Orhan, M. H.; Dogan, Ç.; Kocabas, H.; Tepehan, G.

    2001-03-01

    The finite element method (FEM) was used in this study for the analysis of the strain distribution of a strain gauge pressure transducer for hydrostatic pressure measurements up to 150 MPa. The pressure transducer, which we investigated, on the basis of `thick-walled cylindrical vessel' theory has a free steel active element. Pressure is applied to the inside and both open ends of this active element. The symmetrical shape of the transducer and all the design parameters of the active element were selected in such a way as to ensure that a symmetrical stress and strain distribution was obtained even at the maximum working pressure of the transducer. The FEM analysis was conducted by investigating one half of the element in three dimensions. This paper presents the FEM output strain values for the area where the strain gauges were bonded. The validity of those values was established by comparing them with the results obtained from the strain gauge measurements. The relative difference between the two sets of values determined to be lower than 13% of the full scale. The two kinds of measuring elements were made of two different materials; AISI 4340 steel and Invar steel, which work in the hydraulic gauge pressure ranges of up to 150 and 100 MPa respectively. The transducers were calibrated using piston pressure balance. The metrological specifications of a total of eight specimens were evaluated. Although the scope of the study is only an application of the FEM, this evaluation also suggests that this type of transducer can be used with an estimated uncertainty of up to 0.1% of the full scale. However, this uncertainty can be improved by a small modification in design, to reduce the reproducibility and hysteresis errors of the device, which are the main parameters in the evaluation of the uncertainty. The results presented in this paper will be helpful for practical static pressure measurements as well as for the appropriate design of this kind of pressure transducer

  9. Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures

    SciTech Connect

    McCoy, Chad August; Knudson, Marcus David; Root, Seth

    Measurement of the Hugoniot and sound velocity provides information on the bulk modulus and Grüneisen parameter of a material at extreme conditions. The capability to launch multilayered (copper/aluminum) flyer plates at velocities in excess of 20 km/s with the Sandia Z accelerator has enabled high-precision sound-velocity measurements at previously inaccessible pressures. For these experiments, the sound velocity of the copper flyer must be accurately known in the multi-Mbar regime. Here we describe the development of copper as an absolutely calibrated sound-velocity standard for high-precision measurements at pressures in excess of 400 GPa. Using multilayered flyer plates, we performed absolute measurementsmore » of the Hugoniot and sound velocity of copper for pressures from 500 to 1200 GPa. These measurements enabled the determination of the Grüneisen parameter for dense liquid copper, clearly showing a density dependence above the melt transition. As a result, combined with earlier data at lower pressures, these results constrain the sound velocity as a function of pressure, enabling the use of copper as a Hugoniot and sound-velocity standard for pressures up to 1200 GPa.« less

  10. Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures

    DOE PAGES

    McCoy, Chad August; Knudson, Marcus David; Root, Seth

    2017-11-13

    Measurement of the Hugoniot and sound velocity provides information on the bulk modulus and Grüneisen parameter of a material at extreme conditions. The capability to launch multilayered (copper/aluminum) flyer plates at velocities in excess of 20 km/s with the Sandia Z accelerator has enabled high-precision sound-velocity measurements at previously inaccessible pressures. For these experiments, the sound velocity of the copper flyer must be accurately known in the multi-Mbar regime. Here we describe the development of copper as an absolutely calibrated sound-velocity standard for high-precision measurements at pressures in excess of 400 GPa. Using multilayered flyer plates, we performed absolute measurementsmore » of the Hugoniot and sound velocity of copper for pressures from 500 to 1200 GPa. These measurements enabled the determination of the Grüneisen parameter for dense liquid copper, clearly showing a density dependence above the melt transition. As a result, combined with earlier data at lower pressures, these results constrain the sound velocity as a function of pressure, enabling the use of copper as a Hugoniot and sound-velocity standard for pressures up to 1200 GPa.« less

  11. Design of air blast pressure sensors based on miniature silicon membrane and piezoresistive gauges

    NASA Astrophysics Data System (ADS)

    Riondet, J.; Coustou, A.; Aubert, H.; Pons, P.; Lavayssière, M.; Luc, J.; Lefrançois, A.

    2017-11-01

    Available commercial piezoelectric pressure sensors are not able to accurately reproduce the ultra-fast transient pressure occurring during an air blast experiment. In this communication a new pressure sensor prototype based on a miniature silicon membrane and piezoresistive gauges is reported for significantly improving the performances in terms of time response. Simulation results demonstrate the feasibility of a pressure transducer having a fundamental resonant frequency almost ten times greater than the commercial piezoelectric sensors one. The sensor uses a 5μm-thick SOI membrane and four P-type silicon gauges (doping level ≅ 1019 at/cm3) in Wheatstone bridge configuration. To obtain a good trade-off between the fundamental mechanical resonant frequency and pressure sensitivity values, the typical dimension of the rectangular membrane is fixed to 30μm x 90μm with gauge dimension of 1μm x 5μm. The achieved simulated mechanical resonant frequency of these configuration is greater than 40MHz with a sensitivity of 0.04% per bar.

  12. Report of pilot study CCM.P-P1 for international comparison of absolute pressure measurements in gas from 3 × 10-9 Pa to 9 × 10-4 Pa

    NASA Astrophysics Data System (ADS)

    Yoshida, Hajime; Arai, Kenta; Komatsu, Eiichi; Fujii, Kenichi; Bock, Thomas; Jousten, Karl

    2015-01-01

    A bilateral comparison of absolute gas pressure measurements from 3 × 10-9 Pa to 9 × 10-4 Pa was performed between the National Metrology Institute of Japan (NMIJ) and Physikalisch-Technische Bundesanstalt (PTB). It is a pilot study CCM.P-P1 for the next international comparison in this pressure range to test the stability of ultrahigh vacuum gauges (UHV gauges) as transfer standards. Two spinning rotor gauges (SRGs), an axial-symmetric transmission gauge (ATG), and an extractor gauge (EXG) were used as transfer standards. The calibration ratio of one SRG was sufficiently stable, but the other was not. This result indicates that improvements in the transport mechanism for SRG are needed. The two ionization gauges ATG and EXG, on the other hand, were sufficiently stable. Provisional equivalence of the pressures realized by the primary standards at NMIJ and PTB was found. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCM-WGS.

  13. Design of pressure-sensing diaphragm for MEMS capacitance diaphragm gauge considering size effect

    NASA Astrophysics Data System (ADS)

    Li, Gang; Li, Detian; Cheng, Yongjun; Sun, Wenjun; Han, Xiaodong; Wang, Chengxiang

    2018-03-01

    MEMS capacitance diaphragm gauge with a full range of (1˜1000) Pa is considered for its wide application prospect. The design of pressure-sensing diaphragm is the key to achieve balanced performance for this kind of gauges. The optimization process of the pressure-sensing diaphragm with island design of a capacitance diaphragm gauge based on MEMS technique has been reported in this work. For micro-components in micro scale range, mechanical properties are very different from that in the macro scale range, so the size effect should not be ignored. The modified strain gradient elasticity theory considering size effect has been applied to determine the bending rigidity of the pressure-sensing diaphragm, which is then used in the numerical model to calculate the deflection-pressure relation of the diaphragm. According to the deflection curves, capacitance variation can be determined by integrating over the radius of the diaphragm. At last, the design of the diaphragm has been optimized based on three parameters: sensitivity, linearity and ground capacitance. With this design, a full range of (1˜1000) Pa can be achieved, meanwhile, balanced sensitivity, resolution and linearity can be kept.

  14. Prospects of Applying Vibration-Resistant Pressure Gauges in the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Pirogov, S. P.; Cherentsov, D. A.; Gulyaev, B. A.

    2016-10-01

    The article presents justification for improving vibration protection of pressure gauges used in the oil and gas industry. A mathematical model of manometric tubular spring oscillations in a viscous medium is viewed. By the developed model, the authors have determined the impact of manometric spring geometric characteristics and damping fluid viscosity on oscillation attenuation parameters, as well as provided evaluation of the impact of the cross-sectional shape on the oscillation attenuation rate.

  15. Negative Gauge Pressure Moisture Management and Secure Adherence Device for Prosthetic Limbs

    DTIC Science & Technology

    2013-03-01

    prosthesis feels like it is sliding up and down or falling off when I am active. D. I have been more active than normal as a result of this prosthesis ...temperature. 3. My prosthesis feels like it is sliding up and down or falling off when I am active. 4. I have been more active than normal as a result of...objective of this research was to develop and test a novel prosthesis incorporating a negative gauge pressure moisture management and secure

  16. Design of a Simple Blast Pressure Gauge Based on a Heterodyne Velocimetry Measuring Technique

    DTIC Science & Technology

    2016-08-01

    deployed in an experiment during which the blast pressure was measured from detonation of 114 g of Primasheet 1000 high explosive. The gauge reported... detonation of high explosive where accelerated projectiles and debris may occur. Many times, overpressures generated by such events can be a nuisance to...as that generated by release of energy from a high-explosive detonation or deflagration, materials such as metals or ceramics may be needed. A

  17. Gauge calibration by diffusion

    NASA Technical Reports Server (NTRS)

    Brock, F. J.; Feakes, F. (Inventor)

    1968-01-01

    Vacuum gage calibration by diffusing a known quantity of gas through a heated barrier into a gauge is examined. The gas flow raises the pressure in the gauge to known level and is then compared with the gauge's pressure reading.

  18. Far-field tsunami magnitude determined from ocean-bottom pressure gauge data around Japan

    NASA Astrophysics Data System (ADS)

    Baba, T.; Hirata, K.; Kaneda, Y.

    2003-12-01

    \\hspace*{3mm}Tsunami magnitude is the most fundamental parameter to scale tsunamigenic earthquakes. According to Abe (1979), the tsunami magnitude, Mt, is empirically related to the crest to trough amplitude, H, of the far-field tsunami wave in meters (Mt = logH + 9.1). Here we investigate the far-field tsunami magnitude using ocean-bottom pressure gauge data. The recent ocean-bottom pressure measurements provide more precise tsunami data with a high signal-to-noise ratio. \\hspace*{3mm}Japan Marine Science and Technology Center is monitoring ocean bottom pressure fluctuations using two submarine cables of depths of 1500 - 2400 m. These geophysical observatory systems are located off Cape Muroto, Southwest Japan, and off Hokkaido, Northern Japan. The ocean-bottom pressure data recorded with the Muroto and Hokkaido systems have been collected continuously since March, 1997 and October, 1999, respectively. \\hspace*{3mm}Over the period from March 1997 to June 2003, we have observed four far-field tsunami signals, generated by earthquakes, on ocean-bottom pressure records. These far-field tsunamis were generated by the 1998 Papua New Guinea eq. (Mw 7.0), 1999 Vanuatu eq. (Mw 7.2), 2001 Peru eq. (Mw 8.4) and 2002 Papua New Guinea eq. (Mw 7.6). Maximum amplitude of about 30 mm was recorded by the tsunami from the 2001 Peru earthquake. \\hspace*{3mm}Direct application of the Abe's empirical relation to ocean-bottom pressure gauge data underestimates tsunami magnitudes by about an order of magnitude. This is because the Abe's empirical relation was derived only from tsunami amplitudes with coastal tide gauges where tsunami is amplified by the shoaling of topography and the reflection at the coastline. However, these effects do not work for offshore tsunami in deep oceans. In general, amplification due to shoaling near the coastline is governed by the Green's Law, in which the tsunami amplitude is proportional to h-1/4, where h is the water depth. Wave amplitude also is

  19. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    SciTech Connect

    Flesch, K.; Kremeyer, T.; Schmitz, O.

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D-2 molecules and the He ash which will be produced by deuterium-tritium fusion. In order to study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. There are three different anode geometries that we have studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least onemore » order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.« less

  20. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    SciTech Connect

    Flesch, K., E-mail: kbflesch@wisc.edu; Kremeyer, T.; Schmitz, O.

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D{sub 2} molecules and the He ash which will be produced by deuterium-tritium fusion. To study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. Three different anode geometries have been studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least one order of magnitude abovemore » the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.« less

  1. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    DOE PAGES

    Flesch, K.; Kremeyer, T.; Schmitz, O.; ...

    2016-08-18

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D-2 molecules and the He ash which will be produced by deuterium-tritium fusion. In order to study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. There are three different anode geometries that we have studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least onemore » order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.« less

  2. Design and development of a novel strain gauge automatic pasting device for mini split Hopkinson pressure bar

    NASA Astrophysics Data System (ADS)

    Huang, Wenkai; Huan, Shi; He, Junfeng; Jiang, Jichang

    2018-03-01

    In a split Hopkinson pressure bar (SHPB) experiment, the pasting quality of strain gauges will directly affect the accuracy of the measurement results. The traditional method of pasting the strain gauges is done manually by the experimenter. In the process of pasting, it is easy to shift or twist the strain gauge, and the experimental results are greatly affected by human factors. In this paper, a novel type automatic pasting device for strain gauges is designed and developed, which can be used to accurately and rapidly paste the strain gauges. The paste quality is reliable, and it can guarantee the consistency of SHPB experimental measurement. We found that a clamping force of 74 N achieved a success rate of 97%, whilst ensuring good adhesion.

  3. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard

    USGS Publications Warehouse

    Patrick, Matthew R.; Anderson, Kyle R.; Poland, Michael P.; Orr, Tim R.; Swanson, Donald A.

    2015-01-01

    Forecasting volcanic activity relies fundamentally on tracking magma pressure through the use of proxies, such as ground surface deformation and earthquake rates. Lava lakes at open-vent basaltic volcanoes provide a window into the uppermost magma system for gauging reservoir pressure changes more directly. At Kīlauea Volcano (Hawaiʻi, USA) the surface height of the summit lava lake in Halemaʻumaʻu Crater fluctuates with surface deformation over short (hours to days) and long (weeks to months) time scales. This correlation implies that the lake behaves as a simple piezometer of the subsurface magma reservoir. Changes in lava level and summit deformation scale with (and shortly precede) changes in eruption rate from Kīlauea's East Rift Zone, indicating that summit lava level can be used for short-term forecasting of rift zone activity and associated hazards at Kīlauea.

  4. Relative and absolute test-retest reliabilities of pressure pain threshold in patients with knee osteoarthritis.

    PubMed

    Srimurugan Pratheep, Neeraja; Madeleine, Pascal; Arendt-Nielsen, Lars

    2018-04-25

    Pressure pain threshold (PPT) and PPT maps are commonly used to quantify and visualize mechanical pain sensitivity. Although PPT's have frequently been reported from patients with knee osteoarthritis (KOA), the absolute and relative reliability of PPT assessments remain to be determined. Thus, the purpose of this study was to evaluate the test-retest relative and absolute reliability of PPT in KOA. For that purpose, intra- and interclass correlation coefficient (ICC) as well as the standard error of measurement (SEM) and the minimal detectable change (MDC) values within eight anatomical locations covering the most painful knee of KOA patients was measured. Twenty KOA patients participated in two sessions with a period of 2 weeks±3 days apart. PPT's were assessed over eight anatomical locations covering the knee and two remote locations over tibialis anterior and brachioradialis. The patients rated their maximum pain intensity during the past 24 h and prior to the recordings on a visual analog scale (VAS), and completed The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and PainDetect surveys. The ICC, SEM and MDC between the sessions were assessed. The ICC for the individual variability was expressed with coefficient of variance (CV). Bland-Altman plots were used to assess potential bias in the dataset. The ICC ranged from 0.85 to 0.96 for all the anatomical locations which is considered "almost perfect". CV was lowest in session 1 and ranged from 44.2 to 57.6%. SEM for comparison ranged between 34 and 71 kPa and MDC ranged between 93 and 197 kPa with a mean PPT ranged from 273.5 to 367.7 kPa in session 1 and 268.1-331.3 kPa in session 2. The analysis of Bland-Altman plot showed no systematic bias. PPT maps showed that the patients had lower thresholds in session 2, but no significant difference was observed for the comparison between the sessions for PPT or VAS. No correlations were seen between PainDetect and PPT and PainDetect and WOMAC

  5. Medium- and high-pressure gauges and transducers produced by laser welding technology

    NASA Astrophysics Data System (ADS)

    Daurelio, Giuseppe; Nenci, Fabio; Cinquepalmi, Massimo; Chita, Giuseppe

    1998-07-01

    Industrial manufacturers produce many types of pressure gauges and transducers according to the applications, for gas or liquid, for high-medium and low pressure ranges. Nowadays the current production technology generally prefers to weld by micro TIG source the metallic corrugated membranes to the gauge or transducer bodies for the products, operating on the low pressure or medium pressure ranges. For the other ones, operating to high pressure range, generally the two components of the transducers are both threaded only and threaded and then circularly welded by micro TIG for the other higher range, till to 1000 bar. In this work the products, operating on the approximately equals 30 divided by 200 bar, are considered. These, when assembled on industrial plants, as an outcome of a non-correct operating sequence, give a 'shifted' electrical signal. This is due to a shift of the 'zero electrical signal' that unbalances the electrical bridge - thin layer sensor - that is the sensitive part of the product. Moreover, for the same problem, often some mechanical settlings of the transducer happen during the first pressure semi-components, with an increasing of the product manufacturing costs. In light of all this, the above referred, in this work the whole transducer has been re-designed according to the specific laser welding technology requirements. On the new product no threaded parts exist but only a circular laser welding with a full penetration depth about 2.5 divided by 3 mm high. Three different alloys have been tested according to the applications and the mechanical properties requested to the transducer. By using a 1.5 KW CO2 laser system many different working parameters have been evaluated for correlating laser parameters to the penetration depths, crown wides, interaction laser-materia times, mechanical and metallurgical properties. Moreover during the laser welding process the measurements of the maximum temperature, reached by the transducer top, has been

  6. Impact of the Absolute Difference in Diastolic Blood Pressure Between Arms in Patients With Coronary Artery Disease

    PubMed Central

    Hitaka, Yuka; Miura, Shin-ichiro; Koyoshi, Rie; Shiga, Yuhei; Miyase, Yuiko; Norimatsu, Kenji; Nakamura, Ayumi; Adachi, Sen; Kuwano, Takashi; Sugihara, Makoto; Ike, Amane; Nishikawa, Hiroaki; Saku, Keijiro

    2015-01-01

    Background We investigated the relationship between the severity and presence of coronary artery disease (CAD) and a difference in systolic and diastolic blood pressure (SBP and DBP) between arms or between lower limbs. Methods We enrolled 277 patients who underwent coronary angiography. We calculated the absolute (|right BP (rt. BP) - left BP (lt. BP)|) and relative (rt. BP - lt. BP) differences in SBP or DBP between arms or between lower limbs, and assessed the severity of CAD in terms of the Gensini score. Results The absolute difference in DBP between arms in the CAD group was significantly lower than that in the non-CAD group, whereas the absolute difference in DBP between lower limbs in the CAD group was significantly higher. There were no differences in the absolute or relative difference in SBP between arms or lower limbs between the groups. The absolute difference in DBP between arms decreased as the Gensini score increased. In a logistic regression analysis, the presence of CAD was independently associated with the absolute difference in DBP between arms, in addition to male, family history, dyslipidemia, diabetes mellitus and hypertension. Conclusion The absolute difference in DBP between arms in addition to traditional factors may be a critical risk factor for the presence of CAD. PMID:26491500

  7. Impact of the Absolute Difference in Diastolic Blood Pressure Between Arms in Patients With Coronary Artery Disease.

    PubMed

    Hitaka, Yuka; Miura, Shin-Ichiro; Koyoshi, Rie; Shiga, Yuhei; Miyase, Yuiko; Norimatsu, Kenji; Nakamura, Ayumi; Adachi, Sen; Kuwano, Takashi; Sugihara, Makoto; Ike, Amane; Nishikawa, Hiroaki; Saku, Keijiro

    2015-11-01

    We investigated the relationship between the severity and presence of coronary artery disease (CAD) and a difference in systolic and diastolic blood pressure (SBP and DBP) between arms or between lower limbs. We enrolled 277 patients who underwent coronary angiography. We calculated the absolute (|right BP (rt. BP) - left BP (lt. BP)|) and relative (rt. BP - lt. BP) differences in SBP or DBP between arms or between lower limbs, and assessed the severity of CAD in terms of the Gensini score. The absolute difference in DBP between arms in the CAD group was significantly lower than that in the non-CAD group, whereas the absolute difference in DBP between lower limbs in the CAD group was significantly higher. There were no differences in the absolute or relative difference in SBP between arms or lower limbs between the groups. The absolute difference in DBP between arms decreased as the Gensini score increased. In a logistic regression analysis, the presence of CAD was independently associated with the absolute difference in DBP between arms, in addition to male, family history, dyslipidemia, diabetes mellitus and hypertension. The absolute difference in DBP between arms in addition to traditional factors may be a critical risk factor for the presence of CAD.

  8. Manifold absolute pressure estimation using neural network with hybrid training algorithm

    PubMed Central

    Selamat, Hazlina; Alimin, Ahmad Jais; Haniff, Mohamad Fadzli

    2017-01-01

    In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP) sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM) algorithm, Bayesian Regularization (BR) algorithm and Particle Swarm Optimization (PSO) algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS). The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value. PMID:29190779

  9. Reduction of the uncertainty of the PTB vacuum pressure scale by a new large area non-rotating piston gauge

    NASA Astrophysics Data System (ADS)

    Bock, Th; Ahrendt, H.; Jousten, K.

    2009-10-01

    This paper describes the metrological characterization of a new large area piston gauge (FRS5, Furness Rosenberg Standard) installed at the vacuum metrology laboratory of the Physikalisch-Technische Bundesanstalt (PTB). The operational procedure and the uncertainty budget for pressures between 30 Pa and 11 kPa are given. Comparisons between the FRS5 and a mercury manometer, a rotary piston gauge and a force-balanced piston gauge are described. We show that the reproducibility of the calibration values of capacitance diaphragm gauges is enhanced by a factor of 6 compared with a static expansion primary standard (SE2). Improvements of the SE2 performance by reducing the number of expansions and smaller uncertainties of expansion ratios are discussed.

  10. Cortical activation during power grip task with pneumatic pressure gauge: an fMRI study

    NASA Astrophysics Data System (ADS)

    Mohamad, M.; Mardan, N. H.; Ismail, S. S.

    2017-05-01

    Aging is associated with a decline in cognitive and motor function. But, the relationships with motor performance are less well understood. In this study, functional magnetic resonance imaging (fMRI) was used to assess cortical activation in older adults. This study employed power grip task that utilised block paradigm consisted of alternate 30s rest and active. A visual cue was used to pace the hand grip movement that clenched a cylindrical rubber bulb connected with pressure pneumatic gauge that measure the pressure (Psi). The objective of this study is determined the brain areas activated during motor task and the correlation between percentage signal change of each motor area (BA 4 and 6) and hand grip pressure. Result showed there was a significant difference in mean percentage signal change in BA 4 and BA 6 in both hemispheres and negative correlation obtained in BA 4 and BA 6. These results indicate that a reduced ability in the motor networks contribute to age-related decline in motor performance.

  11. An ionization pressure gauge with LaB6 emitter for long-term operation in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Wenzel, U.; Pedersen, T. S.; Marquardt, M.; Singer, M.

    2018-03-01

    We report here on a potentially significant improvement in the design of neutral pressure gauges of the so-called ASDEX-type which were first used in the Axially Symmetric Divertor EXperiment (ASDEX). Such gauges are considered state-of-the-art and are in wide use in fusion experiments, but they nonetheless suffer from a relatively high failure rate when operated at high magnetic field strengths for long times. This is therefore a significant concern for long-pulse, high-field experiments such as Wendelstein 7-X (W7-X) and ITER. The new design is much more robust. The improvement is to use a LaB6 crystal instead of a tungsten wire as the thermionic emitter of electrons in the gauge. Such a LaB6 prototype gauge was successfully operated for a total of 60 h in B = 3.1 T, confirming the significantly improved robustness of the new design and qualifying it for near-term operation in W7-X. With the LaB6 crystal, an order of magnitude reduction in heating current is achieved, relative to the tungsten filament based gauges, from 15-20 A to 1-2 A. This reduces the Lorenz forces and the heating power by an order of magnitude also and is presumably the reason for the much improved robustness. The new gauge design, test environment setup at the superconducting magnet, and results from test operation are described.

  12. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus

    SciTech Connect

    Wang, Xuebing; Chen, Ting; Qi, Xintong

    In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al{sub 2}O{sub 3} were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in anmore » offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al{sub 2}O{sub 3} pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus.« less

  13. Sources of variation in the determination of distal blood pressure measured using the strain gauge technique.

    PubMed

    Arveschoug, A K; Revsbech, P; Brøchner-Mortensen, J

    1998-07-01

    Using the determination of distal blood pressure (DBP) measured using the strain gauge technique as an example of a routine clinical physiological investigation involving many different observers (laboratory technicians), the present study was carried out to assess (1) the influence of the number of observers and the number of analyses made by each observer on the precision of a definitive value; and (2) the minimal difference between two determinations to detect a real change. A total of 45 patients participated in the study. They were all referred for DBP determination on suspicion of arterial peripheral vascular disease. In 30 of the patients, the DBP curves were read twice, with a 5-week interval, by 10 laboratory technicians. The results were analysed using the variance component model. The remaining 15 patients had their DBP determined twice on two different days with an interval of 1-3 days and the total day-to-day variation (SDdiff) of DBP was determined. The inter- and intraobserver variations were, respectively, 5.7 and 4.9 mmHg at ankle level and 3.5 and 2.7 mmHg at toe level. The index values as related to systolic pressure were somewhat lower. The mean day-to-day variation was 11 mmHg at ankle level and 10 mmHg at toe level, thereby giving a minimal significant difference between two DBP determinations of 22 mmHg at ankle and 20 mmHg at toe level. To decrease the value of SD (standard deviation) on a definitive determination of DBP and index values, it was slightly more effective if the value was based on two observers performing one independent DBP curve reading than if one observer made one or two DBP curve readings. The reduction in SDdiff was greatest at ankle level. The extent of the Sddiff decrease was greatest when two different observers made a single DBP reading each at both determinations compared with one different observer making two readings at each determination. Surprisingly, about half of the maximum reduction in the SDdiff was achieved

  14. EURAMET.M.P-S9: comparison in the negative gauge pressure range -950 to 0 hPa

    NASA Astrophysics Data System (ADS)

    Saxholm, S.; Otal, P.; AltintaS, A.; Bermanec, L. G.; Durgut, Y.; Hanrahan, R.; Kocas, I.; Lefkopoulos, A.; Pražák, D.; Sandu, I.; Åetina, J.; Spohr, I.; Steindl, D.; Tammik, K.; Testa, N.

    2016-01-01

    A comparison in the negative gauge pressure range was arranged in the period 2011 - 2012. A total of 14 laboratories participated in this comparison: BEV (Austria), CMI (Czech Republic), DANIAmet-FORCE (Denmark), EIM (Greece), HMI/FSB-LPM (Croatia), INM (Romania), IPQ (Portugal), LNE (France), MCCAA (Malta), METROSERT (Estonia), MIKES (Finland), MIRS/IMT/LMT (Slovenia), NSAI (Ireland) and UME (Turkey). The project was divided into two loops: Loop1, piloted by MIKES, and Loop2, piloted by LNE. The results of the two loops are reported separately: Loop1 results are presented in this paper. The transfer standard was Beamex MC5 no. 25516865 with internal pressure module INT1C, resolution 0.01 hPa. The nominal pressure range of the INT1C is -1000 hPa to +1000 hPa. The nominal pressure points for the comparison were 0 hPa, -200 hPa, -400 hPa, -600 hPa, -800 hPa and -950 hPa. The reference values and their uncertainties as well as the difference uncertainty between the laboratory results and the reference values were determined from the measurement data by Monte Carlo simulations. Stability uncertainty of the transfer standard was included in the final difference uncertainty. Degrees of equivalences and mutual equivalences between the laboratories were calculated. Each laboratory reported results for all twelve measurement points, which means that there were 168 reported values in total. Some 163 of the 168 values (97 %) agree with the reference values within the expanded uncertainties, with a coverage factor k = 2. Among the laboratories, four different methods were used to determine negative gauge pressure. It is concluded that special attention must be paid to the measurements and methods when measuring negative gauge pressures. There might be a need for a technical guide or a workshop that provides information about details and practices related to the measurements of negative gauge pressure, as well as differences between the different methods. The comparison is

  15. Effect of static pressure on absolute paleointensity recording with implications for meteorites

    NASA Astrophysics Data System (ADS)

    Volk, Michael W. R.; Gilder, Stuart A.

    2016-08-01

    We investigated the influence of hydrostatic and nonhydrostatic stress on the recording process of magnetic field intensity with particular relevance for meteorites that experienced pressures lower than 5 GPa corresponding to the lowest shock stage classification (S1) in meteorites. Thermal remanent magnetizations were imparted on natural obsidian samples containing pseudo-single domain titanomagnetite, analogous to some achondritic meteorites. Thellier-type paleointensity experiments were carried out at ambient conditions after pressure cycling to 0.6, 1.2, and 1.8 GPa. Each experiment used 10 samples to assess reproducibility, which is better than ±5%. The recorded paleointensity decreased 10%/GPa under hydrostatic stress and 20%/GPa under nonhydrostatic stress, leading to the fundamental conclusion that paleointensity results from meteorites may be appreciably underestimated. Pressure cycling shifts the blocking and unblocking spectra, thereby producing more linear slopes on an Arai diagram with increasing strain. We explain why, for samples with a single magnetization component that does not alter, a two-step paleointensity protocol sufficiently resolves the true paleointensity. Moreover, we propose that pressure cycling of pseudo-single domain bearing samples will remove the inherent curvature of the Arai slope, thereby allowing one to obtain a more accurate estimate of the true paleointensity. This likely also holds true for samples possessing multidomain grains. Conversely, linear trends on Arai plots in meteorites might have their origin in a pressure effect that does not necessarily reflect the ubiquitous presence of single domain particles.

  16. Pressure dependence of the absolute rate constant for the reaction OH + C2H2 from 228 to 413K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Borokowski, R. P.; Payne, W. A.; Stief, L. J.

    1980-01-01

    The pressure dependence of absolute rate constants for the reaction of OH + C2H2 yields products has been examined at five temperatures ranging from 228 to 413 K. The experimental techniques which was used is flash photolysis-resonance fluoresence. OH was produced by water photolysis and hydroxyl resonance fluorescent photons were measured by multiscaling techniques. The results indicate that the low pressure bimolecular rate constant is 4 x 10 the the minus 13th power cu cm molecule (-1) s(-1) over the temperature range studied. A substantial increase in the bimolecular rate constant with an increase in pressure was observed at all temperatures except 228 K. This indicates the importance of initial adduct formation and subsequent stablization. The high pressure results are well represented by the Arrhenius expression (k sub bi) sub infinity = (6.83 + or - 1.19) x 10 to the minus 12th power exp(-646 + or - 47/T)cu cm molecule (-1) s(-1). The results are compared to previous investigated and are theoretically discussed. The implications of these results on modeling of terrestrial and planetary atmospheres and also in combustion chemistry are discussed.

  17. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  18. Temperature and pressure dependence of the absolute rate constant for the reactions of NH2 radicals with acetylene and ethylene

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Nava, D. F.; Brobst, W. D.; Stief, L. J.

    1984-01-01

    The absolute rate constants for the reaction between the NH2 free radical and acetylene and ethylene is measured experimentally using a flash photolysis technique. The constant is considered to be a function of temperature and pressure. At each temperature level of the experiment, the observed pseudo-first-order rate constants were assumed to be independent of flash intensity. The results of the experiment indicate that the bimolecular rate constant for the NH2 + C2H2 reaction increases with pressure at 373 K and 459 K but not at lower temperatures. Results near the pressure limit conform to an Arrhenius expression of 1.11 (+ or -) 0.36 x 10 to the -13th over the temperature range from 241 to 459 K. For the reaction NH2 + C2H4, a smaller rate of increase in the bimolecular rate constant was observed over the temperature range 250-465 K. The implications of these results for current theoretical models of NH2 + C2H2 (or H4) reactions in the atmospheres of Jupiter and Saturn are discussed.

  19. 46 CFR 153.372 - Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). 153.372 Section 153.372 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). When table 1 references this...

  20. Challenge for the accurate CMT estimation of the offshore earthquakes using ocean bottom pressure gauges as seismometers

    NASA Astrophysics Data System (ADS)

    Kubota, T.; Saito, T.; Suzuki, W.; Hino, R.

    2017-12-01

    When an earthquake occurs in offshore region, ocean bottom pressure gauges (OBP) observe the low-frequency (> 400s) pressure change due to tsunami and also high-frequency (< 200 s) pressure change due to seismic waves (e.g. Filloux 1983; Matsumoto et al. 2012). When the period of the seafloor motion is sufficiently long (> 20 s), the relation between seafloor dynamic pressure change p and seafloor vertical acceleration az is approximately given as p=ρ0h0az (ρ0: seawater density, h0: sea depth) (e.g., Bolshakova et al. 2011; Matsumoto et al.,2012; Saito and Tsushima, 2016, JGR; Saito, 2017, GJI). Based on this relation, it is expected that OBP can be used as vertical accelerometers. If we use OBP deployed in offshore region as seismometer, the station coverage is improved and then the accuracy of the earthquake location is also improved. In this study, we analyzed seismograms together with seafloor dynamic pressure change records to estimate the CMT of the interplate earthquakes occurred at off the coast of Tohoku on 9 March, 2011 (Mw 7.3 and 6.5) (Kubota et al., 2017, EPSL), and discussed the estimation accuracy of the centroid horizontal location. When the dynamic pressure change recorded by OBP is used in addition to the seismograms, the horizontal location of CMT was reliably constrained. The centroid was located in the center of the rupture area estimated by the tsunami inversion analysis (Kubota et al., 2017). These CMTs had reverse-fault mechanisms consistent with the interplate earthquakes and well reproduces the dynamic pressure signals in the OBP records. Meanwhile, when we used only the inland seismometers, the centroids were estimated to be outside the rupture area. This study proved that the dynamic pressure change in OBP records are available as seismic-wave records, which greatly helped to investigate the source process of offshore earthquakes far from the coast.

  1. Challenge for the accurate CMT estimation of the offshore earthquakes using ocean bottom pressure gauges as seismometers

    NASA Astrophysics Data System (ADS)

    Kubota, T.; Saito, T.; Suzuki, W.; Hino, R.

    2016-12-01

    When an earthquake occurs in offshore region, ocean bottom pressure gauges (OBP) observe the low-frequency (> 400s) pressure change due to tsunami and also high-frequency (< 200 s) pressure change due to seismic waves (e.g. Filloux 1983; Matsumoto et al. 2012). When the period of the seafloor motion is sufficiently long (> 20 s), the relation between seafloor dynamic pressure change p and seafloor vertical acceleration az is approximately given as p=ρ0h0az (ρ0: seawater density, h0: sea depth) (e.g., Bolshakova et al. 2011; Matsumoto et al.,2012; Saito and Tsushima, 2016, JGR; Saito, 2017, GJI). Based on this relation, it is expected that OBP can be used as vertical accelerometers. If we use OBP deployed in offshore region as seismometer, the station coverage is improved and then the accuracy of the earthquake location is also improved. In this study, we analyzed seismograms together with seafloor dynamic pressure change records to estimate the CMT of the interplate earthquakes occurred at off the coast of Tohoku on 9 March, 2011 (Mw 7.3 and 6.5) (Kubota et al., 2017, EPSL), and discussed the estimation accuracy of the centroid horizontal location. When the dynamic pressure change recorded by OBP is used in addition to the seismograms, the horizontal location of CMT was reliably constrained. The centroid was located in the center of the rupture area estimated by the tsunami inversion analysis (Kubota et al., 2017). These CMTs had reverse-fault mechanisms consistent with the interplate earthquakes and well reproduces the dynamic pressure signals in the OBP records. Meanwhile, when we used only the inland seismometers, the centroids were estimated to be outside the rupture area. This study proved that the dynamic pressure change in OBP records are available as seismic-wave records, which greatly helped to investigate the source process of offshore earthquakes far from the coast.

  2. SUPPLEMENTARY COMPARISON COOMET. M.P-S5 of hydraulic gauge pressure standards from 5 MPa to 34 MPa

    NASA Astrophysics Data System (ADS)

    Babayev, E. A.; Klenovská, Simona; Páviš, Richard; Pražák, Dominik

    2018-01-01

    This report describes the results of bilateral inter laboratory comparison (BILC) denoted as COOMET.M.P-S5 (also known as supplementary comparison COOMET 723/AZ/17). The comparison measurements between the two participants, Czech Metrology Institute (CMI) (pilot laboratory) and Azerbaijan İnstitute of Metrology (AzMI), started in April 2017 and finished in June 2017. The transfer standards was a digital manometer, Crystal XP 2i with the gauge pressure range (0–34000) kPa. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  3. First application of tsunami back-projection and source inversion for the 2012 Haida Gwaii earthquake using tsunami data recorded on a dense array of seafloor pressure gauges

    NASA Astrophysics Data System (ADS)

    Gusman, A. R.; Satake, K.; Sheehan, A. F.; Mulia, I. E.; Heidarzadeh, M.; Maeda, T.

    2015-12-01

    Adaption of absolute or differential pressure gauges (APG or DPG) to Ocean Bottom Seismometers has provided the opportunity to study tsunamis. Recently we extracted tsunami waveforms of the 28 October 2012 Haida Gwaii earthquake recoded by the APG and DPG of Cascadia Initiative program (Sheehan et al., 2015, SRL). We applied such dense tsunami observations (48 stations) together with other records from DARTs (9 stations) to characterize the tsunami source. This study is the first study that used such a large number of offshore tsunami records for earthquake source study. Conventionally the curves of tsunami travel times are drawn backward from station locations to estimate the tsunami source region. Here we propose a more advanced technique called tsunami back-projection to estimate the source region. Our image produced by tsunami back-projection has the largest value or tsunami centroid that is very close to the epicenter and above the Queen Charlotte transform fault (QCF), whereas the negative values are mostly located east of Haida Gwaii in the Hecate Strait. By using tsunami back-projection we avoid picking initial tsunami phase which is a necessary step in the conventional method that is rather subjective. The slip distribution of the 2012 Haida Gwaii earthquake estimated by tsunami waveform inversion shows large slip near the trench (4-5 m) and also on a plate interface southeast the epicenter (3-4 m) below QCF. From the slip distribution, the calculated seismic moment is 5.4 × 1020 N m (Mw 7.8). The steep bathymetry offshore Haida Gwaii and the horizontal movement caused by the earthquake possibly affects the sea surface deformation. The potential tsunami energy calculated from the sea-surface deformation of pure faulting is 2.20 × 1013 J, while that from the bathymetry effect is 0.12 × 1013 J or about 5% of the total potential energy. The significant deformation above the steep slope is confirmed by another tsunami inversion that disregards fault

  4. Final report of EURAMET 1197: Supplementary bilateral comparison of hydraulic gauge pressure standards up to 50 MPa

    NASA Astrophysics Data System (ADS)

    Durgut, Yasin; Petrovski, Nenad; Kacarski, Vanco

    2012-01-01

    Interlaboratory comparisons are important for the laboratories to assess their own measurement capability. It is equally important for the accreditation bodies and assessors during the audit process of a laboratory to judge whether the laboratory is doing well. As per accreditation rules, it is mandatory for the testing and calibration laboratories to participate in such comparisons from time to time. In this report, results of the bilateral interlaboratory comparison in pressure area in hydraulic media up to 50 MPa gauge between UME (Turkey) and BOM (The FYR of Macedonia) are presented. The artefact used for the comparison was a digital pressure calibrator and its drift was taken into account in the calculation. Results show that all En values lie in acceptable limits. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by EURAMET, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. The major influence of the atmosphere on intracranial pressure: an observational study.

    PubMed

    Herbowski, Leszek

    2017-01-01

    The impact of the atmosphere on human physiology has been studied widely within the last years. In practice, intracranial pressure is a pressure difference between intracranial compartments and the surrounding atmosphere. This means that gauge intracranial pressure uses atmospheric pressure as its zero point, and therefore, this method of pressure measurement excludes the effects of barometric pressure's fluctuation. The comparison of these two physical quantities can only take place through their absolute value relationship. The aim of this study is to investigate the direct effect of barometric pressure on the absolute intracranial pressure homeostasis. A prospective observational cross-sectional open study was conducted in Szczecin, Poland. In 28 neurosurgical patients with suspected normal-pressure hydrocephalus, intracranial intraventricular pressure was monitored in a sitting position. A total of 168 intracranial pressure and atmospheric pressure measurements were performed. Absolute atmospheric pressure was recorded directly. All values of intracranial gauge pressure were converted to absolute pressure (the sum of gauge intracranial pressure and local absolute atmospheric pressure). The average absolute mean intracranial pressure in the patients is 1006.6 hPa (95 % CI 1004.5 to 1008.8 hPa, SEM 1.1), and the mean absolute atmospheric pressure is 1007.9 hPa (95 % CI 1006.3 to 1009.6 hPa, SEM 0.8). The observed association between atmospheric and intracranial pressure is strongly significant (Spearman correlation r = 0.87, p < 0.05) and all the measurements are perfectly reliable (Bland-Altman coefficient is 4.8 %). It appears from this study that changes in absolute intracranial pressure are related to seasonal variation. Absolute intracranial pressure is shown to be impacted positively by atmospheric pressure.

  6. The major influence of the atmosphere on intracranial pressure: an observational study

    NASA Astrophysics Data System (ADS)

    Herbowski, Leszek

    2017-01-01

    The impact of the atmosphere on human physiology has been studied widely within the last years. In practice, intracranial pressure is a pressure difference between intracranial compartments and the surrounding atmosphere. This means that gauge intracranial pressure uses atmospheric pressure as its zero point, and therefore, this method of pressure measurement excludes the effects of barometric pressure's fluctuation. The comparison of these two physical quantities can only take place through their absolute value relationship. The aim of this study is to investigate the direct effect of barometric pressure on the absolute intracranial pressure homeostasis. A prospective observational cross-sectional open study was conducted in Szczecin, Poland. In 28 neurosurgical patients with suspected normal-pressure hydrocephalus, intracranial intraventricular pressure was monitored in a sitting position. A total of 168 intracranial pressure and atmospheric pressure measurements were performed. Absolute atmospheric pressure was recorded directly. All values of intracranial gauge pressure were converted to absolute pressure (the sum of gauge intracranial pressure and local absolute atmospheric pressure). The average absolute mean intracranial pressure in the patients is 1006.6 hPa (95 % CI 1004.5 to 1008.8 hPa, SEM 1.1), and the mean absolute atmospheric pressure is 1007.9 hPa (95 % CI 1006.3 to 1009.6 hPa, SEM 0.8). The observed association between atmospheric and intracranial pressure is strongly significant (Spearman correlation r = 0.87, p < 0.05) and all the measurements are perfectly reliable (Bland-Altman coefficient is 4.8 %). It appears from this study that changes in absolute intracranial pressure are related to seasonal variation. Absolute intracranial pressure is shown to be impacted positively by atmospheric pressure.

  7. Final report on supplementary comparison APMP.M.P-S6 in gas gauge pressure from 10 MPa to 100 MPa

    NASA Astrophysics Data System (ADS)

    Kajikawa, Hiroaki; Olson, Douglas A.; Iizumi, Hideaki; Driver, Robert Greg; Kojima, Momoko

    2016-01-01

    A supplementary comparison of gas high-pressure standards was conducted between the National Metrology Institute of Japan (NMIJ/AIST) and the National Institute of Standards and Technology (NIST), within the framework of the Asia-Pacific Metrology Programme (APMP), in order to determine their degrees of equivalence in the pressure range from 10 MPa to 100 MPa in gauge mode. The pilot institute was NMIJ/AIST. The measurements were carried out from July 2014 to October 2014. Both participating institutes used pressure balances as their pressure standards. Different gases were used for the pressure medium: NMIJ/AIST used Nitrogen, while NIST used Helium. A set of two pressure monitors was used as the transfer standard. The pressure monitors were found sufficiently stable during the measurements. Characteristics of the pressure monitors were evaluated at the pilot institute, and then used for data corrections and uncertainty estimations. In particular, the effect of the gas medium on the pressure monitors was found to be significant, and then all the measurement data were corrected to those with Nitrogen. The degrees of equivalence between the two institutes were evaluated by the relative differences of the participant's results and their associated expanded (k = 2) uncertainties. The gas pressure standards in the range 10 MPa to 100 MPa for gauge mode of the two participating institutes were found to be equivalent within their claimed uncertainties. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  8. Effect of External Pressure and Catheter Gauge on Flow Rate, Kinetic Energy, and Endothelial Injury During Intravenous Fluid Administration in a Rabbit Model.

    PubMed

    Hu, Mei-Hua; Chan, Wei-Hung; Chen, Yao-Chang; Cherng, Chen-Hwan; Lin, Chih-Kung; Tsai, Chien-Sung; Chou, Yu-Ching; Huang, Go-Shine

    2016-01-01

    The effects of intravenous (IV) catheter gauge and pressurization of IV fluid (IVF) bags on fluid flow rate have been studied. However, the pressure needed to achieve a flow rate equivalent to that of a 16 gauge (G) catheter through smaller G catheters and the potential for endothelial damage from the increased kinetic energy produced by higher pressurization are unclear. Constant pressure on an IVF bag was maintained by an automatic adjustable pneumatic pressure regulator of our own design. Fluids running through 16 G, 18 G, 20 G, and 22 G catheters were assessed while using IV bag pressurization to achieve the flow rate equivalent to that of a 16 G catheter. We assessed flow rates, kinetic energy, and flow injury to rabbit inferior vena cava endothelium. By applying sufficient external constant pressure to an IVF bag, all fluids could be run through smaller (G) catheters at the flow rate in a 16 G catheter. However, the kinetic energy increased significantly as the catheter G increased. Damage to the venous endothelium was negligible or minimal/patchy cell loss. We designed a new rapid infusion system, which provides a constant pressure that compresses the fluid volume until it is free from visible residual fluid. When large-bore venous access cannot be obtained, multiple smaller catheters, external pressure, or both should be considered. However, caution should be exercised when fluid pressurized to reach a flow rate equivalent to that in a 16 G catheter is run through a smaller G catheter because of the profound increase in kinetic energy that can lead to venous endothelium injury.

  9. Final report on bilateral supplementary comparison APMP.M.P-S5 in hydraulic gauge pressure from 1 MPa to 10 MPa

    NASA Astrophysics Data System (ADS)

    Yue, J.; Yang, Y.; Sabuga, W.

    2016-01-01

    This report summarizes the results of the Asia-Pacific Metrology Programme (APMP) supplementary comparison APMP.M.P-S5 for hydraulic gauge pressure in the range of 1 MPa to 10 MPa, which is a bilateral comparison carried out at the National Institute of Metrology, China (NIM) and the Physikalisch-Technische Bundesanstalt, Germany (PTB) during the period June 2014 to June 2015. NIM piloted the comparison and provided the transfer standard, which was a piston-cylinder assembly (PCA) of 1 cm2 nominal effective area built in a hydraulic pressure balance manufactured by Fluke Corporation. The laboratory standards of NIM and PTB are both hydraulic pressure balances equipped with PCAs, of which the nominal effective area is 1 cm2 for NIM and 5 cm2 for PTB. The results of the comparison successfully demonstrated that the hydraulic gauge pressure standards of NIM and PTB in the range of 1 MPa to 10 MPa are equivalent within their claimed uncertainties. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  10. Spark ignition of flowing gases I : energies to ignite propane-air mixtures in pressure range of 2 to 4 inches mercury absolute

    NASA Technical Reports Server (NTRS)

    Swett, Clyde C , Jr

    1949-01-01

    Ignition studies of flowing gases were made to obtain information applicable to ignition problems in gas-turbine and ram-jet aircraft propulsion systems operating at altitude conditions.Spark energies required for ignition of a flowing propane-air mixture were determined for pressure of 2 to 4 inches mercury absolute, gas velocities of 5.0 to 54.2 feet per second, fuel-air ratios of 0.0607 to 0.1245, and spark durations of 1.5 to 24,400 microseconds. The results showed that at a pressure of 3 inches mercury absolute the minimum energy required for ignition occurred at fuel-air ratios of 0.08 to 0.095. The energy required for ignition increased almost linearly with increasing gas velocity. Shortening the spark duration from approximately 25,000 to 125 microseconds decreased the amount of energy required for ignition. A spark produced by the discharge of a condenser directly into the spark gap and having a duration of 1.5 microseconds required ignition energies larger than most of the long-duration sparks.

  11. The effect of regional sea level atmospheric pressure on sea level variations at globally distributed tide gauge stations with long records

    NASA Astrophysics Data System (ADS)

    Iz, H. Bâki

    2018-05-01

    This study provides additional information about the impact of atmospheric pressure on sea level variations. The observed regularity in sea level atmospheric pressure depends mainly on the latitude and verified to be dominantly random closer to the equator. It was demonstrated that almost all the annual and semiannual sea level variations at 27 globally distributed tide gauge stations can be attributed to the regional/local atmospheric forcing as an inverted barometric effect. Statistically significant non-linearities were detected in the regional atmospheric pressure series, which in turn impacted other sea level variations as compounders in tandem with the lunar nodal forcing, generating lunar sub-harmonics with multidecadal periods. It was shown that random component of regional atmospheric pressure tends to cluster at monthly intervals. The clusters are likely to be caused by the intraannual seasonal atmospheric temperature changes,which may also act as random beats in generating sub-harmonics observed in sea level changes as another mechanism. This study also affirmed that there are no statistically significant secular trends in the progression of regional atmospheric pressures, hence there was no contribution to the sea level trends during the 20th century by the atmospheric pressure.Meanwhile, the estimated nonuniform scale factors of the inverted barometer effects suggest that the sea level atmospheric pressure will bias the sea level trends inferred from satellite altimetry measurements if their impact is accounted for as corrections without proper scaling.

  12. 49 CFR 178.338-14 - Gauging devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., a fixed trycock line, or a differential pressure liquid level gauge must be used as the primary... control for filling. (2) The design pressure of each liquid level gauging device must be at least that of... openings for dip tube gauging devices and pressure gauges in flammable cryogenic liquid service must be...

  13. Final report on supplementary comparison APMP.M.P-S7.TRI in hydraulic gauge pressure from 40 MPa to 200 MPa

    NASA Astrophysics Data System (ADS)

    Kobata, Tokihiko; Olson, Douglas A.; Eltawil, Alaaeldin A.

    2017-01-01

    This report describes the results of a supplementary comparison of hydraulic high-pressure standards at three national metrology institutes (NMIs); National Metrology Institute of Japan, AIST (NMIJ/AIST), National Institute of Standards and Technology (NIST), USA and National Institute for Standards (NIS), Egypt, which was carried out at NIST during the period May 2001 to September 2001 within the framework of the Asia-Pacific Metrology Programme (APMP) in order to evaluate their degrees of equivalence at pressures in the range 40 MPa to 200 MPa for gauge mode. The pilot institute was NMIJ/AIST. Three working pressure standards from the institutes, in the form of piston-cylinder assemblies, were used for the comparison. The comparison and calculation methods used are discussed in this report. From the cross-float measurements, the differences between the working pressure standards of each institute were examined through an evaluation of the effective area of each piston-cylinder assembly with its uncertainty. From the comparison results, it was revealed that the values claimed by the participating institutes, NMIJ, NIST, and NIS, agree within the expanded (k = 2) uncertainties. The hydraulic pressure standards in the range 40 MPa to 200 MPa for gauge mode of the three participating NMIs were found to be equivalent within their claimed uncertainties. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  14. Absolute ozone densities in a radio-frequency driven atmospheric pressure plasma using two-beam UV-LED absorption spectroscopy and numerical simulations

    NASA Astrophysics Data System (ADS)

    Wijaikhum, A.; Schröder, D.; Schröter, S.; Gibson, A. R.; Niemi, K.; Friderich, J.; Greb, A.; Schulz-von der Gathen, V.; O'Connell, D.; Gans, T.

    2017-11-01

    The efficient generation of reactive oxygen species (ROS) in cold atmospheric pressure plasma jets (APPJs) is an increasingly important topic, e.g. for the treatment of temperature sensitive biological samples in the field of plasma medicine. A 13.56 MHz radio-frequency (rf) driven APPJ device operated with helium feed gas and small admixtures of oxygen (up to 1%), generating a homogeneous glow-mode plasma at low gas temperatures, was investigated. Absolute densities of ozone, one of the most prominent ROS, were measured across the 11 mm wide discharge channel by means of broadband absorption spectroscopy using the Hartley band centred at λ = 255 nm. A two-beam setup with a reference beam in Mach-Zehnder configuration is employed for improved signal-to-noise ratio allowing high-sensitivity measurements in the investigated single-pass weak-absorbance regime. The results are correlated to gas temperature measurements, deduced from the rotational temperature of the N2 (C 3 {{{\\Pi }}}u+ \\to B 3 {{{\\Pi }}}g+, υ = 0 \\to 2) optical emission from introduced air impurities. The observed opposing trends of both quantities as a function of rf power input and oxygen admixture are analysed and explained in terms of a zero-dimensional plasma-chemical kinetics simulation. It is found that the gas temperature as well as the densities of O and O2(b{}1{{{Σ }}}g+) influence the absolute O3 densities when the rf power is varied.

  15. Final report on APMP.M.P-S4: Results of the bilateral supplementary comparison on pressure measurements in the range (60 to 350) kPa of gauge pressure in gas media

    NASA Astrophysics Data System (ADS)

    Priruenrom, T.; Sabuga, W.; Konczak, T.

    2013-01-01

    The bilateral supplementary comparison APMP.M.P-S4 on pressure measurements in the range (60 to 350) kPa of gauge pressure in gas media was organized by National Institute of Metrology of Thailand, NIMT, as the pilot laboratory, comparing with Physikalisch-Technische Bundesanstalt of Germany, PTB. The objective of this comparison is to check equivalence of gas pressure standards between NIMT and PTB. The period of measurement covered November to December 2012. NIMT provided a transfer standard, which was a WC-WC piston-cylinder assembly (PCA) with a nominal effective area of 10 cm2 manufactured by Fluke Corporation, DHI. The measurements were performed at pressures (60, 100, 150, 200, 250, 300 and 350) kPa. The NIMT laboratory standard used was a pressure balance with a PCA of 10 cm2 manufactured by DHI and identified by serial number 0693. The PTB laboratory standard used was a pressure balance with a PCA of 10 cm2 manufactured by Desgranges et Huot (DH) and identified by serial number 288. The results of this comparison show that the relative difference of the effective area values obtained by NIMT and PTB is not larger than 4.3 ppm, which corresponds to En = 0.26. Therefore, it confirms that the gas pressure standards maintained by the two institutes, NIMT and PTB, in the pressure range (60 to 350) kPa in gauge mode are equivalent under their uncertainties claimed. The result of this comparison is essential to support the calibration and measurement capabilities (CMC) of NIMT in this pressure range. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the APMP, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  16. Final Report on the Key Comparison CCM.P-K4.2012 in Absolute Pressure from 1 Pa to 10 kPa

    PubMed Central

    Ricker, Jacob; Hendricks, Jay; Bock, Thomas; Dominik, Pražák; Kobata, Tokihiko; Torres, Jorge; Sadkovskaya, Irina

    2017-01-01

    The report summarizes the Consultative Committee for Mass (CCM) key comparison CCM.P-K4.2012 for absolute pressure spanning the range of 1 Pa to 10 000 Pa. The comparison was carried out at six National Metrology Institutes (NMIs), including National Institute of Standards and Technology (NIST), Physikalisch-Technische Bundesanstalt (PTB), Czech Metrology Institute (CMI), National Metrology Institute of Japan (NMIJ), Centro Nacional de Metrología (CENAM), and DI Mendeleyev Institute for Metrology (VNIIM). The comparison was made via a calibrated transfer standard measured at each of the NMIs facilities using their laboratory standard during the period May 2012 to September 2013. The transfer package constructed for this comparison preformed as designed and provided a stable artifact to compare laboratory standards. Overall the participants were found to be statistically equivalent to the key comparison reference value. PMID:28216793

  17. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  18. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  19. Absolute, pressure-dependent validation of a calibration-free, airborne laser hygrometer transfer standard (SEALDH-II) from 5 to 1200 ppmv using a metrological humidity generator

    NASA Astrophysics Data System (ADS)

    Buchholz, Bernhard; Ebert, Volker

    2018-01-01

    Highly accurate water vapor measurements are indispensable for understanding a variety of scientific questions as well as industrial processes. While in metrology water vapor concentrations can be defined, generated, and measured with relative uncertainties in the single percentage range, field-deployable airborne instruments deviate even under quasistatic laboratory conditions up to 10-20 %. The novel SEALDH-II hygrometer, a calibration-free, tuneable diode laser spectrometer, bridges this gap by implementing a new holistic concept to achieve higher accuracy levels in the field. We present in this paper the absolute validation of SEALDH-II at a traceable humidity generator during 23 days of permanent operation at 15 different H2O mole fraction levels between 5 and 1200 ppmv. At each mole fraction level, we studied the pressure dependence at six different gas pressures between 65 and 950 hPa. Further, we describe the setup for this metrological validation, the challenges to overcome when assessing water vapor measurements on a high accuracy level, and the comparison results. With this validation, SEALDH-II is the first airborne, metrologically validated humidity transfer standard which links several scientific airborne and laboratory measurement campaigns to the international metrological water vapor scale.

  20. EURAMET.M.P-S9 / EURAMET 1170, LOOP2. Comparison in the negative gauge pressure range -950 to 0 hPa

    NASA Astrophysics Data System (ADS)

    Otal, P.; Boineau, F.; Medina, N.; Pražák, D.; Wüthrich, C.; Saxholm, S.; Sabuga, W.; Kocas, I.; Durgut, Y.

    2017-01-01

    This report gives the results of a comparison of pressure standards of seven European National Metrology institutes in the range of negative gauge pressure from -950 hPa to 0 hPa. This comparison was piloted by LNE and was carried out from January 2011 to March 2012. This work is a part of the EURAMET project 1170 and is registered as a supplementary comparison EURAMET.M.P-S9. The transfer standard used was a pressure monitor RPM4 A160Ks manufactured by DH Instruments Inc., with a resolution of 0.1 Pa. The reference values have been determined from the weighted mean of the deviations reported by the participants for each specified pressure. Seventy-three of the seventy-seven values (96%) reported by the laboratories agree with the reference values within the expanded uncertainties with a coverage factor k = 2. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  1. Comparison of 2 correction methods for absolute values of esophageal pressure in subjects with acute hypoxemic respiratory failure, mechanically ventilated in the ICU.

    PubMed

    Guérin, Claude; Richard, Jean-Christophe

    2012-12-01

    A recent trial showed that setting PEEP according to end-expiratory transpulmonary pressure (P(pl,ee)) in acute lung injury/acute respiratory distress syndrome (ALI/ARDS) might improve patient outcome. P(pl,ee) was obtained by subtracting the absolute value of esophageal pressure (P(es)) from airway pressure an invariant value of 5 cm H(2)O. The goal of the present study was to compare 2 methods for correcting absolute P(es) values in terms of resulting P(pl,ee) and recommended PEEP. Measurements collected prospectively from 42 subjects with various forms of acute hypoxemic respiratory failure receiving mechanical ventilation in ICU were analyzed. P(es) was measured at PEEP (P(es,ee)) and at relaxation volume of the respiratory system Vr (P(es,Vr)), obtained by allowing the subject to exhale into the atmosphere (zero PEEP). Two methods for correcting P(es) were compared: Talmor method (P(pl,ee,Talmor) = P(es,ee) - 5 cm H(2)O), and Vr method (P(es,ee,Vr) = P(es,ee) - P(es,Vr)). The rationale was that P(es,Vr) was a more physiologically based correction factor than an invariant value of 5 cm H(2)O applied to all subjects. Over the 42 subjects, median and interquartile range of P(es,ee) and P(es,Vr) were 11 (7-14) cm H(2)O and 8 (4-11) cm H(2)O, respectively. P(pl,ee,Talmor) was 6 (1-8) cm H(2)O, and P(es,ee,Vr) was 2 (1-5) cm H(2)O (P = .008). Two groups of subjects were defined, based on the difference between the 2 corrected values. In 28 subjects P(pl,ee,Talmor) was ≥ P(es,ee,Vr) (7 [5-9] cm H(2)O vs 2 [1-5] cm H(2)O, respectively), while in 14 subjects P(es,ee,Vr) was > P(pl,ee,Talmor) (2 [0-4] cm H(2)O vs -1 [-3 to 2] cm H(2)O, respectively). P(pl,ee,Vr) was significantly greater than P(pl,ee,Talmor) (7 [5-11] cm H(2)O vs 5 [2-7] cm H(2)O) in the former, and significantly lower in the latter (1 [-2 to 6] cm H(2)O vs 6 [4-9] cm H(2)O). Referring absolute P(es) values to Vr rather than to an invariant value would be better adapted to a patient's physiological

  2. Fiber optic gap gauge

    DOEpatents

    Wood, Billy E [Livermore, CA; Groves, Scott E [Brentwood, CA; Larsen, Greg J [Brentwood, CA; Sanchez, Roberto J [Pleasanton, CA

    2006-11-14

    A lightweight, small size, high sensitivity gauge for indirectly measuring displacement or absolute gap width by measuring axial strain in an orthogonal direction to the displacement/gap width. The gap gauge includes a preferably titanium base having a central tension bar with springs connecting opposite ends of the tension bar to a pair of end connector bars, and an elongated bow spring connected to the end connector bars with a middle section bowed away from the base to define a gap. The bow spring is capable of producing an axial strain in the base proportional to a displacement of the middle section in a direction orthogonal to the base. And a strain sensor, such as a Fabry-Perot interferometer strain sensor, is connected to measure the axial strain in the base, so that the displacement of the middle section may be indirectly determined from the measurement of the axial strain in the base.

  3. Source depth dependence of micro-tsunamis recorded with ocean-bottom pressure gauges: The January 28, 2000 Mw 6.8 earthquake off Nemuro Peninsula, Japan

    USGS Publications Warehouse

    Hirata, K.; Takahashi, H.; Geist, E.; Satake, K.; Tanioka, Y.; Sugioka, H.; Mikada, H.

    2003-01-01

    Micro-tsunami waves with a maximum amplitude of 4-6 mm were detected with the ocean-bottom pressure gauges on a cabled deep seafloor observatory south of Hokkaido, Japan, following the January 28, 2000 earthquake (Mw 6.8) in the southern Kuril subduction zone. We model the observed micro-tsunami and estimate the focal depth and other source parameters such as fault length and amount of slip using grid searching with the least-squares method. The source depth and stress drop for the January 2000 earthquake are estimated to be 50 km and 7 MPa, respectively, with possible ranges of 45-55 km and 4-13 MPa. Focal depth of typical inter-plate earthquakes in this region ranges from 10 to 20 km and stress drop of inter-plate earthquakes generally is around 3 MPa. The source depth and stress drop estimates suggest that the earthquake was an intra-slab event in the subducting Pacific plate, rather than an inter-plate event. In addition, for a prescribed fault width of 30 km, the fault length is estimated to be 15 km, with possible ranges of 10-20 km, which is the same as the previously determined aftershock distribution. The corresponding estimate for seismic moment is 2.7x1019 Nm with possible ranges of 2.3x1019-3.2x1019Nm. Standard tide gauges along the nearby coast did not record any tsunami signal. High-precision ocean-bottom pressure measurements offshore thus make it possible to determine fault parameters of moderate-sized earthquakes in subduction zones using open-ocean tsunami waveforms. Published by Elsevier Science B. V.

  4. Aging gauge

    DOEpatents

    Betts, Robert E.; Crawford, John F.

    1989-04-04

    An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.

  5. Aging gauge

    DOEpatents

    Betts, Robert E.; Crawford, John F.

    1989-01-01

    An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.

  6. Final report on the key comparison CCM.P-K4.2012 in absolute pressure from 1 Pa to 10 kPa

    NASA Astrophysics Data System (ADS)

    Ricker, Jacob; Hendricks, Jay; Bock, Thomas; Dominik, Pražák; Kobata, Tokihiko; Torres, Jorge; Sadkovskaya, Irina

    2017-01-01

    The report summarizes the Consultative Committee for Mass (CCM) key comparison CCM.P-K4.2012 for absolute pressure spanning the range of 1 Pa to 10 000 Pa. The comparison was carried out at six National Metrology Institutes (NMIs), including National Institute of Standards and Technology (NIST), Physikalisch-Technische Bundesanstalt (PTB), Czech Metrology Institute (CMI), National Metrology Institute of Japan (NMIJ), Centro Nacional de Metrología (CENAM), and DI Mendeleyev Institute for Metrology (VNIIM). The comparison was made via a calibrated transfer standard measured at each of the NMIs facilities using their laboratory standard during the period May 2012 to September 2013. The transfer package constructed for this comparison preformed as designed and provided a stable artifact to compare laboratory standards. Overall the participants were found to be statistically equivalent to the key comparison reference value. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  7. Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric-pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Carter, C.

    2014-12-01

    Nanosecond-pulsed plasma jets that are generated under ambient air conditions and free from confinement of electrodes have become of great interest in recent years due to their promising applications in medicine and dentistry. Reactive oxygen species that are generated by nanosecond-pulsed, room-temperature non-equilibrium He-O2 plasma jets among others are believed to play an important role during the bactericidal or sterilization processes. We report here absolute measurements of atomic oxygen density in a 1 mm-diameter He/(1%)O2 plasma jet at atmospheric pressure using two-photon absorption laser-induced fluorescence spectroscopy. Oxygen number density on the order of 1013 cm-3 was obtained in a 150 ns, 6 kV single-pulsed plasma jet for an axial distance up to 5 mm above the device nozzle. Temporally resolved O density measurements showed that there are two maxima, separated in time by 60-70 µs, and a total pulse duration of 260-300 µs. Electrostatic modeling indicated that there are high-electric-field regions near the nozzle exit that may be responsible for the observed temporal behavior of the O production. Both the field-distribution-based estimation of the time interval for the O number density profile and a pulse-energy-dependence study confirmed that electric-field-dependent, direct and indirect electron-induced processes play important roles for O production.

  8. Electronic-type vacuum gauges with replaceable elements

    DOEpatents

    Edwards, D. Jr.

    1984-09-18

    In electronic devices for measuring pressures in vacuum systems, the metal elements which undergo thermal deterioration are made readily replaceable by making them parts of a simple plug-in unit. Thus, in ionization gauges, the filament and grid or electron collector are mounted on the novel plug-in unit. In thermocouple pressure gauges, the heater and attached thermocouple are mounted on the plug-in unit. Plug-in units have been designed to function, alternatively, as ionization gauge and as thermocouple gauge, thus providing new gauges capable of measuring broader pressure ranges than is possible with either an ionization gauge or a thermocouple gauge. 5 figs.

  9. Electronic-type vacuum gauges with replaceable elements

    DOEpatents

    Edwards, Jr., David

    1984-01-01

    In electronic devices for measuring pressures in vacuum systems, the metal elements which undergo thermal deterioration are made readily replaceable by making them parts of a simple plug-in unit. Thus, in ionization gauges, the filament and grid or electron collector are mounted on the novel plug-in unit. In thermocouple pressure gauges, the heater and attached thermocouple are mounted on the plug-in unit. Plug-in units have been designed to function, alternatively, as ionization gauge and as thermocouple gauge, thus providing new gauges capable of measuring broader pressure ranges than is possible with either an ionization gauge or a thermocouple gauge.

  10. Analysis of the most recent data of Cascais Tide Gauge

    NASA Astrophysics Data System (ADS)

    Antunes, Carlos; Taborda, Rui; Mendes, Virgílio B.

    2010-05-01

    In order to meet international standards and to integrate sea level changes and tsunami monitoring networks, Cascais tide gauge, one of the oldest in the world, has been upgraded in 2003 with new acoustic equipment with digital data acquisition, temperature and air-pressure sensors, and internet connection for real time data. The new tide gauge is located very close to the old analogical gauge, which is still working. Datum links between both gauges and the permanent GPS station of Cascais were made and height differences between gauges and the GPS station have been monitored to verify site stability and to estimate the absolute vertical velocity of the site, and therefore, the absolute sea level changes. Tide gauge data from 2000 to 2009 has been analyzed and relative and absolute sea level rise rates have been estimated. The estimation of sea level rise rate with the short baseline of 10 years is made with the daily mean sea level data corrected from the inverse barometric effect. The relative sea level trend is obtained from a 60-day moving average run over the corrected daily mean sea level. The estimated rate has shown greater stability in contrast to the analysis of daily mean sea level raw data, which shows greater variability and uncertainty. Our results show a sea level rise rate of 2.6 mm/year (± 0.3 mm/year), higher than previous rates (2.1 mm/year for 1990 decade and 1.6 mm/year from 1920 to 2000), which is compatible with a sea level rise acceleration scenario. From the analysis of Cascais GPS data, for the period 1990.0 to 2010.0 we obtain an uplift rate of 0.3 mm/year leading to an absolute sea level rise of 2.9 mm/year for Cascais, under the assumption, as predicted by the ICE-5G model, that Cascais has no vertical displacement caused by the post-glacial isostatic adjustment.

  11. Final report on key comparison APMP.M.P-K13 in hydraulic gauge pressure from 50 MPa to 500 MPa

    NASA Astrophysics Data System (ADS)

    Kajikawa, Hiroaki; Kobata, Tokihiko; Yadav, Sanjay; Jian, Wu; Changpan, Tawat; Owen, Neville; Yanhua, Li; Hung, Chen-Chuan; Ginanjar, Gigin; Choi, In-Mook

    2015-01-01

    This report describes the results of a key comparison of hydraulic high-pressure standards at nine National Metrology Institutes (NMIs: NMIJ/AIST, NPLI, NMC/A*STAR, NIMT, NMIA, NIM, CMS/ITRI, KIM-LIPI, and KRISS) within the framework of the Asia-Pacific Metrology Programme (APMP) in order to determine their degrees of equivalence in the pressure range from 50 MPa to 500 MPa in gauge mode. The pilot institute was the National Metrology Institute of Japan (NMIJ/AIST). All participating institutes used hydraulic pressure balances as their pressure standards. A set of pressure balance with a free-deformational piston-cylinder assembly was used as the transfer standard. Three piston-cylinder assemblies, only one at a time, were used to complete the measurements in the period from November 2010 to January 2013. Ten participants completed their measurements and reported the pressure-dependent effective areas of the transfer standard at specified pressures with the associated uncertainties. Since one of the participants withdrew its results, the measurement results of the nine participants were finally compared. The results were linked to the CCM.P-K13 reference values through the results of two linking laboratories, NMIJ/AIST and NPLI. The degrees of equivalence were evaluated by the relative deviations of the participants' results from the CCM.P-K13 key comparison reference values, and their associated combined expanded (k=2) uncertainties. The results of all the nine participating NMIs agree with the CCM.P-K13 reference values within their expanded (k=2) uncertainties in the entire pressure range from 50 MPa to 500 MPa. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  12. 49 CFR 178.338-14 - Gauging devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...

  13. 49 CFR 178.338-14 - Gauging devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...

  14. 49 CFR 178.338-14 - Gauging devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...

  15. 49 CFR 178.338-14 - Gauging devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...

  16. Comparison of 20-, 23-, and 25-gauge air infusion forces.

    PubMed

    Machado, Leonardo Martins; Magalhães, Octaviano; Maia, Mauricio; Rodrigues, Eduardo B; Farah, Michel Eid; Ismail, Kamal A R; Molon, Leandro; Oliveira, Danilo A

    2011-11-01

    To determine and compare 20-, 23-, and 25-gauge retinal infusion air jet impact pressure (force per unit area) in an experimental setting. Experimental laboratory investigation. Infusion cannulas were connected to a compressed air system. A controlled valve mechanism was used to obtain increasing levels of infusion pressure. Each infusion tube was positioned in front of a manual transducer to measure force. Impact pressure was calculated using known formulas in fluid dynamics. The 20-gauge infusion jet showed similar impact pressure values compared with the 23-gauge infusion jet. Both showed higher levels than the 25-gauge infusion jet. This was because of the smaller jet force for the 25-gauge system. In this experimental study, both the 23- and the 20-gauge air infusion jet showed higher impact pressure values compared with the 25-gauge air infusion jet. This could be of concern regarding air infusion during 23-gauge vitrectomy since retinal damage has been shown in standard-gauge surgeries.

  17. Spatiotemporal distribution of interplate slip following the 2003 Tokachi-oki earthquake deduced from ocean bottom pressure gauges and onland GNSS data

    NASA Astrophysics Data System (ADS)

    Itoh, Y.; Nishimura, T.; Ariyoshi, K.; Matsumoto, H.

    2017-12-01

    The 2003 Tokachi-oki earthquake (Mw 8.0) is an interplate earthquake along the Kurile trench. Its co- and post-seismic deformation has been observed by onland GNSS [e.g., Miyazaki et al. 2004] and modeled with afterslip and/or viscoelastic relaxation [e.g., Itoh and Nishimura 2016]. In the offshore region, two ocean bottom pressure gauges (OBPs) are operated by JAMSTEC since July 1999 [Hirata et al. 2002] and they have continuously observed the pre-, co- and post-seismic pressure change of the 2003 event [Baba et al. 2006]. The observed pressure change can be interpreted as vertical displacement, and the resolution of slip beneath the seafloor far from the land was improved by incorporating these pressure data into onland GNSS data [Baba et al. 2006]. However, no previous studies used postseismic pressure data for several years to estimate an interplate slip. Because, in this region, an M8 class event similar to the 2003 event has occurred in 1952, it is important to clarify a healing process of an interplate coupling which may lead to a next M8 class event in terms of the earthquake cycle. Itoh and Nishimura [2017, JpGU-AGU Joint Meeting] estimated it but used only onland GNSS data. In this study, we use both onland GNSS and OBP data. For OBP data analysis, we first removed the tidal component using BAYTAP08 [Tamura et al. 1991; Tamura and Agnew 2008]. Next, we corrected the temporal fluctuation of data correlating with temperature [Baba et al. 2006]. We estimated the linear trend before the 2003 event using the corrected time series from 2002 Jan. 1 to 2003 Sep. 1 and remove the estimated trend from the data after the 2003 event. Here, we assumed a non-linear drift could be ignored. Finally, we down-sampled the remained time series with an interval of 1 month. For the onland GNSS data, we used the same data set of Itoh and Nishimura [2017, JpGU-AGU Joint Meeting]. We constructed the model consisting of coseismic slip of the 2003 and M6-7 events in the postseismic

  18. High and low negative pressure suction techniques in EUS-guided fine-needle tissue acquisition by using 25-gauge needles: a multicenter, prospective, randomized, controlled trial.

    PubMed

    Kudo, Taiki; Kawakami, Hiroshi; Hayashi, Tsuyoshi; Yasuda, Ichiro; Mukai, Tsuyoshi; Inoue, Hiroyuki; Katanuma, Akio; Kawakubo, Kazumichi; Ishiwatari, Hirotoshi; Doi, Shinpei; Yamada, Reiko; Maguchi, Hiroyuki; Isayama, Hiroyuki; Mitsuhashi, Tomoko; Sakamoto, Naoya

    2014-12-01

    EUS-guided FNA (EUS-FNA) has a high diagnostic accuracy for pancreatic diseases. However, although most reports have typically focused on cytology, histological tissue quality has rarely been investigated. The effectiveness of EUS-FNA combined with high negative pressure (HNP) suction was recently indicated for tissue acquisition, but has not thus far been tested in a prospective, randomized clinical trial. To evaluate the adequacy of EUS-FNA with HNP for the histological diagnosis of pancreatic lesions by using 25-gauge needles. Prospective, single-blind, randomized, controlled crossover trial. Seven tertiary referral centers. Patients referred for EUS-FNA of pancreatic solid lesions. From July 2011 to April 2012, 90 patients underwent EUS-FNA of pancreatic solid masses by using normal negative pressure (NNP) and HNP with 2 respective passes. The order of the passes was randomized, and the sample adequacy, quality, and histology were evaluated by a single expert pathologist. EUS-FNA by using NNP and HNP. The adequacy of tissue acquisition and the accuracy of histological diagnoses made by using the EUS-FNA technique with HNP. We found that 72.2% (65/90) and 90% (81/90) of the specimens obtained using NNP and HNP, respectively, were adequate for histological diagnosis (P = .0003, McNemar test). For 73.3% (66/90) and 82.2% (74/90) of the specimens obtained by using NNP and HNP, respectively, an accurate diagnosis was achieved (P = .06, McNemar test). Pancreatitis developed in 1 patient after this procedure, which subsided with conservative therapy. This was a single-blinded, crossover study. Biopsy procedures that combine the EUS-FNA with HNP techniques are superior to EUS-FNA with NNP procedures for tissue acquisition. ( UMIN000005939.). Copyright © 2014 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  19. Measuring Pressure Has a New Standard

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Force-Balanced Piston Gauge (FPG) tests and calibrates instrumentation operating in the low pressure range. The system provides a traceable, primary calibration standard for measuring pressures in the range of near 0 to 15 kPa (2.2 psi) in both gauge and absolute measurement modes. The hardware combines a large area piston-cylinder with a load cell measuring the force resulting from pressures across the piston. The mass of the piston can be tared out, allowing measurement to start from zero. A pressure higher than the measured pressure, which keeps the piston centered, lubricates an innovative conical gap located between the piston and the cylinder, eliminating the need for piston rotation. A pressure controller based on the control of low gas flow automates the pressure control. DHI markets the FPG as an automated primary standard for very low-gauge and absolute pressures. DHI is selling the FPG to high-end metrology laboratories on a case by case basis, with a full commercial release to follow.

  20. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  1. Precision manometer gauge

    DOEpatents

    McPherson, Malcolm J.; Bellman, Robert A.

    1984-01-01

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  2. Precision manometer gauge

    DOEpatents

    McPherson, M.J.; Bellman, R.A.

    1982-09-27

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  3. Bakeable McLeod gauge

    NASA Technical Reports Server (NTRS)

    Kreisman, W. S. (Inventor)

    1965-01-01

    A low pressure gauge of the McLeod type demonstrating superior performance and measuring characteristics is described. A mercury reservoir which is kept in a vacuum at all times as well as bakeable glass components to reduce contamination are featured.

  4. Ultrahigh vacuum gauge having two collector electrodes

    NASA Technical Reports Server (NTRS)

    Torney, F. L., Jr. (Inventor)

    1967-01-01

    A gauge for measuring ultrahigh vacuums with great accuracy is described. It provides a means for ionizing the gas whose pressure is being measured, and consists of a collector electrode, a suppressor, radiation shielding, and a second collector.

  5. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  6. 49 CFR 178.337-14 - Gauging devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Containers for Motor Vehicle Transportation § 178.337-14 Gauging devices. (a) Liquid level gauging devices. See § 173.315(h) of this subchapter. (b) Pressure gauges. (1) See § 173.315(h) of this subchapter. (2) Each cargo tank used in carbon dioxide, refrigerated liquid or nitrous oxide, refrigerated liquid...

  7. 49 CFR 178.337-14 - Gauging devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Containers for Motor Vehicle Transportation § 178.337-14 Gauging devices. (a) Liquid level gauging devices. See § 173.315(h) of this subchapter. (b) Pressure gauges. (1) See § 173.315(h) of this subchapter. (2) Each cargo tank used in carbon dioxide, refrigerated liquid or nitrous oxide, refrigerated liquid...

  8. 49 CFR 178.337-14 - Gauging devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Containers for Motor Vehicle Transportation § 178.337-14 Gauging devices. (a) Liquid level gauging devices. See § 173.315(h) of this subchapter. (b) Pressure gauges. (1) See § 173.315(h) of this subchapter. (2) Each cargo tank used in carbon dioxide, refrigerated liquid or nitrous oxide, refrigerated liquid...

  9. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  10. 49 CFR 178.337-14 - Gauging devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Containers for Motor Vehicle Transportation § 178.337-14 Gauging devices. (a) Liquid level gauging devices. See § 173.315(h) of this subchapter. (b) Pressure gauges. (1) See § 173.315(h) of this subchapter. (2) Each cargo tank used in carbon dioxide, refrigerated liquid or nitrous oxide, refrigerated liquid...

  11. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  12. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  13. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  14. Carbon nanotubes based vacuum gauge

    NASA Astrophysics Data System (ADS)

    Rudyk, N. N.; Il'in, O. I.; Il'ina, M. V.; Fedotov, A. A.; Klimin, V. S.; Ageev, O. A.

    2017-11-01

    We have created an ionization type Vacuum gauge with sensor element based on an array of vertically aligned carbon nanotubes. Obtained asymmetrical current-voltage characteristics at different voltage polarity on the electrode with the CNTs. It was found that when applying a negative potential on an electrode with the CNTs, the current in the gap is higher than at a positive potential. In the pressure range of 1 ÷ 103 Torr vacuum gauge sensitivity was 6 mV/Torr (at a current of 4.5·10-5 A) and in the range of 10-5 ÷ 1 Torr was 10 mV/Torr (at a current of 1.3·10-5 A). It is shown that the energy efficiency of vacuum gauge can be increased in the case where electrode with CNT operates as an emitter of electrons.

  15. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  16. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  17. Gauge engineering and propagators

    NASA Astrophysics Data System (ADS)

    Maas, Axel

    2017-03-01

    Beyond perturbation theory gauge-fixing becomes more involved due to the Gribov-Singer ambiguity: The appearance of additional gauge copies requires to define a procedure how to handle them. For the case of Landau gauge the structure and properties of these additional gauge copies will be investigated. Based on these properties gauge conditions are constructed to account for these gauge copies. The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.

  18. Higgsed Gauge-flation

    DOE PAGES

    Adshead, Peter; Sfakianakis, Evangelos I.

    2017-08-29

    We study a variant of Gauge-flation where the gauge symmetry is spontaneously broken by a Higgs sector. Here, we work in the Stueckelberg limit and demonstrate that the dynamics remain (catastrophically) unstable for cases where the gauge field masses satisfy γ< 2, where γ= g 2 2=ψH 2, g is the gauge coupling, ψ is the gauge field vacuum expectation value, and H is the Hubble rate. We compute the spectrum of density uctuations and gravitational waves, and show that the model can produce observationally viable spectra. The background gauge field texture violates parity, resulting in a chiral gravitational wavemore » spectrum. This arises due to an exponential enhancement of one polarization of the spin-2 fluctuation of the gauge field. Higgsed Gauge-flation can produce observable gravitational waves at in inflationary energy scales well below the GUT scale.« less

  19. Higgsed Gauge-flation

    SciTech Connect

    Adshead, Peter; Sfakianakis, Evangelos I.

    We study a variant of Gauge-flation where the gauge symmetry is spontaneously broken by a Higgs sector. Here, we work in the Stueckelberg limit and demonstrate that the dynamics remain (catastrophically) unstable for cases where the gauge field masses satisfy γ< 2, where γ= g 2 2=ψH 2, g is the gauge coupling, ψ is the gauge field vacuum expectation value, and H is the Hubble rate. We compute the spectrum of density uctuations and gravitational waves, and show that the model can produce observationally viable spectra. The background gauge field texture violates parity, resulting in a chiral gravitational wavemore » spectrum. This arises due to an exponential enhancement of one polarization of the spin-2 fluctuation of the gauge field. Higgsed Gauge-flation can produce observable gravitational waves at in inflationary energy scales well below the GUT scale.« less

  20. Higgsed Gauge-flation

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Sfakianakis, Evangelos I.

    2017-08-01

    We study a variant of Gauge-flation where the gauge symmetry is spontaneously broken by a Higgs sector. We work in the Stueckelberg limit and demonstrate that the dynamics remain (catastrophically) unstable for cases where the gauge field masses satisfy γ < 2, where γ = g 2 ψ 2/ H 2, g is the gauge coupling, ψ is the gauge field vacuum expectation value, and H is the Hubble rate. We compute the spectrum of density fluctuations and gravitational waves, and show that the model can produce observationally viable spectra. The background gauge field texture violates parity, resulting in a chiral gravitational wave spectrum. This arises due to an exponential enhancement of one polarization of the spin-2 fluctuation of the gauge field. Higgsed Gauge-flation can produce observable gravitational waves at inflationary energy scales well below the GUT scale.

  1. Final report on key comparison APMP.M.P-K3: Absolute pressure measurements in gas from 3 × 10-6 Pa to 9 × 10-4 Pa

    NASA Astrophysics Data System (ADS)

    Yoshida, H.; Arai, K.; Akimichi, H.; Hong, S. S.; Song, H. W.

    2011-01-01

    The results of a key comparison of ultra-high vacuum standards at two national metrology institutes (NMIJ/AIST and KRISS) are reported. This bilateral comparison was carried out from May 2010 to October 2010 within the framework of the Asia-Pacific Metrology Programme (APMP) to determine their degrees of equivalence at pressures in the range from 3 × 10-6 Pa to 9 × 10-4 Pa. The pilot institute was NMIJ/AIST. Two spinning rotor gauges and two hot cathode ionization gauges were used as the transfer standards. NMIJ/AIST used two calibration systems: the dynamic expansion system (NMIJ-DES) and two-stage flow-dividing system (NMIJ-TFS). KRISS used the dynamic expansion system. The transfer standards were sufficiently stable to meet the requirements of the comparison compared with those of previous international comparisons owing to some improvements of the protocol and the transfer standards. The ultra-high vacuum standards of NMIJ/AIST and KRISS were found to be equivalent within their claimed uncertainties in the range from 3 × 10-6 Pa to 9 × 10-5 Pa. The NMIJ-DES results, which have smaller uncertainty than NMIJ-TFS, were transferred to the corresponding CCM key comparison, CCM.P-K3, in the range from 3 × 10-6 Pa to 9 × 10-5 Pa and it is shown that the NMIJ values were equivalent to the CCM key comparison reference value within the claimed uncertainties. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  2. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. © 2013 John Wiley & Sons Ltd.

  3. Reduced thalamic N-acetylaspartate in idiopathic normal pressure hydrocephalus: a controlled 1H-magnetic resonance spectroscopy study of frontal deep white matter and the thalamus using absolute quantification.

    PubMed

    Lundin, F; Tisell, A; Dahlqvist Leinhard, O; Tullberg, M; Wikkelsö, C; Lundberg, P; Leijon, G

    2011-07-01

    Patients with idiopathic normal pressure hydrocephalus (INPH) frequently have a reduction in cerebral blood flow in the subcortical frontal lobe/basal ganglia/thalamic areas. With magnetic resonance spectroscopy, the metabolism in the brain can be examined. The aim of this study was to investigate if there was a compromised metabolism in the thalamus and in the subcortical frontal areas in INPH patients. This was done by measuring total creatine, myo-inositol, total choline, N-acetylaspartate (NAA), total N-acetylaspartate (tNA), glutamate and lactate levels. A comparison was made with healthy individuals (HI). 16 patients (nine males, seven females, mean age 74 years, range 49-83) diagnosed as INPH and 15 HI (nine males, six females, mean age 74 years, range 62-89) were examined. (1)H magnetic resonance spectroscopy (1.5 T, point-resolved spectroscopy, echo time/relaxation time 30/3000 ms, volume of interest 2.5-3 ml) was performed in frontal deep white matter and in the thalamus. Absolute quantification with internal water as a reference was used. INPH patients had lower NAA (p=0.02) and lower tNA (p=0.05) concentrations in the thalamus compared with HI. NAA and tNA in the frontal deep white matter did not differ between patients and HI. The absolute metabolic concentrations of total creatine, myo-inositol total choline, tNA, lactate and Cr ratios in frontal deep white matter and in the thalamus were similar in INPH patients and HI. Reduced thalamic NAA and tNA in INPH patients suggest a compromised metabolic neuronal function in these regions. Thus, the thalamus might have an important role in the pathogenesis of INPH.

  4. Final report on key comparison EURAMET.M.P-K13 in the range 50 MPa to 500 MPa of hydraulic gauge pressure

    NASA Astrophysics Data System (ADS)

    Kocas, I.; Sabuga, W.; Bergoglio, M.; Eltaweel, A.; Korasie, C.; Farar, P.; Setina, J.; Waller, B.; Durgut, Y.

    2015-01-01

    The regional key comparison EURAMET.M.P-K13 for pressure measurements in liquid media from 50 MPa to 500 MPa was piloted by the TÜBİTAK UME Pressure Group Laboratories, Turkey. The transfer standard was a DH-Budenberg pressure balance with a free deformation piston-cylinder unit of 2 mm2 nominal effective area. Six laboratories from the EURAMET region, namely PTB, INRIM, SMU, IMT, NPL and UME, and two laboratories from the AFRIMETS region, NIS and NMISA participated in this comparison. Participant laboratories and countries are given in the bottom of the page. PTB participated in this comparison to provide a link to corresponding 500 MPa CCM key comparison CCM.P-K13. The results of all participants excepting NMISA and NPL were found to be consistent with the reference value of the actual comparison and of CCM.P-K13 within their claimed uncertainties (k = 2), at all pressures. Compared in pairs all laboratories with exception of NPL and NMISA demonstrate their agreement with each other within the expanded uncertainties (k = 2) at all pressures. The results are therefore considered to be satisfactory. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. Tank gauging apparatus and method

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor)

    1990-01-01

    An apparatus for gauging the amount of liquid in a container of liquid and gas under low or zero gravity net conditions includes an accumulator and appropriate connector apparatus for communicating gas between the accumulator and the container. In one form of the invention, gas is removed from the container and compressed into the accumulator. The pressure and temperature of the fluid in the container is measured before and after removal of the gas; the pressure and temperature of the gas in the accumulator is measured before and after compression of the gas into the accumulator from the container. These pressure and temperature measurements are used to determine the volume of gas in the container, whereby the volume of the liquid in the container can be determined from the difference between the known volume of the container and the volume of gas in the container. Gas from the accumulator may be communicated into the container in a similar process as a verification of the gauging of the liquid volume, or as an independent process for determining the volume of liquid in the container.

  6. Tank gauging apparatus and method

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor)

    1991-01-01

    Apparatus for gauging the amount of liquid in a container of liquid and gas under flow or zero gravity net conditions includes an accumulator and appropriate connector apparatus for communicating gas between the accumulator and the container. In one form of the invention, gas is removed from the container and compressed into the accumulator. The pressure and temperature of the fluid in the container is measured before and after removal of the gas; the pressure and temperature of gas in the accumulator is measured before and after compression of the gas into the accumulator from the container. These pressure and temperature measurements are used in determining the volume of gas in the container, whereby the volume of liquid in the container can be determined from the difference between the known volume of the container and the volume of gas in the container. Gas from the accumulator may be communicated into the container in a similar process as a verification of the gauging of the liquid volume, or as an independent process for determining the volume of liquid in the container.

  7. Gauge fields and inflation

    NASA Astrophysics Data System (ADS)

    Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J.

    2013-07-01

    The isotropy and homogeneity of the cosmic microwave background (CMB) favors “scalar driven” early Universe inflationary models. However, gauge fields and other non-scalar fields are far more common at all energy scales, in particular at high energies seemingly relevant to inflation models. Hence, in this review we consider the role and consequences, theoretical and observational, that gauge fields can have during the inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main classes of models with gauge fields in the background, models which show violation of the cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of these models on the CMB and/or the primordial cosmic magnetic fields. Our discussions will be mainly focused on the inflation period, with only a brief discussion on the post inflationary (p)reheating era. Large field models: The initial value of the inflaton field is large, generically super-Planckian, and it rolls slowly down toward the potential minimum at smaller φ values. For instance, chaotic inflation is one of the representative models of this class. The typical potential of large-field models has a monomial form as V(φ)=V0φn. A simple analysis using the dynamical equations reveals that for number of e-folds Ne larger than 60, we require super-Planckian initial field values,5φ0>3M. For these models typically ɛ˜η˜Ne-1. Small field models: Inflaton field is initially small and slowly evolves toward the potential minimum at larger φ values. The small field models are characterized by the following potential V(φ)=V0(1-(), which corresponds to a Taylor expansion about the origin, but more realistic

  8. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  9. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises a plurality of respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  10. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MaCarthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  11. 49 CFR 179.201-9 - Gauging device.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-9 Gauging device. A gauging device of an...

  12. 49 CFR 179.201-9 - Gauging device.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-9 Gauging device. A gauging device of an...

  13. 46 CFR 151.15-10 - Cargo gauging devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., sonic depth gauge (without penetration of tank shell), pipe flow meter. (e) All gauging devices and... shall be designed for the pressure and temperature of the cargo in accordance with the requirements of... the operating temperatures, of not less than one-half inch in thickness and adequately protected by a...

  14. 46 CFR 151.15-10 - Cargo gauging devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., sonic depth gauge (without penetration of tank shell), pipe flow meter. (e) All gauging devices and... shall be designed for the pressure and temperature of the cargo in accordance with the requirements of... the operating temperatures, of not less than one-half inch in thickness and adequately protected by a...

  15. 46 CFR 151.15-10 - Cargo gauging devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., sonic depth gauge (without penetration of tank shell), pipe flow meter. (e) All gauging devices and... shall be designed for the pressure and temperature of the cargo in accordance with the requirements of... the operating temperatures, of not less than one-half inch in thickness and adequately protected by a...

  16. 46 CFR 151.15-10 - Cargo gauging devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., sonic depth gauge (without penetration of tank shell), pipe flow meter. (e) All gauging devices and... shall be designed for the pressure and temperature of the cargo in accordance with the requirements of... the operating temperatures, of not less than one-half inch in thickness and adequately protected by a...

  17. Reliability of mercury-in-silastic strain gauge plethysmography curve reading: influence of clinical clues and observer variation.

    PubMed

    Høyer, Christian; Pavar, Susanne; Pedersen, Begitte H; Biurrun Manresa, José A; Petersen, Lars J

    2013-08-01

    Mercury-in-silastic strain gauge pletysmography (SGP) is a well-established technique for blood flow and blood pressure measurements. The aim of this study was to examine (i) the possible influence of clinical clues, e.g. the presence of wounds and color changes during blood pressure measurements, and (ii) intra- and inter-observer variation of curve interpretation for segmental blood pressure measurements. A total of 204 patients with known or suspected peripheral arterial disease (PAD) were included in a diagnostic accuracy trial. Toe and ankle pressures were measured in both limbs, and primary observers analyzed a total of 804 pressure curve sets. The SGP curves were later reanalyzed separately by two observers blinded to clinical clues. Intra- and inter-observer agreement was quantified using Cohen's kappa and reliability was quantified using intra-class correlation coefficients, coefficients of variance, and Bland-Altman analysis. There was an overall agreement regarding patient diagnostic classification (PAD/not PAD) in 202/204 (99.0%) for intra-observer (κ = 0.969, p < 0.001), and 201/204 (98.5%) for inter-observer readings (κ = 0.953, p < 0.001). Reliability analysis showed excellent correlation between blinded versus non-blinded and inter-observer readings for determination of absolute segmental pressures (all intraclass correlation coefficients ≥ 0.984). The coefficient of variance for determination of absolute segmental blood pressure ranged from 2.9-3.4% for blinded/non-blinded data and from 3.8-5.0% for inter-observer data. This study shows a low inter-observer variation among experienced laboratory technicians for reading strain gauge curves. The low variation between blinded/non-blinded readings indicates that SGP measurements are minimally biased by clinical clues.

  18. A Strain Gauge Manual.

    DTIC Science & Technology

    1984-04-01

    Applied Science Publications Ltd. (U.K.) "Strain Gauges, Kinds and Uses", H.K.P. Neubert . McMillan, London (U.K.) "A Strain Gauge Primer", Perry and...G.R. Paul (Materials) A.A. Baker (Materials) I.G. Powlesland G. Wright ." P. Ferrerotto J. Madej B. Ashcroft E.S. Moody M.T. Adams M. Cameron (GAF) (2

  19. Antisymplectic gauge theories

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    1998-02-01

    A general field-antifield BV formalism for antisymplectic first class constraints is proposed. It is as general as the corresponding symplectic BFV-BRST formulation and it is demonstrated to be consistent with a previously proposed formalism for antisymplectic second class constraints through a generalized conversion to corresponding first class constraints. Thereby the basic concept of gauge symmetry is extended to apply to quite a new class of gauge theories potentially possible to exist.

  20. Torsion in gauge theory

    NASA Astrophysics Data System (ADS)

    Nieh, H. T.

    2018-02-01

    The potential conflict between torsion and gauge symmetry in the Riemann-Cartan curved spacetime was noted by Kibble in his 1961 pioneering paper and has since been discussed by many authors. Kibble suggested that, to preserve gauge symmetry, one should forgo the covariant derivative in favor of the ordinary derivative in the definition of the field strength Fμ ν for massless gauge theories, while for massive vector fields, covariant derivatives should be adopted. This view was further emphasized by Hehl et al. in their influential 1976 review paper. We address the question of whether this deviation from normal procedure by forgoing covariant derivatives in curved spacetime with torsion could give rise to inconsistencies in the theory, such as the quantum renormalizability of a realistic interacting theory. We demonstrate in this paper the one-loop renormalizability of a realistic gauge theory of gauge bosons interacting with Dirac spinors, such as the SU(3) chromodynamics, for the case of a curved Riemann-Cartan spacetime with totally antisymmetric torsion. This affirmative confirmation is one step toward providing justification for the assertion that the flat-space definition of the gauge-field strength should be adopted as the proper definition.

  1. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  2. Loss Process for the C2H5 Radical in the Atmospheres of Jupiter and Saturn: First Direct, Absolute Measurement of the Rate Constant for the Reaction H + C2H5 at Low Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Stief, L. J.; Pimentel, A. S.; Payne, W. A.; Nesbitt, F. L.; Cody, R. J.

    2003-05-01

    Photochemical models of the atmospheres of Jupiter and Saturn predict the reaction H + C2H5 to be the most important loss process for C2H5 in these atmospheres. In addition, the reaction channel H + C2H5 -> 2 CH3 is a significant source of the methyl radical. There are only two relatively modern studies of the H + C2H5 reaction, both of which depend on extensive modeling involving eight elementary reactions. The motivation for the present study is the lack of direct, absolute measurements of the rate constant for the H + C2H5 reaction at low pressures and temperatures appropriate for outer planet models. In the present experiments the reactants H and C2H5 are rapidly and simultaneously generated by reaction of F with appropriate mixtures of H2 and C2H6. Using the technique of discharge-flow with collision-free sampling to a mass spectrometer, we monitor the decay of C2H5 in excess H. In contrast to previous studies of this reaction, the primary H + C2H5 reaction is isolated and the radical decays only by reaction with H and by loss at the wall. Secondary reactions such as the self-reaction of C2H5 are negligible. At P = 1 Torr He we measure k (298K) = 1.13 x 10-10 cm3 molecule-1 s-1 and k (202K) = 1.18 x 10-10 cm3 molecule-1 s-1. Experiments at T = 155 K are in progress. The reaction is temperature independent as expected based on studies of other atom-radical reactions. Our result at T = 298 K lies between those of the two relatively modern but complex studies of this reaction. The present total rate constant data and planned product yield studies at low pressures and temperatures will then be available for use in future photochemical models of the atmospheres of the outer planets. The Planetary Atmospheres Program of NASA Headquarters is supporting this research.

  3. Effect of rain gauge density over the accuracy of rainfall: a case study over Bangalore, India.

    PubMed

    Mishra, Anoop Kumar

    2013-12-01

    Rainfall is an extremely variable parameter in both space and time. Rain gauge density is very crucial in order to quantify the rainfall amount over a region. The level of rainfall accuracy is highly dependent on density and distribution of rain gauge stations over a region. Indian Space Research Organisation (ISRO) have installed a number of Automatic Weather Station (AWS) rain gauges over Indian region to study rainfall. In this paper, the effect of rain gauge density over daily accumulated rainfall is analyzed using ISRO AWS gauge observations. A region of 50 km × 50 km box over southern part of Indian region (Bangalore) with good density of rain gauges is identified for this purpose. Rain gauge numbers are varied from 1-8 in 50 km box to study the variation in the daily accumulated rainfall. Rainfall rates from the neighbouring stations are also compared in this study. Change in the rainfall as a function of gauge spacing is studied. Use of gauge calibrated satellite observations to fill the gauge station value is also studied. It is found that correlation coefficients (CC) decrease from 82% to 21% as gauge spacing increases from 5 km to 40 km while root mean square error (RMSE) increases from 8.29 mm to 51.27 mm with increase in gauge spacing from 5 km to 40 km. Considering 8 rain gauges as a standard representative of rainfall over the region, absolute error increases from 15% to 64% as gauge numbers are decreased from 7 to 1. Small errors are reported while considering 4 to 7 rain gauges to represent 50 km area. However, reduction to 3 or less rain gauges resulted in significant error. It is also observed that use of gauge calibrated satellite observations significantly improved the rainfall estimation over the region with very few rain gauge observations.

  4. Flight Validation of the Thermal Propellant Gauging Method used at EADS Astrium

    NASA Astrophysics Data System (ADS)

    Dandaleix, L.; Ounougha, L.; Jallade, S.

    2004-10-01

    EADS Astrium recently met a major milestone in the field of propellant gauging with the first reorbitation of an Eurostar tanks equipped satellite. It proved successful determining the remaining available propellant mass for spacecraft displacement beyond the customer specified graveyard orbit; thus demonstrating its expertness in Propellant Gauging in correlation with tank residual mass minimization. A critical parameter in satellite operational planning is indeed the accurate knowledge of the on-board remaining propellant mass; basically for the commercial telecommunication missions, where it is the major criterion for lifetime maximization. To provide an accurate and reliable process for measurement of this propellant mass throughout lifetime, EADS Astrium uses a Combination of two independent techniques: The Dead Reckoning Method (maximum accuracy at BOL), based on thrusters flow rate prediction &the Thermal Propellant Gauging Technique, deriving the propellant mass from the tank thermal capacity (Absolute gauging method, with increasing accuracy along lifetime). Then, the present article shows the recent flight validation of the Gauging method obtained for Eurostar E2000 propellant tanks including the validation of the different thermodynamic models. ABBREVIATIONS &ACRONYMS BOL, MOL, EOL: Beginning, Middle &End of Life Cempty: Empty tank thermal inertia [J/K] Chelium: Helium thermal inertia [J/K] Cpropellant: Propellant thermal inertia [J/K] Ct = C1+C2: Total tank thermal inertia (Subscript for upper node and for lower node) [J/K] CPS: Combined Propulsion System DR: Dead Reckoning FM: Flight Model LAE: Liquid Apogee Engine lsb: Least significant byte M0: TPGS Uncertainty component linked to Cempty mox, mfuel: Propellant mass of oxidiser &fuel [kg] Pox, Pfuel: Pressure of oxidiser &fuel [bar] PTA: Propellant Tank Assembly Q: Heater power [W] Qox, Qfuel: Mass flow rate of oxidiser &fuel [kg/s] RCT: Reaction Control Thrusters T0: Spacecraft platform equilibrium

  5. To gauge or not to gauge?

    NASA Astrophysics Data System (ADS)

    Maldacena, Juan; Milekhin, Alexey

    2018-04-01

    The D0 brane, or BFSS, matrix model is a quantum mechanical theory with an interesting gravity dual. We consider a variant of this model where we treat the SU( N) symmetry as a global symmetry, rather than as a gauge symmetry. This variant contains new non-singlet states. We consider the impact of these new states on its gravity dual. We argue that the gravity dual is essentially the same as the one for the original matrix model. The non-singlet states have higher energy at strong coupling and are therefore dynamically suppressed.

  6. Determination of Absolute Zero Using a Computer-Based Laboratory

    ERIC Educational Resources Information Center

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  7. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  8. Extended gauge theory and gauged free differential algebras

    NASA Astrophysics Data System (ADS)

    Salgado, P.; Salgado, S.

    2018-01-01

    Recently, Antoniadis, Konitopoulos and Savvidy introduced, in the context of the so-called extended gauge theory, a procedure to construct background-free gauge invariants, using non-abelian gauge potentials described by higher degree forms. In this article it is shown that the extended invariants found by Antoniadis, Konitopoulos and Savvidy can be constructed from an algebraic structure known as free differential algebra. In other words, we show that the above mentioned non-abelian gauge theory, where the gauge fields are described by p-forms with p ≥ 2, can be obtained by gauging free differential algebras.

  9. Gauged Q-balls

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Stein-Schabes, Jaime A.; Watkins, Richard; Widrow, Lawrence M.

    1988-01-01

    Classical non-topological soliton configurations are considered within the theory of a complex scalar field with a gauged U symmetry. Their existence and stability against dispersion are demonstrated and some of their properties are investigated analytically and numerically. The soliton configuration is such that inside the soliton the local U symmetry is broken, the gauge field becomes massive and for a range of values of the coupling constants the soliton becomes a superconductor pushing the charge to the surface. Furthermore, because of the repulsive Coulomb force, there is a maximum size for these objects, making impossible the existence of Q-matter in bulk form. Also briefly discussed are solitons with fermions in a U gauge theory.

  10. Optical heat flux gauge

    DOEpatents

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  11. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments inmore » Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.« less

  12. Calibration of thin-foil manganin gauge in ALOX material

    NASA Astrophysics Data System (ADS)

    Benham, R. A.; Weirick, L. J.; Lee, L. M.

    1996-05-01

    The purpose of this program was to develop a calibration curve (stress as a function of change in gauge resistance/gauge resistance) and to obtain gauge repeatability data for Micro-Measurements stripped manganin thin-foiled gauges up to 6.1 GPa in ALOX (42% by volume alumina in Epon 828 epoxy) material. A light-gas gun was used to drive an ALOX impactor into the ALOX target containing four gauges in a centered diamond arrangement. Tilt and velocity of the impactor were measured along with the gauge outputs. Impact stresses from 0.5 to 6.1 GPa were selected in increments of 0.7 GPa with duplicate tests done at 0.5, 3.3 and 6.1 GPa. A total of twelve tests was conducted using ALOX. Three initial tests were done using polymethyl methacrylate (PMMA) as the impactor and target at an impact pressure of 3.0 GPa for comparison of gauge output with analysis and literature values. The installed gauge, stripped of its backing, has a nominal thickness of 5 μm. The thin gauge and high speed instrumentation allowed higher time resolution measurements than can be obtained with manganin wire.

  13. Miniature Convection Cooled Plug-type Heat Flux Gauges

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1994-01-01

    Tests and analysis of a new miniature plug-type heat flux gauge configuration are described. This gauge can simultaneously measure heat flux on two opposed active surfaces when heat flux levels are equal to or greater than about 0.2 MW/m(sup 2). The performance of this dual active surface gauge was investigated over a wide transient and steady heat flux and temperature range. The tests were performed by radiatively heating the front surface with an argon arc lamp while the back surface was convection cooled with air. Accuracy is about +20 percent. The gauge is responsive to fast heat flux transients and is designed to withstand the high temperature (1300 K), high pressure (15 MPa), erosive and corrosive environments in modern engines. This gauge can be used to measure heat flux on the surfaces of internally cooled apparatus such as turbine blades and combustors used in jet propulsion systems and on the surfaces of hypersonic vehicles. Heat flux measurement accuracy is not compromised when design considerations call for various size gauges to be fabricated into alloys of various shapes and properties. Significant gauge temperature reductions (120 K), which can lead to potential gauge durability improvement, were obtained when the gauges were air-cooled by forced convection.

  14. Digital lattice gauge theories

    NASA Astrophysics Data System (ADS)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.

  15. Lopsided gauge mediation

    NASA Astrophysics Data System (ADS)

    de Simone, Andrea; Franceschini, Roberto; Giudice, Gian Francesco; Pappadopulo, Duccio; Rattazzi, Riccardo

    2011-05-01

    It has been recently pointed out that the unavoidable tuning among supersymmetric parameters required to raise the Higgs boson mass beyond its experimental limit opens up new avenues for dealing with the so called μ- B μ problem of gauge mediation. In fact, it allows for accommodating, with no further parameter tuning, large values of B μ and of the other Higgs-sector soft masses, as predicted in models where both μ and B μ are generated at one-loop order. This class of models, called Lopsided Gauge Mediation, offers an interesting alternative to conventional gauge mediation and is characterized by a strikingly different phenomenology, with light higgsinos, very large Higgs pseudoscalar mass, and moderately light sleptons. We discuss general parametric relations involving the fine-tuning of the model and various observables such as the chargino mass and the value of tan β. We build an explicit model and we study the constraints coming from LEP and Tevatron. We show that in spite of new interactions between the Higgs and the messenger superfields, the theory can remain perturbative up to very large scales, thus retaining gauge coupling unification.

  16. A new Ultra Precision Interferometer for absolute length measurements down to cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Schödel, R.; Walkov, A.; Zenker, M.; Bartl, G.; Meeß, R.; Hagedorn, D.; Gaiser, C.; Thummes, G.; Heltzel, S.

    2012-09-01

    A new Ultra Precision Interferometer (UPI) was built at Physikalisch-Technische Bundesanstalt. As its precursor, the precision interferometer, it was designed for highly precise absolute length measurements of prismatic bodies, e.g. gauge blocks, under well-defined temperature conditions and pressure, making use of phase stepping imaging interferometry. The UPI enables a number of enhanced features, e.g. it is designed for a much better lateral resolution and better temperature stability. In addition to the original concept, the UPI is equipped with an external measurement pathway (EMP) in which a prismatic body can be placed alternatively. The temperature of the EMP can be controlled in a much wider range compared to the temperature of the interferometer's main chamber. An appropriate cryostat system, a precision temperature measurement system and improved imaging interferometry were established to permit absolute length measurements down to cryogenic temperature, demonstrated for the first time ever. Results of such measurements are important for studying thermal expansion of materials from room temperature towards less than 10 K.

  17. Nambu-Poisson gauge theory

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Vysoký, Jan

    2014-06-01

    We generalize noncommutative gauge theory using Nambu-Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg-Witten map. We construct a covariant Nambu-Poisson gauge theory action, give its first order expansion in the Nambu-Poisson tensor and relate it to a Nambu-Poisson matrix model.

  18. KEY COMPARISON: Results of the APMP Pressure key comparison APMP.M.P-K1c in gas media and gauge mode from 0.4 MPa to 4.0 MPa

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, A. K.; Woo, Sam Yong; Fitzgerald, Mark; Man, John; Ooiwa, Akira; Jescheck, M.; Jian, Wu; Fatt, Chen Soo; Chan, T. K.; Moore, Ken; El-Tawil, Alaaeldin A. E.

    2003-01-01

    This report summarizes the results of a regional key comparison (APMP-IC-2-97) under the aegis of the Asia Pacific Metrology Program (APMP) for pressure measurements in gas media and in gauge mode from 0.4 MPa to 4.0 MPa. The transfer standard was a pressure-balance with a piston-cylinder assembly with nominal effective area 8.4 mm2 (V-407) and was supplied by the National Metrology Institute of Japan [NMIJ]. Ten standard laboratories from the APMP region with one specially invited laboratory from the EUROMET region, namely Physikalisch-Technische Bundesanstalt (PTB), Germany, participated in this comparison. The comparison started in October 1998 and was completed in May 2001. The pilot laboratory prepared the calibration procedure [1] as per the guidelines of APMP and the International Bureau of Weights and Measures (BIPM) [2-4]. Detailed instructions for performing this key comparison were provided in the calibration protocol [1] and the required data were described in: (1) Annex 3 - characteristics of the laboratory standards, (2) Annex 4 - the effective area (A'p'/mm2) (the prime indicates values based on measured quantities) at 23°C of the travelling standard as a function of nominal pressure (p'/MPa) (five cycles both increasing and decreasing pressures at ten pre-determined pressure points) and (3) Annex 5 - the average effective area at 23°C (A'p'/mm2) obtained for each pressure p'/MPa with all uncertainty statements. The pilot laboratory processed the information and the data provided by the participants for these three annexes, starting with the information about the standards as provided in Annex 3. Based on this information, the participating laboratories are classified into two categories: (I) laboratories that are maintaining primary standards, and (II) laboratories that are maintaining standards loosely classified as secondary standards with a clear traceability as per norm of the BIPM. It is observed that out of these eleven laboratories, six

  19. Semistrict higher gauge theory

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Sämann, Christian; Wolf, Martin

    2015-04-01

    We develop semistrict higher gauge theory from first principles. In particular, we describe the differential Deligne cohomology underlying semistrict principal 2-bundles with connective structures. Principal 2-bundles are obtained in terms of weak 2-functors from the Čech groupoid to weak Lie 2-groups. As is demonstrated, some of these Lie 2-groups can be differentiated to semistrict Lie 2-algebras by a method due to Ševera. We further derive the full description of connective structures on semistrict principal 2-bundles including the non-linear gauge transformations. As an application, we use a twistor construction to derive superconformal constraint equations in six dimensions for a non-Abelian tensor multiplet taking values in a semistrict Lie 2-algebra.

  20. Gauging Variational Inference

    SciTech Connect

    Chertkov, Michael; Ahn, Sungsoo; Shin, Jinwoo

    Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM). Since it is computationally intractable, approximate methods have been used to resolve the issue in practice, where meanfield (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we provemore » that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments, on complete GMs of relatively small size and on large GM (up-to 300 variables) confirm that the newly proposed algorithms outperform and generalize MF and BP.« less

  1. Evaluation of long-term stability of low thermal expansion coefficient materials using gauge block interferometers

    NASA Astrophysics Data System (ADS)

    Hirai, Akiko; Bitou, Youichi; Oike, Yoshiyuki

    2018-06-01

    The long-term stability of NEXCERA™ ceramics having a low coefficient of thermal expansion was evaluated over a period of eight years. Several gauge blocks of differing lengths were prepared, using two types of NEXCERA. Each gauge block was kept wrung to a platen and its absolute length was periodically measured by gauge block interferometer during the eight years. Relative uncertainties of measurement of changes in gauge block length were estimated as 4.1  ×  10‑8 and 2.9  ×  10‑8 for 200 mm and 800 mm gauge blocks, respectively. The experimental results show the trend of expansion and a relative change of less than 0.1  ×  10‑6/year for every gauge block.

  2. Improved performance of semiconductor laser tracking frequency gauge

    NASA Astrophysics Data System (ADS)

    Kaplan, D. M.; Roberts, T. J.; Phillips, J. D.; Reasenberg, R. D.

    2018-03-01

    We describe new results from the semiconductor-laser tracking frequency gauge, an instrument that can perform sub-picometer distance measurements and has applications in gravity research and in space-based astronomical instruments proposed for the study of light from extrasolar planets. Compared with previous results, we have improved incremental distance accuracy by a factor of two, to 0.9 pm in 80 s averaging time, and absolute distance accuracy by a factor of 20, to 0.17 μm in 1000 s. After an interruption of operation of a tracking frequency gauge used to control a distance, it is now possible, using a nonresonant measurement interferometer, to restore the distance to picometer accuracy by combining absolute and incremental distance measurements.

  3. Ballistic impulse gauge

    DOEpatents

    Ault, Stanley K.

    1993-01-01

    A gauge for detecting the impulse generated in sample materials by X-rays or other impulse producing mechanisms utilizes a pair of flat annular springs to support a plunger relative to a housing which may itself be supported by a pair of flat annular springs in a second housing. The plunger has a mounting plate mounted on one end and at the other, a position or velocity transducer is mounted. The annular springs consist of an outer ring and an inner ring with at least three arcuate members connecting the outer ring with the inner ring.

  4. Ballistic impulse gauge

    DOEpatents

    Ault, S.K.

    1993-12-21

    A gauge for detecting the impulse generated in sample materials by X-rays or other impulse producing mechanisms utilizes a pair of flat annular springs to support a plunger relative to a housing which may itself be supported by a pair of flat annular springs in a second housing. The plunger has a mounting plate mounted on one end and at the other, a position or velocity transducer is mounted. The annular springs consist of an outer ring and an inner ring with at least three arcuate members connecting the outer ring with the inner ring. 4 figures.

  5. Gauge/Gravity Duality

    ScienceCinema

    Polchinski, Joseph

    2017-12-22

    Gauge theories, which describe the particle interactions, are well understood, while quantum gravity leads to many puzzles. Remarkably, in recent years we have learned that these are actually dual, the same system written in different variables. On the one hand, this provides our most precise description of quantum gravity, resolves some long-standing paradoxes, and points to new principles. On the other, it gives a new perspective on strong interactions, with surprising connections to other areas of physics. I describe these ideas, and discuss current and future directions.

  6. Gauge-invariant flow equation

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2018-06-01

    We propose a closed gauge-invariant functional flow equation for Yang-Mills theories and quantum gravity that only involves one macroscopic gauge field or metric. It is based on a projection on physical and gauge fluctuations. Deriving this equation from a functional integral we employ the freedom in the precise choice of the macroscopic field and the effective average action in order to realize a closed and simple form of the flow equation.

  7. HOPG/ZnO/HOPG pressure sensor

    NASA Astrophysics Data System (ADS)

    Jahangiri, Mojtaba; Yousefiazari, Ehsan; Ghalamboran, Milad

    2017-12-01

    Pressure sensor is one of the most commonly used sensors in the research laboratories and industries. These are generally categorized in three different classes of absolute pressure sensors, gauge pressure sensors, and differential pressure sensors. In this paper, we fabricate and assess the pressure sensitivity of the current vs. voltage diagrams in a graphite/ZnO/graphite structure. Zinc oxide layers are deposited on highly oriented pyrolytic graphite (HOPG) substrates by sputtering a zinc target under oxygen plasma. The top electrode is also a slice of HOPG which is placed on the ZnO layer and connected to the outside electronic circuits. By recording the I-V characteristics of the device under different forces applied to the top HOPG electrode, the pressure sensitivity is demonstrated; at the optimum biasing voltage, the device current changes 10 times upon changing the pressure level on the top electrode by 20 times. Repeatability and reproducibility of the observed effect is studied on the same and different samples. All the materials used for the fabrication of this pressure sensor are biocompatible, the fabricated device is anticipated to find potential applications in biomedical engineering.

  8. Mass Gauging Demonstrator for Any Gravitational Conditions

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Pedersen, Kevin W. (Inventor); Witherow, William K. (Inventor)

    2013-01-01

    The present invention is a mass gauging interferometry system used to determine the volume contained within a tank. By using an optical interferometric technique to determine gas density and/or pressure a much smaller compression volume or higher fidelity measurement is possible. The mass gauging interferometer system is comprised of an optical source, a component that splits the optical source into a plurality of beams, a component that recombines the split beams, an optical cell operatively coupled to a tank, a detector for detecting fringes, and a means for compression. A portion of the beam travels through the optical cell operatively coupled to the tank, while the other beam(s) is a reference.

  9. Methods of Contemporary Gauge Theory

    NASA Astrophysics Data System (ADS)

    Makeenko, Yuri

    2002-08-01

    Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.

  10. Methods of Contemporary Gauge Theory

    NASA Astrophysics Data System (ADS)

    Makeenko, Yuri

    2005-11-01

    Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.

  11. Gauged U(1) clockwork theory

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Min

    2018-03-01

    We consider the gauged U (1) clockwork theory with a product of multiple gauge groups and discuss the continuum limit of the theory to a massless gauged U (1) with linear dilaton background in five dimensions. The localization of the lightest state of gauge fields on a site in the theory space naturally leads to exponentially small effective couplings of external matter fields localized away from the site. We discuss the implications of our general discussion with some examples, such as mediators of dark matter interactions, flavor-changing B-meson decays as well as D-term SUSY breaking.

  12. Gauged lepton flavour

    DOE PAGES

    Alonso, Rodrigo; Fernandez Martinez, Enrique; Gavela, M. B.; ...

    2016-12-22

    The gauging of the lepton flavour group is considered in the Standard Model context and in its extension with three right-handed neutrinos. The anomaly cancellation conditions lead to a Seesaw mechanism as underlying dynamics for all leptons; in addition, it requires a phenomenologically viable setup which leads to Majorana masses for the neutral sector: the type I Seesaw Lagrangian in the Standard Model case and the inverse Seesaw in the extended model. Within the minimal extension of the scalar sector, the Yukawa couplings are promoted to scalar fields in the bifundamental of the flavour group. The resulting low-energy Yukawa couplingsmore » are proportional to inverse powers of the vacuum expectation values of those scalars; the protection against flavour changing neutral currents differs from that of Minimal Flavour Violation. In every case, the μ - τ flavour sector exhibits rich and promising phenomenological signals.« less

  13. Absolute photon-flux measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Haddad, G. N.

    1974-01-01

    Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

  14. Gauging away a big bang

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Raju, Avinash

    2017-08-01

    We argue that in the tensionless phase of string theory where the stringy gauge symmetries are unbroken, (at least some) cosmological singularities can be understood as gauge artefacts. We present two conceptually related, but distinct, pieces of evidence: one relying on spacetime and the other on worldsheet.

  15. Progress in lattice gauge theory

    SciTech Connect

    Creutz, M.

    1983-01-01

    These lectures first provide an overview of the current status of lattice gauge theory calculations. They then review some technical points on group integration, gauge fixing, and order parameters. Various Monte Carlo algorithms are discussed. Finally, alternatives to the Wilson action are considered in the context of universality for the continuum limit. 41 references.

  16. THERMOCOUPLE VACUUM GAUGE

    DOEpatents

    Price, G.W.

    1954-08-01

    A protector device is described for use in controlling the pressure within a cyclotron. In particular, an electrical circuit functions to actuate a vacuum pump when a predetermined low pressure is reached and disconnect the pump when the pressure increases abcve a certain value. The principal feature of the control circuit lies in the use of a voltage divider network at the input to a relay control tube comprising two parallel, adjustable resistances wherein one resistor is switched into the circuit when the relay connects the pump to a power source. With this arrangement the relay is energized at one input level received from a sensing element within the cyclotron chamber and is de-energized when a second input level, representing the higher pressure limit, is reached.

  17. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  18. A Robust, Microwave Rain Gauge

    NASA Astrophysics Data System (ADS)

    Mansheim, T. J.; Niemeier, J. J.; Kruger, A.

    2008-12-01

    Researchers at The University of Iowa have developed an all-electronic rain gauge that uses microwave sensors operating at either 10 GHz or 23 GHz, and measures the Doppler shift caused by falling raindrops. It is straightforward to interface these sensors with conventional data loggers, or integrate them into a wireless sensor network. A disadvantage of these microwave rain gauges is that they consume significant power when they are operating. However, this may be partially negated by using data loggers' or sensors networks' sleep-wake-sleep mechanism. Advantages of the microwave rain gauges are that one can make them very robust, they cannot clog, they don't have mechanical parts that wear out, and they don't have to be perfectly level. Prototype microwave rain gauges were collocated with tipping-bucket rain gauges, and data were collected for two seasons. At higher rain rates, microwave rain gauge measurements compare well with tipping-bucket measurements. At lower rain rates, the microwave rain gauges provide more detailed information than tipping buckets, which quantize measurement typically in 1 tip per 0.01 inch, or 1 tip per mm of rainfall.

  19. Calibration of Wire-Like Manganin Gauges for Use in Planar Shock-Wave Experiments

    NASA Astrophysics Data System (ADS)

    Chapman, David J.; Braithwaite, Christopher H.; Proud, William G.

    2009-12-01

    Piezoresistive gauges have been used extensively for many decades as in-material stress transducers during shock wave experiments. Manganin demonstrates a high piezoresistive response which is relatively temperature independent. As such manganin gauges have been widely calibrated by many authors for use during shock-wave experiments. The precise calibration has been demonstrated to depend on both the chemical composition and mechanical history of the manganin, and on the geometry of the gauge. The research presented in this paper refers to the calibration of a commercially available manganin gauge, Micro-measurements J2M-SS-580SF-025, generally referred to as the T-gauge owing to its geometry. The T-gauge has seen widespread use as a pressure transducer to measure lateral stress during plate-impact experiments. It has been previously proposed that T-gauges have a similar response to the grid foil-like manganin gauges extensively calibrated by Rosenberg et al. However, recently it has been suggested that they in fact behave in a wire-like manner. The results presented here demonstrate that the gauges' behaviour is wire-like when mounted to measure longitudinal stress. A modified calibration can be applied successfully to convert the relative resistance change to the stress normal to the gauge element. These results have important ramifications for the reduction of lateral stress measurements previously made using the T-gauge.

  20. Calibration of Wire-Like Manganin Gauges for Use in Planar Shock-Wave Experiments

    NASA Astrophysics Data System (ADS)

    Chapman, David; Proud, William

    2009-06-01

    Peizoresistive gauges have been used extensively for many decades as in-material stress transducers during shock wave experiments. Manganin demonstrates a high piezoresistive response which is relatively temperature independent. As such manganin gauges have been widely calibrated by many authors for use during shock-wave experiments. The precise calibration has been demonstrated to depend on both the chemical composition and mechanical history of the manganin, and on the geometry of the gauge. The research presented in this paper refers to the calibration of a commercially available manganin gauge, Micro-measurements J2M-SS-580SF-025, generally referred to as the T-gauge owing to its geometry. The T-gauge has seen widespread use as a pressure transducer to measure lateral stress during plate-impact experiments. It has been previously proposed that T-gauges have a similar response to the grid foil-like manganin gauges extensively calibrated by Rosenberg et. al.. However, recently it has been suggested that they in fact behave in a wire-like manner. The results presented here demonstrate that the gauges behaviour is wire-like when mounted to measure longitudinal stress. A modified calibration can be applied successfully to convert the relative resistance change to the stress normal to the gauge element. These results have important ramifications for the reduction of lateral stress measurements previously made using the T-gauge.

  1. Second-order Boltzmann equation: gauge dependence and gauge invariance

    NASA Astrophysics Data System (ADS)

    Naruko, Atsushi; Pitrou, Cyril; Koyama, Kazuya; Sasaki, Misao

    2013-08-01

    In the context of cosmological perturbation theory, we derive the second-order Boltzmann equation describing the evolution of the distribution function of radiation without a specific gauge choice. The essential steps in deriving the Boltzmann equation are revisited and extended given this more general framework: (i) the polarization of light is incorporated in this formalism by using a tensor-valued distribution function; (ii) the importance of a choice of the tetrad field to define the local inertial frame in the description of the distribution function is emphasized; (iii) we perform a separation between temperature and spectral distortion, both for the intensity and polarization for the first time; (iv) the gauge dependence of all perturbed quantities that enter the Boltzmann equation is derived, and this enables us to check the correctness of the perturbed Boltzmann equation by explicitly showing its gauge-invariance for both intensity and polarization. We finally discuss several implications of the gauge dependence for the observed temperature.

  2. Cryogenic High Pressure Sensor Module

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  3. Physics of negative absolute temperatures.

    PubMed

    Abraham, Eitan; Penrose, Oliver

    2017-01-01

    Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.

  4. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  5. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  6. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate.

  7. 49 CFR 179.201-9 - Gauging device.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-9 Gauging device. A...

  8. Sequestered gravity in gauge mediation.

    PubMed

    Antoniadis, Ignatios; Benakli, Karim; Quiros, Mariano

    2016-01-01

    We present a novel mechanism of supersymmetry breaking embeddable in string theory and simultaneously sharing the main advantages of (sequestered) gravity and gauge mediation. It is driven by a Scherk-Schwarz deformation along a compact extra dimension, transverse to a brane stack supporting the supersymmetric extension of the Standard Model. This fixes the magnitude of the gravitino mass, together with that of the gauginos of a bulk gauge group, at a scale as high as [Formula: see text] GeV. Supersymmetry breaking is mediated to the observable sector dominantly by gauge interactions using massive messengers transforming non-trivially under the bulk and Standard Model gauge groups and leading to a neutralino LSP as dark matter candidate. The Higgsino mass [Formula: see text] and soft Higgs-bilinear [Formula: see text] term could be generated at the same order of magnitude as the other soft terms by effective supergravity couplings as in the Giudice-Masiero mechanism.

  9. Absolute gravity measurements in California

    NASA Astrophysics Data System (ADS)

    Zumberge, M. A.; Sasagawa, G.; Kappus, M.

    1986-08-01

    An absolute gravity meter that determines the local gravitational acceleration by timing a freely falling mass with a laser interferometer has been constructed. The instrument has made measurements at 11 sites in California, four in Nevada, and one in France. The uncertainty in the results is typically 10 microgal. Repeated measurements have been made at several of the sites; only one shows a substantial change in gravity.

  10. Interfacial gauge methods for incompressible fluid dynamics

    PubMed Central

    Saye, Robert

    2016-01-01

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567

  11. Interfacial gauge methods for incompressible fluid dynamics

    DOE PAGES

    Saye, R.

    2016-06-10

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of "gauge freedom" to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work,more » high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena.« less

  12. 49 CFR 230.73 - Air gauges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Air gauges. 230.73 Section 230.73 Transportation... Signal Equipment § 230.73 Air gauges. (a) Location. Air gauges shall be so located that they may be conveniently read by the engineer from his or her usual position in the cab. No air gauge may be more than 3...

  13. 49 CFR 230.73 - Air gauges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Air gauges. 230.73 Section 230.73 Transportation... Signal Equipment § 230.73 Air gauges. (a) Location. Air gauges shall be so located that they may be conveniently read by the engineer from his or her usual position in the cab. No air gauge may be more than 3...

  14. 49 CFR 230.73 - Air gauges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Air gauges. 230.73 Section 230.73 Transportation... Signal Equipment § 230.73 Air gauges. (a) Location. Air gauges shall be so located that they may be conveniently read by the engineer from his or her usual position in the cab. No air gauge may be more than 3...

  15. 27 CFR 19.709 - Gauging.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Gauging. (a) Gauging equipment and methods. A proprietor of an alcohol fuel plant must perform periodic gauges of the distilled spirits and fuel alcohol at the alcohol fuel plant. The procedures for the... following rules for the gauging of distilled spirits and fuel alcohol under this subpart also apply: (1) The...

  16. 49 CFR 230.73 - Air gauges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Air gauges. 230.73 Section 230.73 Transportation... Signal Equipment § 230.73 Air gauges. (a) Location. Air gauges shall be so located that they may be conveniently read by the engineer from his or her usual position in the cab. No air gauge may be more than 3...

  17. 49 CFR 230.73 - Air gauges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Air gauges. 230.73 Section 230.73 Transportation... Signal Equipment § 230.73 Air gauges. (a) Location. Air gauges shall be so located that they may be conveniently read by the engineer from his or her usual position in the cab. No air gauge may be more than 3...

  18. 49 CFR 230.43 - Gauge siphon.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.43 Gauge siphon. The steam gauge supply pipe shall have a siphon on it of ample capacity to prevent steam from entering the gauge. The supply pipe shall directly enter the boiler and be maintained steam...

  19. Gauged twistor spinors and symmetry operators

    NASA Astrophysics Data System (ADS)

    Ertem, Ümit

    2017-03-01

    We consider gauged twistor spinors which are supersymmetry generators of supersymmetric and superconformal field theories in curved backgrounds. We show that the spinor bilinears of gauged twistor spinors satisfy the gauged conformal Killing-Yano equation. We prove that the symmetry operators of the gauged twistor spinor equation can be constructed from ordinary conformal Killing-Yano forms in constant curvature backgrounds. This provides a way to obtain gauged twistor spinors from ordinary twistor spinors.

  20. Novel principle of contactless gauge block calibration.

    PubMed

    Buchta, Zdeněk; Reřucha, Simon; Mikel, Břetislav; Cížek, Martin; Lazar, Josef; Cíp, Ondřej

    2012-01-01

    In this paper, a novel principle of contactless gauge block calibration is presented. The principle of contactless gauge block calibration combines low-coherence interferometry and laser interferometry. An experimental setup combines Dowell interferometer and Michelson interferometer to ensure a gauge block length determination with direct traceability to the primary length standard. By monitoring both gauge block sides with a digital camera gauge block 3D surface measurements are possible too. The principle presented is protected by the Czech national patent No. 302948.

  1. Absolute metrology for space interferometers

    NASA Astrophysics Data System (ADS)

    Salvadé, Yves; Courteville, Alain; Dändliker, René

    2017-11-01

    The crucial issue of space-based interferometers is the laser interferometric metrology systems to monitor with very high accuracy optical path differences. Although classical high-resolution laser interferometers using a single wavelength are well developed, this type of incremental interferometer has a severe drawback: any interruption of the interferometer signal results in the loss of the zero reference, which requires a new calibration, starting at zero optical path difference. We propose in this paper an absolute metrology system based on multiplewavelength interferometry.

  2. Gauge interaction as periodicity modulation

    NASA Astrophysics Data System (ADS)

    Dolce, Donatello

    2012-06-01

    The paper is devoted to a geometrical interpretation of gauge invariance in terms of the formalism of field theory in compact space-time dimensions (Dolce, 2011) [8]. In this formalism, the kinematic information of an interacting elementary particle is encoded on the relativistic geometrodynamics of the boundary of the theory through local transformations of the underlying space-time coordinates. Therefore gauge interactions are described as invariance of the theory under local deformations of the boundary. The resulting local variations of the field solution are interpreted as internal transformations. The internal symmetries of the gauge theory turn out to be related to corresponding space-time local symmetries. In the approximation of local infinitesimal isometric transformations, Maxwell's kinematics and gauge invariance are inferred directly from the variational principle. Furthermore we explicitly impose periodic conditions at the boundary of the theory as semi-classical quantization condition in order to investigate the quantum behavior of gauge interaction. In the abelian case the result is a remarkable formal correspondence with scalar QED.

  3. Characteristic classes of gauge systems

    NASA Astrophysics Data System (ADS)

    Lyakhovich, S. L.; Sharapov, A. A.

    2004-12-01

    We define and study invariants which can be uniformly constructed for any gauge system. By a gauge system we understand an (anti-)Poisson supermanifold provided with an odd Hamiltonian self-commuting vector field called a homological vector field. This definition encompasses all the cases usually included into the notion of a gauge theory in physics as well as some other similar (but different) structures like Lie or Courant algebroids. For Lagrangian gauge theories or Hamiltonian first class constrained systems, the homological vector field is identified with the classical BRST transformation operator. We define characteristic classes of a gauge system as universal cohomology classes of the homological vector field, which are uniformly constructed in terms of this vector field itself. Not striving to exhaustively classify all the characteristic classes in this work, we compute those invariants which are built up in terms of the first derivatives of the homological vector field. We also consider the cohomological operations in the space of all the characteristic classes. In particular, we show that the (anti-)Poisson bracket becomes trivial when applied to the space of all the characteristic classes, instead the latter space can be endowed with another Lie bracket operation. Making use of this Lie bracket one can generate new characteristic classes involving higher derivatives of the homological vector field. The simplest characteristic classes are illustrated by the examples relating them to anomalies in the traditional BV or BFV-BRST theory and to characteristic classes of (singular) foliations.

  4. TIGA Tide Gauge Data Reprocessing at GFZ

    NASA Astrophysics Data System (ADS)

    Deng, Zhiguo; Schöne, Tilo; Gendt, Gerd

    2014-05-01

    To analyse the tide gauge measurements for the purpose of global long-term sea level change research a well-defined absolute reference frame is required by oceanographic community. To create such frame the data from a global GNSS network located at or near tide gauges are processed. For analyzing the GNSS data on a preferably continuous basis the International GNSS Service (IGS) Tide Gauge Benchmark Monitoring Working Group (TIGA-WG) is responsible. As one of the TIGA Analysis Centers the German Research Centre for Geosciences (GFZ) is contributing to the IGS TIGA Reprocessing Campaign. The solutions of the TIGA Reprocessing Campaign will also contribute to 2nd IGS Data Reprocessing Campaign with GFZ IGS reprocessing solution. After the first IGS reprocessing finished in 2010 some improvements were implemented into the latest GFZ software version EPOS.P8: reference frame IGb08 based on ITRF2008, antenna calibration igs08.atx, geopotential model (EGM2008), higher-order ionospheric effects, new a priori meteorological model (GPT2), VMF mapping function, and other minor improvements. GPS data of the globally distributed tracking network of 794 stations for the time span from 1994 until end of 2012 are used for the TIGA reprocessing. To handle such large network a new processing strategy is developed and described in detail. In the TIGA reprocessing the GPS@TIGA data are processed in precise point positioning (PPP) mode to clean data using the IGS reprocessing orbit and clock products. To validate the quality of the PPP coordinate results the rates of 80 GPS@TIGA station vertical movement are estimated from the PPP results using Maximum Likelihood Estimation (MLE) method. The rates are compared with the solution of University of LaRochelle Consortium (ULR) (named ULR5). 56 of the 80 stations have a difference of the vertical velocities below 1 mm/yr. The error bars of PPP rates are significant larger than those of ULR5, which indicates large time correlated noise in

  5. Gauge interactions theory and experiment

    SciTech Connect

    Zichichi, A.

    This volume brings together physicists from around the world to report and discuss the exciting advances made recently in theoretical and experimental aspects of gauge interactions. Following a presentation of the theoretical foundations of and recent developments in gauge fields, the contrib utors fogus on supersymmetry, the derivation of Higgs particles from gauge fields, and heavy leptons. Other chapters discuss the use of quantum chromodynamics in describing basic interactions among quarks and gluons, in predicting the existence of glueballs, and in application to heavy flavor production in strong interactions. The editor, Antonino Zichichi, provides a study of the multiparticle hadronicmore » systems produced in highenergy soft (pp) interactions. Other interesting chapters deal with photon scattering at very high energies and theoretical alternatives to the electroweak model, and the volume concludes with proposals for future experimental facilities for European physics.« less

  6. Gauge Theories of Vector Particles

    DOE R&D Accomplishments Database

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  7. "Zero-Mass" Noninvasive Pressure Transducers

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2009-01-01

    Extremely lightweight, compact, noninvasive, rugged, relatively inexpensive strain-gauge transducers have been developed for use in measuring pressures of fluids in tubes. These gauges were originally intended for measuring pressures of spacecraft-propulsion fluids, but they are also attractive for use in numerous terrestrial applications especially those involving fluids that are extremely chemically reactive, fluids that must be isolated for hygienic purposes, fluids that must be allowed to flow without obstruction, and fluid-containing tubes exposed to severe environments. A basic pressure transducer of this type comprises one or more pair(s) of thin-film strain gauges integral with a tube that contains the fluid of interest. Following established strain-gauge practice, the gauges in each pair are connected into opposite arms of a Wheatstone bridge (see figure). Typically, each pressure transducer includes one pair (the active pair) of strain gauges for measuring the hoop stress proportional to the pressure of the fluid in the tube and another pair (the dummy pair) of strain gauges that are nominally unstrained: The dummy gauges are mounted on a substrate that is made of the same material as that of the tube. The substrate is welded to the tube at only one spot so that stresses and strains are not coupled from the tube into the substrate. The dummy strain gauges measure neutral strains (basically, strains associated with thermal expansion), so that the neutral-strain contribution can be subtracted out of the final gauge reading.

  8. Absolute measurements of large mirrors

    NASA Astrophysics Data System (ADS)

    Su, Peng

    The ability to produce mirrors for large astronomical telescopes is limited by the accuracy of the systems used to test the surfaces of such mirrors. Typically the mirror surfaces are measured by comparing their actual shapes to a precision master, which may be created using combinations of mirrors, lenses, and holograms. The work presented here develops several optical testing techniques that do not rely on a large or expensive precision, master reference surface. In a sense these techniques provide absolute optical testing. The Giant Magellan Telescope (GMT) has been designed with a 350 m 2 collecting area provided by a 25 m diameter primary mirror made out from seven circular independent mirror segments. These segments create an equivalent f/0.7 paraboloidal primary mirror consisting of a central segment and six outer segments. Each of the outer segments is 8.4 m in diameter and has an off-axis aspheric shape departing 14.5 mm from the best-fitting sphere. Much of the work in this dissertation is motivated by the need to measure the surfaces or such large mirrors accurately, without relying on a large or expensive precision reference surface. One method for absolute testing describing in this dissertation uses multiple measurements relative to a reference surface that is located in different positions with respect to the test surface of interest. The test measurements are performed with an algorithm that is based on the maximum likelihood (ML) method. Some methodologies for measuring large flat surfaces in the 2 m diameter range and for measuring the GMT primary mirror segments were specifically developed. For example, the optical figure of a 1.6-m flat mirror was determined to 2 nm rms accuracy using multiple 1-meter sub-aperture measurements. The optical figure of the reference surface used in the 1-meter sub-aperture measurements was also determined to the 2 nm level. The optical test methodology for a 1.7-m off axis parabola was evaluated by moving several

  9. Gauge fixing and BFV quantization

    NASA Astrophysics Data System (ADS)

    Rogers, Alice

    2000-01-01

    Non-singularity conditions are established for the Batalin-Fradkin-Vilkovisky (BFV) gauge-fixing fermion which are sufficient for it to lead to the correct path integral for a theory with constraints canonically quantized in the BFV approach. The conditions ensure that the anticommutator of this fermion with the BRST charge regularizes the path integral by regularizing the trace over non-physical states in each ghost sector. The results are applied to the quantization of a system which has a Gribov problem, using a non-standard form of the gauge-fixing fermion.

  10. Non-Abelian gauge preheating

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Giblin, John T.; Weiner, Zachary J.

    2017-12-01

    We study preheating in models where a scalar inflaton is directly coupled to a non-Abelian S U (2 ) gauge field. In particular, we examine m2ϕ2 inflation with a conformal, dilatonlike coupling to the non-Abelian sector. We describe a numerical scheme that combines lattice gauge theory with standard finite difference methods applied to the scalar field. We show that a significant tachyonic instability allows for efficient preheating, which is parametrically suppressed by increasing the non-Abelian self-coupling. Additionally, we comment on the technical implementation of the evolution scheme and setting initial conditions.

  11. Articulated Multimedia Physics, Lesson 14, Gases, The Gas Laws, and Absolute Temperature.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    As the fourteenth lesson of the Articulated Multimedia Physics Course, instructional materials are presented in this study guide with relation to gases, gas laws, and absolute temperature. The topics are concerned with the kinetic theory of gases, thermometric scales, Charles' law, ideal gases, Boyle's law, absolute zero, and gas pressures. The…

  12. Seafloor Pressure Array Studies at Ultra-Low Frequencies

    DTIC Science & Technology

    1991-01-01

    broadband instrument design and deployment. In order to measure broadband noise routinely, a low frequency pressure gauge designed for deep ocean...below the microseism band (Moore et al, 1981). A differential pressure gauge , developed for low frequency recordings by Cox et al (1984) and sensitive to...design differential pressure gauge (Cox et al, 1984) with a sensitivity -3- ULF Seafloor Pressure Array Studies range of 0.01-5 Hz. The high

  13. Estimating Rain Rates from Tipping-Bucket Rain Gauge Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Jianxin; Fisher, Brad L.; Wolff, David B.

    2007-01-01

    This paper describes the cubic spline based operational system for the generation of the TRMM one-minute rain rate product 2A-56 from Tipping Bucket (TB) gauge measurements. Methodological issues associated with applying the cubic spline to the TB gauge rain rate estimation are closely examined. A simulated TB gauge from a Joss-Waldvogel (JW) disdrometer is employed to evaluate effects of time scales and rain event definitions on errors of the rain rate estimation. The comparison between rain rates measured from the JW disdrometer and those estimated from the simulated TB gauge shows good overall agreement; however, the TB gauge suffers sampling problems, resulting in errors in the rain rate estimation. These errors are very sensitive to the time scale of rain rates. One-minute rain rates suffer substantial errors, especially at low rain rates. When one minute rain rates are averaged to 4-7 minute or longer time scales, the errors dramatically reduce. The rain event duration is very sensitive to the event definition but the event rain total is rather insensitive, provided that the events with less than 1 millimeter rain totals are excluded. Estimated lower rain rates are sensitive to the event definition whereas the higher rates are not. The median relative absolute errors are about 22% and 32% for 1-minute TB rain rates higher and lower than 3 mm per hour, respectively. These errors decrease to 5% and 14% when TB rain rates are used at 7-minute scale. The radar reflectivity-rainrate (Ze-R) distributions drawn from large amount of 7-minute TB rain rates and radar reflectivity data are mostly insensitive to the event definition.

  14. Selection of peripheral intravenous catheters with 24-gauge side-holes versus those with 22-gauge end-hole for MDCT: A prospective randomized study.

    PubMed

    Tamura, Akio; Kato, Kenichi; Kamata, Masayoshi; Suzuki, Tomohiro; Suzuki, Michiko; Nakayama, Manabu; Tomabechi, Makiko; Nakasato, Tatsuhiko; Ehara, Shigeru

    2017-02-01

    To compare the 24-gauge side-holes catheter and conventional 22-gauge end-hole catheter in terms of safety, injection pressure, and contrast enhancement on multi-detector computed tomography (MDCT). In a randomized single-center study, 180 patients were randomized to either the 24-gauge side-holes catheter or the 22-gauge end-hole catheter groups. The primary endpoint was safety during intravenous administration of contrast material for MDCT, using a non-inferiority analysis (lower limit 95% CI greater than -10% non-inferiority margin for the group difference). The secondary endpoints were injection pressure and contrast enhancement. A total of 174 patients were analyzed for safety during intravenous contrast material administration for MDCT. The overall extravasation rate was 1.1% (2/174 patients); 1 (1.2%) minor episode occurred in the 24-gauge side-holes catheter group and 1 (1.1%) in the 22-gauge end-hole catheter group (difference: 0.1%, 95% CI: -3.17% to 3.28%, non-inferiority P=1). The mean maximum pressure was higher with the 24-gauge side-holes catheter than with the 22-gauge end-hole catheter (8.16±0.95kg/cm 2 vs. 4.79±0.63kg/cm 2 , P<0.001). The mean contrast enhancement of the abdominal aorta, celiac artery, superior mesenteric artery, and pancreatic parenchyma in the two groups were not significantly different. In conclusion, our study showed that the 24-gauge side-holes catheter is safe and suitable for delivering iodine with a concentration of 300mg/mL at a flow-rate of 3mL/s, and it may contribute to the care of some patients, such as patients who have fragile and small veins. (Trial registration: UMIN000023727). Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Cosmology with negative absolute temperatures

    SciTech Connect

    Vieira, J.P.P.; Byrnes, Christian T.; Lewis, Antony, E-mail: J.Pinto-Vieira@sussex.ac.uk, E-mail: ctb22@sussex.ac.uk, E-mail: antony@cosmologist.info

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion ( w < -1) with no Big Rip, and their contractingmore » counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.« less

  16. Gauge-free gyrokinetic theory

    NASA Astrophysics Data System (ADS)

    Burby, Joshua; Brizard, Alain

    2017-10-01

    Test-particle gyrocenter equations of motion play an essential role in the diagnosis of turbulent strongly-magnetized plasmas, and are playing an increasingly-important role in the formulation of kinetic-gyrokinetic hybrid models. Previous gyrocenter models required the knowledge of the perturbed electromagnetic potentials, which are not directly observable quantities (since they are gauge-dependent). A new gauge-free formulation of gyrocenter motion is presented, which enables gyrocenter trajectories to be determined using only measured values of the directly-observable electromagnetic field. Our gauge-free gyrokinetic theory is general enough to allow for gyroradius-scale fluctuations in both the electric and magnetic field. In addition, we provide gauge-free expressions for the charge and current densities produced by a distribution of gyrocenters, which explicitly include guiding-center and gyrocenter polarization and magnetization effects. This research was supported by the U.S. DOE Contract Nos. DE-SC0014032 (AB) and DE-AC05-06OR23100 (JB).

  17. Gauged multisoliton baby Skyrme model

    NASA Astrophysics Data System (ADS)

    Samoilenka, A.; Shnir, Ya.

    2016-03-01

    We present a study of U (1 ) gauged modification of the 2 +1 -dimensional planar Skyrme model with a particular choice of the symmetry breaking potential term which combines a short-range repulsion and a long-range attraction. In the absence of the gauge interaction, the multisolitons of the model are aloof, as they consist of the individual constituents which are well separated. A peculiar feature of the model is that there are usually several different stable static multisoliton solutions of rather similar energy in a topological sector of given degree. We investigate the pattern of the solutions and find new previously unknown local minima. It is shown that coupling of the aloof planar multi-Skyrmions to the magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, their energies, and magnetic fluxes on the strength of the gauge coupling. It is found that, generically, in the strong coupling limit, the coupling to the gauge field results in effective recovery of the rotational invariance of the configuration.

  18. High accuracy step gauge interferometer

    NASA Astrophysics Data System (ADS)

    Byman, V.; Jaakkola, T.; Palosuo, I.; Lassila, A.

    2018-05-01

    Step gauges are convenient transfer standards for the calibration of coordinate measuring machines. A novel interferometer for step gauge calibrations implemented at VTT MIKES is described. The four-pass interferometer follows Abbe’s principle and measures the position of the inductive probe attached to a measuring head. The measuring head of the instrument is connected to a balanced boom above the carriage by a piezo translation stage. A key part of the measuring head is an invar structure on which the inductive probe and the corner cubes of the measuring arm of the interferometer are attached. The invar structure can be elevated so that the probe is raised without breaking the laser beam. During probing, the bending of the probe and the interferometer readings are recorded and the measurement face position is extrapolated to zero force. The measurement process is fully automated and the face positions of the steps can be measured up to a length of 2 m. Ambient conditions are measured continuously and the refractive index of air is compensated for. Before measurements the step gauge is aligned with an integrated 2D coordinate measuring system. The expanded uncertainty of step gauge calibration is U=\\sqrt{{{(64 nm)}2}+{{(88× {{10}-9}L)}2}} .

  19. Embedded Strain Gauges for Condition Monitoring of Silicone Gaskets

    PubMed Central

    Schotzko, Timo; Lang, Walter

    2014-01-01

    A miniaturized strain gauge with a thickness of 5 µm is molded into a silicone O-ring. This is a first step toward embedding sensors in gaskets for structural health monitoring. The signal of the integrated sensor exhibits a linear correlation with the contact pressure of the O-ring. This affords the opportunity to monitor the gasket condition during installation. Thus, damages caused by faulty assembly can be detected instantly, and early failures, with their associated consequences, can be prevented. Through the embedded strain gauge, the contact pressure applied to the gasket can be directly measured. Excessive pressure and incorrect positioning of the gasket can cause structural damage to the material of the gasket, which can lead to an early outage. A platinum strain gauge is fabricated on a thin polyimide layer and is contacted through gold connections. The measured resistance pressure response exhibits hysteresis for the first few strain cycles, followed by a linear behavior. The short-term impact of the embedded sensor on the stability of the gasket is investigated. Pull-tests with O-rings and test specimens have indicated that the integration of the miniaturized sensors has no negative impact on the stability in the short term. PMID:25014099

  20. Inter-comparison of automatic rain gauges

    NASA Technical Reports Server (NTRS)

    Nystuen, Jeffrey A.

    1994-01-01

    The Ocean Acoustics Division (OAD) of the Atlantic Oceanographic and Meteorological Laboratory (AOML), in cooperation with NOAA/NESDIS and NASA, has deployed six rain gauges for calibration and intercomparison purposes. These instruments include: (1) a weighing rain gauge, (2) a RM Young Model 50202 capacitance rain gauge, (3) a ScTI ORG-705 (long path) optical rain gauge, (4) a ScTI ORG-105 (mini-ORG) optical rain gauge, (5) a Belfort Model 382 tipping bucket rain gauge, and (6) a Distromet RD-69 disdrometer. The system has been running continuously since July 1993. During this time period, roughly 150 events with maximum rainfall rate over 10 mm/hr and 25 events with maximum rainfall rates over 100 mm/hr have been recorded. All rain gauge types have performed well, with intercorrelations 0.9 or higher. However, limitations for each type of rain gauge have been observed.

  1. Multi-step contrast sensitivity gauge

    DOEpatents

    Quintana, Enrico C; Thompson, Kyle R; Moore, David G; Heister, Jack D; Poland, Richard W; Ellegood, John P; Hodges, George K; Prindville, James E

    2014-10-14

    An X-ray contrast sensitivity gauge is described herein. The contrast sensitivity gauge comprises a plurality of steps of varying thicknesses. Each step in the gauge includes a plurality of recesses of differing depths, wherein the depths are a function of the thickness of their respective step. An X-ray image of the gauge is analyzed to determine a contrast-to-noise ratio of a detector employed to generate the image.

  2. Noncommutative gauge theory for Poisson manifolds

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Wess, Julius

    2000-09-01

    A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem.

  3. 27 CFR 19.319 - Production gauge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... package gauge record, if any, shall show: (1) The real name (or basic operating name as provided in § 19.... All spirits shall be gauged by determining quantity and proof within a reasonable time after... production gauge. If spirits are drawn from the production system into barrels, drums, or similar portable...

  4. Gauge invariant spectral Cauchy characteristic extraction

    NASA Astrophysics Data System (ADS)

    Handmer, Casey J.; Szilágyi, Béla; Winicour, Jeffrey

    2015-12-01

    We present gauge invariant spectral Cauchy characteristic extraction. We compare gravitational waveforms extracted from a head-on black hole merger simulated in two different gauges by two different codes. We show rapid convergence, demonstrating both gauge invariance of the extraction algorithm and consistency between the legacy Pitt null code and the much faster spectral Einstein code (SpEC).

  5. Orthogonal stack of global tide gauge sea level data

    NASA Technical Reports Server (NTRS)

    Trupin, A.; Wahr, J.

    1990-01-01

    Yearly and monthly tide gauge sea level data from around the globe are fitted to numerically generated equilibrium tidal data to search for the 18.6 year lunar tide and 14 month pole tide. Both tides are clearly evident in the results, and their amplitudes and phases are found to be consistent with a global equilibrium response. Global, monthly sea level data from outside the Baltic sea and Gulf of Bothnia are fitted to global atmospheric pressure data to study the response of the ocean to pressure fluctuations. The response is found to be inverted barometer at periods greater than two months. Global averages of tide gauge data, after correcting for the effects of post glacial rebound on individual station records, reveal an increase in sea level over the last 80 years of between 1.1 mm/yr and 1.9 mm/yr.

  6. Gauge Adjusted Global Satellite Mapping of Precipitation (GSMAP_GAUGE)

    NASA Astrophysics Data System (ADS)

    Mega, T.; Ushio, T.; Yoshida, S.; Kawasaki, Z.; Kubota, T.; Kachi, M.; Aonashi, K.; Shige, S.

    2013-12-01

    precipitation instantaneously, while the ground based rain gauges collects precipitation particles for one hour at a certain point. This discrepancy can cause the mismatch between the two estimates, and we need to fill the gap of the precipitation estimates between the satellite and rain gauge attributable to the spatial and temporal resolution difference. To that end, the gauge adjusted product named as GSMaP_Gauge has been developed. In this product, the CPC global gauge data analysis by Xie et al. (2007) and Chen et al. (2008) is used for the adjustment of the GSMaP_MVK data. In this presentation, the algorithm concept, examples of the product, and some validation results are presented.

  7. Specific heat in the pure gauge SU(2) theory

    NASA Astrophysics Data System (ADS)

    Mitrjushkin, V. K.; Zadorozhny, A. M.

    1989-12-01

    We calculated the specific heat Cv in pure gauge SU(2) theory. Calculations were done on the 3·8 3 lattice in the vicinity of the phase transition temperature. It is shown that the dependence of its electric ( CEv) and magnetic ( CMV) compone nts differ drastically near the phase transition point. Their behaviour is in full agreement with our previous calculations of the electric and magnetic components of the internal energy density and pressure.

  8. On lattice chiral gauge theories

    NASA Technical Reports Server (NTRS)

    Maiani, L.; Rossi, G. C.; Testa, M.

    1991-01-01

    The Smit-Swift-Aoki formulation of a lattice chiral gauge theory is presented. In this formulation the Wilson and other non invariant terms in the action are made gauge invariant by the coupling with a nonlinear auxilary scalar field, omega. It is shown that omega decouples from the physical states only if appropriate parameters are tuned so as to satisfy a set of BRST identities. In addition, explicit ghost fields are necessary to ensure decoupling. These theories can give rise to the correct continuum limit. Similar considerations apply to schemes with mirror fermions. Simpler cases with a global chiral symmetry are discussed and it is shown that the theory becomes free at decoupling. Recent numerical simulations agree with those considerations.

  9. Gauge mediated mini-split

    DOE PAGES

    Cohen, Timothy; Craig, Nathaniel; Knapen, Simon

    2016-03-15

    We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ–b μ problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 10 5 to 10 8 GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loopmore » suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.« less

  10. Weak interactions and gauge theories

    SciTech Connect

    Gaillard, M.K.

    1979-12-01

    The status of the electroweak gauge theory, also known as quantum asthenodynamics (QAD), is examined. The major result is that the standard WS-GIM model describes the data well, although one should still look for signs of further complexity and better tests of its gauge theory aspect. A second important result is that the measured values of the three basic coupling constants of present-energy physics, g/sub s/, g, and ..sqrt..(5/3)g' of SU(3)/sub c/ x SU(2)/sub 2/ x U(1), are compatible with the idea that these interactions are unified at high energies. Much of the paper deals with open questions, and itmore » takes up the following topics: the status of QAD, the scalar meson spectrum, the fermion spectrum, CP violation, and decay dynamics. 118 references, 20 figures. (RWR)« less

  11. Gauge Gravity and Electroweak Theory

    NASA Astrophysics Data System (ADS)

    Hestenes, David

    2008-09-01

    Reformulation of the Dirac equation in terms of the real Spacetime Algebra (STA) reveals hidden geometric structure, including a geometric role for the unit imaginary as generator of rotations in a spacelike plane. The STA and the real Dirac equation play essential roles in a new Gauge Theory Gravity (GTG) version of General Relativity (GR). Besides clarifying the conceptual foundations of GR and facilitating complex computations, GTG opens up new possibilities for a unified gauge theory of gravity and quantum mechanics, including spacetime geometry of electroweak interactions. The Weinberg-Salam model fits perfectly into this geometric framework, and a promising variant that replaces chiral states with Majorana states is formulated to incorporate zitterbewegung in electron states.

  12. Non-Abelian gauge fields

    NASA Astrophysics Data System (ADS)

    Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus

    2013-07-01

    Building a universal quantum computer is a central goal of emerging quantum technologies, which has the potential to revolutionize science and technology. Unfortunately, this future does not seem to be very close at hand. However, quantum computers built for a special purpose, i.e. quantum simulators , are currently developed in many leading laboratories. Many schemes for quantum simulation have been proposed and realized using, e.g., ultracold atoms in optical lattices, ultracold trapped ions, atoms in arrays of cavities, atoms/ions in arrays of traps, quantum dots, photonic networks, or superconducting circuits. The progress in experimental implementations is more than spectacular. Particularly interesting are those systems that simulate quantum matter evolving in the presence of gauge fields. In the quantum simulation framework, the generated (synthetic) gauge fields may be Abelian, in which case they are the direct analogues of the vector potentials commonly associated with magnetic fields. In condensed matter physics, strong magnetic fields lead to a plethora of fascinating phenomena, among which the most paradigmatic is perhaps the quantum Hall effect. The standard Hall effect consists in the appearance of a transverse current, when a longitudinal voltage difference is applied to a conducting sample. For quasi-two-dimensional semiconductors at low temperatures placed in very strong magnetic fields, the transverse conductivity, the ratio between the transverse current and the applied voltage, exhibits perfect and robust quantization, independent for instance of the material or of its geometry. Such an integer quantum Hall effect, is now understood as a deep consequence of underlying topological order. Although such a system is an insulator in the bulk, it supports topologically robust edge excitations which carry the Hall current. The robustness of these chiral excitations against backscattering explains the universality of the quantum Hall effect. Another

  13. Strolling along gauge theory vacua

    NASA Astrophysics Data System (ADS)

    Seraj, Ali; Van den Bleeken, Dieter

    2017-08-01

    We consider classical, pure Yang-Mills theory in a box. We show how a set of static electric fields that solve the theory in an adiabatic limit correspond to geodesic motion on the space of vacua, equipped with a particular Riemannian metric that we identify. The vacua are generated by spontaneously broken global gauge symmetries, leading to an infinite number of conserved momenta of the geodesic motion. We show that these correspond to the soft multipole charges of Yang-Mills theory.

  14. Novel Principle of Contactless Gauge Block Calibration

    PubMed Central

    Buchta, Zdeněk; Řeřucha, Šimon; Mikel, Břetislav; Čížek, Martin; Lazar, Josef; Číp, Ondřej

    2012-01-01

    In this paper, a novel principle of contactless gauge block calibration is presented. The principle of contactless gauge block calibration combines low-coherence interferometry and laser interferometry. An experimental setup combines Dowell interferometer and Michelson interferometer to ensure a gauge block length determination with direct traceability to the primary length standard. By monitoring both gauge block sides with a digital camera gauge block 3D surface measurements are possible too. The principle presented is protected by the Czech national patent No. 302948. PMID:22737012

  15. Noncommutative gauge theories and Kontsevich's formality theorem

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Schupp, P.; Wess, J.

    2001-09-01

    The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map.) Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; as a byproduct we obtain a "Mini Seiberg-Witten map" that explicitly relates ordinary abelian and nonabelian gauge fields. All constructions are also valid for non-constant B-field, and even more generally for any Poisson tensor.

  16. Gravitational wave-Gauge field oscillations

    NASA Astrophysics Data System (ADS)

    Caldwell, R. R.; Devulder, C.; Maksimova, N. A.

    2016-09-01

    Gravitational waves propagating through a stationary gauge field transform into gauge field waves and back again. When multiple families of flavor-space locked gauge fields are present, the gravitational and gauge field waves exhibit novel dynamics. At high frequencies, the system behaves like coupled oscillators in which the gravitational wave is the central pacemaker. Due to energy conservation and exchange among the oscillators, the wave amplitudes lie on a multidimensional sphere, reminiscent of neutrino flavor oscillations. This phenomenon has implications for cosmological scenarios based on flavor-space locked gauge fields.

  17. Rain gauge calibration and testing

    NASA Technical Reports Server (NTRS)

    Wilkerson, John

    1994-01-01

    Prior to the Tropical Oceans Global Atmosphere-Coupled Ocean Atmosphere Response Experiment (TOGA-COARE), 42 Model 100 series optical gauges were tested in the rain simulator facility at Wallops Island before shipment to the field. Baseline measurements at several rain rates were made simultaneously with collector cans, tipping bucket, and a precision weighing gauge and held for post-COARE evaluation with a repeat set of measurements that were to be recorded after the instruments were returned. This was done as a means of detecting any calibration changes that might have occurred while deployed. Although it was known that the artificial rain in the simulator did not contain the required exponential distribution for accurate optical rain gauge rate measurements, use of the facility was necessary because it was the only means available for taking controlled observations with instruments that were received, tested, and shipped out in groups over a period of months. At that point, it was believed that these measurements would be adequately precise for detecting performance changes over time. However, analysis of the data by STI now indicates that this may not be true. Further study of the data will be undertaken to resolve this.

  18. Entanglement renormalization and gauge symmetry

    NASA Astrophysics Data System (ADS)

    Tagliacozzo, L.; Vidal, G.

    2011-03-01

    A lattice gauge theory is described by a redundantly large vector space that is subject to local constraints and can be regarded as the low-energy limit of an extended lattice model with a local symmetry. We propose a numerical coarse-graining scheme to produce low-energy, effective descriptions of lattice models with a local symmetry such that the local symmetry is exactly preserved during coarse-graining. Our approach results in a variational ansatz for the ground state(s) and low-energy excitations of such models and, by extension, of lattice gauge theories. This ansatz incorporates the local symmetry in its structure and exploits it to obtain a significant reduction of computational costs. We test the approach in the context of a Z2 lattice gauge theory formulated as the low-energy theory of a specific regime of the toric code with a magnetic field, for lattices with up to 16×16 sites (162×2=512 spins) on a torus. We reproduce the well-known ground-state phase diagram of the model, consisting of a deconfined and spin-polarized phases separated by a continuous quantum phase transition, and obtain accurate estimates of energy gaps, ground-state fidelities, Wilson loops, and several other quantities.

  19. Asymptotically Free Gauge Theories. I

    DOE R&D Accomplishments Database

    Wilczek, Frank; Gross, David J.

    1973-07-01

    Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.

  20. Tensor gauge condition and tensor field decomposition

    NASA Astrophysics Data System (ADS)

    Zhu, Ben-Chao; Chen, Xiang-Song

    2015-10-01

    We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.

  1. Interferometric step gauge for CMM verification

    NASA Astrophysics Data System (ADS)

    Hemming, B.; Esala, V.-P.; Laukkanen, P.; Rantanen, A.; Viitala, R.; Widmaier, T.; Kuosmanen, P.; Lassila, A.

    2018-07-01

    The verification of the measurement capability of coordinate measuring machines (CMM) is usually performed using gauge blocks or step gauges as reference standards. Gauge blocks and step gauges are robust and easy to use, but have some limitations such as finite lengths and uncertainty of thermal expansion. This paper describes the development, testing and uncertainty evaluation of an interferometric step gauge (ISG) for CMM verification. The idea of the ISG is to move a carriage bearing a gauge block along a rail and to measure the position with an interferometer. For a displacement of 1 m the standard uncertainty of the position of the gauge block is 0.2 µm. A short range periodic error of CMM can also be detected.

  2. Adding gauge fields to Kaplan's fermions

    NASA Astrophysics Data System (ADS)

    Blum, T.; Kärkkäinen, Leo

    1994-04-01

    We experiment with adding dynamical gauge field to Kaplan (defect) fermions. In the case of U (1) gauge theory we use an inhomogenous Higgs mechanism to restrict the 3d gauge dynamics to a planar 2d defect. In our simulations the 3d theory produce the correct 2d gauge dynamics. We measure fermion propagators with dynamical gauge fields. They posses the correct chiral structure. The fermions at the boundary of the support of the gauge field (waveguide) are non-chiral, and have a mass two times heavier than the chiral modes. Moreover, these modes cannot be excited by a source at the defect; implying that they are dynamically decoupled. We have also checked that the anomaly relation is fullfilled for the case of a smooth external gauge field.

  3. Development and Design of a Zero-G Liquid Quantity Gauge for a Solar Thermal Vehicle

    NASA Technical Reports Server (NTRS)

    Dodge, Franklin T.; Green, Steven T.; Petullo, Steven P.; VanDresar, Neil T.; Taylor, William J. (Technical Monitor)

    2002-01-01

    The development and design of a cryogenic liquid quantity gauge for zero-g applications is described. The gauge, named the Compression Mass Gauge (CMG), operates on the principle of slightly changing the volume of the tank by an oscillating bellows. The resulting pressure change is measured and used to predict the volume of vapor in the tank, from which the volume of liquid is computed. For each gauging instance, pressures are measured for several different bellows frequencies to enable minor real-gas effects to be quantified and thereby to obtain a gauging accuracy of +/- 1% of tank volume. Southwest Research Institute (Tm) and NASA-GRC (Glenn Research Center) have developed several previous breadboard and engineering development gauges and tested them in cryogenic hydrogen and nitrogen to establish the gauge capabilities, to resolve several design issues, and to formulate data processing algorithms. The CMG has been selected by NASA's Future X program for a flight demonstration on the USAF (United States Air Force) / Boeing Solar Thermal Vehicle Space Experiment (SOTVSE). This paper reviews the design trade studies needed to satisfy the SOTVSE limitations on CMG power, volume, and mass, and describes the mechanical design of the CMG.

  4. Estimating the absolute wealth of households

    PubMed Central

    Gerkey, Drew; Hadley, Craig

    2015-01-01

    Abstract Objective To estimate the absolute wealth of households using data from demographic and health surveys. Methods We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. Findings The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723–6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R2 = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Conclusion Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality. PMID:26170506

  5. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  6. 49 CFR 236.709 - Block, absolute.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Block, absolute. 236.709 Section 236.709 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Block, absolute. A block in which no train is permitted to enter while it is occupied by another train. ...

  7. Estimating the absolute wealth of households.

    PubMed

    Hruschka, Daniel J; Gerkey, Drew; Hadley, Craig

    2015-07-01

    To estimate the absolute wealth of households using data from demographic and health surveys. We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. The median absolute wealth estimates of 1,403,186 households were 2056 international dollars per capita (interquartile range: 723-6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R(2)  = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality.

  8. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  9. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  10. 49 CFR 236.709 - Block, absolute.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Block, absolute. 236.709 Section 236.709 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Block, absolute. A block in which no train is permitted to enter while it is occupied by another train. ...

  11. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  12. Monolithically integrated absolute frequency comb laser system

    SciTech Connect

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  13. A vacuum gauge based on an ultracold gas

    NASA Astrophysics Data System (ADS)

    Makhalov, V. B.; Turlapov, A. V.

    2017-06-01

    We report the design and application of a primary vacuum gauge based on an ultracold gas of atoms in an optical dipole trap. The pressure is calculated from the confinement time for atoms in the trap. The relationship between pressure and confinement time is established from the first principles owing to elimination of all channels introducing losses, except for knocking out an atom from the trap due to collisions with a residual gas particle. The method requires the knowledge of the gas chemical composition in the vacuum chamber, and, in the absence of this information, the systematic error is less than that of the ionisation sensor.

  14. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry.

    PubMed

    Holloway, Paul H; Pritchard, David G

    2017-08-01

    The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of <5% for at least 2 minutes, which ensures that birds are irreversibly stunned. Calculated pump down (pressure versus time) data match experimental data very closely because the programmable logic controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. © The Author 2017

  15. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry

    PubMed Central

    Holloway, Paul H.; Pritchard, David G.

    2017-01-01

    Abstract The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of <5% for at least 2 minutes, which ensures that birds are irreversibly stunned. Calculated pump down (pressure versus time) data match experimental data very closely because the programmable logic controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. PMID

  16. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  17. Gauge invariant fractional electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lazo, Matheus Jatkoske

    2011-09-01

    Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators.

  18. Absolute parameters of young stars: QZ Carinae

    NASA Astrophysics Data System (ADS)

    Walker, W. S. G.; Blackford, M.; Butland, R.; Budding, E.

    2017-09-01

    New high-resolution spectroscopy and BVR photometry together with literature data on the complex massive quaternary star QZ Car are collected and analysed. Absolute parameters are found as follows. System A: M1 = 43 (±3), M2 = 19 (+3 -7), R1 = 28 (±2), R2 = 6 (±2), (⊙); T1 ˜ 28 000, T2 ˜ 33 000 K; System B: M1 = 30 (±3), M2 = 20 (±3), R1 = 10 (±0.5), R2 = 20 (±1), (⊙); T1 ˜ 36 000, T2 ˜ 30 000 K (model dependent temperatures). The wide system AB: Period = 49.5 (±1) yr, Epochs, conjunction = 1984.8 (±1), periastron = 2005.3 (±3) yr, mean separation = 65 (±3), (au); orbital inclination = 85 (+5 -15) deg, photometric distance ˜2700 (±300) pc, age = 4 (±1) Myr. Other new contributions concern: (a) analysis of the timing of minima differences (O - C)s for the eclipsing binary (System B); (b) the width of the eclipses, pointing to relatively large effects of radiation pressure; (c) inferences from the rotational widths of lines for both Systems A and B; and (d) implications for theoretical models of early-type stars. While feeling greater confidence on the quaternary's general parametrization, observational complications arising from strong wind interactions or other, unclear, causes still inhibit precision and call for continued multiwavelength observations. Our high-inclination value for the AB system helps to explain failures to resolve the wide binary in the previous years. The derived young age independently confirms membership of QZ Car to the open cluster Collinder 228.

  19. Fast, Computer Supported Experimental Determination of Absolute Zero Temperature at School

    ERIC Educational Resources Information Center

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2014-01-01

    A simple and fast experimental method of determining absolute zero temperature is presented. Air gas thermometer coupled with pressure sensor and data acquisition system COACH is applied in a wide range of temperature. By constructing a pressure vs temperature plot for air under constant volume it is possible to obtain--by extrapolation to zero…

  20. A global algorithm for estimating Absolute Salinity

    NASA Astrophysics Data System (ADS)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  1. Gauge Blocks – A Zombie Technology

    PubMed Central

    Doiron, Ted

    2008-01-01

    Gauge blocks have been the primary method for disseminating length traceability for over 100 years. Their longevity was based on two things: the relatively low cost of delivering very high accuracy to users, and the technical limitation that the range of high precision gauging systems was very small. While the first reason is still true, the second factor is being displaced by changes in measurement technology since the 1980s. New long range sensors do not require master gauges that are nearly the same length as the part being inspected, and thus one of the primary attributes of gauge blocks, wringing stacks to match the part, is no longer needed. Relaxing the requirement that gauges wring presents an opportunity to develop new types of end standards that would increase the accuracy and usefulness of gauging systems. PMID:27096119

  2. Entanglement of Distillation for Lattice Gauge Theories.

    PubMed

    Van Acoleyen, Karel; Bultinck, Nick; Haegeman, Jutho; Marien, Michael; Scholz, Volkher B; Verstraete, Frank

    2016-09-23

    We study the entanglement structure of lattice gauge theories from the local operational point of view, and, similar to Soni and Trivedi [J. High Energy Phys. 1 (2016) 1], we show that the usual entanglement entropy for a spatial bipartition can be written as the sum of an undistillable gauge part and of another part corresponding to the local operations and classical communication distillable entanglement, which is obtained by depolarizing the local superselection sectors. We demonstrate that the distillable entanglement is zero for pure Abelian gauge theories at zero gauge coupling, while it is in general nonzero for the non-Abelian case. We also consider gauge theories with matter, and show in a perturbative approach how area laws-including a topological correction-emerge for the distillable entanglement. Finally, we also discuss the entanglement entropy of gauge fixed states and show that it has no relation to the physical distillable entropy.

  3. Absolute Sea-level Changes Derived from Integrated Geodetic Datasets (1955-2016) in the Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Yang, L.; Wang, G.; Liu, H.

    2017-12-01

    Rising sea level has important direct impacts on coastal and island regions such as the Caribbean where the influence of sea-level rise is becoming more apparent. The Caribbean Sea is a semi-enclosed sea adjacent to the landmasses of South and Central America to the south and west, and the Greater Antilles and the Lesser Antilles separate it from the Atlantic Ocean to the north and east. The work focus on studying the relative and absolute sea-level changes by integrating tide gauge, GPS, and satellite altimetry datasets (1955-2016) within the Caribbean Sea. Further, the two main components of absolute sea-level change, ocean mass and steric sea-level changes, are respectively studied using GRACE, temperature, and salinity datasets (1955-2016). According to the analysis conducted, the sea-level change rates have considerable temporal and spatial variations, and estimates may be subject to the techniques used and observation periods. The average absolute sea-level rise rate is 1.8±0.3 mm/year for the period from 1955 to 2015 according to the integrated tide gauge and GPS observations; the average absolute sea-level rise rate is 3.5±0.6 mm/year for the period from 1993 to 2016 according to the satellite altimetry observations. This study shows that the absolute sea-level change budget in the Caribbean Sea is closed in the periods from 1955 to 2016, in which ocean mass change dominates the absolute sea-level rise. The absolute sea-level change budget is also closed in the periods from 2004 to 2016, in which steric sea-level rise dominates the absolute sea-level rise.

  4. Unification of gauge and Yukawa couplings

    NASA Astrophysics Data System (ADS)

    Abdalgabar, Ammar; Khojali, Mohammed Omer; Cornell, Alan S.; Cacciapaglia, Giacomo; Deandrea, Aldo

    2018-01-01

    The unification of gauge and top Yukawa couplings is an attractive feature of gauge-Higgs unification models in extra-dimensions. This feature is usually considered difficult to obtain based on simple group theory analyses. We reconsider a minimal toy model including the renormalisation group running at one loop. Our results show that the gauge couplings unify asymptotically at high energies, and that this may result from the presence of an UV fixed point. The Yukawa coupling in our toy model is enhanced at low energies, showing that a genuine unification of gauge and Yukawa couplings may be achieved.

  5. HTL resummation in the light cone gauge

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Hou, De-fu

    2018-04-01

    The light cone gauge with light cone variables is often used in pQCD calculations in relativistic heavy-ion collision physics. The Hard Thermal Loops (HTL) resummation is an indispensable technique for hot QCD calculation. It was developed in covariant gauges with conventional Minkowski varaiables; we shall extend this method to the light cone gauge. In the real time formalism, using the Mandelstam-Leibbrant prescription of (n·K)‑1, we calculate the transverse and longitudinal components of the gluon HTL self energy, and prove that there are no infrared divergences. With this HTL self energy, we derive the HTL resummed gluon propagator in the light cone gauge. We also calculate the quark HTL self energy and the resummed quark propagator in the light cone gauge and find it is gauge independent. As application examples, we analytically calculate the damping rates of hard quarks and gluons with the HTL resummed gluon propagator in the light cone gauge and showed that they are gauge independent. The final physical results are identical to those computed in covariant gauge, as they should be. Supported by National Natural Science Foundation of China (11375070, 11735007, 11521064)

  6. Construction of an Optical Fiber Strain Gauge

    NASA Astrophysics Data System (ADS)

    Sulaiman, Najwa

    This project is focused on the construction of an optical fiber strain gauge that is based on a strain gauge described by Butter and Hocker. Our gauge is designed to generate an interference pattern from the signals carried on two bare single-mode fibers that are fastened to an aluminum cantilever. When the cantilever experiences flexural stress, the interference pattern should change. By observing this change, it is possible to determine the strain experienced by the cantilever. I describe the design and construction of our optical fiber strain gauge as well as the characterization of different parts of the apparatus.

  7. Study of cavity effect in micro-Pirani gauge chamber with improved sensitivity for high vacuum regime

    NASA Astrophysics Data System (ADS)

    Zhang, Guohe; Lai, Junhua; Kong, Yanmei; Jiao, Binbin; Yun, Shichang; Ye, Yuxin

    2018-05-01

    Ultra-low pressure application of Pirani gauge needs significant improvement of sensitivity and expansion of measureable low pressure limit. However, the performance of Pirani gauge in high vacuum regime remains critical concerns since gaseous thermal conduction with high percentage is essential requirement. In this work, the heat transfer mechanism of micro-Pirani gauge packaged in a non-hermetic chamber was investigated and analyzed compared with the one before wafer-level packaging. The cavity effect, extremely important for the efficient detection of low pressure, was numerically and experimentally analyzed considering the influence of the pressure, the temperature and the effective heat transfer area in micro-Pirani gauge chamber. The thermal conduction model is validated by experiment data of MEMS Pirani gauges with and without capping. It is found that nature gaseous convection in chamber, determined by the Rayleigh number, should be taken into consideration. The experiment and model calculated results show that thermal resistance increases in the molecule regime, and further increases after capping due to the suppression of gaseous convection. The gaseous thermal conduction accounts for an increasing percentage of thermal conduction at low pressure while little changes at high pressure after capping because of the existence of cavity effect improving the sensitivity of cavity-effect-influenced Pirani gauge for high vacuum regime.

  8. Review of non-nuclear density gauges as possible replacements for ITD's nuclear density gauges.

    DOT National Transportation Integrated Search

    2015-01-01

    This report examines the possibility of replacing nuclear density gauges (NDGs) with non-nuclear density gauges (NNDGs) to : measure density of hot mix asphalt (HMA) and unbound pavement layers in the field. The research team evaluated the : effectiv...

  9. An ionization gauge for ultrahigh vacuum measurement based on a carbon nanotube cathode

    NASA Astrophysics Data System (ADS)

    Zhang, Huzhong; Cheng, Yongjun; Sun, Jian; Wang, Yongjun; Xi, Zhenhua; Dong, Meng; Li, Detian

    2017-10-01

    This work reports on the complete design and the properties of an ionization gauge based on a carbon nanotube cathode, which can measure ultrahigh vacuum without thermal effects. The gauge is composed of a pressure sensor and an electronic controller. This pressure sensor is constructed based on a hot-cathode ionization gauge, where the traditional hot filament is replaced by an electron source prepared with multi-wall nanotubes. Besides, an electronic controller was developed for bias voltage supply, low current detection, and pressure indication. The gauge was calibrated in the pressure range of 10-8 to 10-4 Pa in a XHV/UHV calibration apparatus. The gauge shows good linear characteristics in different gases. The calibrated sensitivity is 0.035 Pa-1 in N2, and the standard deviation of the sensitivity is about 1.1%. In addition, the stability of the sensitivity was learned in a long period. The standard deviation of the sensitivity factor "S" during one year is 2.0% for Ar and 1.6% for N2.

  10. Absolute quantification of microbial taxon abundances.

    PubMed

    Props, Ruben; Kerckhof, Frederiek-Maarten; Rubbens, Peter; De Vrieze, Jo; Hernandez Sanabria, Emma; Waegeman, Willem; Monsieurs, Pieter; Hammes, Frederik; Boon, Nico

    2017-02-01

    High-throughput amplicon sequencing has become a well-established approach for microbial community profiling. Correlating shifts in the relative abundances of bacterial taxa with environmental gradients is the goal of many microbiome surveys. As the abundances generated by this technology are semi-quantitative by definition, the observed dynamics may not accurately reflect those of the actual taxon densities. We combined the sequencing approach (16S rRNA gene) with robust single-cell enumeration technologies (flow cytometry) to quantify the absolute taxon abundances. A detailed longitudinal analysis of the absolute abundances resulted in distinct abundance profiles that were less ambiguous and expressed in units that can be directly compared across studies. We further provide evidence that the enrichment of taxa (increase in relative abundance) does not necessarily relate to the outgrowth of taxa (increase in absolute abundance). Our results highlight that both relative and absolute abundances should be considered for a comprehensive biological interpretation of microbiome surveys.

  11. Low absolute neutrophil counts in African infants.

    PubMed

    Kourtis, Athena P; Bramson, Brian; van der Horst, Charles; Kazembe, Peter; Ahmed, Yusuf; Chasela, Charles; Hosseinipour, Mina; Knight, Rodney; Lugalia, Lebah; Tegha, Gerald; Joaki, George; Jafali, Robert; Jamieson, Denise J

    2005-07-01

    Infants of African origin have a lower normal range of absolute neutrophil counts than white infants; this fact, however, remains under appreciated by clinical researchers in the United States. During the initial stages of a clinical trial in Malawi, the authors noted an unexpectedly high number of infants with absolute neutrophil counts that would be classifiable as neutropenic using the National Institutes of Health's Division of AIDS toxicity tables. The authors argue that the relevant Division of AIDS table does not take into account the available evidence of low absolute neutrophil counts in African infants and that a systematic collection of data from many African settings might help establish the absolute neutrophil count cutpoints to be used for defining neutropenia in African populations.

  12. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  13. Absolute colorimetric characterization of a DSLR camera

    NASA Astrophysics Data System (ADS)

    Guarnera, Giuseppe Claudio; Bianco, Simone; Schettini, Raimondo

    2014-03-01

    A simple but effective technique for absolute colorimetric camera characterization is proposed. It offers a large dynamic range requiring just a single, off-the-shelf target and a commonly available controllable light source for the characterization. The characterization task is broken down in two modules, respectively devoted to absolute luminance estimation and to colorimetric characterization matrix estimation. The characterized camera can be effectively used as a tele-colorimeter, giving an absolute estimation of the XYZ data in cd=m2. The user is only required to vary the f - number of the camera lens or the exposure time t, to better exploit the sensor dynamic range. The estimated absolute tristimulus values closely match the values measured by a professional spectro-radiometer.

  14. [Pressure control in medical gas distribution systems].

    PubMed

    Bourgain, J L; Benayoun, L; Baguenard, P; Haré, G; Puizillout, J M; Billard, V

    1997-01-01

    To assess whether the pressure gauges at the downstream part of pressure regulators are accurate enough to ensure that pressure in O2 pipeline is always higher than in Air pipeline and that pressure in the latter is higher than pressure in N2O pipeline. A pressure difference of at least 0.4 bar between two medical gas supply systems is recommended to avoid the reflow of either N2O or Air into the O2 pipeline, through a faulty mixer or proportioning device. Prospective technical comparative study. Readings of 32 Bourdon gauges were compared with data obtained with a calibrated reference transducer. Two sets of measurements were performed at a one month interval. Pressure differences between Bourdon gauges and reference transducer were 8% (0.28 bar) in average for a theoretical maximal error less than 2.5%. During the first set of measurements, Air pressure was higher than O2 pressure in one place and N2O pressure higher than Air pressure in another. After an increase in the O2 pipeline pressure and careful setting of pressure regulators, this problem was not observed at the second set of measurements. Actual accuracy of Bourdon gauges was not convenient enough to ensure that O2 pressure was always above Air pressure. Regular controls of these pressure gauges are therefore essential. Replacement of the faulty Bourdon gauges by more accurate transducers should be considered. As an alternative, the increase in pressure difference between O2 and Air pipelines to at least 0.6 bar is recommended.

  15. 46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Sighting ports, tubular gauge glasses, and flat plate type gauge glasses. 154.1320 Section 154.1320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... glasses, and flat plate type gauge glasses. (a) Cargo tanks may have sighting ports as a secondary means...

  16. 46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sighting ports, tubular gauge glasses, and flat plate type gauge glasses. 154.1320 Section 154.1320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... glasses, and flat plate type gauge glasses. (a) Cargo tanks may have sighting ports as a secondary means...

  17. An almost trivial gauge theory in the limit of infinite gauge coupling constant.

    NASA Astrophysics Data System (ADS)

    Kaptanoglu, S.

    A local SU(2) gauge theory with one multiplet of scalars in the adjoint representation is considered. In the limit of infinite gauge coupling constant Yang-Mills fields become auxiliary and the action possesses a larger invariance than the usual gauge invariance; hence, the system develops a richer structure of constraints. The constraint analysis is carried out.

  18. Investigation of the expansion rate scaling of plasmas in the Electron Diffusion Gauge experiment

    NASA Astrophysics Data System (ADS)

    Morrison, Kyle A.; Davidson, Ronald C.; Paul, Stephen F.; Jenkins, Thomas G.

    2002-01-01

    The expansion of the Electron Diffusion Gauge (EDG) pure electron plasma due to collisions with background neutral gas atoms is characterized by the pressure and magnetic field scaling of the profile expansion rate (d/dt). Data obtained at higher background gas pressures [1] than previously studied [2] is presented. The measured expansion rate in the higher pressure regime is found to be in good agreement with the classical estimate of the expansion rate [3].

  19. Thread gauge for tapered threads

    DOEpatents

    Brewster, Albert L.

    1994-01-11

    The thread gauge permits the user to determine the pitch diameter of tapered threads at the intersection of the pitch cone and the end face of the object being measured. A pair of opposed anvils having lines of threads which match the configuration and taper of the threads on the part being measured are brought into meshing engagement with the threads on opposite sides of the part. The anvils are located linearly into their proper positions by stop fingers on the anvils that are brought into abutting engagement with the end face of the part. This places predetermined reference points of the pitch cone of the thread anvils in registration with corresponding points on the end face of the part being measured, resulting in an accurate determination of the pitch diameter at that location. The thread anvils can be arranged for measuring either internal or external threads.

  20. Thread gauge for tapered threads

    DOEpatents

    Brewster, A.L.

    1994-01-11

    The thread gauge permits the user to determine the pitch diameter of tapered threads at the intersection of the pitch cone and the end face of the object being measured. A pair of opposed anvils having lines of threads which match the configuration and taper of the threads on the part being measured are brought into meshing engagement with the threads on opposite sides of the part. The anvils are located linearly into their proper positions by stop fingers on the anvils that are brought into abutting engagement with the end face of the part. This places predetermined reference points of the pitch cone of the thread anvils in registration with corresponding points on the end face of the part being measured, resulting in an accurate determination of the pitch diameter at that location. The thread anvils can be arranged for measuring either internal or external threads. 13 figures.

  1. Cosmology and unified gauge theory

    NASA Astrophysics Data System (ADS)

    Oraifeartaigh, L.

    1981-09-01

    Theoretical points in common between cosmology and unified gauge theory (UGT) are reviewed, with attention given to areas of one which have proven useful for the other. The underlying principles for both theoretical frameworks are described, noting the differences in scale, i.e., 10 to the 25th cm in cosmology and 10 to the -15th cm for UGT. Cosmology has produced bounds on the number of existing neutrino species, and also on the mass of neutrinos, two factors of interest in particle physics. Electrons, protons, and neutrinos, having been spawned from the same massive leptons, each composed of three quarks, have been predicted to be present in equal numbers in the Universe by UGT, in line with necessities of cosmology. The Grand UGT also suggests specific time scales for proton decay, thus accounting for the observed baryon assymmetry.

  2. Gauge choice in conformal gravity

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph; Kazanas, Demosthenes

    2017-04-01

    In a recent paper, K. Horne examined the effect of a conformally coupled scalar field (referred to as Higgs field) on the Mannheim-Kazanas metric gμν, I.e. the static spherically symmetric metric within the context of conformal gravity, and studied its effect on the rotation curves of galaxies. He showed that for a Higgs field of the form S(r) = S0a/(r + a), where a is a radial length-scale, the equivalent Higgs-frame Mannheim-Kazanas metric \\tilde{g}_{μ ν } = Ω ^2 g_{μ ν }, with Ω = S(r)/S0, lacks the linear γr term, which has been employed in the fitting of the galactic rotation curves without the need to invoke dark matter. In this brief note, we point out that the representation of the Mannheim-Kazanas metric in a gauge, where it lacks the linear term, has already been presented by others, including Mannheim and Kazanas themselves, without the need to introduce a conformally coupled Higgs field. Furthermore, Horne argues that the absence of the linear term resolves the issue of light bending in the wrong direction, I.e. away from the gravitating mass, if γr > 0 in the Mannheim-Kazanas metric, a condition necessary to resolve the galactic dynamics in the absence of dark matter. In this case, we also point out that the elimination of the linear term is not even required because the sign of the γr term in the metric can be easily reversed by a simple gauge transformation, and also that the effects of this term are indeed too small to be observed.

  3. Gauge Choice in Conformal Gravity

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Kazanas, Demosthenes

    2017-01-01

    In a recent paper, K. Horne examined the effect of a conformally coupled scalar field (referred to as Higgs field) on the Mannheim-Kazanas index lowering operator, i.e. the static spherically symmetric metric within the context of conformal gravity, and studied its effect on the rotation curves of galaxies. He showed that for a Higgs field of the form S(r) = S0a/(r + a), where a is a radial length-scale, the equivalent Higgs-frame Mannheim-Kazanas index lowering operator=Omega(sup 2)index lowering operator, with Omega = S(r)/S0, lacks the linear gamma r term, which has been employed in the fitting of the galactic rotation curves without the need to invoke dark matter. In this brief note, we point out that the representation of the Mannheim-Kazanas metric in a gauge, where it lacks the linear term, has already been presented by others, including Mannheim and Kazanas themselves, without the need to introduce a conformally coupled Higgs field. Furthermore, Horne argues that the absence of the linear term resolves the issue of light bending in the wrong direction, i.e. away from the gravitating mass, if gamma r is greater than 0 in the Mannheim-Kazanas metric, a condition necessary to resolve the galactic dynamics in the absence of dark matter. In this case, we also point out that the elimination of the linear term is not even required because the sign of the gamma r term in the metric can be easily reversed by a simple gauge transformation, and also that the effects of this term are indeed too small to be observed.

  4. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  5. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  6. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  7. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  8. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  9. Evaluation of satellite-retrieved extreme precipitation using gauge observations

    NASA Astrophysics Data System (ADS)

    Lockhoff, M.; Zolina, O.; Simmer, C.; Schulz, J.

    2012-04-01

    Precipitation extremes have already been intensively studied employing rain gauge datasets. Their main advantage is that they represent a direct measurement with a relatively high temporal coverage. Their main limitation however is their poor spatial coverage and thus a low representativeness in many parts of the world. In contrast, satellites can provide global coverage and there are meanwhile data sets available that are on one hand long enough to be used for extreme value analysis and that have on the other hand the necessary spatial and temporal resolution to capture extremes. However, satellite observations provide only an indirect mean to determine precipitation and there are many potential observational and methodological weaknesses in particular over land surfaces that may constitute doubts concerning their usability for the analysis of precipitation extremes. By comparing basic climatological metrics of precipitation (totals, intensities, number of wet days) as well as respective characteristics of PDFs, absolute and relative extremes of satellite and observational data this paper aims at assessing to which extent satellite products are suitable for analysing extreme precipitation events. In a first step the assessment focuses on Europe taking into consideration various satellite products available, e.g. data sets provided by the Global Precipitation Climatology Project (GPCP). First results indicate that satellite-based estimates do not only represent the monthly averaged precipitation very similar to rain gauge estimates but they also capture the day-to-day occurrence fairly well. Larger differences can be found though when looking at the corresponding intensities.

  10. Milne boost from Galilean gauge theory

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Mukherjee, Pradip

    2018-03-01

    Physical origin of Milne boost invariance of the Newton Cartan spacetime is traced to the effect of local Galilean boosts in its metric structure, using Galilean gauge theory. Specifically, we do not require any gauge field to understand Milne boost invariance.

  11. Nonquadratic gauge fixing and ghosts for gauge theories on the hypersphere

    SciTech Connect

    Brandt, F. T.; McKeon, D. G. C.; Department of Mathematics and Computer Science, Algoma University, Sault St. Marie, Ontario P6A 2G4

    2011-10-15

    It has been suggested that using a gauge fixing Lagrangian that is not quadratic in a gauge fixing condition is most appropriate for gauge theories formulated on a hypersphere. We reexamine the appropriate ghost action that is to be associated with gauge fixing, applying a technique that has been used for ensuring that the propagator for a massless spin-two field is transverse and traceless. It is shown that this nonquadratic gauge fixing Lagrangian leads to two pair of complex Fermionic ghosts and two Bosonic real ghosts.

  12. Democratic superstring field theory: gauge fixing

    NASA Astrophysics Data System (ADS)

    Kroyter, Michael

    2011-03-01

    We show that a partial gauge fixing of the NS sector of the democratic-picture superstring field theory leads to the non-polynomial theory. Moreover, by partially gauge fixing the Ramond sector we obtain a non-polynomial fully RNS theory at pictures 0 and 1/2 . Within the democratic theory and in the partially gauge fixed theory the equations of motion of both sectors are derived from an action. We also discuss a representation of the non-polynomial theory analogous to a manifestly two-dimensional representation of WZW theory and the action of bosonic pure-gauge solutions. We further demonstrate that one can consistently gauge fix the NS sector of the democratic theory at picture number -1. The resulting theory is new. It is a {mathbb{Z}_2} dual of the modified cubic theory. We construct analytical solutions of this theory and show that they possess the desired properties.

  13. Electrically tunable artificial gauge potential for polaritons

    PubMed Central

    Lim, Hyang-Tag; Togan, Emre; Kroner, Martin; Miguel-Sanchez, Javier; Imamoğlu, Atac

    2017-01-01

    Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms, effective gauge fields have allowed the emulation of matter under strong magnetic fields leading to realization of Harper-Hofstadter and Haldane models. Here we show that application of perpendicular electric and magnetic fields effects a tunable artificial gauge potential for two-dimensional microcavity exciton polaritons. For verification, we perform interferometric measurements of the associated phase accumulated during coherent polariton transport. Since the gauge potential originates from the magnetoelectric Stark effect, it can be realized for photons strongly coupled to excitations in any polarizable medium. Together with strong polariton–polariton interactions and engineered polariton lattices, artificial gauge fields could play a key role in investigation of non-equilibrium dynamics of strongly correlated photons. PMID:28230047

  14. Carbon nanotube vacuum gauges utilizing long, dissipative tubes

    NASA Astrophysics Data System (ADS)

    Kaul, Anupama B.; Manohara, Harish M.

    2008-04-01

    A carbon nanotube-based thermal conductivity vacuum gauge is described which utilizes 5-10 μm long diffusively contacted SWNTs for vacuum sensing. By etching the thermal SiO II beneath the tubes and minimizing heat conduction through the substrate, pressure sensitivity was extended toward higher vacuums. The pressure response of unannealed and annealed devices was compared to that of released devices. The released devices showed sensitivity to pressure as low as 1 x 10 -6 Torr. The sensitivity increased more dramatically with power for the released device compared to that of the unreleased device. Low temperature electronic transport measurements of the tubes were suggestive of a thermally activated hopping mechanism where the activation energy for hopping was calculated to be ~ 39 meV.

  15. Absolute x-ray energy calibration and monitoring using a diffraction-based method

    SciTech Connect

    Hong, Xinguo, E-mail: xhong@bnl.gov; Weidner, Donald J.; Duffy, Thomas S.

    2016-07-27

    In this paper, we report some recent developments of the diffraction-based absolute X-ray energy calibration method. In this calibration method, high spatial resolution of the measured detector offset is essential. To this end, a remotely controlled long-translation motorized stage was employed instead of the less convenient gauge blocks. It is found that the precision of absolute X-ray energy calibration (ΔE/E) is readily achieved down to the level of 10{sup −4} for high-energy monochromatic X-rays (e.g. 80 keV). Examples of applications to pair distribution function (PDF) measurements and energy monitoring for high-energy X-rays are presented.

  16. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed.

  17. On gauge independence for gauge models with soft breaking of BRST symmetry

    NASA Astrophysics Data System (ADS)

    Reshetnyak, Alexander

    2014-12-01

    A consistent quantum treatment of general gauge theories with an arbitrary gauge-fixing in the presence of soft breaking of the BRST symmetry in the field-antifield formalism is developed. It is based on a gauged (involving a field-dependent parameter) version of finite BRST transformations. The prescription allows one to restore the gauge-independence of the effective action at its extremals and therefore also that of the conventional S-matrix for a theory with BRST-breaking terms being additively introduced into a BRST-invariant action in order to achieve a consistency of the functional integral. We demonstrate the applicability of this prescription within the approach of functional renormalization group to the Yang-Mills and gravity theories. The Gribov-Zwanziger action and the refined Gribov-Zwanziger action for a many-parameter family of gauges, including the Coulomb, axial and covariant gauges, are derived perturbatively on the basis of finite gauged BRST transformations starting from Landau gauge. It is proved that gauge theories with soft breaking of BRST symmetry can be made consistent if the transformed BRST-breaking terms satisfy the same soft BRST symmetry breaking condition in the resulting gauge as the untransformed ones in the initial gauge, and also without this requirement.

  18. Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential: Gauge Invariance and Experimental Detections

    PubMed Central

    Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming

    2013-01-01

    The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops. PMID:23846153

  19. Spinal anaesthesia for caesarean section: comparison of 22-gauge and 25-gauge Whitacre needles with 26-gauge Quincke needles.

    PubMed

    Shutt, L E; Valentine, S J; Wee, M Y; Page, R J; Prosser, A; Thomas, T A

    1992-12-01

    We have studied 150 women undergoing elective Caesarean section under spinal anaesthesia. They were allocated randomly to have a 22-gauge Whitacre, a 25-gauge Whitacre or a 26-gauge Quincke needle inserted into the lumbar subarachnoid space. The groups were compared for ease of insertion, number of attempted needle insertions before identification of cerebrospinal fluid, quality of subsequent analgesia and incidence of postoperative complications. There were differences between groups, but they did not reach statistical significance. Postdural puncture headache (PDPH) was experienced by one mother in the 22-gauge Whitacre group, none in the 25-gauge Whitacre group and five in the 26-gauge Quincke group. Five of the six PDPH occurred after a single successful needle insertion. Seven of the 15 mothers in whom more than two needle insertions were made experienced backache, compared with 12 of the 129 receiving two or less (P < 0.001). We conclude that the use of 22- and 25-gauge Whitacre needles in elective Caesarean section patients is associated with a low incidence of PDPH and that postoperative backache is more likely when more than two attempts are made to insert a spinal needle.

  20. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  1. Gauging the likelihood of stable cavitation from ultrasound contrast agents

    NASA Astrophysics Data System (ADS)

    Bader, Kenneth B.; Holland, Christy K.

    2013-01-01

    The mechanical index (MI) was formulated to gauge the likelihood of adverse bioeffects from inertial cavitation. However, the MI formulation did not consider bubble activity from stable cavitation. This type of bubble activity can be readily nucleated from ultrasound contrast agents (UCAs) and has the potential to promote beneficial bioeffects. Here, the presence of stable cavitation is determined numerically by tracking the onset of subharmonic oscillations within a population of bubbles for frequencies up to 7 MHz and peak rarefactional pressures up to 3 MPa. In addition, the acoustic pressure rupture threshold of an UCA population was determined using the Marmottant model. The threshold for subharmonic emissions of optimally sized bubbles was found to be lower than the inertial cavitation threshold for all frequencies studied. The rupture thresholds of optimally sized UCAs were found to be lower than the threshold for subharmonic emissions for either single cycle or steady state acoustic excitations. Because the thresholds of both subharmonic emissions and UCA rupture are linearly dependent on frequency, an index of the form ICAV = Pr/f (where Pr is the peak rarefactional pressure in MPa and f is the frequency in MHz) was derived to gauge the likelihood of subharmonic emissions due to stable cavitation activity nucleated from UCAs.

  2. Gauging the likelihood of stable cavitation from ultrasound contrast agents.

    PubMed

    Bader, Kenneth B; Holland, Christy K

    2013-01-07

    The mechanical index (MI) was formulated to gauge the likelihood of adverse bioeffects from inertial cavitation. However, the MI formulation did not consider bubble activity from stable cavitation. This type of bubble activity can be readily nucleated from ultrasound contrast agents (UCAs) and has the potential to promote beneficial bioeffects. Here, the presence of stable cavitation is determined numerically by tracking the onset of subharmonic oscillations within a population of bubbles for frequencies up to 7 MHz and peak rarefactional pressures up to 3 MPa. In addition, the acoustic pressure rupture threshold of an UCA population was determined using the Marmottant model. The threshold for subharmonic emissions of optimally sized bubbles was found to be lower than the inertial cavitation threshold for all frequencies studied. The rupture thresholds of optimally sized UCAs were found to be lower than the threshold for subharmonic emissions for either single cycle or steady state acoustic excitations. Because the thresholds of both subharmonic emissions and UCA rupture are linearly dependent on frequency, an index of the form I(CAV) = P(r)/f (where P(r) is the peak rarefactional pressure in MPa and f is the frequency in MHz) was derived to gauge the likelihood of subharmonic emissions due to stable cavitation activity nucleated from UCAs.

  3. Gauging the likelihood of stable cavitation from ultrasound contrast agents

    PubMed Central

    Bader, Kenneth B; Holland, Christy K

    2015-01-01

    The mechanical index (MI) was formulated to gauge the likelihood of adverse bioeffects from inertial cavitation. However, the MI formulation did not consider bubble activity from stable cavitation. This type of bubble activity can be readily nucleated from ultrasound contrast agents (UCAs) and has the potential to promote beneficial bioeffects. Here, the presence of stable cavitation is determined numerically by tracking the onset of subharmonic oscillations within a population of bubbles for frequencies up to 7 MHz and peak rarefactional pressures up to 3 MPa. In addition, the acoustic pressure rupture threshold of an UCA population was determined using the Marmottant model. The threshold for subharmonic emissions of optimally sized bubbles was found to be lower than the inertial cavitation threshold for all frequencies studied. The rupture thresholds of optimally sized UCAs were found to be lower than the threshold for subharmonic emissions for either single cycle or steady state acoustic excitations. Because the thresholds of both subharmonic emissions and UCA rupture are linearly dependent on frequency, an index of the form ICAV = Pr/f (where Pr is the peak rarefactional pressure in MPa and f is the frequency in MHz) was derived to gauge the likelihood of subharmonic emissions due to stable cavitation activity nucleated from UCAs. PMID:23221109

  4. Unity of quark and lepton interactions with symplectic gauge symmetry

    SciTech Connect

    Rajpoot, S.

    1982-07-01

    Properties of symplectic groups are reviewed and the gauge structure of Sp(2n) derived. The electroweak unification of leptons within Sp(8) gauge symmetry and grand unification of quarks and leptons within Sp(10) gauge symmetry are discussed.

  5. Newton's absolute time and space in general relativity

    NASA Astrophysics Data System (ADS)

    Gautreau, Ronald

    2000-04-01

    I describe a reference system in a spherically symmetric gravitational field that is built around times recorded by radially moving geodesic clocks. The geodesic time coordinate t and the curvature spatial radial coordinate R result in spacetime descriptions of the motion of the geodesic clocks that are exactly identical with equations following from Newton's absolute time and space used with his inverse square law. I show how to use the resulting Newtonian/general-relativistic equations for geodesic clocks to generate exact relativistic metric forms in terms of the coordinates (R,t). Newtonian theory does not describe light. However, the motion of light can be determined from the (R,t) general-relativistic metric forms obtained from Newtonian theory by setting ds2(R,t)=0. In this sense, a theory of light can be related to absolute time and space of Newtonian gravitational theory. I illustrate the (R,t) methodology by first solving the equations that result from a Newtonian picture and then examining the exact metric forms for the general-relativistic problems of the Schwarzschild field, gravitational collapse and expansion of a zero-pressure perfect fluid, and zero-pressure big-bang cosmology. I also briefly describe other applications of the Newtonian/general-relativistic formulation to: embedding a Schwarzschild mass into cosmology; continuously following an expanding universe from radiation to matter domination; Dirac's Large Numbers hypothesis; the incompleteness of Kruskal-Szekeres spacetime; double valuedness in cosmology; and the de Sitter universe.

  6. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Absolute gravimetry for monitoring geodynamics in Greenland.

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Strykowski, G.; Forsberg, R.

    2015-12-01

    Here are presented the preliminary results of the absolute gravity measurements done in Greenland by DTU Space with their A10 absolute gravimeter (the A10-019). The purpose, besides establishing and maintaining a national gravity network, is to study geodynamics.The absolute gravity measurements are juxtaposed with the permanent GNET GNSS stations. The first measurements were conducted in 2009 and a few sites have been re-visited. As of present is there a gravity value at 18 GNET sites.There are challenges in interpreting the measurements from Greenland and several signals has to be taken into account, besides the geodynamical signals originating from the changing load of the ice, there is also a clear signal of direct attraction from different masses. Here are presented the preliminary results of our measurements in Greenland and attempts explain them through modelling of the geodynamical signals and the direct attraction from the ocean and ice.

  8. Absolute Distance Measurement with the MSTAR Sensor

    NASA Technical Reports Server (NTRS)

    Lay, Oliver P.; Dubovitsky, Serge; Peters, Robert; Burger, Johan; Ahn, Seh-Won; Steier, William H.; Fetterman, Harrold R.; Chang, Yian

    2003-01-01

    The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. The sensor uses a single laser in conjunction with fast phase modulators and low frequency detectors. We describe the design of the system - the principle of operation, the metrology source, beamlaunching optics, and signal processing - and show results for target distances up to 1 meter. We then demonstrate how the system can be scaled to kilometer-scale distances.

  9. Gauge field entanglement in Kitaev's honeycomb model

    NASA Astrophysics Data System (ADS)

    Dóra, Balázs; Moessner, Roderich

    2018-01-01

    A spin fractionalizes into matter and gauge fermions in Kitaev's spin liquid on the honeycomb lattice. This follows from a Jordan-Wigner mapping to fermions, allowing for the construction of a minimal entropy ground-state wave function on the cylinder. We use this to calculate the entanglement entropy by choosing several distinct partitionings. First, by partitioning an infinite cylinder into two, the -ln2 topological entanglement entropy is reconfirmed. Second, the reduced density matrix of the gauge sector on the full cylinder is obtained after tracing out the matter degrees of freedom. This allows for evaluating the gauge entanglement Hamiltonian, which contains infinitely long-range correlations along the symmetry axis of the cylinder. The matter-gauge entanglement entropy is (Ny-1 )ln2 , with Ny the circumference of the cylinder. Third, the rules for calculating the gauge sector entanglement of any partition are determined. Rather small correctly chosen gauge partitions can still account for the topological entanglement entropy in spite of long-range correlations in the gauge entanglement Hamiltonian.

  10. Perturbative unitarity constraints on gauge portals

    NASA Astrophysics Data System (ADS)

    El Hedri, Sonia; Shepherd, William; Walker, Devin G. E.

    2017-12-01

    Dark matter that was once in thermal equilibrium with the Standard Model is generally prohibited from obtaining all of its mass from the electroweak phase transition. This implies a new scale of physics and mediator particles to facilitate dark matter annihilation. In this work, we focus on dark matter that annihilates through a generic gauge boson portal. We show how partial wave unitarity places upper bounds on the dark gauge boson, dark Higgs and dark matter masses. Outside of well-defined fine-tuned regions, we find an upper bound of 9 TeV for the dark matter mass when the dark Higgs and dark gauge bosons both facilitate the dark matter annihilations. In this scenario, the upper bound on the dark Higgs and dark gauge boson masses are 10 TeV and 16 TeV, respectively. When only the dark gauge boson facilitates dark matter annihilations, we find an upper bound of 3 TeV and 6 TeV for the dark matter and dark gauge boson, respectively. Overall, using the gauge portal as a template, we describe a method to not only place upper bounds on the dark matter mass but also on the new particles with Standard Model quantum numbers. We briefly discuss the reach of future accelerator, direct and indirect detection experiments for this class of models.

  11. Perturbative unitarity constraints on gauge portals

    DOE PAGES

    El Hedri, Sonia; Shepherd, William; Walker, Devin G. E.

    2017-10-03

    Dark matter that was once in thermal equilibrium with the Standard Model is generally prohibited from obtaining all of its mass from the electroweak phase transition. This implies a new scale of physics and mediator particles to facilitate dark matter annihilation. In this work, we focus on dark matter that annihilates through a generic gauge boson portal. We show how partial wave unitarity places upper bounds on the dark gauge boson, dark Higgs and dark matter masses. Outside of well-defined fine-tuned regions, we find an upper bound of 9 TeV for the dark matter mass when the dark Higgs andmore » dark gauge bosons both facilitate the dark matter annihilations. In this scenario, the upper bound on the dark Higgs and dark gauge boson masses are 10 TeV and 16 TeV, respectively. When only the dark gauge boson facilitates dark matter annihilations, we find an upper bound of 3 TeV and 6 TeV for the dark matter and dark gauge boson, respectively. Overall, using the gauge portal as a template, we describe a method to not only place upper bounds on the dark matter mass but also on the new particles with Standard Model quantum numbers. Here, we briefly discuss the reach of future accelerator, direct and indirect detection experiments for this class of models.« less

  12. Perturbative unitarity constraints on gauge portals

    SciTech Connect

    El Hedri, Sonia; Shepherd, William; Walker, Devin G. E.

    Dark matter that was once in thermal equilibrium with the Standard Model is generally prohibited from obtaining all of its mass from the electroweak phase transition. This implies a new scale of physics and mediator particles to facilitate dark matter annihilation. In this work, we focus on dark matter that annihilates through a generic gauge boson portal. We show how partial wave unitarity places upper bounds on the dark gauge boson, dark Higgs and dark matter masses. Outside of well-defined fine-tuned regions, we find an upper bound of 9 TeV for the dark matter mass when the dark Higgs andmore » dark gauge bosons both facilitate the dark matter annihilations. In this scenario, the upper bound on the dark Higgs and dark gauge boson masses are 10 TeV and 16 TeV, respectively. When only the dark gauge boson facilitates dark matter annihilations, we find an upper bound of 3 TeV and 6 TeV for the dark matter and dark gauge boson, respectively. Overall, using the gauge portal as a template, we describe a method to not only place upper bounds on the dark matter mass but also on the new particles with Standard Model quantum numbers. Here, we briefly discuss the reach of future accelerator, direct and indirect detection experiments for this class of models.« less

  13. Non-linear power spectra in the synchronous gauge

    SciTech Connect

    Hwang, Jai-chan; Noh, Hyerim; Jeong, Donghui

    2015-05-01

    We study the non-linear corrections to the matter and velocity power spectra in the synchronous gauge (SG). For the leading correction to the non-linear power spectra, we consider the perturbations up to third order in a zero-pressure fluid in a flat cosmological background. Although the equations in the SG happen to coincide with those in the comoving gauge (CG) to linear order, they differ from second order. In particular, the second order hydrodynamic equations in the SG are apparently in the Lagrangian form, whereas those in the CG are in the Eulerian form. The non-linear power spectra naively presented inmore » the original SG show rather pathological behavior quite different from the result of the Newtonian theory even on sub-horizon scales. We show that the pathology in the nonlinear power spectra is due to the absence of the convective terms in, thus the Lagrangian nature of, the SG. We show that there are many different ways of introducing the corrective convective terms in the SG equations. However, the convective terms (Eulerian modification) can be introduced only through gauge transformations to other gauges which should be the same as the CG to the second order. In our previous works we have shown that the density and velocity perturbation equations in the CG exactly coincide with the Newtonian equations to the second order, and the pure general relativistic correction terms starting to appear from the third order are substantially suppressed compared with the relativistic/Newtonian terms in the power spectra. As a result, we conclude that the SG per se is an inappropriate coordinate choice in handling the non-linear matter and velocity power spectra of the large-scale structure where observations meet with theories.« less

  14. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed.

  15. The anisotropic Wilson gauge action

    NASA Astrophysics Data System (ADS)

    Klassen, Timothy R.

    1998-11-01

    Anisotropic lattices, with a temporal lattice spacing smaller than the spatial one, allow precision Monte Carlo calculations of problems that are difficult to study otherwise: heavy quarks, glueballs, hybrids, and high temperature thermodynamics, for example. We here perform the first step required for such studies with the (quenched) Wilson gauge action, namely, the determination of the renormalized anisotropy Ξ as a function of the bare anisotropy Ξ0 and the coupling. By, essentially, comparing the finite-volume heavy quark potential where the quarks are separated along a spatial direction with that where they are separated along the time direction, we determine the relation between Ξ and Ξ0 to a fraction of 1% for weak and to 1% for strong coupling. We present a simple parameterization of this relation for 1 ⩽ Ξ ⩽ 6 and 5.5 ⩽ β ⩽ ∞, which incorporates the known one-loop result and reproduces our non-perturbative determinations within errors. Besides solving the problem of how to choose the bare anisotropies if one wants to take the continuum limit at fixed renormalized anisotropy, this parameterization also yields accurate estimates of the derivative {∂Ξ 0}/{∂Ξ} needed in thermodynamic studies.

  16. Gauge Factor and Stretchability of Silicon-on-Polymer Strain Gauges

    PubMed Central

    Yang, Shixuan; Lu, Nanshu

    2013-01-01

    Strain gauges are widely applied to measure mechanical deformation of structures and specimens. While metallic foil gauges usually have a gauge factor slightly over 2, single crystalline silicon demonstrates intrinsic gauge factors as high as 200. Although silicon is an intrinsically stiff and brittle material, flexible and even stretchable strain gauges have been achieved by integrating thin silicon strips on soft and deformable polymer substrates. To achieve a fundamental understanding of the large variance in gauge factor and stretchability of reported flexible/stretchable silicon-on-polymer strain gauges, finite element and analytically models are established to reveal the effects of the length of the silicon strip, and the thickness and modulus of the polymer substrate. Analytical results for two limiting cases, i.e., infinitely thick substrate and infinitely long strip, have found good agreement with FEM results. We have discovered that strains in silicon resistor can vary by orders of magnitude with different substrate materials whereas strip length or substrate thickness only affects the strain level mildly. While the average strain in silicon reflects the gauge factor, the maximum strain in silicon governs the stretchability of the system. The tradeoff between gauge factor and stretchability of silicon-on-polymer strain gauges has been proposed and discussed. PMID:23881128

  17. Origin of gauge invariance in string theory

    NASA Technical Reports Server (NTRS)

    Horowitz, G. T.; Strominger, A.

    1986-01-01

    A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.

  18. Expanding the Bethe/Gauge dictionary

    NASA Astrophysics Data System (ADS)

    Bullimore, Mathew; Kim, Hee-Cheol; Lukowski, Tomasz

    2017-11-01

    We expand the Bethe/Gauge dictionary between the XXX Heisenberg spin chain and 2d N = (2, 2) supersymmetric gauge theories to include aspects of the algebraic Bethe ansatz. We construct the wave functions of off-shell Bethe states as orbifold defects in the A-twisted supersymmetric gauge theory and study their correlation functions. We also present an alternative description of off-shell Bethe states as boundary conditions in an effective N = 4 supersymmetric quantum mechanics. Finally, we interpret spin chain R-matrices as correlation functions of Janus interfaces for mass parameters in the supersymmetric quantum mechanics.

  19. Fingerprints of flower absolutes using supercritical fluid chromatography hyphenated with high resolution mass spectrometry.

    PubMed

    Santerre, Cyrille; Vallet, Nadine; Touboul, David

    2018-06-02

    Supercritical fluid chromatography hyphenated with high resolution mass spectrometry (SFC-HRMS) was developed for fingerprint analysis of different flower absolutes commonly used in cosmetics field, especially in perfumes. Supercritical fluid chromatography-atmospheric pressure photoionization-high resolution mass spectrometry (SFC-APPI-HRMS) technique was employed to identify the components of the fingerprint. The samples were separated with a porous graphitic carbon (PGC) Hypercarb™ column (100 mm × 2.1 mm, 3 μm) by gradient elution using supercritical CO 2 and ethanol (0.0-20.0 min (2-30% B), 20.0-25.0 min (30% B), 25.0-26.0 min (30-2% B) and 26.0-30.0 min (2% B)) as mobile phase at a flow rate of 1.5 mL/min. In order to compare the SFC fingerprints between five different flower absolutes: Jasminum grandiflorum absolutes, Jasminum sambac absolutes, Narcissus jonquilla absolutes, Narcissus poeticus absolutes, Lavandula angustifolia absolutes from different suppliers and batches, the chemometric procedure including principal component analysis (PCA) was applied to classify the samples according to their genus and their species. Consistent results were obtained to show that samples could be successfully discriminated. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  1. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  2. Increasing Capacity: Practice Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Dodds, Pennie; Donkin, Christopher; Brown, Scott D.; Heathcote, Andrew

    2011-01-01

    In most of the long history of the study of absolute identification--since Miller's (1956) seminal article--a severe limit on performance has been observed, and this limit has resisted improvement even by extensive practice. In a startling result, Rouder, Morey, Cowan, and Pfaltz (2004) found substantially improved performance with practice in the…

  3. On Relative and Absolute Conviction in Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2015-01-01

    Conviction is a central construct in mathematics education research on justification and proof. In this paper, we claim that it is important to distinguish between absolute conviction and relative conviction. We argue that researchers in mathematics education frequently have not done so and this has lead to researchers making unwarranted claims…

  4. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  5. Gauge copies in the Landau-DeWitt gauge: A background invariant restriction

    NASA Astrophysics Data System (ADS)

    Dudal, David; Vercauteren, David

    2018-04-01

    The Landau background gauge, also known as the Landau-DeWitt gauge, has found renewed interest during the past decade given its usefulness in accessing the confinement-deconfinement transition via the vacuum expectation value of the Polyakov loop, describable via an appropriate background. In this Letter, we revisit this gauge from the viewpoint of it displaying gauge (Gribov) copies. We generalize the Gribov-Zwanziger effective action in a BRST and background invariant way; this action leads to a restriction on the allowed gauge fluctuations, thereby eliminating the infinitesimal background gauge copies. The explicit background invariance of our action is in contrast with earlier attempts to write down and use an effective Gribov-Zwanziger action. It allows to address certain subtleties arising in these earlier works, such as a spontaneous and thus spurious Lorentz symmetry breaking, something which is now averted.

  6. Microfabricated pressure and shear stress sensors

    NASA Technical Reports Server (NTRS)

    Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)

    2009-01-01

    A microfabricated pressure sensor. The pressure sensor comprises a raised diaphragm disposed on a substrate. The diaphragm is configured to bend in response to an applied pressure difference. A strain gauge of a conductive material is coupled to a surface of the raised diaphragm and to at least one of the substrate and a piece rigidly connected to the substrate.

  7. PVDF Gauge Piezoelectric Response under Two-Stage Light Gas Gun Impact Loading

    NASA Astrophysics Data System (ADS)

    Bauer, Francois

    2002-07-01

    Stress gauges based on ferroelectric polymer (PVDF) studies under very high pressure shock compression have shown that the piezoelectric response exhibits a precise reproducible behavior up to 25 GPa. Shock pressure profiles obtained with "in situ" PVDF gauges in porous H.E. (Formex) in a detonation regime have been achieved. Observations of a fast superpressure of a few nanoseconds followed by a pressure release have raised the question of the loading path dependence of the piezoelectric response of PVDF at high shock pressure levels. Consequently, studies of the piezoelectric behavior of PVDF gauges under impact loading using a two-stage light gas gun have been conducted recently. Symmetric impact as well as non symmetric impact and reverse impact techniques have been achieved. Strong viscoplastic behavior of some materials is observed. In typical experiments, the piezoelectric response of PVDF at shock equilibrium could be determined. These results show that the PVDF response appears independent of the loading path up to 30 GPa. Accurate measurements in situ H.E. are also reported with very low inductance PVDF gauges.

  8. Toward a gauge field theory of gravity.

    NASA Astrophysics Data System (ADS)

    Yilmaz, H.

    Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.

  9. Gauge Bosons--The Ties That Bind.

    ERIC Educational Resources Information Center

    Hill, Christopher T.

    1982-01-01

    Discusses four basic forces/interactions in nature (strong force, weak force, electromagnetic force and gravity), associated with elementary particles. Focuses on "gauge bosons" (for example, photons), thought to account for strong, weak, and electromagnetic forces. (Author/JN)

  10. 49 CFR 229.53 - Brake gauges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.53 Brake gauges. All... engineer to aid in the control or braking of the train or locomotive shall be located so that they may be...

  11. Elastic Gauge Fields in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Cortijo, Alberto; Ferreiros, Yago; Landsteiner, Karl; Hernandez Vozmediano, Maria Angeles

    We show that, as it happens in graphene, elastic deformations couple to the electronic degrees of freedom as pseudo gauge fields in Weyl semimetals. We derive the form of the elastic gauge fields in a tight-binding model hosting Weyl nodes and see that this vector electron-phonon coupling is chiral, providing an example of axial gauge fields in three dimensions. As an example of the new response functions that arise associated to these elastic gauge fields, we derive a non-zero phonon Hall viscosity for the neutral system at zero temperature. The axial nature of the fields provides a test of the chiral anomaly in high energy with three axial vector couplings. European Union structural funds and the Comunidad de Madrid MAD2D-CM Program (S2013/MIT-3007).

  12. Gauge invariance for a whole Abelian model

    SciTech Connect

    Chauca, J.; Doria, R.; Soares, W.

    Light invariance is a fundamental principle for physics be done. It generates Maxwell equations, relativity, Lorentz group. However there is still space for a fourth picture be developed which is to include fields with same Lorentz nature. It brings a new room for field theory. It says that light invariance does not work just to connect space and time but it also associates different fields with same nature. Thus for the ((1/2),(1/2)) representation there is a fields family {l_brace}A{sub {mu}I}{r_brace} to be studied. This means that given such fields association one should derive its corresponding gauge theory. This is themore » effort at this work. Show that there is a whole gauge theory to cover these fields relationships. Considering the abelian case, prove its gauge invariance. It yields the kinetic, massive, trilinear and quadrilinear gauge invariant terms.« less

  13. Dynamic Force Measurement with Strain Gauges

    ERIC Educational Resources Information Center

    Lee, Bruce E.

    1974-01-01

    Discusses the use of four strain gauges, a Wheatstone bridge, and an oscilloscope to measure forces dynamically. Included is an example of determining the centripetal force of a pendulum in a general physics laboratory. (CC)

  14. 27 CFR 19.618 - Gauge record.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... plant number of the producer or warehouseman; and (j) The following gauge data— (1) Package... whiskey; (4) Proof gallons per filled package; and (5) Total proof gallons of spirits or wine gallons of...

  15. 27 CFR 19.618 - Gauge record.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... plant number of the producer or warehouseman; and (j) The following gauge data— (1) Package... whiskey; (4) Proof gallons per filled package; and (5) Total proof gallons of spirits or wine gallons of...

  16. 27 CFR 19.618 - Gauge record.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... plant number of the producer or warehouseman; and (j) The following gauge data— (1) Package... whiskey; (4) Proof gallons per filled package; and (5) Total proof gallons of spirits or wine gallons of...

  17. 27 CFR 19.618 - Gauge record.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... plant number of the producer or warehouseman; and (j) The following gauge data— (1) Package... whiskey; (4) Proof gallons per filled package; and (5) Total proof gallons of spirits or wine gallons of...

  18. 27 CFR 19.768 - Gauge record.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... or warehouseman; and (j) Gauge data: (1) Package identification, tank number, volumetric or weight... whiskey; (4) Proof gallons per filled package; and (5) Total proof gallons of spirits or wine gallons of...

  19. Pyrolytic graphite gauge for measuring heat flux

    NASA Technical Reports Server (NTRS)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  20. Development and Design of Zero-g Liquid Quantity Gauge for Solar Thermal Vehicle

    NASA Technical Reports Server (NTRS)

    Dodge, Franklin T.; Green, Steven T.; Petullo, Steven P.; VanDresar, Neil T.

    2002-01-01

    The development and design of a cryogenic liquid quantity gauge for zero-gravity (zero-g) applications are described. The gauge, named the compression mass gauge (CMG), operates on the principle of slightly changing the volume of the tank by an oscillating bellows. The resulting pressure change is measured and used to predict the volume of vapor in the tank, from which the volume of liquid is computed. For each gauging instance, pressures are measured for several different bellows frequencies to enable minor real-gas effects to be quantified and thereby to obtain a gauging accuracy of 11 percent of tank volume. The CMG has been selected by NASA's Future-X program for a flight demonstration on the United States Air Force-Boeing Solar Orbit Transfer Vehicle Space Experiment (SOTVSE). This report reviews the design trade studies needed for the CMG to satisfy the SOTVSE limitations on its power, volume, and mass and also describes the mechanical design of the CMG.

  1. Novel circuits for energizing manganin stress gauges

    NASA Astrophysics Data System (ADS)

    Tasker, Douglas G.

    2017-01-01

    This paper describes the design of a novel MOSFET pulsed constant current supplies for low impedance Manganin stress gauges. The design emphasis has been on high accuracy, low noise, simple, low cost, disposable supplies that can be used to energize multiple gauges in explosive or shock experiments. The Manganin gauges used to measure stresses in detonating explosive experiments have typical resistances of 50 mΩ and are energized with pulsed currents of 50 A. Conventional pulsed, constant current supplies for these gauges are high voltage devices with outputs as high as 500 V. Common problems with the use of high voltage supplies at explosive firing sites are: erroneous signals caused by ground loops; overdrive of oscilloscopes on gauge failure; gauge signal crosstalk; cost; and errors due to changing load impedances. The new circuit corrects these issues. It is an 18-V circuit, powered by 9-V alkaline batteries, and features an optically isolated trigger, and single-point grounding. These circuits have been successfully tested at the Los Alamos National Laboratory in explosive experiments. [LA-UR-15-24819

  2. Novel Circuits for Energizing Manganin Stress Gauges

    NASA Astrophysics Data System (ADS)

    Tasker, Douglas

    2015-06-01

    This paper describes the design, manufacture and testing of novel MOSFET pulsed constant current supplies for low impedance Manganin stress gauges. The design emphasis has been on high accuracy, low noise, simple, low cost, disposable supplies that can be used to energize multiple gauges in explosive or shock experiments. Manganin gauges used to measure stresses in detonating explosive experiments have typical resistances of 50 m Ω and are energized with pulsed currents of 50 A. Conventional pulsed current supplies for these gauges are high voltage devices with outputs as high as 500 V. Common problems with the use of high voltage supplies at explosive firing sites are: erroneous signals caused by ground loops; overdrive of oscilloscopes on gauge failure; gauge signal crosstalk; cost; and errors due to finite and changing source impedances. To correct these issues a novel MOSFET circuit was designed and will be described. It is an 18-V circuit, powered by 9-V alkaline batteries, and features an optically isolated trigger, and single-point grounding. These circuits have been successfully tested at the Los Alamos National Laboratory and selected explosive tests will be described together with their results. LA-UR-15-20613.

  3. Gauge supergravity in D = 2 + 2

    NASA Astrophysics Data System (ADS)

    Castellani, Leonardo

    2017-10-01

    We present an action for chiral N = (1 , 0) supergravity in 2 + 2 dimensions. The fields of the theory are organized into an OSp(1|4) connection supermatrix, and are given by the usual vierbein V a , spin connection ω ab , and Majorana gravitino ψ. In analogy with a construction used for D = 10 + 2 gauge supergravity, the action is given by ∫STr( R 2 Γ), where R is the OSp(1|4) curvature supermatrix two-form, and Γ a constant supermatrix containing γ 5. It is similar, but not identical to the MacDowell-Mansouri action for D = 2 + 2 supergravity. The constant supermatrix breaks OSp(1|4) gauge invariance to a subalgebra OSp(1|2) ⊕ Sp(2), including a Majorana-Weyl supercharge. Thus half of the OSp(1|4) gauge supersymmetry survives. The gauge fields are the selfdual part of ω ab and the Weyl projection of ψ for OSp(1|2), and the antiselfdual part of ω ab for Sp(2). Supersymmetry transformations, being part of a gauge superalgebra, close off-shell. The selfduality condition on the spin connection can be consistently imposed, and the resulting "projected" action is OSp(1|2) gauge invariant.

  4. Gauging hidden symmetries in two dimensions

    NASA Astrophysics Data System (ADS)

    Samtleben, Henning; Weidner, Martin

    2007-08-01

    We initiate the systematic construction of gauged matter-coupled supergravity theories in two dimensions. Subgroups of the affine global symmetry group of toroidally compactified supergravity can be gauged by coupling vector fields with minimal couplings and a particular topological term. The gauge groups typically include hidden symmetries that are not among the target-space isometries of the ungauged theory. The gaugings constructed in this paper are described group-theoretically in terms of a constant embedding tensor subject to a number of constraints which parametrizes the different theories and entirely encodes the gauged Lagrangian. The prime example is the bosonic sector of the maximally supersymmetric theory whose ungauged version admits an affine fraktur e9 global symmetry algebra. The various parameters (related to higher-dimensional p-form fluxes, geometric and non-geometric fluxes, etc.) which characterize the possible gaugings, combine into an embedding tensor transforming in the basic representation of fraktur e9. This yields an infinite-dimensional class of maximally supersymmetric theories in two dimensions. We work out and discuss several examples of higher-dimensional origin which can be systematically analyzed using the different gradings of fraktur e9.

  5. Utilization of coincidence criteria in absolute length measurements by optical interferometry in vacuum and air

    NASA Astrophysics Data System (ADS)

    Schödel, R.

    2015-08-01

    Traceability of length measurements to the international system of units (SI) can be realized by using optical interferometry making use of well-known frequencies of monochromatic light sources mentioned in the Mise en Pratique for the realization of the metre. At some national metrology institutes, such as Physikalisch-Technische Bundesanstalt (PTB) in Germany, the absolute length of prismatic bodies (e.g. gauge blocks) is realized by so-called gauge-block interference comparators. At PTB, a number of such imaging phase-stepping interference comparators exist, including specialized vacuum interference comparators, each equipped with three highly stabilized laser light sources. The length of a material measure is expressed as a multiple of each wavelength. The large number of integer interference orders can be extracted by the method of exact fractions in which the coincidence of the lengths resulting from the different wavelengths is utilized as a criterion. The unambiguous extraction of the integer interference orders is an essential prerequisite for correct length measurements. This paper critically discusses coincidence criteria and their validity for three modes of absolute length measurements: 1) measurements under vacuum in which the wavelengths can be identified with the vacuum wavelengths, 2) measurements under air in which the air refractive index is obtained from environmental parameters using an empirical equation, and 3) measurements under air in which the air refractive index is obtained interferometrically by utilizing a vacuum cell placed along the measurement pathway. For case 3), which corresponds to PTB’s Kösters-Comparator for long gauge blocks, the unambiguous determination of integer interference orders related to the air refractive index could be improved by about a factor of ten when an ‘overall dispersion value,’ suggested in this paper, is used as coincidence criterion.

  6. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Absolute coverage groups. 404.1205 Section... Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent... are not under a retirement system. An absolute coverage group may include positions which were...

  7. 49 CFR 230.42 - Location of gauges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Location of gauges. 230.42 Section 230.42 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Steam Gauges § 230.42 Location of gauges. Every boiler shall have at least one steam gauge which will...

  8. 237Np absolute delayed neutron yield measurements

    NASA Astrophysics Data System (ADS)

    Doré, D.; Ledoux, X.; Nolte, R.; Gagnon-Moisan, F.; Thulliez, L.; Litaize, O.; Roettger, S.; Serot, O.

    2017-09-01

    237Np absolute delayed neutron yields have been measured at different incident neutron energies from 1.5 to 16 MeV. The experiment was performed at the Physikalisch-Technische Bundesanstalt (PTB) facility where the Van de Graaff accelerator and the cyclotron CV28 delivered 9 different neutron energy beams using p+T, d+D and d+T reactions. The detection system is made up of twelve 3He tubes inserted into a polyethylene cylinder. In this paper, the experimental setup and the data analysis method are described. The evolution of the absolute DN yields as a function of the neutron incident beam energies are presented and compared to experimental data found in the literature and data from the libraries.

  9. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  10. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  11. Evaporation from weighing precipitation gauges: impacts on automated gauge measurements and quality assurance methods

    NASA Astrophysics Data System (ADS)

    Leeper, R. D.; Kochendorfer, J.

    2015-06-01

    Evaporation from a precipitation gauge can cause errors in the amount of measured precipitation. For automated weighing-bucket gauges, the World Meteorological Organization (WMO) suggests the use of evaporative suppressants and frequent observations to limit these biases. However, the use of evaporation suppressants is not always feasible due to environmental hazards and the added cost of maintenance, transport, and disposal of the gauge additive. In addition, research has suggested that evaporation prior to precipitation may affect precipitation measurements from auto-recording gauges operating at sub-hourly frequencies. For further evaluation, a field campaign was conducted to monitor evaporation and its impacts on the quality of precipitation measurements from gauges used at U.S. Climate Reference Network (USCRN) stations. Two Geonor gauges were collocated, with one gauge using an evaporative suppressant (referred to as Geonor-NonEvap) and the other with no suppressant (referred to as Geonor-Evap) to evaluate evaporative losses and evaporation biases on precipitation measurements. From June to August, evaporative losses from the Geonor-Evap gauge exceeded accumulated precipitation, with an average loss of 0.12 mm h-1. The impact of evaporation on precipitation measurements was sensitive to the choice of calculation method. In general, the pairwise method that utilized a longer time series to smooth out sensor noise was more sensitive to gauge evaporation (-4.6% bias with respect to control) than the weighted-average method that calculated depth change over a smaller window (<+1% bias). These results indicate that while climate and gauge design affect gauge evaporation rates, computational methods also influence the magnitude of evaporation biases on precipitation measurements. This study can be used to advance quality insurance (QA) techniques used in other automated networks to mitigate the impact of evaporation biases on precipitation measurements.

  12. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  13. Absolute detector calibration using twin beams.

    PubMed

    Peřina, Jan; Haderka, Ondřej; Michálek, Václav; Hamar, Martin

    2012-07-01

    A method for the determination of absolute quantum detection efficiency is suggested based on the measurement of photocount statistics of twin beams. The measured histograms of joint signal-idler photocount statistics allow us to eliminate an additional noise superimposed on an ideal calibration field composed of only photon pairs. This makes the method superior above other approaches presently used. Twin beams are described using a paired variant of quantum superposition of signal and noise.

  14. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  15. Gauging Systems Monitor Cryogenic Liquids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Rocket fuel needs to stay cool - super cool, in fact. The ability to store gas propellants like liquid hydrogen and oxygen at cryogenic temperatures (below -243 F) is crucial for space missions in order to reduce their volumes and allow their storage in smaller (and therefore, less costly) tanks. The Agency has used these cryogenic fluids for vehicle propellants, reactants, and life support systems since 1962 with the Centaur upper stage rocket, which was powered with liquid oxygen and liquid hydrogen. During proposed long-duration missions, super-cooled fluids will also be used in space power systems, spaceports, and lunar habitation systems. In the next generation of launch vehicles, gaseous propellants will be cooled to and stored for extended periods at even colder temperatures than currently employed via a process called densification. Densification sub-cools liquids to temperatures even closer to absolute zero (-459 F), increasing the fluid s density and shrinking its volume beyond common cryogenics. Sub-cooling cryogenic liquid hydrogen, for instance, from 20 K (-423 F) to 15 K (-432.4 F) reduces its mass by 10 percent. These densified liquid gases can provide more cost savings from reduced payload volume. In order to benefit from this cost savings, the Agency is working with private industry to prevent evaporation, leakage, and other inadvertent loss of liquids and gases in payloads - requiring new cryogenic systems to prevent 98 percent (or more) of boil-off loss. Boil-off occurs when cryogenic or densified liquids evaporate, and is a concern during launch pad holds. Accurate sensing of propellants aboard space vehicles is also critical for proper engine shutdown and re-ignition after launch, and zero boil-off fuel systems are also in development for the Altair lunar lander.

  16. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound.

  17. The absolute dynamic ocean topography (ADOT)

    NASA Astrophysics Data System (ADS)

    Bosch, Wolfgang; Savcenko, Roman

    The sea surface slopes relative to the geoid (an equipotential surface) basically carry the in-formation on the absolute velocity field of the surface circulation. Pure oceanographic models may remain unspecific with respect to the absolute level of the ocean topography. In contrast, the geodetic approach to estimate the ocean topography as difference between sea level and the geoid gives by definition an absolute dynamic ocean topography (ADOT). This approach requires, however, a consistent treatment of geoid and sea surface heights, the first being usually derived from a band limited spherical harmonic series of the Earth gravity field and the second observed with much higher spectral resolution by satellite altimetry. The present contribution shows a procedure for estimating the ADOT along the altimeter profiles, preserving as much sea surface height details as the consistency w.r.t. the geoid heights will allow. The consistent treatment at data gaps and the coast is particular demanding and solved by a filter correction. The ADOT profiles are inspected for their innocent properties towards the coast and compared to external estimates of the ocean topography or the velocity field of the surface circulation as derived, for example, by ARGO floats.

  18. Measurement of absolute gravity acceleration in Firenze

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  19. On the Perceptual Subprocess of Absolute Pitch.

    PubMed

    Kim, Seung-Goo; Knösche, Thomas R

    2017-01-01

    Absolute pitch (AP) is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma) and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label). In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC) or based on absolute pitch memory (APM). A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC) that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM), only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them.

  20. On the Perceptual Subprocess of Absolute Pitch

    PubMed Central

    Kim, Seung-Goo; Knösche, Thomas R.

    2017-01-01

    Absolute pitch (AP) is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma) and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label). In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC) or based on absolute pitch memory (APM). A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC) that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM), only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them. PMID:29085275

  1. Absolute angular encoder based on optical diffraction

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Zhou, Tingting; Yuan, Bo; Wang, Liqiang

    2015-08-01

    A new encoding method for absolute angular encoder based on optical diffraction was proposed in the present study. In this method, an encoder disc is specially designed that a series of elements are uniformly spaced in one circle and each element is consisted of four diffraction gratings, which are tilted in the directions of 30°, 60°, -60° and -30°, respectively. The disc is illuminated by a coherent light and the diffractive signals are received. The positions of diffractive spots are used for absolute encoding and their intensities are for subdivision, which is different from the traditional optical encoder based on transparent/opaque binary principle. Since the track's width in the disc is not limited in the diffraction pattern, it provides a new way to solve the contradiction between the size and resolution, which is good for minimization of encoder. According to the proposed principle, the diffraction pattern disc with a diameter of 40 mm was made by lithography in the glass substrate. A prototype of absolute angular encoder with a resolution of 20" was built up. Its maximum error was tested as 78" by comparing with a small angle measuring system based on laser beam deflection.

  2. Large gauge transformations and little group for soft photons

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Seo, Min-Seok; Shiu, Gary

    2017-11-01

    Recently, large gauge transformation (LGT), the residual gauge symmetry after gauge fixing that survives at null infinity, has drawn much attention concerning soft theorems and the memory effect. We point out that LGT charges in quantum electrodynamics are in fact one of noncompact generators of the two dimensional Euclidean group. Moreover, by comparing two equivalent descriptions of gauge transformation, we suggest that LGT is simply another way of describing the gauged little group for massless soft photons.

  3. Regularization of the light-cone gauge gluon propagator singularities using sub-gauge conditions

    DOE PAGES

    Chirilli, Giovanni A.; Kovchegov, Yuri V.; Wertepny, Douglas E.

    2015-12-21

    Perturbative QCD calculations in the light-cone gauge have long suffered from the ambiguity associated with the regularization of the poles in the gluon propagator. In this work we study sub-gauge conditions within the light-cone gauge corresponding to several known ways of regulating the gluon propagator. By using the functional integral calculation of the gluon propagator, we rederive the known sub-gauge conditions for the θ-function gauges and identify the sub-gauge condition for the principal value (PV) regularization of the gluon propagator’s light-cone poles. The obtained sub-gauge condition for the PV case is further verified by a sample calculation of the classicalmore » Yang-Mills field of two collinear ultrarelativistic point color charges. Our method does not allow one to construct a sub-gauge condition corresponding to the well-known Mandelstam-Leibbrandt prescription for regulating the gluon propagator poles.« less

  4. RANGE INCREASER FOR PNEUMATIC GAUGES

    DOEpatents

    Fowler, A.H.; Seaborn, G.B. Jr.

    1960-09-27

    An improved pneumatic gage is offered in which the linear range has been increased without excessive air consumption. This has been accomplished by providing an expansible antechamber connected to the nozzle of the gage so that the position of the nozzle with respect to the workpiece is varied automatically by variation in pressure within the antechamber. This arrangement ensures that the nozzle-to-workpiece clearance is maintained within certain limits, thus obtaining a linear relation of air flow to nozzle-to-workpiece clearance over a wider range.

  5. A gauge-theoretic approach to gravity.

    PubMed

    Krasnov, Kirill

    2012-08-08

    Einstein's general relativity (GR) is a dynamical theory of the space-time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang-Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach.

  6. A gauge-theoretic approach to gravity

    PubMed Central

    Krasnov, Kirill

    2012-01-01

    Einstein's general relativity (GR) is a dynamical theory of the space–time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang–Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach. PMID:22792040

  7. Primordial anisotropies in gauged hybrid inflation

    NASA Astrophysics Data System (ADS)

    Akbar Abolhasani, Ali; Emami, Razieh; Firouzjahi, Hassan

    2014-05-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.

  8. Gauge-invariant variables and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Agarwal, Abhishek; Karabali, Dimitra; Nair, V. P.

    2017-12-01

    The entanglement entropy (EE) of gauge theories in three spacetime dimensions is analyzed using manifestly gauge-invariant variables defined directly in the continuum. Specifically, we focus on the Maxwell, Maxwell-Chern-Simons (MCS), and non-Abelian Yang-Mills theories. Special attention is paid to the analysis of edge modes and their contribution to EE. The contact term is derived without invoking the replica method and its physical origin is traced to the phase space volume measure for the edge modes. The topological contribution to the EE for the MCS case is calculated. For all the Abelian cases, the EE presented in this paper agrees with known results in the literature. The EE for the non-Abelian theory is computed in a gauge-invariant Gaussian approximation, which incorporates the dynamically generated mass gap. A formulation of the contact term for the non-Abelian case is also presented.

  9. Planar zeros in gauge theories and gravity

    NASA Astrophysics Data System (ADS)

    Jiménez, Diego Medrano; Vera, Agustín Sabio; Vázquez-Mozo, Miguel Á.

    2016-09-01

    Planar zeros are studied in the context of the five-point scattering amplitude for gauge bosons and gravitons. In the case of gauge theories, it is found that planar zeros are determined by an algebraic curve in the projective plane spanned by the three stereographic coordinates labelling the direction of the outgoing momenta. This curve depends on the values of six independent color structures. Considering the gauge group SU( N) with N = 2 , 3 , 5 and fixed color indices, the class of curves obtained gets broader by increasing the rank of the group. For the five-graviton scattering, on the other hand, we show that the amplitude vanishes whenever the process is planar, without imposing further kinematic conditions. A rationale for this result is provided using color-kinematics duality.

  10. Perturbative Quantum Gravity from Gauge Theory

    NASA Astrophysics Data System (ADS)

    Carrasco, John Joseph

    In this dissertation we present the graphical techniques recently developed in the construction of multi-loop scattering amplitudes using the method of generalized unitarity. We construct the three-loop and four-loop four-point amplitudes of N = 8 supergravity using these methods and the Kawaii, Lewellen and Tye tree-level relations which map tree-level gauge theory amplitudes to tree-level gravity theory amplitudes. We conclude by extending a tree-level duality between color and kinematics, generic to gauge theories, to a loop level conjecture, allowing the easy relation between loop-level gauge and gravity kinematics. We provide non-trivial evidence for this conjecture at three-loops in the particular case of maximal supersymmetry.

  11. Gauge transformations for twisted spectral triples

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni; Martinetti, Pierre

    2018-05-01

    It is extended to twisted spectral triples the fluctuations of the metric as bounded perturbations of the Dirac operator that arises when a spectral triple is exported between Morita equivalent algebras, as well as gauge transformations which are obtained by the action of the unitary endomorphisms of the module implementing the Morita equivalence. It is firstly shown that the twisted-gauged Dirac operators, previously introduced to generate an extra scalar field in the spectral description of the standard model of elementary particles, in fact follow from Morita equivalence between twisted spectral triples. The law of transformation of the gauge potentials turns out to be twisted in a natural way. In contrast with the non-twisted case, twisted fluctuations do not necessarily preserve the self-adjointness of the Dirac operator. For a self-Morita equivalence, conditions are obtained in order to maintain self-adjointness that are solved explicitly for the minimal twist of a Riemannian manifold.

  12. Strain-Gauge Measurement of Weight of Fluid in a Tank

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge; SaintCyr, William; Rahman, Shamim; McVay, Gregory; VanDyke, David; Mitchell, William; Langford, Lester

    2003-01-01

    A method of determining the amount of fluid in a tank is based on measurement of strains induced in tank supports by the weight of the fluid. Unlike most prior methods, this method is nonintrusive: there is no need to insert instrumentation in the tank and, hence, no need to run wires, cables, or tubes through the tank wall. Also unlike most prior methods, this method is applicable even if the fluid in the tank is at supercritical pressure and temperature, because it does not depend on the presence of a liquid/gas interface (as in liquid-level-measuring methods). The strain gauges used in this method are of two types: foil and fiber-optic. Four foil gauges and one or more fiber-optic gauges are mounted on each of the tank-supporting legs. An additional fiber-optic gauge is mounted on an object, made of the same material as that of the tank-supporting legs, that is not subjected to any mechanical load. The reading obtained by the additional fiber-optic gauge is used to compensate for apparent strains caused by changes in temperature. The signals from the foil and fiber-optic gauges are conditioned, then digitized for input to a computer. As the tank is filled or emptied, the deformation in each leg increases or decreases, respectively. Measured deformations of all legs are added to obtain a composite deformation indicative of the change in weight of the tank plus fluid. An initial calibration is performed by recording data at two points (usually, empty and full) for which the mass or weight of fluid is known. It is assumed that the deformations are elastic, so that the line passing through the two points can be used as a calibration curve of mass (or weight) of fluid versus deformation. At the time of reporting the information for this article, a set of foil gauges had been tested on the supports of a 500-gallon (1,900-liter) tank. The gauges were found to be capable of measuring the deformations (up to 22 microstrain) that occurred during filling and emptying the

  13. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  14. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  15. Four-port bimanual 23-gauge vitrectomy for diabetic tractional retinal detachment.

    PubMed

    Wang, Zhao-Yang; Zhao, Ke-Ke; Li, Jia-Kai; Rossmiller, Brian; Zhao, Pei-Quan

    2016-06-01

    Four-port bimanual vitrectomy is a surgical technique that facilitates removal of epiretinal membranes in severe proliferative diabetic retinopathy (PDR). As the illumination is held by the assistant through the fourth scleral incision, fibrovascular membranes are removed by bimanual manipulation techniques. The objective of this study was to evaluate the safety and efficacy of four-port bimanual 23-gauge vitrectomy for patients with tractional retinal detachment (TRD) in severe PDR. Retrospective, comparative, consecutive, interventional case series. Sixty-six eyes of 58 consecutive patients who underwent primary vitrectomy for severe diabetic TRD. Thirty-six eyes of 31 cases that were treated with four-port 23-gauge vitrectomy were compared with 30 eyes of 27 cases that were treated with 23-gauge pars plana vitrectomy (PPV). Main outcome measures were best-corrected visual acuity (BCVA), retinal status, intraocular pressure, and incidence of intraoperative and postoperative complications with at least 6 months of follow-up. The primary and ultimate anatomic success rates (94.4% versus 93.3%, and 100% in both groups, respectively) and the mean BCVA changes did not differ significantly between groups. The whole surgical time and the membrane removal time were significantly (p < 0.001, respectively) shorter in the four-port 23-gauge group than in the 23-gauge group. There was no difference in the incidence of intraoperative and postoperative complications in both groups. Four-port bimanual 23-gauge vitrectomy offers comparable anatomic success and shortens the surgical time compared with conventional 23-gauge PPV in patients with TRD resulting from severe PDR. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  16. Artificial Gauge Fields for Ultracold Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Jimenez-Garcia, Karina

    2013-05-01

    Ultracold atoms are a versatile probe for physics at the core of the most intriguing and fascinating systems in the quantum world. Due to the high degree of experimental control offered by such systems, effective Hamiltonians can be designed and experimentally implemented on them. This unique feature makes ultracold atom systems ideal for quantum simulation of complex phenomena as important as high-temperature superconductivity, and recently of novel artificial gauge fields. Suitably designed artificial gauge fields allow neutral particles to experience synthetic- electric or magnetic fields; furthermore, their generalization to matrix valued gauge fields leads to spin-orbit coupling featuring unprecedented control in contrast to ordinary condensed matter systems, thus allowing the characterization of the underlying mechanism of phenomena such as the spin Hall effect and topological insulators. In this talk, I will present an overview of our experiments on quantum simulation with ultracold atom systems by focusing on the realization of light induced artificial gauge fields. We illuminate our Bose-Einstein condensates with a pair of far detuned ``Raman'' lasers, thus creating dressed states that are spin and momentum superpositions. We adiabatically load the atoms into the lowest energy dressed state, where they acquire an experimentally-tunable effective dispersion relation, i.e. we introduce gauge terms into the Hamiltonian. We control such light-induced gauge terms via the strength of the Raman coupling and the detuning from Raman resonance. Our experimental techniques for ultracold bosons have surpassed the apparent limitations imposed by their neutral charge, bosonic nature, and ultra-low energy and have allowed the observation of these new and exciting phenomena. Future work might allow the realization of the bosonic quantum Hall effect, of topological insulators and of systems supporting Majorana fermions using cold atoms. This work was partially supported by

  17. Continuum limit of electrostatic gyrokinetic absolute equilibrium

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Zhou

    2012-06-01

    Electrostatic gyrokinetic absolute equilibria with continuum velocity field are obtained through the partition function and through the Green function of the functional integral. The new results justify and explain the prescription for quantization/discretization or taking the continuum limit of velocity. The mistakes in the Appendix D of our earlier work [J.-Z. Zhu and G. W. Hammett, Phys. Plasmas 17, 122307 (2010)] are explained and corrected. If the lattice spacing for discretizing velocity is big enough, all the invariants could concentrate at the lowest Fourier modes in a negative-temperature state, which might indicate a possible variation of the dual cascade picture in 2D plasma turbulence.

  18. Fractional order absolute vibration suppression (AVS) controllers

    NASA Astrophysics Data System (ADS)

    Halevi, Yoram

    2017-04-01

    Absolute vibration suppression (AVS) is a control method for flexible structures. The first step is an accurate, infinite dimension, transfer function (TF), from actuation to measurement. This leads to the collocated, rate feedback AVS controller that in some cases completely eliminates the vibration. In case of the 1D wave equation, the TF consists of pure time delays and low order rational terms, and the AVS controller is rational. In all other cases, the TF and consequently the controller are fractional order in both the delays and the "rational parts". The paper considers stability, performance and actual implementation in such cases.

  19. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  20. The NASA Lewis Strain Gauge Laboratory: An update

    NASA Technical Reports Server (NTRS)

    Hobart, H. F.

    1986-01-01

    Efforts continue in the development and evaluation of electrical resistance strain gauges of the thin film and small diameter wire type. Results obtained early in 1986 on some Chinese gauges and Kanthal A-1 gauges mounted on a Hastelloy-X substrate are presented. More recent efforts include: (1) the determination of the uncertainty in the ability to establish gauge factor, (2) the evaluation of sputtered gauges that were fabricated at Lewis, (3) an investigation of the efficacy of dual element temperature compensated gauges when using strain gauge alloys having large thermal coefficients of resistance, and (4) an evaluation of the practical methods of stabilizing gauges whose apparent strain is dependent on cooling rate (e.g., FeCrAl gauges).

  1. Coordinate transformations and gauges in the relativistic astronomical reference systems

    NASA Astrophysics Data System (ADS)

    Tao, J.-H.; Huang, T.-Y.; Han, C.-H.

    2000-11-01

    This paper applies a fully post-Newtonian theory (Damour et al. 1991, 1992, 1993, 1994) to the problem of gauge in relativistic reference systems. Gauge fixing is necessary when the precision of time measurement and application reaches 10-16 or better. We give a general procedure for fixing the gauges of gravitational potentials in both the global and local coordinate systems, and for determining the gauge functions in all the coordinate transformations. We demonstrate that gauge fixing in a gravitational N-body problem can be solved by fixing the gauge of the self-gravitational potential of each body and the gauge function in the coordinate transformation between the global and local coordinate systems. We also show that these gauge functions can be chosen to make all the coordinate systems harmonic or any as required, no matter what gauge is chosen for the self-gravitational potential of each body.

  2. Diffractive Scattering and Gauge/String Duality

    ScienceCinema

    Tan, Chung-I

    2018-05-11

    High-energy diffractive scattering will be discussed based on Gauge/String duality. As shown by Brower, Polchinski, Strassler and Tan, the ubiquitous Pomeron emerges naturally in gauge theories with string-theoretical descriptions. Its existence is intimately tied to gluons, and also to the energy-momentum tensor. With a confining dual background metric, the Pomeron can be interpreted as a 'massive graviton'. In a single unified step, both its infrared and ultraviolet properties are dealt with, reflecting confinement and conformal symmetry respectively. An effective field theory for high-energy scattering can be constructed. Applications based on this approach will also be described.

  3. Hidden simplicity of gauge theory amplitudes

    NASA Astrophysics Data System (ADS)

    Drummond, J. M.

    2010-11-01

    These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in \\ {N}=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.

  4. Gauge fixing in higher-derivative gravity

    NASA Astrophysics Data System (ADS)

    Bartoli, A.; Julve, J.; Sánchez, E. J.

    1999-07-01

    Linearized 4-derivative gravity with a general gauge-fixing term is considered. By a Legendre transform and a suitable diagonalization procedure it is cast into a second-order equivalent form where the nature of the physical degrees of freedom, the gauge ghosts, the Weyl ghosts and the intriguing `third ghosts', characteristic to higher-derivative theories, is made explicit. The symmetries of the theory and the structure of the compensating Faddeev-Popov ghost sector exhibit non-trivial peculiarities. The unitarity breaking negative-norm Weyl ghosts, already present in the diff-invariant theory, are out of the reach of the ghost cancellation BRST mechanism.

  5. Weak gauge boson radiation in parton showers

    NASA Astrophysics Data System (ADS)

    Christiansen, Jesper R.; Sjöstrand, Torbjörn

    2014-04-01

    The emission of W and Z gauge bosons off quarks is included in a traditional QCD + QED shower. The unitarity of the shower algorithm links the real radiation of the weak gauge bosons to the negative weak virtual corrections. The shower evolution process leads to a competition between QCD, QED and weak radiation, and allows for W and Z boson production inside jets. Various effects on LHC physics are studied, both at low and high transverse momenta, and effects at higher-energy hadron colliders are outlined.

  6. A skin friction gauge for impulsive flows

    NASA Technical Reports Server (NTRS)

    Goyne, C. P.; Paull, A.; Stalker, R. J.

    1995-01-01

    A new skin friction gauge has been designed for use in impulsive facilities. The gauge was tested in the T4 free piston shock tunnel, at the University of Queensland, using a 1.5 m long plate that formed one of the inner walls of a rectangular duct. The test gas was fair and the test section free stream flow had a stagnation enthalpy of 4.7 MJ/kg. Measurements were conducted in a laminar and turbulent boundary layer. The measurements compared well with laminar and turbulent analytical theory.

  7. Blood patch rates after lumbar puncture with Whitacre versus Quincke 22- and 20-gauge spinal needles.

    PubMed

    Hatfield, Malcolm K; Handrich, Stephen J; Willis, Jeffrey A; Beres, Robert A; Zaleski, George X

    2008-06-01

    The objective of our study was to compare the incidence of blood patch as the best objective indicator of postdural puncture headache after elective fluoroscopic lumbar puncture with the use of a 22-gauge Whitacre (pencil point) needle versus standard 22- and 20-gauge Quincke (bevel-tip) needles and to determine the best level of puncture. The records of 724 consecutive patients who were referred to St. Mary's Medical Center department of radiology for fluoroscopic lumbar puncture from January 2003 through April 2007 were retrospectively reviewed. Emergency requests (191) were discarded along with those for patients with clinical signs of pseudotumor cerebri (21), normal pressure hydrocephalus (3), and failed attempts (4). The collective total was 505 elective lumbar punctures. The blood patch rate for the 22-gauge Whitacre needle was 4.2%. The result for the 22-gauge Quincke point needle was 15.1% whereas that for the 20-gauge Quincke point needle was 29.6%. In addition, the level of puncture showed a blood patch rate that increased as the level of lumbar puncture lowered. The highest level of lumbar puncture was L1-L2 with the lowest recorded level being L5-S1. The Whitacre needle is associated with a significantly lower incidence of blood patch rate after lumbar puncture. The highest level of puncture (L1-L2) also provides the lowest level of blood patch rate.

  8. Sensitivity factor of the axial-symmetric transmission gauge: Deviation and long-term variation

    SciTech Connect

    Takahashi, N.; Tuzi, Y.; Arakawa, I.

    2007-07-15

    The deviation of the sensitivity factors for about 50 sensors of the axial-symmetric transmission gauge (ATG) was examined. The deviation has been compared with that for about 30 sensors of the B-A gauge and for about 30 sensors of the extractor gauge. Almost the same deviations are found for the above three types of gauges. The long-term variations of the sensitivity factors for two sensors of the ATG were also measured during four years. After the initial change with operating time, the sensitivity factor stabilized after long-term operation. The room temperature effect of the sensitivity factor plays an important rolemore » on the total pressure measurement by an ionization gauge, but the change of the sensitivity factor was larger than the room temperature effect. The reason for the change of the factor is estimated in connection with the annealing and the alignment of the filament and with the deviation of the place of electron emission on the filament.« less

  9. 49 CFR 178.605 - Hydrostatic pressure test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hydraulic pressure (gauge) applied, taken at the top of the receptacle, and determined by any one of the... 49 Transportation 3 2012-10-01 2012-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must...

  10. 49 CFR 178.605 - Hydrostatic pressure test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hydraulic pressure (gauge) applied, taken at the top of the receptacle, and determined by any one of the... 49 Transportation 3 2014-10-01 2014-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must...

  11. 49 CFR 178.814 - Hydrostatic pressure test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., 21B, and 21N, for Packing Group I solids: 250 kPa (36 psig) gauge pressure. (4) For rigid plastic IBC... 49 Transportation 3 2012-10-01 2012-10-01 false Hydrostatic pressure test. 178.814 Section 178.814... Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification...

  12. 49 CFR 178.814 - Hydrostatic pressure test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., 21B, and 21N, for Packing Group I solids: 250 kPa (36 psig) gauge pressure. (4) For rigid plastic IBC... 49 Transportation 3 2011-10-01 2011-10-01 false Hydrostatic pressure test. 178.814 Section 178.814... Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification...

  13. 49 CFR 178.814 - Hydrostatic pressure test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., 21B, and 21N, for Packing Group I solids: 250 kPa (36 psig) gauge pressure. (4) For rigid plastic IBC... 49 Transportation 3 2014-10-01 2014-10-01 false Hydrostatic pressure test. 178.814 Section 178.814... Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification...

  14. 49 CFR 178.814 - Hydrostatic pressure test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., 21B, and 21N, for Packing Group I solids: 250 kPa (36 psig) gauge pressure. (4) For rigid plastic IBC... 49 Transportation 3 2013-10-01 2013-10-01 false Hydrostatic pressure test. 178.814 Section 178.814... Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification...

  15. Gauge choices and entanglement entropy of two dimensional lattice gauge fields

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Hung, Ling-Yan

    2018-03-01

    In this paper, we explore the question of how different gauge choices in a gauge theory affect the tensor product structure of the Hilbert space in configuration space. In particular, we study the Coulomb gauge and observe that the naive gauge potential degrees of freedom cease to be local operators as soon as we impose the Dirac brackets. We construct new local set of operators and compute the entanglement entropy according to this algebra in 2 + 1 dimensions. We find that our proposal would lead to an entanglement entropy that behave very similar to a single scalar degree of freedom if we do not include further centers, but approaches that of a gauge field if we include non-trivial centers. We explore also the situation where the gauge field is Higgsed, and construct a local operator algebra that again requires some deformation. This should give us some insight into interpreting the entanglement entropy in generic gauge theories and perhaps also in gravitational theories.

  16. The absolute threshold of cone vision

    PubMed Central

    Koeing, Darran; Hofer, Heidi

    2013-01-01

    We report measurements of the absolute threshold of cone vision, which has been previously underestimated due to sub-optimal conditions or overly strict subjective response criteria. We avoided these limitations by using optimized stimuli and experimental conditions while having subjects respond within a rating scale framework. Small (1′ fwhm), brief (34 msec), monochromatic (550 nm) stimuli were foveally presented at multiple intensities in dark-adapted retina for 5 subjects. For comparison, 4 subjects underwent similar testing with rod-optimized stimuli. Cone absolute threshold, that is, the minimum light energy for which subjects were just able to detect a visual stimulus with any response criterion, was 203 ± 38 photons at the cornea, ∼0.47 log units lower than previously reported. Two-alternative forced-choice measurements in a subset of subjects yielded consistent results. Cone thresholds were less responsive to criterion changes than rod thresholds, suggesting a limit to the stimulus information recoverable from the cone mosaic in addition to the limit imposed by Poisson noise. Results were consistent with expectations for detection in the face of stimulus uncertainty. We discuss implications of these findings for modeling the first stages of human cone vision and interpreting psychophysical data acquired with adaptive optics at the spatial scale of the receptor mosaic. PMID:21270115

  17. Why to compare absolute numbers of mitochondria.

    PubMed

    Schmitt, Sabine; Schulz, Sabine; Schropp, Eva-Maria; Eberhagen, Carola; Simmons, Alisha; Beisker, Wolfgang; Aichler, Michaela; Zischka, Hans

    2014-11-01

    Prompted by pronounced structural differences between rat liver and rat hepatocellular carcinoma mitochondria, we suspected these mitochondrial populations to differ massively in their molecular composition. Aiming to reveal these mitochondrial differences, we came across the issue on how to normalize such comparisons and decided to focus on the absolute number of mitochondria. To this end, fluorescently stained mitochondria were quantified by flow cytometry. For rat liver mitochondria, this approach resulted in mitochondrial protein contents comparable to earlier reports using alternative methods. We determined similar protein contents for rat liver, heart and kidney mitochondria. In contrast, however, lower protein contents were determined for rat brain mitochondria and for mitochondria from the rat hepatocellular carcinoma cell line McA 7777. This result challenges mitochondrial comparisons that rely on equal protein amounts as a typical normalization method. Exemplarily, we therefore compared the activity and susceptibility toward inhibition of complex II of rat liver and hepatocellular carcinoma mitochondria and obtained significant discrepancies by either normalizing to protein amount or to absolute mitochondrial number. Importantly, the latter normalization, in contrast to the former, demonstrated a lower complex II activity and higher susceptibility toward inhibition in hepatocellular carcinoma mitochondria compared to liver mitochondria. These findings demonstrate that solely normalizing to protein amount may obscure essential molecular differences between mitochondrial populations. Copyright © 2014 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  18. Relational versus absolute representation in categorization.

    PubMed

    Edwards, Darren J; Pothos, Emmanuel M; Perlman, Amotz

    2012-01-01

    This study explores relational-like and absolute-like representations in categorization. Although there is much evidence that categorization processes can involve information about both the particular physical properties of studied instances and abstract (relational) properties, there has been little work on the factors that lead to one kind of representation as opposed to the other. We tested 370 participants in 6 experiments, in which participants had to classify new items into predefined artificial categories. In 4 experiments, we observed a predominantly relational-like mode of classification, and in 2 experiments we observed a shift toward an absolute-like mode of classification. These results suggest 3 factors that promote a relational-like mode of classification: fewer items per group, more training groups, and the presence of a time delay. Overall, we propose that less information about the distributional properties of a category or weaker memory traces for the category exemplars (induced, e.g., by having smaller categories or a time delay) can encourage relational-like categorization.

  19. Linear ultrasonic motor for absolute gravimeter.

    PubMed

    Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V

    2017-05-01

    Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Evaporation from weighing precipitation gauges: impacts on automated gauge measurements and quality assurance methods

    NASA Astrophysics Data System (ADS)

    Leeper, R. D.; Kochendorfer, J.

    2014-12-01

    The effects of evaporation on precipitation measurements have been understood to bias total precipitation lower. For automated weighing-bucket gauges, the World Meteorological Organization (WMO) suggests the use of evaporative suppressants with frequent observations. However, the use of evaporation suppressants is not always feasible due to environmental hazards and the added cost of maintenance, transport, and disposal of the gauge additive. In addition, research has suggested that evaporation prior to precipitation may affect precipitation measurements from auto-recording gauges operating at sub-hourly frequencies. For further evaluation, a field campaign was conducted to monitor evaporation and its impacts on the quality of precipitation measurements from gauges used at US Climate Reference Network (USCRN) stations. Collocated Geonor gauges with (nonEvap) and without (evap) an evaporative suppressant were compared to evaluate evaporative losses and evaporation biases on precipitation measurements. From June to August, evaporative losses from the evap gauge exceeded accumulated precipitation, with an average loss of 0.12 mm h-1. However, the impact of evaporation on precipitation measurements was sensitive to calculation methods. In general, methods that utilized a longer time series to smooth out sensor noise were more sensitive to gauge (-4.6% bias with respect to control) evaporation than methods computing depth change without smoothing (< +1% bias). These results indicate that while climate and gauge design affect gauge evaporation rates computational methods can influence the magnitude of evaporation bias on precipitation measurements. It is hoped this study will advance QA techniques that mitigate the impact of evaporation biases on precipitation measurements from other automated networks.

  1. Performance of stem flow gauges in greenhouse and desert environments

    SciTech Connect

    Levitt, D.G.; Simpson, J.R.; Tipton, J.L.

    1995-06-01

    This study was conducted to evaluate the accuracy and general performance of a heat balance method for estimating transpirational sap flow through plant stems on two tree species in greenhouse and field experiments in Tucson, Arizona. Sap flow through 20-mm diameter stems of oak (Quercus virginiana `Heritage`) and mesquite (Prosopis alba `Colorado`.) trees in containers was measured using stem flow gauges and a precision balance, from January to October, 1991. Overall gauge accuracy, and the effects of gauge location on the tree stem, gauge ventilation, gauge insulation, sheath conductance factor (Ksh) selection method, and increased numbers of vertical thermocouple pairsmore » on gauge performance were evaluated.« less

  2. Gauge and Non-Gauge Tensor Multiplets in 5D Conformal Supergravity

    NASA Astrophysics Data System (ADS)

    Kugo, T.; Ohashi, K.

    2002-12-01

    An off-shell formulation of two distinct tensor multiplets, a massive tensor multiplet and a tensor gauge multiplet, is presented in superconformal tensor calculus in five-dimensional space-time. Both contain a rank 2 antisymmetric tensor field, but there is no gauge symmetry in the former, while it is a gauge field in the latter. Both multiplets have 4 bosonic and 4 fermionic on-shell modes, but the former consists of 16 (boson)+16 (fermion) component fields, while the latter consists of 8 (boson)+8 (fermion) component fields.

  3. Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error

    NASA Astrophysics Data System (ADS)

    Khair, Ummul; Fahmi, Hasanul; Hakim, Sarudin Al; Rahim, Robbi

    2017-12-01

    Prediction using a forecasting method is one of the most important things for an organization, the selection of appropriate forecasting methods is also important but the percentage error of a method is more important in order for decision makers to adopt the right culture, the use of the Mean Absolute Deviation and Mean Absolute Percentage Error to calculate the percentage of mistakes in the least square method resulted in a percentage of 9.77% and it was decided that the least square method be worked for time series and trend data.

  4. Flavor gauge models below the Fermi scale

    SciTech Connect

    Babu, K. S.; Friedland, A.; Machado, P. A. N.

    The mass and weak interaction eigenstates for the quarks of the third generation are very well aligned, an empirical fact for which the Standard Model offers no explanation. We explore the possibility that this alignment is due to an additional gauge symmetry in the third generation. Specifically, we construct and analyze an explicit, renormalizable model with a gauge boson,more » $X$, corresponding to the $B-L$ symmetry of the third family. Having a relatively light (in the MeV to multi-GeV range), flavor-nonuniversal gauge boson results in a variety of constraints from different sources. By systematically analyzing 20 different constraints, we identify the most sensitive probes: kaon, $B^+$, $D^+$ and Upsilon decays, $$D-\\bar{D}^0$$ mixing, atomic parity violation, and neutrino scattering and oscillations. For the new gauge coupling $$g_X$$ in the range $$(10^{-2} - 10^{-4})$$ the model is shown to be consistent with the data. Possible ways of testing the model in $b$ physics, top and $Z$ decays, direct collider production and neutrino oscillation experiments, where one can observe nonstandard matter effects, are outlined. The choice of leptons to carry the new force is ambiguous, resulting in additional phenomenological implications, such as non-universality in semileptonic bottom decays. In conclusion, the proposed framework provides interesting connections between neutrino oscillations, flavor and collider physics.« less

  5. Pure gauge spin-orbit couplings

    NASA Astrophysics Data System (ADS)

    Shikakhwa, M. S.

    2017-01-01

    Planar systems with a general linear spin-orbit interaction (SOI) that can be cast in the form of a non-Abelian pure gauge field are investigated using the language of non-Abelian gauge field theory. A special class of these fields that, though a 2×2 matrix, are Abelian are seen to emerge and their general form is given. It is shown that the unitary transformation that gauges away these fields induces at the same time a rotation on the wave function about a fixed axis but with a space-dependent angle, both of which being characteristics of the SOI involved. The experimentally important case of equal-strength Rashba and Dresselhaus SOI (R+D SOI) is shown to fall within this special class of Abelian gauge fields, and the phenomenon of persistent spin helix (PSH) that emerges in the presence of this latter SOI in a plane is shown to fit naturally within the general formalism developed. The general formalism is also extended to the case of a particle confined to a ring. It is shown that the Hamiltonian on a ring in the presence of equal-strength R+D SOI is unitarily equivalent to that of a particle subject to only a spin-independent but θ-dependent potential with the unitary transformation relating the two being again the space-dependent rotation operator characteristic of R+D SOI.

  6. Flavor gauge models below the Fermi scale

    DOE PAGES

    Babu, K. S.; Friedland, A.; Machado, P. A. N.; ...

    2017-12-18

    The mass and weak interaction eigenstates for the quarks of the third generation are very well aligned, an empirical fact for which the Standard Model offers no explanation. We explore the possibility that this alignment is due to an additional gauge symmetry in the third generation. Specifically, we construct and analyze an explicit, renormalizable model with a gauge boson,more » $X$, corresponding to the $B-L$ symmetry of the third family. Having a relatively light (in the MeV to multi-GeV range), flavor-nonuniversal gauge boson results in a variety of constraints from different sources. By systematically analyzing 20 different constraints, we identify the most sensitive probes: kaon, $B^+$, $D^+$ and Upsilon decays, $$D-\\bar{D}^0$$ mixing, atomic parity violation, and neutrino scattering and oscillations. For the new gauge coupling $$g_X$$ in the range $$(10^{-2} - 10^{-4})$$ the model is shown to be consistent with the data. Possible ways of testing the model in $b$ physics, top and $Z$ decays, direct collider production and neutrino oscillation experiments, where one can observe nonstandard matter effects, are outlined. The choice of leptons to carry the new force is ambiguous, resulting in additional phenomenological implications, such as non-universality in semileptonic bottom decays. In conclusion, the proposed framework provides interesting connections between neutrino oscillations, flavor and collider physics.« less

  7. Gauge Theories and Spontaneous Symmetry Breaking.

    DTIC Science & Technology

    1980-11-01

    This report summarizes attempts to understand in what way spontaneous symmetry breaking arose in the context of guage field theories of elementary...gauge field theories. It was felt that the symmetry breaking used by the physicists (a procedure known as the Higgs mechanism) is not precisely a

  8. Radio Frequency Mass Gauging of Propellants

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Vaden, Karl R.; Herlacher, Michael D.; Buchanan, David A.; VanDresar, Neil T.

    2007-01-01

    A combined experimental and computer simulation effort was conducted to measure radio frequency (RF) tank resonance modes in a dewar partially filled with liquid oxygen, and compare the measurements with numerical simulations. The goal of the effort was to demonstrate that computer simulations of a tank's electromagnetic eigenmodes can be used to accurately predict ground-based measurements, thereby providing a computational tool for predicting tank modes in a low-gravity environment. Matching the measured resonant frequencies of several tank modes with computer simulations can be used to gauge the amount of liquid in a tank, thus providing a possible method to gauge cryogenic propellant tanks in low-gravity. Using a handheld RF spectrum analyzer and a small antenna in a 46 liter capacity dewar for experimental measurements, we have verified that the four lowest transverse magnetic eigenmodes can be accurately predicted as a function of liquid oxygen fill level using computer simulations. The input to the computer simulations consisted of tank dimensions, and the dielectric constant of the fluid. Without using any adjustable parameters, the calculated and measured frequencies agree such that the liquid oxygen fill level was gauged to within 2 percent full scale uncertainty. These results demonstrate the utility of using electromagnetic simulations to form the basis of an RF mass gauging technology with the power to simulate tank resonance frequencies from arbitrary fluid configurations.

  9. Vacuum-Gauge Connection For Shipping Container

    NASA Technical Reports Server (NTRS)

    Henry, Robert H.

    1990-01-01

    External connector enables measurement of vacuum in stored part. Remote-readout connector added to shipping container and connected to thermo-couple vacuum gauge in vacuum-insulated cryogenic line packed in container. Enables monitoring of condition of vacuum without opening container.

  10. High-Temperature Resistance Strain Gauges

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1994-01-01

    Resistance strain gauges developed for use at high temperatures in demanding applications like testing aircraft engines and structures. Measures static strains at temperatures up to 800 degrees C. Small and highly reproducible. Readings corrected for temperature within small tolerances, provided temperatures measured simultaneously by thermocouples or other suitable devices. Connected in wheatstone bridge.

  11. Exotic Gauge Bosons in the 331 Model

    SciTech Connect

    Romero, D.; Ravinez, O.; Diaz, H.

    We analize the bosonic sector of the 331 model which contains exotic leptons, quarks and bosons (E,J,U,V) in order to satisfy the weak gauge SU(3){sub L} invariance. We develop the Feynman rules of the entire kinetic bosonic sector which will let us to compute some of the Z(0)' decays modes.

  12. Nanocomposite Strain Gauges Having Small TCRs

    NASA Technical Reports Server (NTRS)

    Gregory, Otto; Chen, Ximing

    2009-01-01

    Ceramic strain gauges in which the strain-sensitive electrically conductive strips made from nanocomposites of noble metal and indium tin oxide (ITO) are being developed for use in gas turbine engines and other power-generation systems in which gas temperatures can exceed 1,500 F (about 816 C). In general, strain gauges exhibit spurious thermally induced components of response denoted apparent strain. When temperature varies, a strain-gauge material that has a nonzero temperature coefficient of resistance (TCR) exhibits an undesired change in electrical resistance that can be mistaken for the change in resistance caused by a change in strain. It would be desirable to formulate straingauge materials having TCRs as small as possible so as to minimize apparent strain. Most metals exhibit positive TCRs, while most semiconductors, including ITO, exhibit negative TCRs. The present development is based on the idea of using the negative TCR of ITO to counter the positive TCRs of noble metals and of obtaining the benefit of the ability of both ITO and noble metals to endure high temperatures. The noble metal used in this development thus far has been platinum. Combinatorial libraries of many ceramic strain gauges containing nanocomposites of various proportions of ITO and platinum were fabricated by reactive co-sputtering from ITO and platinum targets onto alumina- and zirconia-based substrates mounted at various positions between the targets.

  13. Phenomenology of strongly coupled chiral gauge theories

    DOE PAGES

    Bai, Yang; Berger, Joshua; Osborne, James; ...

    2016-11-25

    A sector with QCD-like strong dynamics is common in models of non-standard physics. Such a model could be accessible in LHC searches if both confinement and big-quarks charged under the confining group are at the TeV scale. Big-quark masses at this scale can be explained if the new fermions are chiral under a new U(1)' gauge symmetry such that their bare masses are related to the U(1)'-breaking and new confinement scales. Here we present a study of a minimal GUT-motivated and gauge anomaly-free model with implications for the LHC Run 2 searches. We find that the first signatures of suchmore » models could appear as two gauge boson resonances. The chiral nature of the model could be confirmed by observation of a Z'γ resonance, where the Z' naturally has a large leptonic branching ratio because of its kinetic mixing with the hypercharge gauge boson.« less

  14. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  15. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  16. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  17. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  18. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  19. Modeling absolute plate and plume motions

    NASA Astrophysics Data System (ADS)

    Bodinier, G. P.; Wessel, P.; Conrad, C. P.

    2016-12-01

    Paleomagnetic evidence for plume drift has made modeling of absolute plate motions challenging, especially since direct observations of plume drift are lacking. Predictions of plume drift arising from mantle convection models and broadly satisfying observed paleolatitudes have so far provided the only framework for deriving absolute plate motions over moving hotspots. However, uncertainties in mantle rheology, temperature, and initial conditions make such models nonunique. Using simulated and real data, we will show that age progressions along Pacific hotspot trails provide strong constraints on plume motions for all major trails, and furthermore that it is possible to derive models for relative plume drift from these data alone. Relative plume drift depends on the inter-hotspot distances derived from age progressions but lacks a fixed reference point and orientation. By incorporating paleolatitude histories for the Hawaii and Louisville chains we add further constraints on allowable plume motions, yet one unknown parameter remains: a longitude shift that applies equally to all plumes. To obtain a solution we could restrict either the Hawaii or Louisville plume to have latitudinal motion only, thus satisfying paleolatitude constraints. Yet, restricting one plume to latitudinal motion while all others move freely is not realistic. Consequently, it is only possible to resolve the motion of hotspots relative to an overall and unknown longitudinal shift as a function of time. Our plate motions are therefore dependent on the same shift via an unknown rotation about the north pole. Yet, as plume drifts are consequences of mantle convection, our results place strong constraints on the pattern of convection. Other considerations, such as imposed limits on plate speed, plume speed, proximity to LLSVP edges, model smoothness, or relative plate motions via ridge-spotting may add further constraints that allow a unique model of Pacific absolute plate and plume motions to be

  20. Carbon Nanotube Vacuum Gauges Utilizing Long, Dissipative Tubes

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Manohara, Harish M.

    2008-01-01

    CNT Vacuum Gauges: a) have a broad range of pressure response from 760 - 10(exp -6) Torr. b) have current changes approx. 100's nA in high vacuum regime (10(exp -6) Torr) and sensitivity increases with power and substrate removal. c) have a negative dR/dT (TCR negative) where a thermal hopping energy E(sub a) was determined to be approx. 40 meV. d) have compatible fabrication requirements for their integration with micromachined structures. e) can be operated at low power (nW - micro-W). f) have an active device region footprint of < 10 sq microns. g) are non-intrusive due to small size and passive operation.

  1. Gauge-flation confronted with Planck

    SciTech Connect

    Namba, Ryo; Dimastrogiovanni, Emanuela; Peloso, Marco, E-mail: namba@physics.umn.edu, E-mail: ema@physics.umn.edu, E-mail: peloso@physics.umn.edu

    2013-11-01

    Gauge-flation is a recently proposed model in which inflation is driven solely by a non-Abelian gauge field thanks to a specific higher order derivative operator. The nature of the operator is such that it does not introduce ghosts. We compute the cosmological scalar and tensor perturbations for this model, improving over an existing computation. We then confront these results with the Planck data. The model is characterized by the quantity γ ≡ g{sup 2}Q{sup 2}/H{sup 2} (where g is the gauge coupling constant, Q the vector vev, and H the Hubble rate). For γ < 2, the scalar perturbations show a strongmore » tachyonic instability. In the stable region, the scalar power spectrum n{sub s} is too low at small γ, while the tensor-to-scalar ratio r is too high at large γ. No value of γ leads to acceptable values for n{sub s} and r, and so the model is ruled out by the CMB data. The same behavior with γ was obtained in Chromo-natural inflation, a model in which inflation is driven by a pseudo-scalar coupled to a non-Abelian gauge field. When the pseudo-scalar can be integrated out, one recovers the model of Gauge-flation plus corrections. It was shown that this identification is very accurate at the background level, but differences emerged in the literature concerning the perturbations of the two models. On the contrary, our results show that the analogy between the two models continues to be accurate also at the perturbative level.« less

  2. Pressure balance cross-calibration method using a pressure transducer as transfer standard

    PubMed Central

    Olson, D; Driver, R. G.; Yang, Y

    2016-01-01

    Piston gauges or pressure balances are widely used to realize the SI unit of pressure, the pascal, and to calibrate pressure sensing devices. However, their calibration is time consuming and requires a lot of technical expertise. In this paper, we propose an alternate method of performing a piston gauge cross calibration that incorporates a pressure transducer as an immediate in-situ transfer standard. For a sufficiently linear transducer, the requirement to exactly balance the weights on the two pressure gauges under consideration is greatly relaxed. Our results indicate that this method can be employed without a significant increase in measurement uncertainty. Indeed, in the test case explored here, our results agreed with the traditional method within standard uncertainty, which was less than 6 parts per million. PMID:28303167

  3. Field correlation of PQI gauge with nuclear density gauge: phase 1.

    DOT National Transportation Integrated Search

    2006-12-01

    Traditionally, the Oklahoma Department of Transportation (ODOT) uses a nuclear density gauge as a quality control (QC) and quality assurance (QA) tool for in-place density. The nuclear-based devices, however, tend to have problems associated with lic...

  4. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  5. Design and Development of a Pressure Transducer for High Hydrostatic Pressure Measurements up to 200 MPa

    NASA Astrophysics Data System (ADS)

    Kumar, Anuj; Yadav, Sanjay; Agarwal, Ravinder

    2017-08-01

    A number of pressure transducers, based on strain gauge, capacitance/inductance type, frequency resonators, are commercially available and are being used for sensing and producing an electrical output proportional to applied pressure. These sensors have their own advantages and limitations due to operational ease, measurement uncertainty and the costs. Strain gauge type transducers are now well established devices for accurate and precise measurement of pressure within measurement uncertainty up to 0.1 % of full scale. In the present research work, an indigenous strain gauge pressure transducer has been designed, developed, tested and calibrated for pressure measurement up to 200 MPa. The measurement uncertainty estimated using the pressure transducer was found better than 0.1 % of full scale. This transducer was developed using four foil type strain gauges, bonded, two in axial direction while other two in radial direction, to the controlled stress zones of a tubular maraging steel active cylinder working also as diaphragm. The strain gages were then connected to a Wheatstone bridge arrangement to measure stress generated strains. The pressure was applied through matching connector designed in the same tubular transducer active element. The threaded unique design in a single piece through collar, ferule and tubing arrangement provides leak proof pressure connections with external devices without using additional seals. The calibration and performance checking of the pressure transducer was carried out using dead weight type national pressure standard using the internationally accepted calibration procedure.

  6. Driven tracer with absolute negative mobility

    NASA Astrophysics Data System (ADS)

    Cividini, J.; Mukamel, D.; Posch, H. A.

    2018-02-01

    Instances of negative mobility, where a system responds to a perturbation in a way opposite to naive expectation, have been studied theoretically and experimentally in numerous nonequilibrium systems. In this work we show that absolute negative mobility (ANM), whereby current is produced in a direction opposite to the drive, can occur around equilibrium states. This is demonstrated with a simple one-dimensional lattice model with a driven tracer. We derive analytical predictions in the linear response regime and elucidate the mechanism leading to ANM by studying the high-density limit. We also study numerically a model of hard Brownian disks in a narrow planar channel, for which the lattice model can be viewed as a toy model. We find that the model exhibits negative differential mobility (NDM), but no ANM.

  7. Measurement of absolute gamma emission probabilities

    NASA Astrophysics Data System (ADS)

    Sumithrarachchi, Chandana S.; Rengan, Krish; Griffin, Henry C.

    2003-06-01

    The energies and emission probabilities (intensities) of gamma-rays emitted in radioactive decays of particular nuclides are the most important characteristics by which to quantify mixtures of radionuclides. Often, quantification is limited by uncertainties in measured intensities. A technique was developed to reduce these uncertainties. The method involves obtaining a pure sample of a nuclide using radiochemical techniques, and using appropriate fractions for beta and gamma measurements. The beta emission rates were measured using a liquid scintillation counter, and the gamma emission rates were measured with a high-purity germanium detector. Results were combined to obtain absolute gamma emission probabilities. All sources of uncertainties greater than 0.1% were examined. The method was tested with 38Cl and 88Rb.

  8. Absolute calibration of ultraviolet filter photometry

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Fairchild, T.; Code, A. D.

    1972-01-01

    The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.

  9. Absolute negative mobility in the anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Chen, Ruyin; Chen, Chongyang; Nie, Linru

    2017-12-01

    Transport of an inertial Brownian particle driven by the multiplicative Lévy noise was investigated here. Numerical results indicate that: (i) The Lévy noise is able to induce absolute negative mobility (ANM) in the system, while disappearing in the deterministic case; (ii) the ANM can occur in the region of superdiffusion while disappearing in the region of normal diffusion, and the appropriate stable index of the Lévy noise makes the particle move along the opposite direction of the bias force to the maximum degree; (iii) symmetry breaking of the Lévy noise also causes the ANM effect. In addition, the intrinsic physical mechanism and conditions for the ANM to occur are discussed in detail. Our results have the implication that the Lévy noise plays an important role in the occurrence of the ANM phenomenon.

  10. Absolute partial photoionization cross sections of ethylene

    NASA Astrophysics Data System (ADS)

    Grimm, F. A.; Whitley, T. A.; Keller, P. R.; Taylor, J. W.

    1991-07-01

    Absolute partial photoionization cross sections for ionization out of the first four valence orbitals to the X 2B 3u, A 2B 3g, B 2A g and C 2B 2u states of the C 2H 4+ ion are presented as a function of photon energy over the energy range from 12 to 26 eV. The experimental results have been compared to previously published relative partial cross sections for the first two bands at 18, 21 and 24 eV. Comparison of the experimental data with continuum multiple scattering Xα calculations provides evidence for extensive autoionization to the X 2B 3u state and confirms the predicted shape resonances in ionization to the A 2B 3g and B 2A g states. Identification of possible transitions for the autoionizing resonances have been made using multiple scattering transition state calculations on Rydberg excited states.

  11. Absolute measurements of fast neutrons using yttrium.

    PubMed

    Roshan, M V; Springham, S V; Rawat, R S; Lee, P; Krishnan, M

    2010-08-01

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f(n) approximately 4.1x10(-4) with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10(8) neutrons per discharge.

  12. Measured and modelled absolute gravity in Greenland

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Forsberg, R.; Strykowski, G.

    2012-12-01

    Present day changes in the ice volume in glaciated areas like Greenland will change the load on the Earth and to this change the lithosphere will respond elastically. The Earth also responds to changes in the ice volume over a millennial time scale. This response is due to the viscous properties of the mantle and is known as Glaical Isostatic Adjustment (GIA). Both signals are present in GPS and absolute gravity (AG) measurements and they will give an uncertainty in mass balance estimates calculated from these data types. It is possible to separate the two signals if both gravity and Global Positioning System (GPS) time series are available. DTU Space acquired an A10 absolute gravimeter in 2008. One purpose of this instrument is to establish AG time series in Greenland and the first measurements were conducted in 2009. Since then are 18 different Greenland GPS Network (GNET) stations visited and six of these are visited more then once. The gravity signal consists of three signals; the elastic signal, the viscous signal and the direct attraction from the ice masses. All of these signals can be modelled using various techniques. The viscous signal is modelled by solving the Sea Level Equation with an appropriate ice history and Earth model. The free code SELEN is used for this. The elastic signal is modelled as a convolution of the elastic Greens function for gravity and a model of present day ice mass changes. The direct attraction is the same as the Newtonian attraction and is calculated as this. Here we will present the preliminary results of the AG measurements in Greenland. We will also present modelled estimates of the direct attraction, the elastic and the viscous signals.

  13. Absolute GPS Positioning Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Ramillien, G.

    A new inverse approach for restoring the absolute coordinates of a ground -based station from three or four observed GPS pseudo-ranges is proposed. This stochastic method is based on simulations of natural evolution named genetic algorithms (GA). These iterative procedures provide fairly good and robust estimates of the absolute positions in the Earth's geocentric reference system. For comparison/validation, GA results are compared to the ones obtained using the classical linearized least-square scheme for the determination of the XYZ location proposed by Bancroft (1985) which is strongly limited by the number of available observations (i.e. here, the number of input pseudo-ranges must be four). The r.m.s. accuracy of the non -linear cost function reached by this latter method is typically ~10-4 m2 corresponding to ~300-500-m accuracies for each geocentric coordinate. However, GA can provide more acceptable solutions (r.m.s. errors < 10-5 m2), even when only three instantaneous pseudo-ranges are used, such as a lost of lock during a GPS survey. Tuned GA parameters used in different simulations are N=1000 starting individuals, as well as Pc=60-70% and Pm=30-40% for the crossover probability and mutation rate, respectively. Statistical tests on the ability of GA to recover acceptable coordinates in presence of important levels of noise are made simulating nearly 3000 random samples of erroneous pseudo-ranges. Here, two main sources of measurement errors are considered in the inversion: (1) typical satellite-clock errors and/or 300-metre variance atmospheric delays, and (2) Geometrical Dilution of Precision (GDOP) due to the particular GPS satellite configuration at the time of acquisition. Extracting valuable information and even from low-quality starting range observations, GA offer an interesting alternative for high -precision GPS positioning.

  14. Absolute Bioavailability of Osimertinib in Healthy Adults.

    PubMed

    Vishwanathan, Karthick; So, Karen; Thomas, Karen; Bramley, Alex; English, Stephen; Collier, Jo

    2018-04-23

    Osimertinib is a third-generation, central nervous system-active, epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) selective for EGFR-TKI sensitizing and T790M resistance mutations. This phase 1, open-label study (NCT02491944) investigated absolute bioavailability and pharmacokinetics (PK) of oral and intravenous (IV) osimertinib. Ten healthy subjects (21-61 years) received a single oral 80-mg dose concomitantly with a 100 μg (containing 1 μCi) IV microtracer dose of [ 14 C]osimertinib. Oral and IV PK were determined simultaneously for osimertinib and its active metabolites, AZ5104 and AZ7550. High-performance liquid chromatography and accelerator mass spectrometry were used to characterize IV dose PK. Geometric mean absolute oral bioavailability of osimertinib was 69.8% (90% confidence interval, 66.7, 72.9). Oral osimertinib was slowly absorbed (median time to maximum plasma concentration [t max ] 7.0 hours). Following t max , plasma concentrations fell in an apparent monophasic manner. IV clearance and volume of distribution were 16.8 L/h and 1285 L, respectively. Arithmetic mean elimination half-life estimates were 59.7, 52.6, and 72.6 hours for osimertinib, AZ5104, and AZ7550, respectively (oral dosing), and 54.9, 68.4, and 99.7 hours for [ 14 C]osimertinib, [ 14 C]AZ5104, and [ 14 C]AZ7550, respectively (IV dosing). Oral osimertinib was well absorbed. Simultaneous IV and oral PK analysis proved useful for complete understanding of osimertinib PK and showed that the first-pass effect was minimal for osimertinib. © 2018, The American College of Clinical Pharmacology.

  15. Using an interference spectrum as a short-range absolute rangefinder with fiber and wideband source

    NASA Astrophysics Data System (ADS)

    Hsieh, Tsung-Han; Han, Pin

    2018-06-01

    Recently, a new type of displacement instrument using spectral-interference has been found, which utilizes fiber and a wideband light source to produce an interference spectrum. In this work, we develop a method that measures the absolute air-gap distance by taking wavelengths at two interference spectra minima. The experimental results agree with the theoretical calculations. It is also utilized to produce and control the spectral switch, which is much easier than other previous methods using other control mechanisms. A scanning mode of this scheme for stepped surface measurement is suggested, which is verified by a standard thickness gauge test. Our scheme is different to one available on the market that may use a curve-fitting method, and some comparisons are made between our scheme and that one.

  16. 27 CFR 19.454 - Gauge for denaturation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dumped from previously gauged containers or spirits transferred directly to mixing tanks from gauge tanks... devices or methods. (Sec. 201, Pub. L. 85-859, 72 Stat. 1358, as amended (26 U.S.C. 5204); sec. 807, Pub...

  17. Enraf Series 854 advanced technology gauge (ATG) acceptance test procedure

    SciTech Connect

    Huber, J.H.

    1996-09-11

    This Acceptance Test Procedure was written to test the Enraf Series 854 Advanced Technology Gauge (ATG) prior to installation in the Tank Farms. The procedure sets various parameters and verifies that the gauge is functional.

  18. Augmented superfield approach to gauge-invariant massive 2-form theory

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Krishna, S.

    2017-06-01

    We discuss the complete sets of the off-shell nilpotent (i.e. s^2_{(a)b} = 0) and absolutely anticommuting (i.e. s_b s_{ab} + s_{ab} s_b = 0) Becchi-Rouet-Stora-Tyutin (BRST) (s_b) and anti-BRST (s_{ab}) symmetries for the (3+1)-dimensional (4D) gauge-invariant massive 2-form theory within the framework of an augmented superfield approach to the BRST formalism. In this formalism, we obtain the coupled (but equivalent) Lagrangian densities which respect both BRST and anti-BRST symmetries on the constrained hypersurface defined by the Curci-Ferrari type conditions. The absolute anticommutativity property of the (anti-) BRST transformations (and corresponding generators) is ensured by the existence of the Curci-Ferrari type conditions which emerge very naturally in this formalism. Furthermore, the gauge-invariant restriction plays a decisive role in deriving the proper (anti-) BRST transformations for the Stückelberg-like vector field.

  19. (3+1)-Dimensional topologically massive 2-form gauge theory: geometrical superfield approach

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Mukhopadhyay, Debmalya

    2018-06-01

    We derive the complete set of off-shell nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations corresponding to the combined "scalar" and "vector" gauge symmetry transformations for the (3+1)-dimensional (4D) topologically massive non-Abelian (B \\wedge F) theory with the help of geometrical superfield formalism. For this purpose, we use three horizontality conditions (HCs). The first HC produces the (anti-)BRST transformations for the 1-form gauge field and corresponding (anti-)ghost fields whereas the second HC yields the (anti-)BRST transformations for 2-form field and associated (anti-)ghost fields. The integrability of second HC produces third HC. The latter HC produces the (anti-)BRST symmetry transformations for the compensating auxiliary vector field and corresponding ghosts. We obtain five (anti-)BRST invariant Curci-Ferrari (CF)-type conditions which emerge very naturally as the off-shoots of superfield formalism. Out of five CF-type conditions, two are fermionic in nature. These CF-type conditions play a decisive role in providing the absolute anticommutativity of the (anti-)BRST transformations and also responsible for the derivation of coupled but equivalent (anti-)BRST invariant Lagrangian densities. Furthermore, we capture the (anti-)BRST invariance of the coupled Lagrangian densities in terms of the superfields and translation generators along the Grassmannian directions θ and \\bar{θ }.

  20. Using altimetry and seafloor pressure data to estimate vertical deformation offshore: Vanuatu case study

    NASA Astrophysics Data System (ADS)

    Ballu, V.; Bonnefond, P.; Calmant, S.; Bouin, M.-N.; Pelletier, B.; Laurain, O.; Crawford, W. C.; Baillard, C.; de Viron, O.

    2013-04-01

    Measuring ground deformation underwater is essential for understanding Earth processes at many scales. One important example is subduction zones, which can generate devastating earthquakes and tsunamis, and where the most important deformation signal related to plate locking is usually offshore. We present an improved method for making offshore vertical deformation measurements, that involve combining tide gauge and altimetry data. We present data from two offshore sites located on either side of the plate interface at the New Hebrides subduction zone, where the Australian plate subducts beneath the North Fiji basin. These two sites have been equipped with pressure gauges since 1999, to extend an on-land GPS network across the plate interface. The pressure series measured at both sites show that Wusi Bank, located on the over-riding plate, subsides by 11 ± 4 mm/yr with respect to Sabine Bank, which is located on the down-going plate. By combining water depths derived from the on-bottom pressure data with sea surface heights derived from altimetry data, we determine variations of seafloor heights in a global reference frame. Using altimetry data from TOPEX/Poseidon, Jason-1, Jason-2 and Envisat missions, we find that the vertical motion at Sabine Bank is close to zero and that Wusi Bank subsides by at least 3 mm/yr and probably at most 11 mm/yr.This paper represents the first combination of altimetry and pressure data to derive absolute vertical motions offshore. The deformation results are obtained in a global reference frame, allowing them to be integrated with on-land GNSS data.

  1. Vacuum-assisted breast biopsy with 7-gauge, 8-gauge, 9-gauge, 10-gauge, and 11-gauge needles: how many specimens are necessary?

    PubMed

    Preibsch, Heike; Baur, Astrid; Wietek, Beate M; Krämer, Bernhard; Staebler, Annette; Claussen, Claus D; Siegmann-Luz, Katja C

    2015-09-01

    Published national and international guidelines and consensus meetings on the use of vacuum-assisted biopsy (VAB) give different recommendations regarding the required numbers of tissue specimens depending on needle size and imaging method. To evaluate the weights of specimens obtained with different VAB needles to facilitate the translation of the required number of specimens between different breast biopsy systems and needle sizes, respectively. Five different VAB systems and seven different needle sizes were used: Mammotome® (11-gauge (G), 8-G), Vacora® (10-G), ATEC Sapphire™ (9-G), 8-G Mammotome® Revolve™, and EnCor Enspire® (10-G, 7-G). We took 24 (11-G) or 20 (7-10-G) tissue cores from a turkey breast phantom. The mean weight of a single tissue core was calculated for each needle size. A matrix, which allows the translation of the required number of tissue cores for different needle sizes, was generated. Results were compared to the true cumulative tissue weights of consecutively harvested tissue cores. The mean tissue weights obtained with the 11-G / 10-G Vacora® / 10-G Enspire® / 9-G / 8-G Original / 8-G Revolve™ / 7-G needles were 0.084 g / 0.142 g / 0.221 g / 0.121 g / 0.192 g / 0.334 g / 0.363 g, respectively. The calculated required numbers of VAB tissue cores for each needle size build the matrix. For example, the minimum calculated number of required cores according to the current German S3 guideline is 20 / 12 / 8 / 14 / 9 / 5 / 5 for needles of 11-G / 10-G Vacora® / 10-G Enspire® / 9-G / 8-G Original / 8-G Revolve™ / 7-G size. These numbers agree with the true cumulative tissue weights. The presented matrix facilitates the translation of the required number of VAB specimens between different needle sizes and thereby eases the implementation of current guidelines and consensus recommendations into clinical practice. © The Foundation Acta Radiologica 2014.

  2. Variance computations for functional of absolute risk estimates.

    PubMed

    Pfeiffer, R M; Petracci, E

    2011-07-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates.

  3. Variance computations for functional of absolute risk estimates

    PubMed Central

    Pfeiffer, R.M.; Petracci, E.

    2011-01-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates. PMID:21643476

  4. FAST TRACK COMMUNICATION: Symmetry breaking, conformal geometry and gauge invariance

    NASA Astrophysics Data System (ADS)

    Ilderton, Anton; Lavelle, Martin; McMullan, David

    2010-08-01

    When the electroweak action is rewritten in terms of SU(2) gauge-invariant variables, the Higgs can be interpreted as a conformal metric factor. We show that asymptotic flatness of the metric is required to avoid a Gribov problem: without it, the new variables fail to be nonperturbatively gauge invariant. We also clarify the relations between this approach and unitary gauge fixing, and the existence of similar transformations in other gauge theories.

  5. ENRAF Series 854 Advanced Technology Gauge (ATG) Acceptance Test Procedure

    SciTech Connect

    HUBER, J.H.

    1999-08-17

    This procedure provides acceptance testing for Enraf Series 854 level gauges used to monitor levels in Hanford Waste Storage Tanks. The test will verify that the gauge functions according to the manufacturer's instructions and specifications and is properly setup prior to being delivered to the tank farm area. This ATP does not set up the gauge for any specific tank, but is generalized to permit testing the gauge prior to installation package preparation.

  6. Construction of non-Abelian gauge theories on noncommutative spaces

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Möller, L.; Schraml, S.; Schupp, P.; Wess, J.

    We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories.

  7. Parametric Dynamic Load Prediction of a Narrow Gauge Rocket Sled

    DTIC Science & Technology

    2006-12-01

    Monorail λ Compared to Sled Tests.......................................................... 11 Figure 2.1 Application of Vertical λ to a Narrow Gauge sled...Three distinct sled configurations are used: monorail , dual rail wide gauge, and dual rail narrow gauge. Of the three, the narrow gauge...weight and the resulting value was termed λ. Monorail λ factor loading was first documented by Mixon (1971) where a few measured data points were

  8. Foreign exchange market as a lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Young, K.

    1999-10-01

    A simple model of the foreign exchange market is exactly a lattice gauge theory. Exchange rates are the exponentials of gauge potentials defined on spatial links while interest rates are related to gauge potentials on temporal links. Arbitrage opportunities are given by nonzero values of the gauge-invariant field tensor or curvature defined on closed loops. Arbitrage opportunities involving cross-rates at one time are "magnetic fields," while arbitrage opportunities involving future contracts are "electric fields."

  9. 21 CFR 886.1420 - Ophthalmic lens gauge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic lens gauge. 886.1420 Section 886.1420...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1420 Ophthalmic lens gauge. (a) Identification. An ophthalmic lens gauge is a calibrated device intended to manually measure the curvature of a...

  10. 21 CFR 888.4300 - Depth gauge for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Depth gauge for clinical use. 888.4300 Section 888...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4300 Depth gauge for clinical use. (a) Identification. A depth gauge for clinical use is a measuring device intended for various medical purposes, such...

  11. Nuclear Gauges Used in Road Construction | RadTown USA ...

    EPA Pesticide Factsheets

    2017-08-07

    Nuclear gauges use radioactive sources to measure the thickness, density or make-up of a wide variety of materials and surfaces. When properly used, nuclear gauges will not expose the public to radiation. Nuclear gauges must be used safely and disposed of properly.

  12. More About High-Temperature Resistance Strain Gauges

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Williams, W. D.; Lei, Jih-Fen; Hulse, C. O.

    1994-01-01

    Two reports present additional information on electrical-resistance strain gauges described in "High-Temperature Resistance Strain Gauges" (LEW-15379). For protection against oxidation at high temperatures, gauges covered, by flame spraying, with coats of alumina containing up to 1 weight percent of yttria or, perferably, containing 4 to 6 weight percent of zirconia.

  13. Nonabelian Bundle Gerbes, Their Differential Geometry and Gauge Theory

    NASA Astrophysics Data System (ADS)

    Aschieri, Paolo; Cantini, Luigi; Jurčo, Branislav

    2005-03-01

    Bundle gerbes are a higher version of line bundles, we present nonabelian bundle gerbes as a higher version of principal bundles. Connection, curving, curvature and gauge transformations are studied both in a global coordinate independent formalism and in local coordinates. These are the gauge fields needed for the construction of Yang-Mills theories with 2-form gauge potential.

  14. 46 CFR 151.15-10 - Cargo gauging devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... contains definitions and requirements for types of gauging devices specified in Table 151.05. (a) Open... the cargo and its vapors. Examples of this type are gauge hatch, ullage hole. (b) Restricted. A... closure device in that opening. When not in use, this type gauging device is closed to maintain the...

  15. A temperature and pressure controlled calibration system for pressure sensors

    NASA Technical Reports Server (NTRS)

    Chapman, John J.; Kahng, Seun K.

    1989-01-01

    A data acquisition and experiment control system capable of simulating temperatures from -184 to +220 C and pressures either absolute or differential from 0 to 344.74 kPa is developed to characterize silicon pressure sensor response to temperature and pressure. System software is described that includes sensor data acquisition, algorithms for numerically derived thermal offset and sensitivity correction, and operation of the environmental chamber and pressure standard. This system is shown to be capable of computer interfaced cryogenic testing to within 1 C and 34.47 Pa of single channel or multiplexed arrays of silicon pressure sensors.

  16. Determining Absolute Zero in the Kitchen Sink.

    ERIC Educational Resources Information Center

    Otani, Robert; Siegel, Peter

    1991-01-01

    Presents an experiment to demonstrate Charles's Law of Ideal Gases by creating a constant-pressure thermometer from materials that can be found in the kitchen. Discusses the underlying mathematical relationships and a step-by-step description of the experiment. (MDH)

  17. Measuring Time-Averaged Blood Pressure

    NASA Technical Reports Server (NTRS)

    Rothman, Neil S.

    1988-01-01

    Device measures time-averaged component of absolute blood pressure in artery. Includes compliant cuff around artery and external monitoring unit. Ceramic construction in monitoring unit suppresses ebb and flow of pressure-transmitting fluid in sensor chamber. Transducer measures only static component of blood pressure.

  18. The ghost propagator in Coulomb gauge

    NASA Astrophysics Data System (ADS)

    Watson, P.; Reinhardt, H.

    2011-05-01

    We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until `forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.

  19. Local gauge symmetry on optical lattices?

    SciTech Connect

    Liu, Yuzhi; Meurice, Yannick; Tsai, Shan-Wen

    2012-11-01

    The versatile technology of cold atoms confined in optical lattices allows the creation of a vast number of lattice geometries and interactions, providing a promising platform for emulating various lattice models. This opens the possibility of letting nature take care of sign problems and real time evolution in carefully prepared situations. Up to now, experimentalists have succeeded to implement several types of Hubbard models considered by condensed matter theorists. In this proceeding, we discuss the possibility of extending this effort to lattice gauge theory. We report recent efforts to establish the strong coupling equivalence between the Fermi Hubbard model andmore » SU(2) pure gauge theory in 2+1 dimensions by standard determinantal methods developed by Robert Sugar and collaborators. We discuss the possibility of using dipolar molecules and external fields to build models where the equivalence holds beyond the leading order in the strong coupling expansion.« less

  20. Dark matter and gauged flavor symmetries

    DOE PAGES

    Bishara, Fady; Greljo, Admir; Kamenik, Jernej F.; ...

    2015-12-21

    We investigate the phenomenology of flavored dark matter (DM). DM stability is guaranteed by an accidental Z 3 symmetry, a subgroup of the standard model (SM) flavor group that is not broken by the SM Yukawa interactions. We consider an explicit realization where the quark part of the SM flavor group is fully gauged. If the dominant interactions between DM and visible sector are through flavor gauge bosons, as we show for Dirac fermion flavored DM, then the DM mass is bounded between roughly 0.5 TeV and 5 TeV if the DM multiplet mass is split only radiatively. In general,more » however, no such relation exists. We demonstrate this using scalar flavored DM where the main interaction with the SM is through the Higgs portal. For both cases we derive constraints from flavor, cosmology, direct and indirect DM detection, and collider searches.« less